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This is indeed a mistery, remarked Watson,

what do you imagine that it means?

- I have no data yet, replied Sherlock Holmes. It is a capital
mistake to make theories before one has enough data. Insensibly,
one starts twisting the data to fit the theory, instead of making

the theory fit the facts.

Conan Doyle
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Chapter 1

Introduction

Five years ago, a few months after Bednorz and Miiller’s[1] remarkable discovery of cetamic
compounds superconducting at unexpected high temperatures, Carlos Balseiro and Blas
Alascio suggested me to study the electronic structure of these new materials. By that
time I was an undergraduate student at Bariloche and the local theory group was exploring
a superconducting mechanism involving charge transfer excitons, a subject which we were
very much encouraged to think about. For the time when I was doing very simple minded
Hartree-Fock calculations, many people all around the world were diagonalizing all possible
models in small clusters with the hope to find one model showing tendency to Cooper
pair formation. Blas showed me one of these calculations and told me his thought that
the binding found was a “simple Hartree-Fock effect” in the sense that the Hartree-Fock
approximation could give a similar result. What this innocent comment triggered, is the
outcome of this thesis. He was not only right but, unexpectedly, the binding in Hartree-
Fock, a very small quantity resulting as difference of extensive energies, was in almost
perfect agreement with the exact result. This was surprising (not for Blas) since the

binding energy was supposed to be an effect of correlations, something which Hartree-
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Fock is not supposed to deal with. So we turn the statement “this is not an effect of
correlations” the other way around to say: maybe particles like to be close (correlated) to
take advantage of this Hartree-Fock effect. In. fact, in such a small cluster particles were
obliged to be close to each other any way. The underneath assumption in the exact small
cluster calculations was that if one would have a collection of such clusters and allow the
particles to jump from one cluster to another they will choose to be in the same cluster
if there were pairing tendencies. The same reasoning was possible with the Hartree-Fock
calculation but even more, being a much simpler technique it was possible to make the
calculation in a very large cluster rather than on many small clusters, and in a spatial
dependent way so that if particles wanted to be in the same spatial region they could do
so. It was natural then to ask what would happen if instead of adding two particles we
put only one. By that time, people doing all kind of spectroscopies, were beginning to talk
about gap states appearing upon doping in the presence of strong correlations. So I played
with the spatial dependent Hartree-Fock ideas a bit and in Trieste, under the supervision
of Yu Lu, such first attempts of studying strong correlations and self-trapping gave rise to
Chapters 3 and 4. As the time went on, the model considered appeared too simplistic but
it provided an excellent test ground for the methods and ideas that produced the exciting
results of Chapters 5 and 6. The agreement between exact diagonalization results and
the inhomogeneous Hartree-Fock convinced us that the technique was accurate enough
to try a more detailed comparison with experiments. At the same time it was clear that
the dynamical effects Weré not included in the calculation and I began to think in terms
of a time-dependent Hartree-Fock approach which, in the small amplitude of oscillation

limit, was nothing more than the random phase approximation (RPA). The photodoping




experiments of Taliani’s[2] and other groups[3, 4] made it clear that the lattice effects were
certainly present. Magnetism and consequences of a non-infinite Cu Coulomb repulsion
was another main question. With all this in mind I switched from the sixﬁpler model
of Chapters 3 and 4 to the full p-d model. By that time I met Alan Bishop. He was
playing with similar ideas and had similar projects. Moreover, his group had began to
adapt the real space RPA techniques developed by the nuclear physics community to treat
this kind of problems. We began a collaboration and since Alan put priority on lattice
effects, which were calling increasing attention of the high Tec community, Chapter 6 was
produced before Chapter 5. Whereas for the polarons of the simplified model the physical
idea of the self-trapping preceded the results, for the polarons in the p-d model I first
got the results and then understood them (similar results were simultaneously obtained
by Kenji Yonemitsu). At a first look they seemed ordinary small ferromagnetic polarons.
However, a closer examination shows something strange. First the magnetic moment at
the center of the polaron is very much reduced and there are two close levels in the gap.
For some parameters the magnetic moment was zero and the two levels in the gap became
degenerate. This was not what one would expect for a naive magnetic polaron. It is curious
to see how similar reasoning that worked for the electronic polarons of the simplified model,
would explain this effect. The key issue is the competition between the two giant forces
of the Cu-O planes: the strong Cu on-site repulsion, that makes the system insulating,
and the strong covalency, that makes the layers so rigid (in the simplified model the game
is played between the nearest neighbour repulsion and covalency). People tend to assign
the large distance between the two Hubbard bands only to the on-site Coulomb repulsion.

A simple example shows that this is not the case. Solving the unrestricted Hartree-Fock
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equations for a Hubbard molecule with two atoms and two electrons gives a transition
between a magnetic “insulator” and a nonmagnetic “metal” for an on-site repulsion U
equal to twice the interatomic hopping integral t. Whereas the atomic rﬁagnetic moment
vanishes as m” = {[1 — (#)?], the distance between the Hubbard “bands” does not go to
zero but is equal to U independently of ¢ up to the transition and afterwards they become
the bonding and antibonding orbitals of the uncorrelated molecule. The splitting, close to
the transition, is mainly due to the strong covalent repulsion of the levels and not to the
distance between the renormalized atomic T, | levels. The latter is only 2mU. Only for
very large U can the splitting be considered only due to the distance between the on-site
renormalized levels. The consequences of the strong covalency in the p-d model manifest
dramatically away from half-filling where magnetic moments tend locally to collapse by
increasing doping (Chapter 5) or locally increased covalency. This last effect is achieved
by relaxing the lattice around the polarons (Chapter 6). Kenji made an adiabatic RPA
calculation over these states that explained nicely some of the features of the photoinduced

experiment at phonon frequencies[2, 4, 5].

Further insight came by calculating the random phase approximation fluctuations in
the simplified model. The interesting thing was that by varying a parafneter favoring
self-trapping it was possible to pass from an extended state to a polaronic state. The
transition was signaled by RPA modes going to zero. Here, apart from the photoinduced
experiments, I got very much influenced by the optical experiments of the group led by
Uchidal[6], the Bell group[5] and the Rome][7, 8] group. They showed that what, for strong
doping becomes a mysterious mid-infrared band in the optical spectra, corresponded, for

very small doping, to a transition in the gap. I thought that the analogous soft modes of the
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simplified model had a good chance of giving that behaviour in the p-d model. Moreover,
Uchida’s experiments looked very much like a Softenjng of the mode with doping and a
subsequent transition of the electronic ground staté. The final agreement bet\;veen theory
and experiment was better than I expected and the physics turned out to be more complex.
The softening came out not only because of the delocalization of the added particles, as in
the simpler model, but mainly due to the delocalization of the Cu spins which showed that
doping was triggering a transition from a strange polaronic liquid to a more conventional
metal. How these soft modes influence the Fermi liquid behaviour and, maybe, produce
superconductivity is something to look at in the future with more refined techniques. At
this point the techniques used here reach their limits.

The landscape of the Hartree-Fock states is enormously complex. There are too many
degrees of freedom. First it is not clear what parameters to put in the Hamiltonian and
even if one gets the right parameters there is a tremendous richness of nearby mean field
states. As time goes people will learn to travel along these landscapes at high speed and
it will ﬁot be anymore a craftsman’s work. I spent the last four years touring in this
labyrinth with the hope that there was something interesting to discover. I think, finally

I arrive to a nice point and it was worth the effort.
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Chapter 2

The Model

On modeling and studying a real material we have to face two difficult decisions: which
model to use and which technique to use. For éuprates the preferences range from taking a
very simple model and applying a very accurate (exact) and complicated ;echxﬁque like the
Bethe’s ansatz applied to the 1D, supersymmetric ¢ — j model, to a more naive technique
(like LDA) for a very complicated Hamiltonian. From both extremes there is something
to learn (although the first case is closer to statistical mechanics than to condensed matter
physics). Here we hope we have reached a balance with a model realistic enough and a
technique accurate enough to allow detailed comparison with experiments and at the same
time to keep the physics tractable.

A prototype hamiltonian to describe the superconducting cuprate oxides is the p-d
model. This model has been proposed in the early time of the high temperature super-
conducting studies for the Lay_,Sr;CuQy, and applies to all Cu-O based compounds. It
has been later generalized to the three-dimensional Bi-O compounds[9]. In the case of
Lay_.Sr,CuQ, it takes into account the following:

e The compound is quasi-two-dimensional.

13
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e The La valence states are far above the Fermi energy[10].

¢ The main states near the Fermi energy[10] are the d,»_,» orbitals of Cu and the
Pz,py orbitals of O directed towards Cu. Their energies are close to eacﬁ other, producing
a bonding and anti-bonding bands. They are the ones that mix the most.

e The on-site correlations are large[10].

e As suggested by many authors we include also the interatomic repulsion[11, 12, 13].
We expect it to be important because we know that the carrier density is small[14] and,
as a consequence, the screening length is large. On the other hand, if the Cu-O bond were
ionic, this term would not play any important role, but we know this is not the case.

Both density functional calculations and experiments suggest that lattice effects are
important. At least close to the stoichiometric compositions, where the compound is in-
sulating, lattice effects are unavoidable since the carriers are not very mobile and then
self-trapping by the lattice is warrant. However, since the major source of trapping proves
to be the electronic background some time the lattice can be neglected and one can still
get quite good agreement with experiment at large enough energies. The lattice displace-
ments that disturb most the electronic system are O moving toward Cu. We include the
corresponding phonons in the Hamiltonian. This is known as a 2-d, 3-band extended

Peierls-Hubbard model in the jargon on the subject. The Hamiltonian reads,

H =Y u({uk}>cwcja+zez {w})e! cﬁzmci&chcw

i#ho

+ Z U,]cwcw,c]a:cw + Z p, +Z ~Kpupu (2.1)
(i#7),0,0!

where the operator c:fv

creates a hole of spin o at site 7 in the Cu d;2_,» or the O p,
orbital. We assume that the parameters for the one-fermion operators, the hopping inte-

grals ¢;;({ux}) between sites ¢ and j and site-diagonal energies e;({ux}) at site 7, depend




15

linearly on lattice displacements ux with coeflicients gl’-“j and gk, respectively,
t({ur}) = 85 + > ghue | (2.2)
k

ei({ur}) = e? + Z gﬁ-uk . (2.3)
k
Holes repel each other with strength U; on site 2 and strength U;; between different sites
i and j. Displacements of atoms and their conjugate momenta are denoted by u; and
pi, respectively. The quantity M; stands for the ionic mass at site I and Ky for the
phenomenological spring constant between ions at sites k and I. The symbol (i # j) under
the summation symbol means that a pair (7,7) is counted only once.

We consider the nearest-neighbor Cu-O (tpq) and O-O (—t,,) hoppings for t9;, Cu-site
(e4) and O-site (e,) energies for e?, with 2A = €, — €4, Cu-site (Ug) and O-site (Up)
repulsions for U;, and the nearest-neighbor Cu-O repulsion (Upa) for U;;. For the lattice
part, we study only the displacements of planar O atoms along the Cu-O bonds. (We
take the Cu atoms to be fixed, for simplicity.) Furthermore, we assume that only diagonal
components of the spring-constant matrix are finite, Ky = 8k K. For the electron-lattice
coupling, we assume that the nearest-neighbor Cu-O hopping is modified by the O-atom
displacement, ug, linearly with coefficient a, t;;({uc}) = tpa — aux if the Cu-O bond
becomes longer with positive uy, or tpq + aui if the bond becomes shorter. The Cu-site
energy is assumed to be modulated by the displacements of the four surrounding O atoms,
ug, linearly with coefficient 3, e;({ux}) = ea+ 8 2k (Fux), where the sign takes “+” if the
bond becomes longer with positive ug, or “—” if the bond becomes shorter. The electronic
parameters in the Hamiltonian can be taken from the experiments[15] or LDA[16, 17]
calculations. As a reference parameter set, we use tpg = 1, tpp = 0.4, 2A = 2.2, Uy = 5,

U, = 2.1, and Upq = .4, which are almost in proportion to the values t,g = 1.47eV,
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top = 0.61eV, 2A = 3.29eV, Uy = 7.42eV, U, = 3.09¢V, and Upq = .41eV derived from the
constrained-density-functional approach[18, 17]. Dimensionless electron-lattice coupling
strengths are defined by A, = a?/(Kt,q) and Ag = B%/(Ktpq). It is easily shown that,
within the mean-field theory, two parameter sets differing only by g{?j = sﬁ’z (a = sa,
B = sB') and K = s?Kj, (thus Ay = A, Ag = Aj, s: real number) give the same
HF configuration for charge and spin densities and the lattice displacements related by
(ur) = s71(u},). For the lattice a good procedure is to fit the displacement obtained with
“LDA + U” calculations[19]. When we study lattice fluctuation (in the RPA), we use
K = 32, which gives a dispersionless bare O phonon frequency of 104meV (840cm™?)
if this value is interpreted as K = 32 x 1.3eV/A~2. This value is also consistent with
“LDA+TU” calculations[19].

Different limits of this model are studied in this work. For A, = Ag = 0 we recover the
standard p-d model for the electronic part,

H = Z t?jc}acj-t, + Z e?c:-rgc,-a + }: U;czTc:flcilc,-T
1,0 1

i#ie

+ Z Uijczacj-u,cja:cw . (2.4)

(i#5)o0"
If we further restrict it to 1D and take the limit Up, Ug — o0, charge and spin degrees of
freedom decouple, and the former are described by a spinless fermion hamiltonian [20, 13],
H = Z[(—l)iACjC,’ + t(C’jC,‘_{,l + h.c.) + Updnini+1] . (2.5)
By doing this we lose all relevant information about the spin degrees of freedom (which are
described by a Heisenberg model) but we gain simplicity on the charge degrees of freedom.

