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2 DICATAM - Sezione di Matematica, Università degli studi di Brescia, V. Valotti 9, 25133
Brescia, Italy.
3 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin,
Germany.
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Abstract. This note deals with the analysis of a model for partial damage, where the rate-
independent, unidirectional flow rule for the damage variable is coupled with the rate-dependent
heat equation, and with the momentum balance featuring inertia and viscosity according to
Kelvin-Voigt rheology. The results presented here combine the approach from Roub́ıček [1, 2]
with the methods from Lazzaroni/Rossi/Thomas/Toader [3]. The present analysis encompasses,
differently from [2], the monotonicity in time of damage and the dependence of the viscous tensor
on damage and temperature, and, unlike [3], a nonconstant heat capacity and a time-dependent
Dirichlet loading.

1. Introduction – Energetic solutions for rate-independent processes coupled with
rate-dependent effects
In this note we discuss the existence of solutions for an evolutionary model of partial damage,
where the rate-independent, unidirectional flow rule for the damage variable is coupled with the
rate-dependent heat equation, and with the momentum balance featuring inertia and viscosity
according to Kelvin-Voigt rheology. Systems with a mixed rate-independent/rate-dependent
character were considered in [1] in the isothermal case, where a suitable notion of weak (energetic)
solution was introduced, and then in [2] where this notion was extended to thermal processes. In
the latter paper, a general existence result for energetic solutions was proved, with application to
a wide class of thermo-viscoelastic material systems in the frame of generalized standard solids,
where the flow rule for the internal variable has rate-independent character. The damage model
treated here pertains to this class: the internal variable z assesses the soundness of the material,
so that one will have z = 1 in the fully undamaged, and z = 0 in the completely damaged cases,
respectively. Additionally, in the model discussed here, z also affects the elastic and the viscous
stress tensors.

Here we will further contribute to the analysis initiated in [2] by pointing out that the
existence result therein can be extended to the case in which the evolution for the internal
variable is unidirectional (i.e., monotone nonincreasing), as in the context of the damage model
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presently considered. Moreover, we will show that time-dependent Dirichlet loadings for the
displacement variable can be encompassed in the analysis, whereas in [2, 3] the momentum
equation was supplemented with zero Dirichlet boundary data. In this note we will particularly
focus on the techniques to treat the difficulties resulting from these additional features of the
model. We refer to our previous work [3] for a detailed survey of the literature on rate-
independent and rate-dependent damage models in (thermo-)viscoelasticity and for a more
detailed discussion of the PDE system under consideration.

We will prove the existence of energetic solutions for the damage system using a time
discretization, by now standard within the analysis of rate-independent problems. We will
also show that, under appropriate conditions on the nonlinear constitutive functions featuring
in the PDE system, the time discrete scheme can be fully decoupled, which might turn out to be
interesting towards the numerical investigation of this model.

The PDE system. We consider the following PDE system which describes the behavior of a
thermo-visco-elastic body subject to damage; it consists of the momentum balance (1a), the
flow rule (1b), and the heat equation (1c):

ρü− div (D(z, θ)e(u̇) + C(z)e(u)− θB) = fV in (0, T )× Ω , (1a)

∂R1(ż) + DzG(z,∇z)− div (DξG(z,∇z)) + 1
2C
′(z)e(u) : e(u) 3 0 in (0, T )× Ω , (1b)

cv(θ)θ̇ − div (K(z, θ)∇θ) = R1(ż) + (D(z, θ)e(u̇)− θB) : e(u̇) +H in (0, T )× Ω . (1c)

Here the unknowns (u, z, θ) stand for the displacement vector field, the damage variable, and
the absolute temperature, respectively, (0, T ) indicates the time interval, while Ω is a bounded
open subset of R3 with Lipschitz boundary ∂Ω representing the reference configuration. The
strain tensor is e(u) = 1

2(∇u +∇uT ), the constant ρ > 0 is the mass density, D(z, θ) and C(z)
are the viscous and the elastic tensors, respectively. Thermal stresses are featured by θB with
B a fixed symmetric matrix coupling the momentum and the heat equations. In (1c), cv(θ) and
K(z, θ) are, respectively, the heat capacity and the heat conductivity of the material. In (1b)
the term G(z,∇z) is a regularization for the damage variable as it involves its gradient (e.g.
in Sobolev-sense). The term R1(ż) is a 1-homogeneous dissipation potential which, in order to
encode the rate-independence and the unidirectionality of the damage process, is chosen as

R1(v) :=

{
|v| if v ≤ 0 ,

+∞ otherwise,
(2)

cf. also e.g. [4] for this ansatz. Note that the unidirectionality is reflected by the fact that
R1(ż) =∞ if ż > 0. This ensures that a solution z will be nonincreasing in time in accordance
with the definition of z; recall that z(x) = 1 in sound and z(x) = 0 in completely damaged
material points x. In the flow rule (1b) the symbol ∂ indicates the subdifferential in the sense of
convex analysis while Dz and Dξ denote the Gâteaux derivatives. The external forces and the
heat source are denoted by fV and H, respectively.

The PDE system (1) is supplemented with Cauchy conditions given on u(0), u̇(0), z(0), and
θ(0), and with the boundary conditions

(D(z, θ)e(u̇) + C(z)e(u)− θB) ν = fS on (0, T )× ∂NΩ , (3a)

u = g on (0, T )× ∂DΩ , (3b)

DξG(z,∇z) ν = 0 on (0, T )× ∂Ω , (3c)

K(z, θ)∇θ · ν = h on (0, T )× ∂Ω , (3d)
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where ∂DΩ and ∂NΩ := ∂Ω\∂DΩ are the Dirichlet and the Neumann part of the boundary,
ν denotes the outer unit normal vector to ∂Ω, and fS, g, and h are prescribed external data
depending on time and space. In Section 2 we shall detail the assumptions on the constitutive
functions and on the given data featuring in system (1).

To some extent, system (1) is a particular case of the general model for rate-independent
processes in thermo-viscoelastic materials proposed in [2]. In particular, as in the latter paper
the heat equation features a nonconstant heat capacity, depending on θ in a nonlinear way, and
accordingly it requires appropriate treatment. Indeed, it will turn out to be useful to switch from
the temperature to the enthalpy variable, defined as a primitive of the (positive) function cv.
Moreover, as in [2], we shall have to impose specific growth conditions on cv and on the matrix
of heat conduction coefficients K in order to handle the quadratic terms on the right-hand side
of (1c). We refer to [5] for a thermodynamical derivation of the growth assumptions used in
what follows.

Nonetheless, let us highlight that, differently from [2] our analysis also encompasses the
unidirectionality in the evolution for z, the dependence of the viscous tensor D on z and θ, and,
differently from [3], also a time-dependent Dirichlet loading g.

Indeed, a model for rate-independent, unidirectional, partial damage in thermo-viscoelastic
materials with inertia was also proposed in [3] in the case of constant heat capacity cv, which
allowed us to avoid the enthalpy transformation. The assumption of a constant heat capacity
is valid for large values of the temperature, while a nonconstant heat capacity describes low-
temperature regimes. We remark that in [3] it was possible to only partially decouple the time-
discrete scheme, i.e., only the approximate flow rule for the internal variable could be decoupled
from the other equations. Moreover, time-dependent boundary conditions on the displacement
u could be accounted for only if the viscous tensor was assumed to be constant.

In the following lines, we briefly sketch the main points of the analysis. First of all, let
us remark that, as in [3], we shall have to resort to a weak notion of solution for the initial-
boundary value problem for system (1), introduced in [1, 2] and hereafter referred to as energetic.
While postponing all details to Definition 2.1, we may mention here that this concept consists
of the unidirectionality and semistability conditions for the damage variable z combined with
a (mechanical) energy balance, and coupled with the weak (distributional-type) formulations of
the momentum and enthalpy equations.

After stating our working assumptions on the problem data and introducing energetic
solutions, in Section 2 we will state our main existence result, Theorem 2.2. Its proof will
be developed throughout Section 3, according to the general strategy suggested in [2]. In fact,
in this contribution we will only sketch some parts of the proof, referring for certain details to
the latter paper, as well as to [3] for the handling of unidirectional processes. Instead, we will
dwell on the techniques allowing us to fully decouple the time-discrete scheme and to account
for the dynamics of the Dirichlet loading, which causes additional rate-dependent energy terms,
see the comments in Section 3.

