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Abstract

The secular evolution of galactic discs, of which the increase of the stellar
velocity dispersion with age is the most striking expression from a kinematical
point of view, is closely related to their stability properties because of the
collective nature of such systems. In this context, however, the crucial role of
collective effects is often underestimated or not properly taken into account.

We propose a global collective heating mechanism leading to a self-regula-
tion process of the kind suggested by the spiral structure theory, when both
the linear effects of wave-wave interactions and the quasi-linear effects of
wave-particle interactions at the relevant resonances are taken into account.
The cold interstellar gas is expected to play a crucial role in ensuring self-
regulation together with the internal excitation and feedback mechanisms
invoked for the maintenance of global spiral modes. As a result, the planar
and vertical components of the stellar velocity dispersion are expected to
have a different age-dependence. Some observational evidences in support of
this qualitative prediction are also discussed.

Quantitative predictions can only be made provided a deep understanding
of both local and global self-regulation mechanisms acting in galactic discs is
attained. This is not an easy task at all, and in turn it requires a scrupulous
investigation into their stability properties. Our contribution is thus aimed
at clarifying the role of certain effects, namely those related to the presence
of the cold interstellar gas and to the finite thickness of galactic discs, which
are generally neglected for mathematical convenience.

Most theoretical investigations into the spiral structure of galaxies are
based on one-component models, because only low-velocity dispersion stars
seem to play a fundamental role. However, it has long been recognized that
in some cases also the contribution of the cold interstellar gas can be impor-
tant because of its low turbulent velocity dispersion, although it represents
a small fraction of the total mass in normal spiral galaxies. Our analysis is
devoted to such cases.

We first perform a local linear stability analysis. It is found that in some
regimes of astrophysical interest the role of the cold interstellar gas can even
be dominant at short wavelengths.



The results obtained in this context are used to investigate global spi-
ral modes in regimes which are expected to be associated with normal spi-
ral structure. We use two-component equilibrium models which incorporate
the essential features of the cold interstellar gas, as suggested by some re-
cent observational surveys. Appreciable modifications to the structure of the
modes, with respect to the corresponding one-component cases, are present
only when a peaked distribution of molecular hydrogen is simulated. How-
ever, even in the cases where no qualitative modifications are present, the
basic states which support these modes are characterized by relatively high
stellar planar velocity dispersions, i.e. by values of the local stability param-
eter Q larger than unity. Finally, some qualitative predictions concerning the
expected structure of global spiral modes in peculiar gas-dominated regimes
(where a more complicated global analysis is required) are made.

The crucial role that the cold interstellar gas can play in the dynamics
and structure of early normal spiral galaxies has been shown in Chapter 7,
where finite-thickness effects have not been taken into account. In view of the
importance that such effects might have in the self-regulation mechanisms
which are expected to operate in galactic discs and to be at the basis of their
secular heating, we have tried to evaluate them. This can be done only after
that their vertical structure at equilibrium has carefully been investigated.

An asymptotic analysis has thus been carried out to study the thickness-
scales relevant to both the equilibrium and stability of two-component galac-
tic discs in regimes of astrophysical interest. T'wo parametrizations have been
introduced and examined in view of their relevance to the stability analysis
which we shall perform in Chapter 9.

The results obtained in Chapter 8 as regards the vertical structure at
equilibrium of two-component galactic discs are used to investigate their lo-
cal linear stability properties. Under reasonable assumptions finite-thickness
corrections to the local dispersion relation can be expressed in terms of two re-
duction factors lowering the response of the two components or, equivalently,
their equilibrium surface densities. Different ansatz for such reduction fac-
tors, justified by extending the analysis performed for one-component purely
stellar discs, are compared by studying the corresponding two-fluid marginal
stability curves in standard star-dominated and peculiar gas-dominated re-
gimes. It is found that the stabilizing role of finite-thickness effects can
partially counterbalance the destabilizing role of the cold interstellar gas in
linear regimes.



Chapter 1

Introduction

1.1 Motivations
and Overview of the Problem

It is a well-known fact that the kinematical properties of nearby disc stars are
systematically related to their spectral class, and in particular that the com-
ponents of the stellar velocity dispersion show a tendency to increase with
increasing spectral type. This has been interpreted in terms of a correspond-
ing increase with age. Such a strong correlation between kinematical and
physical properties of disc stars is indeed at the basis of their subdivision into
archetypal population groups, which are generally referred to as the spiral-
arm population, the young disc population, the intermediate disc population
and the oldest disc population. It should be borne in mind, however, that
globally the disc-component population exhibits much more drastically dif-
ferent features with respect to the spheroidal-component population, which
reflect their different cosmological origin.

From a theoretical point of view, many efforts have been addressed to
explain the observed increase of the components of the stellar velocity dis-
persion with age. The most diffused and currently accepted class of expla-
nations is based on the existence of relaxation mechanisms which lead to a
secular heating of galactic discs. The basic physical source responsible for
such a heating process is still under debate.

In this context it should be noted that observations do not put yet any
stringent constraint on the age-velocity dispersion relation, although the op-
posite is often claimed by observers. This is due to the large experimental
uncertainties and to the presence of statistical biases ingrained in the sample
selection, which often cannot properly be estimated.

For this reason only a few theoretical models have definitely been ruled

3



4 CHAPTER 1. INTRODUCTION

out, while a lot of speculations involving hypothetical massive halo perturbers
have been made mostly to find upper and lower bounds to the mass of such
objects. Because of the large number of free parameters involved, these the-
ories, although they are appealing due to their connection with the problem
of dark matter in the universe, have a low level of predictability.

In all these approaches the restriction to nearly integrable situations is
tacitly assumed. For strong departures from the integrability condition the
relaxation is governed by the effects of Lyapunov (orbital) instability.

Even though it is often left out, the secular evolution of galactic discs,
of which the increase of the stellar velocity dispersion with age is the most
striking expression from a kinematical point of view, is closely related to
their stability properties. This fact stresses the crucial role that collective
effects play in stellar systems, or more in general in systems whose dynamics
is governed by long-range interactions. Such a role is often underestimated
in stellar dynamics, while perhaps too much emphasis is given to relaxation
processes involving binary encounters alone.

It is indeed a well-known fact that in (electromagnetic) plasmas the rate
of relaxation towards the equilibrium state can considerably be enhanced by
collective effects. When such collisionless relaxation mechanisms occur, more
effective heating processes become operative leading to a rapid but usually
incomplete randomization of particle velocities. It is just after such a col-
lisionless collective phase that binary encounters become effective, and lead
to a slow evolution of the partially relaxed system towards the final state of
thermodynamical equilibrium. '

In virtue of the dynamical similarity between ordinary (electromagnetic)
plasmas and “gravitational plasmas”, the same phenomenon is expected to
occur in stellar systems as well and to be competitive, if not dominant,
with respect to other more commonly invoked relaxation mechanisms. How-
ever, the analysis required to describe quantitatively the relevant heating
process would generally be much more complicated because of the natural
inhomogeneity of stellar systems, which in particular makes the usual local
quasi-linear approach no more suitable.

To avoid the difficulties connected with a global mode analysis, externally
imposed and thus non-self-sustained perturbations of spiral form have gen-
erally been considered together with a local treatment in the action-angle
canonical representation. Collective effects are thus not properly taken into
account in this simplified approach. An effective horizontal heating of galac-
tic discs is then produced provided these spiral waves are assumed to be
recurrent transient large-scale phenomena. Despite the formal elegance of
the action-angle canonical representation and the relative simplicity inherent
in a local analysis, two defects characterize this approach:
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o The interpretation of the theoretical predictions in terms of observ-
able phenomena might not be straightforward. This lack of physical
intuition somewhat lowers the predictability level of the theory.

e The most drastic consequence that arises from neglecting the self-
consistency of the perturbations lies in the fact that internal (to the
system) excitation and feedback mechanisms, cructal for the mainte-
nance of global spiral modes, are not taken into account. Hence, most
of the physics is missed.

For this reason it is worth formulating a global quasi-linear theory of
spiral structure, in which the role of resonances is properly taken into ac-
count. To the above-mentioned difficulties one has to add also those deriv-
ing from the consideration of the cold interstellar gas, whose damping role
in non-linear regimes cannot be disregarded as it contributes together with
non-linear effects to saturate otherwise exponentially growing spiral oversta-
bilities. Although the importance that such self-regulation mechanisms have
in connection with the secular evolution of galactic discs has long been rec-
ognized, no quantitative theory free from the above-mentioned defects has
been developed yet. This thesis is just devoted to lay the foundations for
such an attempt.

1.2 Review of Observations

In this section we shall discuss the main observational surveys which have
recently been performed to determine the age-velocity dispersion relation for
disc stars, and it will be shown that some of them are mutually inconsistent.
This fact, which essentially is due to the unavoidable use of biased samples
of stars, shows that observations do not put yet any stringent constraint
on the age-dependence of the components of the stellar velocity dispersion,
although the opposite is often claimed by observers. Other factors which
contribute to such indetermination are the large experimental uncertainties,
which are difficult to estimate properly, and the indirect estimates of stel-
lar age. Moreover, some sample-selection criteria imply a contamination by
spheroidal-component stars, which have a different cosmological origin and
hence should not be included. However, they are so spectroscopically dis-
tinctive that generally it is not difficult to exclude them from the analysis.

The following discussion does not pretend to be exhaustive at all. A
more detailed report and comparison with other observational surveys can
be found in the references cited.

In the 1970s three important observational surveys were performed by

Byl (1974), Mayor (1974) and Wielen (1974).



6 CHAPTER 1. INTRODUCTION

In particular, the analysis performed by Wielen (1974) (see also Wielen
1977) is based on about 1000 stars contained in the Gliese (1969) catalogue
of stars within 20 pc of the sun, for which trigonometric parallaxes accurate
to +£10% and accurate radial velocities and proper motions are known. This
sample can be plotted directly in an H-R diagram, and hence it can be
divided into unambiguous age groups by choosing stars found in definite
color intervals along the main sequence or near the positions of the subgiants
or giant branches of clusters of known age. For each main-sequence group
the average age is assumed to be about half the main-sequence lifetime of
the proper stellar type (i.e., a constant star-formation rate is assumed), and
to the giants are assigned the ages of the clusters along whose giant branches
they most closely lie. The sample includes a large number of McCormick
K and M dwarfs with known Call emission-line intensities, for which mean
ages can be derived statistically from their relative abundances by assuming a
constant star-formation rate over the lifetime of the Galaxy. These estimates
can be checked by using observed average emission-line strengths in clusters
of known ages. The two sets of ages turn out to be in good agreement.
As a final result of this analysis, it is found that the age-velocity dispersion
relation follows a (3—3)-power-law.

The estimates of the age-dependence of the components of the stellar ve-
locity dispersion derived by Wielen (1974, 1977) have been questioned by
very recent observational surveys (Carlberg et al. 1985; Knude, Schnedler
Nielsen and Winther 1987; Stromgren 1987; see also: Palous and Piskunov
1985; Lynga and Palous 1987; Shevelev, Marsakov and Suchkov 1989; Gémesz
et al. 1990; Grivnev and Fridman 1990; Knude 1990a), which however are
also mutually inconsistent.

Carlberg et al. (1985) combined the Twarog (1980) sample (suitably re-
duced to about 250 F stars within 100 pc of the sun), for which ages and
photometric distances can be determined, with astrometric data to obtain
tangential velocities of a set of stars with a large age-range. The stellar
age was estimated by means of a new set of stellar evolutionary sequences
and isochrones incorporating substantial improvements in the input stellar
physics. The resulting age-velocity dispersion relation rises fairly steeply for
stars less than 6 Gyr old, thereafter becoming nearly constant with age. -

Knude, Schnedler Nielsen and Winther (1987) considered the sample of
stars obtained from the intersection of a photometric catalogue of A and F
stars at the North Galactic Pole (Knude 1990b; cf. Teerikorpi 1990) with the
AGK 3 catalogue of proper motions (Dieckvoss et al. 1975). Due to the high
latitude of these stars (b > 70°), an accurate estimate of the plane-parallel ve-
locities was obtained from proper motions and distances alone (i.e., without
considering radial velocities). Complete subsamples of about 550 unevolved
and slightly evolved F stars of solar composition roughly within 200 pc of
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the sun were used to study the variation of the velocity dispersions oy and
oy with age. Both dispersions are found to follow power- 1aws very closely,
but the two laws have significantly different powers, .53 =~ 3 2 and .27 ~ e
respectlvely The total planar velocity dispersion is found to obey roughly
a —-povver -law. The most immediate consequence of this result would be a
considerable change of the shape of the velocity ellipsoid with age. More pre-
cisely, the axial ratio would change from 1 to its equilibrium value of about
.5 during a period lasting 5 Gyr. The observed relaxation time seems to be
much longer than that suggested by studies of early-type stars, which is of
the order of the epicyclic period.

Stromgren (1987) considered a sample of about 2300 A5 to G Population
I stars within 100 pc of the sun, belonging to the Olsen and Perry (1984) pho-
tometric catalogue and for which a reliable determination of radial velocities
was possible. Since for all these stars adequate photometric distances and
proper motions were available, galactic velocity components relative to the
sun of satisfactory accuracy were derived. It is found that while the plane-
parallel components of the velocity dispersion oy and oy increase markedly
throughout the range 3-9 Gyr, their ratio oy /oy >~ .6 showing no appreciable
variation, the perpendicular component of the velocity dispersion oy stops
at a nearly constant value for stellar ages larger than 5 Gyr.

The apparent mutual inconsistency of the results of these observational
surveys shows that we are still far away from a satisfactory knowledge of the
age-velocity dispersion relation. In this context a more careful estimate of
selection (and probably also contamination) effects might indeed raise the
confidence level of observations.

Some indirect constraints on the age-dependence of the components of the
stellar velocity dispersion can be obtained by constructing consistent kine-
matical and chemical (e.g., Vader and de Jong 1981; Lacey and Fall 1983;
see also Lacey and Fall 1985) or dynamical models of the Galactic disc (e.g.,
Bienaymé, Robin and Crézé 1987). See also the comparative analysis per-
formed by Neese and Yoss (1988), and the interesting approaches developed
by te Lintel Hekkert and Dejonghe (1989) and Antonuccio (1990).

1.3 Plan of the Thesis

This thesis is divided into two parts.

Part I is devoted to a review of the results already known in the literature
and of the methods employed to tackle the problem of the secular heating of
galactic discs. This review does not pretend to be exhaustive, mainly because
the interest in this specific problem arose at the beginning of the 1950s and
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since then a conspicuous number of papers have been written to shed light on
it. However, among these only a few contributions have been so important
as to represent real turning points in the understanding of this problem. It
is just to such efforts that the review is mainly devoted. )

It should be borne in mind, anyway, that even more fundamental results
have been found in other branches of physics, which could suitably be ex-
tended to stellar dynamics and in particular applied to the specific problem
of the secular heating of galactic discs. Often the importance of such sug-
gestions is underestimated in favour of more standard viewpoints. The first
part of this thesis is indeed devoted also to clarify the crucial role that some
not properly appreciated effects (i.e., collective effects in nearly integrable
systems and the effects of Lyapunov instability in non-integrable systems)
have in the secular evolution of stellar systems.

Part II expresses my own point of view about the effectiveness of the heat-
ing mechanisms described in Chapter 5 of Part I in situations of astrophysical
interest. In particular, it will be stressed the fact that no such approaches
take collective effects properly into account, which instead are expected to
drive the dynamical evolution of galactic discs.

A global collective heating mechanism is then proposed in analogy with
the quasi-linear theory of plasma waves, which predicts the occurrence of
the so-called turbulent heating whenever an initial overstability is saturated
or damped by non-linear effects. Before tackling such a complicated global
non-linear analysis, in which the cold interstellar gas plays a damping role,
simpler self-regulation mechanisms in the linear regime will be considered, in
which such a cold component has instead a destabilizing role.

Finally, some results are given concerning the effects that the finite thick-
ness of galactic discs has on their stability properties, to which the above-
mentioned self-regulation mechanisms are intimately related. The originality
of this analysis on finite-thickness corrections to the local dispersion rela-
tion lies in the fact that the stellar and the gaseous components are self-
consistently taken into account in a more rigorous way than in previous
works.
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Part I

GENERAL BACKGROUND
AND CRITICAL REVIEW OF
PREVIOUS ANALYSES



Chapter 2

Relaxation Processes
in Dynamical Systems:

Classical Estimates
and Their Validity™

2.1 Introduction

It is a well-known fact that many-particle systems tend asymptotically to a
state of thermodynamical equilibrium characterized by a Maxwellian distri-
bution function, provided some general assumptions on the nature of the
collision processes between particles are fulfilled (see, e.g., Huang 1963).
The relaxation towards this equilibrium state is governed by a character-
istic timescale which generally is referred to as the relaxation time of the
system. In this particular context ordinary binary collisions give the domi-
nant contribution to the relaxation process leading to such a randomization
of particle velocities.

