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Abstract

This thesis focuses on the Painlevé IV equation and its relationship with double scaling limits in

normal matrix models whose potentials exhibit a discrete rotational symmetry. In the first part,

we study a special solution of the Painlevé IV equation, which is determined by a particular

choice of the monodromy data of the associated linear system, and consider the Riemann-Hilbert

problem associated to it. From the Riemann-Hilbert problem we use the theory of integrable

operators in order to associate a Fredholm determinant representation, or equivalently a τ–

function, to our specific solution. The poles of our Painlevé IV solution are the zeros of this

τ–function. We study numerically the τ–function for real values of the independent variable s

and locate its zero on the real line.

In the second part of this thesis, we introduce the subject of orthogonal polynomials that

appear in the study of statistical quantities related to normal matrix models. We chose, for

our normal matrix models, a potential with a discrete rotational symmetry. A potential of

this form has different regimes: pre-critical, critical and post-critical, according to the values of

its parameter. Such regimes describe the transition of the support of the limiting distribution

of the eigenvalues of the normal matrix model, from a connected domain to a domain with

several connected components. We are interested in considering the critical case. Our purpose

is to consider the orthogonal polynomials associated with this matrix model and study their

asymptotic behaviour. We achieve this goal by transforming the orthogonality relations on the

complex plane to a Riemann-Hilbert problem on a contour. By following the general method of

nonlinear steepest descent of Deift-Zhou, we are able to perform the asymptotic analysis of the

orthogonal polynomials as the degree of the polynomials goes to infinity. As a consequence of this

procedure, we will find that the Riemann-Hilbert problem obtained after some transformations

is the same as the one that we had obtained for our special solution to Painlevé IV equation.

We will then fulfil our goal of finding the asymptotic behaviour of the orthogonal polynomials

in every region of the complex plane.
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Introduction

The subjects of Painlevé equations, random matrices and Riemann-Hilbert problems are deeply

related. The general purpose of this work will be to study a particular stance of this connection.

This will be done by considering a special solution of the Painlevé IV equation, analyzing it and

establishing its relationship with a particular random matrix-problem via the related orthogonal

polynomials. Doing so will require us to use the techniques of Fredholm Determinants, Double-

Scaling Limits and to evaluate the associated Riemann-Hilbert problems.

The first subject that will be of interest for us in this work is the one of Painlevé equations.

The classical Painlevé transcendents were originally introduced by Paul Painlevé as the

solution of a specific classification problem for second order ODEs of the type

uxx = F (x, u, ux) , (1)

where F is a meromorphic function in x and rational in u and ux. The author intended to

find all equations of this form that satisfied the condition of their solutions not having movable

singularities. As a consequence of this, essential singularities of the solution and possible branch

points should not depend on the initial data. The reason for considering a problem of this kind

is the fact that, when there are no movable singularities, every solution of the problem can be

meromorphically extended to the entire universal covering of a punctured complex sphere that

is only determined by the equation.

When studying this type of equations, Painlevé found out only fifty of them, up to equivalence

given by a transformation of the form

u→ α (x)u+ β (x)

γ (x)u+ δ (x)
, where α, β, γ, δ are meromorphic functions in x. (2)

It was later realized that these equations could either be integrated in terms of known functions

or mapped to a set of six equations that cannot be integrated in terms of known functions. The

six equations in this set are the so-called Painlevé equations

d2u

dx2
= 6u2 + x, (3)

1



0. Introduction

d2u

dx2
= xu+ 2u3 − α, (4)

d2u

dx2
=
u2
x

u
− ux

x
+

1

x

(
αu2 + β

)
+ γu3 +

δ

u
, (5)

d2u

dx2
=

1

2

u2
x

u
+

3

2
u3 − 2xu2 +

(
1 +

x2

2
− 2α

)
u− 2β

u
, (6)

d2u

dx2
=

3u− 1

2u (u− 1)
u2
x −

1

x
ux +

(u− 1)2

x2

(
αu+

β

u

)
+
γu

x
+
δu (u+ 1)

u− 1
, (7)

d2u

dx2
=
u2
x

2

(
1

u
+

1

u− 1
+

1

u− x

)
− ux

(
1

x
+

1

x− 1
+

1

u− x

)

+
u (u− 1) (u− x)

x2 (x− 1)2

(
α+ β

x

u2
+ γ

x− 1

(u− 1)2 + δ
x (x− 1)

(u− x)2

)
.

(8)

In this work, we will be particularly interested in the fourth Painlevé equation, (6). Following

the original work of Painlevé, several developments have been made regarding the study of this

class of equations, their properties and applications. The study of their solutions, the so-called

Painlevé transcendents, has also been an active area of research.

One important fact regarding Painlevé equations is their formulation in terms of an associated

isomonodromy deformation for a linear ODE.

To explain the notion in rather more general terms, let us consider the general case of a

Fuchsian system

dΨ

dλ
=

n∑

j=1

Aj
λ− aj

Ψ, where Ψ, Aj are N ×N matrices, (9)

the monodromy group of this system is defined as a representation of the fundamental group of

the punctured Riemann sphere

ρ : π1

(
CP1 \ {a1, . . . , an,∞}

)
→ GL (N,C) , (10)

generated by encircling the singular points a1, . . . , an, a∞ =∞

Ψ (λ) |(λ−aj)→(λ−aj)e2πi = Ψ (λ)Mj , M∞Mn . . .M1 = 1. (11)

These matrices, M1, . . . ,Mn,M∞, are called the monodromy matrices and we call monodromy

data the set m = {M1, . . . ,Mn,M∞}. This set defines, up to conjugation, the monodromy

group, M, of the Fuchsian equation (9). We can also consider the set of the form M =

{a1, . . . , an;M1, . . . ,Mn}, which is called the extended monodromy data of the Fuchsian sys-

tem, and the set A = {a1, . . . , an;A1, . . . , An}, which is the singular data of the system.

The above description for n = 4 and N = 2 leads to the sixth Painlevé equation; the case

which is more relevant to our discussion will be presented a bit below.

The second subject that will be of interest for us in this work is the one of Riemann-

Hilbert problems and their relationship with Painlevé equations. The Riemann-Hilbert problem

2



associated with a Fuchsian system consists in proving the existence of such a Fuchsian system

with given singular points a1, . . . , an and monodromy group M. Considering A ≡ {A} to be the

set of singular data and M ≡ {M} to be the set of monodromy data, one has to analyze the

direct monodromy map A → M and the inverse monodromy map M → A. This is the main

problem in the general theory of Fuchsian systems; in the case of relevance to our study, we need

a slightly refined notion of ”monodromy” that includes the data of Stokes’ matrices (see [22]).

Since our purpose is to see the Riemann-Hilbert problem in the context of Painlevé equations,

we will now look at how the monodromy can be used to study Painlevé equations. For the

purposes of our work, it will suffice to consider the matrix size to be N = 2.

The idea now is to consider a general linear system with a number of irregular singularities

of the form
dΨ

dλ
= A (λ; s) Ψ, A (λ; s) =

m∑

k=1

rk∑

i=1

A
(k)
i

(λ− ak)i
+

r∞−1∑

i=0

A
(∞)
i λi. (12)

Since in this work we are going to refer to the case of Painlevé IV, we should now state that in

this case we will have the matrix A (λ; s) to be of the form

A (λ; s) = A1λ+A0 +A−1
1

λ
, (13)

where A1, A0 and A−1 are matrices that will be given in Chapter 1. Without loss of generality

(up to conjugations/scaling) A1 = −1
2σ3. General theory implies that there is a formal series

solution

Ψ
f
(λ) =

(
1 +O(λ−1)

)
λΘ∞σ3 e−θ(λ)σ3 , (14)

with θ = λ2

4 + s
2λ a polynomial of degree 2; here the subscript f stands for ”formal”. The equation

(14) expresses the asymptotic behaviour of certain solutions Ψ(µ) in appropriate sectors S(µ).

Two such solutions are connected to each other by multiplication on the right by invertible

matrices, called the Stokes’ matrices. Each solution Ψ(µ) has an analogous local expansion near

the point λ = 0 (a Fuchsian singularity of the equation) of the form

Ψ(µ)(λ) = G(1 +O(λ))λΘ0σ3C(µ), (15)

where the matrices C(µ) are called the connection matrices; analytic continuation of (15) around

the origin yields the same matrix up to the right multiplication by the monodromy matrix

M0 = C−1
(µ) e2iπΘ0σ3 C(µ).

In the isomonodromic method, we demand that the Stokes’ matrices, together with the

connection matrices and the exponents Θ0,Θ∞ are independent of s (this implies that the

monodromy is also s–independent, whence the term “isomonodromy”).

It then follows that these different solutions satisfy the same ODE in s

d

ds
Ψ(µ)(λ; s) = B(λ; s)Ψ(µ)(λ; s), (16)

with a matrix B(λ; s) that is the same for all of them. Using the asymptotic behaviours of the

Ψ’s, one can deduce that B is (in our case) a polynomial in λ of degree 1:

B (λ; s) = B1λ+B0. (17)

3



0. Introduction

where the exact form of these matrices B1 and B0 will be given in Chapter 1.

Therefore, the function Ψ should satisfy the Lax Pair given by equations (12) and (16). Since

the compatibility condition of this system

Ψλs = Ψsλ (18)

should be satisfied, then it can be seen that this implies the zero curvature function

[∂λ −A, ∂s −B] ≡ 0. (19)

Since we now have that this equation should be satisfied, then we are lead to the Painlevé

equation.

As a result of this procedure, it can be seen that the Painlevé equations can be interpreted

as the compatibility condition for the Lax Pair. The generalized monodromy data (i.e. Stokes’

matrices, connection matrices, exponents) parametrize the general solution of the Painlevé equa-

tion.

For any solution A(λ; s), B(λ; s) of the zero–curvature equations (19) the authors of [22]

associated a particular function that they named τ–function and is defined by the first order

differential equation that, in our case, reads simply:

∂

∂s
ln τJMU (s) = − res

λ=∞
Tr

(
Ψ−1
f

d

dλ
Ψ
f

∂

∂s
θ(λ; s)σ3

)
dλ, (20)

where the residue is intended as a formal one (the coefficient of the power λ−1 in the formal

expansion).

In the study that we will be doing, it will also be important for us to consider the so-called

Fredholm Determinant. This is a quantity that is defined in the following way

det
(

Id− ρ K̂
)

= 1 +
∞∑

l=1

(−ρ)l

l!

∫

Xl

det
[
K (xi, xj)

]l
i,j=1

dν (x1) . . . dν (xl) , (21)

where K̂ is an integral operator K̂ : L2 (X,dν)→ L2 (X,dν) with kernel K(z, w) : X ×X → C.

The importance of this definition for us is the fact that, through Theorem 1.1, it is possible to

establish a connection between the Fredholm Determinant and the Riemann-Hilbert problem

that we will be working with. The key to do this will be in defining the kernel K (λ, µ) of the

operator K̂ through the product of two matrix-valued functions f, g : Σ→ Mat (n×m,C)

K (z, w) :=
fT (z) .g (w)

z − w . (22)

As a result of Theorem 1.1, it is established that the Riemann-Hilbert problem admits a solution

if and only if the Fredholm Determinant is non-zero. Furthermore, the jump matrices of the

Riemann-Hilbert problem can be obtained through the functions f and g in the following way

1− 2πif (z) gT (z) . (23)

4



The Fredholm Determinant is also important in the context of Painlevé equations. This is due

to the fact that, if the operator K̂ is defined in the way that we have just specified, then it can

also be shown that

τ (ρ) = det
(

Id− ρ K̂
)
. (24)

In the case of an appropriate operator K̂ (in Chapter 1) where the operator depends analyti-

cally on a parameter s, the definition of the tau function as a Fredholm determinant turns out

to coincide with the τ -function of the Painlevé equation associated with the Riemann-Hilbert

problem as defined by (20). Therefore, by using the Fredholm Determinant for an operator K̂
related to a given Riemann-Hilbert problem, then it is possible to study the τ -function of the

Painlevé equation associated with that Riemann-Hilbert problem.

The third subject that will be of interest for us in this work is the one of random matrices.

In the study of random matrices, one considers a set of m ×m matrices, M = {Mij}, with

certain properties and the purpose is to study probability distributions of the form

µm (dM) =
1

Zm,N
e−NTr(V (M)) dM, (25)

where N is a positive parameter and Zm,N is the normalization constant, or partition function,

defined in the following way

Zm,N =

∫
e−NTr(V (M)) dM, (26)

where the integration is over the space of matrices that is being considered. In our case, we will

be working with the space of m×m normal matrices

Nm = {M : [M,M∗] = 0} ⊂ Matm×m (C) . (27)

Therefore, in (25) and (26), dM will refer to the volume form induced on Nm that is invariant

under conjugation by unitary matrices. Regarding V (M), it is a function of the form V : C→ R
and is assumed to have growth at infinity in such a way that the integral in (26) is bounded.

Due to the fact that we are considering only normal matrices, we can now take advantage of the

fact that they are diagonalizable by unitary transformations and reduce the probability density

to the form

µm (dM) =
1

Zm,N

∏

i<j

|λi − λj |2e−N
∑m
j=1 Tr(V (λi)) dA (λ1) . . . dA (λm) , (28)

where λi are the eigenvalues of the normal matrix M and dA (z) is the area measure. The

partition function can now be written as

Zm,N =

∫

Cm

∏

i<j

|λi − λj |2e−N
∑m
j=1 Tr(V (λi)) dA (λ1) . . . dA (λm) , (29)

where the integration is over Cm since the eigenvalues λi are complex valued.

5



0. Introduction

In the context of matrix models, one can also introduce the associated orthogonal poly-

nomials. This is done by defining n-th monic polynomials pn (z) through the following set of

relations
∫

C
pn (z) zn

′
e−NV (z) dA (z) = hn,N δn,n′ , hn,N > 0, n, n′ = 0, 1, . . .m, (30)

where pn are of the form

pn = zn + cn−1z
n−1 + . . . (31)

and hn,N is called the norming constant.

0.1 Summary of the Results

The first chapter of this thesis is devoted to the study of a special case of the Painlevé IV

equation and the Fredholm Determinant associated to it.

We begin by deriving the general Painlevé IV equation. This is done by introducing the Lax

Pair, which consists on the following system of linear differential equations





Ψλ = A (λ; s) Ψ

Ψs = B (λ; s) Ψ

(32)

as explained in (12) and (16), and the Painlevé equation is obtained as the compatibility condi-

tion between the two equations of the system.

The following step consists in establishing a special solution of the Painlevé equation. This is

done by considering specific values for the monodromy data. In our work, we will be interested

in considering the following values for the Stokes’ parameters (see Chapter 1 for the precise form

of the Stokes’ matrices), connection matrices and exponents

S1 = 1, S0 = 0, S−1 = −1, S−2 = −1, C(III) = C(IV) = 1, Θ0 =
γ

2
, Θ∞ =

γ

2
. (33)

This will allow us to establish a Riemann-Hilbert problem whose jump matrices will be given

by the Stokes’ matrices with the values of Si that we specified and behaviour at infinity in

each region given by Ψformal (λ). Our procedure will then require us to modify the rays of the

Riemann-Hilbert problem, in a way that will be specified later, and derive a new Riemann-

Hilbert problem constructed for a new matrix valued function that is defined as

H (λ) := Ψ (λ) eθ σ3 λ−
γ
2
σ3 . (34)

We will then make use of the Fredholm Determinant in order to study the τ–function of our

special solution of Painlevé IV. The purpose of this will be to see for which values of the

parameter s does the τ–function exist. This analysis will initially lead us to obtain the following

result
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-2 2 4 6 8 10
s

-1.5

-1.0

-0.5

0.5

1.0

1.5

tan-1(τ(s, 0.1, 150))

Figure 0.1: τ (s) for γ = 0, 1 and with n = 150.

Theorem 0.1. The Riemann–Hilbert problem for H (λ) admits a solution for s ∈ (−∞,−s̃0),

where s̃0 = −s0 = 0.7701449782. In particular, the solution of the fourth Painlevé equation

(1.6) for our choice of monodromy data (33) is pole–free within that range.

Since this estimate does not contain information for all possible values of s, we will then pro-

ceed to do a numerical analysis of the τ–function. Doing so, will require us to make use of the

technique of Gauss-Hermite quadrature in order to have a faster convergence of this numerical

estimate. The τ–function here will be a function of the two parameters s and γ, τ = τ (s, γ), and

due to the method that we are using, the numerical analysis will also depend on the number n

of points that are used to compute the function. As a result of this procedure, we will obtain for

the function τ (s, γ = 0.1, n = 150) the results that can be seen in Figure 0.1, where we plotted

the arctan of τ because the function takes very large values for s > 0. This shows us that the

τ–function is always non-zero for s negative, as was stated in the Theorem, and is only zero for

certain positive values of s. In fact, it can be seen that, after a certain value of s, the function

becomes oscillatory.

The second chapter of this work will be devoted to our random matrices problem. More

specifically, we will be considering normal matrix models, where one considers n × n normal

matrices, and their associated orthogonal polynomials, which are defined in the following way
∫

C
pn (λ) pm (λ)e−NW (λ) dA (λ) = hn,N δn,m, hn,N > 0, n,m = 0, 1, . . . . (35)

We will be interested in considering the case when the external potential exhibits a discrete

rotational symmetry of the form

W (λ) = |λ|2d − tλd − t̄λ̄d, λ ∈ C. (36)

7



0. Introduction

It can be seen that potentials of this type exhibit different regimes according to the value of

the parameter t that is being considered. In this work, we will be interested in studying the

asymptotics of the orthogonal polynomials in the so-called critical case.