2. Setup and main result
In this section we collect the conditions on the constitutive functions featuring in system (1),
as well as on the loadings and on the prescribed external and initial data. These functions also
enter in the free energy ψ of the system which has the structure

ψ(e(u), z,∇z) = ϕ(e(u), z,∇z) + θ φ(e(u))− φ0(θ) ,

considered in [2]. The purely thermal contribution φ0 determines the heat capacity function cv

via cv(θ) := θ φ0
′′(θ). As for the mechanical part ϕ, in the present case we take it in the form

ϕ(e(u), z,∇z) := 1
2C(z)e(u) : e(u) +G(z,∇z) ,
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while φ(e(u)) := −B : e(u).
Next, we derive the version of (1) in terms of the enthalpy in place of the temperature, and

for the resulting system we recall the notion of energetic solution from [2]. The statement of
our existence result, Theorem 2.2, closes this section.

Assumptions on the heat capacity and heat conductivity. As mentioned in the introduction, the
treatment of the heat equation relies on specific growth conditions on cv and K, adopted from
[2] and further tailored to our existence analysis. More precisely, we assume that

cv ∈ C0(R;R+) is such that

∃α1 ≥ α = 1 , c1 ≥ c0 > 0 ∀ θ ∈ [0,+∞) : c0(1+θ)α ≤ cv(θ) ≤ c1(1+θ)α1 ,
(4a)

K ∈ C0(R× R;Rd×d) is symmetric and

∃ c2, c3 > 0 ∀ (z, θ) ∈ [0, 1]× [0,+∞) : c2 cv(θ) ≤ |K(z, θ)| ≤ c3 cv(θ) .
(4b)

Let us shortly compare the growth condition in (4a) with the one in [2, formulae (3.12b) and
(4.22)]. There, it is required that α > (d− 2)/(d+ 2) with d the space dimension, which would
result in α > 1/5 in the present three-dimensional context. Hence, α = 1 in (4a) is a special
case.

This particular choice is made in order to generate a square-root growth of the temperature
in dependence of the enthalpy variable, cf. (16), which will be a crucial ingredient to handle
the thermal expansion term in combination with time-dependent Dirichlet data. It will also
play a key role in the analysis of the time-discrete version of (the enthalpy reformulation of)
system (1). In particular, it will be at the core of the proof of Lemma 3.3, by means of which
it is possible to have a fully decoupled scheme. Let us point out that the linear growth from
below imposed on the heat capacity in (4a) is also in accordance with [5, 6] in the context of
small-strain thermo-viscoelasticity, where the heat capacity is assumed to be an affine function
of temperature. In particular, see [5] for a thermodynamical derivation.

Assumptions on the material tensors. We require that the tensors B ∈ R3×3, C : R→ R3×3×3×3,
and D : R× R→ R3×3×3×3 fulfill

B ∈ R3×3
sym , and set CB := |B| , (5a)

C ∈ C0,1(R;R3×3×3×3) and D ∈ C0(R× R;R3×3×3×3) , (5b)

C(z), D(z, θ) ∈ R3×3×3×3
sym are positive definite for all z ∈ R , θ ∈ R , (5c)

∃C1
C, C

2
C > 0 ∀ z ∈ R ∀A ∈ R3×3

sym : C1
C |A|

2 ≤ C(z)A : A ≤ C2
C |A|

2 , (5d)

∃C1
D, C

2
D > 0 ∀ z ∈ R ∀ θ ∈ R ∀A ∈ R3×3

sym : C1
D |A|

2 ≤ D(z , θ)A : A ≤ C2
D |A|

2 . (5e)

In addition, we impose that C(·) is monotonically nondecreasing, i.e.,

∀A ∈ R3×3
sym ∀ 0 ≤ z1 ≤ z2 ≤ 1: C(z1)A : A ≤ C(z2)A : A . (5f)

In the expressions above, R3×3
sym denotes the subset of symmetric matrices in R3×3 and R3×3×3×3

sym

is the subset of symmetric tensors in R3×3×3×3. In particular,

C(z)ijkl=C(z)jikl=C(z)ijlk=C(z)klij and D(z, θ)ijkl=D(z, θ)jikl=D(z, θ)ijlk=D(z, θ)klij .
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Assumptions on the damage regularization. We require that G : R× R3 → R ∪ {+∞} fulfills

Indicator: For every (z, ξ) ∈ R× R3 : G(z, ξ) < +∞ ⇒ z ∈ [0, 1] ; (6a)

Continuity: G : R× R3 → R ∪ {+∞} is continuous on dom(G) , and G(0, 0) = 0 ; (6b)

Convexity: For every z ∈ R, G(z, ·) is convex; (6c)

Growth: There exist constants q > 1 and C1
G, C

2
G > 0 such that for every (z, ξ) ∈ dom(G)

C1
G(|ξ|q − 1) ≤ G(z, ξ) ≤ C2

G(|ξ|q + 1) . (6d)

Accordingly, the state space Z is defined by

Z := {z ∈W 1,q(Ω): z ∈ [0, 1] a.e. in Ω} . (7)

Assumptions on the given data. With a slight abuse of notation, we will denote by g also the
extension into the domain of the non-zero Dirichlet boundary datum on the displacement. We
require that

g ∈ H1(0, T ;H1(Ω;R3)) ∩W 2,2(0, T ;L2(Ω;R3)) . (8)

On the initial data (u0, u̇0, z0) we require

u0 ∈ H1(Ω;R3) , u0 = g(0) on ∂DΩ , u̇0 ∈ L2(Ω;R3) , z0 ∈ Z , (9)

and, in accordance with (4a), we impose on θ0

θ0 ∈ Lα1+1(Ω) , θ0 ≥ 0 a.e. in Ω , (10)

where α1 is the same as in (4a). On the loading and source terms fV, fS, H, and h we require

fV ∈ H1(0, T ;L2(Ω;R3)) , fS ∈ H1(0, T ;L2(∂NΩ;R3)) , (11a)

H ∈ L2(0, T ;L2(Ω)) , H ≥ 0 a.e. in (0, T )× Ω , (11b)

h ∈ L2(0, T ;L2(∂Ω)) , h ≥ 0 a.e. in (0, T )× ∂Ω . (11c)

For later convenience, we also introduce f : [0, T ]→ H1(Ω;R3)∗ defined by

〈f(t), v〉H1(Ω;R3) :=

∫
Ω
fV(t) · v dx+

∫
∂NΩ

fS · v dH2(x) for all v ∈ H1(Ω;R3) , (12)

H2 denoting the 2-dimensional Hausdorff measure. It follows from (11a) that f ∈
H1(0, T ;H1(Ω;R3)∗).

Observe that the requirements on g and on fV, . . . , h could be slightly refined, cf. [2] and [3].
However, we choose to overlook this point to avoid overburdening the analysis with technicalities.

The enthalpy transformation. In view of the time-discretization procedure, it is useful to pass
from the nonlinear term cv(θ)θ̇ in (1c) to a linear one. This motivates the change of variables
adopted in [2], by virtue of which we switch from the absolute temperature θ to the enthalpy
variable w, defined via the so-called enthalpy transformation, viz.

w = h(θ) :=

∫ θ

0
cv(s) ds . (13)
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Thus, h is a primitive function of cv, normalized in such a way that h(0) = 0. Since cv is strictly
positive (cf. assumption (4a) above), h is strictly increasing. Thus, we define

Θ(w) :=

{
h−1(w) if w ≥ 0 ,

0 if w < 0 ,
J(z, w) :=

K(z,Θ(w))

cv(Θ(w))
. (14)

It follows from (4a) and (10) that

w0 := h(θ0) ∈ L1(Ω) and w0 ≥ 0 a.e. in Ω , (15)

and that

∃C0
Θ, C

1
Θ, C

2
Θ > 0 ∀w ∈ [0,+∞) : C0

Θw
1/(α1+1) − C1

Θ ≤ Θ(w) ≤ C2
Θw

1/2 , (16)

whereas (4b) ensures that

c2 ≤ |J(z, w)| ≤ c3 for all (z, w) ∈ [0, 1]× [0,+∞) . (17)

In view of (13), and replacing all occurrences of θ by Θ(w), we obtain the enthalpy
reformulation of system (1):

ρü− div (D(z,Θ(w))e(u̇) + C(z)e(u)−Θ(w)B) = fV in (0, T )× Ω , (18a)

∂R1(ż) + ∂zG(z,∇z)− div (DξG(z,∇z)) + 1
2C
′(z)e(u) : e(u) 3 0 in (0, T )× Ω , (18b)

ẇ − div (J(z, w)∇w) = R1(ż) + (D(z,Θ(w))e(u̇)−Θ(w)B) : e(u̇) +H in (0, T )× Ω . (18c)

Energetic solutions. Let us now specify the notion of weak solution for system (18),
supplemented with the boundary conditions (3). As already mentioned, along the lines of [2]
the rate-independent flow rule for z is formulated by means of a semistability condition and of
an energy balance, featuring the mechanical energy of the system

E(t, u, z) :=

∫
Ω

(1
2C(z)e(u) : e(u) +G(z,∇z)) dx− 〈f(t), u〉H1(Ω;R3) , (19)

and the rate-independent dissipation potential

R1(ż) :=

∫
Ω

R1(ż) dx (20)

with R1 from (2). Observe that in the present case the mechanical energy equality (25) below
shall reflect the nonhomogeneous boundary condition (3b). More specifically, the dynamics of the
boundary loading g causes additional rate-dependent energy terms, cf. 3rd and 4th line of (25).
Semistability and (mechanical) energy balance are coupled with the weak (distributional-type)
formulations of the momentum and enthalpy equations. In particular, the enthalpy equation
is weakly formulated with test functions in W 1,r′(0, T ;Lr

′
(Ω)) ∩ C0([0, T ];W 1,r′(Ω)) for every

1 ≤ r < 5
4 . This requirement is tailored to the Lr(0, T ;W 1,r(Ω)) ∩ BV([0, T ];W 1,r′(Ω)∗)-

regularity for the enthalpy variable, which results from the Boccardo-Gallouët-type estimates
developed in [2] (and only briefly hinted at in Section 3.3).

