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Abstract

We consider the Itzykson-Zuber-Eynard-Mehta two-matrix model and prove that the partition
function is an isomonodromic tau function in a sense that generalizes Jimbo-Miwa-Ueno’s [20]. In
order to achieve the generalization we need to define a notion of tau-function for isomonodromic
systems where the ad–regularity of the leading coefficient is not a necessary requirement.
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1 Introduction

Random matrices models have been studied for years and have generated important results in
many fields of both theoretical physics and mathematics. The two-matrix model

dµ(M1,M2) = e−Tr(V1(M1)+V2(M2)−M1M2)dM1dM2 (1.1)

was used to model 2D quantum gravity [14] and was investigated from a more mathematical
point of view in [26, 17, 4, 5, 7, 12, 8]; the partition function of the model

ZN (V1, V2) =
∫ ∫

dµ(M1,M2) (1.2)

has important properties in the large N–limit for the enumeration of discrete maps on surfaces
[15] of arbitrary genus and it is also known to be a tau-function for the 2–Toda hierarchy. In the
case of the Witten conjecture, proved by Kontsevich [24] with the use of matrix integrals not
too dissimilar from the above one, the enumerative properties of the tau function imply some
nonlinear (hierarchy of) PDEs (the KdV hierarchy for the mentioned example). On a similar
level, one expects some hierarchy of PDEs for the case of the two-matrix model and possibly
some Painlevé property (namely the absence of movable essential singularities). The Painlevé
property is characteristic of tau-functions for isomonodromic families of ODEs that depend on
parameters; hence a way of establishing such property for the partition function ZN is that of
identifying it with an instance of isomonodromic tau function [20, 21].

This is precisely the purpose of this article; we capitalize on previous work that showed how
to relate the matrix model to certain biorthogonal polynomials [26, 17] and how these appear
in a natural fashion as the solution of certain isomonodromic family [9] .

The paper extends to the case of the two matrix model the work contained in [9, 12, 10]; it
uses, however, a different approach, closer to the recent [6].

In [9, 12, 10, 19] the partition function of the one–matrix model (and certain shifted Töplitz
determinants) were identified as isomonodromic tau functions by using spectral residue formulæ
in terms of the spectral curve of the differential equation. Such spectral curve has interesting
properties inasmuch as –in the one-matrix case– the spectral invariants can be related to the
expectation values of the matrix model. Recently the spectral curve of the two matrix model [8]
has been written explicitly in terms of expectation values of the two–matrix model and hence
one could use their result and follow a similar path for the proof as the one followed in [12].
Whichever one of the two approaches one chooses, a main obstacle is that the definition of

2



isomonodromic tau function [20, 21] relies on a genericity assumption for the ODE which fails
in the case at hand, thus requiring a generalization in the definition.

According to this logic, one of the purposes of this paper is to extend the notion of tau-
function introduced by Jimbo-Miwa-Ueno’s [20], to the two-matrix Itzykson-Zuber model. This
task is accomplished in a rather general framework in Sec. 3.

We then show that the partition function has a very precise relationship with the tau-function
so introduced, allowing us to (essentially) identify it as an isomonodromic tau function (Thm.
3.4).

2 A Riemann Hilbert formulation of the two-matrix model

According to the seminal work [26, 17] and following the notations and definitions introduced in
[4, 5], we consider paired sequences of monic polynomials {πm(x), σm(y)}m=0...∞ (m = deg πm =
deg σm), that are biorthogonal in the sense that∫∫

κ
dxdyπm(x)σn(y)e−V1(x)−V2(y)+xy = hmδmn, hm 6= 0. (2.1)

The functions V1(x), V2(y) appearing here are referred to as potentials, terminology drawn from
random matrix theory, in which such quantities play a fundamental role.

Henceforth, the second potential V2(y) will be chosen as a polynomial of degree d2 + 1

V2(y) =
d2+1∑
j=1

vj
j
yj , vd2+1 6= 0 (2.2)

For the purposes of most of the considerations to follow, the first potential V1(x) may have very
general analyticity properties as long as the manipulations make sense, but for definiteness and
clarity we choose it to be polynomial as well.

The symbol
∫ ∫

κ stands for any linear combination of integrals of the form∫∫
κ
dxdy :=

∑
j

∑
k

κjk
∫

Γj

dx

∫
Γ̂k

dy, κij ∈ C (2.3)

where the contours {Γ̂k}k=1...d2 will be chosen as follows. In the y–plane, define d2 + 1 “wedge
sectors” {Ŝk}k=0...d2 such that Ŝk is bounded by the pairs of rays: rk := {y| arg y = θ + 2kπ

d2+1}
and rk−1 := {y| arg y = θ + 2(k−1)π

d2+1 }, where θ := arg vd2+1. Then Γ̂k is any smooth oriented
contour within the sector Ŝk starting from ∞ asymptotic to the ray rk (or any ray within the
sector that is at an angle < π

