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Abstract We obtain the strong asymptotics of polynomials pn(λ), λ ∈ C, orthogonal
with respect to measures in the complex plane of the form

e−N (|λ|2s−tλs−tλ
s
)dA(λ),

where s is a positive integer, t is a complex parameter, and dA stands for the area
measure in the plane. This problem has its origin in normal matrix models. We study
the asymptotic behavior of pn(λ) in the limit n, N → ∞ in such a way that n/N → T
constant. Such asymptotic behavior has two distinguished regimes according to the
topology of the limiting support of the eigenvalues distribution of the normal matrix
model. If 0 < |t |2 < T/s, the eigenvalue distribution support is a simply connected
compact set of the complex plane, while for |t |2 > T/s, the eigenvalue distribu-
tion support consists of s connected components. Correspondingly, the support of
the limiting zero distribution of the orthogonal polynomials consists of a closed con-
tour contained in each connected component. Our asymptotic analysis is obtained by
reducing the planar orthogonality conditions of the polynomials to equivalent contour
integral orthogonality conditions. The strong asymptotics for the orthogonal polyno-
mials is obtained from the correspondingRiemann–Hilbert problemby theDeift–Zhou
nonlinear steepest descent method.
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1 Introduction

We study the asymptotics of orthogonal polynomials with respect to a family of mea-
sures supported on the whole complex plane. To set up the notation for the general
case, let pn(λ) denote the monic orthogonal polynomials of degree n such that

∫
C

pn(λ)pm(λ)e−NW (λ)dA(λ) = hn,N δnm, n,m = 0, 1, 2, . . . , (1.1)

whereW : C → R is called the external potential, N is a positive parameter1, dA(λ) is
the area measure in the complex plane, and hn,N is the norming constant. The external
potential is assumed to have sufficient growth at infinity so that the integrals in (1.1)
are bounded.

Planar orthogonal polynomials satisfying (1.1) appear naturally in the context of
normal matrix models [12] where one studies probability distributions of the form

M �→ 1

Zn,N
e−N Tr(W (M))dM, Zn,N =

∫
Nn

e−N Tr(W (M))dM, (1.2)

where NN is the algebraic variety of n × n normal matrices

Nn = {
M : [M, M�] = 0

} ⊂ Matn×n(C),

and dM is the volume form induced on Nn which is invariant under conjugation by
unitarymatrices. Since normalmatrices are diagonalizable by unitary transformations,
the probability density (1.2) can be reduced to the form [43]

1

Zn,N

∏
i< j

|λi − λ j |2e−N
∑n

j=1 TrW (λi )dA(λ1) . . . dA(λn),

where λ j are the complex eigenvalues of the normal matrix M and the normalizing
factor Zn,N , called the partition function, is given by

Zn,N =
∫
Cn

∏
i< j

|λi − λ j |2e−N
∑n

j=1 W (λi )dA(λ1) . . . dA(λn).

1 For simplicity, we use the simpler notation pn(λ) instead of pn,N (λ), even though the orthogonal poly-
nomials depend on the value of the scaling parameter N .
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The statistical quantities related to eigenvalues can be expressed in terms of the
orthogonal polynomials pn(λ) defined in (1.1). In particular, the average density of
eigenvalues is

ρn,N (λ) = 1

n
e−NW (λ)

n−1∑
j=0

1

h j

∣∣p j (λ)
∣∣2 .

The partition function Zn,N can be written as a product of the normalizing constants

Zn,N =
n∏
j=0

h j,N .

While the asymptotic density of eigenvalues can be studied using an approach from
potential theory [49], the zero distribution of orthogonal polynomials remains an open
issue for general potential weights despite general results in [51]. The density of
eigenvalues ρn,N (λ) converges (in the sense of measures) in the limit

n → ∞ , N → ∞ ,
N

n
→ 1

T
, (1.3)

to the unique probability measure μ∗ in the plane which minimizes the functional
[25,35]

I (μ) =
∫∫

log |λ − η|−1dμ(λ)dμ(η) + 1

T

∫
W (λ)dμ(λ). (1.4)

The functional I (μ) in (1.4) is the Coulomb energy functional in two dimensions, and
the existence of a unique minimizer is a well-established fact under mild assumptions
on the potentialW (λ) [49]. IfW is twice continuously differentiable and its Laplacian
�W is nonnegative, the equilibrium measure is given by

dμ∗(λ) = �W (λ)χD(λ)dA(λ),

where χD is the characteristic function of the compact support set D = supp(μ∗).
Sub-leading order corrections to the behavior of the eigenvalues distribution ρn,N (λ)

as n, N → ∞ and fluctuations in the bulk and at the boundary of the support D have
been considered in [3–5,9,42].

The measure μ∗ can also be uniquely characterized by the Euler–Lagrange condi-
tions

W (λ)

T
− 2

∫
log |λ − η|dμ∗(η) + 	D ≥ 0 (1.5)

for all values λ ∈ C with equality in (1.5) on the support2 of μ∗. The Lagrange
multiplier 	D is called the (generalized) Robin constant. It is a nontrivial problem

2 To be precise, the equality on the support is valid only up to a set of capacity zero [49].
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to determine the shape of the support set D. In some cases, this problem is called
Laplacian growth. When the potential W (λ) is real analytic, the boundary ∂D is a
finite union of analytic, arcs with at most a finite number of singularities [48], see also
[35].

There are only a handful of potentials W (λ) for which the polynomials pn(λ)

can be explicitly computed. The simplest example is W (λ) = |λ|2, for which the
orthogonal polynomials pn(λ) are monomials of degree n, and the constants hn,N

and the average density of eigenvalues ρn,N can be computed explicitly in terms of
the Gamma function. The matrix model associated with this potential is known as
the Ginibre ensemble [30,31], and the density of eigenvalues ρn,N converges to the
normalized area measure on the disk of radius

√
T centered at the origin. In general,

for radially symmetric potentialsW = W (|λ|), the orthogonal polynomials are always
monomials, and in the limit (1.3), the eigenvalue distribution is supported either on
a disk or an annulus by the Single-ring theorem of Feinberg and Zee [28], whose
rigorous proof can be found in [32]. The correlation functions in this case have been
studied in [12].

The harmonic deformation of theGaussian caseW (λ) = |λ|2+(harmonic)has been
intensively studied. In particular, the potentialW (λ) = |λ|2 − t (λ2 + λ̄2) is associated
with the Hermite polynomials for |t | < 1/2. In the limit (1.3), the distribution of
eigenvalues is the normalized area measure on an ellipse, while the distribution of the
zeros of the orthogonal polynomials is given by the (rescaled) Wigner semicircle law
with support between the two foci of the ellipse [23].

The normal matrix model with a general deformation W (λ) = |λ|2 + Re(P(λ)),
where P(λ) is a polynomial of a fixed degree, has first been considered in the sem-
inal papers [47,54] (see also the review article [56]), where the connection with the
Hele–Shaw problem and integrable structure in conformal dynamic has been pointed
out. More general potentials have been considered later in [55]. For such potentials,
however, the matrix integrals have convergence issues in the complex plane, and there-
fore a natural cut-off has been introduced in the work of Elbau and Felder [25]. In
[24], the polynomials associated with such deformed Gaussian potentials have been
studied, and it was argued that the Cauchy transform of the limiting zero distribution
of the orthogonal polynomials coincides with the Cauchy transform of the limiting
eigenvalue distribution of the matrix model outside the support of the eigenvalues.
Moreover, it was also conjectured in [24] that the zero distribution of the polynomials
pn(λ) is supported on tree-like segments (themother body, see definition below) inside
the compact set (the droplet) that attracts the eigenvalues of the normal matrix model.

For the external potentialW (λ) = |λ|2+Re(tλ3), Bleher andKuijlaars [11] defined
polynomials orthogonal with respect to a system of unbounded contours on the com-
plex plane, without any cut-off, and which satisfy the same recurrence relation that is
asymptotically valid for the orthogonal polynomials of Elbau and Felder. They then
study the asymptotic distribution of the zeros of such polynomials confirming the pre-
dictions of [24]. Similar results were obtained for the more general external potential
[38] W (λ) = |λ|2 − Re(t |λ|k), k ≥ 2 and |t | sufficiently small so that the eigenvalue
distribution of the matrix model has an analytic simply connected support. Cases in
which the eigenvalue support has singularities were analyzed in [39] and [6]. In partic-
ular, in the work [6], the external potential W (λ) = |λ|2 − 2c log |λ − a| with c and a
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positive constants, has been studied, and the strong asymptotics of the corresponding
orthogonal polynomials has been derived both in the case in which the support of the
eigenvalues distribution is simply connected (pre-critical case) or multiply connected
(post-critical case) and critical transition was observed (see also [7,53]).

In this work, we study the strong asymptotic of the polynomials pn(λ) orthogonal
with respect to a density e−NW (λ), where the external potential is of the formW (λ) =
|λ|2s − tλs − t̄ λ̄s , with λ ∈ C, s a positive integer and t ∈ C\{0}. By a simple
rotation of the variable λ, the analysis can be reduced to the case of real and positive
t . Therefore, without loss of generality, we may and do assume that t ∈ R+; that is,

W (λ) = |λ|2s − t (λs + λ̄s), λ ∈ C, s ∈ N, t > 0, (1.6)

and the associated orthogonality measure is

e−N
(|λ|2s−t (λs+λ̄s )

)
dA(λ), λ ∈ C, s ∈ N, t > 0. (1.7)

Note that the potential W (λ) has a discrete rotational Zs-symmetry. It was observed
in [8] (see also [26]) that if a potential W (λ) can be written in the form

W (λ) = 1

s
Q(λs),

the equilibrium measure for W can be obtained from the equilibrium measure of Q
by an unfolding procedure. In our particular case,

Q(u) = s|u|2 − st (u + ū) = s|u − t |2 − st2

corresponds to the Ginibre ensemble, so that the equilibriummeasure for the potential
Q is the normalized area measure of the disk

|u − t | = tc, tc =
√
T

s
,

where T has been defined in (1.3). The equilibrium measure for W turns out to be
equal to

dμ∗(λ) = s

π t2c
|λ|2(s−1)χD(λ)dA(λ), (1.8)

where χD is the characteristic function of the support set

D := {λ ∈ C, |λs − t | ≤ tc}. (1.9)

We observe that for t < tc, the Eq. (1.9) describes a simply connected domain in
the complex plane with uniformizing map from the exterior of the unit disk in the
ξ -plane to the exterior of D given by
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f (ξ) = t
1
s
c ξ

(
1 + t

tc

1

ξ s

) 1
s

,

with inverse

F(λ) = f −1(λ) = t
− 1

s
c λ

(
1 − t

λs

) 1
s

.

For t > tc the domain defined by the Eq. (1.9) consists of s connected components
which have a discrete rotational symmetry. For s = 2, the domain D is called Cassini
oval. The boundary of D, namely ∂D, can be identified with the real ovals of the
Riemann surface S defined by S := {(λ, η) ∈ C

2, (λs − t)(ηs − t) = t2c }, which has
genus (s − 1)2. Such Riemann surface does not coincide with the Schottky double of
D for s > 2.

The boundary of the domain D can also be expressed by the equation

λ̄ = S(λ), S(λ) =
(
t + t2c

λs − t

) 1
s

. (1.10)

The function S(λ) is analytic in a neighborhood of ∂D, and it is called the Schwarz
function associated with ∂D (see, e.g., [18]).

Remark 1.1 The domain D is a quadrature domain [33] with respect to the measure
dμ∗. Indeed, for any function h(λ) analytic in a neighbourhood of D, one has, by
applying Stokes’ theorem and the residue theorem,

∫
D
h(λ)dμ∗(λ) = 1

2π i t2c

∫
∂D

h(λ)λs−1(S(λ))sdλ =
s−1∑
k=0

ckh(λk),

where S(λ) is the Schwarz function (1.10), ck = 1

s
and λk = t

1
s e

2π ik
s .

1.1 Statement of Results

The goal of this manuscript is to determine pointwise asymptotics of the polynomials
pn(λ) defined in (1.1) orthogonal with respect to the weight (1.7) in the two cases:

• pre-critical: t < tc;
• post-critical: t > tc.

TheZs-symmetry of the orthogonality measure (1.7) is inherited by the corresponding
orthogonal polynomials. Indeed, the nontrivial orthogonality relations are

∫
C

pn(λ)λ̄ js+le−NW (λ)dA(λ) = 0, j = 0, . . . , k − 1,

where k and l are such that

n = ks + l, 0 ≤ l ≤ s − 1;
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i.e., the n-th monic orthogonal polynomial satisfies the relation

pn(e
2π i
s λ) = e

2π in
s pn(λ).

It follows that there exists a monic polynomial q(l)
k of degree k such that

pn(λ) = λlq(l)
k (λs). (1.11)

Therefore, the sequence of orthogonal polynomials {pn(λ)}∞n=0 can be split into s
subsequences labelled by the remainder l ≡ n mod s, and the asymptotics along the
different subsequences can be studied via the sequences of reduced polynomials

{
q(l)
k (u)

}∞
k=0

, l = 0, 1, . . . , s − 1.

By a simple change of coordinates, it is easy to see that the monic polynomials in the
sequence {q(l)

k }∞k=0 are orthogonal with respect to the measure

|u|−2γ e−N (|u|2−tu−t ū)dA(u), γ := s − l − 1

s
∈ [0, 1); (1.12)

namely, they satisfy the orthogonality relations

∫
C

q(l)
k (u)ū j |u|−2γ e−N

(|u|2−tu−t ū
)
dA(u) = 0, j = 0, . . . , k − 1. (1.13)

As a result of this symmetry reduction, starting from the class of measures (1.7),
it is sufficient to consider the orthogonal polynomials with respect to the family of
measures (1.12). It is clear from the above relation that for l = s − 1, one has γ = 0,
and the polynomials q(s−1)

k (u) are monomials in the variable (u − t); that is,

q(s−1)
k (u) = (u − t)k .