The right-hand side of the weakly formulated enthalpy equation will feature the total variation
measure |ż| of z (i.e., the heat produced by the rate-independent dissipation), which is defined
on every closed set of the form A := [t1, t2]× C ⊂ [0, T ]× Ω by

|ż| (A) :=

∫
C

R1(z(t2)−z(t1)) dx .
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Definition 2.1. Given initial data (u0, u̇0, z0) satisfying (9), and θ0 complying with (10) (so
that w0 = h(θ0) fulfills (15)), we call a triple (u, z, w) an energetic solution to system (18),
supplemented with the boundary conditions (3), if the functions (u, z) have the regularity

u ∈ H1(0, T ;H1(Ω;R3)) ∩W 1,∞(0, T ;L2(Ω;R3)) ,

with u(t) = g(t) on ∂DΩ for all t ∈ [0, T ] ,
(21a)

z ∈ L∞(0, T ;W 1,q(Ω)) ∩ L∞((0, T )× Ω) ∩ BV([0, T ];L1(Ω)) , cf. (6d),

z(t, x) ∈ [0, 1] for a.a. (t, x) ∈ (0, T )× Ω ,
(21b)

while
w ∈ Lr(0, T ;W 1,r(Ω)) ∩ L∞(0, T ;L1(Ω)) ∩ BV([0, T ];W 1,r′(Ω)∗) (21c)

for every 1 ≤ r < 5
4 ; (u, z, w) satisfy the initial conditions

u(0) = u0 , u̇(0) = u̇0 , z(0) = z0 , w(0) = w0 a.e. in Ω ; (22)

the functions (u, z, w) comply with
• unidirectionality and semistability : for a.a. x ∈ Ω, z(·, x) : [0, T ] → [0, 1] is nonincreasing,

cf. (2), and for a.a. t ∈ (0, T ) it holds

∀ z̃ ∈ Z : E(t, u(t), z(t)) ≤ E(t, u(t), z̃) + R1(z̃ − z(t)) , (23)

where Z is defined in (7) and E(t, u, z) is given by (19);
• weak formulation of the momentum equation: for all t ∈ [0, T ]

ρ

∫
Ω
u̇(t) · v(t) dx− ρ

∫ t

0

∫
Ω
u̇ · v̇ dxds+

∫ t

0

∫
Ω
(D(z,Θ(w))e(u̇)+C(z)e(u)−Θ(w)B) : e(v) dx ds

= ρ

∫
Ω
u̇0 · v(0) dx+

∫ t

0
〈f, v〉H1(Ω;R3) ds (24)

for all test functions v ∈ L2(0, T ;H1
D(Ω;R3)) ∩W 1,1(0, T ;L2(Ω;R3));

• mechanical energy equality : for all t ∈ [0, T ]

ρ
2

∫
Ω
|u̇(t)|2 dx+ E(t, u(t), z(t)) +

∫
Ω
(z0−z(t)) dx+

∫ t

0

∫
Ω
(D(z,Θ(w))e(u̇)−Θ(w)B) : e(u̇) dx ds

= ρ
2

∫
Ω
|u̇0|2 dx+ E(0, u0, z0) +

∫ t

0
∂tE(s, u(s), z(s)) ds−

∫ t

0
〈f(t), ġ〉H1(Ω;R3) ds

+ ρ

[∫
Ω
u̇(t) · ġ(t) dx−

∫
Ω
u̇0 · ġ(0) dx−

∫ t

0

∫
Ω
u̇ · g̈ dx ds

]
+

∫ t

0

∫
Ω
(D(z,Θ(w))e(u̇) + C(z)e(u)−Θ(w)B) : e(ġ) dx ds ; (25)

• weak formulation of the enthalpy equation: for all t ∈ [0, T ]

〈w(t), η(t)〉W 1,r′ (Ω)−
∫ t

0

∫
Ω

Θ(w)η̇ dxds+

∫ t

0

∫
Ω
J(z, w)∇w · ∇η dxds

=

∫
Ω
w0 η(0) dx+

∫ t

0

∫
Ω
η |ż| dx ds+

∫ t

0

∫
Ω

(D(z,Θ(w))e(u̇) : e(u̇)−Θ(w)B) : e(u̇)η dx ds

+

∫ t

0

∫
∂Ω
hη dH2(x) ds+

∫ t

0

∫
Ω
Hη dx ds (26)

for all test functions η ∈W 1,r′(0, T ;Lr
′
(Ω)) ∩ C0([0, T ];W 1,r′(Ω)).

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012009 doi:10.1088/1742-6596/727/1/012009

7



Observe that, since r < 5
4 , its conjugate exponent r′ fulfills r′ > 5. Hence the test functions η

for (26) are continuous on [0, T ]×Ω, which makes them in duality with the measure |ż|. Notice

that, for simplicity, we write
∫ t

0

∫
Ω η |ż| dx ds instead of

∫∫
(0,t)×Ω η |ż| ( ds dx).

We are now in the position to state our existence result.

Theorem 2.2. Under assumptions (4)–(6), (8) on the datum g, and (11) on the data fV, fS , H,
and h, for every quadruple (u0, u̇0, z0, θ0) fulfilling (9) and (10), with z0 satisfying (23) at t = 0,
there exists an energetic solution (u, z, w) to the Cauchy problem for the enthalpy-reformulated
system (18) such that

w(x, t) ≥ 0 for a.a. (t, x) ∈ (0, T )× Ω . (27)

3. Proof of Theorem 2.2
The proof of the existence of an energetic solution to system (18) is based on time discretization,
as for many results on rate-independent processes. We consider the solutions to carefully devised
incremental problems and give the time-discrete version of the energetic formulation, consisting
of the semistability, the weak momentum and enthalpy equations, and the (discrete) mechanical
and total energy inequalities. However, due to the time-dependent Dirichlet loading g, we will
not be able to deduce from the latter inequalities the basic a priori estimates on the approximate
solutions, see also the comments at the beginning of Section 3.3. Therefore, we shall have to
deduce a further energy inequality, see (48), allowing us to establish the first set of a priori
estimates and thus to pass to the time-continuous limit by compactness. Finally, the properties
of the energetic solutions at the time-continuous level will be obtained by passing to the limit
in the corresponding discrete properties.

In what follows, we will focus on the steps needed to decouple the time-discrete scheme and
to account for time-dependent Dirichlet conditions and develop the related calculations with
some detail. The other parts of the proof of Theorem 2.2 will be only sketched here and we will
systematically refer to [2] and [3].

3.1. Time-discrete scheme
Given a partition

0 = t0n < · · · < tnn = T with tkn − tk−1
n = T

n =: τn ,

we construct a family of discrete solutions (ukn, z
k
n, w

k
n)
n
k=1 by solving the time-discretization

scheme (33) below, where the data f , H, and h are approximated by local means as follows

fkn := 1
τn

∫ tkn

tk−1
n

f(s) ds , Hk
n := 1

τn

∫ tkn

tk−1
n

H(s) ds , hkn := 1
τn

∫ tkn

tk−1
n

h(s) ds , (28)

(the above integrals understood in the Bochner sense).
Let us mention in advance that the main feature of system (33) is that the three equations are

decoupled one from each other and can thus be solved recursively. This simplifies the analysis
of (33) in comparison with [2], where the time-discrete versions of the momentum equation, of
the flow rule, and of the enthalpy equations were coupled, and it was necessary to resort to a
(non-constructive) fixed point argument to prove the existence of solutions.