The first thing that we will do will be to use the symmetry of the external potential, W (λ),

to perform a reduction of the orthogonal polynomials, pn (λ), to some new polynomials, πk (z),

where z = 1− λd

t . In the critical case, t = tc, the zeros of the orthogonal polynomials behave in

the following way

Theorem 0.2. The zeros of the polynomials pn(λ) defined in (35) for t = tc =
√

T
d , behave in

the following way

• for n = kd + d − 1, let ω = e
2πi
d . Then t

1
d , ωt

1
d , . . . , ωk−1t

1
d are zeros of the polynomials

pkd+d−1 with multipicity k and λ = 0 is a zero with multiplicity r − 1.

• for n = kd+ `, ` = 0, . . . , r − 2 the polynomial pn(λ) has a zero in λ = 0 with multiplicity

` and the remaining zeros in the limit n,N →∞ such that

N =
n− `
T

, (37)

accumulate on the level curve Ĉ defined in (2.17), namely

Ĉ := {λ ∈ C :

∣∣∣∣(tc − λd) exp

(
λd

tc

)∣∣∣∣ = tc, |λd − t| ≤ tc}. (38)

The measure ν̂ in (2.18) is the weak-star limit of the normalized zero counting measure νn

of the polynomials pn for n = kd+ `, ` = 0, . . . , d− 2.

We will then reformulate the orthogonality relations for the polynomials πk (z) so that they

can be written as an orthogonality relation defined over a contour in the complex plane. The

advantage of doing this is the fact that it will allow us to reformulate our problem in terms of

a Riemann-Hilbert problem for the polynomials πk (z).

The third chapter will be devoted to the study of the Riemann-Hilbert problem. Doing so,

will require us to begin by defining the matrix of Y (z) in such a way that the analysis for large

k behaviour can be performed. The matrix is defined as

Y (z) =




πk (z)
1

2πi

∫

Σ

πk (z′)

z′ − z
wk
(
z′
)

dz′

−2πiΠk−1 (z) −
∫

Σ

Πk−1 (z′)

z′ − z
wk
(
z′
)

dz′



, (39)

where Y1 1 can be seen to correspond to the reduced orthogonal polynomials whose asymptotics

we want to compute. This matrix is the unique solution of a Riemann-Hilbert problem that we

will have to define.
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0.1. Summary of the Results

In order to analyze the asymptotic behaviour of the Riemann-Hilbert problem, we follow the

general method of the nonlinear steepest descent of Deift–Zhou [11, 12], which requires a chain

of transformations. This will be detailed in Chapter 3.

As it will appear in due course, the method requires the construction of an auxiliary scalar

function (called the “g–function”) based on a suitable measure supported on an appropriate

contour. The way that this contour is defined will have to take into account the fact that we

are in the critical case, where z0 = 1, and all contours should cross this point. It should be

noted that the analysis for the pre-critical, z0 > 1, and post-critical, z0 < 1, cases were studied

in the work of Balogh, Merzi and Grava [2], where they were able to find the asymptotics for

the orthogonal polynomials in these two regimes.

Due to the fact that we are dealing with a Riemann-Hilbert problem in the critical case, it

will make sense for us to consider a double–scaling regime. In fact, applying the double–scaling

procedure in the study of orthogonal polynomials is an idea that was originally introduced in

the work of Bleher and Its [7]. Their purpose was to use this when dealing with matrix models

with potentials of the form W (λ) = t
2λ

2 + g
4λ

4. As a result of their work, it was found that

the Painlevé II equation appeared as the governing equation for the double scaling limit. In

our work, where we are dealing with a different matrix model, we intend to follow a similar

procedure to apply the double scaling limit in the study of orthogonal polynomials. As a result

of this, we will be able to see that a particular solution to Painlevé IV is obtained. It should

also be noted that, in our case, the relevant measure depends on a real parameter t and the

double-scaling will be studied when t is near a critical value tc.

By establishing this connection with Painlevé IV, we will finally be able to obtain the asymp-

totics of the orthogonal polynomials. The results obtained are stated in the following theorem.

Theorem 0.3 (Double scaling limit). The polynomials pn(λ) with n = kd+ `, ` = 0, . . . , d− 2,

γ = d−`−1
d ∈ (0, 1), have the following asymptotic behaviour when n,N →∞ in such a way that

NT = n− ` and

lim
k→∞,t→tc

√
k

(
t2

t2c
− 1

)
→ S,

with S in compact subsets of the real line so that the solution Y (S) of the Painlevé IV equation

does not have poles.

(1) For λ in compact subsets of the exterior of Ĉ one has

pn(λ) = λ`
(
λd − tc

)k (λd − tc
λd

)γ (
1− H(S) tc√

k λd
+O

(
1

k

))
, (40)

with H(S) the Hamiltonian (1.10) of the Painlevé IV equation (1.6).

9
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(2) For λ in the region near Ĉ and away from the point λ = 0 one has

pn(λ) = λ`
(
λd − tc

)k (λd − tc
λd

)γ (
1− H(S) tc√

k λd
+
Z(S)

U(S)

tc e
−kϕ̂(λ)

λd k
1+γ
2

(
λd − tc
λd

)−γ
+O

(
1

k

))
,

(41)

with ϕ̂(λ) defined in (2.16) and the functions Z, U and H are related to the Painlevé IV

equation (1.6) by the relations (1.5) and (1.10), respectively.

(3) For λ in compact subsets of the interior region of Ĉ one has

pn(λ) = λ`
(
λd − tc

)k e−kϕ̂(λ)

k
1
2

+γ

(
Z(S)

U(S)

tc
λd

+O
(

1

k

))
. (42)

(4) In the neighbourhood of the point λ = 0 and in the interior of Ĉ one has

pn(λ) = λ`
(
λd − t

)k (λd − tc
λd

)γ
e−kϕ̂(λ)

(
Ψ̂1 1(

√
−k ϕ̂(λ);S)

k
γ
4

√
−ϕ̂(λ)

+O
(

1

k

))
, (43)

where Ψ̂1 1 is the 1 1 entry of the deformed Painlevé IV Riemann-Hilbert problem (3.4.4)

obtained by deforming the Riemann-Hilbert problem (1.2.1) with Stokes multipliers specified

in (1.15) and (1.16).

(5) In the neighbourhood of the point λ = 0 and in the exterior of Ĉ one has

pn(λ) = λ`
(
λd − t

)k (λd − tc
λd

)γ (
Ψ̂1 1(

√
−k ϕ̂(λ);S)

k
γ
4

√
−ϕ̂(λ)

+O
(

1

k

))
, (44)

where the notation is as above in point (4).

0.2 Outlooks

As we have stated, the analysis performed in Chapter 1 allowed us to understand the domain of

existence of the τ–function for our special solution of Painlevé IV, i.e., the points where the τ–

function is non-zero. Due to the oscillatory behaviour that this function exhibits after a certain

value of s, it can be observed that it is non-zero except for a set of infinitely many points. One

could now consider the problem of dealing with these points so that this undesired behaviour (τ

having zero value) can be tackled. One idea to do this would be by introducing a triple-scaling

limit. More concretely, this means the following; suppose that S = s0 is any of the real zeroes

of the Fredholm determinant (24) and hence a pole on the positive real axis for the functions

H(S) , Z(S) , U(S) appearing in (41). Following the ideas pioneered in [6] for the semiclassical

analysis of the focusing Nonlinear Schrödinger equation, and refined in [5] for certain other

orthogonal polynomials, one introduces a “slow” dependence of S on k as S = s0 + ε/kn] , with

10



0.2. Outlooks

n] an appropriate scaling power; this allows one to investigate a neighbourhood of the pole

s0 in the plane of the Painlevé variable s. The technique requires one to construct a special

interpolating local parametrix in place of the one that we used in this thesis.

The reason why this analysis is of interest is the following; according to the expression (41)

for S ' s0, we have that the subleading corrections become divergent and it seems to suggest

that the orthogonal polynomials have some sort of singularity. However, the polynomials come

from a positive definite measure and therefore they should always exist, for all real values of t

and hence all real values of S. It is thus our expectation that a triple scaling analysis as indicated

above will reveal that there is no divergence at S ∼ s0 along the real S–axis. This is the object

of our future investigations.
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1

Painlevé IV and the Fredholm Determinant

The purpose of this chapter is to introduce the Painlevé IV equation and study various aspects

related to it that are connected with the work that we will be doing in the following chapters.

We will begin by introducing and deriving the general Painlevé IV equation following the

ideas outlined by Miwa, Jimbo and Ueno [22, 23]. In the sequence of this, we will also discuss

the associated Stokes’ phenomenon and the monodromy problem (see Wasow [28]).

The second part of this chapter will be devoted to applying the general setting of Painlevé

IV in a particular case, in order to obtain a special solution for it. This will correspond to a

special Riemann-Hilbert problem whose properties will be outlined. The reason and motivation

for introducing this solution is the fact that this Riemann-Hilbert problem will be seen to be

useful in the chapters that follow.

The third and final part of this chapter will be devoted to the study of the Fredholm de-

terminant, as it has been established by Its [21], Harnad [19], Bertola and Cafasso [4], among

others. This will be used in order to study the τ–function of the special solution of Painlevé IV

that we introduced before and analyze its validity with respect to the value of the parameter s.

1.1 The general Painlevé IV

Our first step in this work is to introduce the Painlevé IV equation. In order to derive it, we

will begin by establishing its Lax Pair formulation as it was done in the original work of Miwa,

Jimbo and Ueno [22, 23].

Consider the matrix–valued function Ψ, associated with Painlevé IV, as the fundamental

joint solution of the system of linear differential equations, the Lax Pair, given by





Ψλ = A (λ; s) Ψ

Ψs = B (λ; s) Ψ

(1.1)

where Ψλ = ∂Ψ
∂λ and Ψs = ∂Ψ

∂s . Regarding A (λ; s) and B (λ; s), these are matrices that are given
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1. Painlevé IV and the Fredholm Determinant

by

A (λ; s) = −1

2
(λ+ s)σ3 +


 0

Z

U
−U 0


+

1

λ


Θ∞ − Z

(Θ∞ − Z)2 −Θ2
0

Y U
−UY Z −Θ∞


 , (1.2)

B (λ; s) = −1

2
λσ3 +


 0

Z

U
−U 0


 , (1.3)

where σ3 is the third Pauli matrix, Y , Z and U are functions of s whose dependence we now

derive, while Θ0, Θ∞ are arbitrarily chosen constants. If one now applies the operator ∂
∂λ to Ψs

and the operator ∂
∂s to Ψλ, it can easily be seen that the compatibility condition between these

two equations will lead to the zero curvature equation, which we can now write in the following

way

[∂λ −A, ∂s −B] ≡ 0. (1.4)

This equation can be computed explicitly using the matrices for A (λ; s) and B (λ; s) that were

written above. Doing so, it can be seen that this leads to the following system of equations for

U , Z and Y 



U ′ = U (Y − s)

Z ′ = Z Y +
− (Z −Θ∞)2 + Θ2

0

Y

Y ′ = −Y 2 + sY − 2Z + 2Θ∞

(1.5)

If we now solve the equation of Y ′ for Z and place it into the equation for Z ′, it is possible to

see that the following result is obtained

Y ′′ =
1

2

(Y ′)2

Y
+

3

2
Y 3 − 2sY 2 +

(
1 +

s2

2
− 2Θ∞

)
Y − 2Θ2

0

Y
. (1.6)

This is the Painlevé IV equation, which can be interpreted as the compatibility condition for

the system (1.1).

1.1.1 Stokes’ phenomenon and the Monodromy problem

Considering the differential equation Ψλ = A (λ; s) Ψ in (1.1), it is possible to find a formal

solution of Ψ (λ) (the dependence on s is understood even if not indicated) of the form

Ψformal(λ) =

(
1 +

V1

λ
+
V2

λ2
+ . . .

)
λΘ∞σ3e−θ(λ)σ3 , (1.7)

where Vj are matrices that are constants in λ but depend on s and θ (λ) is of the form

θ(λ) =
λ2

4
+
s

2
λ. (1.8)
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1.1. The general Painlevé IV

e−2πiΘ∞σ3
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)
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1

Figure 1.1: Stokes’ phenomenon and the corresponding jumps in the Ψ (λ) Riemann-Hilbert
problem.

According to a general Theorem in the theory of differential equations (see Wasow [28]), these

matrices Vj can be found by recursively plugging Ψformal (λ) into (1.1) and matching the coef-

ficients in λ. As a result of this procedure it is possible to obtain the following expression for

Ψ (λ)

Ψ(λ) =


1 +

1

λ


H

Z

U
U −H


+O

(
1

λ2

)
λΘ∞σ3e−θ(λ)σ3 , (1.9)

where

H =

(
s+

2Θ∞
Y
− Y

)
Z − Θ2

∞ −Θ2
0

Y
− Z2

Y
. (1.10)

Even though the Laurent expansion for Ψformal (λ) is not convergent, there are analytic

solutions Ψ(q) (λ) in C \ R−, where q = 0, I, II, . . . corresponds to the sectors that can be

seen in Figure 1.1. These solutions are such that, in the corresponding sector q, they have the

asymptotic expansion (1.7) when λ→∞. The solutions Ψ(q) (λ) in each of the different sectors

are related by the so-called Stokes’ matrices and, according to the general theory of Wasow, it

is established that these have given triangularity. The Stokes’ matrices for each of the different

rays are those that can be seen in Figure 1.1.

Each of these solutions of Painlevé IV for each sector q, Ψ(q) (λ), has an asymptotic expansion

near λ = 0 with the following behaviour

Ψ(q)(λ) = G (1 +O (λ))λΘ0σ3 C(q), (1.11)
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1. Painlevé IV and the Fredholm Determinant

where G is a diagonalizing matrix for the 1
λ coefficient of A (λ; s). From this equation, it can

also be seen, by making λr → λre2πir, that the analytic continuation of Ψ(0) around λ = 0 in

the counterclockwise way leads to the matrix

Ψ̃(0)(λ) = Ψ(0) (λ) C−1
(0) e

2πiΘ0σ3 C(0). (1.12)

Ψ̃(0) (λ) should be interpreted as the expression for Ψ (λ) in the sector (0) after a loop in the

counterclockwise way has been performed. If we now consider the Riemann-Hilbert problem

associated to Ψ (λ) and using the Stokes’ matrices that are exposed in Figure 1.1, then it should

be obtained that

Ψ(0)(λ) = Ψ(0)(λ)

(
1 −S−2

0 1

)(
1 0

−S1 1

)(
1 −S0

0 1

)(
1 0

−S−1 1

)(
1 S−2

0 1

)
e2πiΘ∞σ3 . (1.13)

It is clear that (1.12) and (1.13) should be equivalent equations. Therefore, comparing both of

them, the following constraint is obtained

C−1
(0) e

2πiΘ0σ3 C(0) =

(
1 −S−2

0 1

)(
1 0

−S1 1

)(
1 −S0

0 1

)(
1 0

−S−1 1

)(
1 S−2

0 1

)
e2πiΘ∞σ3 .

(1.14)

This result is called the Monodromy relation. The remaining connection matrices C(q) are

obtained from C(0) by multiplying it by an appropriate sequence of the Stokes’ matrices; for

example C(V) = C(0)

(
1 S−2

0 1

)
.

The general solution to the isomonodromic equations (1.5) for given Θ0,Θ∞ is parametrized

by the choices of parameters S−1, . . . and connection matrix C(0).

1.2 Special Riemann-Hilbert Problem Ψ (λ) and Painlevé IV

We will now use the general setting of the Painlevé IV equation that we have just described

and, by giving values to the monodromy data, define a special solution of this equation. The

motivation that compels us to do this is the fact that this solution will be seen, in what follows,

to be interesting for the remainder of our work.

In order to introduce the special solution of the Riemann-Hilbert problem, we will proceed

by giving certain values to the Stokes’ Matrices and to the connection matrices. The choice that

we are interested in is the following

S1 = 1, S0 = 0, S−1 = −1, S−2 = −1, (1.15)

C(III) = C(IV) = 1. (1.16)

Furthermore, we will also give values to the following quantities

Θ0 =
γ

2
, Θ∞ =

γ

2
. (1.17)
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(
1 0
1 1

)
(

1 −1
0 1

)

eγπiσ3

Γ∞

Γ1

Ω∞

Ω2

Ω0

1

Figure 1.2: Jumps in the Ψ (λ) Riemann-Hilbert problem.

Applying all these conditions, this gives rise to a new Riemann-Hilbert problem whose jump

matrices are now given by the Stokes’ matrices with the values for Si that we have just speci-

fied. The resulting Riemann-Hilbert problem is the one depicted in Figure 1.2, where we have

also given the names Γ1 and Γ∞ to the contours over which the jump matrices apply, and is

established in the following way

Riemann-Hilbert Problem 1.2.1. 1. Piecewise Analyticity:

Ψ (λ) is analytic in C \ (Γ1 ∪ Γ∞ ∪ R−) .

2. Jumps on ΣΨ = Γ1 ∪ Γ∞ ∪ R−:

Ψ+ (λ) = Ψ− (λ) vΨ, λ ∈ ΣΨ, (1.18)

where

vΨ =






1 −1

0 1


 , λ ∈ Γ1


1 0

1 1


 , λ ∈ Γ∞

eγπiσ3 , λ ∈ R−

(1.19)
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1. Painlevé IV and the Fredholm Determinant

which are the jumps that can be seen in Figure 1.2.