We know that Uy is very large. Naively, one could expect the results to be insensitive to

the value of U, because the double occupancy on O is rare. However, we shall see later
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(Sec. 3.7) that this is not the case.

The spinless model (2.5) will be studied in Chapter 3 and its 2D generalization in
Chapter 4. The full p-d model (2.4) in 2D case will be investigated in Cha.pfer 5. Finally
Chapter 6 is devoted to the full Hamiltonian (2.1) where the lattice effects are included

explicitly.
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Chapter 3

Electronic polarons in a one di-
mensional spinless model

Since many of the techniques emploied in this work were, and still are, in a primitive stage
of development we found very useful to test them in a simplified spinless model. Moreover
this model contains most of the essential physics of charge transfer process in the p-d
model without complications that arise from the magnetic degrees of freedom or charge
fluctuations due to the finiteness of Uy. The model is given by the Hamiltonian Eq. (2.5).
This one-dimensional spinless fermion model was used in connection with modeling high
temperature superconductors[21, 20, 13], and one-dimensional charge transfer systems[22].
The model has the advantage for our propose that it supports non trivial self-trapped
states[21] at the mean field level and is simple enough to allow exact diagonalization on
relatively large chains[23]. We first show that the nearest-neighbour Coulomb repulsion
can generate charge transfer polaron and exciton states. The importance of charge transfer
excitations in HTSC has been stressed by theorists[11]-[13] and experimentalists{24]-[29].
Structure related to charge transfer excitations in the Cu-O planes has been identified in

optical measurements[27]-[29].

19



20 § 3. Electronic polarons in a one dimensional spinless model

We first obtain homogeneous (HHF') and inhomogeneous (IHF') Hartree-Fock solutions
(Sec. 3.1) and compute the ground state energy (Sec. 3.4) as well as static correlation
functions (Sec. 3.5). These are compared With'exact diagonalization resﬁlts obtained with
the Lanczos method[30]. The IHF approach gives better results for the ground state
energy and describes short distance correlation functions better than its homogeneous

counterpart.

An intuitive approach to the dynamics of the system is to try to solve the time depen-
dent Schrdedinger equation in the Hartree-Fock approximation. In this way one can look
for a solution in which the polaron with its self-trapping potential moves self-consistently.
But a time dependent Hartree-Fock in the small amplitude of oscillation limit ;is nothing
more than the random phase approximation (RPA). In other words, one has to look for
the linear modes or the one loop corrections around the localized solution. In the limit in
which the polaron is large with respect to the lattice space one can pass to the continuum
limit and one of the modes becomes a Goldstone mode. A similar problem has been faced

for the polyacetylene[31].

RPA fluctuations are added through the matrix form of RPA used in nuclear physics
problems[32]. This allows us to compute dynamical correlation functions (Sec. 3.6) that
compare well with exact diagonalization results reported in the literature[13]. For both
strong and weak coupling limits the correlation energy in RPA agrees quite well with the
exact result. A related approach that amounts to treating the electron-hole pairs as bosons
(quasi-boson approximation) overestimates the correlation energy by a factor of 2 in weak

coupling due to double counting.

The Hartree-Fock self-trapped solution appears above a critical value of the interaction.
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The transition is sharp at the mean field level and is signaled by an RPA mode with
frequency approaching zero. Above the transition the homogeneous Hartree-Fock solution
has unstable RPA modes with imaginary frequenciés. The general formalisrﬁ is described
in the Appendix A. The range of validity of the approximations involved is discussed in

section 3.3

3.1 Hartree-Fock results

3.1.1 Uniform case

The spinless Hamiltonian is,

H = Z[(——l)iACjCi + t(CjC,'_H + h.c.) + Updn,'n,'+1] . (3.1)

i

At half filling the charge distribution is uniform and the mean field equations can be
solved in reciprocal space. There are two bands separated by a gap and the chemical
potential is in the middle of the gap. The effect of Upd, Eq. (A.25) is to increase the
gap and to renormalize the bandwidth. The most naive approach away from half filling
is to assume that the charge goes to a uniform plane wave state. In Fig. 3.1 we show
the chemical potential as a function of doping in the uniform Hartree-Fock approximation
for different values of Upq/t. We see that the compressibility is negative for small enough
doping. This means that the uniform Hartee-Fock ground state is unstable and, hence,
something better should be tried. There are several candidates such as phase separation,
superconductivity or, as we shall see, a polaronic phase. Since we are in the unstable phase,
no precise statement can be made. The instability can be traced back to the behavior of
the renormalized Hartree-Fock diagonal energies. Let us give an heuristic argument in the

strong coupling limit. The effective levels for a chain of Cu and O at half-filling vs. the
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4 ' ! :
0 : 5 1
Doping

Figure 3.1: Chemical potential as a function of doping in 1D for A = .3. We subtracted the
corresponding value of 2U,4 to each curve in order to make them all fall on the same scale.

site are schematically shown in Fig. 3.2(a). In the Hartree approximation the diagonal

energies of the orbitals renormalize as:
éq = €4 + 2noUpd, (3.2)

€, = €p + 2ncyUpa- (3.3)

At half-filling and for small ¢, n¢y, ~ 1 and n, ~ 0, then

Ey ~ €q, (3.4)

and
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Ep= Ep+2Upd

(a)
Ed=Ed

) ® °

Figure 3.2: Schematic plot of the renormalized energy levels in real space. A dot represents an

occupied site. (a)Ground state at half filling, (b) One particle added. Arrows indicate increased
charge transfer.

&y ~ €p + 2Upq- (3.5)

When we add holes they go mainly to O sites raising the Cu level. These will increase
the mixing of Cu and O and will imply a transfer of charge from Cu to O. The net effect
will be that ng, decreases, and the O 1e\;'e1 renormalizes to lower energies. This means
that we are putting charge in a level whose energy is decreasing. Therefore, the chemical

potential decreases with doping and the compressibility turns out to be negative.

3.1.2 Non-uniform case

Let us now suppose that instead of putting the charge in a Bloch state we localize it on an
O site (Fig. 3.2(b)). The energies of the neighbouring Cu will strongly renormalize and

then, there will be charge transfer towards the O. The net effect will be that the O level
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will locally renormalize to lower energies. This will create a potential in which the hole

can be self-trapped.

In Fig. 3.3 we show the example of one hole added to the stoichiometric case. This
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Figure 3.3: One particle added to the half filling case for A = .1, Upg = 2. We show the one
particle wave function (W.F.) of the polaron state, the site occupation, and the v as a function of

the site. Solid circles correspond to Cu and squares correspond to O except for v in which they
differentiate even and odd bonds. The plot on the right is the single particle energy levels; note
the states in the gap. A dot represents an occupied level.

effect can be studied in a wide region of parameter space performing the unrestricted

Hartree-Fock approximation (Sec. A). In a simplified view, we can think of the particles

of the O band as moving in a potential generated by the charge distribution on the Cu site

and vice versa (Egs. (3.2),(3.3)). Therefore, in Fig. 3.3 the plot of the charge distribution
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represents, in a different scale, the distribution of site energies in which the particles move.
The depletion in the Cu charge pulls down a state from the O band and the bump in the O
charge pulls up states from the Cu band. The polaron wave function carries sbme features
of the bottom Bloch state of the O band. The amplitude is larger on O sites and it changes
sign from one O site to the next. Note that the polaron forms an “impurity”-like state. In

all cases we found that the self-trapped solution has lower energy than the uniform one.

Our problem presents a neat analogy with 1D problems studied in the past[31]. In this
context a related problem has been studied by Hubbard[33]. He showed that for the case
A = 0 and t << Upq (strong coupling), one hole added to the system dissociates into a
soliton (kink-like) pair, each one with charge e /2. When A # 0 the free soliton pair is not

stable because the charge between the two solitons is located “in the wrong place”.

In our case we can think of the polaron as a bound state of the pair. For A =0
the ground state is degenerate. Similar to Hubbard’s[33] results we found kink-like so-
lutions. In a kink-like solution half of the chain has the charge displaced towards the
Cu sites, and the other half vice versa. Furthermore, in the continuum limit the unre-
stricted Hartree-Fock equations can be mapped into a problem closely related to that of
the polyacetylene[31]. In this limit the polaron solution dissociates as a free soliton pair.
Fig. 3.4 shows the weak coupling version of Hubbard’s strong coupling result. We see that
the localized wave function has equal weight on Cu and O sites as required from symmetry
considerations. It has similar oscillating behavior to the polaron case. It is interesting
to note the behavior of 4 (see Appendix A ). There is a constant part and a oscillating
part. The later is clearly dominated by the localized states. In Eq. (A.28) the sum over

the extended states has a smooth behavior and the sum over the localized states provides
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Figure 3.4: One particle added to the half filling case for A = 0, Upq = 1. We show the one particle
wave function (W.F.) of the polaron state, the site occupation, and the v as a function of the site.
Solid cizcles correspond to Cu and squares correspond to O except for 7 in which they differentiate
even and odd bonds. The plot on the right is the single particle energy levels; note the states in
the gap. A dot represents an occupied level.

the oscillating part. We can now consider the problem of phase separation. If there is
a phase separation one would expect that for more than one particle added, the system
will nucleate a hole-rich phase. Due to the short-range character of the interactions it is
enough to consider the two-polaron case. We generated a configuration with two particles
close to each other and iterated up until convergence. We found that the energy decreases
monotonically and the system converges to a situation in which the polarons are well far

apart (Fig. 3.5). Hence, in this approach there is no phase separation.

a
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Figure 3.5: Two particles added to the half filling case for A = .3, Upg = 2. We show the
one particle wave function (W.F.) of the two-polaron state and the site occupation. Solid circles
correspond to Cu and squares correspond to O. The plot on the right is the single particle energy
levels. A dot represents an occupied level.

We can also study excitonic states. In such state we consider the stoichiometric case

leaving the top state of the lower band empty, and the bottom state of the upper band

occupied. In Fig. 3.6 we show such an example.

We note that the charge gap for these excitations is émaller than the uniform Hartree-
Fock gap. For equal parameters the exciton is more localized than the polaron state
because the self-trapping potential is deeper. This can be understood by comparing the
distribution of charge in the Cu for the two cases. For the polaron case the self-trapping

potential is generated by a relatively small lack of charge on Cu, which has been trans-
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Figure 3.6: Exciton state for A = .3, Upg = 1. We show the one particle wave function (W.F.)
of the two localized states and the site occupation. Solid circles correspond to Cu and squares
correspond to O. The plot on the right are the single particle energy levels. A dot represents an

occupied level.

ferred to O (see Fig. 3.3), while for the exciton case, there is a whole particle missing
which generates the self-trapping potential. For the same reason the exciton spectrum is
symmetric. In the limit A = 0 the exciton solution dissociates into a free kink- antikink

pair.
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3.2  Transition between the polaron state and the ex-
tended state

As explained in the previous section when one particle is added to the system, it self-
traps[21] at the HF level and forms a polaron-like state. In Fig. 3.7 we show the HF
charge distribution for different values of U,q for a chain of N = 10 unit cells. The

polaron is small for large Upq.

As Upq decreases it extends more and more, up to a critical value of the interaction
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Figure 3.7: Site occupation for one particle added to the half filling case, (a) N = 10, A = 0.3,
Upa = Upy — 7;(b) Upa = Uyq+m; and (¢) Upa = 2.5. nis a small number with which the equations
can be solved without convergence problems. Solid circles correspond to the even sites and squares
correspond to the odd sites.
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(Ugy = 1.58 for A = 0.3 ) when it reaches the size of the box[Fig. 3.7(b)]. At this point
the HF ground state changes and it becomes homogeneous [Fig. 3.7(a)]. Below this value
the HF state is translationally invariant. This “phase transition” is an artifact of the HF
approximation. No sharp transition occurs in the exact results and one has to think in
terms of a smooth, although possibly rapid, crossover. At the RPA level (for the formalism
see Appendix A) the transition is signaled by the softening of the corresponding modes
(Fig. 3.8). On the uniform side, the modes can be labeled by the momentum ¢ transfered
in the scattering process. Except for the modes with ¢ = 0,w, all the other modes are
doubly degenerate due to the symmetry ¢ — —gq.

The normal modes around the mean field state are characterized by the so-called transi-
tion densities < RPA|n|\ >. They determine the dynamic components of the expectation
value of n; in a wave packet formed by the ground state and small admixtures of excited
states: viz,

|O(t) >= |RPA> + > cxe ™M|A >,
A>0

< B(t)|m|T(t) >= n] + 6nu(2),

(3.6)

n? =< RPA|n)|RPA >,

Sny(t) = > ex < RPA|ny|A > e + hoe. + O(c3).
A>0

Similar expressions can be written for the off-diagonal elements of the one-body density

matrix. In general they are computed by expressing the one-body operators in terms of
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Figure 3.8: The lowest RPA frequencies as a function of the interaction Upq for one particle added
to half filling, N = 10 and A = 0.3. The vertical line indicates the transition between the extended
state (ES) and polaron state (PS).

the particle hole operators, through Eq. (A.12), and using the relations of Eg. (A.19). In
our case, the transition densities can be taken as real. Note that in the last expression
of Eq. (3.6) the vanishing of a frequency means the conversion of a dynamic distortion
of the density into a static distortion. In Fig. 3.9 (a) we show the transition density for
the mode that goes to zero frequency. The distortion is of the charge transfer (CT) type
at short distances, i.e. the charge increases on even atoms and decreases on odd atoms,
or vice versa, in a time dependent wave packet as above discussed. At long distances the

charge flows from one half of the chain to the other, preempting the polaron effect. Due
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to the fact that even sites have more weight in the upper band which is partially filled,
the amplitude is larger at those sites indicating on more probability for the charge to

flow. Comparison with Fig. 3.7(a) and (b) makes evident the “freezing” of this dynamical

fluctuation.
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Figure 3.9: Transition densities for one particle added to the half filling case, N = 10, A = 0.3 and
different values of Upg. (a) A =1, Upa = Uga—7-7 is a small number with which the equations can
be solved without convergence problems. The A = 2 case is similar but with nodes on sites where
the A = 1 case shows maxima. (b) Upg = 2.5 and A = 1 ( oscillation in the pinning potential).
(c) Upa = 2.5, A = 2 (amplitude mode). Solid circles correspond to the even sites and squares
correspond to the odd sites.