2(2d2+1) to it, which is equivalent for purposes of integration), and
returning to∞ asymptotically along rk−1 (or at an angle < π

2(2d2+1) to it). These will be referred
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to as the “wedge contours”. We also define a set of smooth oriented contours {Γ̌k}k=1,...d2 , that
have intersection matrix Γ̌j ∩ Γ̂k = δjk with the Γ̂k’s, such that Γ̌k starts from ∞ in sector Ŝ0,
asymptotic to the ray ř0 := {y| arg(y) = θ − π

d2+1 and returns to ∞ in sector Ŝk asymptotically

along the ray řk := {y| arg(y) = θ + 2(k− 1
2

)

d2+1 . These will be called the “anti-wedge” contours.
(See Fig. 1.) The choice of these contours is determined by the requirement that all moment
integrals of the form∫

Γ̂k

yje−V2(y)+xydy,

∫
Γ̌k

ykeV2(y)−xydy, k = 1, . . . d2, j ∈ N (2.4)

be uniformly convergent in x ∈ C. In the case when the other potential V1(x) is also a polynomial,
of degree d1 + 1, the contours {Γk}k=1,...d1 in the x–plane may be defined similarly.

The “partition function” is defined here to be the multiple integral

ZN :=
1
N !

∫∫
κN

N∏
j=1

dxjdyj∆(X)∆(Y )
N∏
j=1

e−V1(xj)−V2(yj)+xjyj (2.5)

where ∆(X) and ∆(Y ) denote the usual Vandermonde determinants and the factor 1
N ! is chosen

for convenience.
Such multiple integral can also be represented as the following determinant

ZN = det[µij ]0≤i,j≤N−1 , µij :=
∫

κ
xiyje−V1(x)−V2(y)+xydxdy (2.6)

The denomination of “partition function” comes from the fact [26, 17, 9] that when κ coincides
with R×R then ZN coincides (up to a normalization for the volume of the unitary group) with
the following matrix integral∫∫

dM1dM2e−tr(V1(M1)+V2(M2)−M1M2) (2.7)

extended over the space of Hermitean matrices M1,M2 of size N ×N , namely the normalization
factor for the measure dµ(M1,M2) introduced in 1.1.

2.1 Riemann–Hilbert characterization for the orthogonal polynomials

A Riemann–Hilbert characterization of the biorthogonal polynomials is a crucial step towards
implementing a steepest–descent analysis. In our context it is also crucial in order to tie the
random matrix side to the theory of isomonodromic deformations.

We first recall the approach given by Kuijlaars and McLaughin (referred to as KM in the
rest of the article) in [25], suitably extended and adapted (in a rather trivial way) to the setting
and notation of the present work. We quote -paraphrasing and with a minor generalization-
their theorem, without proof.
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Figure 1: Wedge and anti-wedge contours for V2(y) of degree D2 + 1

Theorem 2.1 (Kuijlaars and McLaughin asymptotic). The monic bi-orthogonal polynomial
πn(x) is the (1, 1) entry of the solution Γ(x) (if it exists) of the following Riemann-Hilbert
problem for Γ(x).

1. The matrix Γ(x) is piecewise analytic in C \
⊔

Γj;

2. the (non-tangential) boundary values of Γ(x) satisfy the relations

Γ(x)+ = Γ(x)−


1 wj,1 . . . wj,d2

1 0 0
. . .

1

 , x ∈ Γj (2.8)

wj,ν = wj,ν(x) := e−V1(x)
d2∑
k=1

κjk
∫

Γ̂k

yν−1e−V2(y)+xydy (2.9)

3. as x→∞ we have the following asymptotic expansion

Γ(x) ∼
(
Id +

YN,1
x

+O
(

1
x2

))xN 0 0
0 x−mN−1IdrN 0
0 0 x−mN Idd2−rN

 (2.10)
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where we have defined the integers mN , rN as follows

N = mNd2 + rN , mN , rN ∈ N, 0 ≤ rn ≤ d2 − 1 (2.11)

It follows from [25] that the solution ΓN (x) has the following form

ΓN (x) := Γ(x) :=


πN (x) C0(πN ) . . . Cd2−1(πN )
pN−1(x) C0(pN−1) . . . Cd2−1(pN−1)

...
...

pN−d2(x) C0(pN−d2) . . . Cd2−1(pN−d2)

 , (2.12)

Ci(f(z)) :=
1

2πi

∫∫
κ

f(x)
x− z

yi e−V1(x)−V2(y)+xydydx (2.13)

where the polynomials denoted above by pN−1, . . . , pN−d2 are some polynomials of degree not
exceeding N − 1, whose detailed properties are largely irrelevant for our discussion; we refer to
[25] for these details.

By a left multiplication of this solution by a suitable constant matrix we can see that the
matrix

Γ̂N :=


πn C0(πn) . . . Cd2−1(πn)
πn−1 C0(πn−1) . . . Cd2−1(πn−1)

...
...