In many situations of physical interest this binary relaxation time turns
out to be extremely long compared to the dynamical timescale or even to
any other “observable” characteristic time. Systems whose dynamics is gov-
erned by long-range interactions, such as plasmas and stellar systems, can
indeed exhibit such a peculiar feature. If this is the case, other relaxation
processes toward approximate equilibrium states (stationary states!) are pos-

*In this introductory chapter a number of concepts and results will be given without a
satisfactory discussion, that can instead be found in Chapters 3 and 4 which are intended
to be a continuation of Section 2.2. ‘

1The term “equilibrium” is properly referred to the thermodynamical state which 1is
ultimately attained in the process of randomization of particle velocities. In any other time-

11
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sible on the intermediate timescales of interest. These kinds of relaxation
mechanism can actually be much more effective than ordinary two-body
encounters—which need not be “physical collisions” in the case of long-range
interactions—because they arise from the collective nature of long-range in-
teractions.

We shall now stress the main differences and similarities between binary
and collective relaxation processes:

e Ordinary binary encounters can be viewed as short-wavelength fluc-
tuations of the interaction field.? They are essentially random, and
produce small effects which accumulate slowly in time. Each encounter
can lead in two directions, increasing or decreasing the energy of one of
the particles, so that the cumulative effect is a random walk of each par-
ticle in velocity space, which gradually takes the whole system towards
thermal equilibrium.

e Collective encounters are long-wavelength fluctuations of the interac-
tion field.? They are completely analogous to binary encounters, except
that one particle collides simultaneously with many particles collected
together by some coherent process such as a wave. Observe that in this
context the impact parameter can never be taken much smaller than the
characteristic wavelength of the perturbation, and the collected bunch
of particles moves with the group velocity of the wave rather than with
the typical particle velocity. Again the process is random—generally it
is not a random walk, as in the previous case, because memory effects
cannot be disregarded—but usually much stronger, and rapidly takes
the whole system towards a stationary state.

In this chapter we shall analyze in some detail the assumptions which
are at the basis of classical estimates of the relaxation time in many-particle
dynamical systems, with particular reference to plasmas and stellar systems.
Often some of these assumptions are tacitly taken for granted, or even worse
the results obtained in this context are claimed to be more general than
they really are. A crucial point that must indeed be stressed right now
is that all classical estimates of the relaxation time and related quantities
apply to integrable systems alone. In non-integrable systems, in fact, these

independent situation the term “stationary” is commonly used. In the following we shall
drop this distinction whenever no ambiguity arises, bearing in mind, however, that such a
distinction does indeed exist.

2The fluctuations of the interaction field that a particle experiences during its motion
among the other particles of the system can be Fourier-analyzed (under the assumption of
local homogeneity) into wave components with different wave-vector k. The distinction be-
tween binary and collective encounters is based, indeed, on the different typical wavelengths
involved in the two cases, which are to be compared to the mean inter-particle distance.
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calculations lose their validity because of the existence of extremely rapid
phase-mixing mechanisms which make the orbits very sensitive to the initial
conditions and to perturbations (Lyapunov instability).

General reference is made to Chandrasekhar (1960), who studied exten-
sively in the 1940s the role of binary encounters in the relaxation of stellar
systems; Gurzadyan and Savvidy (1986), Pfenniger (1986), who stressed the
crucial point mentioned above; and to books on dynamical systems and ordi-
nary differential equations where rigorous formulations of the ergodic theory
and of the Lyapunov stability are given (e.g., Arnold and Wihstutz 1936;
Arnold 1978, 1988, 1989; Arnold and Avez 1968; Bergé, Pomeau and Vidal
1986; Contopoulos 1966, 1973, 1985; Galiullin 1984; Gallavotti 1986; Grass-
berger 1985; Lichtenberg and Lieberman 1983; Lindblad 1983; Moser 1973;
Schuster 1988; Starzhinskii 1980; Voronov 1985; Wightman 1985). See also
the review papers by Aizawa, Murakami and Kohyama (1984), Aizawa et
al. (1989), Akhromeyeva et al. (1989), Eckmann and Ruelle (1985), Escande
(1985), Gaeta (1990), Hietarinta (1987), Konishi (1989), Martens (1984),
Penrose (1979), Suzuki (1984), Vivaldi (1984). General reference is made also
to the books on plasma physics and stellar dynamics listed in Section 3.1.

2.2 The Global Relaxation Time
of Integrable Systems:
Collisional vs Collisionless Processes

From the discussion made in the previous section it appears that systems
whose dynamics is governed by long-range interactions are characterized by
two relaxation times: the binary relaxation time T, associated with the
relaxation towards the final thermodynamical equilibrium state, and the col-
lective relaxation time 7., associated with the relaxation towards an interme-
diate stationary state. It is implicitly assumed that the systems under consid-
eration are close to a situation of integrability (and quasi-stationariness), be-
cause otherwise other relaxation mechanisms occurring on shorter timescales
are to be considered. A discussion of the effects of such an orbital instability
is deferred to the next section.

Another important fact to bear in mind is the characterization of the
collision processes in which binary encounters and collective effects are in-
volved. Due to the long-range nature of the interactions involved, a test
particle during its motion interacts simultaneously with all the other field
particles of the system, so that the question arises whether a similar distinc-
tion between binary and collective encounters does make sense. This question
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can be answered by observing that the main effect of the collective property
of these systems consists in the presence of large-scale self-consistent mean
fields (only in the gravitational case) and in the possibility of exciting self-
sustained oscillation modes.® In this respect, differences in the large-scale
dynamics between plasmas and stellar systems arise from the fact that in the
former screening effects are present which make them locally neutral.

The role of collective effects can thus be singled out in a first approxima-
tion by formally dividing the potential into two parts: a part consisting in the
mean field itself plus possible self-sustained perturbations of relatively long
wavelengths, both produced by the “smoothed-out” distribution of matter,
and a part which takes into account the fluctuations of the interaction field
of relatively short and intermediate wavelengths arising from the “discrete”
distribution of matter. With such a decomposition the bulk of collective ef-
fects is contained in the first part, but a non-negligible contribution (with
respect to binary encounters) is given also by the intermediate-wavelength
fluctuations, in which particle correlations are taken into account. The fol-
lowing characterization hence follows: collective effects are mainly associated
with collisionless relaxation processes, even though they contribute also to
collisional relaxation processes, whereas binary encounters are relevant to
collisional relaxation processes alone.

It turns out that binary and collective encounters give comparable con-
tributions to collisional relaxation processes in several situations of physical
interest, as will be discussed later on in this section. The non-Markovian
character of collective encounters, however, makes them difficult to treat. In
this context it should be mentioned that several authors have tried to evalu-
ate such a contribution by calculating the relaxation time or the dynamical
friction in idealized models of stellar systems (e.g., Julian and Toomre 1966;
Julian 1967; Thorne 1968; Kalnajs 1972). Although they claim to have taken
collective effects fully into account, actually their analyses are restricted to
neutral fluctuations alone, and thus disregard the most essential contribution
which comes indeed from overstabilities of the system.

We shall now list the basic assumptions underlying classical estimates of
the relaxation time of systems governed by long-range interactions (Chan-
drasekhar 1960, for the gravitational case). Some of them will be discussed in
some detail, together with their physical and mathematical implications, in
Chapter 3. The system is assumed to be homogeneous and in a steady state;
and only instantaneous, distant, mutually independent, binary encounters in
the impulsive approximation? (straight-line orbits) are considered.

3The self-consistency property concerning the mean fields and the self-sustenance prop-
erty concerning the oscillation modes express the fact that these large-scale phenomena are
produced by the distribution of matter in the system (Poisson equation), and thus are not
externally imposed.

4The analysis performed by Chandrasekhar (1960) does not rely on this assumption.
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As all these working assumptions lead to an overidealized model of relax-
ation process, only the order of magnitude of the relaxation time so derived
is thought to be meaningful. For this reason we prefer to give a rough expres-
sion, as derived by Hénon (1973) in the case of stellar systems, rather than
the extremely precise formulae—different possible definitions of relaxation
time can in fact be given—found in Chandrasekhar (1960):

‘U3

- 8rG2mp In N’

Thin (21)

where N is the total number of stars in the system of mass m, mean volume
density p and typical random velocity v. Here the virial theorem® for stel-
lar systems has been used to express the Coulomb logarithm In(bmax/bmin)
in terms of the total number of particles in the system, b being the impact
parameter. Note that the relaxation time of large stellar systems, as ellipti-
cal and spiral galaxies, largely exceeds even the age of the universe (Hubble
time).

An unphysical feature deriving from the use of drastic assumptions such
as the restriction to instantaneous binary encounters and the impulsive ap-
proximation consists in the fact that logarithmic divergences occur at small
and large impact parameters, which are formally removed by introducing the
short-range and long-range cutoffs byin and bnax, respectively (bmax 1s differ-
ent in the two cases of plasmas and stellar systems; see Section 3.3).

Several attempts have been made to relax some of the classical assump-
tions mentioned previously (e.g., Woolley 1954; Hénon 1958; King 1958; Lee
1968; Ostriker and Davidsen 1968; Danilov and Beshenov 1987; see also
Horedt 1984) and to take collective effects into account (see the references
cited in the previous paragraph). The order of magnitude of the relaxation
time or related quantities turns out to be preserved, except in some “patho-
logical” cases (e.g., Kalnajs 1972) which can be explained in the light of
more sophisticated approaches (see the references listed in Footnote 7 of Sec-

tion 3.3).

The use of the collisionless Boltzmann equation (Vlasov equation) for
investigating galactic structure and dynamics has been justified by simple
estimates of the ratio of the relaxation time by particle encounters T, to the
typical orbital time in the mean field, i.e. the crossing time Toross- It 1s found

%Bear in mind that the virial theorem implies a relaxation in configuration space, which
generally is attained on a dynamical timescale Teross < Thins the latter being associated with
the relaxation in velocity space (see the discussion concerning the validity of the collisionless
Boltzmann equation in strictly disc systems). Large stellar systems, for instance, have a
stationary shape, but have not yet reached a state characterized by a complete randomization
of particle velocities.
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that (see, e.g., Hénon 1973; King 1967)

Thin N
Tross IV’ (22)

so that for large IV the effects of particle encounters can be neglected on a
dynamical timescale.

Galactic discs, even though they may be considered very thin, are still 3-
dimensional systems, and it is to 3-dimensional systems that these estimates
of relaxation time apply. However, galactic discs are often approximated as
strictly disc systems, in which stars are still assumed to interact by inverse-
square forces but are constrained to move in a plane. Therefore, it is of some
interest to consider the problem of relaxation time for strictly disc systems.

It is found that (Rybicki 1972)

Thin v
e (2.3)

where V is the typical total particle velocity and v the typical random par-
ticle velocity relative to a local frame of rest,® so that the relaxation time is
at most of the same order of magnitude as the crossing time, independently
of the number of particles. Therefore, the collisionless Boltzmann equation
can never provide an adequate description of strictly disc systems, however
large.

It can be shown also that, in contrast to the 3-dimensional case, the re-
laxation is substantially due to close encounters, and that the cumulative
effect of long-range encounters is of no more than the same order of magni-
tude. Thus, the assumption of independence of encounters does not present
any difficulty in this 2-dimensional case, since close encounters are indeed
expected to occur independently. In this regard it is interesting to note that
the long-range divergence occurring in the 3-dimensional case when simple
derivations are used does not occur in the 2-dimensional case, so that there is
no need to introduce a long-range cutoff. All these differences can be traced
back to the different statistical weighting of impact parameters in the two
cases.

These arguments concerning strictly disc systems of course do not ap-
ply to actual galaxies, which are 3-dimensional systems: the validity of the
Vlasov equation is rather well established in this case (see, however, Section
2.3). However, strictly disc-system approximations are commonly used in
analytical and numerical treatments of disc galaxies, and hence it is neces-
sary to judge these approximations in the light of the preceding results.

6This result can be expressed in a compact form relating the relaxation time 7y, to
the epicyclic frequency s and to the local stability parameter @ of infinitesimally thin, one-
component, self-gravitating disc systems in differential rotation (for the definition of @ see
Toomre 1964): k7 ~ 2Q.
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For analytical treatments there is no such problem of the relaxation time
at all. The use of Vlasov theory is first established in view of the finite thick-
ness of the disc, and then it is simply a question whether a 2-dimensional
form of the Vlasov equation is a good approximation to the 3-dimensional
form. Although this question is not trivial, at least it can be answered within
the framework of Vlasov theory.

The situation concerning numerical simulations, on the other hand, is
not so straightforward. 2-dimensional models of disc galaxies are often used,
and the relaxation results presented here apply. Therefore, 2-dimensional
N-body codes, if performed in a sufficiently precise way, do not provide
faithful simulations of the Vlasov equation and thus do not apply to actual
disc galaxies. Fortunately, numerical simulations are themselves subject to
further approximations which tend to reduce the severity of this difficulty.

For a more detailed discussion reference is made to Rybicki (1972), Sell-
wood (1987), Zotov and Morozov (1987), White (1988), Schroeder and Com-
ins (1989), Hernquist and Barnes (1990).

2.3 The Orbital Relaxation Time
of Non-Integrable Systems:
The Effects of Lyapunov Instability

Many numerical tests have been performed during the last three decades con-
cerning the applicability of the classical expression for the relaxation time Thin
given in Section 2.2. Some of them (e.g., Miller 1964), although they were
based on 3-dimensional models of stellar systems and thus were free from
the criticism arisen by Rybicki (1972), showed a general and fast exponential
divergence of systems starting very close to each other in the 6.V -dimensional
phase space. Even when no close encounters occurred, such systems diverged
exponentially at a rate much larger than that estimated by Chandrasekhar
(1960).

A rough explanation of this peculiar behaviour was put forward by Miller
(1966) in terms of “polarization effects in the difference medium (system)”.
Put in another way, he gave an original formulation of the well-known prob-
lem of Lyapunov instability in dynamical systems, but a number of wrong
conclusions were drawn—e.g., regular orbits do not show an exponential but
rather a linear divergence (see below). The roughness of this formulation lies
indeed in the fact that it cannot discriminate integrable from non-integrable
systems. See Sokolov and Kholshevnikov (1986) for some interesting con-
siderations concerning the integrability of the N-body problem. The aim of
the forthcoming discussion is just to explain these concepts in some more
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detail and to describe the effects of Lyapunov instability on the relaxation of
dynamical systems, with particular reference to stellar systems.

In the framework of the ergodic theory dynamical systems are divided

into two classes:

o Integrable systems, for which the number of isolating integrals of mo-
tion is equal to the number of degrees of freedom and the phase-space
trajectories lie on N-dimensional tori.

e Non-integrable systems, whose classification is given by increasing the
degree of their statistical properties: dynamical systems with divided
phase space (i.e., containing both motion on N-dimensional tori and
chaotic motions); ergodic systems; systems with weak and n-fold mix-
ing; K-systems; and finally Bernoulli systems, which are a subclass of
K-systems. More precisely, the classification criterion is the rate at
which an initial cell of phase space tends to cover uniformly the energy
hypersurface. In mixing systems an initial cell complicates its shape
in such a way (i.e., preserving its volume) as to cover uniformly the
energy hypersurface asymptotically. In this sense, a mixing system in
a non-equilibrium state tends asymptotically to equilibrium. K-mixing
systems, which possess maximally strong statistical properties, tend to
such microcanonical equilibrium state at an exponential rate, the re-
laxation time being proportional to the Kolmogorov entropy. One of
their main properties is, in fact, the decay of phase-space trajectories
into beams of exponentially approaching and expanding trajectories
(transversal fibers).

Several attempts have been made to relate the exponential divergence
observed in the above-mentioned numerical experiments to the peculiar be-
haviour characterizing strongly non-integrable systems. From the point of
view of the ergodic theory, this can be attained by reducing the problem of
a self-gravitating N-body system to the investigation of the behaviour of a
geodesic flow on a Riemannian manifold, making use of the Maupertuis prin-
ciple. It is found that the negativity of the 2-dimensional curvature of this
manifold is a sufficient condition for an exponential deviation of the geodesics,
and the minimum of its absolute value defines an orbital relaxation time (e.g.,
Gurzadyan and Savvidy 1986; Gurzadyan and Kocharyan 1987a,b, 1988).
Although this geometrical method for investigating the stochasticity of dy-
namical systems is attractive from a formal point of view, another method
has been found to be more predictive from a numerical point of view. It is
based on the calculation of the so-called Lyapunov characteristic exponents
xi, which will now be discussed in some detail.”

7"The Melnikov method can also be employed to study the onset of stochasticity when
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An important property of non-integrable systems is to contain a definite
fraction of irregular orbits, also qualified as stochastic, semi-ergodic, etc.,
exhibiting an exponential sensitivity to the initial conditions and to per-
turbations (as, e.g., the granularity of the system), which thus are rapidly
amplified. In contrast, regular orbits are only linearly sensitive.® This intrin-
sic sensitivity is measured, indeed, by the Lyapunov exponents.