Above the transition the inhomogeneous mean field state breaks the translational sym-
metry of the lattice. If this were a continuous symmetry the Goldston theorem would

guarantee the existence of a zero energy mode related to the translational motion of the
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polaron that restores the symmetry. Here, because of the discrete character of the broken
symmetry, the polaron is pinned to the lattice and at this level of approximation there is
no translational motion but oscillation in the pinning potential. So this modé [Fig. 3.9(b)]
has a finite frequency except right at the transition. Real translational motion can be
thought as tunneling between different pinning centers.

Below the transition the lower energy modes are collective. Their frequencies are sepa-
rated appreciably from the Hartree-Fock single particle excitations. Above the transition
they become localized whereas the high energy modes remain extended and have a single
particle-hole character.

It is interesting to follow how the modes change at the transition. The two degenerate
CT modes split. One becomes the translational mode [Fig. 3.9 (b)], the other conserves
its shape but localizes and becomes an amplitude mode [Fig. 3.9 (c)]. When the transition

is approached from above, the latter mode is the one that becomes soft.
3.3 Range of validity of the approximations

As discussed in the Appendix A, the RPA is good if the number of electron-hole excitations
over the mean field state is small. In principle this can be true even in the strong coupling
limit provided the ground state is close to a Slater determinant. This approximation
breaks down in regions of parameter space very close to changes in the mean field state.
Generally, in the vicinity of such pseudo phase transitions the system is very anharmonic
and the fluctuations are too large.

At the present level of approximation another constraint arises from the lack of trans-
lational motion. One is neglecting the fact that the self-trapped state ( which we will call

a “polaron”, in analogy with self-trapping in the presence of electron-phonon intereaction)
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will tunnel from a given localized state after some time 7. This means that one expects the
approximation to be valid for short times (¢ < 7), large energies and frequencies (w > 1/7),
and short wave lengths (I < ¢ with ¢ as some characteristic velocity of the order of the
Fermi velocity). Note that 1/7 is of the order of the polaron bandwidth. Its estimation is
beyond the present approximation.

In the next sections the ground state energy, and static and dynamic correlation func-
tions are investigated in the inhomogeneous Hartree-Fock plus random phase approxima-

tion approach.
3.4 Ground state energy

Here we compare the result of the different approximations for the ground state energy
with exact diagonalization results performed in systems of the same size and the same
boundary conditions. We compute the correlation energy EN+i = EN+i — BIEI EN+i i
the ground state energy for the system with IV 4 ¢ particles. For Eg}‘ we take the lowest
(generally inhomogeneous) HF state.

At half filling the HF ground state is homogeneous and the HF energy reproduces
correctly the behavior of the ground state energy as a function of Up,q and slightly un-
derestimates it due to the variational nature. In Fig. 3.10 we show the exact correlation
energy per site as a function of U,g and compare it with the quasi-boson QB (see Appendix
A) and RPA results. In the small coupling regime the RPA gives the correct quadratic
behavior as a function of U,y whereas QB overshots it by a factor of 2, as explained in the
Appendix A.

Away from half filling the behavior is different depending on how we approach the

strong coupling limit. If Upq/t — co and A is kept zero the added particle separates into
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Figure 3.10: Correlation energy per site as a function of the interaction Upg for N = 10 and

A = 0.5. Solid circles are the exact results, squares correspond to the QB and triangles to the
RPA.

a kink-antikink soliton[33, 21] pair. If A is small, the solitons are weakly bound (in a
small ring the effect can be negligible) and they can move with an effective band-width
of the order ¢t. This band motion of solitons is not included in our approach making the
correlation energy underestimated than the true value. On the other hand, in the limit
Upd/t, Aft — oo, keeping A /Up,q constant, the kink and antikink are tightly bound and the
ground state is a polaron whose band-width goes to zero. We illustrate this behavior by
showing the correlation energy required to add a polaron (Ej = EN+1_ EN), (Fig. 3.11).

We note that the homogeneous solutions for Upq > Uy, always have higher energy than
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the corresponding inhomogeneous ones.
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Figure 3.11: Correlation energy of a polaron as a function of the interaction Upa keeping Upa /A = 2
for N = 10. Solid circles are the exact results, squares correspond to the QB and triangles to the
RPA.

3.5 Static correlation functions

Here we compare static correlation function calculated in the IHF and HHF with exact
digonalization results obtained with the Lanczos method[30]. Because the HF solution
breaks the translational invariance the static correlation functions depend not only on the
distance to the origin, but also on the position of the origin itself. We denote by |H F,r, >
the HF state centered at r,. There are N non-orthogonal HF wave functions with the same

energy characterized by the position 7, of the center of the polaron state. The next level
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of approximation would be to compute matrix elements of the Hamiltonian between the
different THF states and to construct Bloch states. A simpler approach is to completely
neglect the overlap and to consider the different HF solutions as orthogon;al degenerate
states. Then, for example, the one-body density matrix can be calculated as a T = 0

thermodynamic average, that is:

1 N-1

[< Ciocr >] = N < cio+zscr+2s > . (37)
8=0

In Fig. 3.12 we show the off-diagonal part of the one-body density matrix for a single
particle added to the system as a function of the distance from the origin at an even site,

for A = 0.5 and Upg = 3.

The Fourier transform of such a quantity gives the momentum distribution function
and the long distance behaviour is related to the Fermi level discontinuity Z. For the
IHF state it decays exponentially, indicating at a fictitious insulating behavior (Z = 0).
Such a long distance failure is beyond the range of applicability of the present calculation
and should be cured in a polaron band approach as explained above. On the other hand,
the HHF gives a better long distance behaviour but, as expected, overestimates the Z.
At short distance this quantity shows only slight differences between the two approaches
as one would expect, because the important correlations are due to local distortions of
charge densities around the added particle. This is illustrated in the two-body correlation
function that we plot in Fig. 3.13.

We see that THF does better than its homogeneous counterpart at short distance, and,
unexpectedly, at long distance as well. At short distances it takes into account the local

distortion of the charge, but underestimates it.
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Figure 3.12: Off-diagonal part of the density matrix as a function of distance for one particle added
to the half filling case, N =10, A = 0.5, Upa = 3. 7o corresponds to an even site. Solid circles are
the exact results, squares correspond to the HHF and triangles to the IHF.

3.6 Dynamic correlation functions

From the RPA eigenvectors it is easy to compute dynamical correlation functions of the

form

C.p(t —t') =< RPAJA(t)B(t')|RPA >, (3.8)
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Figure 3.13: Charge-charge correlation function as a function of distance for one particle added
to the half filling case, N = 10, A = 0.5, Upg = 3. Solid circles are the exact results, squares
correspond to the HHF and triangles to the IHF.

where A and B are one-body operators. In fact the imaginary part of the Fourier transform
admits the following spectral representation:

Im[Cyp(w)] =Y < RPA|A|A >< A|B|RPA > §(w — wy), (3.9)
A>0

The matrix elements in Eq. (3.9) are given by the transition densities of Section 3.2.

At the RPA level there are single particle-hole excitations which have almost the same
energy as the corresponding Hartree-Fock particle-hole excitations and collective excita-
tions. At half filling one expects the correlation between particles and holes to produce an

excitonic like peak below the smallest HF particle hole excitation which correspond to the
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mean field gap. Such collective excitation can be seen in the current-current correlation
function that gives the optical excitation spectra (Appendix B). In this case we use in
Eq. (3.8) AT = B = J, where J = —it Zl(c;czﬂ - cchl).

Iﬁ Fig. 3.14 we show the imaginary part of the current-current correlation function for

N =8, A =0.25, Upg = 1 and antiperiodic boundary conditions.
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Figure 3.14: Imaginary part of the current-current correlation function in the RPA. We add a small
imaginary part to the energy (7 = 0.1) in order to broaden the delta functions. N = 8, A = 0.25,
Upa = 1. The arrow indicates the value of the uniform HF gap. The inset shows the exact results
of Ref [23] and the arrow indicates the value of the gap in the single particle spectral function.

The arrow indicates the position of the Hartree-Fock gap. The result compares very
well with the exact solutions of Ref. [23]. In particular the position of the excitonic peak

below the gap is very close to the exact value. This pole gives the energy to create an
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exciton over the uniform state. The same excited state can be obtained in a rather different
way as we have shown in 3.1.2. We can look for a site-dependent mean field solution in
which the lowest state of the upper band is full and the highest state of the lower band is

empty. Fig. 3.15 shows such an example.

SITE

Figure 3.15: Site occupation for the exciton state. N = 8, A = 0.25, Upg = 1. Solid circles
correspond to the even sites and squares correspond to the odd sites.

The energy difference €, = EN ion — EN gives the excitation energy in this approach
and an interesting question is how it compares with the energy of the excitonic peak de-
scribed above. In Fig. 3.16 we show the exciton creation energy for different values of Ain
the site-dependent HF and compare it with the RPA results and the exact diagonalization
results of Ref. [13].

The pentagons indicate the value of the uniform Hartree-Fock gap. The agreement is
quite good. One should keep in mind that the RPA is a linearized theory, in this case
around the uniform mean field state. The above agreement suggests that the estimate of
Fig. 3.15 is not too far from a linear excitation around the uniform state. Note however

that the energy is not very semsitive to small errors due to non-linearities in the wave

function.
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Excitation energy
0
|

Figure 3.16: Excitation energy to create an exciton as a function of A. Solid circles are the exact
results, squares correspond to the RPA and triangles to the IHF. For comparison we also plot the
uniform Hartree-Fock gap (pentagons)

3.7 Conclusions

We see that one particle added to the half-filling case distorts the charge balance between
Cu and O around it and forms a polaron of charge transfer origin. In this picture polarons
will form a dispersive band growing with doping.

We found that the uniform HF state is unstable. Using a different formalism, Grilli[34]
et al. found the same instability in the compressibility but they interpreted it as a phase
separation. The difference is that they set the repulsion on the O equal to zero, while

we set it equal to infinity. Since the polaron states are mainly due to O character, we
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expect the result of Fig. 3.5 to be different in their case, so in principle the results are not
contradictory to each other. The study of more realistic models in the next chapters will

show that both situations are possible.

The p-d model has been studied in higher dimensions in the limit ¢t << A << U, Uy
by perturbation theory in the hopping, in connection with hole-doped CuO and BiO
based HTSC[9], and electron doped CuO layers[35]. It has been shown that one particle
added to the half-filling case produces charge transfer excitations around it in a way
which resembles our results. When two particles are put close together low energy charge
fluctuations are allowed which lower the energy and produce pairing. The same mechanism
does not work in 1D. In the next chapter we will show how bipolaron states, relevant for

the superconductivity, can be found in 2D.

We have calculated the ground state energies, static and dynamic correlation functions
in the IHF + RPA approach. We have also shown how the transition between polaronic

behaviour and band motion is signaled by collective modes that become soft.

The calculations were compared with exact diagonalization results. We showed that
IHF describes short range correlations better in this strongly correlated model than the
HHF. However, due to the fact that the first approach breaks translational invariance,
all properties related to the metallic behaviour are not properly described at this level
of approximation. This is not unexpected because the metallic regime is a long distance
behaviour and hence it is out of the range of validity of the present level of approximation.
In this sense this approach is complementary to other techniques like bosonization[36] or
renormalization group that are expected to work in the opposite limit (long wavelength

and low energies). A possible extension of the method would be to form polaron bands.
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In principle this should give better long distance properties but requires additional ap-
proximations.

Another advantage of working with the stable IHF solutions instead of the HHF ones
is that one can easily perform the matrix RPA on the basis of the IHF solutions and obtain
the linear excitation spectra of the system. It allows computation of dynamical correlation
functions that compare well with the exact ones. It can be performed in larger systems
and faster than exact diagonalization methods but also, by plotting the site dependent
IHF densities and RPA transition densities, one can visualize the physics involved.

Is interesting to note that the energy to crate an exciton is very close to the exact one
in both the RPA and in a site dependent approach in which the occupations of the IHF
orbitals are constrained to produce the excited state.

Finally we note that the technique is flexible enough to study different competing
interactions[37, 38]. In this sense we will show in the next chapter that it provide a good

understanding of strong correlations in realistic models.




Chapter 4

Pairing and phase separation in a
two dimensional spinless model

Here we show that the polarons and excitons of charge-transfer origin in the 1D spinless

model of the previous chapter can also occur in 2D.

We use a 2D spinless model which is expected to qualitatively describe the charge
degrees of freedom of the p-d model in the limit of infinite on-site Coulomb repulsion
on both Cu and O. The Cu-O repulsion Up,q is treated by an unrestricted Hartree-Fock
scheme. We found that in addition to polarons and excitons, other nonlinear excitations
like bipolarons and clustering of carriers (phase separation) arise as well. Since the energies
of all these excitations are very close to each other at the mean field level, no definite

statement can be made about the true ground state.

In search for the ground state of strongly correlated electron systems like the high
temperature superconductors a variety of mean field phases have been proposed at half
filling. Many of these phases turn out to be unstable upon doping[39]. As we have shown in
the previous chapter in some cases the instability is signalled by a negative compressibility

Ou/0z, where p is the chemical potential and z the doping. To find the true stable phase

45
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is a delicate task. The Maxwell construction tells us that a phase separation is more
favorable at the mean field level showing the tendency to clustering of the added charge
carriers. However, even when one adds only oﬁe particle to the system %:here can be some
kind of “phase separation” in the sense that one can find a mean field solution in which
translational symmetry is broken and the added particle is localized in some region leaving
the rest of the system unchanged. This is the mean field polaron of the previous chapter.
The added particle disturbs the mean field order parameter to create a potential well
in which it is self-trapped. Eventually the translational symmetry can be recovered by
“moving” the polaron. Some examples of these localized states have been studied in the

Hubbard model[40].

