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Algebraic contraction rate for distance between entropy
solutions of scalar conservation laws

Elias Esselborn ∗ Nicola Gigli † Felix Otto ‡

April 10, 2014

Abstract

We establish an algebraic contraction rate in a modified Wasserstein distance for so-
lutions of scalar conservation laws with uniformly convex flux. We also show that our
estimate is optimal w.r.t. scaling in time and discuss why it gives non-trivial information
in relation to the stability of the rarefaction wave.
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1 Introduction

The aim of this paper is to establish a contraction result in a modified transport distance for
entropy solutions to a scalar conservation law

∂tθ + ∂xf(θ) = 0, (1.1)

with uniformly convex flux f . This estimate gives non-trivial information in relation to the
stability of the rarefaction wave solution of (1.1) and its contraction rate turns out to be
optimal in terms of scaling in time.
∗elias.esselborn@mis.mpg.de
†nicola.gigli@imj-prg.fr
‡otto@mis.mpg.de
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The intuition behind the arguments to derive this contraction result are geometric in
nature. As noted already in [8], the Burgers’ equation

∂tθ + ∂x(θ(θ − 1)) = 0, (1.2)

a special case of equation (1.1), can be written formally as a gradient flow of the energy

F (θ) =

∫
xθ(x)dx,

with respect to the two-phase Wasserstein space. In [8] these insights are derived in the phys-
ical context of a relaxed version of a model of the flow of two immiscible fluids of different
density and mobility in a porous medium. One well-known benefit of formally writing partial
differential equations as a gradient flow in Wasserstein space is deriving contraction results,
provided the energy is semi-convex.

Unfortunately, this is not the case when writing the Burgers’ equation as a gradient flow
as above, i.e. the energy F is not semi-convex. This can formally be seen by Lemma 3.2, which
tells us that the Hessian of F is given by

Hess F (θ) =
−∂xf ′(θ)

2
id .

Since η(t, x) =: ηt(x) = H(x), where H is the Heaviside function, is a solution to (1.2) with
formally

∂xf
′(ηt) = 2∂xηt = +∞,

we see that in general the Hessian of F is not bounded from below. This is not surprising, since
intuitively speaking this corresponds to the non-uniqueness of solutions to the initial value
problem related to (1.2), see the discussion in [5]. To reestablish uniqueness for this initial
value problem, a well-known selection principle is introduced: the notion of entropy solution.
That these entropy solutions also play a special role in the above context of the gradient flow
interpretation is the content of [5], namely the fact that the time-discretized gradient flow for
F with respect to the two-phase Wasserstein metric converges to the entropy solution.

The idea of our work here is to use special distinguishing features of the entropy solution to
obtain a contraction-like estimate for these solutions. Indeed, a careful analysis of the Hessian
of F along entropy solutions shows us that the well-known Oleinik condition ensures a kind
of semi-convexity which improves over time, namely

Hess F (θt) ≥ −
1

2t
id .

Geometrically speaking we establish a semi-convexity of the energy landscape along certain
trajectories, despite the fact that the global energy landscape of F is highly non-convex.
Altogether this provides an interesting example of a gradient flow which satisfies a certain
contractivity in spite of the fact that it lives in an energy landscape that is not globally
semi-convex.

2 Preliminaries

2.1 Preliminaries on scalar conservation laws

In this section, we quickly recall some facts about the entropy solution to a scalar conservation
law, which can be for example found in [11].

2



We shall assume that the flux f : R → R is C∞ and uniformly convex. The scalar
conservation law associated to f is the initial value problem

∂tθ + ∂xf(θ) = 0 in Rt+ × Rx, (2.1)

where θ(0, ·) is given. As it is well-known, due to the crossing of characteristics, in general
after finite time classical solutions cease to exist, even in the case of smooth initial data. On
the other hand, distributional solutions are non-unique in general. Hence there is the need to
find a notion of solution which grants basic existence and uniqueness properties. It turns out
that the correct notion of solution is that of entropy solution. One of the equivalent ways to
introduce it is by the Oleinik principle, first observed in [7]: θ : (0,∞)×R → R is an entropy
solution for (2.1) provided it is a distributional solution and furthermore for any t > 0 satisfies

∂xf
′(θt) ≤

1

t
in the sense of distributions. (2.2)

A typical assumption about the initial value θ̄ for solutions of (2.1) is θ̄ ∈ L1 ∩ L∞(R). For
more details on entropy solutions, see [11]. In this paper we will deal with a slightly modified
version of these hypotheses. Specifically, denote by H : R → R the Heaviside function, i.e.

H(x) :=

 1, if x ≥ 0,

0, if x < 0,

 .

We then consider initial data θ̄ satisfying θ̄(x) ∈ [0, 1] for every x ∈ R (in particular θ̄ ∈
L∞(R)) and θ̄ −H ∈ L1(R). Existence, uniqueness, stability and convergence of the viscous
approximation for this kind of initial data can be achieved with minor modifications as in the
standard case. We refer to [3] or [11] for an overview of the theory and state without proof
those basic properties we shall use later on. The first is the following existence, uniqueness
and stability result, see e.g. [3, Theorem 6.2.2 & 6.2.3].

Theorem 2.1 (Existence, uniqueness and stability of entropy solutions). Let f ∈ C∞(R)
be uniformly convex and θ̄ : R → [0, 1] such that

∫
θ̄(x) −H(x) dx < ∞. Then for the scalar

conservation law (2.1) there exists a unique entropy solution (0,∞)×R 3 (t, x) 7→ θt(x) ∈ [0, 1]
such that θt converges to θ̄ as t ↓ 0 weakly in duality with Cc(R).

Furthermore, if (θ̄n) is a sequence of initial data as above converging to some θ̄∞ as n→∞
weakly in duality with Cc(R) and θn, θ∞ the corresponding entropy solutions, then the sequence
n 7→ θnt converges to θ∞t weakly in duality with Cc(R) for every t ≥ 0.

A different way to introduce the notion of entropy solution is to perturb (2.1) by adding
a second order regularizing term like

∂tθ
ε + ∂xf(θε)− ε∂x(f ′′(θε)∂xθ

ε) = 0, (2.3)

and let ε go to zero. The uniform ellipticity of (2.3) grants that for any initial datum θ̄ ∈ L∞(R)
a solution θ : (0,∞) × R → R exists, is unique in the class of locally bounded functions and
smooth in (0,∞)×R, where the initial value θ̄ is assumed in the sense that θt converges to θ̄
weakly in duality with Cc(R). Then one can show that as ε ↓ 0 such solutions weakly converge
to a specific distributional solution of (2.1), which turns out to be the same solution singled
out by Oleinik’s principle (see e.g. [3, Theorem 16.4.2]):
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Theorem 2.2 (Convergence of the viscous approximation). Let f ∈ C∞(R) be uniformly
convex and θ̄ : R → [0, 1] such that

∫
θ̄(x)−H(x) dx <∞. Denote by θ : (0,∞)×R → R the

entropy solution of (2.1) starting from θ̄ and by θε : (0,∞)× R → [0, 1] the solution of (2.3)
starting from θ̄.

Then for every t ≥ 0 the family (θεt ) weakly converges to θt as ε ↓ 0 in duality with Cc(R).

A remarkable property of the solutions of the particular viscous approximation (2.3) is
that they also satisfy Oleinik’s condition. This is due to the specific choice of the second order
term, as we illustrate in the following simple proposition.

Proposition 2.3. Let f ∈ C∞(R) be uniformly convex, θ ∈ C∞(R) with θ(x) ∈ [0, 1] for
every x ∈ R, T ≥ 0 and let θ ∈ C∞([T,∞) × R) be the solution of (2.3) such that θT = θ.
Assume that

∂x
(
f ′(θT )

)
(x) ≤ 1

T
, ∀x ∈ R, (2.4)

this condition being vacuous if T = 0.
Then for all x ∈ R, t > T we have

∂x
(
f ′(θt)

)
(x) ≤ 1

t
. (2.5)

Proof. Multiplying equation (2.3) by f ′′(θ) and differentiating with respect to x we find that
the resulting equation can be rewritten as an equation in w := ∂xf

′(θ), which reads as

∂tw + w2 + f ′(θ)∂xw − ε∂x(f ′′(θ)∂xw) = 0. (2.6)

Assume for a moment that T > 0 and notice that w̃t(x) := 1
t also solves (2.6) and fulfills

w̃T (x) ≥ wT (x) for every x ∈ R. Since f is uniformly convex, the second-order term is
uniformly elliptic and thus for (2.6) the comparison principle holds. Hence in this case the
thesis follows. The general case can now be handled with an approximation argument based
on the stability of the solutions of (2.3) w.r.t. convergence of the initial datum.