It follows that the monic polynomials pks+s−1(λ) have the form

pks+s−1(λ) = λs−1(λs − t)k .

Remark 1.2 Observe that the weight in the orthogonality relation (1.13) can bewritten
in the form

|u|−2γ e−N (|u|2−tu−t ū) = e−N (|u−t |2−t2+2 γ
N log |u|),

and it is similar to the weight e−NW (u) with W (u) = |u|2 − c log |u − a| with c > 0
studied in [6]. However, in our case, it turns out that c = −2γ /N < 0, so the point
interaction near a = 0 is repulsive and the asymptotic distribution of the zeros of the
polynomials (1.13) turns out to be substantially different from the one in [6].
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Define

z0 = t2c
t2

,

and for r > 0, the function

φ̂r (λ) = log(t − λs) + λs

t z0
− log r t + r − 1

z0
. (1.14)

Let us consider the level curve Ĉr :

Ĉr :=
{
λ ∈ C, Re φ̂r (λ) = 0, |λs − t | ≤ r t

}
. (1.15)

The level curves Ĉr consist of s closed contours contained in the set D, where D
has been defined in (1.9). For these curves, we consider the usual counterclockwise
orientation. Define the measure ν̂ associated with this family of curves given by

d ν̂ = 1

2π is
dφ̂r (λ), (1.16)

and supported on Ĉr .

Lemma 1.3 The a priori complex measure d ν̂ in (1.16) is a probability measure on
the contour Ĉr defined in (1.15) for 0 < r ≤ t

tc
.

Let us denote by ν(pn) the zero counting measure associated with the polynomials
pn , namely

ν(pn) = 1

n

∑
pn(λ)=0

δλ,

where δλ is point distribution with total mass one at the point λ.

Theorem 1.4 The zeros of the polynomials pn(λ) defined in (1.1) behave as follows:

• for n = sk + s − 1, let ω = e
2π i
s . Then t

1
s , ωt

1
s , . . . , ωk−1t

1
s are zeros of the

polynomials pks+s−1 with multipicity k, and λ = 0 is a zero with multiplicity
s − 1.

• for n = ks + l, l = 0, . . . , s − 2, the polynomial pn(λ) has a zero in λ = 0 with
multiplicity l and the remaining zeros in the limit n, N → ∞ such that

N = n − l

T
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Fig. 1 The blue contour is the boundary of the eigenvalue distribution support D defined in (1.9) relative
to the normal matrix model, and the red contour is Ĉ defined in (1.17) which describes the support of the
limiting zero distribution of the polynomials pn(λ). Here s = 3 and t < tc (left figure) and t > tc (right
figure). In both figures the horizontal axis is Re(λ) and the vertical axis is Im(λ) (Color figure online)

accumulates on the level curves Ĉr as in (1.15) with r = 1 for t < tc and r = t2c
t2

for t > tc. We define as Ĉ the curve on which the zeros accumulate that is given by

Ĉ :
∣∣∣∣(t − λs) exp

(
λs t

t2c

)∣∣∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

t, pre-critical case 0 < t < tc,

t2c
t
e
t2

t2c
−1

, post-critical case t > tc,

(1.17)
with |λs−t | ≤ z0t . Themeasure ν̂ in (1.16) is the weak-star limit of the normalized
zero counting measure νn of the polynomials pn for n = sk + l, l = 0, . . . , s − 2.

Remark 1.5 We observe that the curve (1.17) in the rescaled variable z = 1 − λs/t
takes the form

C :
∣∣∣∣ze

1−z
z0

∣∣∣∣ =

⎧⎪⎨
⎪⎩
1, pre-critical case z0 > 1,

z0e
1
z0

−1
, post-critical case 0 < z0 < 1,

(1.18)

with z0 = t2c
t2

and |z| ≤ z0. The curveC is similar to theSzegő curve {z ∈ C : |ze1−z | =
1, |z| ≤ 1} that was first observed in relation to the zeros of the Taylor polynomials of
the exponential function [52] and coincides exactly with such curve in the critical case
z0 = 1. The Szegö curve also appeared in the asymptotic analysis of the generalized
Laguerre polynomials, see, e.g., [13,40,45]. The curve (1.18) is the limiting curve for
the zeros of the polynomials
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πk(z) := (−1)k

tk
q(l)
k (−t (z − 1)),

where q(l)
k (u) have been defined in (1.11).

From Theorem 1.4 and (1.5), the following identity follows immediately.

Lemma 1.6 Given the potential W (λ) in (1.6), the measure ν̂ in (1.16) with r = 1

for t < tc and r = t2c
t2

for t > tc, and the contour Ĉ defined in (1.17), the equation

1

T

∂

∂λ
W (λ) =

∫
Ĉ
d ν̂(η)

λ − η
, λ /∈ Ĉ, (1.19)

defines the boundary of a domain that coincides with D defined in (1.9). The measure
μ∗ in (1.8) of the eigenvalue distribution of the normal matrix model and the measure
ν̂ of the zero distribution of the orthogonal polynomials are related by

∫
D

dμ∗(η)

λ − η
=

∫
Ĉ
d ν̂(η)

λ − η
, λ ∈ C\D. (1.20)

Remark 1.7 The identities (1.19) and (1.20) in Lemma 1.6 are expected to hold in
general for a large class of normal matrix models. It has been verified for several other
potentials (see, for example, [2,6,11,24,38]).

We also observe that for the orthogonal polynomials appearing in randommatrices,
in some cases, the asymptotic distribution of the zeros is supported on the so-called
mother body or potential theoretic skeleton of the support D of the eigenvalue distrib-
ution. We recall that a measure ν is a strong mother body for a domain D with respect
to a measure μ if [34]:

1)
∫
log |λ − η|dμ(η) ≤ ∫

log |λ − η|dν(η), for λ ∈ C with equality for λ outside
D;

2) ν ≥ 0 and supp ν ⊂ supp μ;
3) the support of ν has zero area measure;
4) the support of ν does not disconnect any part of D from D̄c.

If the measure ν has only the properties 1), 2), and 3), it is called weak mother body.
The problem of constructing strong mother bodies is not always solvable, and the
solution is not always unique [50].

Concerning the explicit examples appearing in the randommatrix literature, for the
exponential weight W (λ) = |λ|2 +Re(P(λ)), where P(λ) is polynomial, the support
of the zero distribution of the orthogonal polynomials is a strong mother body of
the domain that corresponds to the eigenvalue distribution of the matrix model (see,
e.g., [11,25,31,38,54]). In contrast, in the model studied in [6] and also in the present
case, the support of the zero distribution of the orthogonal polynomials does not have
property 4), and therefore it is a weak mother body of the set D.

The proof of Theorem 1.4 is obtained from the strong and uniform asymptotics of
the polynomials pn(λ) in thewhole complex planewhich is obtained by characterizing
the orthogonal polynomials pn(λ) via a Riemann–Hilbert method.
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Uniform Asymptotics. In the next theorem, we describe the strong and uniform
asymptotic of the polynomials pn(λ) in the complex plane. We distinguish the pre-
critical case t < tc and post-critical case t > tc. We first define the function

φ̂(λ) =
⎧⎨
⎩

φ̂r=z0(λ), 0 < t < tc (pre-critical),

φ̂r=1(λ), tc < t (post-critical),
(1.21)

where φ̂r (λ) is given by (1.14).

Theorem 1.8 (Pre-critical case) For 0 < t < tc, the polynomials pn(λ) with n =
ks + l, l = 0, . . . , s − 2, γ = s−l−1

s ∈ (0, 1), have the following asymptotic behavior
for when n, N → ∞ in such a way that NT = n − l:

(1) for λ in compact subsets of the exterior of Ĉ, one has for any integer M ≥ 2,

pn(λ) = λs−1(λs − t)k−γ

(
1 + O

(
1

kM+γ

))
; (1.22)

(2) for λ near Ĉ and away from λ = 0,

pn(λ) = λs−1(λs−t)k−γ

[
1 + e−kφ̂(λ)

k1+γ

(
1

�(−γ )

(
1 − 1

z0

)−1−γ t

λs

(
1 − t

λs

)γ

+ O
(
1

k

))]
,

(1.23)
where φ̂(λ) has been defined in (1.21) and �(z) = (z − 1)!;

(3) for λ in compact subsets of the interior of Ĉ and away from λ = 0,

pn(λ) = λl
e
− kλs

t z0

k1+γ

(
(−t)k+1

�(−γ )

1

λs

(
1 − 1

z0

)−1−γ

+ O
(
1

k

))
;

(4) for λ in a neighborhood of λ = 0, we introduce the function ŵ(λ) = φ̂(λ) + 2π i
if λs ∈ C− and ŵ(λ) = φ̂(λ) if λs ∈ C+. Then

pn(λ)=λl(λs−t)k−γ

(
λs

ŵ(λ)

)γ
[
(ŵ(λ))γ − e−kφ̂(λ)

kγ

(
�̃12(kŵ(λ))+O

(
1

k

))]
,

(1.24)

where the (1, 2)-entry of the matrix �̃ is defined in (3.22).

We observe that in compact subsets of the exterior of Ĉ there are no zeros of the
polynomials pn(λ). The only possible zeros are located in λ = 0 and in the region
where the second term in parentheses in the expression (1.23) is of order one. Since
Re φ̂(λ) is negative inside Ĉ and positive outside Ĉ, it follows that the possible zeros
of pn(λ) lie inside Ĉ and are determined by the condition
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Fig. 2 The blue contour is the boundary of the support of the eigenvalue distribution defined in (1.9),
and the red contour Ĉ defined in (1.17) is the support of the limiting zero distribution of the orthogonal
polynomials pn(λ). The yellow contour is given by (1.25) in the pre-critical case and (1.27) in the post-

critical case and lies within a distance of orderO
(
log n
n

)
from the contour Ĉ. The dots are the zeros of the

polynomial pn(λ) for s = 3, n = 285, l = 0 and t < tc on the right and t > tc on the left, respectively. In
both figures the horizontal axis is Re(λ) and the vertical axis is Im(λ) (Color figure online)

Re φ̂(λ) = −(1 + γ )
log k

k
+ 1

k
log

(
1

|�(−γ )|
t

|λ|s
∣∣∣∣1 − 1

z0

∣∣∣∣
−1−γ ∣∣∣∣1 − t

λs

∣∣∣∣
γ
)

,

|λs − t | ≤ t. (1.25)

The expansion (1.23) shows that the zeros of the polynomials pn(λ) are within a
distance O (

1/k2
)
from the level curve (1.25). This level curve approaches Ĉ defined

in (1.17) at a rate O (log k/k) (Fig. 2).
For t > tc, the polynomials pn(λ) with n = ks + l, l = 0, . . . , s − 2, have the

following asymptotic behavior.

Theorem 1.9 (Post-critical case) For t > tc, the polynomials pn(λ) with n = ks + l,
l = 0, . . . , s − 2, and γ = s−l−1

s ∈ (0, 1) have the following behavior when n, N →
∞ in such a way that NT = n − l:

(1) for λ in compact subsets of the exterior of Ĉ, one has

pn(λ) = λl(λs − t)k−γ (λs + t (z0 − 1))γ
(
1 + O

(
1

k

))
,

with z0 = t2c
t2
;

(2) for λ in the region near Ĉ and away from the points λs = t (1 − z0), one has

pn(λ) = λl (λs − t)k−γ (λs + t (z0 − 1))γ
(
1 − e−kφ̂(λ)

k
1
2+γ

γ z20
c

t ((λs − t)λs )γ

(λs + t (z0 − 1))2γ+1 + O
(
1

k

))
,

(1.26)
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with φ̂(λ) defined in (1.21) and the constant c defined in (4.24);
(3) for λ in compact subsets of the interior region of Ĉ, one has

pn(λ) = λl
e
k t−λs

t z0

k
1
2+γ

tγ z20
c

(
t z0
e

)k (
λsγ

(λs + t (z0 − 1))γ+1 + O
(
1

k

))
;

(4) in the neighborhood of each of the points that solve the equation λs = t (1− z0),
one has

pn(λ) = λl (λs − t)k−γ

(
λs + t (z0 − 1)√

kŵ(λ)

)γ

e−kφ̂(λ)

(
U(−γ − 1

2
;√

2kŵ(λ)) + O
(
1

k

))
;

where U(a; ξ) is the parabolic cylinder function (Chap. 13, [1]) satisfying the

equation
d2

dξ2
U = ( 1

4ξ
2 + a

)U and ŵ2(λ) = −φ̂(λ) − 2π i for λs ∈ C− and

ŵ2(λ) = −φ̂(λ) for λs ∈ C+.

We observe that in compact subsets of the exterior of Ĉ, the polynomials pn(λ) have
zero at λ = 0 with multiplicity l. The other possible zeros are located in the region
where the second term in parentheses in the expression (1.26) is of order one. This
happens in the region where Re φ̂(λ) < 0 and Re φ̂(λ) = O (log k/k), namely in a
region inside the contour Ĉ and defined by the equation

Re φ̂(λ) = −
(
1

2
+ γ

)
log k

k
+ 1

k
log

(
tγ z20
|c|

|(λs − t)λs |γ
|λs + t (z0 − 1)|2γ+1

)
. (1.27)

The expansion (1.26) shows that the zeros of the polynomials pn(λ) are within a
distance O (

1/k2
)
from the level curve (1.27). This level curve approaches Ĉ defined

in (1.17) at a rate O (log k/k).
The proofs of Theorem 1.8 and Theorem 1.9 are obtained by reducing the pla-

nar orthogonality relations of the polynomials pn(λ) to orthogonality relations with
respect to a complex density on a contour. More precisely, the sequence of polynomi-
als pn(λ) can be reduced to s families of polynomials q(l)

k (λs), l = 0, . . . , s − 1, as
in (1.11) with n = ks + l. The orthogonality relations of the polynomials q(l)(u) are
reduced to orthogonality relations on a contour. We then reformulate such orthogo-
nality relation as a Riemann–Hilbert problem. We perform the asymptotic analysis of
the polynomials q(l)

k (λ) using the nonlinear steepest descent/stationary phase method
introduced by Deift and Zhou [22] and successfully applied in Hermitian random
matrices and orthogonal polynomials on the line in the seminal papers, [19,20]. See
[21] for an introduction to this method, with a special emphasis on the applications to
orthogonal polynomials and random matrices. It would also be interesting to explore
the asymptotic for the polynomials pn(λ) using the ∂̄-problem introduced in [36].