πn−d2 C0(πn−d2) . . . Cd2−1(πn−d2)

 (2.14)

and ΓN are related as
Γ̂N (x) = UNΓN (x) (2.15)

where UN is a constant matrix (depending on N and on the coefficients of the polynomials but
not on x). As an immediate consequence, Γ̂N solves the same RHP as Γ with the exception of
the normalization at infinity (2.10).

The present RHP is not immediately suitable to make the connection to the theory of
isomonodromic deformations as described in [20, 21]; we recall that this is the theory that
describes the deformations of an ODE in the complex plane which leave the Stokes’ matrices
(i.e. the so–called extended monodromy data) invariant. The solution ΓN (or Γ̂N ) does not solve
any ODE as formulated, because the jumps on the contours are non constant. If -however- we
can relate ΓN with some other RHP with constant jumps, then its solution can be immediately
shown to satisfy a polynomial ODE, which allows us to use the machinery of [20, 21]. This is
the purpose of the next section.
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2.2 A RHP with constant jumps

In [9] the biorthogonal polynomials were characterised in terms of an ODE or –which is the same–
of a RHP with constant jumps. In order to connect the two formulations we will use some results
contained in [13] and we start by defining some auxiliary quantities: for 1 ≤ k ≤ d2, define the
d2 sequences of functions {ψ(k)

m (x)}m∈N as follows:

ψ(k)
m (x) :=

1
2πi

∫
Γ̌k

ds

∫∫
κ
dzdw

πm(z)e−V1(z)

x− z
V ′2(s)− V ′2(w)

s− w
e−V2(w)+V2(s)+zw−xs, 1 ≤ k ≤ d2,

(2.16)
and let

ψ(0)
m (x) := πm(x)e−V1(x). (2.17)

In terms of these define, for N ≥ d2, the sequence of (d2 + 1) × (d2 + 1) matrix valued
functions Ψ̂

N
(x)

Ψ̂
N

(x) :=


ψ

(0)
N (x) . . . ψ

(d2)
N (x)

...
...

ψ
(0)
N−d2(x) . . . ψ

(d2)
N−d2(x)

 (2.18)

The following theorem is easily established using the properties of the bilinear concomitant and
it is a very special case of the setting of [3] (Cf. Appendix B for a self-contained re-derivation)

Theorem 2.2 (Jump discontinuities in Ψ̂
N

). The limits Ψ̂
N
± when approaching the contours Γj

from the left (+) and right(−) are related by the following jump discontinuity conditions

Ψ̂
N

+(x) = Ψ̂
N
−(x)H(j) (2.19)

(2.20)

where

H(j) := I− 2πie0κ
T

Ĥ(j) = (H(j))−1 = I + 2πie0κ
T (2.21)

e0 :=


1
0
...
0

 κ :=


0

κj1
...

κjd2

 (2.22)

The proof of this theorem is given in Appendix B. For later convenience we define also

Ψ
N

:= U−1
N Ψ̂

N
(2.23)
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The relationship with the matrices ΓN , Γ̂N introduced in the previous section is detailed in the
following

Theorem 2.3 (Factorization theorem). The following identities hold

Ψ̂
N

(x) = Γ̂N (x)V (x)W (x) , Ψ
N

(x) = ΓN (x)V (x)W (x) (2.24)

where

V :=
(

e−V1(x) 0
0 V0,

)
, W (x) :=

(
1 0
0 W0(x)

)
(2.25)

and V0, W0(x) are the d2 × d2 matrices with elements

(V0)jk =


v2 v3 . . . vd2+1

v3 vd2+1

· ·
·

vd2 vd2+1

vd2+1

 = (2.26)

=
vj+k if j + k ≤ d2 + 1

0 if j + k > d2 + 1,
(2.27)

(W0(x))jk =
∫

Γ̌k

yj−1eV2(y)−xydy, 1 ≤ j, k ≤ d2 (2.28)

The proof is a direct verification by multiplication by matrices, noticing that the matrix
V0 is nothing but the matrix representation of V ′2(y)−V ′2(s)

y−s as a quadratic form in the bases
1, y, y2, . . . , yd2−1 and 1, s, s2, . . . , sd2−1 (more details are to be found on appendix A, based on
[13, 3]) The RHP for Ψ

N
can be read off from that of ΓN and the fact that the jumps are constants.

For convenience we collect the information in the following

Theorem 2.4. The matrix Ψ
N

is the unique solution of the following RHP:

1. Constant Jumps:

Ψ
N

+(x) = Ψ
N
−(x)H(j) (2.29)

(2.30)

2. Asymptotic at infinity:

Ψ
N

(x) ∼ ΓN

xNe−V1(x) 0 0
0 x−mN−1IdrN 0
0 0 x−mN Idd2−rN

Ψ0(x) (2.31)
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where
ΓN = Id+

YN,1
x

+ ... (2.32)

and where Ψ0(x) := V (x)W (x) will be referred to as the bare solution. Its asymptotic at
infinity can be computed by steepest descent, but since it is N–independent, for the sake of
brevity, we do not report on it (details are contained in [5, 13]).