By the convergence of the viscous approximation to the entropy solution we thus also see
that Oleinik’s principle can be formulated in the following seemingly stronger - but in fact
equivalent - way: if θ : [T,∞) × R → [0, 1] is an entropy solution of (2.1) starting from a
function θ̄ fulfilling (2.4) in the sense of distributions, then θt fulfills (2.5) in the sense of
distributions for every t > T .

2.2 The spaces M,Mt,m

We introduce here the space of functionsM as follows. Recall that H : R → R is the Heaviside
function.

Definition 2.4. Denote byM the set of functions θ : R → [0, 1] such that

L(θ) := sup{x :

∫ x

−∞
θ = 0} > −∞,

R(θ) := inf{x :

∫ +∞

x
1− θ = 0} < +∞,

 bounded “mixing zone”, (2.7)

and ∫
R
θ −H = 0, volume constraint. (2.8)
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Notice that if θ is an entropy solution of (2.1) with admissible flux f (see Definition 2.13)
such that θ0 satisfies (2.7), then by the general principle of finite speed of propagation for
solutions of (2.1) we deduce that θt satisfies (2.7) for every t ≥ 0. Also, by the translation
invariance of solutions of (2.1) it is not restrictive to assume that

∫
θ −H = 0, which easily

yields
∫
θt −H = 0 for every t ≥ 0. In summary, we have

θ0 ∈M ⇒ θt ∈M, ∀t ≥ 0. (2.9)

In order to state and prove our contraction estimate, we introduce the subspaces Mt,m

depending on a time parameter t ≥ 0 and a ‘mobility function’ m which will be linked to the
equation.

The assumption that we will make on m are the following.

Definition 2.5. A function m : [0, 1]→ R is called an admissible mobility, if

• m ∈ C∞([0, 1]),

• m(0) = m(1) = 0,

• m is uniformly concave, i.e. there exists α > 0 s.t. m′′ ≤ −α < 0.

Given an admissible mobility m, the spacesMt,m are defined as follows.

Definition 2.6. For t = 0 we putM0,m :=M and for t > 0 the setMt,m ⊂M denotes the
set of functions θ ∈M, s.t. additionally

− ∂xm′(θ) ≤
1

t
in the distributional sense. (2.10)

Remark 2.7. We will always takem = −f , f being the flux in (2.1). Thus condition (2.10) is the
Oleinik condition and entropy solutions θ of (2.1) are characterized among all distributional
solutions by the requirement θt ∈Mt,m.

Also, Oleinik’s principle as stated after Proposition 2.3 grants that for an entropy solution
θ of (2.1) it holds

θT ∈MT,m ⇒ θt ∈Mt,m, ∀t ≥ T. (2.11)

�

On the setMt,m we now define a modified Wasserstein distance dt,m, which will turn out
to be the correct distance for which to state our main contraction result.

First of all notice that M can be naturally equipped with the quadratic transportation
distance W2 by putting

W 2
2 (θ1, θ2) := inf

T :T]θ1=θ2

∫
R
|T (x)− x|2θ1(x) dx.

As for the standard transport problem between measures of finite mass, it is easy to check
that there exists a unique non decreasing map Topt such that (Topt)]θ1 = θ2, and that this
map is the unique minimizer of the problem above. Also thanks to the bounded mixing zone
and volume constraint, for all θ1, θ2 ∈M there exist L < R s.t.

W 2
2 (θ1, θ2) = W 2

2

(
θ1|[L,R], θ2|[L,R]

)
<∞.
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Alternatively, it can be checked directly that the well-known Benamou-Brenier formula holds
also in the case of measures with infinite mass and reads as

W 2
2 (θ1, θ2) = inf

∫ 1

0

∫
R
vs(x)2θs(x) dx ds, (2.12)

the infimum being taken over all distributional solutions (θ, v) of the continuity equation

∂sθs + ∂x(vsθs) = 0,

such that s 7→ θs is weakly continuous with θ0 = θ1 and θ1 = θ2.
Observe that the right-hand side of (2.12) can formally be viewed as a Riemannian distance,

via the continuity equation, with respect to the Riemannian metric

gθ(δθ1, δθ2) :=

∫
R
v1v2θ dx,

where
δθi + ∂x(viθ) = 0, for i = 1, 2.

Equivalently, putting j := vθ the continuity equation becomes

∂sθs + ∂xjs = 0,

and the Benamou-Brenier formula reads as

W 2
2 (θ1, θ2) = inf

∫ 1

0

∫
R

j2s
θs

dx ds. (2.13)

We are now formally changing the Riemannian metric to obtain a different distance, namely
replace g by gm defined by

gm,θ(δθ1, δθ2) :=

∫
R
v1v2m(θ) dx,

where
δθi + ∂x(vim(θ)) = 0, for i = 1, 2.

This metric and the corresponding distance was already discussed in [2] and [4]. In our case we
additionally we force all admissible curves between θ1, θ2 ∈Mt,m to completely lie inMt,m.

Definition 2.8. Let θ1, θ2 ∈Mt,m. Then

d2t,m(θ1, θ2) := inf

∫ 1

0

∫
v2sm(θs) dx ds, (2.14)

the infimum being taken over all distributional solutions (θ, v) of

∂sθ + ∂x(vsm(θs)) = 0, (2.15)

such that s 7→ θs is weakly continuous with θs ∈ Mt,m for every s ∈ [0, 1], θ(0, ·) = θ1 and
θ(1, ·) = θ2.
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Notice that putting j := vm(θ), equation (2.15) becomes

∂sθs + ∂xjs = 0. (2.16)

In the following it will be technically more convenient to work with the continuity equation
written in this form. We collect in the definition below the basic properties of solutions of
(2.16) which we will always demand from now on:

Definition 2.9 (Solutions of the continuity equation). We say that [0, 1] 3 s 7→ (θs, js) is a
solution of (2.16) provided it is a distributional solution and furthermore the map s 7→ θs is
weakly continuous in duality with Cc(R).

Thus an equivalent expression for dt,m is

d2t,m(θ1, θ2) := inf

∫ 1

0

∫
j2s

m(θs)
dx ds, (2.17)

the infimum being taken over all solutions (θ, j) of (2.16) such that θ0 = θ1, θ1 = θ2, and
θs ∈Mt,m for every s ∈ [0, 1]. We remark that here and in the following the value of the ratio
|j|2(x)
m(θ)(x) is defined to be 0 if m(θ)(x) = j(x) = 0 and +∞ if m(θ)(x) = 0 6= j(x).

It is obvious from the definition that dt,m is symmetric, satisfies the triangle inequality
and that dt,m(θ, θ) = 0. The fact thatMt2,m ⊂Mt1,m ⊂M for 0 ≤ t1 ≤ t2 yields

d0,m ≤ dt1,m ≤ dt2,m.

Also, comparing (2.13) with (2.17) and using the trivial inequality 1
z ≤

m′(0)
m(z) valid for any

z ∈ [0, 1] we obtain
W2 = d0,id ≤

√
|m′(0)|d0,m ≤

√
|m′(0)|dt,m,

which in particular shows that dt,m(θ1, θ2) = 0 implies θ1 = θ2. As mentioned before, for a
more in depth discussion of the distance d0,m, see [2] and [4]. A fact which a priori is not
obvious - due to the constraint θt ∈ Mt,m - is the finiteness of the distances dt,m. We will
prove this in Proposition 3.1.

Proposition 2.10 (Regularization). Let t ≥ 0 and s 7→ (θs, js) a solution of the conti-
nuity equation (2.16) such that θs ∈ Mt,m for every s ∈ [0, 1] with sups∈[0,1]R(θs) < ∞
and infs∈[0,1] L(θs) > −∞. Then there exists a sequence tn ↑ t and a sequence of solutions
s 7→ (θn,s, jn,s) of the continuity equation (2.16) such that:

i) for every n ∈ N the maps (s, x) 7→ θn,s(x), jn,s(x) ∈ R are in C∞([0, 1]× R),

ii) θn,s ∈ Mtn,m for every n ∈ N, s ∈ [0, 1], with supn,sR(θn,s) < ∞ and infn,s L(θn,s) >
−∞

iii) limn→∞ dtn,m(θn,i, θi) = 0, i = 0, 1,

iv) it holds

lim
n→∞

∫∫ 1

0

|jn,s|2(x)

m(θn,s(x))
ds dx =

∫∫ 1

0

|js|2(x)

m(θs(x))
ds dx.
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Proposition 2.11 (Compactness). For every n ∈ N let (θn,s, jn,s) be a solution of the con-
tinuity equation (2.16) with θn,s ∈ M for every n ∈ N, s ∈ [0, 1]. Assume that the sequence
n 7→ θn,s converges to some θs in duality with Cc(R) for every s ∈ [0, 1] and that

sup
n

∫∫ 1

0

|jn,s|2(x)

θn,s(x)
ds dx <∞.