After a certain time the largest one, if positive, will dominate the di-
vergence, and is therefore the best physically observable one. It determines
an (individual) orbital relaxation time 7o, ~ xzL,,> which is not a global
relaxation time of the system (see also below; for a more detailed discussion
see Pfenniger 1986). The other x; can be computed by various numerical
techniques. For an autonomous (i.e., time-independent) Hamiltonian sys-
tem with n degrees of freedom there exist 2n Lyapunov exponents, two of
which vanish for each isolating integral of motion'® and the others appear in
pairs (—xi,x:). Each isolating integral, therefore, makes the motion robust
in two directions of phase space, which are characterized by a simple linear
divergence. As a consequence, actions characterize regular orbits, while the
positive Lyapunov exponents characterize irregular orbits. The sum of these
positive exponents turns out to be just the (specific) Kolmogorov entropy
(see also the discussion made in the previous paragraph), which otherwise
vanishes for regular orbits, so that only non-integrable systems evolve irre-
versibly.

We now turn to analyze the most direct physical implicé,tions of Lya-
punov instability. The extreme sensitivity of irregular orbits to the initial
conditions and to perturbations makes estimates of the binary relaxation
time clearly meaningless. This difficulty also occurs when collective effects
are taken into account, because the rapid phase-mixing mechanisms asso-
ciated with this orbital instability can damp self-sustained oscillations of
the system on timescales much shorter than the dynamical timescale, which
in turn is generally comparable to the inverse of the growth rates of these
oscillations—i.e., no coherent process such as a self-sustained wave can be
maintained over the relevant timescales. A global relaxation time is thus
no more meaningful because, apart from the impossibility of defining a bi-
nary or a collective relaxation time, one has to consider also the fact that

small perturbations are imposed on an integrable system (see, e.g., Gerhard 1985).

8The exponential or the linear character of this sensitivity is restricted to the linear
regime. In a non-linear regime, in fact, saturation effects occur due to the presence of
damping terms neglected in the linear treatment.

OIf Xmax is close to zero (nearly regular orbits), then a more detailed analysis, as for
instance that performed by Chandrasekhar (1960), is required since the relaxation time
turns out to be directly dependent on the characteristics of the system.

10The number of isolating integrals of motion is connected with the symmetry properties
of the system, and therefore depends on the form of the (self-consistent) potential (see, e.g.,
Freeman 1975; Woltjer 1967).
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the Lyapunov relaxation time T, can be very different from orbit to orbit
since different values of Xmax are involved. On the other hand, binary en-
counters and collective effects are the most effective relaxation mechanisms
in integrable systems, or in those regions of nearly integrable systems where
regular orbits are dominant. Moreover, classical estimates of the relaxation
time still hold in non-integrable systems, provided it is defined in such a way
as to refer to the exchange of isolating integrals alone.

The same considerations apply as regards the formal validity of the sto-
chastic equations which will be investigated in Section 3.2. In non-integrable
systems the diffusion in velocity space produced by Lyapunov instability can-
not in fact be disregarded (see also below). In non-integrable systems the
non-uniform coverage of phase space by irregular orbits makes the use of the
Vlasov equation and the applicability of the Jeans theorem questionable as
well (cf. Binney 1982).

The question thus naturally arises how often the departure from integra-
bility of observed stellar systems can be neglected. But since all kinds of
system exist, from systems far from integrability as small open clusters up to
nearly integrable systems as spherical globular clusters, no general rule can
be given. Analytical methods usually apply to nearly integrable problems,
so that the successful models are strongly biased toward “nicely symmetric”
situations. Attention must be paid, however, not to extrapolate superficially
the results so obtained to real stellar systems. From the KAM (Kolmogorov,
Arnold, Moser) theorem it follows, in fact, that asymmetries can generally
destroy the principal isolating integrals of motion, since stochasticity invades
phase space in a complicated manner as a perturbation grows, sometimes
abruptly (Arnold diffusion). Note, however, that the Nekhoroshev theorem
on the Arnold diffusion shows that under quite mild assumptions this is
a very slow phenomenon (see, e.g., Benettin, Galgani and Giorgilli 1985a,b,
1987; Galgani 1985, 1988; Benettin 1986, 1988; Benettin and Gallavotti 1986;
Giorgilli 1988; Mistriotis 1989).

So far we have more or less tacitly assumed to be in time-independent
or at least in weakly time-dependent situations. Indeed, the “autonomous”
assumption is not restrictive at all. We can, in fact, always transform a time-
dependent Hamiltonian system into an autonomous Hamiltonian system- by
extending its phase space in such a way as to include the time-coordinate.
The considerations made in the previous paragraph can thus be applied even
to stellar systems in a collapse phase.

We shall now discuss some of their physical implications in relation to the
theory of violent relaxation (Lynden-Bell 1967; see also Section 4.2). In some
cases it may happen that the collapsing system is integrable, so that some
non-classical individual stellar integrals are conserved. This situation would
not be radically different from a steady-state system. But what makes the
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concept of violent relaxation nevertheless mostly correct is that integrable
systems are very rare, so that a spherical collapse is expected to produce
a large fraction of stochastic orbits. As a consequence of their exponential
sensitivity to perturbations, strong phase-mixing'' mechanisms become op-
erative and lead to an efficient relaxation of the system. The violence of the
relaxation is thus the consequence of the strongly non-integrable situations
considered.

For a more detailed discussion reference is made to Pfenniger (1986).
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Chapter 3

Collisional
Relaxation Processes:

The Fokker-Planck Approach
and Alternative Descriptions

3.1 Introduction

The Fokker-Planck equation has widely been applied to the study of plasmas
and stellar systems for describing the evolution of the one-particle distribu-
tion function when collisional effects are taken into account. Its derivation is
based on a number of assumptions which in general are not clearly specified
or are tacitly taken for granted.

In this chapter we shall inquire into the validity of this equation by ana-
lyzing the underlying assumptions in some detail. The following discussion
does not pretend to be exhaustive, because most of the mathematical con-
cepts and techniques inherent in this description are subtle and cannot thus
properly be expressed and discussed in this context. Some other more general
and/or correct, but less predictive, approaches will also be described. The
three basic approaches discussed in this chapter are schematically compared

in Table 3.1.

Reference is made to books on probability theory and stochastic processes
where rigorous derivations of the Fokker-Planck equation (cf. Kolmogorov
forward equation) are given (e.g., Cox and Miller 1965; Feller 1970, 1971;
Friedman 1975, 1976; Gardiner 1985; Kac and Logan 1987; Montroll and
West 1987; Nelson 1967; van Kampen 1981; Ventsel 1983; Wax 1954). See
also the review papers by Haken (1975), Kandrup (1980), Li (1986), Pad-
manabhan (1990), Putterman and Roberts (1988), Spohn (1980). General
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reference is made also to books on plasma physics (e.g., Boyd and Sander-
son 1969; Hinton 1983; Ichimaru 1980; Krall and Trivelpiece 1973; Schmidt
1979; Sivukhin 1966) and stellar dynamics (e.g., Binney and Tremaine 1987;
Saslaw 1985; Spitzer 1987).

The evolution of the one-particle distribution function f(z,v;t) in the
6-dimensional phase space u is described by the Boltzmann equation

df _of _(0f
P 'b—t’—f—[f,ﬂ] = (515-)6“7 (3.1)

where H is the Hamiltonian of the system, self-consistently related to f via
the Poisson equation, the symbol [...,...] denotes the Poisson brackets, and
the term (0f/0t)enc Tepresents the contribution of particle encounters to the
time-variation of f. In general this is an integro-differential equation, which
can be reduced to a differential equation only by making certain assumptions
on the collision processes.

For instance, if in the relevant timescale collisional effects can be neglected
—as in high-temperature plasmas and large stellar systems, where the relax-
ation time largely exceeds the dynamical timescale—we recover the Vlasov
equation of
at+[f,H]-0. (3.2)
It states that f is a conserved quantity along the particle orbit. For steady-
state systems this implies that f is a function of the isolating integrals of
motion alone (Jeans theorem; see, e.g., Chandrasekhar 1960; Lynden-Bell
1962; for some controversial points see Section 2.3).

The collisionless Boltzmann equation should not be confused with the
Liouville equation

o fW)

(s, =0, (3:3)
which instead describes the evolution of the N-particle distribution function
fO)(21,...,&5;v1,...,Vx;t) in the 6N-dimensional phase space I' without

any assumption on the collisional nature of the system.

3.2 Markovian Stochastic Approaches:
The Concept of Dynamical Friction

When the effect of encounters is taken into account, the only way to reduce
the Boltzmann equation to a differential equation, i.e. to make it operate
locally in time, is to require that the system has no memory in the colli-
sion processes (ergodic assumption), so that a test particle suffers random
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displacements in velocity space generated by the fluctuating part of the in-
teraction field in a manner that can be described in terms of a random walk.
This is equivalent to state that the increments of velocities are regarded as
stochastically independent in disjoint time intervals.

In systems whose dynamics is governed by long-range interactions, such
as indeed plasmas and stellar systems, this assumption may not be well jus-
tified because correlations among particles cannot be disregarded a priori.
Collective effects, in fact, always play an important or even dominant role in
these two kinds of system—in the gravitational case even more than in the
electromagnetic case because no Debye shielding length (i.e., no local neu-
trality) exists. We then keep this as a working assumption, bearing in mind
that the resulting evolution equation neglects collisional collective effects. A
different approach which takes them fully into account will be discussed in
Section 3.3.

The standard approach consists in deriving a diffusion process in velocity
space (see, e.g., Chandrasekhar 1943a,b,c,d). The evolution of the distribu-
tion function f(z,wv;t) is then written in the form of a Fokker-Planck-type
equation:

of

5 T H = Vo (g9 f +0fv), (3:4)

where we recall that H is the Hamiltonian related to the smoothed-out dis-
tribution of matter, ¢ = ¢(v) is the diffusion coefficient and 7 = n(v) the
coefficient of dynamical friction appearing in the Langevin equation'. These
two coefficients are related by the condition that a given Maxwellian distri-
bution function fy remains invariant in time, i.e. (8fu/0%)enc = 0, so that 7
turns out to be connected with the reciprocal of the relaxation time of the
system.
More standard forms of the Fokker-Planck equation are the following:

of L0 () 1 8 ((Audwy)
=g () e () oo

(see, e.g., Hénon 1973), where the averages are taken with respect to a
transition-probability distribution of gaussian type; and

af 8 1 8 N

!The Langevin equation represents an attempt to rewrite the equations of motion in
many-particle systems in such a way as to split the contribution of the smoothed-out dis-
tribution of matter from the effect of the fluctuating part of the interaction field (of the
perturbers):

v=a+R-1v, (3.5)
where a is the systematic acceleration produced by the former, R and —nv the stochastic
acceleration and the dynamical friction due to the action of the latter, respectively.
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found in most plasma-physics textbooks, where A; and D;; are referred to as
the dynamical-friction vector and the diffusion tensor, respectively.

Sometimes it is more useful, especially in the case of stellar systems, to
use the action-angle variables as the proper canonical coordinates in virtue
of their physical meaning (the actions correspond to adiabatic invariants).
The orbit-averaged Fokker-Planck equation retains exactly the same form
with the velocity components v; replaced by the actions J;. See Inagaki and
Lynden-Bell (1990) for an interesting discussion concerning the derivation of
approximate solutions of this evolution equation making use of a generalized
variational principle for collisional stellar dynamics.

Now it should be borne in mind that the sample paths of every diffusion
process are continuous (with probability one), so that the random velocity
of the test object varies continuously in the course of time. Because of this
fact, the Fokker-Planck approach seems not to be suitable to describe sys-
tems governed by the electromagnetic or the gravitational interaction, since
a close encounter of a test particle with a field particle is able to produce
a large change of velocity within a small time interval, clearly contradicting
the notion of continuity.

This difficulty arises because the ergodic assumption is indeed more gen-
eral than the choice of a diffusion process. In other words, the phrase
“stochastically independent events in disjoint time intervals” is not equiv-
alent to the property “diffusion”, since there exist infinitely many Markov
processes which share only the first property but not the second (these con-
cepts will be explained in some more detail in the forthcoming discussion).
An oversimplified hierarchical scheme for the stochastic processes discussed
in this section is shown in Figure 3.1.

If the stochastic variations in velocity space can approximately be de-
scribed as a Markov process on the whole, the question arises whether it
is uniquely determined by the properties of the fluctuating part of the in-
teraction field, and whether the jump phenomena mentioned above can be
explained by an analysis of its sample paths alone without employing addi-
tional assumptions. Several attempts have been made to answer this ques-
tion, and more in general to formulate a statistical theory in the framework
of stellar dynamics, but we are still far away from a satisfactory understand-
ing (e.g., Chandrasekhar 1941, 1943a,b,c,d, 1944a,b; Chandrasekhar and von
Neumann 1942, 1943; see also Chandrasekhar 1960 for a review; Camm 1963;
Lee 1968; Tscharnuter 1972).

Bearing this fact in mind, we shall now briefly discuss some basic ideas
which lead to the derivation of another, still not completely satisfactory,
stochastic differential equation for plasmas and stellar systems. Let us first

2This definition is different from that given by Chandrasekhar, apart from the obvious
generalizations inherent in this last equation.
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reformulate more definitely the conditions of a random walk: the total in-
crement of velocity within the time interval (0,t), where ¢ is much larger
than the characteristic time T during which an elementary fluctuation of
the random interaction field takes place, can be written as a sum of a great
number of independent® random variables representing the small (at least on
the average) displacements in velocity space after the small amount of time
T has passed.

Now the crucial point is the determination of the distribution law of this
sum. This problem, however, is solved exhaustively by the so-called ex-
tended central limit theorems of probability theory, which were essentially
established by Lévi and Khintchine in the 1930s. In general, a convergence
to the normal (i.e., gaussian) distribution and hence a diffusion is expected,
but the probability distribution of the random gravitational field is shown
to be asymptotically the Holtsmark distribution, whose characteristic func-
tion (Fourier transform) is h(p) = exp(—al|p|*/?). (However, even this dis-
tribution contains some unphysical features; see, e.g., Chandrasekhar 1941,
1943a, 1960; Feller 1971; Petrovskaya 1986; see Antonuccio-Delogu and Atrio-
Barandela 1990 for the derivation of a modified Holtsmark law describing
stochastic field fluctuations in galaxies and clusters.)

The Holtsmark distribution is a symmetric stable distribution®, and be-
longs therefore to its own domain of attraction. This leads necessarily to a
distribution law for the total increment of velocity within the time interval
(0,) with characteristic function p(w) = exp(—ot|w|*?), where o = aVT.5
¢ is the Fourier transform of the transition function belonging to the Markov
process which is called the stable process with characteristic exponent 3/2.
From general theorems on Markov processes it follows that its sample paths
are right-continuous (i.e., jump phenomena occur). It can also be shown that

3The ergodic property characterizing random walks “no memory of the initial state after
a macroscopically small time interval” or equivalently “stochastically independent events
in disjoint time intervals” is stronger than the Markovian property “future development
dependent only on the present state, and not on the past history of the process or on the
manner in which the present state was reached”.

4Stable distributions play an important role in the theory of stochastic processes as a
natural generalization of the normal distribution. The importance of the normal distribution
N is largely due to the central limit theorem. Let Xi,...,X, be mutually independent
variables with a common distribution F having zero expectation and unit variance, and de-
fine S, = X1+ --+ X,. The central limit theorem states that the distribution of S,n~1/2
tends asymptotically to A’. For distributions without variance similar limit theorems (ex-
tended central limit theorems) can be formulated, but the norming constants must be chosen
differently. The interesting point is that all stable distributions and no others occur as such
limits.

5The use made by Chandrasekhar (1941) of a gaussian distribution is justified by the
fact that the modified Holtsmark distribution, that he derived for avoiding some unphysical
divergences at small distances, has finite variance and hence falls into the cases considered
by the central limit theorem. The corresponding evolution equation is thus of diffusion type.
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the mean number of jumps increases to infinity as their heights converge to
zero, and conversely. This is a very important property because, if one iden-
tifies these jumps as the results of far and close encounters respectively, the
importance of far encounters is emphasized on the one hand, but sponta-
neous large changes in velocity due to close encounters are also possible on
the other hand.

So far dynamical friction acting in a purely systematic manner has been
ignored. Taking it into account, a stochastic equation for the stable Markov
process with characteristic exponent 3/2, analogous to the diffusion equation
derived by Chandrasekhar, can be written down (Tscharnuter 1972):

%{_ F 1, H] = ~(=V2)P(0 f) + V- (nf0), (3.8)

where o appears to play a role similar to the diffusion coefficient ¢ in the
Chandrasekhar diffusion equation. The %—power of the Laplace operator V?
is uniquely defined in the sense of its spectral representation: this elliptic
pseudo-differential operator (see, e.g., Hormander 1976, 1983, 1985; Taylor
1981) acts on a given function f in such a way that the Fourier transform of
(—=V2)3/4f(v) is the function |w[*/?f(w), where f denotes the Fourier trans-
form of f. The correct derivation of this term in the previous evolution
equation is not simple and requires sophisticated functional analysis tech-
niques (semi-group theory).