3. Large λ boundary behaviour:

Ψ (λ) =

(
1 +O

(
1

λ

))
λ
γ
2
σ3 e−θ(λ)σ3 , λ→∞ . (1.20)

4. Endpoint Behaviour:

Ψ (λ) = O(1)λ
γ
2
σ3 , (1.21)

as λ → 0 in the region Ω∞ (and the implication of this behaviour as λ → 0 within the

other regions).

We will now proceed to do a further modification of this Ψ (λ)–Riemann-Hilbert problem

that we have just discussed. This will lead to a new Riemann-Hilbert problem that is going to

be used in the next section for the study of the Fredholm Determinant.

This new Riemann-Hilbert problemH is going to be constructed by establishing the following

conditions

• Move the jump contour Γ∞ = iR in the following way iR→ iR + ε

• Join together (collapse) the two parts of the contour Γ1 and R−

The new Riemann-Hilbert problem H is now defined in the following way

H(λ) := Ψ (λ) eθ(λ)σ3 λ−
γ
2
σ3 . (1.22)

As a result of this procedure, we obtain the Riemann-Hilbert problem that is depicted in Figure

1.3, where the dashed line is due to the fact that, as it was stated above, the contour Γ∞ = iR
was moved by a factor of ε. The Riemann-Hilbert problem for H (λ) is therefore established in

the following way

Riemann-Hilbert Problem 1.2.2. 1. Piecewise Analyticity:

H (λ) is analytic in C \ (Γ∞ ∪ R−) .

2. Jumps on ΣΨ = Γ∞ ∪ R−:

H+ (λ) = H− (λ) vH, λ ∈ ΣH, (1.23)

where

vH =






1 2i sin (πγ) |λ|γe−2θ(λ)

0 1


 , λ ∈ R−


 1 0

λ−γe2θ(λ) 1


 , λ ∈ Γ∞

(1.24)
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0
ε

(
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λ−γeθ 1

)

(
1 2i sin (πγ) |λ|γe−2θ
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)

Γ∞

R−
Ω∞

Ω0

1

Figure 1.3: Jumps in the H (λ) Riemann-Hilbert problem.

which are the jumps that can be seen in Figure 1.3.

3. Large λ boundary behaviour:

H (λ) =

(
1 +O

(
1

λ

))
, λ→∞ . (1.25)

4. Endpoint Behaviour:

H (λ) is bounded near λ = 0.

This is a Riemann-Hilbert problem that can be associated to an integral operator on L2
(
R−

∪ (iR + ε)
)

and will be used in the next section in order to compute the Fredholm Determinant.

1.3 Fredholm determinant and the τ -function of Painlevé IV

We now want to study the τ–function of our special solution of the Painlevé IV equation. In

order to do this, we will introduce the notion of Fredholm determinant.

Considering a space X and an associated measure dν, suppose that we have an operator

K̂ : L2 (X,dν)→ L2 (X,dν) such that

(
K̂f
)

=

∫

X
K (x, y) f (y) dν (y) . (1.26)

Then, the following definition can be made
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1. Painlevé IV and the Fredholm Determinant

Definition 1.1. The Fredholm Determinant is defined as

τ(ρ) = det
(

Id− ρ K̂
)

= 1 +
∞∑

`=1

(−ρ)`

`!

∫

X`

det
[
K (xi, xj)

]`
i,j=1

dν (x1) . . . dν (xl)

= 1− ρ
∫

X
K (x, x) dν (x) +

ρ2

2

∫

X

∫

X
det


K (x, x) K (x, y)

K (y, x) K (y, y)


dν (x) dν (y)

+
∞∑

`=3

(−ρ)`

`!

∫

X`

det
[
K (xi, xj)

]`
i,j=1

dν (x1) . . . dν (x`) .

(1.27)

It can be seen, [26], that this series converges if and only if the operator K̂ is trace-class and,

in this case, the Fredholm determinant is an entire function of ρ. Moreover, since K̂ is also a

compact operator, its spectrum is purely discrete, the eigenvalues can accumulate only at 0 and

all the multiplicities of the nonzero eigenvalues are finite (see e.g. [26]). It can also be said that

τ (ρ) = 0 if and only if
1

ρ
is an eigenvalue of K̂. (1.28)

For values of ρ sufficiently small, i e. such that they satisfy the condition

|ρ| <
(

Spectral radius of K̂
)−1

, (1.29)

then the condition of K̂ being trace-class can equivalently be written as

log det
(

Id− ρ K̂
)

= −
∞∑

`=1

1

`
ρ` TrK̂`. (1.30)

1.3.1 Riemann-Hilbert problems and Fredholm determinants.

We will now establish the general connection between a Riemann-Hilbert problem and Fredholm

Determinants.

We begin by considering a set of contours Σ ⊂ C and define the following

K (λ, µ) :=
fT (λ) .g (µ)

λ− µ , (1.31)

where f, g : Σ→ Mat (n×m,C) are matrix–valued (smooth) functions that satisfy the condition

fT (λ) .g (λ) = 0. Furthermore, K (λ, µ) is taken to be the kernel of an integral operator K̂ :

L2 (Σ,Cp)→ L2 (Σ,Cp).
In order to work with the Fredholm determinant of K̂, we will use the following Jacobi

variational formula

∂ log det
(

Id− K̂
)

= TrL2

(
(Id +R) ◦ ∂K̂

)
, (1.32)

where R is the resolvent operator

R := −K̂ ◦
(

Id− K̂
)−1

. (1.33)

We now have the tools to state the Theorem, that can be seen in see [21], regarding the general

connection between an operator K̂, its Fredholm determinant and a Riemann-Hilbert problem.
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1.3. Fredholm determinant and the τ -function of Painlevé IV

Theorem 1.1. The kernel, R(λ, µ), of the resolvent operator R is given by

R (λ, µ) : = −K ◦ (Id−K)−1 (λ, µ)

=
fT (λ) ΓT (λ) Γ−T (µ) g (µ)

λ− µ ,
(1.34)

where Γ (λ) solves the Riemann-Hilbert problem

Γ+ (λ) = Γ− (λ)
(
1− 2πif (λ) gT (λ)

)
, λ ∈ Σ, (1.35)

Γ (λ) = 1 +O
(
λ−1

)
, λ→∞. (1.36)

Moreover, the above Riemann—Hilbert problem admits a unique solution if and only if the Fred-

holm determinant det
(

Id− K̂
)

is non-zero.

1.3.2 Fredholm determinant and the Riemann-Hilbert problem H
We will now apply these results regarding the Fredholm Determinant to our special solution of

Painlevé IV, which resulted in the Riemann-Hilbert problem H (z).

To do this, we begin by defining the following vectors

f(z) =




2i sin (πγ) |z| γ2 e−θ(z)χR− (z)

z−
γ
2 eθ(z)χiR (z)


 , (1.37)

g(z) = − 1

2πi



z−

γ
2 eθ(z)χiR (z)

|z| γ2 e−θ(z)χR− (z)


 , (1.38)

where χiR and χR− are the characteristic functions of iR and R−, respectively. With this

definition, it is easy to see that, according to whether iR or R− is being considered, these

matrices f (z) and g (z) lead to the following jump matrices

1− 2πif(z) gT (z) =





(
1 2i sin (πγ) |z|γe−2θ(z)

0 1

)
, z ∈ R−

(
1 0

z−γe2θ(z) 1

)
, z ∈ iR

(1.39)

Recalling the Riemann-Hilbert problem H (z) that was stated above, it can now be seen that

its jump matrices vH, that were given in (1.24), are the same as the ones obtained in (1.39), for

1− 2πi f (z) gT (z).

As a consequence of this, we can now write the Riemann-Hilbert problem H in the following

way

H+(z) = H−(z)
(
1− 2πif(z) gT (z)

)
, z ∈ Σ, (1.40)
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1. Painlevé IV and the Fredholm Determinant

H = 1 +O
(

1

z

)
, z →∞, (1.41)

where Σ = iR ∪ R−. It should also be noted that, due to the construction that was done, we

have fT (z) g (z) ≡ 0.

From what we stated before, it is also clear that the solution to the Riemann-Hilbert problem

H (z) exists if and only if

det
(
1− K̂

)
6= 0. (1.42)

Regarding K̂, it is an operator of the form K̂ : L2 (Σ)→ L2 (Σ) and given by

K̂ [ϕ] (z) =

∫

Σ

fT (z) g(w)

z − w ϕ(w) dw, (1.43)

where ϕ ∈ L2 (Σ). In order to make an analysis of this operator, we begin by splitting Σ =

iR ∪ R−, which leads to

L2 (Σ) = L2 (iR ∪ R−) = L2 (iR)⊕ L2 (R−) , (1.44)

where the last equality is an isomorphism. More specifically, for a function ϕ ∈ L2 (Σ), we can

associate the two components along L2(R−), L2(iR) as follows

ϕ ∈ L2 (iR ∪ R−)→ ϕ0 ∈ L2 (R−) , ϕ1 ∈ L2 (iR) , (1.45)

ϕ(z) = ϕ0(z)χR−(z) + ϕ1(z)χiR(z) . (1.46)

Due to this fact, the operator K̂ [ϕ] can now be written as

K̂ [ϕ] =

[
K0 0 K0 1

K1 0 K1 1

][
ϕ0

ϕ1

]
=

[
K0 0 ϕ0 +K0 1 ϕ1

K1 0 ϕ0 +K1 1 ϕ1

]
, (1.47)

where the operators Ki j are of the form

K0 0 : L2 (R−)→ L2 (R−) , (1.48)

K0 1 : L2 (iR)→ L2 (R−) , (1.49)

K1 0 : L2 (R−)→ L2 (iR) , (1.50)

K1 1 : L2 (iR)→ L2 (iR) . (1.51)

Regarding the particular case of the Riemann-Hilbert problem H (z) that we want to consider,

recall that in this case we have 1 − 2πif (z) gT (z), which leads to (1.39). We now have the

operator (1.43) with f (z) and g (z) given by (1.37) and (1.38), respectively, and therefore it is

easy to see that for this case

K0 0 = K1 1 = 0. (1.52)

22



1.3. Fredholm determinant and the τ -function of Painlevé IV

We will now compute the kernel of our integral operator K̂, (1.31):

fT (z) g(w)

z − w =− 1

2πi

(
2i sin (πγ)|z| γ2 e−θ(z)χR−(z)w−

γ
2 eθ(w)χiR(w)

z − w

)

− 1

2πi

(
z−

γ
2 eθ(z)χiR(z) |w| γ2 e−θ(w)χR−(w)

z − w

) (1.53)

which leads to

∫

Σ

fT (z) g(w)

z − w ϕ (w) dw =− 2i sin (πγ)

2πi

(∫

iR

w−
γ
2 eθ(w)ϕ1(w)

z − w dw

)
|z| γ2 e−θ(z)χR−(z)

− 1

2πi

(∫

R−

|w| γ2 e−θ(w)ϕ0(w)

z − w dw

)
z−

γ
2 eθ(z)χiR(z) .

(1.54)

Therefore, the entries of K̂ that we have in (1.47) can be seen to be of the following form

K0 1 : L2 (iR)→ L2 (R−)

(K0 1 ϕ) (z) = −2i sin (πγ)

(2πi)

(∫

iR

w−
γ
2 eθ(w)ϕ1 (w)

z − w dw

)
|z| γ2 e−θ(z),

(1.55)

K1 0 : L2 (R−)→ L2 (iR)

(K1 0 ϕ) (z) = − 1

(2πi)

(∫

R−

|w| γ2 e−θ(w)ϕ0 (w)

z − w dw

)
z−

γ
2 eθ(z).

(1.56)

Following the Definition 1.1 of the Fredholm Determinant, we can now compute it for the

case when K̂ is given by this operator

det
(

Id− K̂
)

= det

([
10 0

0 11

]
−
[

0 K0 1

K1 0 0

])

= det

([
10 K0 1

0 11

][
10 −K0 1

−K1 0 11

])

= det

[
10 −K0 1K1 0 0

−K1 0 11

]
,

(1.57)

where 10 = IdL2(R−), 11 = IdL2(iR) and we are left with the equality

det
(

Id− K̂
)

= det L2(R−)

[
IdL2(R−) −K0 1K1 0

]
. (1.58)

We will now use the operators that were defined in (1.55) and (1.56) to compute the product

K0 1K1 0 that appears in (1.58)

(K0 1) (K1 0) (ϕ0) (z) = −2i sin (πγ)

4π2
|z| γ2 e−θ(z)

∫

iR

x−γe2θ(x)

z − x

(∫

R−

|w| γ2 e−θ(w)ϕ0 (w)

x− w dw

)
dx.

(1.59)
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1. Painlevé IV and the Fredholm Determinant

This can be written as

(K0 1K1 0) (ϕ0) (z) =

∫

R−
FKernel (z, w)ϕ0 (w) dw, (1.60)

where

FKernel =
2i sin (πγ)

4π2
|z| γ2 e−θ(z)|w| γ2 e−θ(w)

∫

iR

x−γe2θ(x)

(z − x) (w − x)
dx. (1.61)

1.3.3 Norm estimate for small s

We would like to make an estimate of the value of the Fredholm Determinant. To do this, we

begin by using the fact that θ (λ) is given by (1.8) and simplify FKernel

FKernel =
2i sin (πγ)

4π2
e
−z2−w2

4 |z| γ2 |w| γ2 e− s2 (z+w) 1

z − w

∫

iR

(
x−γe

x2

2
+sx

)(
1

z − x −
1

w − x

)
dx.

(1.62)

If we now define

H (u) :=

∫

iR
i
x−γe

x2

2
+sx

u− x dx, (1.63)

a (u) = |u| γ2 e−u
2

4
− s

2
u, (1.64)

then FKernel can now be written as

FKernel = K0 a (z) a (w)
H (z)−H (w)

z − w , (1.65)

where K0 = sin (πγ)
2π . Since we want to use this to compute (1.60), we can write

∫

R−
FKernel(z, w)ϕ0(w) dw = K0 a(z)

[
H(z)−

∫

R−

a(w)ϕ0(w)

z − w
dw

π
−−
∫

R−

a(w)H(w)ϕ0(w)

z − w
dw

π

]
,

(1.66)

where P (φ) = −
∫ φ(w)
z−w

dw
π denotes the Cauchy principal value, also known as Hilbert transform.

We can now estimate the value of this integral. Given an essentially bounded function

f ∈ L∞(R−), we denote by Mf the corresponding multiplication operator and recall that

|||Mf ||| = ‖f‖∞ , (1.67)

where |·‖∞ denotes the L∞(R−) norm. The Hilbert transform is a bounded operator with norm

one

|||P||| = 1, (1.68)

which follows from the fact that, in Fourier space, the Hilbert transform is simply the multipli-

cation operator by the sign function multiplied by eiπ/2. This leads to
∥∥∥∥
∫

R−
FKernel (z, w)ϕ0 (w) dw

∥∥∥∥ = |K0| ‖(MaHPMa −MaPMaH) (ϕ)‖L2

≤ |K0| (‖MaHPMaϕ‖L2 + ‖MaPMaHϕ‖L2)

≤ |K0| (|||MaHPMa|||+ |||MaPMaH |||) ‖ϕ‖ .

(1.69)
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1.3. Fredholm determinant and the τ -function of Painlevé IV

As a result of this procedure, we obtain the following estimate for |||F |||

|||F ||| ≤ sin (πγ)

π
‖a‖2∞ ‖H‖∞ |||P|||. (1.70)

We should now get estimates for the values of ‖a‖∞, ‖H‖∞ and |||P|||. Since, as we stated before,

|||P||| = 1, we will now compute the other two quantities. To do this, we begin by considering

that x = ε+ it and the integral will be over iR + ε

H (z) =

∫

iR+ε
idx

x−γe
x2

2
−s̃x

z − x , s̃ = −s. (1.71)

If we now take ε = max(0, s̃), we get the estimate for |H(z)| in the following way for s̃ > 0 (i.e.

s < 0)

|H (z)| ≤
∫

iR+s̃
|dx| |x|

−γ e
Re
(
x2

2
−s̃x

)
|z − x| , (|z − x| ≥ s̃)

≤ 1

s̃

∫

iR+s̃
|dx| |x|−γ eRe

(
x2

2
−s̃x

)

≤ 1

s̃

∫

R
dt |s̃+ it|−γ e− t

2

2
− s̃

2

2

≤ e−
s̃2

2

s̃
s̃−γ

∫

R
dt e−

t2

2

=
e−

s̃2

2

s̃1+γ

√
2π.

(1.72)

A calculus exercise shows that the function a(u), (1.64), satisfies ‖a‖∞ ≤ 1, for u ∈ R−, γ ∈
[0, 1], s̃ > 0 and then the estimate for |||F ||| becomes

|||F ||| ≤ sin (πγ)

π

e−
s̃2

2

s̃1+γ

√
2π. (1.73)

At this point, we need to see for which values of s̃ the norm is certainly smaller than 1; this

guarantees that the determinant (1.58) will not be zero and hence that our Riemann-Hilbert

problem 1.2.2 admits a solution. We can estimate then from (1.73) that (recall γ ∈ [0, 1])

|||F ||| ≤ sin (πγ)

π

e−
s̃2

2

s̃1+γ

√
2π ≤





√
2√
π

e−
s̃2

2

s̃2
s̃ ∈ [0, 1]

√
2√
π

e−
s̃2

2

s̃
s̃ > 1

(1.74)

and we can easily see that the norm is less than one for s̃ > s̃0 with s̃0 < 1, which can be

approximated by s̃0 = 0.7701449782. In summary, we have proven

Theorem 1.3.1. The Riemann–Hilbert problem 1.2.2 admits a solution for s ∈ (−∞,−s̃0). In

particular, the solution of the fourth Painlevé equation (1.6) for our choice of monodromy data

(1.15, 1.16) is pole–free within that range.
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1. Painlevé IV and the Fredholm Determinant

It would be desirable to show as a result that our solution is pole–free for all real values of s;

however, numerical analysis to be performed in the following section, shows that this is not the

case and there are a discrete (in principle infinite) number of values of s for which the Fredholm

determinant (1.58) vanishes and hence the solution of (1.6) has poles.