Then for some subsequence nk ↑ +∞ the following is true:

i) k 7→ jnk,s converges to some js in duality with Cc for a.e. s ∈ [0, 1],

ii) s 7→ (θs, js) solves the continuity equation (2.16),

iii) s 7→ θs is continuous in duality with Cc(R).

Proposition 2.12 (Lower semicontinuity of the action). Let m be an admissible mobility, and
for n ∈ N ∪ {∞} let θn : R → [0, 1] and jn ∈ L1

loc(R) be given. Assume that

θn → θ∞ and jn → j∞ as n→∞ weakly in duality with Cc(R).

Then

lim
n→∞

∫
R

|jn|2(x)

m(θn)(x)
dx ≥

∫
R

|j∞|2(x)

m(θ∞)(x)
dx.

2.3 Heuristic discussion of gradient flow structure

In [8] it has been noticed that the gradient flow of the functional

F (θ) :=

∫
y(θ(y)−H(y)) dy,

on the space w.r.t. the metric g−f produces solutions of the scalar conservation law

∂tθ + ∂x(f(θ)) = 0. (2.18)

In this section we first recall this result, then show that also the viscous approximation of
(2.18) has a natural gradient flow interpretation w.r.t. the metric g−f and then proceed with
the formal computation of the Hessian of the energy functional which drives our contraction
result. The content of this part is purely formal, the rigorous statements and proofs being
given in the next sections.

Let us first restrict ourselves to a smaller subclass of fluxes f .

Definition 2.13. A flux f is called an admissible flux if (−f) is an admissible mobility.

We will see in Proposition 3.6 that the choice to work with admissible fluxes only is not
really restrictive.

In the following let f always be an admissible flux, and m := −f the corresponding admis-
sible mobility.

Fix θ ∈ M and let δθ1, δθ2 : R → R be perturbations of it inM. Notice that the volume
constraint (2.8) forces

∫
δθi = 0, i = 1, 2. According to formula (2.15) we introduce the

functions φ1, φ2 as solutions of

δθi + ∂x(∂xφim(θ)) = 0, (2.19)
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and then define gm,θ(δθ1, δθ2) as

gm,θ(δθ1, δθ2) :=

∫
∂xφ1∂xφ2m(θ) dx =

∫
φ2δθ1 dx. (2.20)

The first variation of F at θ in the direction δθ1 is given by

DFθ(δθ1) =

∫
yδθ1(y) dy.

Hence δθ2 = ∇gmF (θ) if and only if∫
yδθ1(y) dy = gm,θ(δθ1, δθ2)

(2.20)
=

∫
φ2(y)δθ1(y) dy, ∀δθ1,

which gives φ2 = y + const. so that (2.19) yields ∇gmF (θ) = −∂x(∂xφ2m(θ)) = ∂x(f(θ)).
Therefore a curve t 7→ θt solves ∂tθt = −∇gmF (θt) if and only if the map (t, x) 7→ θt(x)

solves (2.18), as claimed.

We now turn to the viscous approximation. Let u : [0, 1]→ R be such that u′′ = f ′′

(−f) and
define the functional U :M→ R by

U(θ) :=

∫
u(θ(y)) dy.

In the case of the Burgers’ equation, i.e. f(θ) = θ(θ − 1), we find that this is nothing but the
entropy of mixing

U(θ) := 2

∫ (
θ(y) ln θ(y) + (1− θ(y)) ln(1− θ(y))

)
dy.

Its first variation at θ in the direction δθ1 is given by

DUθ(δθ1) =

∫
u′(θ(y))δθ1(y) dy.

Thus, as before, δθ2 = ∇gmU(θ) if and only if∫
u′(θ(y))δθ1(y) dy = gm,θ(δθ1, δθ2)

(2.20)
=

∫
φ2(y)δθ1(y) dy, ∀δθ1,

i.e. φ2 = u′(θ)+const.. Then by (2.19) we obtain ∇gmU(θ) = −∂x(∂xφ2m(θ)) = ∂x(f ′′(θ)∂xθ),
having used the defining property of u. Therefore a curve t 7→ θt solves ∂tθt = −∇gmU(θt) if
and only if the map (t, x) 7→ θt(x) solves

∂tθ − ∂x(f ′′(θ)∂xθ) = 0. (2.21)

Collecting these two properties we deduce that the gradient flow of the functional

Fε := F + εU,

produces solutions of
∂tθ + ∂x(f(θ))− ε∂x(f ′′(θ)∂xθ) = 0. (2.22)
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We now informally discuss the properties of the Hessian of Fε and show how this leads to
an algebraic contraction rate for the entropy solutions of (2.18). In order to derive a formula
for the Hessian of Fε we follow the idea in [10]: rather than differentiating the functional along
geodesics, we compute the rate of change of the metric tensor along gradient flows.

More precisely, let E :M→ R be a functional and θ be solving

∂tθt = −∇gmE(θt).

Let δθ0 ∈ Tθ0M be a perturbation of θ0 and observe that it evolves in time according to

D

dt
δθt = −HessgmE(θt)(δθt), (2.23)

where we are writing D
dt for the - formal - covariant derivative inM. On the other hand, basic

Riemannian calculus gives

∂t
1
2gm,θt(δθt, δθt) = gm,θt

(D

dt
δθt, δθt

)
.

Coupling this equality with (2.23) we get

∂t
1
2gm,θt(δθt, δθt) = −gm,θt

(
HessgmE(θt)(δθt), δθt

)
. (2.24)

The right hand side of this equality contains the unknown HessgmE(θt), but the left hand side
can be computed, hence we can use this equality to define the Hessian of E.

This computation was at the basis of [10], now we see how it translates in our context.
Pick E := F . Then given that θ is a gradient flow of F , by the above discussion it solves
(2.18). Hence the perturbation δθ solves

∂tδθ + ∂x(f ′(θ)δθ) = 0.

We can use this equation to explicitly evaluate the left hand side of (2.24) (we postpone it to
Lemma 3.2), the result is

gm,θt

(
HessgmF (θt)(δθt), δθt

)
= −

∫
1

2
|∂xφt|2m(θt)∂x(f ′(θt)) dx. (2.25)

This suggests that F is not semiconvex, because ∂x(f ′(θ)) is not bounded from above inde-
pendently on θ and thus we cannot expect an inequality like

gm,θt

(
HessgmF (θt)(δθt), δθt

)
≥ −Cgm,θt(δθt, δθt) = −C

∫
|∂xφt|2m(θt) dx

to hold. This lack of semiconvexity can be seen as the geometric counterpart of the fact that
(2.18) has non-unique solutions in general. Yet, by the Oleinik principle we know that if θt is
the entropy solution of (2.18), then it holds

gm,θt

(
HessgmF (θt)(δθt), δθt

)
≥ −1

t

∫
1

2
|∂xφt|2m(θt) dx,

or equivalently

∂t
1
2gm,θt(δθt, δθt) ≤

1

t

∫
1

2
|∂xφt|2m(θt) dx =

1

2t
gm,θt(δθt, δθt). (2.26)
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We can rewrite this inequality as

∂t

(1

t
gm,θt(δθt, δθt)

)
≤ 0,

which integrated from 1 to t gives

gm,θt(δθt, δθt) ≤ t gm,θ1(δθ1, δθ1).

This inequality can be seen as a contraction rate for the distance between two entropy solutions
θ1t , θ

2
t . Once integrated it gives the bound

d2t,m(θ1t , θ
2
t ) ≤ t d21,m(θ11, θ

2
1).

The rigorous justification of this inequality is the main content of this paper.