In the previous chapter we have studied the problem of a single particle added to
the stoichiometric state in 1D by carrying out a site-dependent Hartree-Fock calculation.
We have shown that it distorts the balance of charge between Cu and O forming a self-
trapped polaron state or “charge-transfer bag”. In this chapter we extend our studies to
2D. There are two reasons for doing this. Firstly, it is important to check if such nonlinear
excitations can also arise in a 2D model and, secondly, the analytic[13, 9] and numerical[13]
results suggest that the proposed charge-transfer-pairing mechanisms, at least in the strong
coupling limit work only for dimensions greater than one. In the previous chapter we have
shown that in 1D and in the limit of infinite on-site Coulomb repulsion on both Cu and
O polarons repel each other. Here in 2D we find pairing of particles and other clustering
effects suggesting a phase separation. However, configurations with different numbers of
clustering have very close energies at the mean field level implying a highly frustrated

state.




o

47

As we have shown in Chapter 2, there is a major simplification in 1D because in
the limit of infinite on-site Coulomb repulsion on both Cu and O, the charge and spin
degrees of freedom are decoupled from each other 'and the former are descrébed exactly
by a spinless fermion Hamiltonian. There is no such exact mapping in 2D. However,
one expects that the charge degrees of freedom are qualitatively described by a similar
spinless model. This way one simulates the “Coulomb hole” that accompanies a particle
in the limit of infinite on-site repulsion by a “exchange hole”. Such an approximation
has been adopted by Balseiro et. al.[13] in numerical simulations providing qualitatively
similar results as given by simulations of Hirsch et. al.[12], studying the original model
for large on-site Coulomb repulsion. Both calculations indicate on pairing of particles for
moderate values of Upq, the nearest neighbour. Coulomb repulsion. Such a charge-transfer
pairing mechanism can be analyzed in the narrow band limit along the lines of Ref. [9] by
doing perturbation in hopping. When a single particle is added to the system it generates
charge fluctuations around it (the polaron effect). When two particles are put close to
each other, low energy charge fluctuations are allowed that lower the energy and produce
pairing. At the mean field level such charge fluctuations manifest themselves as permanent
distortions of the mean field order pa.raméter around the added particles. Here we prefer
to carry out the calculations in the spinless model because it is simpler and it allows us to
illustrate the effect of the charge degrees of freedom in action alone. We can remark that
the perturbative calculations of Ref. [9] give similar results for both models with large
on-site Coulomb repulsion and one has to go to higher order in perturbation to find any
difference. The spinless Hamiltonian in 2D reads as

H = ZE,’T&,’ -+ ZE,'J'CECJ' + Z Updn;nj . (4.1)
1 1#] (i,7)
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where n; = cfci, c}L creates a spinless fermion associated with charge degrees of freedom
of a hole, on site i, E; = ¢4 (€,) for a Cu (O) site. The nearest-neighbour matrix elements
are E;; = t,q and the direct O-O hopping is E;; = —tp, .(i,J) indicates summation over
nearest neighbours. As usual we define A = (¢, — €4)/2 and use units with ¢ = 1. Details
of the calculation are given in Appendix A. In Fig. 4.1 we show the chemical potential of
this model as a function of doping in the uniform Hartree-Fock approximation. Since the
same instability appears as in the 1D case, we expect important polaronic effects to be

present. In Fig. 4.2 we show the polaron solution in the 2D case. There is a depletion in
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Figure 4.1: Chemical potential as a function of cell occupation for 2D, A = .25,{,, = .2, Upa = 1.
The ripple is due to the discreteness of the mesh.

the Cu charge due to the transfer to O and a bump in the O charge due to the localization

of the added particle and the charge transfer from Cu. We note that as the system is
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doped the gap is filled in with states.
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Figure 4.2: One particle added to the half filling case for A = .8, t,, == .4, Upq = 2 and a 300-atom
lattice. We show the site occupation for the three atoms in the unit cell (a) and the one particle
energy levels (b). A dot represents an occupied level. We also sketch the band structure in the

uniform case.

There is a tendency to form a cigar-like structure. This is related to the band structure
of the Hamiltonian (4.1) for Upy = 0. There are one lower Cu-like band and two higher
O-like bands. One of the latter is dispersionless along the boundary of the Brillouin zone.
By forming a linear combination of Bloch states with k, = 7 and k; varying, where k_ , are
the components of the wave vector in units of the inverse lattice constant, we can construct
an eigenstate of the Hamiltonian in which the charge is localized in the z direction and is
propagating like a 1D Bloch wave in the y direction with momentum k, = 7. By turning

on Upg the single particle wave function also gets localized in the y direction but still keeps
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the cigar-like shape. The charge is mainly on one of the two O atoms in the unit cell. The
1D character of the band structure can be eliminated by adding next nearest neighbours
O hopping matrix elements not included in (4.1). We have checked that these matrix
~ elements do not change qualitatively the result if they are less than Upq. In the results

presented here we have set them equal to zero for the sake of simplicity.

We have also considered exciton states (Fig. 4.3).

ENERGY
AV)
I
|
I
|

X
(b) (c)
Figure 4.3: Exciton state for A = .8, £,, = .4, Upg = 2 and a 300-atom lattice. We show the site

occupation for the three atoms in the unit cell (a) and the one particle energy levels (b). A dot
represents an occupied level. We also sketch the band structure in the uniform case.

Related states were considered in the past in 1D by exact diagonalization[23] and in
2D by solving realistic models[16] in the limit of zero band-width. Experimental evidence

for such states has been found[41] although this point is still controversial. The gap for
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such localized excitations is smaller than the charge transfer gap. For example, for the
parameter values of Fig. 4.3 the charge transfer gap is 3.62 whereas the excitonic gap

(Eezciton — Euni form) is 3.08. As we noted in 1D, the exciton is more localized than the

polaron.

If we add two particles to the system, in contrast with what happens in 1D, they
do not repel each other. We define E, = E(N + n) — E(N) and the binding energy
Ey, = E; — 2E;. In Fig. 4.4 we compare the exact diagonalization results of Ref.[13] with

ours on a cluster of the same size. There is always binding of holes (E, < 0). By varying

Figure 4.4: Absolute value of the binding energ}" for two holes as a function of Upg for A = .25,
tpp = 0 in a 12 atom lattice. Dots are exact diagonalization results from Ref.[13] and squares are
from this work. The dashed line indicates the metastable Hartree-Fock solution.

Upd there is a transition from one Hartree-Fock solution to another corresponding to the
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fact that for large Up,q the system prefers to transfer all the charge to O in order to avoid
the nearest neighbour repulsion. We indicated with a full line the lower energy solution
and with a dashed line the higher energy solufion. Except for one point‘which is near the
crossing of the two solutions there is a good agreement between the Hartree-Fock results
and those of exact diagonalization. This shows remarkably that the attractive interaction
between particles can be captured at the mean field level. This serves also as a cross-
check for our procedure. However, we expect the finite size effect to be important for
such a small cluster. By doing the same calculation in bigger clusters we see that there
is a bipolaron formation (Fig. 4.5). Due to the strong attractive forces the bipolaron is
more compact than the polaron. Note that the charge distribution and the Hartree-Fock
potential it generates have Cy symmetry around the central Cu. Due to this symmetry the
highest occupied energy level which is mainly of O character is twofold degenerate and it
accommodates the two added particles. For smaller values of Upq it has a cross-like shape
resembling two cigar-like polarons intersecting each other. For n particles added we can
define a cluster energy per added particle as ¢, = E,,/n. For N — 00, ¢, should have a
minimum in the most stable configuration. For large values of Upy (Fig. 4.6) ¢,, decreases
monotonically with n indicating that the added particles prefer to form a big cluster and
the system is separated into a hole rich region and a region without holes. In this case
the starting Hamiltonian is not adequate and longer range Coulomb repulsion should be
included. However, as Upq decreases to more physical values, ¢, flattens more and more.
At the same time the finite size effects become more severe. There seems to be a minimum
at n = 3 for Upq = 1. However, it is very shallow, within the error-bar of a finite size

analysis. Anyway for such a flat curve a mean field value of the minimum should not be
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Figure 4.5: Two particles added to the half filling case for A = .8, t,p, = .4, Upq = 2 on a 300-atom
lattice. We show the site occupation for the three atoms in the unit cell (a) and the one particle
energy levels (b). A dot represents an occupied level. The upper level in the gap has double

degeneracy, whereas the lower level is not degenerate. We also sketch the band structure in the
uniform case.

taken too seriously. There are important corrections to the energy not considered here
that can strongly depend on n. In the limit of a very localized cluster we can consider
the tunneling amplitude from one site to the neighboring sites. If we construct a Bloch
state the energy should be lowered by a quantity equal to the tunneling amplitude. This
must scale as 1/nm™ where nm™ is some effective mass of a cluster of n holes and gives a
correction to €, that scales as 1/n?m*. Even without moving the polarons there should be
important corrections coming from the RPA fluctuations around the mean field solutions.

These are the internal modes of the cluster like those found for kinks and polarons in
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Figure 4.6: Binding energy per particle in a cluster as a function of the number of holes clamping
for A = .8, typ = 4.

polya;etylene[Sl] or the RPA modes studied in the previous and following chapters and
they should also depend strongly on n. The electron-phonon and magnetic interactions
can stabilize one of these configurations. In fact one expects the lattice to relax around the
localized excitations as is seen in the experiments(4, 2]. All these effects will be considered
in the more realistic calculations of the following chapters. A very plausible scenario is

that the system fluctuates between quasi-degenerate configurations.

In summary we have shown that charge transfer polarons can be realized in 2D as
well. We found excitonic states which are possibly related to optical measurements[41].
Moreover, other excitations like bipolarons, relevant for superconductivity, are also found.

For large values of Upd there is a tendency for phase separation, but as Upd is lowered,
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different configurations become quasi-degenerate and our present analysis is insufficient to
determine the true ground state. Nevertheless, the charge-transfer excitations are shown
to provide a strong gluonic force between holes és was discussed in the liiterature for
weak[11, 42, 43] and strong couplings[13, 9, 12]. In the present scheme we can study the
non-perturbative intermediate coupling regime.

Our calculation suggests a possible appealing scenario for the Cu oxides. As the system
is doped, the gap is filled in with bipolaronic or polaronic bands With attractive correlations
responsible for superconductivity. Eventually for high enough doping the Pauli exclusion
principle prevents true polaron formation and it becomes a resonant state. For even
higher doping levels the polaronic behavior disappears completely. We will show in the
next chapter that when the realistic p-d modei is used this scenario is consistent with our

present understanding of these materials and is supported by various experiments.
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Chapter 5

Doping states in the p-d model

In this chapter we study the p-d model. We try to be more realistic in order to make a
detailed comparison with experiments. Doping states are investigated with inhomogeneous
Hartree-Fock and random phase approximations. For parameter values relevant to cuprate
superconductors, a small electronic polaron is found. The polaron can be thought of as
an approximate solution to an ideal state which is in an intermediate regime between a
Zhang-Rice singlet and a covalent molecular singlet. The former case corresponds to large
U, with respect to Cu-O covalency whereas the later corresponds to small Uy with respect
to Cu-O covalency. The last case is favored if covalency is increased. One way of doing
that, as we will see in the next chapter, is by relaxing the lattice. The other way is by
increasing the doping. Both effects favor the quenching of the magnetic moment at the
central Cu of the polaron. When the doping is high enough and the polarons overlap
strongly the system becomes metallic and it looks more like a conventional Fermi liquid.

We have used the Hartree-Fock (HF) technique of the previous chapters, totally unre-
stricted in both spin and direct spaces. For our problems this is very much superior to the

traditional homogeneous HF approaches. On top of the generally inhomogeneous HF con-

87
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figurations, we have added a similarly inhomogeneous RPA analysis of linear fluctuations
to calculate infrared optical absorption.
The general model Hamiltonian we consider is (see Chapter 2 ):

H = E t?jc:facjvg - Z e?c;,,,c,-cr + Z UiC}TCI‘_lcilciT
1,0 H

i#5

+ Y Ujeld e (5.1)
(i#5) 0.0’

We consider the nearest-neighbor Cu-O (t,4) and O-O (—t,,) hoppings for ty;, Cu-site
(es) and O-site (e,) energies for e, with 2A = €, — €4, Cu-site (Uq) and O-site (Up)
repulsions for U;, and the nearest-neighbor Cu-O repulsion (Upq) for U;j. The parameter
set we use is tpg = 1, tpp = 0.4, 24 = 2.2, Uy =5, U, = 2.1, and U,y = .4, which are
almost in proportion to the values tpqg = 1.47eV, tp, = 0.61leV,2A = 3.29eV, Uy = 7.42eV,
U, = 3.09eV, and Uyg = .41eV derived from the constrained-density-functional approach
for LapCuQ4[18, 17]. We use this parameter set because it was successfully used by the
same group that derived it, in homogeneous HF calculations[18] and because we intend
to compare our results with Las_;Sr;CuOy for which abundant and good quality optical
data are available.

Mean-field states were obtained by solving the unrestricted HF Hamiltonian with self-
consistency conditions for on-site and nearest-neighbor, charge and spin densities without
assumption on the form of these quantities. The self-consistency equations are obtained by
minimizing the total energy with respect to these quantities which are treated as classical
numbers. On a second step we perform an RPA analysis (see Appendix A )[38, 44, 45].
Here we take advantage of the fact that in the small doping regime the IHF Hamiltonian
conserves the z component of the spin to reduce the large RPA matrix. In the heavily

doped region where our results are more qualitative than quantitative we restrict ourselves
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to the configurations that meet the above condition. We have not investigated restoration
of translational symmetry. This is necessary for polaron band formation and transport
but beyond the present RPA scope. Calculations were made on systems of 6 X 6 unit cells

with periodic boundary condition.