3. ΨN has constant jumps

4. Ψ′N (x)Ψ−1
N = DN (x) where DN (x) is a polynomial in x

5. ∂uKΨN (x)Ψ−1
N = UK,N (x) is polynomial in x.

6. ∂vJΨN (x)Ψ−1
N = VJ,N (x) is polynomial in x.

7. det(ΨN+1Ψ−1
N ) = Cste

The points (4,5,6,7) in the above theorem can be found in [8, 5]
In the next section we shall define a proper notion of isomonodromic tau function: it should

be pointed out that the definition of [20, 21] cannot be applied as such because –as showed in
[5]– the ODE that the matrix Ψ

N
(or Ψ̂

N
) solves, has a highly degenerate leading coefficient at the

singularity at infinity.
In the list, the crucial ingredients are the differential equations (in x or relatively to the

parameters uK and vJ). First, the fact that DN (x) is a polynomial comes from explicit com-
putation (See [8] for example). The result concerning the determinant of RN (x) can also be
found in [8] where one has: det(ΨN+1Ψ−1

N ) = det(aN (x)) = Cste. The properties concerning
the differential equations relatively to parameters can be found in [8] too. Under all these as-
sumptions, we will show that the proof of Jimbo-Miwa-Ueno can be adapted and that we can
define a suitable τ -function in the same way Jimbo-Miwa-Ueno did it.

3 Definition of the τ-function

In this section, we will place ourselves in a more general context than the one described above;
we will show that under few assumptions one can define a good notion of tau-function.

More generally we will denote with ta the isomonodromic parameters (in our case they are
the uK ’s and ths vJ ’s) and a subscript a or b is understood as a derivation relatively to ta or tb.
For a function f of the isomonodromic times we will denote by the usual symbol its differential

df =
∑
a

∂tafdta =
∑
a

fadta (3.1)
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Our setup falls in the following framework that it is useful to ascertain from the specifics of the
case at hands. Suppose we are given a matrix

Ψ(x) ∼ Y (x) Ξ(x) , Y (x) :=
(

1 +
Y1

x
+
Y2

x2
+ . . .

)
xS (3.2)

where Ξ(x) = Ξ(x; t) is some explicit expression (the “bare” isomonodromic solution) and S is
a matrix independent of the isomonodromic times. This implies that if we define the one–form-
valued matrix H(x; t) by

H(x; t) = dΞ(x; t) Ξ(x; t)−1 (3.3)

then H(x) =
∑
Hadta (we suppress explicit mention of the t dependence henceforth) is some

solution of the zero-curvature equations:

∂aHb − ∂bHa = [Ha,Hb] (3.4)

We will assume (which is the case in our setting) that all Ha are polynomials in x. We
will also use that the dressed deformations Ωa given by Ψa = ΩaΨ are polynomials. Moreover,
according to the asymptotic they are given by:

Ωa = (YHaY −1)pol. (3.5)

In this very general (and generic) setting we can formulate the definition of a “tau function” as
follows

Definition 3.1. The tau-differential is the one-form defined by

ω :=
∑

ωadta :=
∑
a

res tr
(
Y −1Y ′Ha

)
dta (3.6)

The main point of the matter is that -without any further detail- we can now prove that the
tau-differential is in fact closed and hence locally defines a function.

Theorem 3.1. The tau-differential is a closed differential and locally defines a τ–function as

d log τ = ω (3.7)

Proof. We need to prove the closure of the differential. We first recall the main relations
between the bare and dressed deformations

∂aY = ΩaY − YHa ; YHaY −1 = Ωa −Ra ; Ra := ∂aY Y
−1 (3.8)
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We note that -by construction- Ωa = (YHaY −1)pol is a polynomial while Ra = O(x−1) irrespec-
tively of the form of S. We compute the cross derivatives directly

∂aωb = resTr
(
− Y −1 (ΩaY − YHa)Y −1Y ′Hb + Y −1 (ΩaY − YHa)′Hb + Y −1Y ′∂aHb

)
= resTr

(
HaY −1Y ′Hb + Y −1Ω′aYHb − Y −1Y ′HaHb −H′aHb + Y −1Y ′∂aHb

)

= resTr
(
Y −1Y ′ ([Hb,Ha] + ∂aHb) + Y −1Ω′aYHb −

polynomial︷ ︸︸ ︷
H′aHb

)
= resTr

(
Y −1Y ′ ([Hb,Ha] + ∂aHb)− Ω′aRb

)
(3.9)

where, in the last step, we have used that YHbY −1 = Ωb−Rb and that the contribution coming
from Ωb vanishes since it is a polynomial. Rewriting the same with a ↔ b and subtracting we
obtain