The zeros of pn(λ) accumulate along a contour in the complex plane as shown
in Fig. 1 or Fig. 2. The determination of this contour is a first step in the analysis.
Riemann–Hilbert analysis in which a contour selection method was required also
appeared in the papers [6,40].
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The Riemann–Hilbert method gives strong and uniform asymptotics of the polyno-
mials pn(λ) in the whole complex plane. The asymptotic behavior of the polynomials
pn(λ) in the leading and sub-leading order can be expressed in terms of elementary
functions in the pre-critical case t < tc, while in the post-critical case t > tc, we
have used, in some regions of the complex plane, parabolic cylinder functions as in
[22,37,46]. The proof of Theorem 1.4 is then deduced from the strong asymptotic of
the orthogonal polynomials.

The paper is organized as follows:

• In Sect. 2, by using the symmetry properties of the external potential, we reduce
the orthogonality relations of the polynomials pn(λ) on a contour and recall how
to formulate a Riemann–Hilbert problem for such orthogonal polynomials [27].

• In Sect. 3, we obtain the strong and uniform asymptotics for the polynomials pn(λ)

in the pre-critical case t < tc.
• In Sect. 4, we find the strong and uniform asymptotics for the polynomials pn(λ)

in the post-critical case t > tc, and we prove Theorem 1.4.

In the critical case t = tc, the set D in (1.9) that supports the eigenvalue distribution
of the normalmatrixmodels has a singularity inλ = 0. The corresponding asymptotics
of the orthogonal polynomials seems to be described in terms of the Painlevé IV
equation as in [17], and this situation is quite different from the generic singularity
that has been described in terms of the Painlevé I equation [39,41]. That problem will
be investigated in a subsequent publication.

Furthermore, from the norming constants of the orthogonal polynomials, one may
consider the problem of determining the asymptotic expansion of the partition function
Zn,N in the spirit of [16]. Also this problem will be investigated in a subsequent
publication.

2 The Associated Riemann–Hilbert Problem

In this section, we set up the Riemann–Hilbert problem to study the asymptotic behav-
ior of the orthogonal polynomials pn(λ). As seen above, the analysis of pn(λ) can
be reduced to that of the polynomials q(l)

k (λd) introduced in (1.11). The polynomials

q(l)
k (u) are characterized by the symmetry-reduced orthogonality relations

∫
C

q(l)
k (u)ū j |u|−2γ e−N

(|u|2−tu−t ū
)
dA(u) = 0, j = 0, . . . , k − 1. (2.1)

2.1 Reduction to Contour Integral Orthogonality

The crucial step in the present analysis is to replace the two-dimensional integral
conditions (2.1) by an equivalent set of linear constraints in terms of contour integrals.
In what follows, it will be advantageous to perform the change of coordinate

u = −t (z − 1), z ∈ C,
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Fig. 3 The contour �

and characterize q(l)
k (u) in terms of the transformed polynomial

πk(z) := (−1)k

tk
q(l)
k (−t (z − 1))

in the new variable z. The polynomial πk(z) is also a monic polynomial of degree k,
and it can be characterized as follows.

Theorem 2.1 The polynomial πk(z) is characterized by the non-Hermitian orthogo-
nality relations

∮
�

πk(z)z
j e

−Nt2z

zk

(
z

z − 1

)γ

dz = 0, j = 0, 1, . . . , k − 1 , γ ∈ (0, 1),

(2.2)

where � is a simple positively oriented contour encircling z = 0 and z = 1 and the

function
(

z
z−1

)γ

is analytic in C\[0, 1] and tends to one for |z| → ∞ (Fig. 3).

Proof In order to prove the theorem, we first show that the orthogonality relation for
the polynomials qlk(u) on the plane can be reduced to an orthogonality relation on a
contour. To this end, we seek a function χ j (u, ū) that solves the ∂̄-problem

∂uχ j (u, ū) = u j |u|−2γ e−N
(|u|2−tu−tu

)
. (2.3)

Having such a function, for any polynomial q(u), one has

d
[
q(u)χ j (u, u)du

] = q(u)∂uχ j (u, u)du ∧ du

= q(u)u j |u|−2γ e−N
(|u|2−tu−tu

)
du ∧ du,

where d denotes the operation of exterior differentiation. If such χ j (u, u) exists, one
can use Stokes’ theorem and reduce the planar orthogonality relation to an orthogo-
nality relation on a suitable contour. The Eq. (2.3) has a contour integral solution

χ j (u, ū) = u−γ eNtu
∫ u

0
a j−γ e−Nua+Ntada

= 1

N j−γ+1

(
1 − t

u

)γ eNtu

(u − t) j+1

∫ Nu(u−t)

0
r j−γ e−r dr
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= 1

N j−γ+1

(
1 − t

u

)γ eNtu

(u − t) j+1

[
�( j − γ + 1) −

∫ ∞

Nu(u−t)
r j−γ e−r dr

]

= �( j − γ + 1)

N j−γ+1

(
1 − t

u

)γ eNtu

(u − t) j+1

[
1 − O

(
e−Nu(u−t)

)]
|u| → ∞.

It follows that for any polynomial q(u), the following integral identity holds:

∫
C

q(u)ū j |u|−2γ e−N (|u|2−tu−tu)dA(u)

= 1

2i
lim
R→∞

∫
|u|≤R

q(u)ū j |u|−2γ e−N (|u|2−tu−tu)du ∧ du

= 1

2i
lim
R→∞

∮
|u|=R

q(u)χ j (u, u)du

= 1

2i
lim
R→∞

∮
|u|=R

q(u)
[
G j (u) − O

(
e−u(u−t)

)]
du

= 1

2i

∮
|z|=R0

q(u)G j (u)du,

where R and R0 are sufficiently large and G j (u) = �( j−γ+1)
N j−γ+1

(
1 − t

u

)γ eNtu

(u−t) j+1 . So
it follows that for any polynomial q(u), the following identity is satisfied:

∫
C

q(u)ū j |u|−2γ e
−N

(
|u|2−tu−t ū

)
dA(u) = π�( j − γ + 1)

N j−γ+1
1

2π i

∮
�̃
q(u)

eNtu

(u − t) j+1

(
1 − t

u

)γ

du ,

where γ ∈ (0, 1), j is an arbitrary nonnegative integer and �̃ is a positively oriented
simple closed loop enclosing u = 0 and u = t . Making the change of coordinate
u = −t (z − 1), one arrives at the statement of the theorem. �

2.2 The Riemann–Hilbert Problem

Our aim is to study the behavior of the polynomials πk(z) in the limit k → ∞ and
N → ∞ in such a way that for n = ks + l, one has

N = n − l

T
, T > 0.

Let

t2c = T

s
and z0 = t2c

t2
,

and introduce the function
V (z) = log z + z

z0
. (2.4)
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In terms of the weight function

wk(z) := e−kV (z)
(

z

z − 1

)γ

,

the orthogonality relations (2.2) can be written in the form

∮
�

πk(z)z
jwk(z) dz = 0, j = 0, 1, . . . , k − 1.

In the limit k → ∞, we distinguish two different cases:

• pre-critical case z0 > 1, corresponding to 0 < t < tc ,
• post-critical case z0 < 1, corresponding to tc < t .

Our goal now is to characterize the polynomial πk(z) as a particular entry of the
unique solution of a matrix-valued Riemann–Hilbert problem. Let us first define the
complex moments

ν j :=
∮

�

z jwk(z)dz,

where, for simplicity, the dependence on k is suppressed in the notation. Introduce the
auxiliary polynomial

�k−1(z) := 1

det
[
νi+ j

]
0≤i, j≤k−1

det

⎡
⎢⎢⎢⎢⎢⎣

ν0 ν1 . . . νk−1
ν1 ν2 . . . νk
...

...

νk−2 . . . ν2k−3

1 z . . . zk−1

⎤
⎥⎥⎥⎥⎥⎦

. (2.5)

Note that �k−1 is not necessarily monic, and its degree may be less than k − 1: its
existence is guaranteed just by requiring that the determinant in the denominator does
not vanish.

Proposition 2.2 The determinant det[νi+ j ]0≤i, j≤k−1 does not vanish, and therefore
�k−1(z) is well defined.

Proof We have

det[νi+ j ]0≤i, j≤k−1 = det

[∮
�

zi+ j e
−Nt2z

zk

(
z

z − 1

)γ

dz

]

0≤i, j≤k−1

= (−1)k(k−1)/2 det

[∮
�

zi− j e
−Nt2z

z

(
z

z − 1

)γ

dz

]

0≤i, j≤k−1

,
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where the last identity has been obtained by the reflection of the column index j →
k − 1 − j . Due to Theorem 2.1, we have

∫
C

π(z)(z̄ − 1) j |z − 1|−2γ e−Nt2|z|2dA(z)

= t2−2 j−2γ π�( j − γ + 1)

N j−γ+1

1

2π i

∮
�

π(z)
e−Nt2z

z j+1

(
z

z − 1

)γ

dz ,

and hence the second determinant is given by

det

[∮
�
zi− j e

−Nt2z

z

(
z

z − 1

)γ

dz

]

= det

[∫∫
C

zi (z̄ − 1) j |z − 1|−2γ e−Nt2|z|2dA(z)

] k−1∏
j=0

2i t2 j+2γ−2N j−γ+1

�( j − γ + 1)
. (2.6)

Finally, the determinant on the right-hand side is strictly positive because

det

[∫∫
C

zi (z̄ − 1) j |z − 1|−2γ e−Nt2|z|2dA(z)

]

= det

[∫∫
C

zi z̄ j |z − 1|−2γ e−Nt2|z|2dA(z)

]
> 0,

where the equality follows from the fact that the columns of the twomatrices are related
by a unimodular triangular matrix, while the inequality follows from the positivity of
the measure. Finally, since �(z) has no zeros (and no poles since j − γ + 1 > 0), the
nonvanishing follows from (2.6). �

Define the matrix

Y (z) =

⎡
⎢⎢⎢⎣

πk(z)
1

2π i

∫
�

πk(z′)
z′ − z

wk(z
′)dz′

−2π i�k−1(z) −
∫

�

�k−1(z′)
z′ − z

wk(z
′)dz′

⎤
⎥⎥⎥⎦ . (2.7)

It is easy to verify that thematrixY (z) is the unique solution of the followingRiemann–
Hilbert problem of Fokas–Its–Kitaev-type [27]:

1. Piecewise analyticity:

Y (z) is analytic in C\� and both limits Y±(z) exist along �, (2.8)

2. Jump on �:

Y+(z) = Y−(z)

(
1 wk(z)
0 1

)
, z ∈ �, (2.9)
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3. Behaviour at z = ∞:

Y (z) =
(
I + O

(
1

z

))
zkσ3 , z → ∞. (2.10)

The last relation is obtained by noticing that if �k−1 is given by (2.5), then the
entry Y22(z) of the matrix Y (z) in (2.7) satisfies

−
∫

�

�k−1(z′)
z′ − z

wk(z
′)dz′ = z−k

(
1 + O

(
1

z

))
, z → ∞.

2.3 Initial Undressing Step

In order to simplify the subsequent analysis, we define the following modified matrix:

Ỹ (z) := Y (z)

(
1 − 1

z

)− γ
2 σ3

, z ∈ C\(� ∪ [0, 1]) . (2.11)

Thismatrix-valued function Ỹ (z) satisfies the followingRiemann–Hilbert problem:

1. Piecewise analyticity:

Ỹ (z) is analytic in C\(� ∪ [0, 1]).

2. Jumps on � and [0, 1]:

Ỹ+(z) = Ỹ−(z)

⎧⎪⎪⎨
⎪⎪⎩

(
1 e−kV (z)

0 1

)
, z ∈ �,

e−γπ iσ3 , z ∈ (0, 1),

with V (z) as (2.4).
3. Behavior at z = ∞:

Ỹ (z) =
(
I + O

(
1

z

))
zkσ3 , z → ∞ .

4. Endpoint behavior at z = 0 and at z = 1:

Ỹ (z)z−
γ
2 σ3 = O (1) z → 0 , Ỹ (z)(z − 1)

γ
2 σ3 = O (1) z → 1 .

The polynomial πk(z) is recovered from Ỹ (z) as

πk(z) = Ỹ11(z)

(
1 − 1

z

) γ
2

.
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3 Asymptotic Analysis in the Pre-critical Case

In order to analyze the large k behavior of Ỹ (z), we use the Deift–Zhou nonlinear
steepest descent method [22]. The first step to study the large k behavior of the matrix
function Ỹ (z) is to make a transformation Ỹ (z) → U (z) so that the Riemann–Hilbert
problem for U (z) is normalized to the identity as |z| → ∞. For this purpose, we
introduce a contour C homotopically equivalent to � in C\[0, 1] and a function g(z)
analytic off C. Both the contour C and the function g(z) will be determined later. We
assume that the function g(z) is of the form

g(z) =
∫
C
log(z − s)dν(s), (3.1)

where dν(s) is a positive measure with support on C such that

∫
C
dν(s) = 1.

With this assumption, clearly, one has

g(z) = log z + O
(
z−1

)
as |z| → ∞, (3.2)

where the logarithm is branched on the positive real axis.