Since it seems impossible to solve the Tscharnuter stochastic equation in
the whole 6-dimensional phase space analytically as well as numerically, its
investigation relies on the assumption of spatial homogeneity, i.e. [f,H] =0,
which is a quite drastic assumption for stellar systems. Bear in mind, how-
ever, that this assumption is already inherent in the derivation of the Holts-
mark distribution, and is used also to calculate explicitly the coefficients of
diffusion and dynamical friction in the Fokker-Planck equation. In contrast
to the Fokker-Planck equation, it can be shown that a Maxwellian distribu-
tion function fy is not an invariant distribution of the given Markov process,
i.e. (0fu/0t)enc £ 0. This fact causes troubles since the relation between
o and 7 cannot directly be established, and might have important physical
implications.

Now the question arises which of the two Markovian stochastic approaches
described here is more correct from a physical point of view. Both of them,
in fact, seem to give rise to unphysical features: the Fokker-Planck approach
predicts continuous sample paths, whereas the Tscharnuter approach, al-
though it is characterized by right-continuous sample paths (jump phenom-
ena), predicts too high probabilities for high-field values (the Holtsmark dis-
tribution has infinite variance). In other words, they seem to overestimate
the effect of distant and close encounters, respectively.
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The unphysical features present in the two cases are intimately related
and seem unavoidable. In fact, any finite-variance distribution for the in-
teraction field gives rise to a normal distribution for the total increment of
velocity (central limit theorem), which is at the basis of the Fokker-Planck
approach for diffusion processes. Any attempt to regularize the Holtsmark
distribution for avoiding high-field divergences falls therefore into this case.
It is difficult to judge whether these are real unphysical features because, for
instance, the notion of continuity (with probability one) of the sample paths
is not intuitive at all (it implies the existence of a stochastic process with
continuous sample paths equivalent to that physically observed). Apart from
these difficulties, which however should be borne in mind, the Fokker-Planck
equation has widely been used in view of its higher level of predictability.

3.3 General Statistical Approach:
The Concept of Dynamical Friction
Revised

As mentioned in Section 3.2, an unphysical feature inherent in the ergodic as-
sumption, used to reduce the Boltzmann equation to a differential equation,
lies in the fact that this approach does not take collisional collective effects
into account, which cannot be disregarded a priori in systems whose dy-
namics is governed by long-range interactions. A different description which
overcomes this difficulty and is not restricted by the assumption of spatial
homogeneity, inherent in the two previous approaches, will now be discussed.

Statistical correlations among particles arise both from the initial proba-
bility distribution and the dynamics. It seems plausible that in most cases the
disorganized motions of the particles will disrupt groups which were initially
nearby, quickly erasing the original correlations. The resulting correlations
will then be determined by the dynamics and the single-particle distribution
function alone.

In order to obtain a closed theory in which the one-particle distribution
function is the only variable, Gilbert (1968) (see also Gilbert 1972) made
the basic assumption that the probability distributions have evolved from
initially uncorrelated states—although it is possible to imagine also quite
different situations. The strategy he adopted in its theory on collisional col-
lective processes in stellar systems consists in a decoupling of the BBGKY
(Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy® accomplished by a

6The BBGKY hierarchy of equations is obtained by integrating the Liouville equation
over the phase space of all but s particles (1 < s < N — 1). It turns out that the evolution
equation for f(*) involves f(*+1) as well, so that these N — 1 equations are all coupled. The
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perturbation series expansion in powers of 1/N, the inverse of the total num-
ber of stars in the system, with the aid of certain combinations of the distri-
bution functions called the correlation functions g(*) (they represent multi-
particle correlations).

A system of two coupled evolution equations of integro-differential type
for 1) and g is thus obtained, which in principle may simultaneously be
solved. The simplest situation occurs when the system is in equilibrium with
respect to purely collective motions, and the only time-dependence is through
the slow, secular effects of stellar encounters. In that case a kinetic equation
for 1) alone can formally be derived (the corresponding equation of plasma
physics is the Balescu-Lenard equation).

The two coupled evolution equations for ) and ¢(® derived for stellar
systems are similar but not identical to the corresponding plasma equations.
The differences come about because the latter are based upon a perturbation
series expansion in powers of the inverse of the number of electrons contained
in a Debye sphere (see, e.g., Rostoker and Rosenbluth 1960), which is inde-
pendent of the total number of electrons in the system, usually taken as
infinite. On the other hand, the role of the Debye screening length for a
stellar system is played by the linear dimensions of the system itself. The
number of stars in a Debye sphere is thus equal to the total number of stars, -
so that N has a dual meaning.

Another point which should be stressed in this context is the fact that,
while it is reasonable to assume spatial homogeneity in plasmas (not subject
to strong external fields), the same is not true in self-gravitating systems, be-
cause the absence of screening effects makes them naturally inhomogeneous
on large scales. The mathematical counterpart of this different physical fea-
ture is expressed by the fact that an explicit elimination of g® in terms of
) cannot be achieved in the gravitational case, but it is still possible to
construct a formal solution (determining g(* as a functional of f®)) and to
interpret it in terms of the underlying physical processes.

The physical content of this formal solution can more easily be understood
in terms of the auxiliary concept of gravitational polarization (for the plasma
analogue of this effect see, e.g., Balescu 1960). It represents the response of
the system to the gravitational field of a selected star moving in a specified
orbit. In calculating this response one ignores collisional effects entirely and
treats the field of a selected star as a small externally applied perturbation.
The polarization is the change in the single-particle distribution function that
this perturbation induces.

The final result of this analysis is that collisional effects in stellar systems,
i.e. dynamical effects of order 1/N (this ordering holds provided the system
is in equilibrium with respect to purely collective motions), may be divided

closure of the system is given by the Liouville equation itself, as it involves f*) alone.
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into two distinct phenomena:

e The gravitational force exerted on each star by the polarization (wake)
it induces, which may be termed polarization drag (it represents a
more precise formulation of the concept of dynamical friction”, first
introduced by Chandrasekhar 1943b). It is expected to retard the
motion of a test star, the deceleration being directly related to its
velocity. Moreover, since the polarization induced by a given star is
proportional to its mass, we expect heavy stars to be slowed more
effectively than light stars. It may be worth observing also that, since
the characteristic distance over which the gravitational polarization
extends is of the same order as the linear dimensions of the stellar
system, a given star cannot be thought of as being affected only by
stars in its immediate neighbourhood.

o The effect upon each star of the random fluctuating field resulting from
the superposition of the fields of the other stars, each modified by its
own polarization. These stars are to be considered to move in unper-
turbed orbits and not to respond to the influence of the test star under
consideration. It may be termed statistical acceleration. The statis-
tical acceleration acting on a star increases on the average its energy
and, because of the identity between the inertial and the gravitational
mass, affects all stars in the same way. |

A nice description of these two effects can be found in Hénon (1973) as
well. A similar decomposition exists also for the Fokker-Planck collisional
term calculated under the assumptions of spatial homogeneity and binary
encounters. There, however, the polarization term is incompletely calculated
and the statistical term consists of a superposition of “bare” (i.e., not modi-
fied by polarization effects) inter-particle forces.

To stress the contribution of these two effects to the collisional relax-
ation of stellar systems, the resulting kinetic equation for the evolution of

"The important role played by the dynamical friction especially in situations of astro-
physical interest has stimulated many numerical (e.g., White 1976; Keenan 1979; Faulkner
and Coleman 1984; Palmer and Papaloizou 1985; Byrd, Saarinen and Valtonen 1986; Bon-
tekoe and van Albada 1987; Zaritsky and White 1988; Hernquist and Weinberg 1989; Val-
taoja 1990) and analytical works confined to nearly integrable systems (e.g., Binney 1977;
Palmer and Papaloizou 1982, 1985; Mulder 1983; Palmer 1983; Faulkner and Coleman 1984;
Tremaine and Weinberg 1984; Kashlinsky 1986; Weinberg 1986, 1989; Narasimhan and
Ballabh 1988; Bekenstein and Zamir 1990) in addition to those listed in Section 2.2. In
particular, most of them stress the crucial contribution of the resonances where precisely in
an integrable system slightly perturbed irregular orbits first appear. For a more exhaustive
and detailed discussion reference is made to Alladin and Narasimhan (1982), Manorama
(1986), Tremaine (1981).



References 33

the single-particle distribution function can be written in the following form:

of _of 1 _(of 2
B;Jr[f,H] = 52+v-vmf+(1— ﬁ)a-\m‘ = <8t>m+ <3t)5m’ (3.9)

where the factor (1 —1/N) reflects the fact that the test star feels the average
gravitational acceleration due to the other N — 1 stars, and not the total
average gravitational acceleration. The competition between polarization
and statistical effects is expected to lead to a relative concentration of heavier
stars in the central regions of stellar systems and lighter stars in their outer
parts, i.e. an approach to equipartition (see, e.g., Hénon 1973; Lynden-Bell
1973).

The theory sketched here takes thoroughly into account the effects of col-
lective interactions and spatial inhomogeneity which are absent from more
elementary treatments. As a consequence, no long-range divergence appears
as it does in the Fokker-Planck approach (when the coefficients of diffusion
and dynamical friction are evaluated according to the standard treatment;
see, e.g., Braginskii 1965). It is interesting to note that, although the equa-
tions of plasma physics and stellar dynamics are very similar, the mechanism
for the elimination of this divergence is different in the two cases. In plasmas
the repulsive inter-particle force results in Debye-shielding which cuts the
force off, eliminating the divergence. In stellar systems the attractive inter-
stellar force results in anti-shielding or amplification of the bare gravitational
force of a star. This tends to make the divergence worse, and it is only the
limited spatial extent of the system that finally removes it.

There is, however, in the present theory a divergence at small distances,
arising because the perturbation series expansion in powers of 1/N is non-
uniformly convergent. The physics behind this is quite simple, since this
divergence is precisely equivalent to that occurring in elementary Fokker-
Planck treatments, where the impulsive approximation (straight-line orbits)
fails at small impact parameters (see, e.g., Braginskii 1965). The correspond-
ing failure in the Gilbert approach can easily be expressed in terms of f@
and ¢(®). The suppression of this unphysical divergence can be achieved by
retaining all terms in g(*) appearing in the two original exact coupled equa-
tions. Simpler approaches, in which the true inverse-square force is replaced
by an effective fictitious force, can also be used.
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Figure Captions

Figure 3.1. Oversimplified hierarchical scheme for the stochastic processes
discussed in Section 3.2.

Table Captions

Table 3.1. Schematic comparison between the three basic approaches dis-
cussed in this chapter.
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Chapter 4

Collisionless

Relaxation Processes:

The Role of Collective Effects
in Electromagnetic and
Gravitational Plasmas*

4.1 Introduction

In the previous chapters we have often stressed the fact that collective ef-
fects always play a crucial role in systems whose dynamics is governed by
long-range interactions, such as plasmas and stellar systems. Large-scale
organized motions and coherent processes such as self-sustained waves in
isolated systems (e.g., differential rotation and spiral density waves in disc
galaxies) are indeed expressions of the collective nature of such interactions.
From a mathematical point of view, one of the main implications of this lies
in the fact that a local analysis is often no more suitable for describing elec-
tromagnetic and gravitational plasmas, and a global analysis is thus required
(i.e., boundary conditions are to be taken into account).

In the gravitational case a further mathematical complication arises from
the fact that stellar systems are naturally inhomogeneous, because the grav-
itational force is always attractive—there is, in fact, only one gravitational
charge—and screening effects are thus absent. The presence of these large-
scale inhomogeneities generally requires the use of certain asymptotic per-

*The term “gravitational plasmas” is often used to indicate stellar systems in virtue of
the fact that they are in several respects dynamically similar to ordinary (electromagnetic)
plasmas (see, e.g., Bertin 1980; Lin and Bertin 1981).

39



40 CHAPTER 4. COLLISIONLESS RELAXATION PROCESSES

turbation methods, whose validity depends upon the value of some local
parameters characterizing the equilibrium state of the system.

In this chapter we shall restrict only to one particular role played by
collective effects in electromagnetic and gravitational plasmas, namely the
enhancement of relaxation processes by collective effects, a complete dis-
cussion of the general topic being extremely wide (see, e.g., Fridman and
Polyachenko 1984) and not directly related to the argument of the thesis. To
be more specific, we shall analyze collisionless relaxation processes alone (i.e.,
we shall adopt the Vlasov description), since the role of collective interactions
on collisional relaxation processes has already been discussed in Section 3.3.
In the framework of the Gilbert (1968) approach, this corresponds to drop
the assumption that the system is in equilibrium with respect to purely col-
lective motions and to neglect particle correlations at all. Two limits of of the
weakly non-linear theory of plasma waves, which gives the correct framework
for studying such collective relaxation processes, will finally be discussed.

General reference is made to Kulsrud (1972), Padmanabhan (1990), Sag-
deev (1966), and to the books on plasma physics and stellar dynamics listed
in Section 3.1. Other more specific references will be given later on.

4.2 Enhancement of Relaxation Processes
by Collective Effects

It is a well-known fact that in a plasma the rate of relaxation towards the equi-
librium state can be enhanced by collective effects. In virtue of the analogy
between electromagnetic and gravitational plasmas, the question naturally
arises whether a similar enhancement may be observed in stellar systems as
well.

From an observational point of view, the existence of rapid relaxation
mechanisms can be inferred from the fact that galaxies seem well relaxed,
as they exhibit well-developed velocity distributions, and from the consider-
ation that in such systems ordinary two-body collision processes operate-on
timescales largely exceeding even the Hubble time (Zwicky paradox).

An important step to explain this phenomenon was made by Lynden-Bell
(1967), who formulated the theory of collisionless violent relaxation (see also
Section 2.3). This theory, although it has a great heuristic advantage and has
stimulated a lot of interest (e.g., Saslaw 1968, 1969, 1970; Cuperman, Gold-
stein and Lecar 1969; Goldstein, Cuperman and Lecar 1969; Shu 1969, 1978,
1987; Tremaine, Hénon and Lynden-Bell 1986, errata corrige 1987; Dejonghe
1987; Kandrup 1987; Madsen 1987; Tanekusa 1987; Aarseth, Lin and Pa-
paloizou 1988; Mathur 1988; Wiechen, Ziegler and Schindler 1988; Aly 1989;
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Ziegler and Wiechen 1989; Mineau, Feix and Rouet 1990; Stahl, Ziegler and
Wiechen 1990), nevertheless cannot avoid certain difficulties. One of these
lies in the fact that it describes essentially the non-equilibrium phase of evo-
lution (collapse) of stellar systems and not their quasi-equilibrium phase.
Among many further attempts to understand the relaxation of collisionless
stellar systems it is worth mentioning those of Severne and Luwel (1980),
Luciani and Pellat (1987a,b), Kandrup (1988), where the contribution of
fluctuations of the mean self-consistent field to the relaxation process has
been considered (see also Section 4.4).

Before considering the gravitational case in more detail, it is better to
review such phenomena in plasmas, since they have long been studied in
this context. Because of the reasons mentioned in the previous section, the
extension of these results to stellar systems is not straightforward.

Examples of rapid relaxation in plasmas and the corresponding relaxation
times are the following;:

e The confinement of a plasma in a mirror machine: Tcon ~ (n)\g)—ifrbin ~
(1076~10"*)7yin. A similar situation in which no exponential relaxation
occurs is provided by the particles of the van Allen belt trapped (mirror
effect) in the Earth dipole magnetic field.

o The two-stream instability: Teon ~ (Pbeam S )™ Thin-

Note the different orders of magnitude involved in the two cases of binary
and collective relaxation processes. The Debye shielding length ); is defined

as
KT
i/ =% (4.1)
4dmne? wp

where n is the number density of the relevant particles contributing to the
relaxation (ions in the first example, electrons in the second example), wy
their plasma frequency and vy, their one-dimensional thermal velocity.

These examples are only two of the possible cases in which enhancement
of relaxation can occur in a plasma, but in some sense they are typical and
the following comments about them are relevant:

Ap

I

e These instabilities are in some sense weak. Strong instabilities tend
to destroy the equilibrium. These weak instabilities work instead on a
smaller scale, leading to a rapid relaxation towards a situation in which
the equilibrium is no more unstable.

o These instabilities can occur in a time-dependent situation, in which
case they usually lead to a relaxation at a rate comparable to the growth
rate of the instability, or in a steady state, in which case they lead to
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a m‘arginally stable equilibrium with a relaxation rate in balance with
whatever external forces tend to disturb it.

e The process of growth of the waves and relaxation towards the equi-
librium are intimately related. They can generally be interpreted as
a maser in which the unstable equilibrium corresponds to an over-
population of the emitting states for the wave. The induced emission
process is then the scattering process, as well as the process which
makes the wave grow.

o The wave scattering is a collective process in which the particles collide
with bunches of particles.

It turns out that these phenomena can no longer be described in the
framework of a linear theory of plasma waves. There are two limits in which
the weakly non-linear theory is tractable.

In the first case, where there are only a few waves of finite amplitudes, it
is possible to treat each wave individually. This is called the theory of weak
coherent waves.