∂aωb − ∂bωa = resTr
(

2Y −1Y ′[Hb,Ha]− Ω′aRb + Ω′bRa + Y −1Y ′ (∂aHb − ∂bHa)
)

= resTr
(
Y −1Y ′[Hb,Ha]− Ω′aRb + Ω′bRa + Y −1Y ′

( =0 by the ZCC 3.4︷ ︸︸ ︷
∂aHb − ∂bHa + [Hb,Ha]

))
= resTr

(
Y −1Y ′[Hb,Ha]− Ω′aRb + Ω′bRa

)
(3.10)

Note that, up to this point, we only used the zero curvature equations for the connection
∇ =

∑
(∂a−Ha)dta and the fact that Ha are polynomials in x. We thus need to prove that the

last quantity in (3.10) vanishes: this follows from the following computation, which uses once
more the fact that Ha and Ωa are all polynomials. Indeed, we have resTr(H′aHb) = 0 and hence
(using (3.8))

0 = res tr(H′aHb) = resTr
((
YHaY −1

)′
YHbY −1

)
− resTr

(
Y ′HaHbY −1

)
+ resTr

(
HaY −1Y ′Hb

)
= resTr

(
(Ωa −Ra)′ (Ωb −Rb)

)
+ resTr

(
Y −1Y ′ [Hb,Ha]

)
= resTr

( poly︷ ︸︸ ︷
Ω′aΩb−R′aΩb − Ω′aRb +

=O(x−2)︷ ︸︸ ︷
R′aRb +Y −1Y ′[Hb,Ha]

)
= resTr

(
−R′aΩb − Ω′aRb + Y −1Y ′[Hb,Ha]

)
= 0 (3.11)

Using integration by parts (and cyclicity of the trace) on the first term here above, we obtain
precisely the last quantity in (3.10). The Theorem is proved. Q.E.D.

11



3.1 Application to our problem

We now apply the general definition above to our setting, with the identifications Ψ = ΨN ,
Y = ΓN (as a formal power series at ∞) and Ξ = Ψ0. We will write YN instead of ΓN in the
expressions below to emphasize that we consider its asymptotic expansion at ∞ This reduces
the definition of the tau function to the one below

Definition 3.2. The τ -function is defined by the following PDE

d(log τN ) = Res
x→∞

Tr
(
Y −1
N Y ′Nd(Ψ0)Ψ−1

0

)
(3.12)

where YN is the formal asymptotic expansion of ΓN at infinity

YN = ỸN

xN 0 0
0 x−mN−1IdrN 0
0 0 x−mN Idd2−rN

 (3.13)

Remark 3.1. The matrix S of the previous section in our case becomes:

S =

N 0 0
0 (−mN − 1) IdrN 0
0 0 −mN Idd2−rN

 (3.14)

The partial derivatives of lnτN split into two sets which have different form:

∂uK log τN = − Res
x→∞

Tr
(
Y −1
N Y ′N

xK

K
E11

)
(3.15)

∂vJ log τN = Res
x→∞

Tr
(
Y −1
N Y ′N∂vJ (Ψ0)Ψ−1

0

)
(3.16)

where in the last equation the term ∂vJ (Ψ0)Ψ−1
0 has non-zero entries only in the anti-principal

minor of size d2.

One can notice that the situation we are looking at is a generalization of what happen in
the one-matrix case. In the 1-matrix model, the matrix S is zero and therefore YN are (formal)
Laurent series. The matrix Ψ0 matrix is absent in that case since there is only one potential and
thus one recovers the usual definition of isomonodromic tau function (see [12]). Note also that in
the derivation with respect to vJ we have obtained the second equality using the block diagonal
structure of Ψ0 (first row/column does not play a role). It is remarkable that the two systems
are completely decoupled, i.e. that in the first one the matrix Ψ0 (containing all the dependance
in V2) disappears and that in the second one the matrix A0 (containing the potential V1) also
disappears.
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3.2 Discrete Schlesinger transformation: Tau-function quotient

In this section we investigate the relationship between the tau-function of Def. 3.2 and the
partition function ZN of the matrix model.

We anticipate that the two object turn out to be the same (up to a nonzero factor that will
be explicitly computed, Thm. 3.4): the proof relies on two steps, the first of which we prepare
in this section. These are

• proving that they satisy the same recurrence relation

• identifying the initial conditions for the recurrence relation.

We start by investigating the relationship between τN and τN+1; this analysis is essentially
identical to the theory developed in [21] and used in [6], but we report it here for the convenience
of the reader.