As a side remark, we notice that the choice of m(z) := z in (2.25) provides a contraction
rate similar to (2.26) for the standard Wasserstein distanceW2, even if the scalar conservation
law (2.18) has not a gradient flow structure in the Wasserstein space (notice that in deriving
(2.26) we didn’t use the assumption m = −f , so that this argument is justified).

In performing the necessary computations, we will take advantage of passing to the viscous
approximation of (2.18) in order to gain regularity of the objects involved. It turns out that
also such viscous approximation has a natural geometric counterpart, as we shall now explain.
If we take E := U in the Hessian computation and we recall that a gradient flow of U solves
(2.21), we deduce that a perturbation δθ solves

∂tδθ − ∂x
(
f ′′′(θ)δθ∂xθ + f ′′(θ)∂xδθ

)
= 0.

Starting from this and using the arguments above we can compute (the actual computation
is quite lengthy, we postpone it to Lemma 3.2) the Hessian of U as

gm,θt

(
HessgmU(θt)(δθt), δθt

)
=

∫
−|∂xxφt|2f ′′(θt)f(θt) +

1

2
|∂xφt|2

(
∂x(f ′(θt))

)2
dx ≥ 0.

(2.27)
Hence U is geodesically convex inM.

Interestingly enough, the augmented functional Fε turns out to be − |f |∞8ε -convex. Indeed
from (2.25) and (2.27) we get

gm,θt

(
HessgmFε(θt)(δθt), δθt

)
=

∫
1

2
|∂xφt|2f(θt)∂x(f ′(θt)) dx

+ ε

∫
−|∂xxφt|2f ′′(θt)f(θt) +

1

2
|∂xφt|2

(
∂x(f ′(θt))

)2
dx

≥ 1

2

∫
|∂xφt|2f(θt)∂x(f ′(θt)) dx+ ε

1

2

∫
|∂xφt|2

(
∂x(f ′(θt))

)2
dx

and the Young inequality gives

1

2

∫
|∂xφt|2f(θt)∂x(f ′(θt)) dx = −1

2

∫
|∂xφt|2(−f(θt))∂x(f ′(θt)) dx

≥ −|f |∞
8ε

∫
|∂xφt|2(−f(θt)) dx− ε1

2

∫
|∂xφt|2(∂x(f ′(θt)))

2 dx,
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and therefore

gm,θt

(
HessgmU(θt)(δθt), δθt

)
≥ −|f |∞

8ε

∫
|∂xφt|2(−f(θt)) dx.

This semiconvexity can be interpreted as the geometric counterpart of the fact that solutions
of (2.22) are unique.

3 Rigorous statements and proofs

3.1 Finiteness of the new distance

The aim of this section is to prove that dt,m is finite onMt,m.

Proposition 3.1. For any t ≥ 0, any admissible mobility m and any θ0, θ1 ∈Mt,m it holds

dt,m(θ0, θ1) <∞.

Furthermore, there exists a solution (θs(x), js(x)) of the continuity equation (2.16) such that
θ0 = θ0, θ1 = θ1 and ∫∫ 1

0

|js|2(x)

m(θs)(x)
ds dx = d2t,m(θ0, θ1). (3.1)

Proof. The second part of the statement follows by a standard compactness-lower semicon-
tinuity argument based on Propositions 2.11 and 2.12, thus we focus on the proof of the
finiteness of the distance.
Setting up. Clearly we can assume t > 0. Recall that ∃M > 0 s.t.

θ0(x) = θ1(x) = 0, for x < −M,

θ0(x) = θ1(x) = 1, for x > M,

and observe that to get the thesis it is sufficient to prove that

dt,m(θ0, θ̄) <∞,

where θ̄ ∈ Mt,m is some specific density depending only on θ0, θ1. We choose θ̄ to be the
rarefaction wave at time T , i.e.

θ̄(x) :=


0, x ≤ −Tm′(0),

(−m′)−1( xT ), −Tm′(0) < x < −Tm′(1),

1, −Tm′(1) ≤ x,

 ,

where T ≥ t is so large that

T1 := −Tm′(0) ≤ −(M + 1),

T2 := −Tm′(1) ≥ (M + 1).

12



It is obvious that −∂xm′(θ̄) ≤ 1
t , so that θ̄ ∈ Mt,m. Notice also that the smoothness of m

grants that the function (−m′)−1 is C1 and thus for some constants c1, c2 > 0 it holds

c1 ≤
(
(−m′)−1

)′
(z) ≤ c2, ∀z ∈ [−m′(0),−m′(1)], (3.2)

hence up to increasing T we can also assume that

1

T
≤ c2. (3.3)

Observe that by a standard reparametrization argument one gets

inf

{∫ 1

0

∫
j2s

m(θs)
dx ds

}
=

(
inf

{∫ 1

0

√∫
j2s

m(θs)
dx ds

})2

,

(see for instance the proof of Thm. 5.4 in [4] for the details), hence to conclude it is sufficient
to find a weakly continuous curve s→ θs ∈Mt,m such that for some j the continuity equation
(2.16) holds and ∫ 1

0

√∫
j2s

m(θs)
dx ds <∞. (3.4)

Definition of the interpolating curve. Notice that since −m′′ > α > 0, −m′ is invertible. Then
put

ηs(x) := (−m′)−1
(
− (1− s)m′

(
θ0(x)

)
− sm′

(
θ̄(x)

))
,

(observe that for the case m(θ) = θ(1− θ), the above is just the linear interpolation between
θ0 and θ̄). A direct consequence of the definition is that

0 ≤ ηs ≤ 1

ηs(x) = 0 for x < T1,

ηs(x) = 1 for x > T2.

(3.5)

Also, the equality −m′
(
ηs(x)

)
= −(1−s)m′

(
θ0(x)

)
−sm′

(
θ̄(x)

)
and the fact that θ0, θ̄ ∈Mt,m

yield

− ∂x(m′(ηs)) ≤
1

t
, in the sense of distributions. (3.6)

Furthermore, the inequality −m′′ ≥ α grants that (−m′)−1 is Lipschitz and therefore [0, 1] 3
s 7→ ηs(x) ∈ [0, 1] is Lipschitz uniformly on x ∈ R. Hence defining hs :=

∫
(ηs −H)dy ∈ R,

we have that the map s 7→ hs is Lipschitz as well.
Now put

θs(x) := ηs(x− hs).

By construction it holds
∫

(θs − H)dy = 0 and the map [0, 1] × R 7→ θs(x) is continuous.
Taking into account (3.5) we deduce θs ∈M for every s ∈ [0, 1] while the property (3.6) gives
θs ∈Mt,m for every s ∈ [0, 1].

Define

js(x) := h′sηs(x− hs)−
∫ x

−∞
∂sηs(y − hs) dy,

13



so that for a.e. s ∈ [0, 1], js(x) is well defined for every x ∈ R. By direct computation one can
check that (θ, j) solve the continuity equation (2.16) in the sense of distributions. It is also
easy to see that it holds

js(x) = 0 for x ≤ K1 + hs,

js(x) = 0 for x ≥ K2 + hs,
(3.7)

and
sup
s,x
|js(x)| <∞. (3.8)

Energy estimate. Our goal is to prove the bound (3.4). Start observing that −m′′ > α > 0

and m(0) = m(1) = 0 yield that 1
m(θ) ≤ C 1

θ(1−θ) for C = 2
α . Hence, letting I1 := [T1, T1 + 1

2 ],
I2 := [T1 + 1

2 , T2 −
1
2 ] and I3 := [T2 − 1

2 , T2] and recalling (3.5), to conclude it is sufficient to
show that ∫

Ii

∣∣js(y + hs)
∣∣2

ηs(y)(1− ηs(y))
dy ≤ C

s
, ∀s ∈ [0, 1], i = 1, 2, 3, (3.9)

for some constant C > 0.
Since−m′ is increasing, the fact that θ0(x) ∈ [0, 1] for every x ∈ R and that−m′(θ̄(x)) = x

T
for x ∈ ∪3i=1Ii we get

−(1− s)m′(θ0(x))− sm′(θ̄(x)) ≥ −(1− s)m′(0) + s
x

T
= −m′(0) + s

x− T1
T

,

having recalled that T1 = −m′(0)T . Hence from (3.2) we get

ηs(x) ≥ sc1
x− T1
T

, ∀x ∈ ∪3i=1Ii, ∀s ∈ [0, 1]. (3.10)