In [2], the coupling between the discrete enthalpy and momentum equations served to ensure
the nonnegativity of the discrete enthalpy wkn: this resulted from the (classical) test of the
discrete enthalpy equation by −(wkn)−, and to carry out the related calculations it was essential
to have the thermal expansion term on the right-hand side implicit (i.e. with θkn in place of the
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term θk−1
n that now features on the right-hand side of (33c)). Accordingly, the term θkn appeared

also in the discrete momentum equation to guarantee the cancelations leading to the discrete
(mechanical) energy inequality.

In the present setting, we will be able to prove the nonnegativity of wkn by a different argument
from the one in [2], based on the subquadratic growth (16) of Θ, cf. Lemma 3.3 below. Thanks to
this, it will be possible to keep the discrete enthalpy and momentum equations, and ultimately
the whole scheme, decoupled.

Nonetheless, because of the quadratic terms featuring on the right-hand side of the enthalpy
equation (33c), which a priori is in L1(Ω) only, it is necessary to introduce a regularization.
One option, as done in [7], is to directly truncate the quadratic terms on the right-hand side of
(33c), and then pass to the limit with the truncation parameter. Alternatively, as in [2], we here
add a regularizing term of the form −τn div (|e(ukn)|2e(ukn)) to the discrete momentum equation
(33b) below. This term ensures that the right-hand side of the discrete enthalpy equation (33c)
is in L2(Ω) and thus allows us to solve it by standard arguments for elliptic equations. Clearly,
−τn div (|e(ukn)|2e(ukn)) will pass to zero with vanishing τn. In view of testing the momentum
equation by u− g, this 4-Laplacian-term requires a regularization of the (extension on [0, T ]×Ω
of the) Dirichlet datum g, and of ũ0 := u0− g(0). More precisely, using mollifiers as in [8, p. 56,
Corollary 2], we approximate ũ0 by a sequence

ũ0
n ∈W

1,4
0 (Ω;R3) such that ũ0

n → ũ0 in H1
0 (Ω;R3) as n→∞ (29)

and, accordingly (cf. e.g. [9, p. 189] for appropriate mollifiers in time) the datum g by a sequence

gn ∈W 1,4(0, T ;W 1,4(Ω;R3)) :

{
supn∈N τ

1/4
n ‖ġn‖L4(0,T ;W 1,4(Ω;R3)) ≤ C ,

gn → g in H1(0, T ;H1(Ω;R3)) ∩W 2,2(0, T ;L2(Ω;R3)) .

(30)
Using gn, we then define the discrete data (gkn)nk=1 by setting

gkn := gn(tkn) for all k = 1, . . . , n. (31)

Finally, for each n ∈ N, the initial datum is given by u0
n := ũ0

n + gn(0).

Problem 3.1. Starting from u0
n, z0

n := z0, w0
n := w0, and u−1

n := u0− τnu̇0, find (ukn, z
k
n, w

k
n)
n
k=1

such that

ukn ∈W 1,4(Ω;R3) with ukn = gkn on ∂DΩ , (32a)

zkn ∈W 1,q(Ω) , cf. (6d), (32b)

wkn ∈ H1(Ω) , (32c)

and, denoting θk−1
n := Θ(wk−1

n ),

zkn ∈ argmin

{∫
Ω

(zk−1
n −z) dx+ E(tkn, u

k−1
n , z) : z ∈W 1,q(Ω) , 0 ≤ z ≤ zk−1

n ≤ 1

}
, (33a)

ρ

∫
Ω

ukn−2uk−1
n +uk−2

n

τ2n
· v dx

+

∫
Ω

(
D(zk−1

n , θk−1
n )e

(
ukn−u

k−1
n

τn

)
+ C(zkn)e(ukn)− θk−1

n B + τn|e(ukn)|2e(ukn)
)

: e(v) dx

=
〈
fkn , v

〉
H1(Ω;R3)

,

(33b)

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012009 doi:10.1088/1742-6596/727/1/012009

9



where the above duality pairing again is to be understood in the sense of (12),∫
Ω

wk
n−w

k−1
n

τn
η dx+

∫
Ω
J(zkn, w

k−1
n )∇wkn · ∇η dx

=

∫
Ω

(
D(zk−1

n , θk−1
n )e

(
ukn−u

k−1
n

τn

)
− θk−1

n B
)

: e
(
ukn−u

k−1
n

τn

)
η dx

+

∫
Ω

zk−1
n −zkn
τn

η dx+

∫
∂Ω
hkn η dH2(x) +

∫
Ω
Hk
n η dx ,

(33c)

for every v ∈W 1,4
D (Ω;R3) := {ṽ ∈W 1,4(Ω;R3), ṽ = 0 on ∂DΩ} and every η ∈ H1(Ω).

In (33a) the operator “argmin” generates the argument of the minimum, i.e.
( ∫

Ω(zk−1
n −zkn) dx+

E(tkn, u
k−1
n , zkn)

)
= minz∈W 1,q(Ω) , 0≤z≤zk−1

n ≤1

( ∫
Ω(zk−1

n −z) dx+ E(tkn, u
k−1
n , z)

)
.

We have the following existence result.

Lemma 3.2. Assume (4)–(6) and (8)–(11). Then, for every n ≥ 1 there exists a solution
(ukn, z

k
n, w

k
n)nk=1 to Problem 3.1.

Proof. The existence of a minimizer for (33a) follows from the Direct Method of the Calculus
of Variations. Indeed, thanks to (6), the functional z 7→ R1(z−zk−1

n ) + E(tkn, u
k−1
n , z) (with R1

from (20)) is coercive and (sequentially) weakly lower semicontinuous on W 1,q(Ω) (see the proof
of [3, Prop. 3.2] for all the detailed calculations).

As for the existence of solutions to (33b), we observe that it is the Euler equation for the
minimum problem

min
u∈Ak

n

{
%
2

∫
Ω

∣∣∣u−2uk−1
n +uk−2

n
τn

∣∣∣2 dx+ τn
2

∫
Ω
D(zk−1

n , θk−1
n )e

(
u−uk−1

n
τn

)
: e
(
u−uk−1

n
τn

)
dx

+ 1
2

∫
Ω
C(zkn)e(u) : e(u) dx+ τn

4

∫
Ω
|e(ukn)|4 dx−

∫
Ω
θk−1
n B : e(u) dx−

〈
fkn , u

〉
H1(Ω;R3)

}
(34)

with Ak
n := {u ∈ W 1,4(Ω;R3) : u = gkn on ∂DΩ}. The underlying functional is coercive and

strictly convex on W 1,4(Ω;R3), hence the existence of a (unique) minimizer again ensues from
the Direct Method.

Equation (33c), whose right-hand side is in L2(Ω;R3), can be tackled by the same arguments
as (33b).

As previously mentioned, the subquadratic growth (16) of Θ is at the core of the proof of
Lemma 3.3 below. Therein, the nonnegativity of the discrete enthalpy wkn is deduced by a
direct argument that does not necessitate the implicit term θkn on the right-hand side of (33c).
Nonetheless, let us mention that a strict positivity result for wkn seems to be out of reach in the
present context, while it is available with a fully implicit discrete enthalpy equation, cf. e.g. [10,
Lemma 7.4] (the latter paper analyzing a temperature-dependent system for rate-independent
adhesive contact).

Lemma 3.3. Under assumptions (4)–(6) and (8)–(11), there exists n̄ ∈ N such that for all
n ≥ n̄ we have wkn ≥ 0 a.e. in Ω for every k = 1, . . . , n.

Proof. We argue by induction. For all n ∈ N we have w0
n = w0 ≥ 0 a.e. in Ω by assumption.

Consider now n ∈ N arbitrary but fixed. Suppose that wk−1
n ≥ 0. Taking η = −(wkn)− :=

max{0,−wkn} in (33c) we obtain∫
Ω

((wk
n)−)2

τn
dx+

∫
Ω

(
J(zkn, w

k−1
n )∇(wkn)−

)
· ∇(wkn)− dx
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= −
∫

Ω

[
wk−1

n
τn

+
(
D(zk−1

n , θk−1
n )e

(
ukn−u

k−1
n

τn

)
−θk−1

n B
)

: e
(
ukn−u

k−1
n

τn

)]
(wkn)− dx (35)

−
∫

Ω

zk−1
n −zkn
τn

(wkn)− dx−
∫
∂Ω
hkn(wkn)− dH2(x)−

∫
Ω
Hk
n(wkn)− dx .