5.1 Small doping regime

In Fig. 5.1(a) we show the density of states (DOS) in the HF approximation without dop-
ing. The one particle energy levels are broaden with a very narrow Lorentzian in order to
resolve each single particle level. The arrows indicate the position of the highest occupied
energy level for each spin orientation. The whole band structure can be understand by

doing a “back of the envelop” calculation. We take a CuO, cluster. The Hamiltonian is:

4
H = > tp(dipjo + hc.)

=10

~= > tpp(Plypjt1s + hec.)
7=0,0

+ Z eddmdm’ + Z prNPJa

_710'

+Udd*rd}d 1dy + Z Uppr; \PiLPjt
=1

-I- Z Updpja, /pj,,- . (52)

j=1,0,0'

We decouple the many body terms in Hartree-Fock approximation and obtain the single
particle Hamiltonians for up and down spin in the cluster respectively. We assume that
the majority spin in the cluster is up. The single particle Hamiltonian can be easily

diagonalized by defining the operators that create a particle as a linear combination of the
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four O orbitals,

. 1 N .
Pme = ‘_2' ZelmJEPJ'U' ‘ (53)
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Figure 5.1: HF density of states and single particle energy levels of a CuO, cluster as explained
in the text, for ¢ = 0. The d labels the Cu energy levels whereas the O energy levels are labelled
by the quantum number m. The horizontal arrows indicate the position of the highest occupied
energy level for each spin orientation. (a) and (b) HF ground state, (c) and (d) spin flip state.

different |m|. The distance between levels is 2t,,. Only the state with m =0 mixes with
the Cu resulting in a 2 X 2 matrix. The energy levels for up and down spins are shown
in Fig. 5.1(b). In practice we had inserted in the single particle Hamiltonians the energy

levels of the 6 x 6 cluster rather than to solve again the HF equations. Each eigenstate

of the CuO, single particle Hamiltonian corresp.onds to a band in the bulk. The bonding
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state for 1 spin corresponds to the lower Hubbard band. The antibonding state for | spin
corresponds to the upper Hubbard band. The antibonding state for T spin lies very close
to the m = 2 O level, so they repel each other a bit, and give rise to two bz;nds of mainly
O character. The m = +1 levels give a large peak in the DOS corresponding to a purely O
band. The lowest available energy level in the cluster has spin | opposite to the spin of the
central Cu. The important thing to notice is that the splitting between the two Hubbard
bands is not the distance between the Cu levels (d in Fig. 5.1) i.e. Ug(na; — nq}) with ngs
the Cu occupancy, but is much larger than that due to covalency. This effect is missing
in a large Uy calculation and we believe it is of paramount importance in determining the

doping states.

When a hole is added it forms a small polaron. In the above parameter set, each added
hole is localized primarily on a single Cu site and four surrounding O sites (Fig. 5.2). The
spin density at the central Cu site is in the opposite direction of the undoped case. Two
HF eigenstat;as appear deeply inside the charge-transfer gap [Fig. 5.3(a)] per added hole.
These states are occupied by holes and their associated HF wave functions are spatially
localized. The higher one corresponds to an oxygen state formed by the four O that
surround a Cu (m = 0) and has smaller weight on Cu. The lower one corresponds mainly
to the central Cu, has opposite spin to the previous one, consistent with the cluster
analysis, and has smaller weight on O. In a Zhang-Rice picture this many-body state
mixes with a similar state in which the directions of the spins on Cu and O are reversed.
Because such a correlated state cannot be constructed with a single Slater determinant,
HF fails to describe it properly. However, we expect much of the energetics of the state

to be captured at the unrestricted mean-field level.
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Figure 5.2: Hole charge (radius of the circles) and spin densities (arrows) for z = 1/36, with
parameters[18, 17] appropriate for Lay_;Sr;CuO4. Big (small) circles correspond to Cu (0).

The formation of the polaron can be thought as a two step process. At the first step
a spin is reversed without doping. We can obtain a metastable HF solution realizing such
state (Fig. 5.4). The corresponding DOS is shown in Fig. 5.1(c). In Fig. 5.1(d) we show the
energy levels obtained by replacing in the HF Hamiltonian of the small cluster the energy
levels of the large system on the site corresponding to the spin flip. We see that there is
little variation of the cluster energy levels with respect to the undoped case (apart from
the trivial exchange of up levels with down levels). In particular it fails to explain the gap
levels generated with the spin flip. The reason is that the appearance of these gap levels
is a magnetic effect involving sites beyond the CuOy cluster. The highest occupied down
level in Fig. 5.3 (c) corresponds to the flipped Cu spin. Since the orientation is parallel

to the surrounding spins the removal energy in HF increases by a quantity of order 8J




5.1. Small doping regime ' 63

-5 0 5 -5 0 5 -5 0 5
(a) (b) (c) (d)

Figure 5.3: HF density of states and single particle energy levels of a CuOy cluster as explained
in the text. The d labels the Cu energy levels whereas the O energy levels are labelled by the
quantum number m. The horizontal arrows indicate the position of the highest occupied energy
level for each spin orientation. (a) and (b) z =1/36,(c)z =1/4¢(d)z = 1/4 (higher energy state).

with respect to the more favorable antiparallel orientation. Here J is the effective Cu-Cu
superexchange interaction. This explains the shift of the level form the lower Hubbard
band into the gap. On the other hand to add a particle on O in between two parallel
Cu (without any further relaxation) is more favorable in energy by a quantity 2Jcuo
provided the spin is antiparallel to the one on Cu. This explain the shift downward of the

unoccupied level in the gap.

At the second step a particle is added to the first available level. If no further relaxation

of charges were to occur, this would be a conventional small ferromagnetic polaron. In
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Figure 5.4: Hole charge (radius of the circles) and spin densities (arrows) for the spin flip metastable
state at = = 0, with parameters[18, 17] appropriate for Las_;Sr;CuOy4. Big (small) circles corre-
spond to Cu (O).

fact this is what one expects in the large Uy limit (in practice this does not happen since
other, more extended states, with canting of the spins, began to compete[38]). However,
when the strong mixing between Cu and O is taken into account, a different effect takes
place. In Fig. 5.2 we show the resulting state. The first available level, due to the strong
mixing has weight on the T Cu spin state. Part of the added charge goes to the T Cu spin
state and this trough the renormalization of the | Cu spin level (Ug < mgy >) pushes up
the corresponding | state from the lower Hubbard band which becomes more mixed with
0. As a result of this mixing the charge on the | Cu site decreases, and the Cu 1 spin level
goes down due to the Uy < mq) > term and the added particle actually sits in the gap
state resulting of the hybridization of the Cuf spin and the m = 0 O state. This shifting

of levels is illustrated in Fig. 5.3(b) where, as above, the local HF energy levels have been
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inserted in the single particle Hamiltonian of the CuO, cluster. The actual shift of levels
in Fig. 5.3(a) can be rationalized as a combined magnetic and covalent effect. In fact the
total shift corresponds roughly to the sum of the shift observed in Fig. 5.1(c) for the spin
flip plus the shift of the energy levels in the CuO, cluster. As we will show in the next
section this movement of levels is fundamental to understand the optical conductivity of
this material. In next chapter we will discuss how this effect, reinforced by the relaxation
of the lattice and as a consequence, increase of hybridization, can produce a transition to
a non magnetic state in the Cu signaled by both levels in the gap becoming degenerate.
The closeness of the two higher occupied levels in Fig. 5.3(a) indicates that the system is
close to that transition.

If the system is doped with an electron a small polaron is also formed: an interesting
feature of these states is that the large shifts in the single particle energy levels toward the
center of the gap result in similar levels positions for both the hole- and electron-doped

cases, as found in spectroscopic experiments[46].

5.2 Optical conductivity of La, ,Sr,Cu0O, and soft elec-
tronic modes.

It is believed that the understanding of the normal state properties of the high tempera-
ture superconductors is a prerequisite to a description of the superconducting mechanism.
Among these properties a striking one is the optical conductivity which has received re-
cently theoretical{47]-[50] and experimental(4, 5, 6, 51) attention. At half filling the system
is a charge transfer (CT) insulator with an onset of in-plane optical absorption[6, 52] at
~ 2¢V for LaySr,CuO, corresponding to CT transitions between Cu and O in the plane.

As the system is doped, spectral weight from the CT band is transferred to a mid infrared
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(MIR) band initially at ~ .5eV. As doping increases the spectral weight transfer proceeds
further and at the same time the MIR band merges with the Drude component. For
doping = > z. ~ 1/4 the electronic ground state seems to change ana both the optical
conductivity and other normal state properties like the Hall effect show a sudden change.
The integrated optical conductivity also shows a peculiar behaviour. For ¢ < z. all the
curves cross in one point at ~ 3eV indicating that all the spectral weight shifts occurs
below this energy. In this section we calculate the optical conductivity in the inhomoge-
neous Hartree-Fock (IHF) plus RPA approach applied to the p-d model[21, 38, 44, 53].
Positions of the bands and relative intensities are obtained without free parameters in our
calculations since the Hamiltonian is completely determined by constrained local density
approximation (LDA) calculations[18, 17]. For the sake of simplicity we associate z, the

concentration of Sr with the number of added holes in the Cu-O planes.

The following picture emerges. At half filling we obtain an onset of in-plane absorption
in close agreement with experiments [Fig. 5.5] due to in plane Cu-O CT transitions. When
a particle is added to our 6 x 6 unit cell system (extreme dilute limit) a polaron forms
(see Fig. 5.2). As explained in the previous section the energy levels locally renormalize
for 1 and | spins [Fig. 5.3(a)]- Then a level from the lower Hubbard band shifts into the
gap. As a consequence, the corresponding Cu-O CT transition becomes a transition from
the localized level in the gap, corresponding to the mixture of the central spin with the
surrounding O, to an extended state above the gap and correspondingly an absorption band
grows in the infrared as the CT band is eroded (Fig. 5.5). Its shape and position are quite
similar to what is observed in photoinduced infrared absorption (inset of Fig. 5.5). The

spectral weight will be discussed later. As the number of particles increases the polarons
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Figure 5.5: Optical conductivity of Lay_;Sr;CuO, for different values of z. A Lorenzian broadening
(:1t,4) has been introduced. For the case of two polarons (z = 1/18) we show the case with one
polaron siting in the second (fourth) neighbour Cu of the other with dash (dash doted) line. For
¢ = 1/4 we show the curve corresponding to Fig. 5.7. The upturn at zero energy is due to the
broadening. The actual position of the states can be deduced from Fig. 5.8. The inset shows
the difference in the optical conductivity between the z = 0 case and the z = 1/36 case and the

observed photoinduced change in transmission (T) (Adapted from Ref.[51] ).

began to overlap and a region is reached in which many metastable HF configurations
compete, with the polarons sitting in different relative positions. This is indicative of a
strongly fluctuating regime where our approach is expected to be only qualitative. When
the concentration of particles reaches ~ z. ~ 1/4 the polarons overlap more strongly and
the Fermi level is not any more at a single particle mean field localized level but it reaches

an extended state. At the same time the magnetic moment in the Cu’s belonging to the
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polarons tend locally to collapse. We associate this with a sudden metallization of the
system. In fact the Drude weight calculated in the HF approximation (Dpr) increases
around that point (Fig. 5.9) indicating that the effective number of c'harge carriers has
grown. In a calculation where the strongly fluctuation region is properly taken into account
we expect the MIR precursor muode, which is connected with the delocalization of the Cu
holes, to become a soft electromic mode and to merge with the Drude peak as in the
experiments[6]. In Fig. 5.3(c) and (d) we show the HF DOS for ¢ = 1/4 for the two
studied configurations. Comparison with Fig. 5.3(a) shows the evolution from the dilute
polaronic case to the nearly metallic case.

The method has already been described (see Appendix A). Here we take advantage of
the fact that in the small doping regime the IHF Hamiltonian conserves the z component
of the spin to reduce the large RPA matrix. In the heavily doped region where our results
are more qualitative than quantitative we restrict ourselves to the configurations that meet
the above condition.

At half filing HF has been shown to work quite well for magnetic insulators like
LayCuO4 by Grant and McMahan[18]. We use the same parameters as theirs but we
only keep the O in plane p,, py orbitals pointing toward the Cu and the d,»_,» orbital.
Since we are calculating the in-plane optical conductivity, we do not expect that out of
plane orbitals change our results significantly. Our uniform HF band structure for z = 0
closely resembles theirs for the in-plane polarizations.

Our units of conductivity and spectral weight are determined by (see Appendix B),

2

e
o = 4d | hep’ (5-4)
N, = 2tpdMolpd (5.5)

B2,
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where d, is the distance between adjacent Cu-O planes, and apq and tpq are the in-
plane Cu-O distance and hopping integral, respectively. A screening constant () related
to all bound electrons mot included in the Hamiltonian is introduced. It is the only
unknown parameter. In principle it can be calculated from the LDA band structure. It
only affects the overall intensity. We fix it by matching the experimental crossing point of
the integrated optical conductivity[6] with our calculated result. We get ¢, = 1.3. With
this value and d, = 12.465 bohrs, a,y = 3.606 bohrs, we get o, = 7.13 X 103(Qem) 7Y,
N, = 1.08. For the rest of this section we set h = c = e = apg = 1. In analogy with the
exact result[48, 54], the real part of the optical conductivity at the RPA level is given by

the sum of a regular (0,¢,) and a non-regular part (see Appendix B):

o(w) = 2xDpré(w) + Treg, (5.6)
_ | < 0lj]A> |?
Oreg = /\Z#U E, - E, 6“‘”‘ - (E«\ - Eo)]’ (57)

where the Hartree-Fock Drude weight (Dpr) is given by the quadratic change in the
Hartree-Fock total energy due to a twist in the boundary conditions parameterized by a

vector potential A[54, 48]

N, 8Bur
2N 0A?