From the fact that the ΨN has constant jumps, we deduce that ΨN+1Ψ−1
N is an entire

function. Moreover asymptotically it looks like:

ΨN+1Ψ−1
N = ỸN+1

xN+1e−V1(x) 0 0
0 x−mN+1−1IdrN+1 0
0 0 x−mN+1Idd2−rN+1

Ψ0(x)

Ψ0(x)−1

x−NeV1(x) 0 0
0 xmN+1IdrN 0
0 0 xmN Idd2−rN

 ỸN (3.17)

ΨN+1Ψ−1
N = ỸN+1


x 0 0 0
0 IdrN−1 0 0
0 0 x−1 0
0 0 0 Idd2−1−rN

 ỸN (3.18)

Thus, remembering that ỸN is a series x−1, Liouville’s theorem states that ΨN+1Ψ−1
N is a

polynomial of degree one, and hence, for some constant matrices R0
N , R

1
N we must have

ΨN+1Ψ−1
N = RN (x) = R0

N + xR1
N (3.19)

From the fact that det(RN ) does not depend on x (last property Thm. 2.3), we know that
R−1
N (x) is a polynomial of degree at most one as well (this is easy if one consider the expression

of the inverse of a matrix using the co-matrix).
Comparing the asymptotics of ΨN+1 and RN (x)ΨN term-by-term in the expansion in inverse

powers of x and after some elementary algebra one obtains ([20] Appendix A):

RN (x) = Eα0x+RN,0 and R−1
N (x) = E1x+R−1

N,0 (3.20)
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Here we have introduced the notation α0 = rN +1 which corresponds to the index of the column
where the coefficient x−1 is to be found in the asymptotic of ΨN+1Ψ−1

N . This notation is the
standard notation used originally by Jimbo-Miwa in a Schlesinger transformation. The matrix
(RN,0)α,β is given by:

β = α0 β = 1 β 6= α0, 1

α = α0
−(YN,2)α0,1+

P
γ 6=α0

(YN,1)α0,γ(YN,1)γ,1

(YN,1)α0,1
−(YN,1)α0,1 −(YN,1)α0,β

α = 1 1
(YN,1)α0,1

0 0

α 6= α0, 1 − (YN,1)α,1
(YN,1)α0,1

0 δα,β

(3.21)

and (R−1
N,0)α,β is given by:

β = α0 β = 1 β 6= α0, 1

α = α0 0 (YN,1)α0,1 0

α = 1 − 1
(YN,1)α0,1

−−(YN,2)α0,1

(YN,1)α0,1
+ (YN,1)1,1 − (YN,1)α0,β

(YN,1)α0,1

α 6= α0, 1 0 (YN,1)α,1 δα,β

(3.22)

While the formulae above might seem complicated, we will use the two important observa-
tions:

Eα0R
−1
N,0 +RN,0E1 = R−1

N,0Eα0 + E1RN,0 = 0 (3.23)

R−1
N (x)R′N (x) = R−1

N,0Eα0 does not depend on x.

The recurrence relation satisfied by the sequence {τN} is derived in the next theorem.

Theorem 3.2. Up to multiplication by functions that do not depend on the isomonodromic
parameters (i.e. independent of the potentials V1, V2) the following identity holds

τN+1

τN
= (Y1)1,α0 (3.24)

Proof The proof follows [21] but we report it here for convenience of the reader. Consider
the following identity

ΨN+1 = YN+1Ψ0 = RNYNΨ0 (3.25)
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This implies that
YN+1 = RNYN (3.26)

Taking the derivative with respect to x gives:

Y −1
N+1Y

′
N+1 = Y −1

N R−1
N R′NYN + Y −1

N Y ′N (3.27)

Therefore we have:

d log τN+1 − d log τN = Res
x→∞

Tr((Y −1
N R−1

N R′NYN + Y −1
N Y ′N − Y −1

N YN )d(Ψ0)Ψ−1
0 )

= Res
x→∞

Tr(Y −1
N R−1

N R′NYNd(Ψ0)Ψ−1
0 ) (3.28)

We now need to “transfer” the exterior derivative from Ψ0 to YN . This can be done using that

Ψ
N

= YNΨ0, so that

dΨ
N

= d(YN )Ψ0 + YNd(Ψ0)

Equivalently:
YNdΨ0Ψ−1

0 Y −1
N = d(Ψ

N
)Ψ
N

−1 − dYNY −1
N (3.29)

Inserting these identities in the tau quotient we obtain the relation

d log τN+1 − d log τN = Res
x→∞

Tr
(
R−1
N R′Nd(Ψ

N
)Ψ
N

−1 −R−1
N R′NdYNY

−1
N

)
(3.30)

The first term is residueless at ∞ since dΨ
N

Ψ
N

−1 is polynomial in x and R−1
N R′N does not

depend on x. Therefore we are left only with:

d log τN+1 − d log τN = − Res
x→∞

Tr(R−1
N R′NdYNY

−1
N ) (3.31)

A direct matrix computation using the explicit form of RN yields

d log τN+1 − d log τN = d log((YN,1)1,α0) (3.32)

and hence
τN+1

τN
= (Y1)1,α0 (3.33)

The last equality is to be understood up to a multiplicative constant not depending on the
parameters uK and vJ in τ . Q.E.D.