We now remark that the left-hand side of the previous equality is nonnegative and the right-
hand side is nonpositive. Indeed, (wkn)− ≥ 0, zk−1

n −zkn ≥ 0, hkn ≥ 0, Hk
n ≥ 0 a.e. in Ω, and

wk−1
n
τn

+
(
D(zk−1

n , θk−1
n )e

(
ukn−u

k−1
n

τn

)
−θk−1

n B
)

: e
(
ukn−u

k−1
n

τn

)
≥ wk−1

n
τn

+ C1

∣∣∣e(ukn−uk−1
n

τn

)∣∣∣2 − θk−1
n |B|

∣∣∣e(ukn−uk−1
n

τn

)∣∣∣
(recall that θk−1

n = Θ(wk−1
n )). The right-hand side of the last inequality is a nonnegative second-

order polynomial in
∣∣∣e(ukn−uk−1

n

τn

)∣∣∣, since by growth condition (16)

(θk−1
n |B|)2 − 4w

k−1
n
τn

C1 ≤
(

(C2
Θ |B|)2 − 4C1

τn

)
wk−1
n ≤ 0

for any τn = T
n ≤ 4C1/(C

2
Θ |B|)2).

Hence, from (35) we deduce that (wkn)− = 0 a.e. in Ω for every n ∈ N sufficiently large,
whence the thesis.

3.2. Approximate solutions and time-discrete version of the energetic formulation.
We now define the approximate solutions to (the energetic formulation of) the initial-boundary
value problem for system (1) by suitably interpolating the discrete solutions (ukn, z

k
n, w

k
n)
n
k=1. We

introduce the piecewise constant interpolants

un(t) := ukn , wn(t) := wkn , zn(t) := zkn , (36a)

un(t) := uk−1
n , wn(t) := wk−1

n , zn(t) := zk−1
n , (36b)

for t ∈ (tk−1
n , tkn], k = 1, . . . , n, and the piecewise linear interpolants

un(t) := t−tk−1
n
τn

ukn + tkn−t
τn

uk−1
n , zn(t) := t−tk−1

n
τn

zkn + tkn−t
τn

zk−1
n , wn(t) := t−tk−1

n
τn

wkn + tkn−t
τn

wk−1
n .
(36c)

We set un(0) = un(0) = un(0) := u0, and analogously for zn, . . . , wn. We will use the notation
θn for Θ(wn).

We also introduce the piecewise constant and linear interpolants of the discrete data
(fkn , H

k
n, h

k
n)
n
k=1 in (28) by setting for t ∈ (tk−1

n , tkn]

fn(t) := fkn , Hn(t) := Hk
n , hn(t) := hkn ,

and fn(t) := t−tk−1
n
τn

fkn + tkn−t
τn

fk−1
n with time derivative ḟn(t) := fkn−f

k−1
n

τn
. It follows from (11)

that, as n→∞,

fn → f in Lp(0, T ;H1(Ω;R3)∗) for all 1 ≤ p <∞ ,

fn(t)→ f(t) in H1(Ω;R3)∗ for all t ∈ [0, T ] ,
(37a)

fn ⇀ f in H1(0, T ;H1(Ω;R3)∗) , (37b)

Hn → H in L2(0, T ;L2(Ω)) , hn → h in L2(0, T ;L2(∂Ω)) . (37c)
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We shall denote by τn the piecewise constant interpolant associated with the partition, i.e.,
τn(t) := tkn for t ∈ (tk−1

n , tkn], with τn(0) := 0.
For the approximating discrete data of the Dirichlet loading g ∈ H1(0, T ;H1(Ω;R3)) ∩

W 2,2(0, T ;L2(Ω;R3)), cf. (30) and (31), observe that gkn ∈ W 1,4(Ω;R3) for all k = 1, . . . , n:
hence, ukn − gkn − (uk−1

n −gk−1
n ) is an admissible test function for (33b). Thus, based on (31), we

introduce the piecewise constant and linear interpolants

gn(t) := gkn , g
n
(t) := gk−1

n , gn(t) := t−tk−1
n
τn

gkn + tkn−t
τn

gk−1
n (38)

for t ∈ (tk−1
n , tkn], k = 1, . . . , n. Observe that, in order to make the notation more transparent

we still use the letter g for the above interpolants, so that it will be clear that the functions
gn, gn, gn are approximations of g. In fact, arguing on a diagonal sequence it can be shown that

gn(t)→ g(t) in H1(Ω;R3) for all t ∈ [0, T ] ,

gn → g in H1(0, T ;H1(Ω;R3)) ,

sup
n∈N

τ1/4
n ‖ġn‖L4(0,T ;W 1,4(Ω;R3)) ≤ C .

(39)

We shall also work with the piecewise linear interpolant of the values gkn−g
k−1
n

τn
, namely with

γn : [0, T ]→W 1,4(Ω;R3) defined by

γn(t) := t−tk−1
n
τn

gkn−g
k−1
n

τn
+ tkn−t

τn
gk−1
n −gk−2

n
τn

for t ∈ (tk−1
n , tkn] and k = 2, . . . , n , (40)

and γn(t) := t
τn

g1n−g0n
τn

+ t1n−t
τn

g0n−g
−1
n

τn
with g−1

n := g0
n− τnġn(0) for any t ∈ [0, t1n]. By construction

we have γ̇n(t) = gkn−2gk−1
n +gk−2

n

τ2n
for all t ∈ (tk−1

n , tkn). Again, by (8), (30) and an argument along a

diagonal sequence (also taking into account that ‖γn−ġn‖L∞(0,T ;L2(Ω)) ≤ τ
1/2
n ‖γ̇n‖L∞(0,T ;L2(Ω)) ≤

Cτ
1/2
n to identify the limit of (γn)n), one obtains

γn → ġ in L2(0, T ;H1(Ω;R3)) ∩H1(0, T ;L2(Ω;R3)) . (41)

Proposition 3.4 below states that the approximate solutions constructed in the above lines
indeed fulfill the discrete version of the energetic formulation. In the (discrete) mechanical
energy inequality (44c) below, the mechanical energy E will be replaced by

En(t, u, z) :=

∫
Ω

(
1
2C(z)e(u) : e(u) + τn

4 |e(u)|4
)

dx+ G(z,∇z)−
〈
fn(t), u

〉
H1(Ω;R3)

(42)

and we will understand the pointwise terms u̇n and ġn as

u̇n(t) := ukn−u
k−1
n

τn
, ġn(t) := gkn−g

k−1
n

τn
, for t ∈ (tk−1

n , tkn], for k = 1, . . . , n . (43)

Proposition 3.4. Assume (4)–(6) and (8)–(11). Then the interpolants of the time-dis-
crete solutions (un, un, un, zn, zn, zn, wn, wn, wn) obtained via Problem 3.1 have the following
properties:
• unidirectionality: for a.a. x ∈ Ω, the functions zn(·, x) : [0, T ]→ [0, 1] are nonincreasing;
• discrete semistability: for all t ∈ [0, T ]

∀ z̃ ∈ Z : En(t, un(t), zn(t)) ≤ En(t, un(t), z̃) + R1(z̃−zn(t)) ; (44a)
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• discrete formulation of the momentum equation: for all t ∈ [0, T ] and for every (n+1)-

tuple (vkn)
n
k=0 ⊂ W 1,4

D (Ω;R3), setting vn(s) := vkn and vn(s) := s−tk−1
n
τn

vkn + tkn−s
τn

vk−1
n for

s ∈ (tk−1
n , tkn],

ρ

∫
Ω

(u̇n(t) · vn(t)− u̇0 · vn(0)) dx− ρ
∫ τn(t)

0

∫
Ω
u̇n(s−τn) · v̇n(s) dx ds

+

∫ τn(t)

0

∫
Ω

(
D(zn, θn)e(u̇n) + C(zn)e(un)− θn B + τn|e(un)|2e(un)

)
: e(vn) dx ds

=

∫ τn(t)

0

〈
fn, vn

〉
H1(Ω;R3)

ds , (44b)

where we have used θn := Θ(wn) and extended un to (−τn, 0] by setting un(t) := u0
n + tu̇0;

again, the above duality pairing has the meaning of (12);
• discrete mechanical energy inequality: for all t ∈ [0, T ]

ρ
2

∫
Ω
|u̇n(t)|2 dx+ En(t, un(t), zn(t)) +

∫
Ω

(z0−zn(t)) dx

+

∫ τn(t)

0

∫
Ω

(D(zn, θn)e(u̇n)−θn B) : e(u̇n) dx ds

≤ ρ
2

∫
Ω
|u̇0|2 dx+ En(0, u0

n, z0)−
∫ τn(t)

0

〈
ḟn, un

〉
H1(Ω;R3)

ds−
∫ τn(t)

0
〈fn, ġn〉H1(Ω;R3) ds

+ ρ

[∫
Ω
u̇n(t) · ġn(t) dx−

∫
Ω
u̇0 · ġ(0) dx−

∫ τn(t)