1.4 Gaussian Quadrature and Numerics

As we have stated before, see Definition 1.1, the importance of the Fredholm Determinant for

our work is due to the fact that it allows us to compute the τ–function. Through the study

that we made in the previous section, we were also able to see that computing the Fredholm

Determinant requires one to be able to compute the kernel of the operator (1.60), which is given

by (1.62). By looking at this operator kernel, it can be seen that the value of the τ–function

depends on the values chosen for s and γ. In this section, our purpose is to compute this function

numerically according to given values for these two parameters.

1.4.1 The Gauss-Hermite quadrature

The following is an exposition, with some adapted details, of the main idea of numerical evalua-

tion of Fredholm determinants based on Nystrom method, as explained by Bornemann [9]. The

simple idea is to suitably “discretize” the integral operator; the simplest approach would be to

use Riemann sums in place of the integrals, but this is notoriously slow to converge. The main

improvement on this idea is to use some appropriate Gaussian quadrature (see [27]).

More specifically, the type of quadrature formulæ that we will use are the so–called ”Gauss–

Hermite” quadratures, which are defined in the following way

Definition 1.2. Considering an integral of the form

∫ ∞

−∞
f(x) e−Λx2 dx, (1.75)

the Gauss-Hermite quadrature is an approximation of the value of this integral and is defined as

∫ ∞

−∞
f(x) e−Λx2 dx '

n∑

i=1

f
(
x

(n)
i

)
w

(n)
i , (1.76)

where n is the number of points used in this approximation: the points {x(n)
j }nj=1 are called the

nodes and the coefficients {w(n)
j }nj=1 are called the weights of the quadrature rule. The nodes xj

are the roots of the n-th Hermite polynomial Hn

(√
Λx
)

and the weights w
(n)
i are given by

w
(n)
i =

2n−1n!
√
π

√
Λn2

(
Hn−1

(√
Λxi

))2 . (1.77)

26



1.4. Gaussian Quadrature and Numerics

We will have to adapt this definition so that it is suitable to be applied to our case.

In order to use this technique for the computation of FKernel (x, y), we will begin by recalling

this operator kernel and writing it in the following way

FKernel (x, y) =
sin (πγ)

2π2
e
−x2−y2

4 |x| γ2 |y| γ2 e− s2 (x+y)

∫

iR
idz

z−γe
z2

2
+sz

(x− z) (y − z)

=
sin (πγ)

2π2
e
−x2−y2

4 |x| γ2 |y| γ2 e− s2 (x+y)

∫

R
dt

(it+ ε)−γ e−
t2

2 eit(s+ε)

(x− ε− it) (y − ε− it)e
ε2

2
+sε,

(1.78)

where we have used x = ε+ it. It appears from (1.78) that the relevant scaling parameter to be

used in Definition 1.2 is Λ = 1
2 . Moreover, since we consider the semi-axis R−, it is convenient

to use the Gauss-Hermite quadrature with an even number, 2n, of nodes, so that (by symmetry)

the first n are in the negative axis. Since we want to apply the procedure of the Gauss-Hermite

quadrature, it is convenient to write the operator kernel as

FKernel (x, y) = e
−x2−y2

4 H(x, y) , (1.79)

where it was defined

H(x, y) =
sin (πγ)

2π2
|x| γ2 |y| γ2 e− s2 (x+y)

∫

R
dt

(it+ ε)−γ e−
t2

2 eit(s+ε)

(x− ε− it) (y − ε− it)e
ε2

2
+sε. (1.80)

Since our goal with this procedure is to compute the τ–function, we will now apply the

Gauss-Hermite quadrature to compute the operator K0 1K1 0 that appears in (1.58). This is

done in the following way

det L2(R−)

[
IdL2(R−) −K0 1K1 0

]
= det L2(R−)

[
IdL2(R−) − FKernel (x, y)

]

' det n×n

[
Idn −

[
H
(
x

(2n)
i , x

(2n)
j

)√
w

(2n)
i w

(2n)
j

]n
i,j=1

]
.

(1.81)

In order to understand why applying the Gauss-Hermite quadrature leads to this result, we will

now consider the following procedure to do the discretization of a function (smooth) ϕ0 (x) ∈
L2(R−)

ϕ0(x)→ V[ϕ0] :=




ϕ0(x1)
√
w1e

x21
4

ϕ0(x2)
√
w2e

x22
4

...

ϕ0(xn)
√
wne

x2n
4



. (1.82)

This correspondence provides an approximate isometry between L2(R−, |dx|) and Cn since

∫

R−
dx|ϕ0(x)|2 =

∫

R−
|ϕ0(x)e

x2

4 |2e−
x2

2 dx '
n∑

j=1

|Vj [ϕ0]|2 ,

where the last approximation is valid thanks to the definition of the vector V and the quadra-

ture rule (1.76). If we now apply the same procedure to do the discretization of the operator
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(
F̂ϕ0

)
(x), the result will be

(
F̂ϕ0

)
(x) =

∫
F (x, y)ϕ0 (y) dy →

[∫
dy F (xj , y)ϕ0 (y)

√
wj e

x2j
4

]

j=1,...,n

. (1.83)

The definition of the Gauss-Hermite quadrature now comes into play and is used to compute

the integral that we have on the right hand side of this equation. By applying this procedure,

the variable y is now decomposed into n discrete xk points
[∫

dy F
(
x

(2n)
j , y

)
ϕ0 (y)

√
w

(2n)
j e

(x
(2n)
j

)2

4

]

j=1,...,n

'

'




n∑

k=1

F
(
x

(2n)
j , x

(2n)
k

)
ϕ0

(
x

(2n)
k

)
w

(2n)
k e

(
x
(2n)
k

)2

2

√
w

(2n)
j e

(
x
(2n)
j

)2

4



j=1,...,n

=




n∑

k=1

F
(
x

(2n)
j , x

(2n)
k

)
e

(
x
(2n)
k

)2

4
+

(
x
(2n)
j

)2

4

√
w

(2n)
k

√
w

(2n)
j ϕ0

(
x

(2n)
k

)√
w

(2n)
k e

(
x
(2n)
k

)2

4



j=1,...,n

,

(1.84)

and it can be seen that in this equation we have

H
(
x

(2n)
j , x

(2n)
k

)
= F

(
x

(2n)
j , x

(2n)
k

)
e
x2k
4

+
x2j
4 , (1.85)

which is in accordance with the definition that had been made in (1.79). This means that, as a

result of this discretization, we get (we drop the superscript (2n) for readability)

(
F̂ϕ0

)
(x)→




H (x1, x1)w1 H (x1, x2)
√
w1w2 . . . H (x1, xn)

√
w1wn

H (x2, x1)
√
w2w1 H (x2, x2)w2 . . . H (x2, xn)

√
w2wn

...
... . . .

...

H (xn, x1)
√
wnw1 H (xn, x2)

√
wnw2 . . . H (xn, xn)wn







ϕ0 (x1)
√
w1e

x21
4

ϕ0 (x2)
√
w2e

x22
4

...

ϕ0 (xn)
√
wne

x2n
4



.

(1.86)

Therefore, the matrix that we are interested in computing is indeed given by

K0 1K1 0 =
[
H
(
x

(2n)
j , x

(2n)
k

)√
w

(2n)
j w

(2n)
k

]n
j,k=1

≡
[
Hj k

]n
j,k=1

(1.87)

and we need to know how to compute each entry of this matrix. To do that, we recall the

definition of H (x, y), (1.80), which leads to the following

Hj k =
e
ε2

2
+sε sin (πγ)

2π2
|xj xk|

γ
2 e−

s
2

(xj+xk)√wj wk
∫

R
dt

(it+ ε)−γ eit(s+ε)

(xj − ε− it) (xk − ε− it)
e−

t2

2 . (1.88)

In order to compute this integral, we once again apply the Gauss-Hermite quadrature, which

gives the following result

∫

R
dt

(it+ ε)−γ eit(s+ε)

(xj − ε− it) (xk − ε− it)
e−

t2

2 =
2n∑

`=1

(ix` + ε)−
γ
2 e

ix`
2

(s+ε)

(xj − ε− ix`)
√
w`

(ix` + ε)−
γ
2 e

ix`
2

(s+ε)

(xk − ε− ix`)
√
w`.

(1.89)
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1.4. Gaussian Quadrature and Numerics

Note that, in the above, we use all the 2n nodes because the integral is over the whole R. The

matrix given by K0 1K1 0 can now be written as

[
Hj k

]n
j,k=1

=
e
ε2

2
+sε

2π2
sin (πγ)A .AT , (1.90)

where A is a matrix whose entries are defined defined as

Aj ` = |xj |
γ
2
√
wj e

− s
2
xj

(ix` + ε)−
γ
2 ei

x`
2

(s+ε)

(xj − ε− ix`)
√
w`, (1.91)

and 1 ≤ j ≤ n and 1 ≤ ` ≤ 2n. Regarding ε, this is a small parameter which we will have to

assign a number to when doing the numerical estimates.

As a result of the procedure that has just been described, when performing numerical compu-

tations, our efforts will be centered in computing the term
[
H
(
x

(2n)
i , x

(2n)
j

)√
w

(2n)
i w

(2n)
j

]n
i,j=1

.

This will allow us to compute the τ–function in terms of the parameters s, γ ∈ [0, 1) and n,

which is the number of points that we want to consider for our estimate. Therefore, the final

equation that we have for τ is

τ (s, γ, n) = det


1n×n −

e
ε2

2
+sε

2π2
sin (πγ)A .AT


. (1.92)

It should be noted that, since ε is a small number, we will consider that it will be such that

ε = max [0,−s].

1.4.2 Numerical study of the τ -function

Having obtained (1.92), we will now use this as a tool to study numerically the τ–function of

our special solution to Painlevé IV.

The numerical study that is going to be done in what follows will be accomplished using

Mathematica and the code of the program that we used can be seen in Appendix A. The purpose

of this study is to understand for which values of s the Fredholm Determinant, or equivalently

the τ–function, is non-zero. As we may recall from Theorem 1.1, the Riemann-Hilbert problem

has a solution if and only if the Fredholm Determinant is non-zero. Since its value depends on

the parameters γ and s, we will study the τ–function according to these two parameters. We

should also notice that, as it becomes clear from (1.92), since we are doing a numerical study,

the values that we get for the τ–function will also be dependent on the number n of points that

are considered.

We began by fixing a number of points n = 30. Our purpose was to see the behaviour of

the τ–function over a range of values of s for different values of the parameter γ. Doing this

for γ = 0, 1 and γ = 0, 5, we got the results for the cases that can be seen in Figures 1.4a and

1.4b, respectively. It is clear that, for s negative, irrespective of the value of γ, the τ–function

is always non-zero and positive. However, after a certain value of s, the τ–function oscillates
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(a) γ = 0, 1.
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(b) γ = 0, 5.

Figure 1.4: τ–function with n = 30 points.

and crosses the axis, which obviously means that, every time it is crossed, the τ–function will

be 0 in that point. Therefore, it can be said that the Riemann-Hilbert problem has a solution

for almost all values of s. It can also be seen that the exact values of the τ–function and the

exact points where the s-axis is crossed depends on the value of γ that is considered. However,

the general behaviour of the function seems to hold for both cases of γ that we considered.
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5

τ(s, 0.1, 80)

(a) γ = 0, 1.

-2 2 4 6
s
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-40

-20

20

40
τ(s, 0.5, 80)

(b) γ = 0, 5.

Figure 1.5: τ–function with n = 80 points

We also wanted to know whether these results depended on the number of points that were

considered in the evaluation. To do this, we repeated the same computations but now for the

case of n = 80. Doing this for both γ = 0, 1 and γ = 0, 5 we got the results that can be seen in

Figures 1.5a and 1.5b, respectively. By looking at these Figures, it is clear that the behaviour of

the τ–function is the same. However, if one computes the value of τ at a given (s, γ, n)–point, it

can be seen that the numeric values may change slightly. This is to be expected since increasing

the number of points n corresponds to increasing the precision of the computation and therefore
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tan-1(τ(s, 0.1, 150))

Figure 1.6: Arctan of the τ–function for γ = 0, 1 and with n = 150 with an extended range of
values for s being considered.

the exact values will change.

It should also be noticed that, after a given value of s, the τ–function becomes highly

oscillatory. In order to see this, we increased the range of values of s being evaluated and

considered the arctan of the τ–function, leading to the result that can be see in Figure 1.6. The

reason for doing the arctan is the fact that the τ–function has very high (negative and positive)

values. Therefore, taking the arctan allows us to see the results in a more compact way, since

the values always have to be in the interval
[
−π

2 ,
π
2

]
. From this we can see that, indeed, the

τ–function becomes very oscillatory and it should be noted that, every time it crosses the s-axis,

it will obviously have the value 0 at that point, meaning that it will not exist at such a point.

Dealing with this situation would require us to introduce a triple-scaling limit.
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2

Asymptotics of Orthogonal Polynomials

In the study of matrix models, it is natural to consider their associated orthogonal polynomials.

For a givenN ∈ N and an associated weight e−NW (λ), one can consider the sequence of orthogonal

polynomials {pn} as being defined by the condition that pj is a monic polynomial of degree n

that satisfies the following set of relations
∫

C
pn (λ) pm (λ)e−NW (λ) dA (λ) = hn,N δn,m, hn,N > 0, n,m = 0, 1, . . . , (2.1)

where dA (z) is the area measure in the complex plane, V : C → R is the external potential

and hn,N is called the norming constant. Regarding the external potential, we assume that its

growth at infinity is such that the integrals in (2.1) are bounded.

Planar orthogonal polynomials satisfying (2.1) appear naturally in the context of normal

matrix models [10], where one studies probability distributions of the form

M → 1

Zn,N
e−N Tr(W (M)) dM, Zn,N =

∫

Nn
e−N Tr(W (M)) dM, (2.2)

where Nn is the algebraic variety of n× n normal matrices

Nn = {M : [M,M?] = 0} ⊂ Matn×n(C) (2.3)

and dM is the volume form induced on Nn, which is invariant under conjugation by unitary

matrices. Since normal matrices are diagonalizable by unitary transformations, the probability

density (2.2) can be reduced to the form [24]

1

Zn,N

∏

i<j

|λi − λj |2e−N
∑n
j=1W (λi) dA(λ1) . . . dA(λn),

where λj are the complex eigenvalues of the normal matrix M and the normalizing factor Zn,N ,

called partition function, is given by

Zn,N =

∫

Cn

∏

i<j

|λi − λj |2e−N
∑n
j=1W (λi) dA(λ1) . . . dA(λn).
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2. Asymptotics of Orthogonal Polynomials

The statistical quantities related to eigenvalues can be expressed in terms of the orthogonal

polynomials pn(λ) defined in (2.1). In particular, the average density of eigenvalues is

ρn,N (λ) =
1

n
e−NW (λ)

n−1∑

j=0

1

hj,N
|pj(λ)|2 . (2.4)

The density of eigenvalues, ρn,N (λ), converges in the limit

n→∞ , N →∞ ,
N

n
→ 1

T
, (2.5)

to the unique probability measure µ∗ in the plane which minimizes the functional [13], [20]

I (µ) =

∫∫
log |λ− η|−1 dµ(λ) dµ(η) +

1

T

∫
W (λ) dµ(λ) . (2.6)

The functional I(µ) in (2.6) is the Coulomb energy functional in two dimensions and the existence

of a unique minimizer is a well-established fact under mild assumptions on the potential W (λ),

[25]. If W is twice continuously differentiable and its Laplacian, ∆W , is non-negative, the

equilibrium measure is given by

dµ∗ (λ) = ∆W (λ)χD(λ) dA(λ) ,

where χD is the characteristic function of the compact support set D = supp(µ∗). When

W (λ) = λ2, one has the Ginibre ensemble [18] and the measure dµ∗(λ) is the uniform measure

on the disk of radius
√
T .