In order to complete the first step we need to express the entry (Y1)1,α0
in terms of the ratio

of two consecutive partition functions. This is accomplished in the following section.
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Theorem 3.3. For the matrix ΓN the asymptotic expansion at infinity (2.10) is such that

(YN,1)1,α0 = (vd2+1)ShN = (vd2+1)S
ZN+1

ZN
(3.34)

where S and α0 ∈ {0, 1, . . . , d2 − 1} are defined by the following relation

N = d2S + α0 − 1 (3.35)

Proof In order to compute (YN,1)1,α0 it is sufficient to compute the leading term of the
expansion at∞ appearing in the first row of the matrix ΓN . Recalling the expression (2.12), we
start by the following direct compuation using integration by parts∫∫

κ
dzdw πN (z)ziwk−1e−V1(z)−V2(z)+zw =

∫∫
κ
dzdw πN (z)e−V1(z)wk−1e−V2(w) d

i

dwi
(ezw)

= (−1)i
∫∫

κ
dzdw πN (z)e−V1(z)+zw di

dwi

(
wk−1e−V2(w)

)
=
∫∫

κ
dzdw πN (z)qd2i+k−1(w)e−V1(z)−V2(z)+zw (3.36)

where qd2i+k−1(w) is a polynomial of the indicated degree whose leading coefficient is vid2+1. The
last RHS is 0 if d2i+ k − 1 < N because of orthogonality. If d2i+ k − 1 = N the integral gives
vid2+1hN by the normality conditions concerning our biorthogonal set. This computation allows
us to expand the Cauchy transform of (ΓN )1,α0 near ∞ as follows:

C(pNwα0(x)) =
1

2πi

∫∫
κ
dzdw

πN (z)
z − w

wα0−1e−V1(z)−V2(z)+zw

= −
S−1∑
i=0

1
2πi

∫∫
κ
dzdwπN (z)

zi

xi+1
wα0−1e−V1(z)−V2(z)+zw

+
1

2πi
1

xS+1

∫∫
κ
dzdw

πN (z)
x− z

zSwα0−1e−V1(z)−V2(z)+zw +O(x−S−2)

(3.37)

By orthogonality the first sum vanishes term-by-term and the leading coefficient of the second
term is vSd2+1hN . Q.E.D.

Recalling that the τ -function is only defined up to a multiplicative constant not depending
on N nor on the coefficients ukand vj , we have

τN+1

τN
= (vd2+1)SN

ZN+1

ZN
(3.38)

where N = d2SN + α0 − 1 Hence for every n0:

τNZn0 = ZNτn0(vd2+1)
PN−1
j=n0

Sj (3.39)
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One would like to take n0 = 0 because it enables explicit computations. As we will prove now
there is a way of extending naturally all the reasoning down to 0.

The RHP for ΓN (Thm. 2.1) is perfectly well–defined for N = 0 and has solution

Γ0 =



1 C0(1) C1(1) . . . Cd2−1(1)
0 1 0 . . . 0
...

. . . . . . . . . 0
...

. . . . . . . . . 0

0 0 . . .
. . . 1


. (3.40)

Consequently we can take
τNZ0 = (vd2+1)

PN−1
j=0 SjZNτ0 (3.41)

Also note that Z0 ≡ 1 (by definition).
We can compute τ0 directly from Def. 3.2 because of the particularly simple and explicit

expression of Ψ0 = Γ0Ψ0.
dlnτ0 = resTr

(
Y −1

0 Y ′0dΨ0Ψ−1
)

(3.42)

We claim that this expression is identically zero (and hence we can define τ0 ≡ 1); indeed,

Y −1
0 Y ′0 =


0 ∗ . . . ∗
0 0 . . . 0
...

...
. . . 0

0 0 . . . 0

 (3.43)

and

dΨ0(x)Ψ−1
0 (x) =


? 0 . . . 0
0 ? . . . ?
...

...
. . .

...
0 ? . . . ?

 (3.44)

so that the trace of the product is always zero (even before taking the residue). Combining the
two results together gives the following theorem:

Theorem 3.4. The isomodromic τ -function and the partition function are related by:

∀N ∈ N : ZN = (vd2+1)
PN−1
j=0 SjτN

where we recall that Sj is given by the decomposition of j + 1 in the Euclidian division by d2:
Sj = E

[
j+1
d2

]
. A short computation of the power in vd2+1 gives:

∀N ∈ N : ZN = (vd2+1)d2
αN (αN−1)

2
+αN (N−αNd2)τN

where αN = E
[
N
d2

]
17



The presence of the power in vd2+1 is due to a bad normalisation of the partition function
itself (ZN ) and can be easily cancelled out by taking vd2+1 = 1 from the start (it is just a
normalization of the weight function). Moreover it is not surprising because in the work of
Bergere and Eynard [2], all results concerning the partition function and its derivatives with
respect to parameters have special cases for ud1+1 and vd2+1. It also signals the fact that the
RHP is badly defined when vd2+1 = 0 because the contour integrals involved diverge and the
whole setup breaks down. Indeed if vd2+1 = 0 this simply means that V2 is a polynomial of
lower degree and thus the RHP that we should set up should be of smaller size from the outset.