Similarly, from the inequality

−(1− s)m′(θ0(x))− sm′(θ̄(x)) ≤ −(1− s)m′(1) + s
x

T
= −m′(1)− sT2 − x

T
,

and (3.2) we deduce

ηs(x) ≤ 1− sc1
T2 − x
T

. (3.11)

Estimate over I1. For x ∈ I1 we have θ0(x) = 0 and −m′(θ̄(x)) = x
T and thus

ηs(x) = (−m′)−1
(
− (1− s)m′(0) + s

x

T

)
= (−m′)−1

(
−m′(0) + s

x− T1
T

)
. (3.12)

From the second in (3.2) we therefore get

ηs(x) ≤ s c2
x− T1
T

≤ 1

2
, ∀s ∈ [0, 1], x ∈ I1, (3.13)

having used (3.3). Coupling this bound with (3.10) we get

ηs(x)(1− ηs(x)) ≥ sc1
x− T1

2T
, ∀s ∈ [0, 1], x ∈ I1. (3.14)
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From (3.12) and (3.2) we deduce |∂sηs(x)| ≤ c2
x−T1
T , which together with the first inequality

in (3.13) and the definition of js(x) yields

|js(x+ hs)| ≤ C(x− T1), ∀s ∈ [0, 1], x ∈ I1. (3.15)

Hence ∫
I1

|js(x+ hs)|2

ηs(x)
(
1− ηs(x)

) dx ≤ C
∫
I1

(x− T1)2

s(x− T1)
dx =

C

s
.

Estimate over I2. From (3.10) and (3.11) we get

sc1
2T
≤ ηs(x) ≤ 1− sc1

2T
, ∀s ∈ [0, 1], x ∈ I2.

Recalling from (3.8) that js(x) is uniformly bounded in s, x we thus obtain∫
I2

|js(x+ hs)|2

ηs(x)(1− ηs(x))
dx ≤ C

∫
I2

1

ηs(x)(1− ηs(x))
dx

= C

∫
I2

1

ηs(x)
dx+ C

∫
I2

1

1− ηs(x)
dx ≤ C

s
.

Estimate over I3. The argument is similar to the one used in I1. For x ∈ I3 we have θ0(x) = 1
and −m′(θ̄(x)) = x

T and thus

ηs(x) = (−m′)−1
(
− (1− s)m′(1) + s

x

T

)
= (−m′)−1

(
−m′(1)− sT2 − x

T

)
. (3.16)

Hence from the second in (3.2) we get

ηs(x) ≥ 1− sc2
T2 − x
T

≥ 1

2
, ∀s ∈ [0, 1], x ∈ I3, (3.17)

which together with (3.11) gives

ηs(x)(1− ηs(x)) ≥ sc1
T2 − x

2T
, ∀s ∈ [0, 1], x ∈ I3.

From (3.16) we obtain |∂sηs(x)| ≤ c2 T2−xT . Using this bound with the first inequality in (3.17),
the definition of js(x) and the fact that js(T2 + hs) = 0 (see the second in (3.7)) we get

|js(x+ hs)| = |js(T2 + hs)− js(x+ hs)| ≤ h′s|1− ηs(x)|+
∫ T2

x
|∂sηs|(y) dy ≤ C(T2 − x).

Therefore we get ∫
I3

|js(x+ hs)|2

ηs(x)(1− ηs(x))
dx ≤ C

∫
I3

(T2 − x)2

s(T2 − x)
dx ≤ C

s
.
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3.2 Contraction result

Lemma 3.2 (Hessian of Fε). Let f,m be respectively an admissible flux and an admissible
mobility, M > 0 and a ∈ (0, 12). Let θ̄ ∈ C∞(R) be 2M -periodic, i.e. θ̄(x) = θ̄(x + 2M) for
every x ∈ R, and such that θ̄(x) ∈ [a, 1−a] for every x ∈ R. Let T > 0 and θ ∈ C∞([T,∞)×R)
be the solution of

∂tθ + ∂xf(θ)− ε∂x(f ′′(θ)∂xθ) = 0, on [T,∞)× [−M,M ],

θT = θ̄, on [−M,M ],

θt(x) = θt(x+ 2M) ∀t ≥ T, x ∈ R.

(3.18)

Also, let δθ ∈ C∞(R) be 2M -periodic, with
∫M
−M δθ = 0 and δθ ∈ C∞([T,∞)×R) the solution

of
∂tδθ + ∂x(f ′(θ)δθ)− ε∂x

(
f ′′′(θ)δθ∂xθ + f ′′(θ)∂xδθ

)
= 0, on [T,∞)× [−M,M ],

δθT = δθ, on [−M,M ],

δθt(x) = δθt(x+ 2M), ∀t ≥ T, x ∈ R.
(3.19)

Finally, define φ ∈ C∞([T,∞)× R) by

∂xφt(x) := − 1

m(θt(x))

∫ x

−M
δθt(y) dy, for x ∈ [−M,M ]

φt(0) := 0.

(3.20)

Then the map t 7→
∫M
−M |∂xφt|

2(x)m(θt(x)) dx is C∞ and it holds

∂t
1

2

∫ M

−M
|∂xφ|2m(θ) dx =

∫ M

−M

1

2
|∂xφ|2m(θ)∂x(f ′(θ)) dx

+ ε

∫ M

−M
−|∂xxφ|2f ′′(θ)m(θ) +

1

2
|∂xφ|2∂x(f ′(θ))∂x(m′(θ)) dx

(3.21)

for every t ≥ T .
In particular, if m = −f and ∂x(f ′(θ̄)) ≤ 1

T on R it holds∫ M

−M
|∂xφt|2m(θt) dx ≤ t

T

∫ M

−M
|∂xφT |2m(θT ) dx, ∀t ≥ T. (3.22)

Proof. By the maximum principle we know that θt(x) ∈ [a, 1 − a] for every t ≥ T and
x ∈ [−M,M ], hence inft,xm(θt(x)) > 0, furthermore, the assumption

∫M
−M δθ = 0 yields∫M

−M δθt = 0 for every t ≥ T and therefore we have

∂xφt(−M) = ∂xφt(M) = 0, ∀t ≥ T.

This shows that the definition (3.20) of φ is well posed and φ is indeed C∞, which further
implies that t 7→

∫M
−M |∂xφt|

2(x)m(θt(x)) dx is C∞ as well.

16



Now notice that by the definition of φ we know that the equation

δθ + ∂x(m(θ)∂xφ) = 0 (3.23)

holds. Differentiating it in t we get

∂tδθ + ∂x
(
∂tm(θ)∂xφ+m(θ)∂txφ

)
= 0. (3.24)

We now proceed with the computations. For notational simplicity we are going to omit the
explicit dependence of the functions on t, x and the interval of integration, which will always
be [−M,M ]. Notice that due to the periodicity of the functions we will never have boundary
terms when performing integration by parts.

We have

∂t
1

2

∫
(∂xφ)2m(θ) dx =

∫
∂xφ∂txφm(θ) +

1

2
|∂xφ|2∂tm(θ) dx

=

∫
−φ∂x(∂txφm(θ)) +

1

2
|∂xφ|2∂tm(θ) dx

by (3.24) =

∫
φ∂tδθ + φ∂x(∂tm(θ)∂xφ) +

1

2
|∂xφ|2∂tm(θ) dx

=

∫
φ∂tδθ −

1

2
|∂xφ|2m′(θ)∂tθ dx.

Using (3.18) and (3.19) we then obtain

∂t
1

2

∫
|∂xφ|2m(θ) dx

=

∫
1

2
|∂xφ|2m′(θ)

(
∂xf(θ)− ε∂x(f ′′(θ)∂xθ)

)
dx

−
∫
φ
(
∂x(f ′(θ)δθ)− ε∂x(f ′′′(θ)δθ∂xθ + f ′′(θ)∂xδθ)

)
dx

=

∫
1

2
|∂xφ|2m′(θ)∂xf(θ)− φ∂x(f ′(θ)δθ) dx︸ ︷︷ ︸

=:A

+ ε

∫
−1

2
|∂xφ|2m′(θ)∂x(f ′′(θ)∂xθ) + φ∂x

(
f ′′′(θ)δθ∂xθ + f ′′(θ)∂xδθ

)
dx︸ ︷︷ ︸

=:B

.