The purpose of this chapter will be to study the strong asymptotics of the polynomials

pn (λ), which are orthogonal with respect to an associated weight e−NW (λ), following the method

developed in [2]. In what follows, we will consider the external potential to be of the form

W (λ) = |λ|2d − t λd − t̄ λ̄d, λ ∈ C, (2.7)

where r is a positive integer and t ∈ C∗. As it can be seen, this potential has a discrete rotational

Zd-symmetry, therefore, by rotating the variable λ, the analysis of the problem can be reduced

for the case where t is real and positive. Without loss of generality, we can now take t ∈ R+

and have the external potential written as

W (λ) = |λ|2d − t
(
λd + λ̄d

)
, λ ∈ C, (2.8)

leading to the associated orthogonality measure

e−N(|λ|2d−t(λd+λ̄d)) dA(λ) . (2.9)

It is now useful to recall some results regarding potentials with discrete rotational symmetries

that were observed in [3] and [14]. Considering a potential with discrete d-symmetry, such as

the one we wrote in (2.7), if it can be written in the form

W (λ) =
1

d
Q
(
λd
)
, (2.10)
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then the equilibrium measure for W can be obtained from the equilibrium measure of Q by

an unfolding procedure. Considering the particular case of (2.7) that we are interested in, the

potential Q can be written as

Q(u) = d |u|2 − d t (u+ ū)

= d |u− t|2 − t2 d,

which corresponds to the Ginibre ensemble, being the equilibrium measure of the potential Q

the normalized area measure of the disk

|u− t| = tc, tc =

√
T

d
. (2.11)

Regarding the equilibrium measure of W , it is given by

dµW =
d

π t2c
|λ|2(d−1) χD dA(λ) , (2.12)

where dA is the area measure and χD is the characteristic function of the domain D. This is a

domain that is established by

D :=
{
λ ∈ C, |λd − t| ≤ tc

}
. (2.13)

A plot of the domain D for different values of t is shown in figure 2.1. This set D is the support

Figure 2.1: The domain D for three different values of t, on the left t < tc, in the center t = tc
and on the right t > tc.

set of µW and can be described for the following two different regimes

• pre-critical |t| < tc: (2.13) defines a simply connected domain in the complex plane de-

scribed by the following uniformizing map from the exterior of the unit circle to the exterior

of D

f(ζ) = t1/dc ζ

(
1 +

t

tc

1

ζd

) 1
d

, f−1(ζ) = F (λ) =
λ

t
1
d
c

(
1− t

λd

) 1
d

. (2.14)

• post-critical |t| > tc: (2.13) defines a multiply connected domain that is made of d com-

ponents that have discrete rotational symmetry. The boundary of the domain D can be

described by

λ̄ = S(λ) , S(λ) =

(
t+

t2c
λd − t

) 1
d

. (2.15)
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2. Asymptotics of Orthogonal Polynomials

As we have just seen, the problem that we have contains two different regimes for the pre-

critical, t < tc, and post-critical, t > tc, cases. In the work of Balogh, Grava and Merzi [2], the

strong asymptotics of the orthogonal polynomials were studied in both of these regimes.

In the work we will be presenting in this chapter, we will be considering the asymptotic

behaviour of solutions in the critical case, t = tc, in order to understand how the distribution of

the zeros of the orthogonal polynomials behaves in this situation.

Before stating our main results, let us introduce the function

ϕ̂ (λ) = log
(
tc − λd

)
+
λd

tc
− log tc (2.16)

and let us consider the level curve Ĉ

Ĉ :=
{
λ ∈ C, Re ϕ̂(λ) = 0,

∣∣∣λd − tc
∣∣∣ ≤ tc

}
. (2.17)

Observe that the level curve Ĉ consists of a closed contour contained in the set D for t = tc,

where D has been defined in (2.13). Define the measure ν̂ associated with this family of curves

given by

dν̂ (λ) =
1

2πid
dϕ̂ (λ) (2.18)

and supported on Ĉ.

Lemma 2.1. The a-priori complex measure dν̂ in (2.18) is a probability measure on the contour

Ĉ defined in (2.17).

Our result is summarized in the following theorem.

Theorem 2.2. The zeros of the polynomials pn(λ) defined in (2.1) for t = tc =
√
T/d, behave

as follows

• for n = kd + d − 1, let ω = e
2πi
d . Then t

1
d , ωt

1
d , . . . , ωk−1t

1
d are zeros of the polynomials

pkd+d−1 with multipicity k and λ = 0 is a zero with multiplicity r − 1.

• for n = kd+ `, ` = 0, . . . , r − 2 the polynomial pn(λ) has a zero in λ = 0 with multiplicity

` and the remaining zeros in the limit n, N →∞ such that

N =
n− `
T

(2.19)

accumulates on the level curve Ĉ defined in (2.17), namely

Ĉ := {λ ∈ C :

∣∣∣∣
(
tc − λd

)
exp

(
λd

tc

)∣∣∣∣ = tc,
∣∣∣λd − t

∣∣∣ ≤ tc} . (2.20)

The measure ν̂ in (2.18) is the weak-star limit of the normalized zero counting measure νn

of the polynomials pn for n = kd+ `, ` = 0, . . . , d− 2.
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Remark 2.3. We observe that the curve (2.20) in the rescaled variable z = 1 − λd/tc takes the

form

C :=
{
z ∈ C :

∣∣z e1−z∣∣ = 1
}
. (2.21)

The curve C is the Szegő curve that was first observed in relation to the zeros of the Taylor

polynomials of the exponential function [27].

Our next result gives strong uniform asymptotics as n → ∞ for the polynomials pn(λ) in

the complex plane. We consider the double scaling limit such that

t→ tc, k →∞, k =
n− `
d

,

in such a way that the quantity

lim
k→∞, t→tc

√
k

(
t2

t2c
− 1

)
→ S,

with S in compact subsets of the complex plane. In the description of the asymptotic behaviour

of the orthogonal polynomials, pn(λ), in this double-scaling limit, the Painlevé IV transcendent

with Θ0 = Θ∞ = γ
2 and γ = d−`−1

d ∈ (0, 1) will play a major role.

Theorem 2.4 (Double scaling limit). The polynomials pn(λ) with n = k d+ `, ` = 0, . . . , d− 2,

γ = d−`−1
d ∈ (0, 1), have the following asymptotic behaviour when n, N →∞ in such a way that

N T = n− ` and

lim
k→∞, t→tc

√
k

(
t2

t2c
− 1

)
→ S,

with S in compact subsets of the real line so that the solution Y (S) of the Painlevé IV equation

(1.6) does not have poles. Below, the function Z = Z(S), U = U(S) and the Hamiltonian

H = H(S) are related to the Painlevé IV equation (1.6) by the relations (1.5) and (1.10),

respectively.

(1) For λ in compact subsets of the exterior of Ĉ one has

pn(λ) = λ`
(
λd − tc

)k (λd − tc
λd

)γ (
1− H(S)tc√

k λd
+O

(
1

k

))
, (2.22)

with H(S) the Hamiltonian (1.10) of the Painlevé IV equation (1.6).

(2) For λ in the region near Ĉ and away from the point λ = 0 one has

pn(λ)=λ`
(
λd − tc

)k(λd − tc
λd

)γ(
1−H(S)tc√

k λd
+
Z(S)

U(S)

tc e
−k ϕ̂(λ)

λd k
1+γ
2

(
λd − tc
λd

)−γ
+O

(
1

k

))
,

(2.23)

with ϕ̂(λ) defined in (2.16).
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2. Asymptotics of Orthogonal Polynomials

(3) For λ in compact subsets of the interior region of Ĉ one has

pn(λ) = λ`(λd − tc)k
e−kϕ̂(λ)

k
1
2

+γ

(
Z(S)

U(S)

tc
λd

+O
(

1

k

))
. (2.24)

(4) In the neighbourhood of the point λ = 0 and in the interior of Ĉ one has

pn(λ) = λ`(λd − t)k
(
λd − tc
λd

)γ
e−kϕ̂(λ)

(
Ψ̂1 1(

√
−k ϕ̂(λ);S)

k
γ
4

√
−ϕ̂(λ)

+O
(

1

k

))
, (2.25)

where Ψ̂1 1 is the 1 1 entry of the deformed Painlevé IV Riemann-Hilbert problem (3.4.4)

obtained by deforming the Riemann-Hilbert problem (1.2.1) with Stokes multipliers specified

in (1.15) and (1.16).

(5) In the neighbourhood of the point λ = 0 and in the exterior of Ĉ one has

pn(λ) = λ`(λd − t)k
(
λd − tc
λd

)γ (
Ψ̂1 1(

√
−k ϕ̂(λ);S)

k
γ
4

√
−ϕ̂(λ)

+O
(

1

k

))
, (2.26)

where the notation is as above in point (4).

We observe that, in compact subsets of the exterior of Ĉ, there are no zeros of the polynomials

pn(λ). The only possible zeros are located in λ = 0 and in the region where the second term

in parenthesis in the expression (2.23) is of order one. Since Re ϕ̂(λ) is negative inside Ĉ and

positive outside Ĉ, it follows that the possible zeros of pn(λ) lie inside Ĉ and are determined by

the condition

Re ϕ̂(λ) = −1 + γ

2

log k

k
+

1

k
log

(∣∣∣∣
λd

λd − tk

∣∣∣∣
γ ∣∣∣∣
tc Z(S)

λd U(S)

∣∣∣∣
)

+
1

k
3
2

Re

(
tcH(S)

λd

)
. (2.27)

We conclude with the following proposition.

Proposition 2.5. The support of the counting measure of the zeros of the polynomials pn(λ) in

the limit n→∞ outside an arbitrary small disk surrounding the point λ = 0 tends uniformly to

the curve Ĉ defined in (2.20). The zeros are within a distance O(1/k) from the curve defined by

(2.20).

In order to prove Theorem 2.2, Theorem 2.4 and Proposition 2.5 we will achieve the following

results:

• exploiting the symmetry of the exponential weight W (λ) we will reduce the polynomials

pn(λ) to some polynomials πk(z) with z = 1− λd/t;

• we will reformulate the orthogonality relations for the polynomials πk(z) to an orthogo-

nality relation on a contour in the complex plane;
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2.1. Symmetry and Contour Integral Orthogonality

• we will introduce a Riemann-Hilbert problem for the polynomials πk(z);

• we will perform a double scaling limit t→ tc and k →∞ for the polynomials πk(z) using

the Deift-Zhou steepest descent method;

• we solve the asymptotic Riemann-Hilbert problem obtained in the double scaling limit

using the Painlevé IV isomonodromic problem for specific values of the Stokes multipliers

and connection matrices.

2.1 Symmetry and Contour Integral Orthogonality

The purpose of this section will be to simplify the orthogonal polynomials that we are working

with and to replace the two-dimensional integral conditions that we have in (2.1) with an equiv-

alent set of orthogonality relations that are written in terms of contour integrals.

As we have seen above, the external potential (2.8) that we are considering leads to an

associated orthogonality measure that exhibits a Zd discrete rotational symmetry. The fact

that such a symmetry exists will be reflected in the corresponding orthogonal polynomials.

Considering the non-trivial orthogonality relations

∫

C
pn(λ) λ̄jd+`e−NW (λ) dA(λ) = 0, j = 0, . . . , k − 1, (2.28)

where k and ` are such that

n = kd+ `, 0 ≤ ` ≤ d− 1, (2.29)

meaning that the n-th monic orthogonal polynomial satisfies the relation

pn(e
2πi
d λ) = e

2πin
d pn(λ). (2.30)

Therefore, there is a monic polynomial q
(`)
k of degree k that can be defined in the following way

pn (λ) = λ` q
(`)
k

(
λd
)
. (2.31)

We can now use this in order to split the initial sequence of orthogonal polynomials {pn (λ)}∞n=0

in d sub-sequences, each of which labelled by the remainder ` ≡ n mod d. Using this procedure,

the asymptotics of the orthogonal polynomials can be studied through the sequences of reduced

polynomials {
q

(`)
k (u)

}∞
k=0

, ` = 0, 1, . . . , d− 1. (2.32)

We can now use this sequence of monic orthogonal polynomials and through a change of coor-

dinates see that they satisfy the orthogonality relations

∫

C
q

(`)
k (u) ūj |u|−2γe−N(|u|2−tu−tū) dA (u) = 0, j = 0, . . . , k − 1, (2.33)
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2. Asymptotics of Orthogonal Polynomials

where we can see that there is orthogonality with respect to the measure

|u|−2γe−N(|u|2−tu−tū) dA (u) , γ :=
d− `− 1

d
∈ [0, 1). (2.34)

This procedure of symmetry reduction shows that, for a class of measures that exhibit Zd-
symmetry such as (2.9), it is sufficient to consider polynomials that are orthogonal with respect

to a family of measures of the form (2.34).

As we have stated above, the purpose of this chapter is to study the asymptotic behaviour

of the orthogonal polynomials, pn (λ), in a particular regime. However, from the symmetry

reduction procedure that we have just shown, it was seen that these polynomials can be split

into d families of orthogonal polynomials, q
(`)
k

(
λd
)
. Therefore, it suffices to study the asymptotic

behaviour of the orthogonal polynomials q
(`)
k (u) that satisfy the orthogonality relation (2.33).

Having done this symmetry reduction, the following step will be to replace the two dimen-

sional integral conditions that we have in (2.33) by an equivalent set of constraints written in

terms of contour integrals. In order to do this, we begin by considering the change of coordinate

u = −t (z − 1) , z ∈ C, (2.35)

which leads to the transformed monic polynomial

πk (z) :=
(−1)k

tk
q

(`)
k (−t (z − 1)) , (2.36)

which is defined in terms of a new variable z and is also a monic polynomial. These new

polynomials are an equivalent characterization of qk(u) and are useful to establish the following

Theorem.

0 1

Σ

1

Figure 2.2: The contour Σ

Theorem 2.6. [2] Consider q
(`)
k (u) to be the monic polynomial of degree k with the orthogonality

relations ∫

C
q

(`)
k (u) ūj |u|−2γe−N(|u|2−tu−tū) dA (u) = 0, j = 0, . . . , k − 1
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2.1. Symmetry and Contour Integral Orthogonality

where γ ∈ [0, 1) and t ∈ C. The transformed monic polynomial of degree k given by

πk (z) :=
(−1)k

tk
q

(`)
k (−t (z − 1)) ,

is characterized by the non-hermitian orthogonality relations

∮

Σ
πk (z) zj

e−Nt
2z

zk

(
z

z − 1

)γ
dz = 0, j = 0, 1, . . . , k − 1, (2.37)

where Σ is a simple positively oriented contour encircling z = 0 and z = 1, as it can be seen in

Figure 2.2, and the function
(

z
z−1

)γ
is analytic in C\[0, 1] and tends to one for |z| → ∞.

Proof. In order to prove the theorem we will have to use Stokes’ Theorem to reduce the inte-

gration on the plane that we have in the orthogonality relation of the polynomials q`k(u), (2.33),

into an integration on a contour. This is done by introducing a function χj (u, ū) that we require

to be such that it solves the ∂̄-problem

∂ū χj(u, ū) = ūj |u|−2γe−N(|u|2−tu−tū). (2.38)

Using this function and the exterior derivative df(u, ū) we will have for any polynomial q(u) the

following equality

d [q(u)χj(u, ū) du] = q(u) ∂ū χj(u, ū) dū ∧ du

= q(u) ūj |u|−2γe−N(|u|2−tu−tū) dū ∧ du.

Provided that such a function χj(u, ū) exists, Stokes’ Theorem can now be applied in order to

reduce the orthogonality relation to one defined on an adequate contour. In fact, the contour

integral solution of (2.38) is given by

χj(u, ū) = u−γeNtu
∫ ū

0
sj−γe−Nus+Nts ds

=
1

N j−γ+1

(
1− t

u

)γ eNtu

(u− t)j+1

∫ Nū(u−t)

0
ξj−γe−ξ dξ

=
1

N j−γ+1

(
1− t

u

)γ eNtu

(u− t)j+1

[
Γ (j − γ + 1)−

∫ ∞

Nū(u−t)
ξj−γe−ξ dξ

]

=
Γ (j − γ + 1)

N j−γ+1

(
1− t

u

)γ eNtu

(u− t)j+1

[
1−O

(
e−Nū(u−t)

)]
, |u| → ∞ .
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This leads to the fact that, for any polynomial q(u), the following integral identity holds

∫

C
q(u) ūj |u|−2γe−N(|u|2−tu−tū) dA (u) =

1

2i
lim
R→∞

∫

|u|≤R
q(u) ūj |u|−2γe−N(|u|2−tu−tū) dū ∧ du

=
1

2i
lim
R→∞

∮

|u|=R
q(u)χj(u, ū) du

=
1

2i
lim
R→∞

∮

|u|=R
q(u)

[
Gj(u)−O

(
e−ū(u−t)

)]
du

=
1

2i

∮

|z|=R0

q(u)Gj(u) du,

where R and R0 are sufficiently large and

Gj(u) =
Γ(j − γ + 1)

N j−γ+1

(
1− t

u

)γ eNtu

(u− t)j+1
. (2.39)

Using these results it follows that, for any polynomial q(u), the following identity is satisfied

∫

C
q(u) ūj |u|−2γe−N(|u|2−tu−tū) dA (u) =

π Γ(j − γ + 1)

N j−γ+1

1

2πi

∮

Σ̃
q(u)

eNtu

(u− t)j+1

(
1− t

u

)γ
du,

(2.40)

where γ ∈ (0, 1), j is an arbitrary non-negative integer, and Σ̃ is a positively oriented simple

closed loop enclosing u = 0 and u = t. If we now make the change of coordinates u = −t (z − 1),

the statement of the Theorem is achieved.

2.2 The Riemann-Hilbert Problem

As we have said before, the purpose of this chapter is to study the asymptotic behaviour of the

orthogonal polynomials. This amounts to computing the polynomials πk(z) in the limit k →∞
and N →∞ in such a way that, for n = kd+ `, one has

T =
n− `
N

> 0. (2.41)

By looking at the terms in (2.37), it can be seen that it makes sense to introduce the function

V (z) =
z

z0
+ log z, (2.42)

where

z0 =
t2c
t2
, t2c =

T

d
, (2.43)

so that the following weight function can be defined

wk(z) := e−kV (z)

(
z

z − 1

)γ
. (2.44)

42



2.2. The Riemann-Hilbert Problem

Using this weight function and plugging it back in (2.37), the orthogonality relations can be

written as ∮

Σ
πk(z) z

j wk(z) dz = 0 j = 0, 1, . . . , k − 1. (2.45)

When the limit k →∞ is taken, three different regimes arise

• pre-critical case: 0 < t < tc leading to z0 > 1

• critical case: t = tc leading to z0 = 1

• post-critical case: t > tc leading to z0 < 1

and in what follows we will be interested in analyzing the critical case. The method that we

will follow to study the asymptotics of the orthogonal polynomials will be by establishing a

matrix-valued Riemann-Hilbert problem and writing the polynomial πk(z) as a particular entry

of the unique solution to this problem. We will now see how this is done.