0

∫
Ω
u̇n(s−τn) · γ̇n(s) dx ds

]
(44c)

+

∫ τn(t)

0

∫
Ω

(
D(zn, θn)e(u̇n) + C(zn)e(un)− θn B + τn|e(un)|2e(un)

)
: e(ġn) dx ds ;

• discrete formulation of the enthalpy equation: for all t ∈ [0, T ] and for every (n+1)-tuple

(ηkn)
n
k=0 ⊂ H1(Ω), setting ηn(s) := ηkn and ηn(s) := s−tk−1

n
τn

ηkn + tkn−s
τn

ηk−1
n for s ∈ (tk−1

n , tkn],∫
Ω
wn(t)ηn(t) dx−

∫
Ω
w0 ηn(0) dx−

∫ τn(t)

0

∫
Ω
wn(s)η̇n(s) dx ds

+

∫ τn(t)

0

∫
Ω

(J(zn, wn)∇wn) · ∇ηn dxds

=

∫ τn(t)

0

∫
Ω
ηn |żn|dx ds

∫ τn(t)

0

∫
Ω

(D(zn, θn)e(u̇n)−θn B) : e(u̇n) ηn dx ds

+

∫ τn(t)

0

[∫
∂Ω
hn ηn dH2(x) +

〈
Hn, ηn

〉
H1(Ω)

]
ds ; (44d)

• discrete total energy inequality: for all t ∈ [0, T ]

ρ
2

∫
Ω
|u̇n(t)|2 dx+ En(t, un(t), zn(t)) +

∫
Ω
wn(t) dx

≤ ρ
2

∫
Ω
|u̇0|2 dx+ En(0, u0

n, z0) +

∫
Ω
w0 dx

−
∫ τn(t)

0

〈
ḟn, un

〉
H1(Ω;R3)

ds−
∫ τn(t)

0
〈fn, ġn〉H1(Ω;R3) ds

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012009 doi:10.1088/1742-6596/727/1/012009

13



+ ρ

[∫
Ω
u̇n(t) · ġn(t) dx−

∫
Ω
u̇0 · ġ(0) dx−

∫ τn(t)

0

∫
Ω
u̇n(s−τn) · γ̇n(s) dx ds

]

+

∫ τn(t)

0

∫
Ω

(
D(zn, θn)e(u̇n) + C(zn)e(un) + τn|e(un)|2e(un)

)
: e(ġn) dx ds

+

∫ τn(t)

0

[∫
∂Ω
hn dH2(x) +

∫
Ω
Hn dx

]
ds . (44e)

The proof of Proposition 3.4 closely follows the procedure developed in [2, Lemma 4.1], cf.
also [3, Prop. 3.3] for the details with regard to our particular system. Let us here just hint at
the main ideas, in particular dwelling on the treatment of the Dirichlet datum:
• The discrete semistability (44a) can be directly read from the minimality of zkn in (33a)

tested by z̃ ≤ zk−1
n , also using that R1(z̃−zkn) = +∞ if z̃ > zkn. This property in particular

enforces zkn ≤ zk−1
n , whence unidirectionality.

• The discrete momentum and enthalpy equations (44b) and (44d) follow from (33b) and

(33c), with test functions (vkn)
n
k=0 ⊂ W 1,4

D (Ω;R3) and (ηkn)
n
k=0 ⊂ H1(Ω), respectively,

applying the following discrete integration-by-parts formula, for every (rk)
n
k=1 ⊂ X and

(sk)
n
k=1 ⊂ X∗, with X a given Banach space (and 〈·, ·〉X the duality pairing between X∗

and X):

n∑
k=1

〈sk, rk−rk−1〉X = 〈sn, rn〉X − 〈s0, r0〉X −
n∑
k=1

〈sk−sk−1, rk−1〉X . (45)

• The mechanical energy inequality (44c) results from summing (33a), tested by zk−1
n , with

the momentum balance (33b), tested by v = ukn − gkn − uk−1
n + gk−1

n . For the details of this
calculation we refer to [3, Prop. 3.3]. Here we explain how the terms in (44c) involving the
Dirichlet data (2nd and 3rd line of the RHS) emanate from (33b): Applying elementary
convexity inequalities to (33b) tested by v = ukn − gkn − uk−1

n + gk−1
n yields

ρ

∫
Ω

ukn−2uk−1
n +uk−2

n

τ2n
· (ukn−uk−1

n ) dx ≥ ρ

∫
Ω

(
1
2
|ukn−uk−1

n |2
τ2n

− 1
2
|uk−1

n −uk−2
n |2

τ2n

)
dx , (46a)∫

Ω
C(zkn)e(ukn) : (e(ukn)−e(uk−1

n )) dx ≥
∫

Ω

1
2

(
C(zkn)e(ukn) : e(ukn)−C(zkn)e(uk−1

n ) : e(uk−1
n )

)
dx,

(46b)∫
Ω
τn|e(ukn)|2e(ukn) : (e(ukn)−e(uk−1

n )) dx ≥
∫

Ω

(
τn
4 |e(u

k
n)|4 − τn

4 |e(u
k−1
n )|4

)
dx . (46c)

By (38), the term −
(
C(zkn)e(ukn)+D(zkn, θ

k
n)e(u̇n)−Bθk−1

n +τn|e(uk−1
n )|2e(uk−1

n )
)

: (gkn−gk−1
n )

results in the third line on the right-hand side of (44c). Further, let t ∈ (0, T ] be fixed, and

let 1 ≤ j ≤ n be such that t ∈ (tj−1
n , tjn]. We sum (46a)–(46c) over the index k = 1, . . . , j.

Applying the integration-by-parts formula (45) we conclude that

j∑
k=1

〈
fkn , u

k
n−uk−1

n

〉
H1(Ω;R3)

=

∫ τn(t)

0

〈
fn, u̇n

〉
H1(Ω;R3)

ds

=
〈
fn(t), un(t)

〉
H1(Ω;R3)

− 〈f(0), u0〉H1(Ω;R3)−
∫ τn(t)

0

〈
ḟn, un

〉
H1(Ω;R3)

ds .

(47)

Analogously, to deal with the term
∑j

k=1 ρ
∫

Ω
ukn−2uk−1

n +uk−2
n

τ2n
· (gkn−gk−1

n ) dx we apply (45)

with sk = gkn−g
k−1
n

τn
, rk = ρu

k
n−u

k−1
n

τn
and rk−1 = ρu

k−1
n −uk−2

n
τn

, which leads to the fifth, sixth,
and seventh terms on the right-hand side of (44c).
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• Finally, the discrete total energy inequality ensues from summing the discrete mechanical
energy inequality (44c) with the discrete enthalpy equation (33c), tested for η = τn and
added up over k = 1, . . . , j. Some terms cancel, leading to (44e).

3.3. A priori estimates
Usually, the first set of a priori estimates is deduced from the (discrete versions of the) mechanical
and the total energy balance by a Gronwall argument exploiting the boundedness of the initial
energy and of the power of the external loadings. However observe that, due to the time-
dependent Dirichlet datum g, the right-hand sides of both (44c) and (44e) contain the term
D(zn, θn)e(u̇n) : e(ġn), which cannot be estimated if the viscous tensor D depends on (z, θ).
Note, if D were constant, an integration by parts in time would allow us to control that term

with
∫ τn(t)

0 ‖un(s)‖2H1(Ω;R3) ds, under suitable conditions on g̈.