The second case concerns the situation in which so many waves are present
that a statistical approach can be employed to find those features of the
time-evolution of the plasma state which do not depend on the details of the
initial phase of the waves (random-phase approximation; see, e.g., Pines and
Schrieffer 1962). Other approaches resembling the van der Pol method used
in non-linear mechanics (see, e.g., Starzhinskii 1980; Sanders and Verhulst
1985) can also be employed. This is called the theory of weak turbulence, in
which three basic interactions are taken into account:

e The wave-particle interaction (quasi-linear effect), studied in the frame-
work of the quasi-linear theory, which is particularly strong near the
resonance w = k - v when no external magnetic field is applied.

o The non-linear wave-wave interaction (second-order effect), also known
as the resonant-mode coupling, characterized by the resonance condi-
tion w1 +(.U2 -|-L:J3 = 0, kl +k2+k3 = 0.2

1The wave-particle resonance condition in the absence of an external magnetic field is
expressed by the requirement that the velocity component of the particle along the direction
of propagation of the wave should be equal to its phase velocity (see the formula given in
the text). In the more general case in which an external magnetic field is also present two
resonance conditions are possible: the Cherenkov resonance condition w — lw. = kyvy, and
the cyclotron resonance condition w — lwe = kyvy, (I € Z) where reference is made to the
direction of the magnetic field and w, is the corresponding cyclotron frequency.

?The wave-wave resonance condition when more than three waves are involved in the
scattering process (higher-order effects) is i, w; =0, > ;_, ki =0 (1% > 3).
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o The wave-particle-wave interaction (third-order effect), also known as
the non-linear wave-particle interaction, characterized by the resonance
condition Wi + Wo = (kl + kz) - V.

Both theories proceed essentially out of an iteration of the Vlasov equa-
tion, and fail when the amplitudes become so large that either the pertur-
bation theory fails to converge, or the particle orbits become so distorted by
the wave fields that the equilibrium distribution function can no longer be
used to calculate accurately the linear wave properties of the plasma. The
most usual example of such a distortion of orbits occurs when the particles
become trapped in the troughs of plasma waves.

4.3 The Quasi-Linear Theory
of Plasma Waves

The quantitative theory which describes rapid relaxation processes of the
kind discussed in Section 4.2 is the quasi-linear theory, first proposed by Ve-
denov, Velikhov and Sagdeev (1961, 1962), Romanov and Filippov (1961),
Drummond and Pines (1962). For general reference and different formula-
tions see, in addition to the references cited in Section 4.1, also Akhiezer et al.
(1975), Biskamp (1973), Bychenkov, Silin and Uryupin (1988), Coppi, Rosen-
bluth and Sudan (1969), Dewar (1970), Drummond (1965), Drummond and
Pines (1964), Drummond and Ross (1973), Frieman and Rutherford (1964),
Frieman, Bodner and Rutherford (1963), Galeev and Sagdeev (1979, 1983),
Goldman (1984), Kadomtsev (1965), Krall and Trivelpiece (1973), Lifshitz
and Pitaevskii (1981), Pines and Schrieffer (1962), Rosenbluth, Coppi and
Sudan (1969), Sagdeev and Galeev (1969), Schmidt (1979), Sitenko (1982),
Tsytovich (1970, 1972, 1989), Vedenov (1967), Vedenov and Ryutov (1975),
Whitham (1965), Yasseen and Vaclavik (1983).

We shall now sketch out the basic ideas underlying this theory. When
studying small (linear) oscillations in a plasma the distribution function is
taken to be split into two terms: a non-oscillating part (the initial distribu-
tion function) and a small correction to it which oscillates with the frequency
of the plasma waves. The non-oscillating part is then assumed not to be con-
nected at all with the oscillations. Actually, however, either the damping or
the growth of plasma waves affects the unperturbed distribution function,
and this in turn generally alters the stability properties of the plasma. This
effect increases with increasing amplitude of the oscillations. When the am-
plitude of the oscillations increases, the basic property of linear oscillations,
i.e. the independence of the propagation of oscillations with different wave-
vector and frequency (superposition principle), tends also to be violated since
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processes involving the interactions between different waves begin to play an
ever more important role.

The simplest among the non-linear processes which cannot be treated
without taking into account the effect of plasma oscillations on the non-
oscillating part of the distribution function, while the violation of the super-
position principle is still neglected, is indeed the quasi-linear relaxation. In
this process only the distribution of the resonant particles, whose number is
assumed to be much smaller than the total number of particles (i.e., only
sharp wave packets in k-space are considered), is affected in a non-negligible
manner by these weakly non-linear waves (quasi-linear diffusion). Such par-
ticles, in fact, are involved in strong interactions with the plasma oscillations,
which lead to damping (Landau damping) or amplification (inverse Landau
damping) phenomena depending on the monotonicity properties of their ve-
locity distribution. The non-resonant particles do not exchange energy with
the waves on the average, so that their distribution is almost insensitive to
the effect of the oscillations (adiabatic quasi-linear diffusion).

Having stressed the main ideas which are at the basis of the quasi-linear
theory, we now turn to discuss their implications in some more detail also
from a quantitative point of view. As mentioned at the beginning of this sec-
tion, different (almost equivalent) formulations can be given. In what follows
we shall try to extract the common essential features of these approaches,
avoiding any particular reference to specific physical situations.

Taking into account the fact that two considerably different timescales are
involved, one governing the relaxation towards the equilibrium state and the
other associated with the plasma oscillations, we separate the distribution
function into a slowly varying part f, and a rapidly varying part f;:

dln fo < Oln fi
ot ot

The distribution function f is then taken to satisfy the system of the (cou-
pled) Vlasov and Maxwell equations (self-consistent description). By sin-
gling out the two contributions and performing a Fourier expansion of the
perturbations, it can be shown that under the basic assumptions discussed
previously (quasi-linear approximation) the time-evolution of f, is described
by the quasi-linear diffusion equation

o 10 (L 0%
ot~ 20w, <D i ij) ! (43)

where the diffusion tensor D;; = D;;(v,t) is of second order in the pertur-
bations, being a linear functional of the energy density of the waves in the
turbulent plasma.?® It is the main task of the quasi-linear theory to express

(4.2)

f(@;v;t) = fo(m,v;t) + fi(=, v;1),

3Bear in mind that to zeroth order of expansion fj satisfies the stationary Vlasov equation

[fo, Ho] = 0.
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it in terms of the wave spectrum.

This evolution equation has exactly the same form as the Fokker-Planck
equation with dynamical-friction vector 4; = 3(9D;;/0v;). It should be
noted, however, that the quadratic form Djjv;v; is not necessarily positive
definite (for non-resonant particles) as in the case of collisional relaxation
processes, and this stresses the fact that in collisionless relaxation processes
stochastic deceleration mechanisms can take place, leading to a “reversed
diffusion” in velocity space. Processes in which particles are scattered by
plasma waves (wave-particle interaction®) are thus formally similar, but not
identical, to ordinary particle-particle scattering processes. The derivation
of an analogous “diffusion” equation in a more general context starting from
the system of the Vlasov and Poisson equations can be found in Wollman
(1985), together with an extremely interesting discussion of some conceptual
difficulties inherent in such a description (see Antonuccio-Delogu 1990 for an
interesting application of this formalism to the angular-momentum transfer
through non-axisymmetric gravitational instabilities between the halo and
disc components of spiral galaxies).

From a quantum-mechanical point of view, the resonance condition for
this interaction expresses the conservation of energy and momentum in the
elementary process involving the emission or the absorption of a plasmon
with energy Aw and momentum /k by a particle moving with velocity wv.
Thus it is not surprising that the wave-particle interaction conserves the to-
tal energy and momentum of the waves and particles, rather than the energy
and momentum of the waves alone.

The number of plasmons tends to be conserved and satisfies a continuity
equation with a source term in the (z,k) phase space:

el + [Ny,wi] = 27k N, where Ni= é, (4.4)

ot W
valid for inhomogeneous equilibrium states, provided the wavelengths are
sufficiently short and the frequencies sufficiently large. N is the plasmon
density (wave-action density) in phase space, & the energy density of the
waves in phase space, wy and 7 their frequency and growth (or damping)
rate, respectively. These two quantities are related to the wave-vector k
and to the quasi-equilibrium distribution function fy by the same dispersion
relation holding in the linear regime:

D(w,v; k5 fo) =0. (4.5)

The quasi-linear diffusion equation for fo, the continuity equation for the
number of plasmons, and the dispersion relation for w and 7 represent the
complete set of equations of the quasi-linear theory.

4Gince this interaction involves resonant particles, it cannot be considered within the
framework of an equivalent fluid theory.
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In the forthcoming discussion we shall assume that no external magnetic
field is applied. In the more general case in which an external magnetic field
is present the results presented below are still roughly valid, even though a
more detailed description is required.

Particle diffusion resulting from the scattering by plasma waves leads to
the establishment of an asymptotic stationary state, which is characterized
by a fixed distribution of resonant particles and some definite spectral level.
More precisely, either the oscillations are damped or a plateau is formed
on the distribution function (i.e., fo is constant in the resonance interval
A(wy/k) along the direction of wave propagation). It may be worth noting
that if the phase-space volume occupied by resonant particles is rather large,
the formation of a plateau in that volume becomes impossible as it would
require too much energy. In that case either the oscillations are damped,
or the spectrum becomes one-dimensional while along the direction of wave
propagation a plateau is formed on the distribution function.

As a consequence of the quasi-linear relaxation process in which an initial
overstability® is finally saturated (i.e., 7(t) — 0 as t — +o0) and a plateau
is formed on the distribution function the non-resonant particles of the sys-
tem undergo an effective collisionless stochastic heating, which is called the
turbulent heating, whereas the resonant particles are cooled down. When
an initial overstability is instead finally damped (i.e., y(t) < 0 as t — +00)
or in the case of transient waves (i.e., 7(¢) < 0) the situation turns out to
be reversed. Part of the ordered motion associated with the waves is thus
converted into random motion of the particles. This is just an example of
anomalous transport phenomena occurring in a plasma which, as a conse-
quence of an overstability, passes from a laminar to a turbulent state.

Other weaker heating processes due to wave-particle interactions can be
described in the framework of the more general weakly non-linear theory.
Such non-linear wave-particle interactions are responsible for the damping
and amplification phenomena occurring in the waves which lead to these
heating processes, and are thus referred to as the non-linear Landau damp-
ing and the non-linear inverse Landau damping, respectively.

We shall now inquire into the validity of the quasi-linear theory, by ex-
plaining in what physical situations it becomes inapplicable. To the order
in the amplitude of the waves to which the quasi-linear theory is valid no
interaction between the waves themselves occurs, but the second-order effect
of the interaction between waves and particles is included. As one considers

®Given a perturbation whose time-dependence is of the form f; ~ et with we =
w + 1v, the following terminology is used:

e Instability: v > 0, w = 0.

e Overstability: v > 0, w # 0.
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the situation in which the amplitude is larger, it is expected that even this
interaction is not well represented by the theory. Since the theory basically
assumes the orbits of the particles to be modified by small amounts from
their unperturbed orbits, it can be guessed that a limit on the theory will
occur when the amplitude of the waves is large enough to trap the particles.
Therefore, if the bounce period of a particle trapped in a wave is shorter
than the time this particle spends in the wave packet, it could reasonably be
expected the theory to be inaccurate.

So far we have considered the situation in which so many waves of finite
amplitudes are present that a statistical approach can be employed to for-
mulate a quasi-linear theory of plasma waves. However, in some important
physical situations only a few waves are involved, so that a different treat-
ment is required (theory of weak coherent waves). Using the Drummond
and Pines (1962) approach, which is not based on statistical assumptions,
it can be shown that the time-evolution of the slowly varying distribution
function fo, is indeed described by a quasi-linear diffusion equation exactly
of the same form as that derived in the case of many waves (to which this
approach refers). The same result can be obtained in the framework of other
quasi-linear approaches which are not based on the random-phase approx-
imation. In this context (wave-particle interaction) only the calculation of
the diffusion tensor cannot be carried out along the same line (an integration
over the wave-vector k space is replaced by a finite sum over k;).

Because of this fact, bearing in mind that we are interested in the wave-
particle interaction alone, we shall extend the meaning of the term “quasi-
linear theory” to include also the case in which a few waves are considered.

4.4 Attempts to Achieve
" a Satisfactory Formulation
of a Quasi-Linear Theory
in the Gravitational Case

This section is mostly devoted to explain the main difficulties which are to be
tackled, from a general point of view, for extending the quasi-linear theory
to stellar systems as well, and to mention the suggestions of various authors
to achieve a satisfactory formulation of such a theory, which is not available
yet. My own contribution and proposals in the particular framework of the
spiral structure theory will be stressed in the second part of this thesis, as
they are intended to be a contribution to the understanding of the secular
heating of galactic discs.
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In plasma physics one usually deals with systems many orders of magni-
tude larger than the scale of the waves contributing to collective processes,
namely the Debye shielding length. This makes the analysis comparatively
simple, since the standard Fourier expansion technique can be used. Stated
in another way, in plasmas the requirement of performing a global mode
analysis can often be bypassed because the assumption of spatial homogene-
ity is reasonably satisfied in many cases of physical interest, so that a local
analysis can suitably be used.

Unfortunately this is not the case for self-gravitating systems, whose size
is not so drastically different from the wavelength scale. This makes it neces-
sary to treat the waves as eigenmodes of the system. There is, however, even
in the case of stellar systems a cunning trick for eliminating, from a formal
point of view, the “unpleasant” effect of large-scale inhomogeneities. It sim-
ply consists in using the action-angle variables {(J;,w;); 7,7 = 1,2,3} as the
proper canonical coordinates. In this representation, in fact, the equilibrium
quantities of integrable systems turn out to depend only on J;, which in this
context (and also in a more general context; cf. the Hamilton equations) play
thus the role of the velocity components v; (see, e.g., Kalnajs 1971; Galgani
1985). Taking into account the physical meaning of these variables (the ac-
tions J; correspond to adiabatic invariants) and the “strengthened” Jeans
theorem, it can be shown that even in quasi-equilibrium situations a similar
result holds apart from the fact that in this case an explicit dependence on
time is allowed (see, e.g., Binney and Lacey 1988). In particular, this is true
for the slowly varying part of the distribution function fo = fo(J;i,t) and for
the self-consistent Hamiltonian Hy = Ho(J;,t), so that [fo, Ho] = 0.

The most direct physical implication of the dependence of f, and Hy on
the actions alone consists in the possibility of adopting the standard Fourier
representation® in the angle space for the perturbations. While on the one
hand there is the advantage of using this local treatment avoiding the difficul-
ties connected with the solution of a global-mode equation, on the other hand
this canonical representation has the drawback of not being simply related
to directly observable quantities as indeed @ and v. It is just for this reason
that basically important theories of stellar systems, such as for instance the
spiral structure theory, are expressed in terms of the usual canonical coor-
dinates (z,v): the formal elegance and the compactness deriving from the
use of the action-angle variables are indeed sacrificed in favour of a higher
level of predictability and a simpler interpretation in terms of observable
phenomena.

Because of the above-mentioned difficulties, only local formulations of

5By “standard Fourier expansion” we mean that the perturbation can be expressed as a
series of wave components of the form f;, = fe?*®. If the system is inhomogeneous along
the z-direction, the previous expression is to be replaced by the more general dependence

fi = frlx) exp [i [“k(z') de'].
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the quasi-linear theory for gravitational plasmas have been given so far, and
mostly in the framework of the spiral structure theory (e.g., Marochnik and
Suchkov 1969; see also Marochnik 1970; Dekker 1976, who extended the
work of Lynden-Bell and Kalnajs 1972; see also Contopoulos 1974). These
works, however, neither have shed new light on the problem of spiral structure
—apart from some local results which can easily be extrapolated from the
plasma analogue of spiral waves (i.e., the Bernstein waves)—nor have tried
to incorporate the fundamental role played by excitation mechanisms at the
corotation resonance shown in global linear treatments (for a more exhaus-
tive discussion see Section 6.3 of Part II). In the framework of the theory
of weak turbulence the non-linear effects of resonant spiral waves have also
been investigated (e.g., Contopoulos 1972; Churilov and Shukhman 1981,
1982; Tagger et al. 1987; Sygnet et al. 1988).

A local formulation of considerably different type related to the theory
of violent relaxation (Lynden-Bell 1967) has been proposed by Severne and
Luwel (1980) along a line similar to that followed by Kadomtsev and Pogutse
(1970) in the context of weak homogeneous plasma turbulence. Other inter-
esting treatments linking the collisionless and the collisional viewpoints into
a unified description have been developed by Luciani and Pellat (1987a,b)
and Kandrup (1988) in analogy with the approaches adopted by Klimon-
tovich (1967) and Thompson (1964), respectively, in the context of plasma
fluctuations.