We begin by defining the so-called complex moments as

νj :=

∮

Σ
zj wk(z) dz, (2.46)

where the dependency on k is omitted in order to simplify notation, and use this to introduce

the auxiliary polynomial

Πk−1(z) :=
1

det [νi+j ]0≤i,j≤k−1

det




ν0 ν1 . . . νk−1

ν1 ν2 . . . νk
...

...

νk−2 . . . ν2k−3

1 z . . . zk−1



. (2.47)

It can be seen that this polynomial is not necessarily monic and its degree may be less than

k − 1. In order to guarantee the existence of such a polynomial, it has to be established that

the determinant in the denominator does not vanish.

Proposition 2.7. [2] The determinant det[νi+j ]0≤i,j≤k−1 does not vanish.

Proof. Using the definition (2.46), it can be seen that

det[νi+j ]0≤i,j≤k−1 = det

[∮

Σ
zi+j

e−Nt
2z

zk

(
z

z − 1

)γ
dz

]

0≤i,j≤k−1

= (−1)k(k−1)/2 det

[∮

Σ
zi−j

e−Nt
2z

z

(
z

z − 1

)γ
dz

]

0≤i,j≤k−1

,

(2.48)
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where, to obtain the last identity, the reflection of the column index j → k − 1 − j has been

used. If we now use Theorem 2.6, it can be seen that

∫

C
π(z) (z̄ − 1)j |z − 1|−2γe−Nt

2|z|2 dA(z) =

= t2−2j−2γ π Γ(j − γ + 1)

N j−γ+1

1

2πi

∮

Σ
π(z)

e−Nt
2z

zj+1

(
z

z − 1

)γ
dz,

(2.49)

and therefore the second determinant is given by

det

[∮

Σ
zi−j

e−Nt
2z

z

(
z

z − 1

)γ
dz

]
=

= det

[∫∫

C
zi (z̄ − 1)j |z − 1|−2γe−Nt

2|z|2 dA(z)

] k−1∏

j=0

2 i t2j+2γ−2N j−γ+1

Γ (j − γ + 1)
.

(2.50)

It can now be seen that the determinant on the right-hand side is strictly positive since

det

[∫∫

C
zi (z̄ − 1)j |z − 1|−2γe−Nt

2|z|2 dA(z)

]
= det

[∫∫

C
ziz̄j |z − 1|−2γe−Nt

2|z|2 dA(z)

]
> 0,

(2.51)

where the equality is due to the fact that the columns of the two matrices are related by a

unimodular triangular matrix, while the inequality follows from the positivity of the measure.

Since Γ(z) has no zeros (and no poles since j − γ + 1 > 0), the non-vanishing follows from

(2.50).

Remark 2.8. Equivalently, Πk−1 (z) is defined in the following way

∮

Σ
Πk−1(z) zl wk(z) dz =





0, ` ≤ k − 2

1, ` = k − 1

(2.52)
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Riemann–Hilbert analysis

3.1 Establishing the Riemann-Hilbert Problem

In this section we reformulate the condition of orthogonality for the polynomials πk(z) as a

Riemann-Hilbert boundary value problem. This reformulation is essential to do the asymptotics

analysis as k →∞.

We begin by defining the matrix

Y (z) =




πk(z)
1

2πi

∫

Σ

πk(z
′)

z′ − z
wk
(
z′
)

dz′

−2πiΠk−1(z) −
∫

Σ

Πk−1(z′)

z′ − z
wk
(
z′
)

dz′



, (3.1)

where the weight wk(z) has been defined in (2.44).

This matrix is the unique solution of following Riemann-Hilbert problem for orthogonal

polynomials [15].

Riemann-Hilbert Problem 3.1.1. 1. Piecewise Analyticity: Y (z) is analytic in C \ Σ,

where Σ is the oriented curve in Figure 3.1 and we identify the + with the left side of the

contour and − with the right side. The limits Y±(z) exist and are continuous along Σ.

2. Jump on Σ: The continuous boundary values Y±(z) are such that

Y+ (z) = Y− (z)


1 wk (z)

0 1


 , z ∈ Σ. (3.2)

This jump can be seen in Figure 3.1.

3. Behaviour at infinity: Y (z) has the following behaviour as z →∞

Y (z) =

(
1 +O

(
1

z

))
zkσ3 . (3.3)
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0 1

Σ

(
1 e−kV (z)

(
z
z−1

)γ

0 1

)

1

Figure 3.1: Jump in the Y (z) Riemann-Hilbert problem

If the solution of the above Riemann-Hilbert problem exists, it is necessarily unique. Indeed,

considering the determinant of (3.2), we obtain that

detY+(z) = detY−(z) , z ∈ Σ.

It follows that detY (z) is analytic across Σ and so it is analytic on the whole complex plane.

Furthermore, since detY (z)→ 1 for z →∞, it follows, by Liouville Theorem, that detY (z) = 1

for z ∈ C. Therefore, Y (z) is an invertible matrix for z ∈ C. Now assume that there are two

solutions Y and Ỹ of the above Riemann-Hilbert problem. Then, the ratio Y (z) Ỹ −1(z) has no

jumps on the complex plane, and goes to the identity at infinity. It follows that Y (z) Ỹ −1(z) = 1,

namely Y (z) = Ỹ (z).

Next, let us show that the solution of the above Riemann-Hilbert problem is given indeed

by the matrix (3.1). Let us define Y = (Y1, Y2) where Y1 is the first column of Y and Y2 is the

second column. Then, from the relation (3.2), we have that

Y1+(z) = Y1−(z) , z ∈ Σ,

and

Y1(z) =

(
zk

O
(
zk−1

)
)
.

Since Y1(z) is analytic in the complex plane and has the above behaviour at infinity, it follows

that

Y1(z) =

(
Pk(z)

Qk−1(z)

)

for some polynomials Pk(z) = zk + . . . and Qk−1(z). Next we have

Y2+(z) = Y2−(z) + wk(z)

(
Pk(z)

Qk−1(z)

)
,
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which implies, using Sokhotski-Plemelj formula

Y2(z) =
1

2πi

∫

Σ

wk(z
′)

(
Pk(z

′)

Qk−1(z′)

)

z′ − z dz′. (3.4)

We also have the asymptotic condition

Y2(z) =

(
O
(
z−k−1

)

z−k +O
(
z−k−1

)
)
,

which is satisfied, by using (3.4), if
∫

Σ
wk(z)Pk(z) z

j dz = 0, j = 0, . . . k − 1

and ∫

Σ
wk(z)Qk(z) z

j dz = 0, j = 0, . . . k − 2,

∫

Σ
wk(z)Qk(z) z

k−1 dz = 1.

The above two relations coincide with the orthogonality relations (2.45) and (2.52) for the

polynomials πk(z) and Πk(z), respectively. It follows that Pk(z) ≡ πk(z) andQk−1(z) ≡ Πk−1(z).

3.1.1 First Undressing Step

We will now proceed with a simplification of the Riemann-Hilbert problem that we have just

established. This will be necessary in order to simplify the procedure that will follow.

We define a new matrix-valued function Ỹ (z) by

Ỹ (z) := Y (z)

(
1− 1

z

)− γ
2
σ3

, z ∈ \ (Σ ∪ [0, 1]) . (3.5)

This matrix satisfies the following Riemann-Hilbert problem

Riemann-Hilbert Problem 3.1.2. 1. Piecewise Analyticity:

Ỹ (z) is analytic in C \ (Σ ∪ [0, 1]) .

2. Jumps on Σ and [0, 1]: Due to the definition of Ỹ (z) in (3.5), the jump in the Riemann

Hilbert problem of Y (z), (3.2), will now be transformed into

Ỹ+(z) = Ỹ−(z)






1 e−kV (z)

0 1


 , z ∈ Σ

e−γπiσ3 , z ∈ (0, 1)

(3.6)

where V (z) = z
z0

+ log z . This jump can be seen in Figure 3.2.
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0 1

Σ

e−γπiσ3

(
1 e−kV (z)

0 1

)

1

Figure 3.2: Jumps in the Ỹ (z) Riemann-Hilbert problem

3. Large z boundary behaviour:

Ỹ (z) =

(
1 +O

(
1

z

))
zkσ3 , z →∞ . (3.7)

4. Endpoint Behaviour:

Ỹ (z) = O (1) z
γ
2
σ3 , z → 0 , (3.8)

Ỹ (z) = O (1) (z − 1)−
γ
2
σ3 , z → 1 . (3.9)

It is easy to see that from this Riemann-Hilbert problem we can recover the polynomials

πk(z) = Ỹ1 1(z)

(
1− 1

z

) γ
2

. (3.10)

The reason why we are doing this simplification is because we want to perform the analysis

of the orthogonal polynomials in the large k limit, but this cannot be done through the matrix

Y (z). Therefore, we will have to apply several transformations to our problem, of which estab-

lishing Ỹ (z) is the first step. In what follows, we will proceed with further transformations and

simplifications of our problem.

3.2 Transforming the Riemann-Hilbert Problem

We are now interested in performing transformations of the Riemann-Hilbert problem of the

matrix Ỹ (z) that would allow us to perform the analysis of the large k behaviour. This will

require us to use the steepest descent method of Deift-Zhou [12].

The first requirement that we want for the new Riemann-Hilbert problem, U(z), is that it is

normalized to the identity as |z| → ∞. In order to do this, a new function g(z) that is analytic

off Γ, which is a new contour homotopically equivalent to Σ in C \ [0, 1], is introduced, being
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both the function and the new contour unknown. We consider that the function g(z) is of the

form

g(z) =

∫

Γ
log (z − s) dν(s) , (3.11)

where dν(s) is a positive measure with support on Γ that satisfies
∫

Γ
dν(s) = 1. (3.12)

It can be seen that, in the limit |z| → ∞, this function has the behaviour

g(z) = log z +O
(
z−1
)
, (3.13)

where the logarithm is branched in the positive real axis.

3.2.1 Transformation Ỹ → U

We now want to proceed to establish the transformation Ỹ → U . In order to do this, we begin

by deforming the contour Σ, which we had in the Riemann-Hilbert problem for Ỹ , into the

contour Γ. This can be done because the new contour Γ is homotopically equivalent to Σ in

C \ [0, 1].

We define the modified matrix U as

U(z) = e−k
`
2
σ3 Ỹ (z) e−k g(z)σ3 ek

`
2
σ3 , z ∈ C \ (Γ ∪ [0, 1]) , (3.14)

where ` is a real number to be determined. The matrix U(z) solves the following Riemann-

Hilbert problem

Riemann-Hilbert Problem 3.2.1. 1. Piecewise Analyticity:

U(z) is analytic in C \ (Γ ∪ [0, 1]) .

2. Jumps on Γ and [0, 1]: As it can be seen in Figure 3.3, the Riemann-Hilbert problem has

the following jumps

U+(z) = U−(z)






e
−k(g+−g−) ek(g++g−−`−V )

0 ek(g+−g−)


 , z ∈ Γ

e−γπiσ3 , z ∈ (0, 1)

(3.15)

3. Large z boundary behaviour:

U(z) =

(
1 +O

(
1

z

))
, z →∞ . (3.16)
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0 1

Σ

e−γπiσ3

(
e−k(g+−g−) ek

(
g++g−−`−V(z)

)

0 ek(g+−g−)

)

1

Figure 3.3: Jumps in the U(z) Riemann-Hilbert problem

4. Endpoint Behaviour:

U(z) = O (1) z
γ
2
σ3 , z → 0 , (3.17)

U(z) = O (1) (z − 1)−
γ
2
σ3 , z → 1 . (3.18)

The polynomials πk(z) can be recovered from this Riemann-Hilbert problem

πk(z) = U1 1(z) ekg(z)
(

1− 1

z

) γ
2

. (3.19)

It is now necessary to find the function g(z) and the contour Γ. We want this to be done

in a way such that the jump matrix (3.15) for z ∈ Γ becomes purely oscillatory in the limit of

large k. This can be done by requiring that the following conditions are satisfied

g+(z) + g−(z)− `− V (z) = 0

Re (g+(z)− g−(z)) = 0
z ∈ Γ. (3.20)

We will now show that such a function g(z) and contour Γ that satisfy these conditions can be

found. To do that, we will refer to [17] and use the following Lemma

Lemma 3.1. Let L be a simple closed contour dividing the complex plane in two regions D+

and D−, where D+ = Int(L) and D− = Ext(L). Suppose that a function ϕ(ζ) defined on L can

be represented in the form

ϕ(ζ) = ψ+(ζ) + ψ−(ζ) , ζ ∈ L, (3.21)

where ψ+(ζ) is analytic for z ∈ D+ and continuous on L and ψ−(ζ) is analytic for z ∈ D−,

continuous on L and such that ψ−(∞) = 0. Then, the Cauchy integral

Φ(z) =
1

2πi

∫

L

ϕ(ζ)

ζ − z dζ, (3.22)
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can be represented in the form

Φ+(z) = ψ+(z) , z ∈ D+,

Φ−(z) = −ψ−(z) , z ∈ D−
(3.23)

and the boundary values of the function Φ on the two sides of the contour L satisfy

Φ+(ζ) + Φ−(ζ) = ψ+(ζ)− ψ−(ζ)

Φ+(ζ)− Φ−(ζ) = ψ+(ζ) + ψ−(ζ)
ζ ∈ L. (3.24)

Our purpose is to use this Lemma in order to determine g(z). More precisely, we consider

g′(z) as being the function that satisfies the differentiated boundary condition

g′+(ζ) + g′−(ζ) = V ′(ζ) =
1

z0
+

1

ζ
, ζ ∈ Γ. (3.25)

By relating this with the function ψ in (3.21), we have that ψ+ = 1
z0

and ψ− = −1
z . Applying

the statement of the Lemma, this means that g′(z) is given by

g′(z) =
1

2πi

∫

C

1
z0
− 1

τ

τ − z dτ =





1

z0
, z ∈ Int(Γ) = D+

1

z
, z ∈ Ext(Γ) = D−

(3.26)

and it is now easy to see that the measure dν in g(z) is given by

dν(z) =
1

2πi

(
1

z
− 1

z0

)
dz, z ∈ Γ. (3.27)

One can now perform the integration of (3.26) and use the asymptotic behaviour of g(z), which

is given in (3.13), in order to obtain the function of g(z) on both sides of the contour

g(z) =





g+ =
z

z0
+ `, z ∈ Int(Γ)

g− = log z, z ∈ Ext(Γ)

(3.28)

where ` is an integration constant and log z is analytic in C \ R+. The value of ` can now be

found by doing the integral in (3.11) for a specific value of z ∈ Γ, which we take to be z = 0,

and deforming Γ to a circle of radius r

` = log r − r

z0
, r > 0. (3.29)

If we now look at ` as a function `(r), it can be seen that it has a maximum at r = z0 and

diverges to −∞ for r → 0 and r →∞. Therefore, it suffices to consider r such that 0 < r ≤ z0.

Regarding the measure dν(z), it is normalized to one on any closed contour that contains

the point z = 0 by the residue Theorem. It should be noted that the contour Γ has to be defined
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0 1
z0

Γr<1

Γ1

Γr>1

Γz0

1

Figure 3.4: Family of contours Γr as defined in (3.34). Four possible cases are considered here
according to their value in r: r < 1, r = 1, 1 < r < z0 and r = z0

in such a way that the measure is real and positive on it. In order to do this, the following

function is introduced

ϕ(z; r) = log r − r

z0
+ V − 2g(z) , (3.30)

which can be seen to have the following behaviour depending on its location with respect to the

contour

ϕ(z; r) =





log z − z

z0
− log r +

r

z0
, z ∈ Int(Γ)

z

z0
− log z + log r − r

z0
, z ∈ Ext(Γ) .

(3.31)

It can be seen that

1

2
(ϕ− − ϕ+) = `+

z

z0
− log z = g+ − g−, z ∈ Γ. (3.32)

We now recall the condition (3.20) that we imposed before. Applied to this equation we are lead

to

Re (ϕ(z; r)) = Re

(
`+

z

z0
− log z

)

= log r − r

z0
+

Re (z)

z0
− log |z| = 0.

(3.33)

It can be seen that this equation defines a family of contours that are closed in the case |z| ≤ r.
We define the contour Γr as

Γr = {z ∈ C : Re (ϕ(z; r)) = 0, |z| ≤ z0} , 0 < r ≤ z0. (3.34)

The contours Γr for several values of r are plotted in Figure 3.4. The measure dν is clearly
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real on the contour Γr. In order to show that the measure dν is positive on such contours, we

observe that by defining ψr = eϕr one has that |ψr| = 1 on the contour Γr and

dν =
1

2πi

dψr
ψr

.

Therefore, in the variable ψr the measure dν is a uniform measure on the circle and clearly

positive. Since the map ψr = eϕr is a univalent conformal map from the interior of Γr to the

interior of the circle, it follows that dν is a positive measure on Γr.

Summarizing, we have got the measure dν and a family of contours Γr. In order to select

uniquely a contour among all possible values of r we need to make further analysis.

3.2.2 Transformation U → T

In order to proceed with the transformation of the Riemann-Hilbert problem, we will look at

the jump matrix of U(z) on z ∈ Γ given by (3.15). It can be seen that it is not feasible for our

purposes to take the limit k →∞ in this jump matrix. Therefore, we will now use the fact that

this matrix can be factorized in the following way
(
e−k(g+−g−) ek(g++g−−`−V )

0 ek(g+−g−)

)
=

(
1 0

ek(`+V−2g−) 1

)(
0 1

−1 0

)(
1 0

ek(`+V−2g+) 1

)

=

(
1 0

ekϕ(z) 1

)(
0 1

−1 0

)(
1 0

ekϕ(z) 1

)
,

(3.35)

where, in order to write the second line, we have used the definition of the ϕ(z) function defined

in (3.30) and the function g(z) defined in (3.28). Since we have performed this factorization

of the jump matrix, we can now see each of these matrices as corresponding to a jump on a

different but homotopic contour.