Instead, we have to develop an alternative estimate that contains D(zn, θn)e(u̇n) : e(ġn) on
both sides of the inequality, such that the term on the right can be absorbed by the corresponding
one on the left-hand side. Hereby, the square-root growth of the enthalpy variable, cf. (16),
generated by assumption (4a) on the heat capacity, will play a crucial role. More precisely, for
the above described argument we sum up (44c) with (44d) tested by η = τn

2 and obtain the
second discrete total energy inequality, namely

ρ
2

∫
Ω
|u̇n(t)|2 dx+ En(t, un(t), zn(t)) + 1

2

∫
Ω

(z0−zn(t)) dx

+ 1
2

∫
Ω
wn(t) dx+ 1

2

∫ τn(t)

0

∫
Ω

(D(zn, θn)e(u̇n)− θn B) : e(u̇n) dx ds

≤ ρ
2

∫
Ω
|u̇0|2 dx+ En(0, u0

n, z0)−
∫ τn(t)

0

〈
ḟn, un

〉
H1(Ω;R3)

ds−
∫ τn(t)

0

〈
fn, ġn

〉
H1(Ω;R3)

ds

+ ρ

[∫
Ω
u̇n(t) · ġn(t) dx−

∫
Ω
u̇0 · ġ(0) dx−

∫ τn(t)

0

∫
Ω
u̇n(s−τn) · γ̇n(s) dx ds

]

+

∫ τn(t)

0

∫
Ω

(
D(zn, θn)e(u̇n) + C(zn)e(un)− θn B + τn|e(un)|2e(un)

)
: e(ġn) dx ds

+ 1
2

∫
Ω
w0 dx+ 1

2

∫ τn(t)

0

[∫
∂Ω
hn dH2(x) +

∫
Ω
Hn dx

]
ds (48)

for all t ∈ [0, T ].
In the next lines we explain how to derive, starting from (48), estimates (49a)–(49g), cf. the

forthcoming Proposition 3.5. For notational simplicity, we will use the symbols c, C to denote
all the positive constants popping out in the following calculations, possibly varying from line
to line. To control from below the left-hand side of (48) (

.
= LHS(48)), first of all by Young’s

inequality and by the subquadratic growth (16) of Θ we get∣∣∣∣∣
∫ τn(t)

0

∫
Ω
θn B : e(u̇n) dx ds

∣∣∣∣∣ ≤ 1
4δ

∫ τn(t)

0
‖wn(s)‖L1(Ω) ds+ δ

∫ τn(t)

0
‖e(u̇n(s))‖2

L2(Ω;R3×3
sym)

ds ,

where δ is a positive constant that shall be chosen later. Hence, by the definition (42) of the
mechanical energy En, and by (5), (6), and (11a) we have

LHS(48) ≥ −C + ρ
2 ‖u̇n(t)‖2L2(Ω;R3) + C

(
‖un(t)‖2H1(Ω;R3)+τn‖un(t)‖4W 1,4(Ω;R3)+‖zn(t)‖q

W 1,q(Ω)

)
+ 1

2 ‖wn(t)‖L1(Ω) + C

∫ τn(t)

0
‖e(u̇n(s))‖2

L2(Ω;R3×3
sym)

ds
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− 1
4δ

∫ τn(t)

0
‖wn(s)‖L1(Ω) ds− δ

∫ τn(t)

0
‖e(u̇n(s))‖2

L2(Ω;R3×3
sym)

ds .

Here we have dropped the nonnegative term 1
2

∫
Ω(z0−zn(t)) dx.

On the right-hand side of (48), the terms depending only on the initial and external data are
uniformly bounded thanks to (9), (15), and (37). For the third summand, we use the Cauchy
inequality as follows:∣∣∣∣∣

∫ τn(t)

0

〈
ḟn, un

〉
H1(Ω;R3)

dx

∣∣∣∣∣ ≤ 1
2

∫ τn(t)

0
‖un(s)‖2H1(Ω;R3) ds+ 1

2

∫ τn(t)

0

∥∥ḟn∥∥2

H1(Ω;R3)∗
ds .

Moreover,∫
Ω
u̇n(t) · ġn(t) dx−

∫ τn(t)

0

∫
Ω
u̇n(s−τn) · γ̇n(s) dx ds

≤ 1
4δ ‖ġn(t)‖2L2(Ω;R3) + δ ‖u̇n(t)‖2L2(Ω;R3) + C

∫ τn(t)

0

(
‖γ̇n(s)‖2L2(Ω;R3) + ‖u̇n(s− τn)‖2L2(Ω;R3)

)
ds .

Finally, ∫ τn(t)

0

∫
Ω

(
D(zn, θn)e(u̇n) + C(zn)e(un)− θn B + τn|e(un)|2e(un)

)
: e(ġn) dx ds

≤ 1
4δ

∫ τn(t)

0
‖e(ġn(s))‖2

L2(Ω;R3×3
sym)

ds+ δ

∫ τn(t)

0
‖e(u̇n(s))‖2

L2(Ω;R3×3
sym)

ds

+ C

∫ τn(t)

0
‖e(un(s))‖2

L2(Ω;R3×3
sym)

ds+ C

∫ τn(t)

0
‖wn(s)‖L1(Ω) ds

+ Cτn

[∫ τn(t)

0
‖e(ġn(s))‖4

L4(Ω;R3×3
sym)

ds+

∫ τn(t)

0
‖e(un(s))‖4

L4(Ω;R3×3
sym)

ds

]
,

where we have used again (5) and the subquadratic growth (16) of Θ.
We then choose δ so small that the corresponding terms in the right-hand side are absorbed

by larger terms on the left-hand side. Thus, taking into account the previous estimates and
(39), from (48) we obtain

c ‖u̇n(t)‖2L2(Ω;R3) + c‖un(t)‖2H1(Ω;R3) + τnc‖un(t)‖4W 1,4(Ω;R3) + c‖zn(t)‖q
W 1,q(Ω)

+ c ‖wn(t)‖L1(Ω) + c

∫ τn(t)

0
‖e(u̇n(s))‖2

L2(Ω;R3×3
sym)

ds

≤ C + C

∫ τn(t)

0

[
‖wn‖L1(Ω) +‖un‖2H1(Ω;R3)+ ‖u̇n(s−τn)‖2L2(Ω;R3) +τn‖un‖4W 1,4(Ω;R3)

]
ds ,

where we have used the assumptions on initial and external data (8), (9), (10), and (11), and
the constants c and C clearly depend on δ.

All in all, by suitable application of the Cauchy inequality and of the Gronwall Lemma, we
obtain the a priori estimates (49a)–(49d), the L∞(0, T ;W 1,q(Ω))-bound on zn in (49f), as well
as estimate (49g) below, with a constant uniform with respect to n.

Relying on (49a)–(49d) and (49g), we are in the position to deduce from the discrete
mechanical energy inequality (44c) a bound on the dissipation term

∫
Ω(z0−zn(t)) dx, which
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in particular ensures the BV(0, T ;L1(Ω))-bound on zn in (49f). The L∞((0, T ) × Ω)-bound on
zn is a direct consequence of the monotonicity and of the fact that 0 ≤ z0 ≤ 1.

Furthermore, estimate (49h) can be deduced using the Boccardo-Gallouët type estimates
developed in [2, Prop. 4.2]. Let us just mention here, that it is based on testing the enthalpy
equation (44d) by χ(wn) := 1 − 1/(1+wn)β with β > 0, relying on assumptions (4) in order
to handle the resulting gradient term. A chain of inequalities involving Gagliardo-Nirenberg
estimates ultimately leads to the Lr(0, T ;W 1,r(Ω))-estimate in (49h) and the respective
regularity of w in (21c). Finally, exploiting the estimates obtained so far, the BV-estimate
in (49h) results from the boundedness of ‖wn‖L1(0,T ;W 1,r′ (Ω)∗), which is, in turn, deduced by a

comparison argument in (44d) using test functions η ∈ L∞(0, T ;W 1,r′(Ω) with r′ > 5 by (21c)
and the fact that the gradient term as well as the terms on the right-hand side of (44d) already
have been proved to be bounded; we refer to [2] for the details.

Finally, estimate (49e) ensues from a comparison argument in the discrete momentum
equation (44b), taking into account the previously obtained bounds (49a)–(49d), (49f)–(49h).

In total, the above arguments yield the following

Proposition 3.5 (A priori estimates). Let the assumptions (4)–(6) and (8)–(11) hold true.
Then a sequence of interpolants (un, un, un, zn, zn, zn, wn, wn)n∈N, complying with the time-
discrete version of the energetic formulation (44), satisfies

‖un‖L∞(0,T ;H1(Ω;R3)) ≤ C , (49a)

‖u̇n‖L∞(0,T ;L2(Ω;R3)) ≤ C , (49b)

‖un‖L∞(0,T ;W 1,4(Ω;R3)) ≤ C/ 4
√
τn , (49c)

‖u̇n‖L2(0,T ;H1(Ω;R3)) ≤ C , (49d)

‖u̇n‖BV([0,T ];W 1,4(Ω;R3)∗) ≤ C , (49e)

‖zn‖L∞(0,T ;W 1,q(Ω))∩L∞((0,T )×Ω)∩BV([0,T ];L1(Ω)) ≤ C , (49f)

‖wn‖L∞(0,T ;L1(Ω)) ≤ C , (49g)

‖wn‖Lr(0,T ;W 1,r(Ω))∩BV(0,T ;W 1,r′ (Ω)∗) ≤ C for every r < 5/4 . (49h)

3.4. Limit passage from time-discrete to time-continuous
A suitable version of Helly’s selection principle, cf. e.g. [11, Thm. 6.1], combined with
compactness arguments based on the a priori estimates (49a)–(49f), leads to the convergence
statements (50a)–(50j) and (50o) in Proposition 3.6 below. We refer to [3, Prop. 4.1] for the
details of the proof, here commenting only on the further convergence (50d), which follows from
the bounds (49d) and (49e) via a BV-version of the Aubin-Lions compactness theorem, cf. e.g.
[9, Cor. 7.9, pag. 196]. Moreover, convergences (50k)–(50m) for the enthalpy variables can be
concluded from estimates (49g) and (49h) arguing along the lines of [2], cf. also [10]. Also based
on (49g) and (49h), by the aforementioned Aubin-Lions type compactness result from [9], one
additionally finds the strong convergence result (50n). From this, one may extract a further,
pointwise a.e. convergent subsequence in order to see that the nonnegativity of the approximate
solutions deduced in Lemma 3.3 carries over to the limit w for a.e. t ∈ (0, T ).