Extremely interesting discussions of related subjects can be found in
Saslaw (1985).
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Chapter 5

Heating Mechanisms
in Galactic Discs

5.1 Introduction

In Section 1.2 we have seen that the components of the velocity dispersion of
disc stars in a solar neighbourhood show a tendency to increase with increas-
ing spectral type, and this has been interpreted in terms of a corresponding
increase of the components of the stellar velocity dispersion with age. Be-
cause of the observational difficulties connected with the determination of
the stellar velocity dispersion, we do not know yet for certain whether such
a systematic behaviour is restricted only to a small solar neighbourhood or
instead is a general feature of galactic discs.! We shall see, however, that
from a theoretical point of view there is no problem to account for the same
phenomenon on larger scales or even in other similar stellar systems, pro-
vided the sun is not thought of as belonging to a privileged region of the
Galaxy.

Two classes of explanations have been invoked. The most diffused and
currently accepted of them is based on the existence of relaxation mecha-
nisms leading to a secular heating of galactic discs. The other regards the
observed velocity dispersions as native properties.

In this chapter we shall review the relaxation mechanisms which are
thought to contribute more effectively to the increase of the components
of the stellar velocity dispersion with age. Other less important relaxation
mechanisms will be mentioned for the sake of completeness in the forthcom-
ing discussion. We shall also describe in less detail the basic ideas underlying

1Recall that the spheroidal component has a different cosmological origin than the disc
component, so that the same age-velocity dispersion relation is not expected to hold.
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the second class of explanations.

The velocity dispersion of disc stars can be affected by the following
mechanisms? (see Fuchs and Wielen 1987; Wielen and Fuchs 1985; see also:
Binney and Tremaine 1987; Mihalas and Binney 1981):

o The stochastic heating (random increase of the stellar velocity disper-
sion) caused by local irregularities in the galactic gravitational field
due to the existence of massive perturbers, as giant molecular clouds
(GMCs) and hypothetical massive halo objects, or by large-scale phe-
nomena as transient spiral waves®. Ordinary binary encounters between
stars, in fact, are known to be completely inefficient (see Section 2.2).

o The deflections (random changes in the direction of the stellar velocity)
caused by the same phenomena responsible for the stochastic heating.
Their overall importance lies in the fact that they can transfer energy
(and energy changes) between the motions of a star perpendicular and
parallel to the galactic plane, so that deflections may be of primary
importance to determine the axial ratios of the velocity ellipsoid even
though the heating effect of the same irregularities is nearly negligible.
This fact occurs when the velocity dispersion of the massive perturbers
is much smaller than that of the test stars. In this case, in fact, the
relaxation time for deflections Tyinp turns out to be much smaller than
the relaxation time for equipartition of energy mhins (see Chandrasekhar

1960; see also Woltjer 1967).

e The adiabatic heating or cooling (adiabatic changes in the stellar ve-
locity dispersion) produced by slow changes in the regular gravitational
field of galactic discs. Its effect is probably stronger perpendicularly
to the galactic plane, because the disc is nearly self-gravitating in this
direction. Two typical examples of adiabatic changes in galactic discs
are the adiabatic cooling due to stochastic heating and the adiabatic
heating due to infall of gas from haloes.

While the adiabatic heating and cooling discussed above primarily affect the
perpendicular motion of stars, deflections can partially transfer this energy
change to their parallel motions.

Only the first two relaxation mechanisms will be considered in this chap-
ter, the third one acting on much longer timescales.

2Recall that the restriction to nearly integrable situations is assumed. For strong depar-
tures from the integrability condition other relaxation mechanisms become operative due to
the effects of Lyapunov instability (see Section 2.3).

3Transient spiral waves are not self-sustained. In the second part of this thesis we shall
propose the interaction of disc stars with self-sustained spiral waves as the dominant heating
mechanism in galactic discs.
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5.2 The Role of Massive Perturbers

5.2.1 Giant Molecular Clouds and Complexes

The importance that massive perturbers might have in the dynamical evo-
lution of disc stars has first been stressed by Spitzer and Schwarzschild
(1951, 1953), who hypothesized the existence of low-velocity dispersion (cg ~
10 km s™!) massive (M, ~ 10°-10° M) gas clouds and complexes to account
for the observed velocity dispersion of stars of different spectral class.

In the first paper they performed a numerical integration of the Fokker-
Planck equation, taking the low gas velocity dispersion into account but
disregarding the effects of galactic rotation and the vertical motion of stars.
They noted that the so-obtained age-dependence of the stellar velocity dis-
persion, c(f) & cg(1 4 1)*/® with time expressed in dimensionless units, could
more simply be derived assuming that the stellar distribution function re-
mains Maxwellian at all times (a Maxwellian distribution function was taken
as the initial condition).

Taking this fact into account, in the second paper they performed ana-
lytical calculations of the kind used for studying the secular effects of binary
encounters (see Chandrasekhar 1960; see also Hénon 1973), considering the
epicyclic motion of stars in the galactic plane but still disregarding their ver-
tical motion and also the low turbulent velocities of the interstellar clouds.
They obtained a different power-law for the evolution of the stellar velocity
dispersion: ¢(f) ~ co(1 +1)!/2, where the same notations as before have been
used.

The existence of giant molecular clouds and complexes has definitely been
shown in the 1970s. Since then a lot of observational and theoretical works
have been devoted to investigate their physical and kinematical properties,
as well as to study their role in the context of galactic disc stability and
evolution (for a more detailed discussion see Section 7.1 of Part II and refer-
ences cited therein). It is quite surprising that the mass of GMCs has been
estimated to be of the same order as that theoretically predicted by Spitzer
and Schwarzschild (1951, 1953), even though their turbulent velocities are
thought to be smaller (~ 4-8 kms™). '

As regards the problem of the stochastic heating of galactic discs, in which
we are mostly interested, the contribution of Lacey (1984a) (see also Lacey
1984b, 1985) deserves particular attention, and thus will be discussed in
detail. It can be considered a generalization of the Spitzer and Schwarzschild
(1953) work, since it relies on the same assumptions and employs similar
methods but takes the vertical motion of stars into account. This extension
is expected to be important both because of the intrinsic interest in predicting
the evolution of the vertical velocity dispersion of disc stars, and because their
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vertical epicyclic oscillations can take stars out of the layer of perturbing
GMCs so as to reduce the scattering rate.

The assumptions made by Lacey (1984a) are those commonly used to
treat star-GMC encounters in such a degree of approximation as to make
analytical calculations not particularly stiff, but at the same time to give a
correct physical description retaining the essential features of the relaxation
mechanism. They are the following:

1. The orbits of disc stars in the background galactic potential (assumed
to be axi-symmetric and plane-symmetric) are described by the first-
order epicyclic theory.

2. GMCs are long-lived, much more massive than disc stars and move in

circular orbits.

3. GMC s are randomly distributed and act independently. Thus the pos-
sibility of the GMC distribution being organized on a large scale (i.e.,
into spiral arms) is neglected.

4. For a typical star-GMC encounter the effective interaction time is short
compared to the epicyclic period, and the velocity difference between
the Local Standard of Rest (LSR) at the star and at the GMC positions
is negligible with respect to the peculiar velocity of the star.

5. The change of the stellar peculiar velocity is dominated by the effect
of many distant weak encounters.

The first, the second and the fifth assumption are reasonably satisfied, where-
as the third and the fourth assumption may be criticized, the former being
the most drastic one. These working assumptions, however, allow us to make
use of standard methods for deriving the diffusion and the dynamical-friction
coefficients in binary-encounter processes (see Chandrasekhar 1960; see also
Hénon 1973).

The evolution of the stellar velocity dispersion can be divided into two
phases:

e A transient relaxation in which the shape of the velocity ellipsoid re-
laxes to a final steady state with ¢, : cg : ¢, = 1 : (k/29Q) : (c:/¢r)s,
Q = Q(r) and & = x(r) being the angular velocity and the epicyclic
frequency, respectively.* The existence of this phase depends on the
non-vanishing of the dynamical-friction coefficient.

4Note that collisionless phase-mixing mechanisms (Lynden-Bell 1962; see also Freeman
1975) act on comparable timescales (see, e.g., Berry 1973; Byl and Ovenden 1973), and are
thus competitive with respect to GMC-induced collisional phase-mixing mechanisms.
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o A steady heating (absent for a solid-body rotation curve) in which
the velocity dispersion increases steadily on a longer timescale, while
its components maintain constant ratios depending only on the local
value of £/2Q: ¢(f) = co(1 + ©)*/*. It is worth noting that the Spitzer
and Schwarzschild (1953) i-power-law is recovered in the unphysical
limit in which the scale-height of disc stars is much smaller than the

scale-height of GMUs.

The apparent discrepancy between these theoretical predictions and ob-
servational results (up to the year of publication of this paper) seemed to
rule GMUs out of the role of most promising heating mechanism in galac-
tic discs. It should be borne in mind, however, as stressed in Section 1.2
and less explicitly pointed out by Lacey (1984a), that observations do not
put yet any stringent constraint on the age-dependence of the components
of the stellar velocity dispersion and on the shape of the velocity ellipsoid
because strong selection and contamination effects, inherent in the choice of
otherwise claimed to be reliable samples, tend to bias such samples in a not
simply estimable manner. A proof of this lies in the fact that even some
recent observational surveys are mutually inconsistent.

The contribution of GMCs to the stochastic heating of galactic discs has
been investigated also by several other authors both analytically (e.g., Fu-
jimoto 1980: -12—; Kamahori and Fujimoto 1986a: -13- for vanishing dynamical
friction, otherwise saturation; Semenzato 19387: —13;; Binney and Lacey 1988:
%, and ; in the limiting case of infinitesimally thin discs) and numerically
(e.g., Icke 1982: %—%; Villumsen 1983, 1985a,b: %—%; Kamahori and Fujimoto
1987: 3). Differences in the results can be ascribed to the different ap-
proaches and approximations employed in the various cases. However, they
all predict observationally consistent power-laws for the age-dependence of
the stellar velocity dispersion (as indicated at the side of each reference) ex-
cept Kamahori and Fujimoto (1986a), where the observed saturation of its
components is clearly due to a wrong treatment of the dynamical friction in

the framework of the Langevin approach.

5.2.2 Hypothetical Massive Halo Objects

Stimulated by the ever more growing interest in the problem of dark matter in
the universe, a number of authors have recently speculated upon the existence
of massive (~ 10° Mg) halo objects, as massive black holes and dark clusters,
as possible candidates for the heating mechanism invoked in galactic discs
(e.g., Lacey 1984b; Lacey and Ostriker 1985; Ipser and Semenzato 1985; see
also Ipser and Semenzato 1983; Kamahori and Fujimoto 1986b, 1987; Carr
and Lacey 1987).
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Dark clusters produce similar heating effects as massive black holes, but
have the advantage of circumventing some of the problems inherent in the
black-hole model. In particular, the dynamical friction is prevented from
building up too much mass at the galactic centre if the clusters are distupted
by mutual collisions or tidal effects before the dynamical friction can become
operative, and the problem that these halo objects may generate too much
luminosity through accretion is avoided.

The methods employed in this case are substantially the same as those
used in the case of GMCs. The calculations are anyway more complicated
because the velocity dispersion of these hypothetical halo objects cannot of
course be neglected as well as their vertical distribution. For suitable values
of some free parameters the results are in agreement with observations, but
the large number of these free parameters makes indeed the theory not highly
predictive. '

5.3 The Role of Transient Spiral Waves

A different point of view was introduced by Barbanis and Woltjer (1967), who
stressed the importance that large-scale phenomena as spiral waves® might
have in the secular evolution of the components of the stellar velocity disper-
sion parallel to the galactic disc. A heuristic argument was also presented
to show that the same heating mechanism might account for the increase of
the vertical component of the velocity dispersion with age as well.® Their
analysis does not make reference to any specific formulation of the spiral
structure theory. They only investigated, in fact, the effect of an imposed
spiral potential of a particular form on the epicyclic motion of disc stars. In
this sense the spiral waves they considered are not self-sustained.

Their suggestion that recurrent transient spiral waves might naturally
heat galactic discs, even though no explicit time-dependence was derived,
lies at the basis of further analytical (e.g., Byl 1974; Carlberg 1984, 1987;
Carlberg and Sellwood 1985; Binney and Lacey 1988) and numerical investi-
gations (e.g., Carlberg and Sellwood 1983; Sellwood and Carlberg 1984; see
also Renz 1985; Carlberg and Freedman 1985; Sellwood and Lin 1989)." In
addition, the combined effect of spiral waves and GMCs has been studied
by Carlberg (1987) and Jenkins and Binney (1990) employing Monte Carlo
simulations for integrating the orbits and the orbit-averaged Fokker-Planck

SSmall-scale irregular spiral features can be induced as a wake by massive perturbers in
the galactic plane (Julian and Toomre 1966; see also: Thorne 1968; Saslaw 1985), and thus
their influence on the secular evolution of the stellar velocity dispersion can be studied in
that context by taking collective effects into account (Julian 1967).

6The suspicion that spiral-arm formation might be the dominant relaxation mechanism

in galactic discs had already been expressed by Goldreich and Lynden-Bell (1965).
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equation, respectively; and by Yasutomi and Fujimoto (1989) employing nu-
merical simulations.

In this context it should be noted that the restriction to transient non-
self-sustained spiral waves, while on the one hand it avoids the theoretical
difficulties arising from the consideration of the Poisson equation and from all
its physical implications (i.e., excitation mechanisms in self-sustained spiral
waves, etc.), on the other hand at the same time lowers the level of pre-
dictability of the theory—which is, in fact, less constrained. Moreover, recall
that some of the above-mentioned 2-dimensional numerical simulations might
be biased by spurious collisional relaxation (see Section 2.2 and specifically

White 1988; Schroeder and Comins 1990).

The theoretical framework of these recent investigations (except the con-
fused attempt made by Byl 1974) is a simplified formulation of the quasi-
linear theory in the action-angle canonical representation. The simplifica-
tion corresponds indeed not to care about the self-consistency of the theory
(hence, only the quasi-linear diffusion equation is considered), which instead
is expected to have a crucial role (see Section 6.3 of Part II). Only spiral
waves varying on a timescale comparable to the basic periods of oscillation in
the disc are considered, because otherwise counter-reacting relaxation mech-
anisms would take adiabatically the system back to its initial unperturbed
state without any appreciable dynamical effect.

If transient spiral waves of a particularly simple form recur at a con-
stant rate in time, then the increase of the planar velocity dispersion with
age for a coeval population of disc stars follows a %-power—law. However, as
the velocity dispersion becomes as large as to make the size of the epicycles
comparable to the wavelength of the spiral wave, the horizontal-heating rate
follows a %~power-1aw.

On the other hand, the vertical heating associated with such transient
spiral waves turns out to be completely inefficient, because their typical pat-
tern speed is much smaller than the natural frequency of vertical oscillation
so that only adiabatic effects are produced. Carlberg (1984) suggested that
a way of overcoming this difficulty in the context of a similar scenario is to
invoke the existence of bending waves, whose observational counterparts are
the well-known warps in spiral galaxies. A more sceptic point of view has

been expressed by Carlberg (1987).

5.4 More General Approaches

Since the basic physical mechanism responsible for the heating of galactic
discs is not well-known at present, a phenomenological description of the
heating process by the theory of orbital diffusion seems to be rather ade-
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quate. This line was first pursued by Wielen (1977), Wielen and Fuchs (1983,
1985), Fuchs and Wielen (1987). More precisely, in this approach the heating
of galactic discs is basically described by a diffusion process in velocity space,
in which the dynamical friction is not taken into account and the diffusion
coefficient is empirically determined from the observed age-dependence of
the components of the velocity dispersion of nearby stars. The advantage of
such an empirical procedure lies in the fact that it avoids as far as possible
uncertain assumptions on the basic physical source of the irregular part of
the galactic gravitational field, apart from those inherent in the choice of a
diffusion process among all the possible stochastic processes.

Wielen (1977) showed that a constant (i.e., time- and velocity-independ-
ent) diffusion coefficient, despite its extremely simple form, can explain fairly
well both the age-dependence of the components of the stellar velocity disper-
sion (a = 3-power-law is obtained) and the axial ratios of the velocity ellipsoid.
It turns out also that for a constant diffusion coefficient the Fokker-Planck
equation admits self-similar solutions of Schwarzschild type (i.e., gaussian
distribution functions with an anisotropic time-dependent velocity disper-
sion), provided the radial gradient of the (axi-symmetric) distribution func-
tion is neglected with respect to its vertical variation and the epicyclic ap-
proximation is used (Wielen and Fuchs 1983; cf. Renz 1985). This result
is extremely important in view of the relevance that the Schwarzschild dis-
tribution function has on observational grounds. Although it is appealing
due to its simplicity, a constant diffusion coefficient is not the only physi-
cally relevant one. Other more physically meaningful choices of isotropic (in
velocity space) time-dependent diffusion coeflicients can satisfactorily mimic
the observed behaviour of the components of the stellar velocity dispersion
as well (Wielen 1977; Fuchs and Wielen 1987).

A more detailed analysis (Wielen and Fuchs 1985) suggests that the
stochastic heating is the main relaxation process in galactic discs, while other
processes as the adiabatic cooling and the infall of gas from haloes are only
of secondary importance from a dynamical point of view.