Use (3.23) to obtain

A =

∫
1

2
|∂xφ|2m′(θ)f ′(θ)∂xθ + φ∂x

(
f ′(θ)∂x(m(θ)∂xφ)

)
dx

=

∫
1

2
|∂xφ|2m′(θ)f ′(θ)∂xθ − ∂xφf ′(θ)∂x(m(θ)∂xφ) dx

=

∫
−1

2
|∂xφ|2m′(θ)f ′(θ)∂xθ −

1

2
∂x|∂xφ|2m(θ)f ′(θ) dx =

∫
1

2
|∂xφ|2m(θ)∂x(f ′(θ)) dx,

and

B =

∫
−1

2
|∂xφ|2m′(θ)∂xx(f ′(θ)) + ∂xφ∂x(f ′′(θ))∂x(m(θ)∂xφ) + ∂xφf

′′(θ)∂xx(m(θ)∂xφ) dx

=

∫
−1

2
|∂xφ|2m′(θ)∂xx(f ′(θ)) + |∂xφ|2∂x(f ′′(θ))∂x(m(θ)) +

1

2
∂x|∂xφ|2∂x(f ′′(θ))m(θ)

+ |∂xφ|2f ′′(θ)∂xx(m(θ)) + ∂x|∂xφ|2f ′′(θ)∂x(m(θ)) + ∂xxxφ∂xφf
′′(θ)m(θ) dx.
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Conclude noticing that∫
1

2
∂x|∂xφ|2∂x(f ′′(θ))(m(θ)) + ∂x|∂xφ|2f ′′(θ)∂x(m(θ)) + ∂xxxφ∂xφf

′′(θ)m(θ) dx

=

∫
1

2
∂x|∂xφ|2∂x(f ′′(θ)m(θ)) + ∂xxxφ∂xφf

′′(θ)m(θ) +
1

2
∂x|∂xφ|2f ′′(θ)∂x(m(θ)) dx

=

∫
−|∂xxφ|2f ′′(θ)m(θ)− 1

2
|∂xφ|2

(
∂x(f ′′(θ))∂x(m(θ)) + f ′′(θ)∂xx(m(θ))

)
dx,

and therefore

B =

∫
−|∂xxφ|2f ′′(θ)m(θ)

+
1

2
|∂xφ|2

(
−m′(θ)∂xx(f ′(θ)) + ∂x(f ′′(θ))∂x(m(θ)) + f ′′(θ)∂xx(m(θ))

)
dx

=

∫
−|∂xxφ|2f ′′(θ)m(θ) +

1

2
|∂xφ|2∂x(f ′(θ))∂x(m′(θ)) dx.

This yields (3.21). For proving (3.22) observe that in the case m = −f from (3.21) it obviously
follows that

∂t
1

2

∫ M

−M
|∂xφt|2(−f(θt)) dx ≤

∫ M

−M

1

2
|∂xφt|2(−f(θt))∂x(f ′(θt)) dx,

and that since we are on a periodic domain and ∂x(f ′(θ̄)) ≤ 1
T , Oleinik holds (cp. Proposition

2.3), i.e.

∂x(f ′(θt)) ≤
1

t
.

This implies that

∂t
1

2

∫ M

−M
|∂xφt|2(−f(θt)) dx ≤ t−1 1

2

∫ M

−M
|∂xφt|2(−f(θt)) dx,

which can be rewritten as

∂t

(
t−1

1

2

∫ M

−M
|∂xφt|2(−f(θt)) dx

)
≤ 0.

Integrating yields (3.22).

Theorem 3.3. Let f be an admissible flux and θ0, θ1 ∈M1,−f . Let [1,∞)×R 3 (t, x) 7→ θit(x),
i = 0, 1 be the entropy solutions of the scalar conservation law

∂tθ + ∂x(f(θ)) = 0, (3.25)

subject to the initial condition
θi1 = θ

i
.

Then

d2(t,−f)(θ
0
t , θ

1
t ) ≤ t d2(1,−f)(θ̄

0, θ̄1). (3.26)
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Proof. Start by applying Proposition 3.1 to θ̄0, θ̄1 and t = 1 to find an optimal curve for d(1,−f)
connecting θ̄0 and θ̄1, i.e. a solution (θs(x), js(x)) of the continuity equation (2.16) such that
θ̄i = θ̄i for i = 0, 1 and fulfilling (3.1). Then we regularize this curve of initial data by applying
Proposition 2.10 with t := 1 to find a sequence tn ↑ 1 and maps θ̄n, j̄n ∈ C∞([0, 1]×R) fulfilling
(i), (ii), (iii), (iv) of the statement.

Setting up of the approximation scheme. We now make the curve of initial data periodic in x.
For this we pick M > 0 so large that

M ≥ 2 max{|L(θn,s)|, |R(θn,s)|}, ∀s ∈ [0, 1], n ∈ N,

and define

θ̄Mn,s(x) :=

 θ̄n,s(x), x ∈ [−M, M2 ),

2(1− x
M ), x ∈ [M2 ,M ].

 = min
{
θ̄n,s(x), 2(1− x

M
)
}
, ∀x ∈ [−M,M ],

smooth it out a bit at M
2 and M in order for its 2M -periodic extension to R (still denoted by

θ̄Mn,s) to be smooth. Notice that such smoothing can be done in a way that

∂x(f ′(θ̄Mn,s)) ≤
1

tn
, ∀x ∈ R, s ∈ [0, 1], n ∈ N. (3.27)

Next we change the curve of initial data such that their values lie in (0, 1). Choose a ∈ (0, 12)

and define θa,Mn,s , δθ
a,M
n,s , j

a,M
n,s ∈ C∞(R) as

θ̄a,Mn,s (x) := (1− 2a)θ̄Mn,s(x) + a,

δθ
a,M
n,s (x) := (1− 2a)∂sθ

M
n,s(x),

j̄a,Mn,s (x) := (1− 2a)j̄Mn,s(x) =

∫ x

−∞
δθ
a,M
n,s (y) dy,

for every x ∈ R. The smoothness of f and θ̄Mn,s and (3.27) give that

∂x(f ′(θ̄a,Mn,s ))(x) ≤ 1

Ta,n
, ∀x ∈ R, (3.28)

for some Ta,n, Ta satisfying Ta,n → Ta as n → ∞ and Ta ↑ 1 as a ↓ 0. Then let θa,M,ε
n,s,t ∈

C∞([Ta,n,∞) × R) be the solution of (3.18) with Ta,n, θ̄
a,M
n,s in place of T, θ. Similarly, let

δθa,M,ε
n,s,t ∈ C∞([Ta,n,∞) × R) be the solution of (3.19) with Ta,n, δθ

a,M
n,s = δθ

a
n,s in place of

T, δθ and denote by ∂xφ
a,M,ε
n,s,t the quantity defined by (3.20) accordingly. Similarly, define

ja,M,ε
n,s,t ∈ C∞([Ta,n,∞)× R) as the 2M -periodic function such that

ja,M,ε
n,s,t (x) =

∫ x

−M
δθa,M,ε
n,s,t (y) dy, ∀x ∈ [−M,M ],

and notice that
m(θa,M,ε

n,s,t )∂xφ
a,M,ε
n,s,t = ja,M,ε

n,s,t .
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Now (3.22) reads ∫ M

−M

|ja,M,ε
n,s,t |2(x)

m(θa,M,ε
n,s,t (x))

dx ≤ t

Ta,n

∫ M

−M

|j̄a,Mn,s |2(x)

m(θ̄a,Mn,s (x))
dx,

which integrated yields∫ 1

0

∫ M

−M

|ja,M,ε
n,s,t |2(x)

m(θa,M,ε
n,s,t (x))

dx ds ≤ t

Ta,n

∫ 1

0

∫ M

−M

|j̄a,Mn,s |2(x)

m(θ̄a,Mn,s (x))
dx ds. (3.29)

Let ε ↓ 0 and n ↑ +∞. The convergence of the solutions θa,M,ε
n,s,t of the viscous approximation

(3.18) to entropy solutions and the stability of the latter with respect to convergence of the
initial datum yields that

θa,M,ε
n,s,t → θa,Ms,t weakly in duality with Cc(R) as n ↑ ∞ and ε ↓ 0 for any s ∈ [0, 1] and t ≥ Ta,

where θa,Ms,t denotes the entropy solution of (3.18) with ε = 0 and Ta, θ̄
a,M
s in place of T, θ. The

uniform bound (3.29) and Proposition 2.11 grant that there are vector fields [Ta,∞) × R 3
(t, x) 7→ ja,Ms,t (x) such that the continuity equation (2.16) is fulfilled. Then Proposition 2.12
yields ∫ 1

0

∫ M

−M

|ja,Ms,t |2(x)

m(θa,Ms,t )(x)
dx ds ≤ lim

ε↓0
n↑∞

∫ 1

0

∫ M

−M

|ja,M,ε
n,s,t |2(x)

m(θa,M,ε
n,s,t )(x)

dx ds, ∀t ≥ 1. (3.30)

Notice that for M large enough depending on t, the left hand side can be rewritten as∫ 1

0

∫ M

−M

|ja,Ms,t |2(x)

m(θa,Ms,t )(x)
dx ds =

∫ 1

0

∫ M

−M

|jas,t|2(x)

m(θas,t)(x)
dx ds =

∫ 1

0

∫
R

|jas,t|2(x)

m(θas,t)(x)
dx ds, (3.31)

where θas,t denotes the entropy solution in the whole R with initial datum θ̄as (x) := (1 −
2a)θ̄s(x) + a and js,t are the corresponding momentum vector fields defined in analogy with
the formulas above. These equalities are due to the finite speed of propagation of the equation.
More precisely, the cone of propagation C(t)(x0) at a point x0 up to time t is given by

C(t)(x0) =
{

(x+ x0, t)|0 ≤ t ≤ 1, f ′(0)t ≤ x ≤ f ′(1)t
}
.