We will now consider three different loops Γi, Γr and Γe, so that the space is split into four

different domains Ω0, Ω1, Ω2 and Ω∞, as it can be seen in Figure 3.5. Γi is in the interior of Γr

and Γe is in the exterior. Using this we will now define a new matrix-valued function T (z) in

the following way

T (z) =





U(z) , z ∈ Ω0 ∪ Ω∞

U(z)

(
1 0

−ekϕ(z) 1

)
, z ∈ Ω1

U(z)

(
1 0

ekϕ(z) 1

)
, z ∈ Ω2 .

(3.36)

This matrix T (z) satisfies the following Riemann-Hilbert problem

Riemann-Hilbert Problem 3.2.2. 1. Piecewise Analyticity:

T (z) is analytic in C \ (Γi ∪ Γr ∪ Γe ∪ [0, 1]) .
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e−γπiσ3
(

1 0
ek ϕ(z) 1

)(
0 1
−1 0

)(
1 0

ek ϕ(z) 1

)

Γe

Γr=1

Γi

Ω∞

Ω2

Ω1

Ω0
0 1 z0

1

Figure 3.5: Jumps in the T (z) Riemann-Hilbert problem

2. Jumps on ΣT = Γi ∪ Γr ∪ Γe ∪ [0, 1]:

T+(z) = T−(z) vT , z ∈ ΣT (3.37)

where

vT =






 1 0

ekϕ(z) 1


 , z ∈ Γi


 0 1

−1 0


 , z ∈ Γr


 1 0

ekϕ(z) 1


 , z ∈ Γe

e−γπiσ3 , z ∈ (0, 1)

(3.38)

3. Large z boundary behaviour:

T (z) =

(
1 +O

(
1

z

))
, z →∞ . (3.39)

4. Endpoint Behaviour:

T (z) = O (1) z
γ
2
σ3 , z → 0 , (3.40)
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0 z0 = 1

Γr=1

Γr<1

1

Figure 3.6: The contours Γr for z0 = 1 and different values of 0 < r ≤ 1.

T (z) = O (1) (z − 1)−
γ
2
σ3 , z → 1 . (3.41)

It can be seen that e±kϕ(z) is analytic in C \ {0}. The goal is to choose the contour Γr in

such a way that the jumps of the Riemann-Hilbert problems are either constant or exponentially

decreasing in k as k →∞.

3.3 Choice of Contour

A crucial component in the analysis of the Riemann-Hilbert problems that we have been con-

sidering is the choice of the contours where the jumps are located. In fact, when introducing

the Riemann-Hilbert problem T (z), we have seen that there were three distinct contours, each

of which with a distinct jump matrix assigned to it, that have to be considered Γi, Γr and Γe.

However, up to this point, the three contours have remained mostly arbitrary, provided that

they were around [0, 1] and didn’t go over z0, as it can be seen in Figure 3.5. Since our analysis

will be performed in the critical case when

z0 → 1,

we can see from Figure 3.6 that the choice of the contour Γr with 0 < r ≤ z0 = 1 is uniquely

defined. Indeed, the contours for 0 < r < 1 cross the segment [0, 1] and they have to discarded.

So the only possible contour remains the case r = 1.
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e−γπiσ3
(

1 0
ek ϕ(z) 1

)(
0 1
−1 0

)(
1 0

ek ϕ(z) 1

)

Γe

Γr=1

Γi

Ω∞

Ω2

Ω1

Ω0
0 1 = z0

1

Figure 3.7: Contours in the critical case z0 = 1.

The corresponding contours Γi and Γe have to be chosen in such a way that the jump matrix

vT defined in (3.38) goes exponentially fast to a constant. We make the choice of the deformed

contours Γi and Γe as in Figure 3.7. In what follows, we argue that this is the right choice

of contours. Indeed, we need to study the sign of Reϕ(z) on the contours Γi and Γe. This is

accomplished in Figure 3.8 where the region where Reϕ(z) < 0 is plotted. It can be concluded

that the jump matrix on Γi and Γe goes exponentially fast to a constant matrix, except in a

neighbourhood of the point z = 1 where ϕ(z = 1) = 0. For z0 > 1 the same choice of contour

Γr=1 has been considered in [2]. In this thesis we will consider the case z0 → 1, and we can stick

to the set of contours considered in Figure 3.7.

Remark 3.2. We observe that the curve Γr=1 in (3.34) for z0 = 1 takes the form

C :=
{
z ∈ C :

∣∣ze1−z∣∣ = 1
}
. (3.42)

The curve C is the Szegő curve that was first observed in relation to the zeros of the Taylor

polynomials of the exponential function [27].

With this choice of contours we arrive to the following theorem

Theorem 3.3. The jump matrix vT converges exponentially fast as k → ∞ to the constant
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z0 = 1
0

Γi

Γr=1

Γe

Ω0Ω1Ω2

Ω∞

1

Figure 3.8: Contours Γ chosen for the critical case z0 = r = 1. The orange region corresponds
to the part of the complex plane where Re (ϕ(z)) < 0 and the green contour is the region where
Re (ϕ(z)) > 0.

jump matrix

v∞ =






1 0

0 1


 , z ∈ (Γe ∪ Γi)\D


 0 1

−1 0


 , z ∈ Γ1

e−γπiσ3 , z ∈ (0, 1),

(3.43)

where D is a small circle surrounding the point z = 1.

Proof. The jumps of vT (z) on Γr=1 and (0, 1) are constant. The only thing we need to prove is

the exponential convergence of the jumps on (Γe ∪ Γi)\D to the identity. Since Reϕ(z) < 0 for

z ∈ (Ω0 ∪ Ω1 ∪ Ω2) \D there exists a constant c0 > 0 such that

vT (z) =


1 0

0 1


+O(e−kc), z ∈ (Γe ∪ Γi)\D.

From this consideration it follows that

vT (z) = v∞ (z) +O(e−kc), as k →∞, z ∈ ΣT \D.
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3. Riemann–Hilbert analysis

3.4 Approximate solutions to T (z)

Now we are ready to approximate the matrix T (z) with two solutions, one outside a neighbour-

hood of z = 1 and one inside. We call the exterior parametrix the Riemann-Hilbert problem

solved by the matrix M(z) with jump v∞ (z). We call the local parametrix the solution P (z)

of the Riemann-Hilbert problem obtained within a neighbourhood of z = 1. These two solu-

tions are approximations of the exact solution T (z) in the limit k → ∞. In order to obtain

the asymptotics of the orthogonal polynomials πk(z), we need sub-leading corrections to the

matrices M(z) and P (z) and this will be accomplished by evaluating perturbatively the error

matrix E(z), which is defined as

E(z) =

{
T (z)M(z)−1 , z ∈ C\D
T (z)P (z)−1 , z ∈ D.

We will first construct the matrix M(z) and then the matrix P (z).

The exterior parametrix M(z) is a 2 × 2 matrix that solves the following Riemann-Hilbert

problem.

Riemann-Hilbert Problem 3.4.1. 1. Piecewise Analyticity:

M(z) is analytic in C \ ΣM , ΣM = (Γr=1 ∪ [0, 1]) .

2.

M+(z) = M−(z) v∞, z ∈ ΣM (3.44)

where v∞ has been defined in (3.43).

3. Large z boundary behaviour:

M(z) =

(
1 +O

(
1

z

))
, z →∞ . (3.45)

4. Endpoint Behaviour:

M(z) = O (1) z
γ
2
σ3 , z → 0 , (3.46)

M(z) = O (1) (z − 1)−
γ
2
σ3 , z → 1 . (3.47)

The solution of the above Riemann-Hilbert problem is given by the expression

M(z) =





(
1− 1

z

) γ
2
σ3
(

0 1

−1 0

)
, z inside Γr=1

(
1− 1

z

) γ
2
σ3

, z outside Γr=1.

(3.48)
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3.4.1 Local Parametrix and double scaling limit

The local parametrix near the point z = 1 is the solution P (z) of a matrix Riemann-Hilbert

problem that has the same jumps as T (z) and matches M(z) on the boundary of a disc centered

at z = 1. Let us define as D a closed disc centered at z = 1.

Riemann-Hilbert Problem 3.4.2. 1. Piecewise Analyticity:

P (ζ) is analytic in D \ ΣP , ΣP = Σe ∪ Σr=1 ∪ Σi ∪ [0, 1]

2. Jumps on ΣP :

P+(z) = P−(ζ) vP (z) , ζ ∈ ΣP ∩ D (3.49)

where

vP (z) =






 1 0

ekϕ(z) 1


 , z ∈ Γi ∩ D


 0 1

−1 0


 , z ∈ Γr ∩ D


 1 0

ekϕ(z) 1


 , z ∈ Γe ∩ D

e−γπiσ3 , z ∈ (0, 1) ∩ D

(3.50)

which are the jumps that can be seen in Figure 3.9 .

3. Behaviour at the boundary ∂D:

P (z) = M(z) (1 +O(1)) , as k →∞ and z ∈ ∂D. (3.51)

In order to solve the Riemann-Hilbert problem for the matrix P (z) we will use the Riemann-

Hilbert problem for the Painlevé IV equation. Before doing this, some observations are useful.

Considering the fact that we have taken r = z0 = 1, the function ϕ(z, z0 = 1), according to

the region where it is located, is given by

ϕ(z; z0 = 1) =





log (z)− z + 1, z ∈ Int(Γr=1)

z − 1− log (z), z ∈ Ext(Γr=1) .

(3.52)
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e−γπiσ3

(
1 0

ek ϕ(z) 1

)

(
1 0

ek ϕ(z) 1

)

(
0 1
−1 0

)

(
0 1
−1 0

)

D

Ω∞Ω0

Ω1

Ω2

Ω2
Γe

Γr=1

Γi

0
1

1

Figure 3.9: Jumps of the Riemann-Hilbert problem for the matrix P (z) .

Since the point z = 1 is the one that will give the biggest contribution to ekϕ(z), we will now

Taylor expand ϕ(z) around it

k ϕ(z; z0 = 1) = k (log (z)− z + 1) = −k
2

(z − 1)2 (1 +O (z − 1)) = −kζ
2(z)

2
, z ∈ Int(Γr=1)

k ϕ(z; z0 = 1) = k (z − 1− log (z)) =
k

2
(z − 1)2 (1 +O (z − 1)) = k

ζ2(z)

2
, z ∈ Ext(Γr=1).

(3.53)

It follows that ζ(z) has an expansion of the form

ζ(z) = (z − 1)

(
1− 1

3
(z − 1) +O (z − 1)2

)
. (3.54)

Note that ζ(z) is a conformal map from the z-plane to the ζ-plane so that the contours for the

jump matrix vP are conformally deformed to new contours. This procedure allows us to trans-

form the Riemann-Hilbert problem P (z), defined in the z-plane, into a new one that depends

on the variable ζ.
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3.4.2 The Double Scaling limit for k ϕ(z)

Our purpose now will be to consider k ϕ(z; z0) for z0 → 1. The key to do this is that now we

will consider z0 ∼ 1 but not equal to 1, which was what we did in the case above. Therefore, we

will now do the Taylor expansion of k ϕ(z) around z = 1. To do this, we begin by recalling the

expression of k ϕ(z; z0) where we make the explicit the dependence on z0:

ϕ(z; z0) =

(
z − 1

z0
− log z

)
(3.55)

and then perform the expansion

ϕ (z) =

(
z − 1

z0
+ (1− z) +

1

2
(1− z)2 + . . .

)

=

(
(z − 1)

(
1

z0
− 1

)
+

1

2
(z − 1)2 + . . .

)
.

(3.56)

From this expansion we define the quantity A as

A :=
ϕ(z; z0)− ϕ(z; z0 = 1)

ζ(z)
=

1

z0
− 1 (3.57)

and establish the following equality

ϕ(z; z0) =
1

2
ζ2(z) +Aζ(z) . (3.58)

Definition 3.1 (Double-Scaling Limit). The Double-Scaling Limit is defined by taking k →∞
and A→ 0 (or equivalently z0 → 1) so that

lim
k→∞,z0→1

√
k A = S (3.59)

with S in compact subsets of the complex plane. Equivalently, it can be defined as

A ∼ S√
k

or z0 ∼
√
k√

k + S
. (3.60)

Remark 3.4. As it was stated above, from the general definition of the Double-Scaling Limit,

one has S ∈ C. However, in our case it was established that k is a Real constant and since A

was defined as in (3.57), where z0 ∼ 1 is also Real. Therefore, it is clear that for the case we are

working in, it suffices to consider only real values of S.

3.4.3 Model problem and the Painlevé IV equation

We recall the Riemann-Hilbert problem for the function Ψ(λ; s) associated to the Painlevé IV

equation. For convenience, in this section we replace the contour Γ1 with Γ̂i and the contour

Γ∞ with Γ̂e to be consistent with the notation we are using in this section.
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Riemann-Hilbert Problem 3.4.3. 1. Piecewise Analyticity:

Ψ(λ; s) is analytic in C \ ΣΨ, ΣΨ =
(

Γ̂i ∪ Γ̂e ∪ R−
)
.

2. Jumps on ΣΨ:

Ψ+(λ; s) = Ψ−(λ; s) vΨ, λ ∈ ΣΨ, (3.61)

where

vΨ =






1 −1

0 1


 , λ ∈ Γ̂i


1 0

1 1


 , λ ∈ Γ̂e

eγπiσ3 , λ ∈ R−

(3.62)

which are the jumps that can be seen in Figure 1.2.

3. Large λ boundary behaviour:

Ψ(λ; s) =

(
1 +

Ψ1

λ
+

Ψ2

λ2
+O(λ−3)

)
λ
γ
2
σ3 e−θ σ3 , λ→∞ , (3.63)

where θ =
λ2

4
+ s

λ

2
and the matrices Ψ1 = Ψ1(s) and Ψ2 = Ψ2(s) take the form

Ψ1(s) =



H(s)

Z(s)

U(s)

U(s) −H(s)


 (3.64)

Ψ2(s) =




1

2

(
H(s)2 + Z(s)− sH(s)

) Z(s) (Z(s)− γ − Y (s) s−H(s)Y (s))

U(s)Y (s)

U(s)H(s) + U(s)Y (s)− sU(s)
1

2

(
H(s)2 + Z(s) + sH(s)

)




(3.65)

The scalar complex functions H(s), Z(s) and U(s) are given by





U ′ = U (Y − s)

Z =
1

2

(
sY + γ − Y ′ − Y 2

)

H =
(
s+

γ

Y
− Y

)
Z − Z2

Y

(3.66)
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where Y = Y (s) solves the Painlevé IV equation (1.6) with Θ∞ = Θ0 = γ/2, namely

Y ′′ =
1

2

(Y ′)2

Y
+

3

2
Y 3 − 2sY 2 +

(
1 +

s2

2
− 2

γ

2

)
Y − γ2

2Y
. (3.67)

4. Endpoint Behaviour

Ψ(λ; s) = O(1)λ
γ
2
σ3 , λ→ 0 , (3.68)

as λ → 0 in the region Ω∞ (and the implication of this behaviour as λ → 0 within the

other regions).

For our purpose we need to modify the Riemann-Hilbert problem for Ψ(λ) to be able to

match the Riemann-Hilbert problem for P (z). Let us introduce the contour Γr=1 on the λ

plane, which is a contour between Γ̂i and Γ̂e and passing through λ = 0. Then let us define

Ψ̂(λ) = Ψ(λ) eθσ3

(
0 1

−1 0

)χL
, (3.69)

where χL is the characteristic function that is one on the left to the contour Γ̂r=1 and is zero

otherwise. Then it is straightforward to check that the Riemann-Hilbert problem for Ψ̂(λ) is

given by

Riemann-Hilbert Problem 3.4.4. 1. Piecewise Analyticity:

Ψ̂(λ) is analytic in C\Σ
Ψ̂
, Σ

Ψ̂
= Γ̂e ∪ Γ̂i ∪ Γ̂r=1 ∪ R−

2. Jumps on Σ
Ψ̂

:

Ψ̂+(λ) = Ψ̂−(λ) v
Ψ̂

(λ) , ζ ∈ Σ
Ψ̂
, (3.70)

where

v
Ψ̂

(λ) =






 1 0

e−2θ(λ) 1


 , z ∈ Γ̂i


 0 1

−1 0


 , z ∈ Γ̂r=1


 1 0

e2θ(λ) 1


 , z ∈ Γ̂e

e−γπiσ3 , z ∈ R−.