A similar approach has recently been undertaken by Binney and Lacey
(1988), who transposed some of the Wielen results in the action-angle canon-
ical representation, more elegant from a formal point of view but also less
predictive when it is applied to real physical situations (see Section 4.4). As
particular cases of heating mechanisms they considered the effects of GMCs
and transient spiral waves, for which they derived the quasi-linear diffusion
equation within the framework of the Fokker-Planck approach calculating
the diffusion tensor by means of the Hamilton perturbation theory.

They showed that both these heating mechanisms are inconsistent with
the “observed” —;—-power-law for the age-dependence of the components of the
stellar velocity dispersion (bear in mind, however, the low confidence level
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of such observations; see Section 1.2 and cf. Subsection 5.2.1). This fact led
them to the conclusion that other relaxation mechanisms, as the scattering of
disc stars by massive halo objects, might play a major role in the stochastic
heating of galactic discs.

5.5 Another Class of Explanations

As mentioned in the introductory Section 5.1, there is another class of expla-
nations which interprets the observed increase of the stellar velocity disper-
sion with age in terms of native properties of disc stars. Tinsley and Larson
(1978) suggested that the kinematics of stars older than 10° yr can be ex-
plained by a gradual decay of turbulent motions, as is predicted by certain
extremely slow collapse models, and showed that the correlation between ve-
locity dispersion and metallicity predicted by such models is in agreement
with observations.

This effect cannot directly account for the rapid variation of the velocity
dispersion with age observed even for stars younger than 10° yr, but they
suggested that this could be explained if the velocity dispersion of younger
stars reflects only the local turbulent motions in the gas, while the velocity
dispersion of older stars reflects in addition larger-scale non-circular motions
in the galactic gas layer. If the interstellar medium possesses a hierarchy
of motions whose velocity dispersion increases with the size of the region
considered, older stars, which have travelled farther since their formation,
will experience gas motions over a larger space volume and thus will acquire
larger velocity dispersions than younger stars.

This possibility was further investigated by Larson (1979). The relation
between the gaseous velocity dispersion and the region size that is required if
such interstellar motions are to explain the dependence of the stellar velocity
dispersion ¢ on age t can be estimated from the empirical relation ¢ ~ 12, If
c is equal to the velocity dispersion of the gas in a region of size L in which
the stars of age  have originated, then we obtain ¢ ~ L'/® since L ~ ct.

The agreement between this power-law and the Kolmogorov spectrum for
incompressible turbulence is suggestive, if perhaps only accidental. The Kol-
mogorov law depends on the assumption that energy is successively trans-
ferred into motions on ever smaller scales until it is entirely dissipated by
viscosity. In general this is not expected if the motions are supersonic, as
in the interstellar medium, since energy can then directly be dissipated on
large scales by shock fronts. This leaves less energy for small-scale motions,
and produces a steeper dependence of ¢ on L.

Data assembled by Larson (1979) from a variety of sources show indeed
that the velocity dispersion of young stars and of the cold interstellar gas



62 References

increases systematically with the size of the region considered over a wide
range of lengthscales, and this effect is sufficient to account for the observed
age-dependence of the velocity dispersion of disc stars for ages up to about
10° yr. The observed dependence of the gas velocity dispersion on region size
suggests the existence of a hierarchy of turbulent motions in which smaller-
scale motions are produced by the turbulent decay of larger-scale motions.
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Part 11

MY OWN CONTRIBUTION:
PROPOSALS AND RESULTS



Chapter 6

Self-Regulation Mechanisms
in Galactic Discs

Summary

The secular evolution of galactic discs, of which the increase of the stellar
velocity dispersion with age is the most striking expression from a kinematical
point of view, is closely related to their stability properties because of the
collective nature of such systems. In this context, however, the crucial role of
collective effects is often underestimated or not properly taken into account.

We propose a global collective heating mechanism leading to a self-regula-
tion process of the kind suggested by the spiral structure theory, when both
the linear effects of wave-wave interactions and the quasi-linear effects of
wave-particle interactions at the relevant resonances are taken into account.
The cold interstellar gas is expected to play a crucial role in ensuring self-
regulation together with the internal excitation and feedback mechanisms
invoked for the maintenance of global spiral modes. As a result, the planar
and vertical components of the stellar velocity dispersion are expected to
have a different age-dependence. Some observational evidences in support of
this qualitative prediction are also discussed.

6.1 Introduction

A careful inspection of the heating mechanisms in galactic discs described in
Chapter 5 of Part I shows that none of them takes collective effects properly
into account. This is indeed a very severe restriction, because collective ef-
fects are known to play a crucial role in systems whose dynamics is governed

65
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by long-range interactions.

It may be objected that the heating mechanism by recurrent transient
large-scale spiral waves proposed by Barbanis and Woltjer (1967) and fur-
ther investigated by Carlberg and Sellwood (1985) (see also the references
cited in Section 5.3 of Part I) represents an attempt to estimate the role that
such effects have in driving the secular evolution of galactic discs. This is in
part true, because the large-scale spiral structure observed in disc galaxies
is a visible manifestation of them. The problem, however, lies in the fact
that these simplified models do not retain an essentzal ingredient of the phe-
nomenon, which derives from the self-sustenance property® of spiral waves.
In fact, when a global linear analysis is performed taking the self-gravity of
the perturbations into account, these modes are found to be maintained by
internal excitation and feedback mechanisms, which a local treatment is not
able to predict. In this context the role played by the resonances turns out
to be crucial.

While on the one hand stellar dynamics tends to give too much empha-
sis to binary relaxation processes, on the other hand the spiral structure
theory suggests the existence of global self-regulation mechanisms, due to
collective effects, which lead to a secular increase of the stellar planar veloc-
ity dispersion in such a way as to saturate otherwise exponentially growing
overstabilities. In simpler local self-regulation processes, which do not take
internal excitation and feedback mechanisms into account, the stellar planar
velocity dispersion is expected to settle at, or to exceed, a critical value which
ensures a situation of local stability of the system at all wavelengths (Toomre
1964).

The importance of such self-regulation mechanisms in the dynamics and
long-term evolution of spiral galaxies, in which the cold interstellar gas is
expected to provide a welcome source of cooling, has also been suggested by
various numerical simulations (see the references cited in Section 7.1). Bear
in mind, however, that the interpretation of these results in terms of actual
physical processes is not an easy task, and sometimes can also be misleading
for other reasons than those discussed in Section 2.2 of Part I (see Lin and
Bertin 1985, and cf. Dawson 1983 for the case of computer experiments in
plasma physics). One of such difficulties derives from the fact that the re-
quirement on the number of particles is highly demanding in order to get a
proper simulation of processes involving resonances, where phase mixing and
Landau damping are important.

These self-regulation mechanisms, together with the crucial role that the
cold interstellar gas plays in them, will be discussed in more detail in this

1To neglect the self-gravity of the perturbations may reasonably be justified only in the
case of small-scale (with respect to the typical wavelengths contributing to the instabilities of
the system) spiral features when collisionless phase-mixing mechanisms are studied (Lynden-

Bell 1962).
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chapter. Owur theoretical approach to the problem of the secular heating
of galactic discs (Romeo 1987, 1989, 1990a ,b) is perspectively outlined in
Figure 6.1.

6.2 Local Self-Regulation Mechanisms

While on the one hand the formulation of a global quasi-linear theory of spiral
structure is required to account for the secular heating of galactic discs at
a quantitative level, on the other hand some physically relevant qualitative
conclusions can even be drawn by considering simpler local approaches of
the kind proposed by Bertin and Romeo (1988). The spiral structure theory,
when the cold interstellar gas is taken into account, predicts in fact the
existence of local self-regulation mechanisms which produce a rapid increase
of the stellar radial velocity dispersion up to a quasi-stationary (secularly
increasing) critical value that ensures a situation of local stability of the
system at all wavelengths.

These local self—regulatlon processes are based on the following competing
mechanisms:

e The stars of the active disc tend to heat up via gravitational insta-
bilities, and possibly because of interaction with GMCs. The former,
being a collective heating mechanism, is very sensitive to the local level
of stability. Now obvious cooling mechanisms are in hand.

e The cold interstellar gas tends to cool down on a short timescale via
turbulent dissipation due to inelastic GMC-GMC collisions. This cool-
ing mechanism is not sensitive to the local level of stability. (Actually,
a fraction of the cold component, which here is identified with the cold
interstellar gas, consists of newly born stars and thus is not subject
to cooling. This fraction slowly increases in time as a result of star-
formation processes.) It also suffers heating via the same gravitational
instabilities, but at a faster rate because of the stronger reaction of the
thinner cold component.

e Cooling is a source of dynamical instabilities and thus generates heat-
ing, ensuring self-regulation.

A more specific discussion of the effects of such local self-regulation mech-
anisms on the long-term evolution of galactic discs is given in Subsection
7.2.3 in the framework of a two-fluid approach. Note in this context that a
fluid description, obtained imposing a proper closure of the moments of the
collisionless Boltzmann equation, is more convenient for investigating the
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stability properties of purely stellar discs analytically, and reproduces the
main results almost completely except near the Lindblad resonances (see,

e.g., Berman and Mark 1977, 1979; Sygnet, Pellat and Tagger 1987).

If the cold interstellar gas is not taken into account, the stellar radial ve-
locity dispersion is expected to settle at, or to exceed, a smaller local critical
value which remains fized in time, so that no secular evolution occurs. In
local self-regulation processes, in fact, internal excitation and feedback mech-
anisms contributing to the secular evolution of the stellar velocity dispersion
are not taken into account. Moreover, of even more basic relevance, the cold
interstellar gas prevents by turbulent dissipation an excessive heating of the
active stellar disc, ensuring self-regulation. These facts show how crucial is
the role of the cold interstellar gas in the physical picture of spiral galaxies.

6.3 Global Self-Regulation Mechanisms

As we have discussed in Section 4.4 of Part I, a number of attempts have been
made to extend the quasi-linear theory of plasma waves to the gravitational
case as well. The major difficulty which is to be tackled for achieving a sat-
isfactory formulation of this theory consists in the necessity of using a global
approach. The spiral structure theory, when internal excitation and feed-
back processes are taken into account, suggests in fact the existence of global
self-regulation mechanisms which lead to a secular increase of the stellar ra-
dial velocity dispersion in such a way as to saturate otherwise exponentially
growing overstabilities, in analogy with the phenomenon of turbulent heating
predicted in the framework of the local quasi-linear theory of plasma waves.
The following discussion is just devoted to explain these concepts in more
detail, and to present the basic ideas underlying the formulation of a global
quasi-linear theory of spiral structure.

Let us first consider the case of a self-gravitating purely stellar disc. As
in the case of plasma waves the basis of this theory is the quasi-linear ap-
proximation. Taking into account the fact that two considerably different
timescales are involved, the stellar distribution function can be split into two
terms: a slowly varying part describing the collisionless collective relaxation
process, and a small perturbation describing the self-sustained oscillations of
the system. The perturbation distribution function is then treated as in the
linear theory, whereas the long-term evolution of the quasi-equilibrium dis-
tribution function is determined by second-order terms in the perturbation
representing wave-particle interactions.

To be more specific, perturbations of spiral form

fr = Filr, 200,00, 0.) € 2070 (6.1)
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are self-consistently imposed on an axi-symmetric and plane-symmetric basic
state

fo - fo(T,Z;'Ur,'Ug,‘Uz;t) (6.2)

in differential rotation Q(r), with the requirement
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In situations of astrophysical interest the secular timescale is of order 109-10*°
yr, whereas the dynamical timescale is of order 10® yr. In writing these ex-
pressions a system of cylindrical coordinates has been used to take into ac-
count the approximate symmetry properties of galactic discs. Furthermore,
k =k(r) = —1(0 In f1/0r) is the complex radial wave-number of the pertur-
bation, whose radial dependence takes the inhomogeneity of the system into
account; m is the number of spiral arms; Q, = R(w)/m and v = $(w) are
the pattern frequency and the growth (or damping) rate of the spiral wave,
respectively. In a local approach the radial dependence of the perturbations
is partially explicited

f1 = A(r, z;v,,v6,v,) exp [z (/l;(r')dr' +mé — wt” (6.4)

(with this convention trailing waves are characterized by & > 0), and the
further assumptions |8 In f1 /8r| < |k|, |8k/87| < k? are made to obtain an
“approximate” local dispersion relation in place of the “exact” global-mode
equation.

In addition, the quasi-linear theory of spiral structure relies on the fol-
lowing working assumptions:

e The disc system is infinitesimally thin. As regards the perturbations,
this assumption implies |k|(z) < 1, where (z) is the thickness-scale of
the system.

e The departures from circular orbits are small and satisfy the epicyclic
approximation: ¢./rx < 1, where ¢, is the radial velocity dispersion
and k is the epicyclic frequency.

e The spiral waves are tightly wound: m/|k|r < 1. Consistently with
this assumption, the radial gradient of f; is neglected with respect to
that of f; and WKBJ asymptotic expansion techniques are employed.

e The winding and the epicyclic parameters are formally taken to be of
the same order: m/|k|r ~ ¢, /re < 1.
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The same assumptions are also commonly invoked in the linear theory of
spiral structure to make the system of the (coupled) Vlasov and Poisson
equations more tractable. In a local approach, when finite-thickness effects
are taken into account, the form of the dispersion relation remains the same
provided the unperturbed surface density is multiplied by a suitable reduction
factor. Furthermore, another reduction factor lowers the response of high-
velocity dispersion stars (see Subsection 9.2.1).

A quasi-linear diffusion equation describing the secular evolution of the
quasi-equilibrium distribution function can be derived along a line similar
to that followed in the case of plasma waves. The wave-particle resonances
which play a dominant role are the corotation resonance

m [Qp — Q(Tco)] — 0 (65)
K(Peo) -
the inner Lindblad resonance
m [Qp — Qrun)] = _1 (6.6)
K(Tmn) - ’
and the outer Lindblad resonance
m 2 — Wrow)] _ 4 : (6.7)

R(TOLR)

well-known in the linear theory. The quasi-linear diffusion equation is sup-
plemented by two closure equations, which in a local approach reduce to the
dispersion relation derived in the linear regime and to a continuity equation
with a source term for the number of grexons.

At this stage a global approach is required just because the diffusion ten-
sor is dominated by the effects of wave-particle resonances, which cannot
properly be described in the framework of a local approach (breakdown of
the concept of local dispersion relation). Note, however, that a local treat-
ment can still be suitable far away from the relevant wave-particle resonances,
where the so-called adiabatic quasi-linear diffusion occurs. But what makes
the use of a global approach really essential is the fact that in the local linear
approach propagating spiral waves [m (Q, — Q) # 0] turn out to be neutral
(v = 0), whereas the actual situation is not so simple, as explained below.

Unfortunately, an exhaustive discussion cannot straightforwardly be given
in this context, because the subject is extremely specific. We shall only try
to express the basic ideas underlying the internal excitation and feedback
mechanisms which make the maintenance of global linear spiral modes pos-
sible. For a more detailed description of these mechanisms reference is made
to the original papers by Mark (1974a,b, 1976a,b,c, 1977) and to the review
papers by Bertin (1980), Lin and Bertin (1985), Lin and Lau (1979).
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The starting point is the global-mode equation deduced by combining the
linearized Vlasov (or fluid) and Poisson equations. This equation, which is
of Schrodinger type but not identical to the usual quantum-mechanical time-
independent wave equation, exhibits two turning points: a first-order turning
point, the bulge radius 7., and a second-order turning point, the corotation
radius r.,. Far away from these singular points and from the Lindblad reso-
nances (m = 2 models do not generally exhibit the inner Lindblad resonance)
the global-mode equation approximately reduces to the standard local dis-
persion relation. The solution of this wave equation can be found by methods
similar to those employed in quantum mechanics when a WKBJ (Wentzel,
Kramers, Brillouin, Jeffreys) approach is used: the global solution is obtained
by performing an asymptotic matching of the local solutions at the turning
points, and by imposing a radiation condition at infinity (which in the spe-
cific case is represented by the outer Lindblad resonance). In particular, a
quantum condition for the wave-number of Bohr-Sommerfeld type is found.

As regards these local solutions, three kinds of spiral wave have been
studied so far: short waves, long waves and finally open waves, which have
intermediate properties with respect to the others (they are more open than
long waves, but they propagate similarly to short waves). In each case the
trailing and leading configurations are possible. Only trailing spiral waves
can propagate between the corotation and outer Lindblad resonances in such
a way as to satisfy the radiation condition.

The global linear treatment shows that at the two turning points of the
global-mode equation wave-wave interactions occur, which are at the basis of
internal excitation and feedback mechanisms necessary for the maintenance
of global spiral modes, once the damping role of the Lindblad resonances
is taken into account. The simplest among such mechanisms (WASER),
‘which is shown to occur when lowest-order terms in the WKBJ expansion
are retained, involves trailing spiral waves alone. When a long trailing wave
propagating away from the bulge enters the corotation region, it undergoes
an over-reflection process in which two short trailing waves are produced:

e The reflected wave is always amplified, because the energy flux associ-
ated with the wave changes sign when it passes through the corotation
resonance. This wave propagates back towards the bulge, where it is
turned into a long trailing wave by a feedback mechanism. During this
cycle non-linear effects act in such a way as to damp the wave, whereas
the amplification process occurs mainly inside the corotation region.

o The transmitted wave propagates out towards the outer Lindblad res-
onance, where it is absorbed due to Landau damping mechanisms.