Dyp = (5.8)

and can be calculated in terms of the RPA matrix elements of the paramagnetic current
operator (< 0|5|A >), the RPA excitation energies (E)) and the expectation values in the

HF ground state (|HF >):

N | <0lj]A > |
—= ts HF —_— . .
Dur = | E z5 <HF13 |HE > — ,\E;eu: E, - E. ] (5.9)

Here N is the number of unit cells in the Cu-O plane. s labels all different kinds of

bonds. t, and z, are the hopping matrix elements of the bond and the difference of the
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z coordinates of atoms in the bond, respectively. Bonds with ¢, different from zero are
Cu-O nearest neighbours (¢, = ¢p¢) and O-O nearest neighbours (ts = —tpp). Within the

present approximation the f-sum rule[48, 54] is exactly satisfied[55].

In Fig. 5.2 we showed the one particle IHF doped case (z = 1/36). Its feature has
already been described in the previous section. Here we stress again the local reduction
of magnetic moment on Cu due to the enhanced covalency not found in large onsite Uy
calculations. It will be shown[38] in the next chapter that this enhanced covalency couples
strongly with the Cu-O phonon stretching mode (among others) and gives rise to doping
induced side phonon bands in infrared spectra (IR). Here for simplicity we do not include
such lattice effects. The IR absorption due to phonons is not expected at the energies
we are interested, however small changes in the electronic bands can be found due to

relaxation of the lattice.

Fig. 5.5 shows the optical conductivity. At half filling the CT band peaks at 1.7¢pq
(2.5eV) whereas recent measurements[52] show a peak at 2.25 eV. The sharp decrease at
higher energy is also in agreement with the lower temperature measurements of Ref.[52].
They also observe a small shoulder at lower energies. We have also some modes in that

energy region but they are not IR active.

In the inset of Fig. 5.5 we show the difference between the optical conductivity at half
filling and that for the one particle doped case in the MIR region. For comparison we also
show the experimental photoinduced optical absorption[51] spectra. Given the uncertainty
in the Hamiltonian parameters{17], the agreement for shape and position is quite good.
The main peak is due to the transition from the | level in the gap to the first available

Jevel with the same spin (extended state) above the Fermi level. The tail, also observed
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in experiments is due to transitions to higher excited levels all renormailzed by RPA.

For two added holes we find a strong dependence of the MIR structure oﬁ the distance
between the self-trapped states in the HF solution. For the weakly overlapped case (one
polaron sitting on the second nearest neighbour Cu of the other) we find lower IR modes
than for longer distances (Fig 5.5). The lowest-energy two-polaron HF state correspond
to one polaron sitting on the fourth neighbour Cu of the other. Since the total energy
depends weakly on the distance of the particle (except for strong overlap), in a calculation
that takes into account the mixing between the different HF configurations we expect a
substantial broadening of the structure. As the number of particles increases, the number
of metastable HF configurations increases as well. In such conditions our approach is
not expected to work well since RPA is a theory of small amplitude oscillations around
some THF state but the metastable states are indicative of the presence of many Slater
determinants in the ground states that can not be connected by small displacements (i.e. a
few particle-hole excitations). Furthermore, the Hartree-Fock ground state for each filling
tend to be a polaron lattice commensurate with our system size Fig. 5.6. This makes the
Hartree-Fock state for one particular configuration (the commensurate one) to be pinned
more than the others and hence lower in energy, but this is clearly a finite size effect since
different sizes have different periodic configurations and all of them should be important in
the true ground state (except, perhaps, for the mysterious z = 1/8 T, dip[56]). We believe
this effect underestimates the softening of the state and makes the lower RPA modes to
produce a narrow peak and lay at a higher energy than what we expect on physical grounds.
Instead, if quantum fluctuation were fully taken into account, we expect that the above

discussed “configurational” broadening will distribute that intensity over a much wider
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Figure 5.6: Hole charge (radius of the circles) and spin densities (arrows) for z = 1/4 (lower energy

state), with parameters{18, 17] appropriate for Lag_;Sr.CuOy4. Big (small) circles correspond to
Cu (O).

range of frequency. We expect, the higher the doping, the broader is the structure in the
MIR. For nine holes (¢ = 1/4) we show the optical conductivity (Fig.5.5) corresponding
to a “disordered” configuration [Fig. 5.7] which tend to have lower energy modes in the
MIR than the slightly more stable ordered one [Fig. 5.6] and a much broaded spectra.
Since for energies higher than the MIR and z < . the results are not so much config-
urationally dependent we believe that some qualitative understanding can be gained from
our calculations in that strongly fluctuating region and in fact we still found some agree-
ment with experiments for the optical conductivity and the integrated optical conductivity
(Nejss) at energies higher than the MIR. Note that all curves cross at ~ Wiso = 1.25tp4
(~ 1.8¢V) in Fig. 5.5. A similar isosbestic point is observed[6] at (~ 1.5eV). Another

peculiar point is located at ~ 2.3t,d (~ 3.4eV’) where all the integrated conductivity curves
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Figure 5.7: Hole charge (radius of the circles) and spin densities (arrows) for z = 1/4 (higher energy
state), with parameters[18, 17] appropriate for La;_,Sr;CuOy4. Big (small) circles correspond to
Cu (O).

(Fig. 5.8) with =z < z. tend to converge in agreement with the analogous experimental
point mentioned in the introduction. For ¢ > z. the curves pass above the crossing point
instead of below like in experiments. This is probably because the spectral weight trans-
ferred to the MIR becomes so broad in the experiment that the range of frequencies over
which it is disfcributed reaches ~ 2.3t,q and it does not make any more sense to distinguish
low energy and high energy features. Since we are not considering such strong damping of
the modes, which should come from the explained configurational broadering, we probably
overestimated the weight at low frequencies and give a too big integrated spectral weight
at the crossing point.

Due to the depletion of the optical conductivity at wj,, the integrated optical conduc-

tivity for theory and experiment show a plateau in that region for small doping. In Fig. 5.9
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Figure 5.8: Integrated optical conductivity of Lay_,Sr;CuOy for different values of z. For z = 1/4
we show the case corresponding to Fig. 3.3(c) with dashed line. Open symbols correspond to

metastable states.
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we show the integrated conductivity (Nejsf) up to wiso as a function of z. This measures
the spectral weight transferred to the MIR upon doping ( Lorentzian broadening is not
included here). For z < .1 the curve is nearly parallel to the experimental one. At z =0
the experiments extrapolate to a non-zero value. This is because a long tail from the CT
band, reaches the MIR region and can be assigned to disorder since the tail is very much
suppressed in Ref.[52]. If the experimental curve is shifted down by that amount then the
two curves lay on top of each other for small z. This shows that the spectral weight of the
MIR band is obtained in agreement with the experiments without free parameters. For
¢ > .1 probably the same configurational broadering effect occur, that is, the structure
in the MIR becomes so broad that it’s tail reaches w;s. This explains the deviation from
linearity of the experimental curve as opposed to the theoretical one. When the polarons
began to overlap around z. there is a saturation of the theoretical curve qualitatively

consistent with the saturation observed in experiments.

We also show in Fig. 5.9 Dy as function of z. For z = 0 the value is very small. It
should go to zero as ~ e:cp(—\/]—V— /€y r) in the thermodynamic limit in analogy with the
discussion of Ref. [49]. €yr is a localization length in the HF approximation. When a
particle is added £y remains finite since the added particle is self-trapped and due to that
Dy is still expected to be zero in the thermodynamic limit. The non zero values of Dy p
for small z are clearly a finite size effect. The fact that £gr Temains finite does not mean
that the system is really an insulator since there exist many HF solutions with polarons
sitting in different cells with the same HF energy. Tunneling between the different solutions
should recover translational invariance in the ground state. Unfortunately, such processes

are beyond RPA since this approximation can only explore the immediate positive curved
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Figure 5.9: Experimental[6] (EXP) and theoretical (TH) integrated conductivity up to the isos-
bestic point [N (wiso)] and Dy as a function of z.
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vicinity of one solution and not the barrier between them. Such tunneling process should
give a small Drude weight in the thermodynamic limit as seen in experiments. When z.
is reached the Fermi level reaches an extended state and Dpr increases. At the same
time the HF solutions tend to show collapsed magnetic moments. (However, magnetic
spatial “fluctuations” are found well above z, and mobile holes are expected to screen
them at low energies). Qualitatively we associate that with a metallization of the system
and a sudden increase of the number of charge carriers. This indicates that the Cu holes
delocalize and began to participate in the transport. Since the frequency of the MIR
precursor in the extreme dilute limit is determined by the excitation energy to delocalize
the original Cu hole we expect it to become a soft electronic mode near z. and merge with
the Drude component. Such low energy excitations are completely unconventional in a
Fermi liquid and we postulate that they are responsible of the possible non-Fermi liquid
behaviour. How in detail, our MIR band precursor evolves into an object of the kind of
the marginal Fermi liquid phenomenology[57], deserves more theoretical work. However,

we expect the configurational broadening effects discussed here will give some clues.

It is interesting to compare our results with what was found in a simplified model[45]
showing self-trapping. There, as one parameter was varied it was possible to continuously
reach a pseudo phase transition at the HF level in which a polaronic solution becomes
uniform (see Chapter 3). The transition was signaled by an RPA mode going to zero

frequency.

Our results restrict to the in-plane conductivity. However, we speculate that the out
of plane DC conductivity should be strongly suppressed by large Huang-Rhys factors[58]

for ¢ < z.. This will result in a partial “confinement” for & < z. disappearing for z > =z,
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where the polaronic character is lost.

Another interesting possibility is that this soft electronic modes are the ghost bosons
that particles interchange to produce Cooper pairs. We expect that as z. is approached
fluctuations to the metallic phase make the number of effective carriers increase and at the
same time the characteristic frequency of the boson to go down. This is what one needs
to get a strong dependence of ¢ on z.

To conclude we have calculated the optical conductivity of Lay_, Sr,CuO, for different
values of z. For low and zero z we found good agreement with experiments for band
positions and relatives intensities without free parameters. We identified the precursor of
the MIR. band and found a transition at the mean field level from a polaronic phase to a
metallic phase near the point where a sudden change in transport and optical properties is
observed. We argue that near the transition the MIR precursor modes should become soft
electronic modes and probably can be related to the breakdown of Fermi liquid behaviour.
Qur results show also that the method, at least in the small doping regime is an appropriate

bridge between first principle calculations and experiments.




Chapter 6

Lattice effects

In this chapter we consider the effects of relaxing the lattice around the polaronms.
Polaronic effects of the kind considered in the previous chapter and here have been
invoked[59, 60, 61, 62, 63] to explain experimental results like optical spectroscopy[64, 65],
photoinduced optical absorption[3, 4], transport[66] and photoemission[67, 68], among
others. For a complete review on polaron and bipolaron theory see Refs.[69, 70]. The pho-
toinduced optical absorption experiments by Kim et al.[4] and Taliani et al.[2] show the
importance of localized states in the gap combined with lattice effects. The latter shows
that they are common features in both Cu and non-magnetic Bi-based high temperature
superconductors.

Considerable modeling of high-temperature superconductors has focused on the iden-
tification of hole doping states ( spin bags, polarons, excitons ) defined with respect to
stoichiometric antiferromagnetic (AF) two-dimensional (2-d) Cu-O ground states. Here,
we demonstrate that the nature of doping states and their interactions can indeed go be-
yond a pure 2-d, 1-band Hubbard model. Doping states in a two-dimensional three-band

Peierls-Hubbard model are investigated with inhomogeneous Hartree-Fock[38]. We repro-
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duce adiabatic random phase approximations (ARPA) calculations performed by Kenji
Yonemitsu[38]. Unlike the calculation of the previous section these results are valid only
in the phonon frequency range. We find that a moderate intersite electron-lattice coupling
strength triggers a rapid cross-over from a small polaron with well formed moment on
Cu to a local collapse of the Cu magnetic moment and strong local lattice distortion in
the AF background[see Fig.6.1{a)]. This can be viewed as a transition from a Zhang-Rice
singlet[71] to a covalent molecular state. For sufficiently strong electron-lattice coupling
the ground state changes completely to a nonmagnetic bond-order or charge-density-wave
state. Large Cu-O Coulomb mearest neighbor repulsion drives phase separation. The
various doping states produce distinct infrared optical absorption spectra, relevant to
chemical[5] and photodoping experiments[4, 2].

We have used a Hartree-Fock (HF) technique for the electronic part, totally unre-
stricted in both spin and direct space[21, 37, 38] and a classical treatment for the lattice
part. Infrared-active (IR) phonon modes were calculated by adding a similarly inhomoge-
neous RPA analysis of linear fluctuations.