3.1 First Transformation Ỹ → U

Since C is homotopically equivalent to � in C\[0, 1], we can deform the contour �

appearing in the Riemann–Hilbert problem for Ỹ to C. Define the modified matrix

U (z) = e−k(	/2)σ3 Ỹ (z)e−kg(z)σ3ek(	/2)σ3, z ∈ C\(C ∪ [0, 1]),

where 	 is a real number, to be determined below. Then U (z) solves the following
RHP problem:

1. Piecewise analyticity:

U (z) is analytic in C\(C ∪ [0, 1]).

2. Jump discontinuity on C:

U+(z) = U−(z)

(
e−k(g+(z)−g−(z)) ek(g+(z)+g−(z)−	−V )

0 ek(g+(z)−g−(z))

)
. (3.3)

3. Jump discontinuity on (0, 1):

U+(z) = U−(z)e−γπ iσ3 .
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4. Endpoint behavior at z = 0 and z = 1:

U (z)z−
γ
2 σ3 = O (1) z → 0 , U (z)(z − 1)

γ
2 σ3 = O (1) z → 1 .

5. Large z boundary behavior:

U (z) = I + O
(
1

z

)
, z → ∞ . (3.4)

The polynomial πk(z) is determined from U (z) by

πk(z) = U11(z)e
kg(z)

(
1 − 1

z

) γ
2

. (3.5)

3.1.1 The Choice of g-Function

In order to determine the function g and the contour C, we impose that the jumpmatrix
(3.3) becomes purely oscillatory for large k. This is accomplished if the following
conditions are satisfied:

g+(z) + g−(z) − 	 − V (z) = 0,

Re(g+(z) − g−(z)) = 0, z ∈ C. (3.6)

Next we show that we can find a function g and a contour C that satisfy the conditions
(3.6). For this purpose,weuse the following elementary result in the theory of boundary
value problems.

Lemma 3.1 ([29], p. 78) Let L be a simple closed contour dividing the complex plane
into two regions D+ and D−, where D+ = Int(L) and D− = Ext(L). Suppose that
a function ψ(ζ ) defined on L can be represented in the form

ψ(ζ ) = ψ+(ζ ) + ψ−(ζ ), ζ ∈ L ,

where ψ+(ζ ) is the boundary value of a function ψ+(z) analytic for z ∈ D+ and
ψ−(ζ ) is the boundary value of a function ψ−(z) analytic for z ∈ D− and such that
ψ−(∞) = 0. Then the Cauchy integral

�(z) = 1

2π i

∫
L

ψ(ζ )

ζ − z
dζ

can be represented in the form

�+(z) = ψ+(z) for z ∈ D+,

�−(z) = −ψ−(z) for z ∈ D−.

123



Constr Approx

The boundary values of the function � on the two sides of the contour L then satisfy

�+(ζ ) + �−(ζ ) = ψ+(ζ ) − ψ−(ζ ),

�+(ζ ) − �−(ζ ) = ψ+(ζ ) + ψ−(ζ ), ζ ∈ L .

NowweapplyLemma3.1 to the function g′(z) that satisfies the differentiated boundary
condition

g′+(ζ ) + g′−(ζ ) = V ′(ζ ) = 1

z0
+ 1

ζ
, ζ ∈ C.

The functions ψ±(z) of Lemma 3.1 are ψ+(z) = 1

z0
and ψ−(z) = −1

z
, and therefore

the function g′(z) takes the form

g′(z) = 1

2π i

∫
C

1
τ

− 1
z0

z − τ
dτ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

z0
z ∈ Int(C),

1

z
z ∈ Ext(C) ,

(3.7)

so that the measure dν in (3.1) is given by

dν(z) = 1

2π i

(
1

z
− 1

z0

)
dz, z ∈ C. (3.8)

Integrating the relation (3.7) and using (3.2), one has

g(z) =

⎧⎪⎨
⎪⎩

z

z0
+ 	 z ∈ Int(C),

log z z ∈ Ext(C),

(3.9)

where 	 is an integration constant and log z is analytic in C\R+. Performing the
integral in (3.1) for a specific value of z ∈ C, say z = 0, and deforming C to a circle
of radius r , one can determine the value of 	:

	 = log r − r

z0
, r > 0.

The total integral of dν in (3.8) is normalized to one on any closed contour con-
taining the point z = 0. However, we have to define the contour C so that dν(z) is a
real and positive measure along C. To this end, we introduce the function

φr (z) =

⎧⎪⎪⎨
⎪⎪⎩

−2g(z) + V (z) + log r − r

z0
= log z − z

z0
− log r + r

z0
z ∈ Int(C)\[0, r ],

2g(z) − V (z) − log r + r

z0
= log z − z

z0
− log r + r

z0
z ∈ Ext(C)\(r, ∞) .

(3.10)
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Fig. 4 The family of contours
Cr for three values of r : r = z0,
r = 1 and r < 1. For r = z0, the
region |z| > z0 is plotted as well

Observe that φr (z) is analytic across C, namely φr+(z) = φr−(z), z ∈ C, and that

φr (z) = φr+(z) + φr−(z)

2
= −g+(z) + g−(z), z ∈ C. (3.11)

The next identity follows in a trivial way:

dν(z) = 1

2π i
dφr (z).

Imposing the relation (3.6) on (3.11), one has

Re(φr (z)) = log |z| − Re(z)

z0
− log r + r

z0
= 0.

This equation defines a family of contours that are closed for |z| ≤ r (easy to verify).

Since the function− log r+ r

z0
for r > 0 has a single minimum at r = z0 and diverges

to +∞ for r → 0 and r → ∞, it is sufficient to consider only the values 0 < r ≤ z0.
We define the contour Cr associated with r as (see Fig. 4)

Cr = {z ∈ C : Re(φr (z)) = 0, |z| ≤ z0}, 0 < r ≤ z0. (3.12)

Since ∂x Re φr |y=0 = |x |
x2

− 1

z0
> 0, for |x | < z0, Re φr (z) is negative inside Cr . Note

that the point z = 0 lies inside Cr since Re φ(z) → −∞ for |z| → 0. Furthermore,
Cr intersects the real line in the points z = r and z ∈ (−r, 0). Indeed, Re φ(−r) > 0,
which shows that the point z = −r lies outside Cr .
Lemma 3.2 The a priori complex measure ν in (3.8) is a probability measure on the
contour Cr defined in (3.12) for 0 < r ≤ z0.

Proof By the residue theorem, the measure dν has total mass 1 on any contour Cr .
Since Re φr = 0 on the contour Cr , it follows that the measure dν = 1

2π i
dφr is real

on the contour Cr . In order to show that the measure is positive on the contour Cr , we
introduce the variable

ψr = eφr .
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On the contour Cr , we have that |ψr | = 1, so that in the ψr–plane, the contour Cr is
mapped to a circle of radius one and the map ψr = eφr is a univalent conformal map
from the interior of Cr to the interior of a circle [52]. We have

dν = 1

2π i

dψr

ψr
,

which shows that the measure dν in the variableψr is a uniformmeasure on the circle,
and therefore dν is a positive measure on each contour Cr . �
We are now ready to prove Lemma 1.3 and Lemma 1.6 given in the introduction.

Proof of Lemma 1.3 By using the residue theorem, it is straightforward to check that
d ν̂ is a probability measure on any contour Ĉr defined in (1.15). In the post-critical
case, such curve Ĉr has s connected components Ĉ j

r , j = 0, . . . , s−1, each encircling
exactly one root of the equation λs = t . In the pre-critical case, we denote with the
same symbol Ĉ j

r the connected components of Ĉr\{0} together with {0}.
With the appropriate choice of the branch of the sth root, any Ĉ j

r can be parametrized

by the map λ(z) := (−t (z − 1))
1
s , which respects the orientations of C and Ĉ j

r . Since
φ(z) = φ̂(λ(z)), Eq. (1.16) implies

d ν̂(λ(z)) = 1

s
dν(z) .

This relation, togetherwith Lemma3.2, wherewe proved that dν(z) is real and positive
on Cr , implies that d ν̂ is also real and positive on any Ĉ j

r and hence on the whole Ĉr . �
Proof of Lemma 1.6 By using the residue theorem, we first calculate the r.h.s. of
(1.19), obtaining

∫
Ĉ
d ν̂(η)

λ − η
= 1

2π i

∫
Ĉ

ηs−1

λ − η

(
1

ηs − t
+ 1

z0t

)
dη = λs−1

λs − t
. (3.13)

Therefore (1.19) is equivalent to

sλs−1(λ̄s − t)

T
= λs−1

λs − t
, or (λ̄s − t)(λs − t) = T

s
= t2c ,

which is equivalent to the equation for the boundary of D defined in (1.9). Next we
show that the l.h.s. of (1.20) is equal to its r.h.s. By using Stokes’ theorem, the relation
(1.10), and the residue theorem, one obtains

∫
D

dμ∗(η)

λ − η
= 1

2π i t2c

∫
∂D

ηs−1η̄sdη

λ − η
= 1

2π i t2c

∫
∂D

ηs−1S(η)dη

λ − η
= λs−1

λs − t
,

which coincides with (3.13). �
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3.1.2 Choice of the Contour

We now argue that the relevant contour on which the zeros of the orthogonal poly-
nomials πk(z) accumulate in the pre-critical case is given by the level r = 1. The
family of contours 0 < r < 1 can be immediately ignored because in this case � has
to be deformed to two contours � � Cr<1 ∪ C̃ as shown in Fig. 5. On the contour C̃,
we have Re(φ) > 0, and it is not possible to perform any contour deformation to get
exponentially small terms in the jump matrix (3.3) as k → ∞.

For 1 < r ≤ z0, the original contour � can be deformed homotopically to the
contours Cr . In this case, the asymptotic expansion of the matrix entry Y11(z) = πk(z)
as k → ∞, does not give any sub-leading contribution. For this reason, we discard
this case, and we omit the corresponding asymptotic analysis. The only possible case
remains r = 1. In this case, the analysis as k → ∞ to the matrix entry Y11(z) = πk(z),
which will be performed in Sects. 3.2 to 3.5, gives leading and be sub-leading terms.
The comparison of these two terms enable us to locate the zeros of the polynomial
πk(z) on a contour that lies within a distance O (log k/k) from the contour Cr=1.

So for the reasons explained above, we are going to perform the asymptotic analysis
of the RH problem (3.3)–(3.4) by deforming the contour � to the contour Cr=1. For
simplicity, we denote this contour by C:

C =
{
z ∈ C : log |z| − Re(z)

z0
+ 1

z0
= 0, |z| ≤ 1

}
.

Also, for simplicity, the function φr=1 will be referred to as φ below:

φ(z) = log z − z

z0
+ 1

z0
, (3.14)

where log z is analytic in C\(−∞, 0]. With this choice of contour, the jump matrices
of the RH problem (3.3)–(3.4) for the matrix U (z) are summarized in Fig. 6.

Fig. 5 The contour Cr<1 ∪ C̃
that is homotopic to �. The
region where Re φ(z) < 0 is
colored in pink (Color figure
online)
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Fig. 6 The jump matrices for
U (z)

3.2 The Second Transformation U �→ T

Consider two extra loops Ci and Ce as shown in Fig. 7. These define new domains �0,
�1, �2, and �∞. Define the new matrix-valued function

T (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U (z) z ∈ �∞ ∪ �0,

U (z)

(
1 0

−ekφ(z) 1

)
z ∈ �1,

U (z)

(
1 0

e−kφ(z) 1

)
z ∈ �2.

(3.15)

Then T (z) satisfies the following Riemann–Hilbert problem:

1. Piecewise analyticity:

T (z) is analytic in C\ (Ce ∪ C ∪ Ci ∪ [0, 1]) .

2. Jump discontinuities on �T = Ce ∪ C ∪ Ci ∪ [0, 1]:

T+(z) = T−(z)vT (z), z ∈ �T ,

Fig. 7 The jump matrices for
T (z) with contour
�T = Ce ∪ C ∪ Ci ∪ (0, 1)
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where

vT (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
, z ∈ C,(

1 0
e−kφ(z) 1

)
, z ∈ Ce,(

1 0
ekφ(z) 1

)
, z ∈ Ci ,

e−γπ iσ3 , z ∈ (0, 1) .

3. Endpoint behavior at z = 0 and z = 1:

T (z)z−
γ
2 σ3 = O (1) , z → 0 , T (z)(z − 1)

γ
2 σ3 = O (1) , z → 1 .

4. Large z boundary behavior:

T (z) = I + O
(
1

z

)
, z → ∞ .

Note that ekφ(z) is analytic inC\{0} . The important feature of this Riemann–Hilbert
problem is that the jumps are either constant or they tend to the identity matrix as
k → ∞ at an exponential rate.

Proposition 3.3 There exists a constant c0 > 0 so that

vT (z) = I + O
(
e−c0k

)
as k → ∞

uniformly for z ∈ Ce ∪ Ci\U1, where U1 is a small neighborhood of z = 1.

The proof of this proposition follows immediately from the fact that Re φ(z) < 0
for z ∈ Int(C)\U1 and Re φ(z) > 0 for z ∈ Ext(C)\U1. Here Int(C) is the interior
region bounded by C, and Ext(C) is the exterior region bounded by C.

From the above proposition, it follows that

vT (z) → v∞(z) as k → ∞,

exponentially fast, where

v∞(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
as z ∈ C,

e−γπ iσ3 as z ∈ (0, 1),

I as z ∈ Ce ∪ Ci .

(3.16)
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3.3 The Outer Parametrix for Large z

We need to find a matrix-valued function P∞(z) analytic in C\(C ∪ [0, 1]) such that
it has jump discontinuities given by the matrix v∞(z) in (3.16); namely

P∞+ (z) = P∞− (z)

⎧⎨
⎩

(
0 1

−1 0

)
, z ∈ C,

e−γπ iσ3 , z ∈ (0, 1) ,

with endpoint behavior

P∞(z)z−
γ
2 σ3 = O (1) , z → 0 , P∞(z)(z − 1)

γ
2 σ3 = O (1) , z → 1 ,

and large z boundary behaviour

P∞(z) = I + O
(
1

z

)
, z → ∞.