4 Outlook

In this article, we have restricted ourselves to contours going from infinity to infinity. This allows
us to use integration by parts without picking up any boundary term. A natural extension of
this work could be to see what happens when contours end in the complex plane, and especially
study what happens when the end points moves (models with hard edges). This generalization is
important in the computation of the gap probabilities of the Dyson model [27], which correspond
to a random matrix model with Gaussian potentials but with the integration restricted to
intervals of the real axis.
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en physique mathématique ANR-05-BLAN-0029-01, by the Enrage European network MRTN-
CT-2004-005616, by the European Science Foundation through the Misgam program, by the
French and Japanese governments through PAI Sakurav, by the Quebec government with the
FQRNT.

18



A Factorization of ΨN

Starting from the definition of the last d2 columns of Ψ̂
N

(2.18) we observe that

ψ(k)
m (x) :=

1
2iπ

∫
Γ̌k

ds
∫∫

κ

πm(z)
x− z

V ′2(s)− V ′2(w)
s− w

e−V1(z)−V2(w)+V2(s)+zw−xsdwdz (A.1)

=
∑
p,q

vq+p
1

2iπ

∫∫
κ

πm(z)
x− z

wp−1e−V1(z)−V2(w)+zw

∫
Γ̌k

dssq−1eV2(s)−xs

=
∑
p,q

(Γ̂N )m,p(V0)p,q(W0)q,k = (Γ̂N V0W0)m,k (A.2)

This proves Thm. 2.3.

B Bilinear concomitant as intersection number

We recall very briefly the result of [3] stating that

V ′2(∂x)− V ′2(−∂z)
∂x + ∂z

w(x)f(z)
∣∣∣∣
z=x

=
∫

Γ

∫
Γ̌

V ′2(η)− V ′2(s)
η − s

ex(η−s)−V2(η)+V2(s) = 2iπΓ#Γ̌ = constant .

(B.1)
The last identity is obtained by integration by parts and shows that the bilinear concomitant is
just the intersection number of the (homology classes) of the contours Γ, Γ̌. More precisely we
get that:

d

dx

∫
Γ

∫
Γ̌
dsdη

V ′2(η)− V ′2(s)
η − s

ex(η−s)−V2(η)+V2(s)

=
∫

Γ

∫
Γ̌
dsdη (V ′2(η)− V ′2(s))ex(η−s)−V2(η)+V2(s)

=
∫

Γ

∫
Γ̌
dsdη

∂

∂η
(−e−V2(η))exηe−xs+V2(s) −

∫
Γ

∫
Γ̌
dηds

∂

∂s
(eV2(s))e−xsexη−V2(η)

= x

∫
Γ

∫
Γ̌
dsdη exη−xs−V2(η)+V2(s) − x

∫
Γ

∫
Γ̌
dsdηexη−xs−V2(η)+V2(s)

= 0 (B.2)

The matrix expression shows that the pairing is indeed a duality since the determinant is nonzero.
The undressing matrix Ψ0 (that was originally introduced in Thm. 2.4) is thus

Ψ0 =



1
v2 v3 . . . vd2+1

v3 vd2+1

· ·
·

vd2 vd2+1

vd2+1




1

f1 f2 . . . fd2
f ′1 f ′2 . . . f ′d2
...

...
f

(d2−1)
1 . . . f

(d2−1)
d2

 (B.3)
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where the Wronskian subblock in the second term is constructed by choosing d2 homologically
independent contour classes for the integrations Γ̌;

fk(x) :=
∫

Γ̌k

e−xs+V2(s)ds , k = 1, . . . , d2 . (B.4)

The dressing matrix Ψ0 exhibits a Stokes’ phenomenon (of Airy’s type) which is the inevitable
drawback of removing the x-dependence from the jump matrix. We can now compute the jumps
and see that it does not depend on x. For the k-th column we have:

ψ(k)
m (x) :=

1
2πi

∫
Γ̌k

ds

∫∫
κ
dzdw

πm(z)e−V1(z)

x− z
V ′2(s)− V ′2(w)

s− w
e−V2(w)+V2(s)+zw−xs, 1 ≤ k ≤ d2

(B.5)
gives:

ψ(k)
m (x)+ = ψ(k)

m (x)− + ψ(0)
m (x)

∫ ∫
dsdw

V ′2(s)− V ′2(w)
s− w

e−V2(w)+V2(s)+x(w−s) (B.6)

= ψ(k)
m (x)− + ψ(0)

m (x)
d2∑
j=1

κ`j(Γ
(y)
j #Γ̌k) , (B.7)
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