The general model Hamiltonian we consider is:

Z tlJ {uk} clgc]()' +Z {’U,k} C - Cio

+ Z Ul zT zlcllclT + Z U'cho'cjo-’cjo"ci”'
(i#3),70’

—{—Z 21\4 pl —i—Z —Kpupuy . (6.1)

Here, c:fa creates a hole with spin o at site 7 in the Cu d,»_,» or the O p; , orbital. For
the lattice part, we study only the motion of O ions along the Cu-O bonds and assume

that only diagonal components of the spring-constant matrix are finite, Kz = 61K,
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for simplicity. For electron-lattice coupling, we assume that the nearest-neighbor Cu-O
hopping is modified by the O-ion displacement uy as ijj = tpd = aug, where the + (-)
applies if the bond shrinks (stretches) with positive ug. The Cu-site energy is assumed
to be modulated by the displacements of the O ions ug linearly as e; = g + B 3 Tus,
where the sum extends over the four surrounding O ions; here the sign takes + (—) if
the bond becomes longer (shorter) with positive u. The other electronic matrix elements
are: 0-O hopping (—tpp) for ¢;;, O-site energy (€,) for e;, with 2A = €, — €4, Cu-site (Uaq)
and O-site (U,) repulsions for U;, and the nearest-neighbor Cu-O repulsion (Uyq) for Us;.
Parameter values are used in regimes relevant to oxide superconductors. We have taken
tpa = 1, tp, = 0.5, 24 = 3, Us = 8, U, = 3, Upa = 1. (This parameter set is taken
from constrained LDA calculations[16]). The above defined parameters and Ay = Ag = 0
are hereafter termed the reference parameter set: Ao = a?/(Ktpa), Ag = B%/(Ktpq). We
vary A, and Ag. Comparison of our results for local lattice distortion and Cu reduced
magnetic moments accompanied by added holes with generalized, inhomogeneous LDA

calculations[19] is consistent, e.g., with values of Aq = 0.28, As=0and K = 32t,q4/ A%

Mean-field states were obtained by solving the unrestricted HF Hamiltonian with self-
consistency conditions for on-site and nearest-neighbor, charge and spin densities as well
as lattice displacements, without assumption on the form of these quantities. The self-
consistency equations are obtained by minimizing the total energy with respect to these
quantities which are treated as classical numbers. The kinetic part of the lattice is incorpo-
rated with particle-hole excitations later into the ARPA analysis. We have not investigated
restoration of translational symmetry. This is necessary for polaron band formation and

transport but beyond the present ARPA scope. Calculations were made on systems of
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6 X 6 unit cells with periodic boundary condition.

6.1 'Transition from a Zhang-Rice singlet state to a cova-
lent molecular singlet state

For the reference parameter set, each added hole forms a small polaron like in the previous
chapter. The spin density at the central Cu site is in a direction opposite to the undoped
case. The spin densities at the four O sites are small and have an opposite direction to that
at the central Cu site. As A, is turned on, the Cu magnetic moment is reduced and the
O ions displace toward the central Cu. From the HF single particle levels two are locate
deeply inside the gap [Fig. 6.1 (b)] and are well localized: the higher one corresponds to
an oxygen state formed by the four O that surround a Cu and has smaller weight on Cu.
The lower one corresponds mainly to the central Cu, has opposite spin to the previous
one, and has smaller weight on O.

Once the added hole is localized around a Cu with a reversed spin, the mechanism
of the previous chapter is set up. The lower level in the gap [dashed line in Fig.6.1 (b)]
results from the mixing of the | level and the O, m = 0, | level of the previous chapter.
The higher the Cu | level shifts, the bigger the mixing. This reduces the amount of charge
in the Cu | orbital pulling down the state originally at ~ €z + Ug(na). The upper level in
the gap results from the mixing of this state with the O T level [solid line in Fig.6.1 (b)].
Clearly this process feeds back positively. The T level on the O mixes more and more with
the 1 level on the Cu, generating even more double occupancy and the two levels on the
Cu approach each other as do the two levels in the gap.

The interplay with the lattice is also important. The strong mixing of the four sur-

rounding O with the central Cu allows the state to gain energy if the O approach (A, # 0)
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Figure 6.1: (a) Magnetic moment on the central Cu site and ratio of the displacement of the
surrounding O atoms to the Cu-O distance (1.89]&), and (b) gap energy levels, for the small
polaron state as functions of As. Other energy levels in the gap close to the bands (shaded areas)
are not shown. Parameters are t,q = 1, tpp = 0.5, 2A=3,Us=8,U,=3,Upu=1,A=0, and
K = 32t/ A%
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experiments[46].

If )\, is increased even more, covalency is locally enhanced and correspondingly the
two levels in the gap go down. Above a critical value A,. the undoped ground state is

replaced by a nonmagnetic bond-order-wave state.

Note that the strong local effects of intersite electron-lattice coupling upon doping

occur in a regime extending significantly below A, (see Fig.6.1).

The effect of finite Ag is very weak up to a certain critical value (Age ~ 1.0) at which

the ground state changes to a charge-density-wave state (Fig. 6.3).

In contrast to Fig.6.1 the Cu magnetic moment remains almost constant for Ag < Age.
If (U4,24) is increased from (8,3) to (10,4) the Ayc, Agc and the cross-over Ao are rescaled
towards higher values by a ratio of 10/8 showing that Uy fixes the energy scale for the

different A’s.
Large values of U,y produce phase separation as found in Chapter 4.

In Fig.6.4 we show IR optical absorption spectra obtained from the current-current
correlation functions. To evaluate the IR optical absorption spectra, the adiabatic ap-
proximation in the RPA[72, 38] was used, where quadratic and higher order terms with
respect to frequency are neglected in the RPA electronic bubble. In the phonon-frequency
range, including the IR range, this approximation is expected to work well, as is supported
by comparison with nonadiabatic inhomogeneous RPA results on small systems. With
K = 32t,y/ A%, bare phonons (A, = Ag = 0) oscillate with w = 0.0914. For t,q = 1.3eV
this corresponds to 840cm~' which is comparable with the in-plane stretching IR active
mode found in La;CuOy4 (706em~1)[4, 2]. As the electron-lattice coupling A, increases,

phonons are further softened and the theoretical peak approaches the experimental one.
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Figure 6.3: (a) Magnetic moment on the central Cu site and ratio of the displacement of the
surrounding O atoms to the Cu-O distance (1.894), and (b) gap energy levels, for the small
polaron state as functions of Az. The symbols and the parameters are the same as in Fig. 6.1
except for finite Ay and Ay = 0.
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The delta peaks have been broadened with Lorentzians of width 1073,

For Ao = 0.125, the peak (w = 0.088) is mainly due to extended modes which oscillate
O atoms almost uniformly in the ¢ or y direction but weakly around the small polaron
(Fig. 6.4(a)). There are local IR active phonon fnodes (w = 0.086) corresponding to the
antisymmetric oscillations of pairs of O atoms in the small polaron. There is another type
of IR active phonon modes (also at w = 0.088) which are extended in the direction of
oscillation and localized in the other direction so that we term them semilocal modes. But
both the local and semilocal modes are indistinguishable in the IR absorption spectra,

hidden by the broadening of the extended modes.

For ), = 0.500, a doping-induced peak due to the local IR active phonon modes (w =
0.071) (652 cm™1) is well split from the main peak due to the extended ones (w = 0.076)
(698 cm~!) and clearly visible (Fig. 6.4(b)). The semilocal modes (w = 0.075) are still

indistinguishable in the spectrum from the extended modes.

This spectrum is consistent with the experimentally observed[4, 2] bleaching of phonon
modes and intensity shift to lower frequencies following photoexcitation. Such “finger-
print” of the polarons are clearly seen in the present compound by photoinduced IR
absorption[4] as a bleaching of the 710cm ™! mode and growth of a side band at 640cm™!
and have received recent experimental attention in the chemically doped case[5], where a
one-to-one correspondence of this effect with the photoinduced doping can be seen. Also
observed in the same experiments is a bleaching of the interband electronic absorption
and the corresponding activation of an electronic absorption in the gap, which we can

associate with the results of the previous chapter as shown in the inset of Fig. 5.5.

For A, = 1.125, both peaks due to the local modes (w = 0.045) and the semilocal
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Figure 6.4: IR absorption spectra for the one-hole doped systems with a small polaron. (a)
Ao = 0.125; (b) As = 0.500; and (¢) A = 1.125. The other parameters are as in Fig. 6.1.
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modes (w = 0.047) are split from the peak coming from the extended modes (w = 0.049)
(Fig. 6.4(c)). Here the oscillator strength of the semilocal modes is the largest and those of
the local and extended modes are seen as shoulders on the low- and high-frequency sides,
respectively. Furthermore, extended modes which do not uniformly oscillate O atoms
develop IR activity at w = 0.055 and w = 0.060.

In conclusion, we have used a convenient inhomogeneous HF-RPA approach to study
hole doping states in the 2-d 3-band Peierls-Hubbard model. We find that the competi-
tion of broken-symmetry ground states in this model is extremely sensitive to parameter
values. Nonlinear feedback effects produce a rapid cross-over from a Zhang-Rice regime
to a molecular singlet state with local quenching of the Cu moment and large local lattice
distortion, induced by intersite-electron-lattice coupling values in a regime extending sub-
stantially below the critical value for destruction of the AF state in the undoped system.
The doping states are characterized by distinct high energy (electronic optical absorption)

and low energy (IR) signatures relevant to chemical and photodoping experiments.
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Chapter 7

Conclusions

There has been a lot of controversy[71]-[77] about which is the simplest model, one or two
bands, that can capture the essential physics of the high temperature superconductors.
The problem is not trivial because by simple arguments[71] one could draw the conclusion
that it is possible, in some limit, to map the p-d model into a one-band model. However,
one must be sure that no important piece of physics is lost in this process. This is not
an easy task because, firstly, one has to be sure to understand the p-d model. Secondly
even if one is confident of a simple effective model at some point theory needs feedback
from experiment to progress and this is very hard to obtain from oversimplified models.
Where as the ultimate objective is to understand the behaviour at very low energies, the
basic idea in this work is that understanding of the behaviour at not so low energy can be
of great help. For example, for some of the effects discused here, common assumptions of
oversimplified models - like very large Coulomb repulsion - can prove to be too drastic. The
approach used here is complementary to other low energy approaches like renormalization
group or mapping to low energy effective models. In fact one has to keep in mind that

the techniques used here break down at very low energies and one has to switch to more
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refined formalism.

We have shown that one particle added to the half-filling case distorts the back-
ground and forms a polaron with different effects contributing to the self-trapping. As we
could see in the previous chapters, this idea give a qualitative and sometimes quantita-
tive explanation to many experiments like optical measurements[64, 78, 6], photoinduced
absorption[79, 4, 2], photoemission spectroscopy[80, 81] and X-Ray absorption[81]. Be-
cause of that we believe our results are on a firm ground and should give further insight to
the main unresolved mysteries of these materials: the strange normal state properties[57]

and the superconducting mechanism.




Appendix A

Inhomogeneous Hartree-Fock plus
RPA Formalism |

Here we sketch the formalism we are using. A more detailed discussion can be found in
many nuclear physics text books[32, 55). We describe the RPA fluctuations in terms of a
quasi-boson approach because of its intuitive appeal. However, great care must be taken
in interpreting the quasi-boson expressions because of frequent double counting issues, as
in one-body correlation functions[82, 83] and the ground state energy[32]. From now on we
call quasi-boson (QB) approach the naive interpretation of the QB expressions, and RPA
those results that can be derived by solving a Bethe-Salpeter equation for the particle-hole
Green function including ladder and bubble diagrams. The difference will become clear

when we examine the correlation energy in these two approaches [Egs. (A.20) and (A.21)].

A general many body Hamiltonian is,

1 :
H =Y (k| T|Oefer+5 > (k|V] gp)cielcpeq (A1)
ki klpg

where c;' crates a particle in a member of an arbitrary orthogonal basis set (generally the
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Wannier orbitals). We introduce a canonical transformation to the Hartree-Fock basis set,

a':r/ = Z¢ulcja . (A2)
l
where 1,; will be found self-consistently. In the new basis set the Hamiltonian reads,
1 .
H= Z(,u | T | z/)aLa,, + 3 Z (v | V| Tp)azaf,apaT. (A.3)
pv nupT

The new matrix elements are easily found to be,

(1T vy = Y (R|T| DYt (A.4)
kl

(o |V |1p) = Y (K| V| qp)0jsthiitpptrg- (A.5)
klgp

(A.6)

By means of the Wick’s theorem the original Hamiltonian [Eq. (A.3)] can be exactly
rewritten as

H = Epr+ : Hyr i +Vies. (A.T)

The HF Hamiltonian is then given by

Hyr =Y [(p|T | v)+ 2 (| V) = G| V| vi)ela, (A-8)

pv

Here “:” denotes normal product with respect to the HF vacuum:

|HF) = T] afl0) (A.9)
v(F

and we use m, n to label states above the Fermi level F; i, j for states below and u, v, 7,
p in general. The Hartree-Fock energy is Eyr = (HF|H|HF). We choose ¢, in such a

way that Hpp is diagonal,

(i T 1)+ 3G |V Liv) = i | V] ) = Bt (A.10)
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Here ¢, are the single-particle HF energies. The HF equations can be obtained by sub-
stituting Eq. (A.4) in Eq. (A.10). The same equations can be obtained by decoupling the
four fermion terms in the standard way as done below.

The last term in Eq. (A.7) represents the residual interaction between particles,

Vies = %— z (pv |V | Tp): a;‘la:[,apa.r . (A.11)
pwpT

The main effect of V., is to create electron-hole excitations over |HF) and to produce
scattering among them. The effect of : HyF : is to limit the electron-hole pair production,
because of the energy cost €, — €. After normal ordering the residual interaction shows
a number of terms representing different scattering processes, as well as particle hole
production and annihilation. Now, assuming that the number of particles above F (or
equivalently holes below F) will be small in the true ground state, we keep only those
terms in the residual interaction that represent creation or destruction of particle hole
pairs, or scattering among themselves. We expect the above condition to be satisfied if
we start from a “good” HF state even in strong coupling. Identifying sufficiently “good”
states requires searching for the lower energy, truly relaxed mean field states.

We would like to find a new correlated vacuum |RPA) and a new set of operators
@, that diagonalize the Hamiltonian in this subspace. However, even with the above

simplifications this can not be done exactly.