Define

P̃∞(z) := P∞(z)χ−1(z) ,

where

χ(z) :=
⎧⎨
⎩

(
0 1

−1 0

)
, z ∈ Int(C),

I, z ∈ Ext(C) .

(3.17)

The k-independent matrix P̃∞(z) has no jump on C, and it satisfies the following
Riemann–Hilbert problem:

1. Piecewise analyticity:

P̃∞ is holomorphic in C\(0, 1).

2. Jump discontinuity on (0, 1):

P̃∞+ (z) = P̃∞− (z)eγπ iσ3 .

3. Boundary behaviour at z = ∞:

P̃∞(z) = I + O
(
1

z

)
, z → ∞ .
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The solution to this Riemann–Hilbert problem is given by

P̃∞(z) =
(
1 − 1

z

) γ
2 σ3

,

which leads to the particular solution

P∞(z) =
(
1 − 1

z

) γ
2 σ3

χ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 1

z

) γ
2 σ3

(
0, 1
−1 0

)
, z ∈ Int(C),

(
1 − 1

z

) γ
2 σ3

, z ∈ Ext(C) .

(3.18)

3.4 The Local Parametrix at z = 1

The aim of this section is to construct a local parametrix P0(z) in a small neighborhood
U1 of z = 1 having the same jump property as T for z near 1 and matching the outer
parametric P∞(z) in the limit k → ∞ and z ∈ ∂U1. Then the Riemann–Hilbert
problem for P0(z) is given by

P0+(z) = P0−(z)vT (z), z ∈ U1 ∩ �T ,

and

P0(z) = P∞(z)(I + o(1)) as k → ∞ and z ∈ ∂U1. (3.19)

In order to build such local parametrix near the point z = 1, we first construct a
new matrix function B(z) from P0(z):

B(z) = P0(z)χ(z)−1Q(z), (3.20)

where

Q(z) :=
⎧⎨
⎩

(
1 ekφ(z)

0 1

)
, z ∈ �0 ∩ U1,

I, z ∈ U1\�0.

(3.21)

The matrix B(z) satisfies the following jump relations in a neighborhood of 1:

B+(z) = B−(z)

(
eγπ i (eγπ i − e−γπ i )ekφ(z)

0 e−γπ i

)
, z ∈ (−∞, 1) .

Next we construct a solution to the so-called model problem, namely a Riemann–
Hilbert problem that has the same jumps as B.
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3.4.1 Model Problem

Consider the model problem for the 2 × 2 matrix function �(ξ) analytic in C\R−
with boundary behavior

�+(ξ) = �−(ξ)

(
eγπ i (eγπ i − e−γπ i )eξ

0 e−γπ i

)
, ξ ∈ (−∞, 0),

�(ξ) =
(
I + O

(
1

ξ

))
ξ

γ
2 σ3 , ξ → ∞ .

Defining

�̃(ξ) := �(ξ)ξ− γ
2 σ3 ,

we obtain the following Riemann–Hilbert problem for �̃(ξ):

�̃+(ξ) = �̃−(ξ)

(
1 (1 − e−2γπ i )(ξγ )+eξ

0 1

)
, ξ ∈ (−∞, 0),

�̃(ξ) = I + O
(
1

ξ

)
, ξ → ∞ ,

where the function ξγ is analytic in C\(−∞, 0] and (ξγ )+ denotes the boundary
from the right with respect to the contour (−∞, 0) oriented in the positive direction.
This is an Abelian Riemann–Hilbert problem, and therefore easily solvable by the
Sokhotski–Plemelj formula:

�̃(ξ) =
⎛
⎝1 −1 − e−2γπ i

2π i

∫
R−

(ζ γ )+eζdζ

ζ − ξ
0 1

⎞
⎠ , (3.22)

so that

�(ξ) =
⎡
⎣I +

∞∑
j=1

� j

ξ j
�

⎤
⎦ ξ

γ
2 σ3 , � =

(
0 1
0 0

)
, as ξ → ∞. (3.23)

In particular,

�1 = e−2γπ i − 1

2π i

∫
R−

(ζ γ )+eζdζ = e−γπ i − eγπ i

2π i

∫ ∞

0
rγ e−r dr

= − sin(γ π)

π
�(γ + 1) = 1

�(−γ )
. (3.24)
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3.4.2 Construction of the Parametrix

We are now ready to specify the parametric P0(z) which follows from combining
(3.23) with (3.20); that is,

P0(z) = E(z)�(kw(z))Q(z)−1χ(z) ,

where Q(z) and χ(z) are defined in (3.21) and (3.17), respectively, and E(z) is an
analytic matrix in a neighborhood of U1 and w(z) is a conformal mapping from a
neighborhood of 1 to a neighborhood of 0.

The conformal map w(z) is specified by

w(z) :=
{

φ(z) + 2π i, z ∈ U1 ∩ C−,

φ(z), z ∈ U1 ∩ C+ .

We observe that

w(z) =
(
1 − 1

z0

)
(z − 1) − 1

2
(z − 1)2 + O

(
(z − 1)3

)
, z → 1 .

Thematrix E(z) is obtained from condition (3.19), which, when combinedwith (3.24),
gives

P∞(z)(P0(z))−1 = P∞(z)χ(z)−1Q(z)�(kw(z))−1E(z)−1 =
= P∞(z)χ(z)−1(kw(z))−

γ
2 σ3

(
I − 1

�(−γ )

�

kw(z)
+ O

(
k−2

))
E−1(z),

k → ∞, z ∈ ∂U1, (3.25)

where we use the fact that Q(z) → I exponentially fast as k → ∞, and z ∈ ∂U1.
From the above expression, it turns out that the matrix E(z) takes the form

E(z) = P∞(z)χ(z)−1(kw(z))−
γ
2 σ3 =

(
1 − 1

z

) γ
2 σ3

(kw(z))−
γ
2 σ3 . (3.26)

We observe that the function E(z) is single valued in a neighborhood of U1. Indeed,
the jumps of (z − 1)

γ
2 σ3 and w(z)−

γ
2 σ3 cancel each other.

From the expression (3.25) and (3.26), the matching between P0(z) and P∞(z)
takes the form
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P∞(z)(P0(z))−1 = E(z)

⎛
⎝I −

⎛
⎝M−1∑

j=1

� j

(kw(z)) j
+ O

(
k−M

)⎞⎠
(
0 1
0 0

)⎞
⎠ E−1(z)

= I −
⎛
⎝M−1∑

j=1

� j

(kw(z)) j
+ O

(
k−M

)⎞⎠ E(z)

(
0 1
0 0

)
E−1(z)

= I −
(
1− 1

z

)γ

(kw(z))−γ

⎛
⎝M−1∑

j=1

� j

(kw(z)) j
+O

(
k−M

)⎞⎠
(
0 1
0 0

)
as k → ∞

(3.27)

for z ∈ ∂U1, where γ ∈ (0, 1).

3.4.3 Riemann–Hilbert Problem for the Error Matrix R

Wenowdefine the errormatrix R in two regions of the plane, using our approximations
to the matrix T . Set

R(z) =
{
T (z)

(
P(0)(z)

)−1
, z ∈ U1 ,

T (z) (P∞(z))−1 , everywhere else.
(3.28)

The matrix R is piecewise analytic in C with a jump across the contour CR = Ci ∪
Ce ∪ ∂U1 given in Fig. 8.

RH Problem for R

1. R is analytic in C\CR ,
2. For z ∈ CR , we have

R+(z) = R−(z)vR(z), (3.29)

Fig. 8 The jump contour
structure CR
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with

vR(z) =
{
P∞− (z)vT (z)

(
P∞+ (z)

)−1
, z ∈ CR\∂U1,

P∞(z)
(
P(0)(z)

)−1
, z ∈ ∂U1.

3. As z → ∞, we have
R(z) = I + O

(
z−1

)
.

The jump matrices across the contour CR\∂U1 are all exponentially close to I
for large k because vT converges exponentially fast to v∞ defined in (3.16) and the
product P∞− (z)v∞(z)

(
P∞+ (z)

)−1 = I with P∞(z) defined in (3.18). The only jump
that is not exponentially small is the one on ∂U1, since from (3.27), for any integer
M > 2, we have

vR(z) = P∞(z)(P0
k (z))−1

= I −
(
1 − 1

z

)γ

(kw(z))−γ

⎛
⎝M−1∑

j=1

� j

(kw(z)) j
+ O

(
k−M

)⎞⎠�,

with the shift matrix � defined in (3.23). By employing the notation

v
( j)
R (z) = −

(
1 − 1

z

)γ � j

(w(z)) j+γ
, j = 1, 2, . . . ,

we can rewrite the matrix vR(z) in the form

vR = I + 1

kγ

⎛
⎝M−1∑

j=1

v
( j)
R (z)

k j
+ O

(
k−M

)⎞⎠�, (3.30)

where, in particular, (3.24) implies

v
(1)
R (z) = − 1

�(−γ )

(
1 − 1

z

)γ

(w(z))−γ−1. (3.31)

By a standard perturbation theory argument, one has the expansion

R(z) = I + 1

kγ

⎛
⎝M−1∑

j=1

R( j)(z)

k j
+ O

(
k−M

)⎞⎠ , k → ∞ , (3.32)

which gives, using (3.29), (3.30), and (3.32),

R(1)
+ (z) = R(1)

− (z) + v
(1)
R (z)�.
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Therefore,

R(1)(z) =
[

1

2π i

∮
∂U1

v
(1)
R (ζ )dζ

ζ − z

]
�,

where we observe that the function v
(1)
R (z) has a simple pole in z = 1 with expansion

v
(1)
R (z) = − 1

�(−γ )

1

z − 1

(
1 − 1

z0

)−γ−1

(1 + O (z − 1)) .

By a simple residue calculation, we obtain

R(1)(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1 (0 1
0 0

)
, z ∈ C\U1,

1

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1 (0 1
0 0

)
+ v

(1)
R (z)

(
0 1
0 0

)
, z ∈ U1 .

(3.33)

In general, given the structure of the jump matrix (3.30) the error matrix R( j)(z) in
(3.32) is of the form

R( j)(z) =
(
0 ∗
0 0

)
, (3.34)

namely, only the (1, 2)-entry of the matrices R( j)(z) is non-zero. From (3.28) and
(3.32) one has

T (z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P(0)(z) + 1

kγ

⎛
⎝M−1∑

j=1

R( j)(z)

k j
+ O

(
k−M

)⎞⎠ P(0)(z), z ∈ U1

P∞(z) + 1

kγ

⎛
⎝M−1∑

j=1

R( j)(z)

k j
+ O

(
k−M

)⎞⎠ P∞(z), everywhere else,

(3.35)
where, in particular, the first term R(1)(z) is given in (3.33).

3.5 Proof of Theorem 1.8: asymptotics for pn(λ) for z0 > 1

In order to obtain the asymptotic expansion of the polynomials pn(λ) for n → ∞,
and NT = n− l, we first derive the asymptotic expansion of the reduced polynomials
πk(z) for k → ∞ with n = sk + l. For this purpose, we use (3.5), (3.15), (3.33), and
(3.35) to obtain
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πk(z) = ekg(z)
(
1 − 1

z

) γ
2

[Uk(z)]11

= ekg(z)
(
1 − 1

z

) γ
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Tk(z)]11 , z ∈ �∞ ∪ �0,

[
Tk(z)

(
1 0

ekφ(z) 1

)]
11

, z ∈ �1,

[
Tk(z)

(
1 0

−e−kφ(z) 1

)]
11

, z ∈ �2,

= ekg(z)
(
1 − 1

z

) γ
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
R(z)P∞(z)

]
11 , z ∈ �∞ ∪ (�0\U1),

[
R(z)P∞(z)

(
1 0

ekφ(z) 1

)]
11

, z ∈ �1\U1,

[
R(z)P∞(z)

(
1 0

−e−kφ(z) 1

)]
11

, z ∈ �2\U1,

[
R(z)P0(z)

]
11

, z ∈ �0 ∩ U1,

[
R(z)P0(z)

(
1 0

ekφ(z) 1

)]
11

, z ∈ �1 ∩ U1,

[
R(z)P0(z)

(
1 0

−e−kφ(z) 1

)]
11

, z ∈ �2 ∩ U1 .

From the above relation, we obtain the expansions in the following regions.

The exterior region �∞.
In this region, from (3.34) and (3.35), for any integer M ≥ 2, we have

πk(z) = ekg(z)
(
1 − 1

z

)γ (
1 + O

(
1

kM+γ

))

= zk
(
1 − 1

z

)γ (
1 + O

(
1

kM+γ

))
(3.36)

on any compact subset of �∞. Therefore there are no zeros accumulating in this
region.

The interior region �0\U1:

πk(z) = ekg(z)
(

1

k1+γ

1

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1

+ O
(

1

k2+γ

))
.
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The leading term of the above expansion is of order O (
k−1−γ

)
, so there are no zeros

in this region.