This guarantees that for M sufficiently large, neither the periodization nor the affine term in
the definition of θa,Ms,t affect the evolution of the solution in [−M,M ] up to our fixed time t.
Also observe that jas,t(x) = 0 for x > M

2 since then ∂sθas,t(x) = 0. By the stability of solutions
and the lower semicontinuity of the action (Proposition 2.12) we find∫ 1

0

∫
R

|js,t|2(x)

m(θs,t)(x)
dx ds ≤ lim

a↓0

∫ 1

0

∫
R

|jas,t|2(x)

m(θas,t)(x)
dx ds,

where θs,t = θas,t for a = 0, so that from this bound and (3.29), (3.30), (3.31) we get∫ 1

0

∫
R

|js,t|2(x)

m(θs,t)(x)
dx ds ≤ t lim

a↓0
lim
n↑+∞

∫ 1

0

∫ M

−M

|j̄a,Mn,s |2(x)

m(θ̄a,Mn,s (x))
dx ds. (3.32)
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Now notice that arguing as for (3.31), we have∫ M

−M

|j̄a,Mn,s |2(x)

m(θ̄a,Mn,s (x))
dx =

∫
R

|j̄an,s|2(x)

m(θ̄an,s(x))
dx, (3.33)

where θ̄an,s := (1− 2a)θ̄n,s + a and j̄an,s := (1− 2a)j̄n,s. By the convexity of R×R+ 3 (α, β) 7→
|α|2
m(β) and the definition of j̄an,s, θ̄an,s we obtain

∫
R

|j̄an,s|2(x)

m(θ̄an,s(x))
dx ≤

∫
R

|j̄n,s|2(x)

m(θ̄n,s(x))
dx. (3.34)

Thus recalling property (iv) of Proposition 2.10, from (3.32), (3.33) and (3.34) we deduce∫ 1

0

∫
R

|js,t|2(x)

m(θs,t)(x)
dx ds ≤ t

∫ 1

0

∫
R

|j̄s|2(x)

m(θ̄s(x))
dx ds = td21,−f (θ

0
, θ

1
).

Recalling Proposition 2.3 and the fact that θs ∈ M1,−f for every s ∈ [0, 1] we deduce that
θs,t ∈ Mt,−f for every s ∈ [0, 1] and t ≥ 1. Hence for given t ≥ 1 the curve s 7→ (θs,t, js,t) is
admissible in the definition of dt,−f and the claim is proven.

We now interpret this contraction rate in terms of rescaled solutions: this will show that
every entropy solution of (3.25) with initial data in M converges - after rescaling - to the
rarefaction wave. More precisely, for every entropy solution θ of (3.25) define the rescaled
solution θ̂ by

θ̂t(x) := θt(tx). (3.35)

Observe that the rarefaction wave θrar is self similar, in the sense that

θ̂rart (x) = θrart (tx) =


0, x ≤ f ′(0),

(f ′)−1(x), f ′(0) < x < f ′(1),

1, f ′(1) ≤ x,

 ,

so that the rescaled solution does not depend on time. The convergence of rescaled solutions
to the rescaled rarefaction wave is then a consequence of the following simple corollary:

Corollary 3.4. Let f be an admissible flux and θ0, θ1 ∈ M1,−f . Let [1,∞) × R 3 (t, x) 7→
θit(x), i = 0, 1 be the entropy solutions of the scalar conservation law

∂tθ
i + ∂x(f(θi)) = 0,

subject to the initial condition
θi1 = θ

i
.

Define the rescaled solutions θ̂i, i = 0, 1 according to formula (3.35).
Then

d21,−f (θ̂0t , θ̂
1
t ) ≤

1

t2
d21,−f (θ01, θ

1
1), ∀t ≥ 1.
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Proof. Fix t ≥ 1 and let s 7→ (θs, js) be a solution of the continuity equation (2.16) with
θs ∈Mt,−f for every s ∈ [0, 1] and θi = θit, i = 0, 1. Define (θ̂s, ĵs) by

θ̂s(x) := θs(tx),

ĵs(x) := 1
t js(tx),

so that s 7→ (θ̂s, ĵs) still solves the continuity equation, θ̂s ∈ M1,−f for every s ∈ [0, 1] and
θ̂i = θ̂it for i = 0, 1.

Hence according to the definition of d1,−f we have

d21,−f (θ̂0t , θ̂
1
t ) ≤

∫∫ 1

0

|ĵs|2(x)

m(θ̂s)(x)
ds dx =

1

t3

∫∫ 1

0

|js|2(x)

m(θs)(x)
ds dx.

Taking the infimum over all admissible curves in the definition of dt,−f (θ0t , θ
1
t ) we deduce

d21,−f (θ̂0t , θ̂
1
t ) ≤

1

t3
d2t,−f (θ0t , θ

1
t ).

Thus Theorem 3.3 implies the claim.

3.3 Sharpness on the contraction result

We now show that our contraction result is both non-trival and sharp. For simplicity, we
restrict to the case

f(z) := z(z − 1),

but all the discussion can be carried out for general fluxes.
Once again, the rarefaction wave θrar solution to

∂tθ + ∂xf(θ) = 0, (3.36)

will play a distinguished role in this discussion. With this choice of f it is given by the
expression

θrart (x) :=


0, x ≤ −t,
x+t
2t , −t < x < t,

1, t ≤ x

 .

We also observe that the simple inequality

1

z(1− z)
≥ 1

z
, ∀z ∈ [0, 1],

yields for t ≥ 1

dt,−f (θ
0
, θ

1
) ≥ d1,−f (θ

0
, θ

1
) ≥W2(θ

0
, θ

1
), ∀θ0, θ1 ∈Mt,−f . (3.37)
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By ‘non-trivial’ we mean that the contraction result provides an estimate which is better
than the one obtained by triangle inequality. To see this, we start claiming thatW2(θ

rar
t , θrar1 ) ∼

t
3
2 . Indeed we have

V rar
t (x) :=

∫ x

−∞
θrart (y) dy =


0, x ≤ −t,

t
(
x
2t + 1

2

)2
, −t ≤ x ≤ t,

x, t ≤ x,


thus for z > 0 it holds

(V rar
t )−1(z) =

 2
√
tz − t, z ≤ t,

z, z ≥ t,


and therefore, using the known fact that in one dimension the optimal transport distance
between two measures can be expressed in terms of their cumulative distribution functions
(see for example [12, Theorem 2.18])

W 2
2 (θrart , θrar1 ) =

∫ ∞
0
|(V rar

t )−1(z)− (V rar
1 )−1(z)|2 dz

=

∫ 1

0
|2
√
z(
√
t− 1) + 1− t|2 dz +

∫ t

1
|2
√
tz − t− z|2 dz ∼ t3,

which is our claim.
Now let θ be an entropy solution of (3.36) and notice that if we try to bound the d1,−f -

distance between θt and θrart via the triangle inequality

d1,−f (θt, θ
rar
t ) ≤ d1,−f (θt, θ1) + d1,−f (θ1, θ

rar
1 ) + d1,−f (θrar1 , θrart ), (3.38)

due to the fact that
d1,−f (θrar1 , θrart ) ≥W2(θ

rar
1 , θrart ) ≥ t

3
2 ,

we see that the right-hand side of (3.38) is of order at least t
3
2 .