We define the particle hole creation operators,

b = ala, (A.12)

™mi

and their hermitian conjugate b,;. The next approximation is to treat b,,; as bosons.
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Boson commutation relations are obtained if one takes the expectation value of the com-
mutators in the |[HF) state. The fact that one uses the HF vacuum and not the new
vacuum |RPA) implies an internal inconsistency of the QB approxiﬁxation[SZ]. This is
not a big problem if, as expected, |[RPA) is not too far from |HF). Now we proceed to
construct a boson Hamiltonian { Hgp) in such a way that, with the above approximations,

it reproduces the commutation relations of the original Hamiltonian. The result is

1 L1
1 *
Hop = Eur+ ) (Aminibmibni + 5Bminibmibn; + 5 Biniinsbnsbmi), (A.13)

mi,nj

where the RPA matrices[32] are given by

Aming = (ém = &)mnbji + (7m|V|ni) — (jm|Vl]in),
(A.14)

Buinj = {(mn|V[ij) — (mn|V]ji).

The constant term in Eq. (A.13) can be obtained by taking the expectation value in
the |HF') state and using the fact that it is the vacuum of the b,,, operators. Hgp is
diagonalized by the following Bogoliubov transformation:

Qi)" = Z(Xr)r‘lib:ni - Yrr/}ibrni)' (A.15)

mi

QI\ creates an excitation of frequency wy > 0 over the new vacuum |RP A) and its hermitian
conjugate destroys it. A > 0 (A < 0) labels amplitudes and frequencies related to creation

(destruction) operators. X*, Y* and wy are obtained from the RPA eigenvalue problem:

(& 2)(2)-(2), s
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Positive (negative) eigenvalues correspond to creation (destruction) operators in Eq. (A.15)

and obey the normalization condition:

1

. . XA
(xX, ) ( _y N ) = 8xxs9m(wh)- (A.17)

With this transformation the Hamiltonian can be put in the canonical form:

Hgp = Enr+Eqp+ ) wAQQx- (A.18)
A>0

Matrix elements of operators can be calculated using the relations,

(RPAbmilA) = X
(A.19)
(RPABLY) = Yo

with |A) = Q\|RPA).
The constant term can be obtained as before by taking the expectation value in the

|HF) state and is given by([32]

Eop = é(;w _ trA). (A.20)
Unfortunately, Egp is not the same expression that one would obtain diagrammatically
for the RPA correction to the Hartree-Fock ground state energy. The problem is that, as
compared with diagram expansions, the above expression double-counts the second order
term[32] in the residual interaction. We believe the problem is related to the internal
inconsistency of the QB approximation mentioned above and should be cured in a fully
self-consistent[82, 84] approach. The correct RPA expression is obtained by subtracting

the overcounted part:
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1 (37| V|mn)|?

(A.21)

mi,njg

Note that the subtracted perturbation in the above expression is not due to the bare
interaction but the residual interaction, which is small whenever the true ground state is
close to the HF state. For example, for ¢ — 0 limit the Hamiltonian is diagonal in real
space; the eigenstates can be written as Slater determinants and the off-diagonal matrix
elements of the interaction, like the ones appearing in Eq. (A.21), vanish.

Note also that the eigenvalue problem is the same as that obtained with diagrammatic

techniques. In this sense the two approximations are equivalent to each other.
A.1 One dimensional spinless model

We start with the spinless Hamiltonian Eq. (2.5). In the Hartree-Fock approximation the

four-fermion terms nn;;, are decoupled by:
i = ) + g () = () (i)
-+ C;Cl+1')’l + C;+1Cl’7’l -2, (A.22)
where we have defined,
1 = {ee), ) (A.23)
The first three terms are the diagonal or Hartree part and the last three terms are the

exchange or Fock part. The Hartree-Fock Hamiltonian in the original base reads as

Hyr =Y [acje+ii(cjery + ¢f e+, (4.24)
l

where

g = (-1)'A+ Upa((nen) + (ni-1))
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(A.25)
t.l = t+ Upd'ﬂ .
And the HF equations read
(& — €,) bt + tpuisr + timithi—1 = 0. (A.26)
With the self-consistency equations
(nt) = 3 Y » (A.27)
and from Eq. (A.23)
=) Vi, (A.28)

where i label states bellow the Fermi level.

In order to solve these equations, we just diagonalize Eq. (A.26) with some initial
value for the Ej, {; and then recalculate the renormalized matrix elements Eq. (A.26). We
return to Eq. (A.26) and reiterate until convergence. We check that the energy decreases
monotonically in order to be stabilized at some equilibrium value.

For the RPA part in this case the matrix elements of the interaction are,

(w|Vite) = > Upa(Wrtiisr®ore1%rt + Y1 boi—19m1)- (A.29)
7

A.2 Two dimensional spinless model

The spinless Hamiltonian in 2D reads as

H = Z En; + ZE,'J‘CICJ' -+ Z Updninj s (A.30)
i i£] (i,7)
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where n; = cfci, cf creates a spinless fermion associated with charge degrees of freedom of
a hole, on site i (here 7, j are spatial indices), E; = ¢4 (¢,) for a Cu (O) site. The nearest-
neighbour matrix elements are E;; = tpq and the direct O-O hopping is E;; = —tp, (1,7)
indicates summation over nearest neighbours. As usual we define A = (¢, — ¢;)/2 and use
units with ¢t = 1.

As in the previous case, we decouple the many-body term in Eq. (A.30) as,

nn; = ni(nj)+ (n)n; — (n;)(n;)
+Helepig + hee) + gl (A.31)
Tij = {ech,

where 7, j are the nearest neighbours.

This gives rise to the following Hartree-Fock hamiltonian

Hyr = Y Bni+ Y Eijcle; + 3 Upa(=(na)(nj) + il (A.32)
i i {7

where

4
E; =Eq +Ux) (ns) (i€ Cu),
6=1

2
E;, =E, +Upd Z(ng) ('L S O) 5 (A.33)
6=1

Eij =t +Up7i;

with ¢ labeling the 4 (2) nearest neighbour O (Cu) of a Cu (O) site and 4, j are the nearest

neighbours. Direct O-O hopping is not renormalized (E; ; = —t,,).

A.3 The p-d model

Here we treat the case without electron-lattice coupling in Chapter 3.7. The RPA equa-

tions in the general case can be obtained by adding to the Hamiltonian (A.13) the bosonic
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terms coming from the second quantaized phonons and the electron-phonon interaction.
For the HF calculation of the p-d model one can proceed as before or by plugging the
expressions for the matrix elements in Eq. (A.10). The matrix elements of the one- and
two-body terms are given by

(p1T | Z tud’p('LU JYu(io) + Z z¢ (@m)Yulit) (A.34)
1#15,0

{pu |V | vr) ZU (3G DY L) — B0 D D)(uli (i 1) = $uli )$-(2 1))

LS usiGo)ntic!) - (0 )ilio))(wulio)s(i0) - $u(io e (i) (A.35)
( i#3).00

Here (ic), (jo) correspond to the orbital indices of Eq. (A.1).
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Optical conductivity of lattice

models

The results of this section follow the approach of Ref. [54, 48] We want to calculate the

response of a strongly correlated system described by a lattice Hamiltonian to an uniform

external electric field in the z direction. The electric field is given by E = Ei where,

The kinetic energy is given by
T = Z tijcjc -
i#]
The perturbed Hamiltonian is obtained by the Peierls substitution,

. _ 1
ti; = tije? = (14 idij — §¢?J‘ + s

by = —= I ed = AT

he Jz; he ’

where we define the difference in the z coordinates of sites ¢ and j:

T;; = Ty — ;.

103

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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With this the total Hamiltonian can be put as,

A, 1 /ed\? QBH

H, is the fully interacting Hamiltonian without the external field. The second term in

Eq. (B.6) contains the paramagnetic current operator in the x direction,
e ;
= -’;I—Ztijmijc:»ci (B.7)
ij
The total current also has a diamagnetic contribution,
0H . e\2 4 ,0H,
= —C—— = — t .
= e ]+(h>chsat (B.8)

The last term in Eq. (B.6) comes from the second order term in the Taylor expansion of

Eq. (B.3) and Eq. (B.2) in the following way

1 /eA\? : 1 /ed\? 0H,
() 2 tuel =5 (5r) ot Selewns = 5 (57) Tusige.

(B.9)

Here we use translational invariance to define
tiiys = tg, (B].O)
Liips — Tg. (Bll)

Now we use ordinary perturbation theory to calculate the éhange in the ground state

energy in the particular case in which A is static

1 /ed\? ¢9H | <0]7]A > |?
E(A4) - === >t §j . .
(A) - E(0) 5 (hc) 3 tyzi < 0)|—— (9t5 ( > B B, (B.12)
The stiffness constant is defined as v

_ ¢ 9E(4)
T2V §A2

| a=0, (B.13)
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with V as the total volume, and is given by
[ <olr> P
( E B -E, ) , (B.14)

The number of particles is N, and the density is

Np
= —. B.15
n= (B.15)
The effective mass is defined as,
o 1 —t, 0H,/0ts)|0
Mo _ Y » < 01 (OH,/0t,)[0 > (B.16)
m* NP El hh/momg

In the same way we can define a stiffness constant in the HF approximation. The
change of the HF energy due to A is given by the static part of the RPA response

function[55] so that the analogue of Eq. (B.12) is:

| <0l5]1A > |Rpa
Eyr - ; = .
1r(A)=Enr(0) <ﬁc> Zsjt o%s < HF ( ) Z (Ex — Eo)rPa
(B.17)
Therefor,
ne’ | <0l71A > |hpa
Dyr = — B.18
e (2 My Z (Ex— Ey)rp A ( )
and
m, __1_Z~t <HF|(3H0/<9t)|HF> (B.19)
miyr  Np 5 h? fmoz} '

Now we want to calculate the linear response of the system to a time dependent field

A(t). In this case only the first term of the perturbation in Eq. (B.6) should be kept,
A
H=H,-—j. (B.20)
c
As usual the linear response of the paramagnetic current is given by,

<ji>(t)= ——/ dt’ A(t') < O|[(t), 5(£)]10 >, (B.21)
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where we have used that the unperturbed ground state has no currents and the <> denote
expectation value in the time dependent solution of the Schrédinger equation with initial

condition given by |0 >. Defining a generalized susceptibility
Xt = 1) = == < 0[[5(¢), i ()]0 > ot — ¥'), (B.22)

we get for the total current response,

<J> ()= /: de' [t — &) — %—L-fia(t - t')]A—E:tl—). (B.23)
Now we put
Alt) = A(w)eileint (B.24)
<J>(t) = J(w)e et (B.25)
and we get for the Fourier component of the electric field [Eq. (B.1)],
E(w) = A(c‘”)i(w — ip)eilw=in)t, (B.26)

The limit of n going to zero is made at the end of the calculation. We define the optical

conductivity from,

J{w) _
-V = o(w)E(w) (B.27)

and is given from Eq. (B.23) and Eq. (B.26) by

o(w) = i(w _1, in) (Xj]lfw) - n—n?) : (B.28)
Defining
wy = Za Fo '(B.29)



Appendix B 107

the real and imaginary parts of the optical conductivity are given by,

Reo(w) = 2m6(w)D + Z I——SEO—H%%Lﬁ(w,\ - |wl), : (B.30)
1 [ ne? . o 2wy
mo(w)=P—|— ] 7+ A> |*P——, .
Imo(w) = P— (m> hVZAj|<0|g\ >IP (B.31)

respectively. Here we have used the Lehmann representation of xj; and

1 1, .
e P; + iré(w) (B.32)

For comparison with real experiment one has to take into account that not all the possible
polar1zat10n processes are taken into account in H. In fact all bound electrons not included
n H,, which we call the background, will screen the external field Eelt = Epi&. In other

words, the total field felt by the electrons in H, is
B = By — 47P, (B.33)

here }5}, is the polarization of the background. Since it is proportional to ﬁezc, E and Eea:t

are also proportional so that

Eex
E ===, (B.34)
€

where ¢, is the dielectric constant due to this screening. Here we made two non-trivial as-
sumptions. First that the process not included involve transitions at much higher energies
than the process included in H,. This means that they can be considered instantaneous in
the time scale of H, and that e, can be calculated as a static response. In practice some-
times I, has low-energy process and high-energy process and the high-energy process can
be close to other high-energy process not included. Clearly this has to be kept in mind
when analysing the results at high energies. At least one should require that there are no

real transitions of the background in the region of interest. The other assumption is that
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the electrons in H, feel the macroscopic P, and not the microscopic one. This is probably
not true in complicated structures but as a first approximation such inaccuracies can be

incorporated in ;. With that we can define a screened (and measured) conductivity as,

) = o) Buri) = Z (), (8.35)

where the last equality is a consequence of Eq. (B.27) In the case of layered systems we

can reinterpret the above expressions as referring to the volume containing one layer
V =d,d’N, (B.36)

where d, is the distance between layers, a is the cell lattice constant in the layer and N
the number of cells in the layer. For the Cu-O layers we put a® = 4a?, so that |z,| = ayq
is the Cu-O distance. With this the real part of the screened optical conductivity can be

put as:
Olj/apdeiz\ > |2
(Ex— Ey)/h

Re = 27r6(w)% + ‘Z{;Z < §(wy — |w]) (B.37)

A
with

D,. 1 1ty [ zy : 8H, | < 0|7/apae| > |?
- N_l_izeﬁ(——-—> <0‘_8?:[0>—¥ (E,\“%D)/h (B.38)

(B.39)

The last two expressions are useful to check that the dimensions in Eq. (B.37) are correct.

Experimentalists usually define an effective number of particles per unit cell,

2m,V v
Nogsw) = 202 [ o ()
l—t, (z,\  _ 8H, 0l 2
o iy (=) s <o)
ebh‘/2m,,a;)dN 2 § tpd Qpd ats Awy >w tpd(EA"EU)/h

(B.40)
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The f-sum rule reads as,

w INgp(00)  mwe'n -
do'oo(o) = =S DT) = =2 | B.41
/U w'asc(w) 2m,V /N 2m e 8’ ( )
where we have defined a screened plasma frequency,
2 _ g T (B.42)
=47 .
wp m*eb

We see that m* and N are two alternative ways of include the effects of correlations

and it is not consistent to use both at the same time.
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