The interesting region �1\U1,

πk (z) = ekg(z)
(
1 − 1

z

)γ

⎡
⎢⎣ekφ(z) − 1

k1+γ

(
1 − 1

z

)−γ

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1
+ O

(
1

k2+γ

)⎤⎥⎦ , (3.37)

where ekφ(z) is uniformly bounded on �1 ⊂ {Re(φ) ≤ 0}.
The other interesting region z ∈ �2\U1:

πk (z) = ekg(z)
(
1 − 1

z

)γ

⎡
⎢⎣1 − e−kφ(z)

kγ+1

⎡
⎢⎣

(
1 − 1

z

)−γ

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1
+ O

(
1

k

)⎤⎥⎦
⎤
⎥⎦ , (3.38)

where e−kφ(z) is uniformly bounded on �2 ⊂ {Re(φ) ≥ 0}.
The region U1: for z ∈ U1 ∩ Ext(C),

πk (z) = ekg(z)
(z − 1)γ

(zw(z))γ⎡
⎢⎣w(z)γ − e−kφ(z)

kγ

⎛
⎜⎝�̃12(kw(z)) − w(z)γ

k

⎛
⎜⎝

(
1 − 1

z0

)−γ−1

(z − 1)�(−γ )
+ v

(1)
R (z) + O

(
1

k

)⎞⎟⎠
⎞
⎟⎠
⎤
⎥⎦ ;

for z ∈ U1 ∩ Int(C),

πk (z) = ekg(z)
(z − 1)γ

(zw(z))γ⎡
⎢⎣ekφ(z)w(z)γ − �̃12(kw(z))

kγ
− w(z)γ

k1+γ

⎛
⎜⎝

(
1 − 1

z0

)−γ−1

(z − 1)�(−γ )
+ v

(1)
R (z) + O

(
1

k

)⎞⎟⎠
⎤
⎥⎦ ,

where �̃12 is the (1, 2)-entry of the matrix �̃ defined in (3.22) and v
(1)
R (z) has been

defined in (3.31). Here Int(C) andExt(C) are the interior and exterior of C, respectively.
In order to obtain the asymptotic behavior of the polynomials pn(λ), we use the

substitution

pn(λ) = (−t)kλlπk

(
1 − λs

t

)
, n = ks + l, γ = s − 1 − l

s
,

which gives the relations (1.22)–(1.24) in Theorem 1.8. �

Proposition 3.4 The support of the counting measure of the zeros of the polynomials
πk(z) outside an arbitrary small disk U1 surrounding the point z = 1 tends uniformly
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to the curve C defined in (1.18). The zeros are within a distance o(1/k) from the curve
defined by

Re φ(z) = −(1 + γ )
log(k)

k
+ 1

k
log

(
1

|�(−γ )|
|z|γ

|z − 1|γ+1

∣∣∣∣1 − 1

z0

∣∣∣∣
−γ−1

)
,

(3.39)

where the function φ(z) has been defined in (3.14). The curves in (3.39) approach C at
the rate O (log k/k) and lie in Int(C). The normalized counting measure of the zeros
of πk(z) converges to the probability measure ν defined in (3.8).

Proof Observing the asymptotic expansion (3.36) of πk(z) in �∞\U1, it is clear that
πk(z) does not have any zeros in that region, since z = 0 and z = 1 do not belong to
�∞\U1. The same reasoning applies to the region �0\U1, where there are no zeros
of πk(z) for k sufficiently large.

From the relations (3.37) and (3.38), one has that in �1 ∪ �2, using the explicit
expression of g(z) defined in (3.9),

πk(z) = zk
(
1 − 1

z

)γ

⎡
⎢⎣1− e−kφ(z)

kγ+1

⎡
⎢⎣

(
1 − 1

z

)−γ

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1

+O
(
1

k

)⎤⎥⎦
⎤
⎥⎦ .

(3.40)

The zeros of πk(z) may only lie asymptotically where the expression

1 − e−kφ(z)

kγ+1

(
1 − 1

z

)−γ

(z − 1)�(−γ )

(
1 − 1

z0

)−γ−1

, z ∈ �1 ∪ �2,

is equal to zero. Since �2 ⊂ {Re(φ) ≥ 0} and �1 ⊂ {Re(φ) ≤ 0}, it follows that the
zeros of πk(z) may lie only in the region �1 and such that Re φ(z) = O (log k/k).
Namely, the zeros of the polynomials πk(z) lie on the curve given by (3.39) with an
error of order O (

1/k2
)
. Such curves converge to the curve C defined in (1.18) at a

rate O (log k/k) (see Fig. 9).
We now know that the zeros of πk(z) accumulate on the curve C. We still need to

determine the asymptotic zero distribution. Due to the strong asymptotic of πk(z), we
have from (3.36),

lim
k→∞

1

k
log(πk(z)) =

∫
C
log(z − ξ)dν(ξ),

uniformly on compact subsets of the exterior of C. Furthermore, C is the boundary of
its polynomial convex hull. Then it follows that the measure dν in (3.8) is the weak-
star limit of the zeros distribution of the polynomials πk(z) (see [44], Theorem 2.3
and [49] Chapter 3). �
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4 Post-critical Case

In this section, we assume that

0 < z0 < 1 .

To perform the analysis similar to the pre-critical case, one has to choose the appro-
priate contour from the homotopy class of the contour � that encircles the branch
cut [0, 1]. Since the point z0 is lying in (0, 1), the family of curves Cr , 0 < r ≤ z0,
defined in (3.12) are loops encircling z = 0 and crossing the real line in z = r . The
regions where Re φr (z) < 0 with φr (z) defined in (3.10) are depicted in Fig. 10 in red
for two values of the parameter r .

In order to perform the asymptotic analysis of the Riemann–Hilbert problem (2.8),
(2.9), and (2.10), we need to deform � to a homotopic contour Cr ∪ Co in such a way
that the Re φr (z) is negative on Co.

It is clear from Fig. 10 that the only possibility is to deform the contour � to the
contour Cz0 ∪ Co with Co as depicted in Fig. 11. To simplify the notation, we define
the following.

Definition 4.1 Let

φ(z) := φz0(z) = log

(
z

z0

)
− z

z0
+ 1, z ∈ C\(0,+∞) , (4.1)

with

φ+(z) − φ−(z) = −2π i, z ∈ (0,+∞),

and

C := Cz0 ,

Fig. 10 The contour Cr for r = z0 on the left and for 0 < r < z0 on the right. The region where
Re φr (z) < 0, with φr (z) defined in (3.10), is pink (Color figure online)
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Fig. 11 The contour Cz0 ∪ Co.
The region Re φz0 (z) < 0 is
plotted in pink (Color figure
online)

with φz0(z) defined in (3.10) and Cz0 defined in (3.12).

According to (3.11), on the contour C we have

g+(z) + g−(z) = V (z) + 	,

g+(z) − g−(z) = −φ(z) ,

where

	 = log(z0) − 1 .

4.1 First Transformation Ỹ �→ S

Since C∪Co is homotopically equivalent to� inC\[0, 1]when z0 < 1, we can deform
the contour � appearing in the Riemann–Hilbert problem (2.8)–(2.10) for the matrix
Ỹ (z) to C ∪ Co. Define the modified matrix

S(z) = e−k(	/2)σ3 Ỹ (z)e−kg(z)σ3ek(	/2)σ3 , z ∈ C\(C ∪ Co ∪ [0, 1]),

where Ỹ (z) has been defined in (2.11). Then the matrix S(z) is the unique solution of
the following Riemann-Hilbert problem with standard large z behavior at z = ∞:

1. S(z) is analytic for z ∈ C\(C ∪ Co ∪ [0, 1]).
2. Jump discontinuities (with φ(z) as in (4.1)) (Fig. 12):

S+(z) = S−(z)

⎧⎪⎪⎨
⎪⎪⎩

ekφ(z)σ3, z ∈ C,(
1 ekφ(z)

0 1

)
, z ∈ Co,

e−γπ iσ3 , z ∈ (0, 1).

3. Endpoint behavior at z = 0 and z = 1:

S(z)z−
γ
2 σ3 = O (1) , z → 0

S(z)(z − 1)
γ
2 σ3 = O (1) , z → 1 .
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Fig. 12 The jump matrices for
S(z). The function φ(z) is
defined in (4.1)

4. Large z boundary behavior:

S(z) = I + O
(
1

z

)
, z → ∞ .

The orthogonal polynomials πk(z) are recovered from the matrix S(z) using the
relation

πk(z) = ekg(z)
(
1 − 1

z

) γ
2

S11(z).

4.2 The Second Transformation S �→ T : Opening of the Lenses

Consider two extra loops Ci and Ce as shown in Fig. 13. These define new domains
�0, �1, �2, and �∞. Define

T (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(z), z ∈ �∞ ∪ �0 ∪ �3,

S(z)

(
1 0

−ekφ(z) 1

)
, z ∈ �1,

S(z)

(
1 0

e−kφ(z) 1

)
, z ∈ �2 .

Then this matrix-valued function has the following jump discontinuities:

T+(z) = T−(z)vT (z), z ∈ �T ,

vT (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
, z ∈ C,(

1 0
e−kφ(z) 1

)
, z ∈ Ce,(

1 0
ekφ(z) 1

)
, z ∈ Ci ,(

1 ekφ(z)

0 1

)
, z ∈ Co,

e−γπ iσ3 , z ∈ (0, 1) ,

where �T is contour defined in Fig. 13.
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Fig. 13 The jump matrices for T (z) and the contour �T = C ∪ Ci ∪ Ce ∪ Co ∪ (0, 1)

Endpoint behavior:

T (z)z−
γ
2 σ3 = O (1) , z → 0 , T (z)(z − 1)

γ
2 σ3 = O (1) , z → 1 .

Large z boundary behaviour:

T (z) = I + O
(
1

z

)
, z → ∞ .

Proposition 4.2 There exists a constant c0 > 0 so that

vT (z) = I + O
(
e−c0k

)
as k → ∞

uniformly for z ∈ Co ∪ Ci ∪ Ce\Uz0 , where Uz0 is a small neighborhood of z0.

The proof of the proposition follows in a straightforward way by observing that
by contruction (see Fig. 11), Re φ(z) > 0 for z ∈ Ce\Uz0 and Re φ(z) < 0 for
z ∈ Ci ∪ Co\Uz0 . Therefore we have

vT (z) → v∞(z) as k → ∞

exponentially fast, where

v∞(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
as z ∈ Ck,

e−π iγ σ3 as z ∈ (0, 1),

I as z ∈ Ci ∪ Ce ∪ Co.

(4.2)
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The polynomials πk(z) can be expressed in terms of T (z) in the following way:

πk(z) = ekg(z)
(
1 − 1

z

) γ
2

S11(z) =

= ekg(z)
(
1 − 1

z

) γ
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T11(z), z ∈ �∞ ∪ �0 ∪ �3,[
T (z)

(
1 0

ekφ(z) 1

)]
11

, z ∈ �1,[
T (z)

(
1 0

−e−kφ(z) 1

)]
11

, z ∈ �2,

= ekg(z)
(
1 − 1

z

) γ
2

⎧⎨
⎩
T11(z), z ∈ �∞ ∪ �0 ∪ �3,

T11(z) + ekφ(z)T12(z), z ∈ �1,

T11(z) − e−kφ(z)T12(z), z ∈ �2 .

(4.3)

4.3 The Outer Parametrix for Large z

Ignoring the exponentially small jumps and a small neighborhood Uz0 of z0 where
the uniform exponential decay does not remain valid, we are led to the following RH
problem for P(∞):

1. P(∞) is holomorphic in C\(C ∪ [0, 1]),
2. P(∞) satisfies the following jump conditions on C and (0, 1):

P(∞)
+ (z) = P(∞)

− (z)

⎧⎪⎪⎨
⎪⎪⎩

(
0 1

−1 0

)
, z ∈ C,

e−π iγ σ3 , z ∈ (0, 1).

3. P(∞)(z) has the following behavior as z → ∞:

P∞(z) = I + O
(
1

z

)
, z → ∞ .

The above Riemann-Hilbert problem can be solved explicitly in terms of the piece-
wise defined matrix function

χ(z) :=
⎧⎨
⎩

(
0 1

−1 0

)
, z ∈ Int(C),

I, z ∈ Ext(C) .

Define

P̃∞(z) := P∞(z)χ−1(z) .

The matrix P̃∞(z) has no jump on C, and it satisfies the following RHP:

1. P̃∞ is holomorphic in C\[0, 1],
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2. Jump across (0, 1):

P̃∞+ (z) = P̃∞− (z)

⎧⎨
⎩
eγπ iσ3 , z ∈ (0, z0),

e−γπ iσ3 , z ∈ (z0, 1).

3. Large z boundary behavior:

P̃∞(z) = I + O
(
1

z

)
, z → ∞ .

A particular solution is given by

P̃∞(z) =
[
(z − z0)2

z(z − 1)

] γ
2 σ3

,

which leads to the particular solution

P∞(z) =
[
(z − z0)2

z(z − 1)

] γ
2 σ3

χ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
(z − z0)2

z(z − 1)

] γ
2 σ3 ( 0 1

−1 0

)
, z ∈ Int(C),

[
(z − z0)2

z(z − 1)

] γ
2 σ3

, z ∈ Ext(C) .

(4.4)

4.4 The Local Parametrix at z = z0

The aim of this section is to construct a local parametrix P0(z) in a small neighborhood
Uz0 of z0 having the same jump properties as T (z) for z near z0 and matching the outer
parametric P∞(z) in the limit k → ∞ for z ∈ ∂Uz0 .

4.4.1 RH Problem for P0(z)

1. P0(z) is analytic for z ∈ U z0\�T ,
2. P0+(z) = P0−(z)vT (z) for z ∈ Uz0 ∩ �T ,
3. for z ∈ ∂Uz0 , we have

P0(z) = P∞(z)(I + o(1)) as k → ∞ and z ∈ ∂Uz0 . (4.5)

In order to build such a local parametrix near the point z = z0, we first construct a
new matrix function B(z) from P0(z). Let us first define

�(z) =
{
I, Im(z) < 0,
e−γπ iσ3 , Im(z) > 0,

(4.6)
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and the matrix Q as follows:

Q(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −ekφ(z)

0 1

)
, for z ∈ �3 ∩ Uz0 ,(

1 0
−ekφ(z), 1

)(
0 −1
1 0

)
, for z ∈ �0 ∩ Uz0 ,(

0 −1
1 0

)
, for z ∈ (�1\�0) ∩ Uz0 ,

I, elsewhere.