Proposition 3.6 (Convergence of the time-discrete solutions). Let the assumptions (4)–(6)
and (8)–(11) be satisfied. Then, there exists a triple (u, z, w) : [0, T ] × Ω → R3 × R × [0,+∞)
of regularity (21) such that for a.a. x ∈ Ω the function t 7→ z(t, x) ∈ [0, 1] is nonincreasing,
nonnegativity (27) of w holds and there exists a subsequence of the time-discrete solutions
(un, un, un, zn, zn, wn, wn)n from (36) such that

un
∗
⇀ u in L∞(0, T ;H1(Ω;R3)) , (50a)

un ⇀ u in H1(0, T ;H1(Ω;R3)) , (50b)
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u̇n
∗
⇀ u̇ in L∞(0, T ;L2(Ω;R3)) , (50c)

u̇n → u in L2(0, T ;W 1−ε,2(Ω;R3)) , (50d)

u̇n(t) ⇀ u̇(t) in L2(Ω;R3) for all t ∈ [0, T ] , (50e)

zn , zn
∗
⇀ z in L∞(0, T ;W 1,q(Ω)) ∩ L∞((0, T )× Ω) , (50f)

zn(t) ⇀ z(t) in W 1,q(Ω) for all t ∈ [0, T ] , (50g)

zn(t)→ z(t) in Lm(Ω) for all m ∈ [1,∞) and for all t ∈ [0, T ] , (50h)

zn(t) ⇀ z(t) in W 1,q(Ω) for all t ∈ [0, T ]\J , (50i)

zn(t)→ z(t) in Lm(Ω) for all m ∈ [1,∞) and for all t ∈ [0, T ]\J , (50j)

wn , wn
∗
⇀ w in L∞(0, T ;L1(Ω)) , (50k)

wn , wn , wn ⇀ w in Lr(0, T ;W 1,r(Ω)) for all r < 5/4 , (50l)

wn(t)
∗
⇀ w(t) in W 1,r′(Ω)∗ for all t ∈ [0, T ] , (50m)

wn , wn , wn → w in Lr(0, T ;W 1−ε,r(Ω)) ∩ Lp(0, T ;L1(Ω)) (50n)

for all ε ∈ (0, 1] and all p ∈ [1,∞). The set J ⊂ [0, T ] appearing in (50i)–(50j) denotes the jump
set of z ∈ BV([0, T ];L1(Ω)). Finally,

|żn| → |ż| in the sense of measures on (0, T )× Ω . (50o)

For such a limit triple (u, z, w), given by means of Proposition 3.6, it has to be verified that it
solves the time-continuous energetic formulation stated in Def. 2.1. For this, one basically takes
the limit n→∞ in the time-discrete energetic formulation (44). In what follows, we just outline
the steps of the limit passage and comment on the main ideas and tools; for all the details the
reader is referred to [3, Sect. 4], where the proof has been performed in an analogous setting.
• The limit passage in the semistability inequality can be carried out by verifying the mutual

recovery sequence condition, cf. [11, 4], i.e. that for all t ∈ [0, T ], for any sequence (vn, ζn)n∈N
such that

vn ⇀ v in H1(Ω;R3), ζn ⇀ ζ in W 1,q(Ω) and

En(t, vn, ζn) ≤ En(t, vn, ζ̂n) + R1(ζ̂ − ζn) ,
(51)

and for every ζ̃ ∈W 1,q(Ω), there exists a mutual recovery sequence (ζ̃n)n such that

0 ≤ lim sup
n→∞

(
En(t, vn, ζ̃n)− En(t, vn, ζn) + R1(ζ̃n − ζn)

)
≤ E(t, v, ζ̃)− E(t, v, ζ) + R1(ζ̃ − ζ) .

(52)
This condition is applied to the sequence (vn, ζn)n∈N = (un(t), zn(t))n, satisfying at every
t ∈ [0, T ] the discrete semistability (44a) (whence (51)). The construction of the mutual
recovery sequence (ζ̃n)n∈N is developed in [3, Sect. 4.2], to which we refer for all details.
• For the limit passage in the momentum balance (44b) one considers test functions v ∈
L2(0, T ;H1

D(Ω;R3)) ∩ W 1,1(0, T ;L2(Ω;R3)). Because of the regularization by the 4-
Laplacian, such test functions have to be regularized using mollifers of the form [8, p.
56, Corollary 2] and [9, p. 189]. These mollifed functions are discretized in time according
to (31), (38), and (43), thus resulting in admissible test functions (v̄n, vn) for (44b) satisfying
for all t ∈ [0, T ]

v̄n(t), vn(t)→ v(t) in H1
D(Ω;R3) ,

v̄n → v in L2(0, T ;H1
D(Ω;R3)) and vn → v in L2(0, T ;H1

D(Ω;R3)) ∩W 1,1(0, T ;L2(Ω;R3)) .
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Hence, in view of the weak convergences (50b)–(50e), to pass to the limit in (44b) weak-
strong convergence arguments are employed. This is possible since

(D(zn,Θ(θn)) + C(zn))e(v̄n)→ (D(z,Θ(w)) + C(z))e(v) in L2(0, T, L2(Ω;R3×3)) ,

which can be deduced via dominated convergence; we refer to [3, Sect. 4.1] for the details.
• The mechanical energy equality (25) for the limit system is proved in two steps. The part

“≤” directly follows from (44c) by lower semicontinuity for the terms on the left-hand side,
and by weak-strong convergence arguments for the terms on the right-hand side, making
use of the convergence properties of the interpolants of the given data (29), (30), (37), (39),
and (43), which, in particular, also ensure energy convergence at initial time.
• The opposite mechanical energy inequality “≥” is deduced following the lines of [2, p. 283f]:

A Riemann sum argument is applied to the already proven semistability inequality (23) of
the limit (u, z, w) at times ti−1, i ∈ {1, . . . , n} tested with z(ti). The result is added to the
momentum balance (24) of the limit tested by (u̇− ġ). This can be done rigorously in view
of the enhanced H1(0, T ;H1(Ω;R3))-regularity of u̇, which can be gained by a comparison
argument in the momentum balance, cf. [3, Rmk. 2.6] for all details. Combined with the
previously deduced inequality “≤”, this yields the mechanical energy balance (25) of the
limit system, see [3, Prop. 4.6] for the details. Using a lim sup-argument, i.e. starting from
the discrete energy inequality (44c) and passing over to the limit in a chain of inequalities,
the fact that equality holds for the limit system additionally allows us to conclude the strong
convergence of the viscous dissipation terms in L1([0, T ]× Ω;R3×3) by comparison.

• Finally, we carry out the limit passage in the enthaly equation. Starting with a function
η ∈ W 1,r′(0, T ;Lr

′
(Ω)) ∩ C0([0, T ];W 1,r′(Ω)), also in this step, time-discrete test functions

(η̄n, ηn) for (44d) are constructed as in (31) and (38) and thus exhibit strong convergence in
W 1,r′(0, T ;Lr

′
(Ω))∩Lr′(0, T ;W 1,r′(Ω)). Via dominated convergence, also using convergence

(50n) and the boundedness (17) of J, it can be shown that

J(zn, θn)∗∇η̄n → J(z, w)∗∇η strongly in Lr
′
(0, T ;Lr

′
(Ω,R3)) ,

which is a major ingredient to obtain the enthalpy equation (26) of the the limit system.
The strong convergence of the viscous dissipation terms in L1([0, T ] × Ω;R3×3) ultimately
enables us to pass to the limit in the right-hand side of (44d). We refer to [10, p. 30] for
more details.
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la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica)
through the project Modelli variariazionali per la propagazione di fratture, la delaminazione
e il danneggiamento.

References
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[4] Mielke A and Roub́ıček T 2006 Math. Models Methods Appl. Sci. 16 177–209

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012009 doi:10.1088/1742-6596/727/1/012009

19



[5] Francfort G A and Suquet P 1986 Arch. Ration. Mech. Anal. 96 265–293
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