(3.71)
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3. Behaviour for λ→∞

Ψ̂(λ) =

(
1 +

Ψ1

λ
+

Ψ2

λ2
+O(λ−3)

)
λ
γ
2
σ3


 0 1

−1 0



χL

. (3.72)

Comparing the jump matrices for P (z) and Ψ̂(λ), we are now ready to obtain the local

parametrix P (z) defined by the Riemann-Hilbert problem (3.4.2), which is given by

P (z) = M(z)

(
0 −1

1 0

)χL (√
k ζ(z)

)− γ
2
σ3

Ψ̂
(√

k ζ (z) ;
√
k A
)
. (3.73)

We observe that the product of the first three terms of (3.73) is holomorphic in the neighbour-

hood of z = 1 and therefore does not change the Riemann-Hilbert problem. Furthermore, the

first three terms have been inserted in order to have the behaviour (3.51) for z ∈ ∂D in the limit

k →∞ and A→ 0 in such a way that

lim
k→∞

√
kA = S. (3.74)

In the analysis above and below, we assume that S belongs to compact sets where the solution

of the Painlevé IV equation does not have poles. Using (3.72), (3.64) and (3.65), we obtain in

the limit k →∞

P (z)=M(z)

(
0 −1

1 0

)χL(√
k ζ(z)

)− γ
2
σ3


1 +

1√
k ζ


H

Z

U
U −H


+O

(
k−1

)


(√

k ζ
) γ

2
σ3

(
0 1

−1 0

)χL

=M(z)


1 +

(
0 −1

1 0

)χL
1√
kζ


 H (

√
kζ)−γ

Z

U
(
√
kζ)γU −H



(

0 1

−1 0

)χL
+O

(
k−1+γ/2

)



(3.75)

=M(z)
(
1 +O

(
k
γ−1
2

))
.

From the above expansion we can see that the subleading terms are not uniformly small for

k → ∞ since γ ∈ [0, 1). Note that the source of the non-uniformity in the error analysis is the

element (2, 1) in (3.75). For this reason we need to introduce an improved parametrix in the

next section.

3.4.4 Improved parametrix

To construct an improved parametrix we define

M̃(z) =

(
1 +

Bσ−
z − 1

)
M(z) , σ− :=

[
0 0

1 0

]
, (3.76)

where B is to be determined. In the same way we define

P̃ (z) = M̃(z)

(
0 −1

1 0

)χL(√
k ζ(z)

)− γ
2
σ3
(
1− Uσ−√

k ζ(z)

)
Ψ̂(
√
k ζ(z) ;

√
k A), (3.77)
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where U is the 2 1 entry of the subleading term of the expansion of Ψ̂(λ) for λ → ∞. Now we

have in the limit k →∞

P̃ (z) = M̃(z)


1 +

[
0 −1

1 0

]χL
1√
kζ


H (

√
k ζ)−γ

Z

U
0 −H



[

0 1

−1 0

]χL
+O(k−1+γ/2)




= M̃(z)
(
1 +O(k−

1
2 )
)
.

The improved parametrics M̃(z) and P̃ (z) have the same jump discontinuities as before, but

P̃ (z) might have poles at z = 1. The constant B in (3.76) is then determined by the requirement

that P̃ (z) is bounded at z = 1. This gives the constant B as

B = U k
γ−1
2 . (3.78)

We are now ready to compute the error matrix E(z).

3.4.5 Error matrix

The error matrix E(z) is defined as

E(z) =

{
T (z) M̃(z)−1 , z ∈ C\D
T (z) P̃ (z)−1 , z ∈ D

(3.79)

where the boundary of D is oriented clockwise. Then, the matrix E(z) satisfies the Riemann-

Hilbert problem

E+(z) = E−(z) vE(z) , z ∈ ∂D,

where the jump vE is given by

vE(z) = M̃(z) P̃−1(z) . (3.80)

In the double scaling limit k →∞, using (3.72), (3.64) and (3.65), vE(z) takes the form

vE(z) =

(
1 +

Uk
γ−1
2

z − 1
σ−

)(
z − 1√
k zζ

) γ
2
σ3

×

×



1−


H

Z

U
0 −H




√
k ζ

+

[
H2+sH−Z

2
HZY+HY+ZY 2

UY

sU − UY H2−sH+Z
2

]

k ζ2
+O(k−

3
2 )




(
z − 1√
k z ζ

)− γ
2
σ3
(
1− Uk

γ−1
2

z − 1
σ−

)

= 1 +
v

(1)
E√
k

+
v

(2)
E

k
1
2

+ γ
2

+
v

(3)
E

k1− γ
2

+O
(
k−1

)
,
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where

v
(1)
E = −H

ζ
σ3

v
(2)
E = −

(
z − 1

zζ

)γ ( Z

Uζ

)
σ+

v
(3)
E =

((
z − 1

zζ

)−γ (s− Y )U

ζ2
− 2

HU

(z − 1)ζ

)
σ−.

By the standard theory of small norm Riemann-Hilbert problems, one has a similar expansion

for E(z), namely

E(z) = 1 +
E(1)

√
k

+
E(2)

k
1
2

+ γ
2

+
E(3)

k1− γ
2

+O
(
k−1

)
, (3.81)

so that

E
(1)
+ (z) = E

(1)
− (z) + v

(1)
E (z) , z ∈ ∂D,

E
(2)
+ (z) = E

(2)
− (z) + v

(2)
E (z) , z ∈ ∂D,

E
(3)
+ (z) = E

(3)
− (z) + v

(3)
E (z) , z ∈ ∂D.

By solving the corresponding Riemann-Hilbert problem, we obtain, using the Plemelj-Sokhtski

formula

E(j)(z) =
1

2πi

∫

∂D

v
(i)
E (ξ)

ξ − z dξ, j = 1, 2, 3,

which gives

E(1)(z) = −Resξ=1v
(1)
E (ξ)

z − 1
=

Hσ3

z − 1
, z ∈ C\D,

E(2)(z) = −Resξ=1v
(2)
E (ξ)

z − 1
=

(Z/U)σ+

z − 1
, z ∈ C\D,

E(3)(z) = −Resξ=1v
(3)
E (ξ)

(z − 1)
− Resξ=1(ξ − 1) v

(2)
E (ξ)

(z − 1)2

=

(
2

3

γ (2H + γ − s) γ +H + γ − s
z − 1

+
U (2H + Y − s)

z − 1

)
σ−, z ∈ C\D

(3.82)

and

E(1)(z) = v
(1)
E −

Resξ=1v
(1)
E (ξ)

z − 1
= v

(1)
E +

Hσ3

z − 1
, z ∈ D,

E(2)(z) = v
(2)
E −

Resξ=1v
(2)
E (ξ)

z − 1
= v

(2)
E +

(Z/U)σ+

z − 1
, z ∈ D

E(3)(z) = v
(3)
E +

(
2

3

γ (2H + γ − s) γ +H + γ − s
z − 1

+
U (2H + Y − s)

z − 1

)
σ−, z ∈ D.

(3.83)
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3.4.6 Asymptotics for the polynomials πk(z) and proof of Theorem 2.2 and Theorem 2.4

We are now ready to determine the asymptotic expansions for the orthogonal polynomials πk(z).

Using (3.19), (3.36) and (3.79) we have

πk(z) = ekg(z)
(

1− 1

z

) γ
2

[Uk(z)]1 1 (3.84)

= ekg(z)
(

1− 1

z

) γ
2





[Tk(z)]1 1 z ∈ Ω∞ ∪ Ω0

[
Tk(z)

(
1 0

ekϕ(z) 1

)]

1 1

z ∈ Ω1

[
Tk(z)

(
1 0

−ekϕ(z) 1

)]

1 1

z ∈ Ω2

(3.85)

= ekg(z)
(

1− 1

z

) γ
2





[
E(z) M̃(z)

]
1 1

z ∈ (Ω∞ ∪ Ω0) \ D

[
E(z) M̃(z)

(
1 0

ekϕ(z) 1

)]

1 1

z ∈ Ω1 \ D

[
E(z) M̃(z)

(
1 0

−ekϕ(z) 1

)]

1 1

z ∈ Ω2 \ D

[
E(z) P̃ (z)

]
1 1

z ∈ (Ω0 ∪ Ω∞) ∩ D

[
E(z) P̃ (z)

(
1 0

ekϕ(z) 1

)]

1 1

z ∈ Ω1 ∩ D

[
E(z) P̃ (z)

(
1 0

−ekϕ(z) 1

)]

1 1

z ∈ Ω2 ∩ D .

(3.86)

We want to analyze each distinct region. Using (3.82), (3.83), (3.77) and (3.76) we obtain the

following expressions

The region Ω∞ \ D

πk(z) = ekg(z)
(

1− 1

z

)γ (
1 +

H√
k (z − 1)

+O
(

1

k

))

= zk
(

1− 1

z

)γ (
1 +

H√
k(z − 1)

+O
(

1

k

))
,

(3.87)

with H defined in (3.66).
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The region Ω0 \ D

πk(z) = ekg(z)
(

1− 1

z

)γ/2(
− Z

U (z − 1) k
1
2

+γ
+O

(
1

k

))
, (3.88)

with Z and U defined in (3.66).

The region Ω1 \ D

πk(z) = ekg(z)
(
z − 1

z

)γ (
ekϕ(z)

(
1 +

H√
k (z − 1)

)
− Z

U(z − 1)k
1+γ
2

(
z − 1

z

)−γ
+O

(
1

k

) )
,

(3.89)

with H, U and Z defined in (3.66). In a similar way we can obtain the expansion in the region

Ω2 \ D.

The region Ω2 \ D

πk(z) = ekg(z)
(
z − 1

z

)γ (
1 +

H√
k (z − 1)

− Zekϕ(z)

U (z − 1) k
1+γ
2

(
z − 1

z

)−γ
+O

(
1

k

) )
. (3.90)

The region D

In the region (Ω0 ∪ Ω∞) ∩ D we have

πk(z) = ekg(z)
(
z − 1

z

)γ



Ψ̂1 1

(√
k ζ(z) ;

√
k A
)

k
γ
4 ζ(z)

+O
(

1

k
1
2

+ γ
4

)


where Ψ̂1 1 is the 1 1 entry of the Painlevé isomonodromic problem (3.4.4).

In the region Ω1 ∩ D and Ω2 ∩ D we have

πk(z) = ekg(z)
(
z − 1

z

)γ



Ψ̂1 1

(√
k ζ(z) ;

√
k A
)
± ekϕ(z)Ψ̂1 2

(√
k ζ(z) ;

√
k A
)

k
γ
4 ζ(z)

+O
(

1

k
1
2

+ γ
4

)
 ,

where ± refers to the region Ω1 and Ω2, respectively, and Ψ̂1 2 is the 1 2 entry of the Painlevé

isomonodromic problem (3.4.4). Making the change of variables

z = 1− λd

tc
,

the proof of Theorem 2.4 follows in a straightforward way from the above expansions. With

these expansions, we are able to locate the zeros of the orthogonal polynomials.

Proposition 3.5. The support of the counting measure of the zeros of the polynomials πk(z)

outside an arbitrary small disk D surrounding the point z = 1 tends uniformly to the curve Γr=1
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Figure 3.10: Zeros of the polynomials πk(z) for k = 40, 60, 70. The values of the parameters are
z0 = 1 and t = 2, d = 3 and l = 0. The plot of the support of the limiting measure (Szegö curve)
of the zeros of the orthogonal polynomials πk(z) is in red.

defined in (3.34) for z0 = 1. The zeros are within a distance o(1/k) from the curve defined by

log |z| − |z − 1|
|z0|

= −1 + γ

2

log k

k
+

1

k
log

(∣∣∣∣
z

z − 1

∣∣∣∣
γ ∣∣∣∣

Z(S)

(z − 1)U(S)

∣∣∣∣
)

(3.91)

where we recall from (3.60) that z0 =
√
k√

k+S , and that the function Z = Z(S) and U = U(S)

are related to the Painlevé IV equation via (3.66). The curves in (3.91) approach Γr=1 at the

rate O (log k/k) and lies in Int(Γr=1). The normalized counting measure of the zeros of πk(z)

converges to the probability measure ν defined in (3.27).

Proof. Observing the asymptotic expansion (3.87) of πk(z) in Ω∞ \D, it is clear that πk(z) does

not have any zeros in that region, since z = 0 and z = 1 do not belong to Ω∞ \ D. The same

reasoning applies to the region Ω0 \D, where there are no zeros of πk(z) for k sufficiently large.

From the relations (3.89) and (3.90), one has that in Ω1 ∪ Ω2 using the explicit expression

of g(z) defined in (3.28)

πk(z) = zk
(
z − 1

z

)γ (
1 +

H√
k (z − 1)

− e±kϕ(z)Z

U (z − 1)k
1+γ
2

(
z − 1

z

)−γ
+O

(
1

k

) )
, (3.92)

where ± refers to Ω2 and Ω1, respectively. The zeros of πk(z) may only lie asymptotically where

the expression

1 +
H√

k (z − 1)
=

e±kϕ(z)Z

U (z − 1) k
1+γ
2

(
z − 1

z

)−γ
, z ∈ Ω1 ∪ Ω2.
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Since Ω2 ∪ Ω1 ⊂ {Re(ϕ) ≤ 0}, it follows that the zeros of πk(z) may lie only in the region Ω1

and such that Reϕ(z) = O (log k/k) (where z0 is the value given by the double scaling (3.60)).

Taking the logarithm of the modulus of the above equality, we obtain

Reϕ(z) = −1 + γ

2

log k

k
+

1

k
log

(∣∣∣∣
z

z − 1

∣∣∣∣
γ ∣∣∣∣

Z(S)

(z − 1)U(S)

∣∣∣∣
)

+
1

k
3
2

Re

(
H(S)

z − 1

)
+O

(
1

k2

)
. (3.93)

Namely, the zeros of the polynomials πk(z) lie on the curve given by (3.91) with an error of

order O
(
1/k2

)
. Such curves converge to the curve Γr=1 defined (3.34) with z0 = 1 at a rate

O (log k/k).

The proof of Proposition 2.5 follows immediately from the proof of Proposition 3.5. The rest

of the proof of Theorem 2.2 follows the steps obtained in [2] and for this reason we omit it.
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A

Source code for the computation of the τ–function

In what follows we show the code that was used in Mathematica in order to compute the Fred-

holm Determinant. The purpose of this was to make a numerical study of the τ–function using

the technique of Gaussian-Hermite quadrature, which lead to the τ–function being given as in

(1.92).

We begin by defining the precision that we want in the computations

Precise = 100

Then we compute the nodes xj , which are the roots of the n-th Hermite polynomial Hn

(√
Λx
)

for Λ = 1
2

Nodes[n_] := x /. NSolve[HermiteH[n, x/Sqrt[2]] == 0, x, WorkingPrecision ->

Precise]

and the weights of the quadrature rule

weight[n_, x_] := (2^(n - 1/2) n! Sqrt[\[Pi]])/(n^2 (HermiteH[n - 1, x/Sqrt

[2]])^2)

wei[n_] := weight[n, #] & /@ (x /. NSolve[HermiteH[n, x/Sqrt[2]] == 0, x,

WorkingPrecision -> Precise])

It should be noted that both in the computation of the nodes and the wheights, we are applying

a procedure so that the results come in a list of n elements, where the i–th element of the list

is the i–th node or weight.

In order to compute the τ–function for chosen values of the parameters s and γ and for a

chose number of n points we use the following Module

Tau[s_, \[Gamma]_, n_] := Module[{X, W, A, AM},
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A. Source code for the computation of the τ–function

X = Nodes[2 n];

W = wei[2 n];

\[Epsilon] = Max[0, -s];

A[j_, l_] :=

Abs[X[[j]]]^(\[Gamma]/2) Sqrt[W[[j]]]

e^(-s/2 X[[j]]) ((i X[[l]] + \[Epsilon])^(-(\[Gamma]/2)) e^(

i/2 X[[l]] (s + \[Epsilon])) Sqrt[

W[[l]]])/(X[[j]] - \[Epsilon] - i X[[l]]);

AM = Table[A[j, l], {j, n}, {l, 2 n}];

Det[IdentityMatrix[n] -

E^((\[Epsilon])^2/2 + s \[Epsilon])/(2 \[Pi]^2)

Sin[\[Pi] \[Gamma]] Dot[AM, Transpose[AM]]]

]

The plots of the τ–function in terms of the parameter s, that we list in Subsection 1.4.2 are

done in the following way

Plot[Tau[s, 0.5, 80], {s, -3, 7}, PlotPoints -> 30, MaxRecursion -> 3,

GridLines -> Automatic, AxesLabel -> {s, \[Tau][s, 0.5, 80]}]

where this is the example for the case of γ = 0.5 and with n = 80 points.
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Hilbert Approach. Mathematical Surveys and Monographs. Volume 128, 2006

[17] F. D. Gakhov. Boundary value problems. Dover, New York, 1966.

[18] J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys.

6 (1965), 440 - 449.

[19] J. Harnad and Alexander R. Its. Integrable Fredholm operators and dual isomonodromic

deformations. Comm. Math. Phys., 226(3):497–530, 2002.

[20] H. Hedenmalm, N. Makarov, Coulomb gas ensembles and Laplacian growth, Proc. London

Math. Soc. 106 (2013), 859 - 907.

[21] A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov. Differential equations for

quantum correlation functions. In Proceedings of the Conference on Yang-Baxter Equa-

tions, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory,

volume 4, pages 1003–1037, 1990.

[22] M. Jimbo, T. Miwa, and K. Ueno. Monodromy preserving deformation of linear ordinary

differential equations with rational coefficients. I. General theory and τ -function. Phys.

D, 2(2):306–352, 1981.

[23] M. Jimbo and T. Miwa. Monodromy preserving deformation of linear ordinary differential

equations with rational coefficients. II. Phys. D, 2(3):407–448, 1981.

[24] M.L. Mehta, Random matrices. Third edition. Pure and Applied Mathematics (Amster-

dam), 142. Elsevier/Academic Press, Amsterdam, 2004. xviii+688 pp. ISBN: 0-12-088409-

7.

74



Bibliography

[25] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin,

1997.

[26] B. Simon. Trace Ideals and their applications. Volume 120 of Mathematical Surveys and

Monographs 2nd ed., Providence, RI: American Mathematical Society, 2005
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