(4.7)

Then the matrix B(z) is defined from P0(z) by the relation

B(z) = P0(z)Q(z)ekφ(z)σ3/2�(z)−1. (4.8)

The matrix B(z) satisfies the jump relations specified in Fig. 14 in a neighborhood
of z0. In the next section, we construct the solution of the so-called model problem,
namely, a 2 × 2 matrix � that has the same jumps as the matrix B.

4.4.2 Model Problem

Consider the model problem for the 2×2matrix function�(ξ) analytic inC\{R∪iR}
with jumps and boundary behavior

�+(ξ) = �−(ξ)v�(ξ),

�(ξ) =
(
I + �1

ξ
+ �2

ξ2
+ �3

ξ3
+ O

(
1

ξ4

))[
e− ξ2

2 ξγ

]σ3

(4.9)

as ξ → ∞ , (4.10)

Fig. 14 The jumps for the
matrix B
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with�1,�2, and�3 constant matrices (independent of ξ ) and where the matrix v�(ξ)

is defined as

v�(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 1 − e−2γπ i

0 1

)
, ξ ∈ R

+,(
1 0

e2γπ i 1

)
, ξ ∈ iR+,(

e2γπ i 1 − e−2γπ i

0, e−2γπ i

)
, ξ ∈ R

−,(
1 0

−1 1

)
, ξ ∈ −iR+.

The solution of the Riemann–Hilbert problem (4.9) and (4.10) is obtained in the
following way [22,37,46]. Recall the parabolic cylinder equation

d2

dξ2
f −

(
1

4
ξ2 + a

)
f = 0 (4.11)

(see, e.g., Chapter 19, [1]). This equation has a nontrivial solution U(a, ξ) associated
with any a ∈ C specified by the asymptotic behavior

U(a, ξ)=ξ−a− 1
2 e− ξ2

4

(
1 −

3
4 + a2 + 2a

2ξ2
+O

(
1

ξ4

))
, ξ → ∞, | arg(ξ)|< π

2
,

(4.12)

which is an entire analytic function of ξ . Three other solutions can be obtained by
symmetry:

U(a,−ξ), U(−a, iξ), U(−a,−iξ).

The relations among the above four solutions are

U(−a,±iξ) = �( 12 + a)√
2π

(
e−iπ(a− 1

2 )/2U(a,±ξ) + eiπ(a− 1
2 )/2U(a,∓ξ)

)
, (4.13)

U(a,±ξ) = �( 12 − a)√
2π

(
e−iπ(a+ 1

2 )/2U(−a,±iξ) + eiπ(a+ 1
2 )/2U(−a,∓iξ)

)
.

(4.14)

Moreover, solutions for a and a + 1 are connected by

d

dξ
U(a, ξ) + ξ

2
U(a, ξ) + (a + 1

2
)U(a + 1, ξ) = 0. (4.15)
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By using (4.13)–(4.15), the solution of the Riemann–Hilbert problem (4.9) and
(4.10) takes the form

�(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

U(−γ − 1
2 ,

√
2ξ) ∓ iγ e∓ iπγ

2√
2β21

U(γ + 1
2 , ∓i

√
2ξ)

γ√
2β12

U(−γ + 1
2 ,

√
2ξ) e∓

iπγ
2 U(γ − 1

2 , ∓i
√
2ξ)

⎞
⎟⎟⎟⎟⎠ 2− γ

2 σ3 for ξ ∈ S±1,

⎛
⎜⎜⎜⎜⎝

e±iπγ U(−γ − 1
2 ,−√

2ξ) ∓ iγ e∓ iπγ
2√

2β21
U(γ + 1

2 , ∓i
√
2ξ)

− γ e±iπγ√
2β12

U(−γ + 1
2 , −√

2ξ). e∓
iπγ
2 U(γ − 1

2 , ∓i
√
2ξ)

⎞
⎟⎟⎟⎟⎠ 2− γ

2 σ3 for ξ ∈ S±2,

(4.16)
where

β12 = −e−iπγ

√
πγ

�(1 − γ )2γ
= γ

2β21
. (4.17)

Furthermore, from (4.12) one obtains the extra terms of the asymptotic expansion of
�(ξ) as ξ → ∞:

�(ξ) =
(
I + γ

2

[
0 1

β21
1

β12
0

]
1

ξ
+

[−γ (γ − 1) 0
0 γ (γ + 1)

]
1

4ξ2

+γ

8

[
0 (γ+1)(γ+2)

β21

− (γ−1)(γ−2)
β12

0

]
1

ξ3

)
ξγ σ3e− ξ2

2 σ3; (4.18)

namely,

�1 = γ

2

[
0 1

β21
1

β12
0

]
, �2 = 1

4

[−γ (γ − 1) 0
0 γ (γ + 1)

]
,

�3 = γ

8

[
0 (γ+1)(γ+2)

β21

− (γ−1)(γ−2)
β12

0

]
. (4.19)

4.4.3 Construction of the Local Parametrix

From (4.8) and the previous section, we are now ready to specify the form of the local
parametrix at z = z0, by

P0(z) = E(z)�(
√
kw(z))�(z)e− k

2φ(z)σ3Q(z)−1,

where E(z) is an analytic matrix in a neighborhood of Uz0 , the matrix � has been
defined in (4.16), and �(z) and Q(z) have been defined in (4.6) and (4.7), respec-
tively. The function w(z) is a conformal mapping from a neighborhood of z0 to a
neighborhood of 0, and it is specified by
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w2(z) :=
{−φ(z) − 2π i, z ∈ Uz0 ∩ C−,

−φ(z), z ∈ Uz0 ∩ C+.

We observe that

w(z) = 1√
2z0

(z − z0) − 1

3
√
2z20

(z − z0)
2 + O

(
(z − z0)

3
)

, z → z0 .

(4.20)

The matrix E(z) is obtained from condition (4.5), which, when combined with (4.18),
gives

P∞(z)(P0(z))−1 = P∞(z)Q(z)e
k
2 φ(z)σ3�(z)−1�(

√
kw(z))−1E(z)−1

= P∞(z)χ(z)−1�(z)−1(
√
kw(z))−γ σ3

(
I − γ

2

[
0 1

β21
1

β12
0

]
1√

kw(z)
+ O

(
k−1

))
E−1(z),

k → ∞, z ∈ ∂Uz0 , (4.21)

where we used the fact that Q(z) → χ(z)−1 exponentially fast as k → ∞, and
z ∈ ∂Uz0 . From the above expression and (4.5), it turns out that the matrix E(z) takes
the form

E(z) = P∞(z)χ(z)−1�(z)−1(
√
kw(z))−γ σ3

=
[
(z − z0)2

z(z − 1)

] γ
2 σ3

�(z)−1(
√
kw(z))−γ σ3 . (4.22)

We observe that the function E(z) is single valued in a neighborhood of Uz0 . Indeed,
the boundary values of (z − z0)γ σ3 and w−γ σ3 cancel each other. The boundary value
of (z(z − 1))γ+ = (z(z − 1))γ−e2π iγ , so that �(z)(z(z − 1))

γ
2 σ3 remains single valued

in a neighborhood of z0.
From the expression (4.21) and (4.22), the matching between P0(z) and P∞(z)

takes the form

P∞(z)(P0(z))−1 = E(z)

(
I − γ

2

[
0 1

β21
1

β12
0

]
1√

kw(z)
+ O

(
k−1

))
E−1(z), k → ∞, z ∈ ∂Uz0 ,

whereγ ∈ (0, 1). It is clear from the above expression that the (2, 1)-entry of thematrix
above is not small as k → ∞. For this reason, we need to introduce an improvement
of the parametrix.

4.5 Improvement of the Local Parametrix

In order to have auniformly small error for k → ∞,wehave tomodify the parametrices
as in [10,14,15]:

P̂∞(z) :=
(
I + C

z − z0

)
P∞(z) ,
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where C is a nilpotent matrix to be determined and

P̂0(z) := Ê(z)

(
1 0

− �1,21√
kw(z)

1

)
�(

√
kw(z))�(z)e− k

2φ(z)σ3Q(z)−1,

where the matrix �1 has been defined in (4.10) and

Ê(z) =
(
I + C

z − z0

)
E(z).

With those improved definitions of the parametrices, P̂∞(z) and P̂0(z) have the same
Riemann–Hilbert jump discontinuities as before but they might have poles at z = z0.
Note that Ê(z) also has a pole at z = z0. However, we can choose C in such a way
that P̂0(z) is bounded in z0. This is accomplished by

C=−E(z0)

(
0 0

− �1,21√
kw′(z0)

0

)(
E ′(z0)

(
0 0

− �1,21√
kw′(z0)

0

)
+E(z0)

(
1 0

�1,21w
′′(z0)

2
√
k(w′k(z0))2

1

))−1

,

where

E(z0) =
(

2z0
k(1 − z0)

) γ
2 σ3

eπ i γ
2 σ3 and E ′(z0) = γ σ3

4z0 − 1

6z0(1 − z0)
E(z0).

From the above relation, the matrix C takes the form

C =
(

0 0

ckγ− 1
2 0

)
(4.23)

and

c =
(
1 − z0
2z0

)γ

e−π iγ z0(�1)212
1
2 = −�(1 − γ )√

2π

(
1 − z0
z0

)γ

z0. (4.24)

The improved parametrix gives the following matching between P̂∞(z) and P̂0(z)
as k → ∞ and z0 ∈ ∂Uz0 :

P̂∞(z)(P̂0(z))−1

= Ê(z)

(
I − �1√

kw(z)
+ �2

1 −�2

kw(z)2
+ �2�1+�1�2−�3

1−�3

k
3
2 w(z)3

+O
(
k−2

))(
1 0

− (�1)21√
kw(z)

1

)−1

Ê(z)−1

= Ê(z)

⎡
⎢⎢⎣I −

(
0 (�1)12
0 0

)
√
kw(z)

−

(
(�2)11 0

0 (�2)22 − γ
2

)

kw(z)2
,

+

(
0 −(�3)12

(�1)21(�2)11 − (�3)21 0

)

k
3
2 w(z)3

+ O
(
k−2

)
⎤
⎥⎥⎦ Ê(z)−1, (4.25)
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which shows that P̂∞(z)(P̂0(z))−1 = I + O (1/kα), α > 0, as k → ∞ when
z0 ∈ ∂Uz0 for γ ∈ [0, 1).

4.5.1 Riemann–Hilbert Problem for the Error Matrix R

Wenowdefine the errormatrix R in two regions of the plane, using our approximations
to the matrix T . Set

R(z) =

⎧⎪⎨
⎪⎩
T (z)

(
P̂(0)(z)

)−1
, z ∈ Uz0 ,

T (z)
(
P̂∞(z)

)−1
, z ∈ C\Uz0 .

(4.26)

The matrix R is piecewise analytic in C with a jump across �R (see Fig. 15).

Riemann–Hilbert problem for R

1. R is analytic in C\�R ,
2. For z ∈ �R , we have

R+(z) = R−(z)vR(z), (4.27)

with

vR(z) =

⎧⎪⎨
⎪⎩

P̂∞− (z)vT (z)
(
P̂∞+ (z)

)−1
, z ∈ �R\∂Uz0 ,

P̂∞(z)
(
P̂(0)(z)

)−1
, z ∈ ∂Uz0 .

3. As z → ∞, we have
R(z) = I + O

(
z−1

)
.

The jump matrices across the contour �R\∂Uz0 are all exponentially close to I
for large k because vT (z) converges exponentially fast to v∞(z) defined in (4.2) for
z ∈ C\Uz0 and the product

P̂∞− (z)v∞(z)
(
P̂∞+ (z)

)−1

=
(
I + C

z − z0

)
P∞− (z)v∞(z)

(
P∞+ (z)

)−1
(
I + C

z − z0

)−1

= I,

Fig. 15 The contour
�R = Ci ∪ Ce ∪ Co ∪ ∂Uz0
where Ci ,Ce and Co are defined
only in C\Uz0
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with P∞(z) defined in (4.4) and C in (4.23). The only jump that is not exponentially
small is the one on ∂Uz0 . Indeed, one has from (4.25),

vR(z) =P̂∞(z)(P̂0(z))−1 = I + γ e(z)2

2k
1
2+γ w(z)β21

⎛
⎜⎜⎜⎝

ckγ− 1
2

z − z0
−1

c2k2γ−1

(z − z0)2
−ckγ− 1

2

z − z0

⎞
⎟⎟⎟⎠

+ γ (1 − γ )

4kw(z)2

⎛
⎝

1 0

2ckγ− 1
2

(z − z0)
−1

⎞
⎠

+ 1

k
3
2−γ w(z)3

⎛
⎜⎝

O
(
k− 1

2−γ
)

O (
k−2γ

)
γ (1 − γ )

4β12e(z)2
+ O (

k−1
) O (

k− 1
2−γ

)
⎞
⎟⎠ + O

(
k−2, kγ− 5

2

)
,

where

e(z) = E11(z)k
γ /2 (4.28)

and we have substituted the explicit expressions of the matrix �1, �2 and �3 as given
by (4.19).

We have the following two cases depending on the value of γ ∈ (0, 1):

(a) 0 < γ < 1
2 :

vR(z) = P̂∞(z)(P̂0(z))−1 = I + v1R(z)

k
1
2+γ

+ O
(
k−1

)
, (4.29)

where

v1R(z) = − γ e(z)2

2w(z)β21

(
0 1
0 0

)
. (4.30)

(b) 1
2 ≤ γ < 1:

vR(z) = P̂∞(z)(P̂0(z))−1 = I + v
(1)
R (z)

k
3
2−γ

+ v
(2)
R (z)

k
+ v

(3)
R (z)

k
1
2+γ

+ O
(
kγ− 5

2

)
.