On the other hand, by Theorem 3.3 and (3.37) we obtain

d1,−f (θt, θ
rar
t ) ≤ dt,−f (θt, θ

rar
t ) ≤

√
t d1,−f (θ1, θ

rar
1 ),

and thus a scaling of order
√
t, which is certainly better than t

3
2 at the regime of large times.

Now we show that the contraction result is sharp: to this aim we will exhibit an entropy
solution θ of (3.36) such that dt,−f (θt, θ

rar
t ) is of order

√
t.

Proposition 3.5. There exists an entropy solution θ of (3.36) such that

ct ≤ d2(t,−f)(θt, θ
rar
t ) ≤ Ct, ∀t ≥ 1,

for some constants c, C.

23



Proof. Theorem 3.3, combined with Proposition 3.1 to ensure d2(1,−f)(θ1, θ
rar
1 ) . 1, provides

the bound from above, so we only have to prove the bound from below. Recalling inequality
(3.37) it is sufficient to show that

W 2
2 (θt, θ

rar
t ) & t.

Let θt(x) be the entropy solution to (3.36) which is obtained via cutting θrart at 0 and inserting
a piece of the constant function 1

2 . In formulas this reads

θt(x) :=



0, x ≤ −(1 + t),

x+1+t
2t , −(1 + t) < x ≤ −1,

1
2 , −1 < x ≤ 1,

x−1+t
2t , 1 < x ≤ 1 + t,

1, 1 + t < x,


.

By looking at the transport from θt to θrart , we see that heuristically we have to transport
mass ∼ t by distance ∼ 1, thus it should hold

W 2
2 (θ0(t, ·), θ1(t, ·)) ∼ t.

More formally, by defining

Vt(x) =

∫ x

−∞
θt(y) dy,

we compute for x ≤ −1

Vt(x) :=

 0, x ≤ −(1 + t),

t
(
x+1
2t + 1

2

)2
, −(1 + t) < x ≤ −1,

 .

This yields for 0 < z ≤ t
4

V −1t (z) =
{
−(t+ 1) + 2

√
tz, z < t

4 ,
}
.

Thus we have

W 2
2 (θt, θ

rar
t ) =

∫ ∞
0
|V −1t (z)− (V rar

t )−1(z)|2 dz ≥
∫ t

4

0
|V −1t (z)− (V rar

t )−1(z)|2 dz

=

∫ t
4

0
| − (t+ 1) + 2

√
tz + t− 2

√
tz|2 dz =

t

4
∼ t,

and the proof is complete.

3.4 Comments about admissible fluxes

In this final section we show that the notion of admissible fluxes in the sense of Definition
2.13 is not really restrictive: by a simple scaling argument we can always reduce to the case
of admissible fluxes.
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Proposition 3.6. Let f ∈ C∞(R) with f ′′ ≥ α > 0, and θ ∈ L∞(R+ ×R) a weak solution of

∂tθ + ∂xf(θ) = 0, (3.39)

s.t. there exist L(t), R(t) with

θt(x) = inf
x,t
θt(x) =: θ−, for x < L(t),

θt(x) = sup
x,t

θt(x) =: θ+, for x > R(t).
(3.40)

Consider the function θ̃ defined by

θ̃t(x) =
1

θ+ − θ−

(
θ(θ+−θ−)t

(
x− (f(θ−)− f(θ+))t− a

)
− θ−

)
, (3.41)

where a is an appropriately chosen constant depending on f and θ0 only (see the proof).
Then θ̃ is a weak solution of

∂tθ̃ + ∂xf̃(θ̃) = 0, (3.42)

such that θ̃t ∈M for all t ≥ 0, where f̃ is given by

f̃(z) := f
(
(θ+ − θ−)z + θ−

)
+ (f(θ−)− f(θ+)z − f(θ−),

and in particular is an admissible flux in the sense of Definition 2.13.
Furthermore, θ is an entropy solution of (3.39) if and only if θ̃ is an entropy solution of

(3.42).

Proof. The fact that θ̃ is a weak solution of (3.42) comes from straightforward computation
and simple algebraic manipulations also show that f̃ is an admissible flux.

We prove that θ̃t ∈M for every t ≥ 0. Notice that by definition we have

0 ≤ θ̃t(x) ≤ 1,∀t ≥ 0, x ∈ R,

and

θ̃t(x) = 0, for x << 0,

θ̃t(x) = 1, for x >> 0.

Since θ̃ is a solution to a scalar conservation law with flux f̃ s.t. f̃(0) = f̃(1) we observe that
there exists b ∈ R s.t. ∫

R
θ̃t(y)−H(y) dy = b, for a.e. t ≥ 0.

If b 6= 0, replacing a by a+ b in the definition of θ̃ we find that for this new choice∫
R
θ̃t(y)−H(y) dy = 0,

which yields θ̃t ∈M .
To see that θ is an entropy solution if and only if θ̃ is, we use the Oleinik principle:

θt entropy solution to conservation law with flux f ⇔ ∂xf
′(θt) ≤

1

t
for a.e. t > 0.
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The fact that Oleinik’s condition holds for (θ̃, f̃) if and only if it holds for (θ, f) is a simple
calculation guided by the formal computation

∂xf̃
′(θ̃(t, x)) = f̃ ′′(θ̃(t, x))∂xθ̃(t, x) = (θ+ − θ−)2f ′′(θ((θ+ − θ−)t, x̃))

1

(θ+ − θ−)
(∂xθ)((θ+ − θ−)t, x̃)

≤ (θ+ − θ−)2
1

(θ+ − θ−)

1

(θ+ − θ−)t
=

1

t
,

where x̃ := x− (f(θ−)− f(θ+))t− a. We omit the details.

This proposition allows us to use our main Theorem 3.3 to compare the shape of two
solutions θ0, θ1 of the same scalar conservation law, given that (3.40) holds for both solutions
with the same value for i, s, since then their transformations θ̃0, θ̃1 via (3.41) both yield
solutions to the same equation which fits in the framework of Theorem 3.3.

The only part of the transformation (3.41) that depends on the solution itself is then the
translation parameter a which is needed in order to obtain the same mass for θ̃0 and θ̃1, a
necessary condition to ensure that the Wasserstein distance between them is finite. Reversing
the transformations of (3.41) we are e.g. able to obtain

W 2
2

(
θ0t (· − a0), θ1t (· − a1)

)
. t.

26



References

[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in spaces of
probability measures, Birkhäuser Verlag, 2005.

[2] J. A. Carrillo, S. Lisini, G. Savaré and D. Slepčev, Nonlinear mobility continuity equations
and generalized displacement convexity, J. Funct. Anal., 258 (2010), 4, pp. 1273-1309.

[3] C.M. Dafermos, Hyperbolic conservation laws in continuum physics, Springer, 2010.

[4] J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between mea-
sures, Calculus of Variations and Partial Differential Equations, 34 (2009), pp. 193-231.

[5] N. Gigli and F. Otto, Entropic Burgers’ equation via a minimizing movement scheme
based on the Wasserstein metric, MPI MIS Preprint 39/2012.

[6] S.N. Kruzkov, First order quasilinear equations in several independent variables, Math.
Sb., 123 (1970), pp. 228-255; English translation in Math. USSR Sbornik, 10 (1970), pp.
217-243.

[7] O.A. Oleinik, Discontinuous solutions of nonlinear differential equations. Usp. Mat.
Nauk., 12 (1957), pp. 3-73; English transl. in AMS Transl., 26 (1963), pp. 1155-1163.

[8] F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational ap-
proach, Comm. Pure Appl. Math., 52 (1999), no. 7, pp. 873-915.

[9] F. Otto, The geometry of dissipative evolution equations: the porous medium equation,
Comm. Partial Differential Equations, 26 (2001), pp. 101-174.

[10] F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein
distance, SIAM Journal on Mathematical Analysis, 37 (2005), 4, pp. 1227-1255 (elec-
tronic).

[11] J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, 1994.

[12] C. Villani, Topics in optimal transportation, American Mathematical Soc., 2003.

27


	Introduction
	Preliminaries
	Preliminaries on scalar conservation laws
	The spaces M, Mt,m
	Heuristic discussion of gradient flow structure

	Rigorous statements and proofs
	Finiteness of the new distance
	Contraction result
	Sharpness on the contraction result
	Comments about admissible fluxes