(4.31)

where

v
(1)
R (z) =

(
c2

β21

w(z)e(z)2

(z − z0)2
+ c(1 − γ )

2w(z)2(z − z0)
+ (1 − γ )

2β12w(z)3e(z)2

)(
0 0
1 0

)

v
(2)
R (z) =

(
γ c

2β21

e(z)2

w(z)(z − z0)
+ γ (1 − γ )

4w(z)2

)
σ3

v
(3)
R (z) = − γ e(z)2

2w(z)β21

(
0 1
0 0

)
. (4.32)
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By the standard theory of small norm Riemann–Hilbert problems, one has a similar
expansion for R(z) in the large k limit.

Case (a) 0 < γ < 1
2 :

R(z) = I + R(1)

k
1
2+γ

+ O
(
k−1

)
. (4.33)

Compatibility of (4.27), (4.29), and (4.33) and the jump condition R+ = R−v̂R on
∂Uz0 gives the following relations:

R(1)
+ (z) = R(1)

− (z) + v
(1)
R (z), z ∈ ∂Uz0 ,

with v
(1)
R (z) defined in (4.30). In addition R(1)(z) is analytic inC\∂Uz0 and R

(1)(∞) =
0. The unique function that satisfies those conditions is given by

R(1)(z) = 1

2π i

∮
v

(1)
R (ξ)

ξ − z
dξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

z − z0

γ e(z0)2

2w′(z0)β21

(
0 1
0 0

)
, z ∈ C \Uz0 ,

v
(1)
R (z) + 1

z − z0

γ e(z0)2

2w′(z0)β21

(
0 1
0 0

)
, z ∈ Uz0 ,

where the integral is taken along ∂Uz0 . Using the definition of β21 , w′(z), and e(z)
given in (4.17), (4.20), and (4.28), respectively, one has

R(1)(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

z − z0

γ z20
c

(
0 1
0 0

)
, z ∈ C \Uz0 ,

v
(1)
R (z) + 1

z − z0

γ z20
c

(
0 1
0 0

)
, z ∈ Uz0 ,

with the constant c defined in (4.24).

Case (b) 1
2 ≤ γ < 1:

R(z) = I + R(1)

k
3
2−γ

+ R(2)

k
+ R(3)

k
1
2+γ

+ O
(
kγ− 5

2

)
. (4.34)

Compatibility of (4.27), (4.31), and (4.34) and the jump condition R+ = R−v̂R on
∂Uz0 gives the following relations:

R(i)
+ (z) = R(i)

− (z) + v
(i)
R (z), z ∈ ∂Uz0 ,
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with v
(i)
R (z) defined in (4.32). In addition, R(i)(z) is analytic inC\∂Uz0 and R(i)(∞) =

0.
Since v

(1)
R (z) has a third order pole at z = z0, the unique function that satisfies

those conditions is given by

R(1)(z) = −Resλ=z0 v
(1)
R (λ)

z − z0
− Resλ=z0(λ − z0)v

(1)
R (λ)

(z − z0)2

− Resλ=z0(λ − z0)2v
(1)
R (λ)

(z − z0)3
=

(
0 0
∗ 0

)
, z ∈ C \Uz0 .

Given the structure of the matrix P̂0(z), the matrix R(1)(z) does not give any relevant
contribution to the orthogonal polynomials πk(z).

Regarding R(2)(z), one has

R(2)(z) = −Resλ=z0 v
(2)
R (λ)

z − z0
− Resλ=z0(λ − z0)v

(2)
R (λ)

(z − z0)2

= − 1

z − z0

cγ e(z0)2

2β21w′(z0)

(
2e′(z0)
e(z0)

− w′′(z0)
2w′(z0)

+ 1

z − z0

)
σ3

+ 1

z − z0

γ (1 − γ )

4w′(z0)2

(
w′′(z0)
w′(z0)

− 1

z − z0

)
σ3 z ∈ C \Uz0 ,

so that, using (4.17), (4.20), (4.24), and (4.28), one obtains

R(2)(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− γ z20
z − z0

(
γ (4z0 − 1)

3z0(1 − z0)
+ 2 − γ

3z0
+ 3 − γ

2(z − z0)

)
σ3, z ∈ C \Uz0 ,

v
(2)
R (z) − γ z20

z − z0

(
γ (4z0 − 1)

3z0(1 − z0)
+ 2 − γ

3z0
+ 3 − γ

2(z − z0)

)
σ3, z ∈ Uz0 .

In a similar way for R(3)(z), we obtain

R(3)(z) = −Resλ=z0 v
(3)
R (λ)

z − z0
= 1

z − z0

γ e(z0)2

2w′(z0)β21

(
0 1
0 0

)
, z ∈ C \Uz0 ,

so that

R(3)(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

z − z0

γ z20
c

(
0 1
0 0

)
, z ∈ C \Uz0 ,

v
(3)
R (z) + 1

z − z0

γ z20
c

(
0 1
0 0

)
, z ∈ Uz0 ,

with the constant c defined in (4.24).
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4.5.2 Proof of Theorem 1.9: asymptotics for pn(λ) for 0 < z0 < 1

In order to obtain the asymptotic expansion of the polynomials pn(λ) for n → ∞,
NT = n− l, and 0 < z0 < 1, we first derive the asymptotic expansion of the reduced
polynomials πk(z) as k → ∞.

Using the relation (4.3) and the relation (4.26), one obtains

πk(z) = ekg(z)

(
1 − 1

z

) γ
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
R(z)P̂∞(z)

]
11

, z ∈ (�∞ ∪ �0 ∪ �3)\Uz0 ,

[
R(z)P̂∞(z)

(
1 0

ekφ(z) 1

)]
11

, z ∈ �1\Uz0 ,

[
R(z)P̂∞(z)

(
1 0

−e−kφ(z) 1

)]
11

, z ∈ �2\Uz0 ,

[
R(z)P̂0(z)

]
11

, z ∈ (�∞ ∪ �0 ∪ �3) ∩ Uz0 ,

[
R(z)P̂0(z)

(
1 0

ekφ(z) 1

)]
11

, z ∈ �1 ∩ Uz0 ,

[
R(z)P̂0(z)

(
1 0

−e−kφ(z) 1

)]
11

, z ∈ �2 ∩ Uz0 .

(4.35)

The Region (�∞ ∪ �3)\Uz0 :

πk(z) = ekg(z)
(
1 − 1

z

) γ
2
[
(z − z0)2

z(z − 1)

] γ
2
(
1 + O

(
1

k

))

= ekg(z)
(
z − z0

z

)γ (
1 + O

(
1

k

))
.

The Region �0\Uz0 :

πk(z) = 1

k
1
2+γ

ekg(z)
(

γ z20
c

(z − 1)γ

(z − z0)γ+1 + O
(
1

k

))
,

with c defined in (4.24).
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The Region �1\Uz0 :

πk (z) =ekg(z)
(
z − z0

z

)γ
⎛
⎝ekφ(z) − 1

z − z0

γ z20
c

[
(z − z0)

2

z(z − 1)

]−γ
1

k
1
2+γ

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(
1

k

))
, 0 < γ < 1

2 ,

− ekφ(z)γ z20
z − z0

1

k

(
γ (4z0 − 1)

3z0(1 − z0)
+ 2 − γ

3z0
+ 3 − γ

2(z − z0)

)
+ O

(
1

k
5
2−γ

))
, 1

2 ≤ γ < 1,

with c defined in (4.24) and where we observe that Re φ(z) ≤ 0 in �1. In a similar
way, we can obtain the expansion in the region �2\Uz0 .

The Region �2\Uz0 :

πk (z) =ekg(z)
(
z − z0

z

)γ
⎛
⎝1 − e−kφ(z)

k
1
2+γ

γ z20
c

[
(z − z0)

2

z(z − 1)

]−γ
1

z − z0

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(
1

k

))
, 0 < γ < 1

2 ,

− γ z20
z − z0

1

k

(
γ (4z0 − 1)

3z0(1 − z0)
+ 2 − γ

3z0
+ 3 − γ

2(z − z0)

)
+ O

(
1

k
5
2−γ

))
, 1

2 ≤ γ < 1,

where now we observe that Re φ(z) ≥ 0 in �2.

The Region Uz0 :

Using the relations (4.35), (4.16), (4.13), and (4.14), one obtains

πk (z) = ekg(z)
(
z − z0

z

)γ e−kφ(z)/2

(
√
kw(z))γ

(
U(−γ − 1

2
; √

2kw(z)) + O
(

1

k
1
2

))
, z ∈ Uz0 ∩ Ext(C),

where U is the parabolic cylinder function that solves Eq. (4.11). For z ∈ Uz0 ∩ Int(C),
we have

πk (z) = ekg(z)
(
z − z0

z

)γ ekφ(z)/2

(
√
kw(z))γ

(
U(−γ − 1

2
; √

2kw(z)) + O
(

1

k
1
2

))
, z ∈ Uz0 ∩ Int(C).

In order to prove Theorem 1.8, it is sufficient to use the above expansions, make
the change of coordinates λs = −t (z − 1), and use for n = ks + l the relation

pn(λ) = (−t)kλlπk(1 − λs/t).

�
Proposition 4.3 The support of the counting measure of the zeros of the polynomials
πk(z) for 0 < t < tc outside an arbitrary small disk Uz0 surrounding the point z = z0

123



Constr Approx

tends uniformly to the curve C defined in (1.18). The zeros are within a distance o(1/k)
from the curve defined by

Re φ(z) = −
(
1

2
+ γ

)
log(k)

k
+ 1

k
log

(
γ z20
c

∣∣∣∣ (z − z0)2

z(z − 1)

∣∣∣∣
−γ

)
, (4.36)

where the function φ(z) has been defined in (3.14). Such curves tends to C at a rate
O (log k/k). The normalized counting measure of the zeros of πk(z) converges to the
probability measure ν defined in (3.8).

Proof As in the proof of Proposition 3.4, it is clear from the above expansions of
the polynomials πk(z) that there are no zeros in the region (�∞ ∪ �3 ∪ �0)\Uz0 for
sufficiently large k. Then we observe that the asymptotic expansion of the polynomials
πk(z) in the regions �1 ∪ �2\Uz0 takes the form

πk(z) = zk
(
z − z0

z

)γ
(
1 − e−kφ(z)

k
1
2+γ

γ z20
c

[
(z − z0)2

z(z − 1)

]−γ
1

z − z0

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O
(
1

k

))
, 0<γ < 1

2 ,

− γ z20
z − z0

1

k

(
γ (4z0 − 1)

3z0(1 − z0)
+ 2 − γ

3z0
+ 3 − γ

2(z − z0)

)
+O

(
1

k
5
2−γ

))
, 1
2 ≤γ <1,

so that we conclude that the zeros of πk(z) occur in the region where

1 − e−kφ(z)

k
1
2+γ

γ z20
c

[
(z − z0)2

z(z − 1)

]−γ
1

z − z0

is equal to zero.
Since �2 ⊂ {Re(φ) ≥ 0} and �1 ⊂ {Re(φ) ≤ 0}, it follows that the zeros of

πk(z)may lie only in the region�1 and such that Re φ(z) = O (log k/k). Namely, the
zeros of the polynomials πk(z) lie on the curve given by (4.36) with an error of order
O (

1/k2
)
. Such curves converge to the curve C defined in (1.18) at a rateO (log k/k)

(see Fig. 16).
The proof of the remaining points of Proposition 4.3 follows the lines of the proof

of Proposition 3.4. �
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5 Proof of Theorem 1.4

From the comments after the statement of Theorem 1.8 and Theorem 1.9, it is clear
from (1.25) and (1.27) that the zeros of the polynomials pn(λ) accumulate in the limit
n = ks + l → ∞, with s and l given and l = 0, . . . , s − 2, along the curve Ĉ defined
in (1.17). In order to show that the measure ν̂ is the weak-star limit of the zero density
νn , we will show that

lim
n→∞

1

n
log pn(λ) =

∫
Ĉ
log(λ − ξ)dν(ξ)

for λ in compact subsets of the exterior of Ĉ (namely, the unbounded component of
C\Ĉ). Indeed, using the relation

pn(λ) = (−t)kλlπk(z(λ)),

one has

lim
n→∞

1

n
log pn(λ) = lim

k→∞
1

ks + l
log(λl(−t)kπk(z(λ)))

= 1

s
log(−t) + 1

s
lim
k→∞

1

k
logπk(z(λ)).

Using Proposition 3.4 and the relation dν(z(λ)) = s d ν̂(λ), we get

1

s
log(−t) + 1

s
lim
k→∞

1

k
logπk(z(λ)) = 1

s
log(−t) + 1

s

∫
C
log(z − ξ)dν(ξ)

= 1

s
log(−t) +

∫
Ĉ0

log
λs − σ s

−t
d ν̂(σ ) ,

where Ĉ j ( j = 0, . . . , s − 1) are the components of Ĉ (as defined in the proof of
Lemma 1.3). Since on each Ĉ j we have that d ν̂ is normalized to 1

s , we obtain

lim
n→∞

1

n
log pn(λ) =

∫
Ĉ0

log(λs − σ s)d ν̂(σ ) =
s−1∑
j=0

∫
Ĉ0

log(λ − σω j )d ν̂(σ )

=
s−1∑
j=0

∫
Ĉ j

log(λ − σ)d ν̂(σ ) =
∫
Ĉ
log(λ − σ)d ν̂(σ ) ,

with ω = e
2π i
s and where in the last steps we used the symmetry of d ν̂. Hence we

have obtained the relation

lim
n→∞

1

n
log pn(λ) =

∫
Ĉ
log(λ − σ)d ν̂(σ ) ,
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uniformly for λ in compact subsets of unbounded component of C\Ĉ. Furthermore,
Ĉ is the boundary of its polynomial convex hull. Then it follows that the measure ν̂

is the weak-star limit of the zero counting measure νn of the polynomials pn(λ) for
n = kd + l, l = 0, . . . , s − 2 (see [44] and [49] Chapter 3). The proof of Theorem 1.4
is then completed.
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