Another possible mechanism (swing amplification), which is shown to occur
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when higher-order terms in the WKBJ expansion are retained, gives rise to
an over-reflection process involving both trailing and leading open waves.

We expect the same kinds of internal excitation and feedback mechanism
to occur also at the quasi-linear level, because only the evolution of the slowly
varying part of the distribution function is determined by second-order terms
in the perturbations, and this in turn affects only the form of the eigenvalue
and not the form of the global-mode equation. Therefore, the relevant over-
stabilities would not be produced by non-monotonic features in the velocity
distribution, as instead occurs in plasmas in the cases generally considered
by the quasi-linear theory. The only complication which might invalidate
the linear results at a quantitative level lies in the fact that in the linear
approach a time-independent properly modified Schwarzschild distribution
function is assumed, while it is not known a priori whether the form of the
diffusion tensor allows self-similar solutions of this type for the quasi-linear
diffusion equation (cf. Section 5.4 of Part I). We recall that the use of lo-
cal Schwarzschild distribution functions is mainly invoked on observational
grounds. The effect that a different choice of the stellar distribution function
may have in the global stability properties of galactic discs is not known yet
(see Lin and Bertin 1985; Romeo 1985).

Although this physical picture is already extremely complicated, it is not
yet satisfactorily complete. The dual dynamical role that the cold interstellar
gas plays in the stability of galactic discs cannot in fact be disregarded. On
the one hand, in the linear regime it can significantly destabilize the system,
and in some pathological situations may even excite more complicated wave
channels and cycles (see Chapter 7). On the other hand, it can be shocked
and thus contributes, together with non-linear effects, to saturate otherwise
exponentially growing spiral overstabilities, inhibiting excessive heating in
the active stellar disc and ensuring self-regulation.

6.4 Self-Regulation Mechanisms:
A Unified View

6.4.1 Proposed Global Collective Heating Mechanism

The proposed global collective heating mechanism can thus be characterized
as follows. The rapid phase of local self-regulation processes is expected to
dominate the initial evolution of the stellar radial velocity dispersion up to
its critical value for local stability. On comparable timescales phase-mixing
processes occur competitively. The subsequent secular evolution of the stellar
radial velocity dispersion is expected to be governed both by local and global
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self-regulation processes.

Note that there is no contradiction in expecting local and global self-
regulation mechanisms to act simultaneously in the secular phase. Recall, in
fact, that the global-mode linear analysis considers propagating spiral waves,
and the propagation condition indeed coincides with the stability condition
derived in the framework of the local linear analysis.

6.4.2 Qualitative Predictions
and Observational Evidences

It is clear that the proposed global collective heating mechanism can only be
effective in the galactic plane, because spiral waves propagate in it and their
typical pattern speed is much smaller than the natural frequency of vertical
oscillation so that only adiabatic effects are produced. The corresponding
vertical heating is thus expected to be almost vanishing, and the consider-
ation of finite-thickness effects cannot appreciably change the situation at
all. Other global or local relaxation mechanisms, such as those associated
with bending wave-star interactions or GMC-star encounters respectively,
are surely more effective. The planar and vertical components of the stellar
velocity dispersion are thus expected to have a different age-dependence.

In agreement with this qualitative prediction, a recent observational sur-
vey restricted to the solar neighbourhood (Strémgren 1987) suggests that the
plane-parallel components of the stellar velocity dispersion increase markedly
with age, their ratio showing no appreciable variation, whereas the vertical
component soon stops at a nearly constant value. Note, however, that other
recent observational surveys lead to radically different results, also from one
another (see Section 1.2 of Part I).

In the galactic plane the proposed global collective heating mechanism
is expected to be dominant, or at least competitive, with respect to the
other local non-collective heating mechanisms so far invoked (see Chapter 5
of Part I).

There are indeed some observational evidences which seem to support and
suggest this fact. Some normal spiral galaxies, whose most representative
case is that of NGC 488, are characterized by relatively high stellar planar
velocity dispersions (Kormendy 1985), whereas the stellar vertical velocity
dispersions are heuristically expected to be comparatively low (see Romeo
1985 and also Section 7.4 for other implications in connection with their
global stability properties). It seems reasonable to interpret such a strong
“temperature” anisotropy as produced by radically different heating mecha-
nisms, and to conclude that at least in such disc galaxies the planar heating
mechanism is much more effective than the vertical one. This, indeed, is in
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agreement with our theoretical predictions.

In view of a future comparison between theoretical predictions and obser-
vational results, we now want to make a few considerations concerning some
delicate points to which often is not paid a proper attention and which make
such a comparison not straightforward.

From a theoretical point of view, a single equivalent stellar component
is taken to be representative of the whole active stellar disc consisting of
low-velocity dispersion stars (see Chapters 7-9). The consideration of more
stellar populations would give rise to several complications due to their gravi-
tational coupling via the Poisson equation, as required by the self-consistency
condition. On the other hand, it should be noted that observations tend to
overestimate the effect of high-velocity dispersion stars, which are not so dy-
namically relevant as regards their participation in spiral structure (see Lin
and Bertin 1985; Romeo 1985).

From a theoretical point of view, a single gaseous component is taken to
simulate HI regions of neutral atomic hydrogen and giant molecular clouds
and complexes (see Chapters 7-9). On the other hand, observational surveys
do often provide significantly different estimates as regards the molecular
hydrogen (see Section 7.1).
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Figure Captions

Figure 6.1. Perspective outline of our theoretical approach to the problem
of the secular heating of galactic discs.
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Chapter 7

The Cold Interstellar Gas
and the Stability

of Galactic Discs:
Infinitesimally Thin Systems

Summary

Most theoretical investigations into the spiral structure of galaxies are based
on one-component models, because only low-velocity dispersion stars seem
to play a fundamental role. However, it has long been recognized that in
some cases also the contribution of the cold interstellar gas can be impor-
tant because of its low turbulent velocity dispersion, although it represents
a small fraction of the total mass in normal spiral galaxies. Our analysis is
devoted to such cases.

We first perform a local linear stability analysis. It is found that in some
regimes of astrophysical interest the role of the cold interstellar gas can even
be dominant at short wavelengths.

The results obtained in this context are used to investigate global spi-
ral modes in regimes which are expected to be associated with normal spi-
ral structure. We use two-component equilibrium models which incorporate
the essential features of the cold interstellar gas, as suggested by some re-
cent observational surveys. Appreciable modifications to the structure of the
modes, with respect to the corresponding one-component cases, are present
only when a peaked distribution of molecular hydrogen is simulated. How-
ever, even in the cases where no qualitative modifications are present, the
basic states which support these modes are characterized by relatively high
stellar planar velocity dispersions, i.e. by values of the local stability param-

7
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eter Q larger than unity. Finally, some qualitative predictions concerning the
expected structure of global spiral modes in peculiar gas-dominated regimes
(where a more complicated global analysis is required) are made.

7.1 Introduction

Galactic discs are found to consist of different populations of stars and gas
components. A detailed stability analysis would be extremely complicated,
also because it should take into account several physical processes and effects,
so that one generally tries to single out the most important contributions
from each of them.

From a dynamical point of view (spiral structure), only low-velocity dis-
persion stars seem to play a fundamental role. It is for this reason that most
theoretical investigations into the spiral structure of galaxies are based on
one-component models.

However, in some cases also the contribution of the cold interstellar gas
can be important (see, e.g., Lin and Shu 1966; Graham 1967; see also Julian
1969; Lynden-Bell 1967; Marochnik and Suchkov 1969; see also Marochnik
1970; Vandervoort 1971; Kato 1972; Morozov 1981; Jog and Solomon 1984a,b;
see also Jog 1985; Lubow 1986; Lubow, Balbus and Cowie 1986; Korchagin
and Ryabtsev 1987; see also: Sweet 1963; Sweet and McGregor 1964; Har-
rison 1970; Biermann 1975; Fridman and Polyachenko 1984; Fridman et al.
1985; Contopoulos and Grosbgl 1986; Smith and Miller 1986; Contopoulos
1987; Min 1988; Contopoulos et al. 1989; Li 1990) or even dominant (Romeo
1985, 1987, 1988, 1989; Bertin and Romeo 1988) because of its low turbulent
velocity dispersion, although it represents a small fraction of the total mass
in normal spiral galaxies. Our analysis is devoted to such cases.

We shall now briefly discuss some observational studies which have at-
tracted new interest in the dynamics of two-component systems.

Relatively recent radio data have shown that a substantial fraction of the
interstellar gas in the Milky Way and also in some external galaxies could be
in the form of molecular hydrogen. It is generally agreed that GMCs exhibit
the following physical features:

e A peaked mass density distribution, in a ring-like fashion, in contrast
to the essentially flat distribution which characterizes HI regions of
neutral atomic hydrogen.

o A turbulent velocity dispersion of ~ 4-8 kms™', smaller than that

relevant to HI regions (= 8-10 kms™).

However, the local values of their mass density as well as their turbulent
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velocity dispersion are known with great uncertainty and are still under de-
bate, also because these estimates are based on indirect observational meth-
ods (see, e.g., Blitz and Shu 1980; Stark 1984; Bhat et al. 1985; Burton
and Deul 1987; Dame et al. 1987; Knapp, Helou and Stark 1937; Solomon
et al. 1987; Taylor, Dickman and Scoville 1987; Blitz 1988; Fleck 1988a,b,c;
MacLaren, Richardson and Wolfendale 1988; Maloney 1988, 1990; Maloney
and Black 1988; Myers and Goodman 1988a,b; Polk et al. 1988; Richard-
son and Wolfendale 1988a,b; Strong et al. 1988; Weliachew and Lucas 1988;
Bloemen 1989; Broadbent, MacLaren and Wolfendale 1989; Elmegreen 1989;
Heithausen and Mebold 1989; Kegel 1989; Sodroski et al. 1989; Somerville
and Smith 1989; Stark and Brand 1989; Stecker 1989; Blitz, Bazell and
Désert 1990; Bloemen, Deul and Thaddeus 1990; Devereux and Young 1990;
Digel, Bally and Thaddeus 1990; Issa, MacLaren and Wolfendale 1990a,b;
Leisawitz 1990; Martin, Hurwitz and Bowyer 1990; Sage, Shore and Solomon
1990; see also Zasov and Simakov 1988).

Another source of interest in the dynamics of two-component systems de-
rives from the recent progress in measuring the stellar velocity dispersion in
galactic discs. Values of the local stability parameter @) larger than unity, as
reported for a number of gas-rich galaxies in some recent observational sur-
veys (e.g., Casertano 1985, private communication; Kormendy 1985; van der
Kruit and Freeman 1986; Bottema, van der Kruit and Freeman 1987; Free-
man 1987; Bottema 1988, 1989a; see also Bottema 1989b, 1990; Lewis and
Freeman 1989; see also: Efstathiou, Lake and Negroponte 1982; Sellwood
1985; Martinet 1988), can be explained, consistently with a mechanism of
self-requlation, by taking the destabilizing role of the cold gas component
into account. However, even in gas-poor galaxies relatively large values of
the “observed” Q (see, e.g., Kormendy 1984a,b) can be justified by taking
other factors into account (see Subsection 6.4.2).

The importance of such self-regulation mechanisms in the dynamics and
long-term evolution of spiral galaxies, in which the cold interstellar gas is
expected to provide a welcome source of cooling (see, e.g., Lin and Bertin
1985; Ostriker 1985; Shu 1985), has also been suggested by several numerical
simulations (e.g., Miller, Prendergast and Quirk 1970; Hohl 1971; Quirk
1971; Carlberg and Sellwood 1983; Sellwood and Carlberg 1984; see also
Renz 1985; Carlberg and Freedman 1985; Sellwood 1989; Thomasson et al.
1990).

For more information see Romeo (1985, 1987), Bertin and Romeo (1988),
and references cited therein; see also Romeo (1988, 1989). Other more specific
references concerning finite-thickness effects in two-component galactic discs
will be given in Section 9.1.
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7.2 Local Analysis

7.2.1 Assumptions

The System. We consider an infinitesimally thin, two-component, self-
gravitating disc system. Each component is described by the standard Euler-
continuity equations supplemented by a barotropic equation of state. The
only interaction between the two componénts is taken to occur via the grav-
itational field (Poisson equation). The two components are denoted by dif-
ferent subscripts, “H” (HOT) and “C” (COLD), in order to recall that they
are characterized by different equivalent acoustic speeds. Having in mind
cases of astrophysical interest, we refer to them as the stars of the active disc
(H) and the cold interstellar gas (C). However, we could also consider the
case in which gas is absent but two stellar populations with different velocity
dispersions can be identified.

The Basic State. In the basic state the system is taken to be axi-symmetric
and in differential rotation Q(r).

The Perturbations. Linear perturbations of spiral form

fi= )E1 exp {z </]::(7") dr' +mé — Wt)] (7.1)

(with this convention trailing waves are characterized by k > 0) are studied

under the ordering
m

|k|r
where m is the number of spiral arms. This is the approximation of tightly
wound spiral structure, which is expected to be applicable to early normal
spirals. Since we adopt an infinitesimally thin disc model, we should bear
in mind, when dealing with observational implications, that the present dis-
cussion is restricted to relatively long waves |k|(z) < 1, where (z) is the
thickness-scale of the system. Moreover, a comparison with the more appro-
priate kinetic-fluid approach shows that the further restriction cyz/rk < 1
(epicyclic approximation) is required (the winding and the epicyclic param-
eters are formally taken to be of the same order), where here ¢y represents
the stellar radial velocity dispersion and « is the epicyclic frequency.

<1, (7.2)

7.2.2 Local Dispersion Relation

To lowest order the local dispersion relation written in a convenient dimen-
sionless form is

ot + 02 & [k (14 8) — (1 + )] + [&° [Blk| = («+ B)] =0,  (7.3)
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where we have adopted the following scaling and parametrization:

- k 2w G
k=—, where Y= b ; (7.4)
EH C].?I
. Q2 w —m§ cuk
= —45 (1—-1?), where v= — Qu = WGHO'H ; (7.5)
Oc c2
o= —, = 0<a<+4oo, 0<B<I). (7.6)
Ox c2

In these formulae, o is the unperturbed surface density, c is the equivalent
acoustic speed, v is the dimensionless Doppler-shifted frequency of the spiral
perturbation, and the local parameter Qy related to the hotter component
is analogous to the Local Stability parameter () for one-component systems.
The cases a = 0, « — +o0 and 8 = 1 represent the limit of a one-component
system.
Note that with a proper transformation of variables (|k| — k2, 9* —
—k2&?) the discussion of this local dispersion relation can be given in com-
plete analogy with the case of Jeans stability for a two-component, three-
dimensional, homogeneous system in the absence of rotation.
For more information see Romeo (1985), where the dispersion properties
of the wave branches and the more general case of n-component systems are

also discussed, Bertin and Romeo (1988); see also Romeo (1988, 1989).

7.2.3 Local Stability

Marginal Stability Curve. Setting % = QZ/4, i.e. v* = 0, in the local
dispersion relation (7.3), we obtain the marginal stability condition for the
spiral perturbations. This can be seen as determining a value for Q% when
}k| and «, § have been fixed. This value is positive in the range 0 < k| <
ky=1+ (a/ﬂ) Adopting the more standard scaling

ky K2

A= = 7.7
Tk where kg ooy’ ( )

the marginal stability curve in the (A, Q%) plane is defined by the following
relation:

& = (5] [@rar-r0+0

+3 21— B2 —22(1-B)(a—B)+(a+B)|, (78

which we consider in the range 0 <A < 1+«
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Local Stability Criterion. From this relation a local stability criterion can
be stated in analogy with the case of one-component systems. A function
Q? = Q*(a, ) can be defined in such a way that when Q2% > Q? the system
is locally stable at all wavelengths. For QZ < Q? we expect the system to be
locally unstable in ranges of wavelengths defined by the marginal stability
condition. The function Q?, which reduces to unity when a = 0, plays a
crucial role in the discussion of global spiral modes which we shall give in
the next section.

Results. The properties of the marginal stability curve and the behaviour
of the function Q?(w,3) are summarized in Figures 7.1-7.3, which show how
effective a small amount of gas can be in destabilizing the system, provided
the gas is sufficiently cold.

Secular Effects. When local self-regulation mechanisms of the kind dis-
cussed in Section 6.2 are considered, the stars of the active disc continually
heat. In turn 8 decreases in the process, and the system moves along a hor-
izontal line to the left of the (3, ) plane. Depending on the initial value of
a, the system may suddenly experience a “phase transition” by encounter-
ing the two-phase region (a < ag), or it may more smoothly move towards
a gas-dominated regime directly from the original star-dominated regime
(¢ > c). These processes of S-evolution are expected to occur secularly
on a long timescale. A slow decrease of a can also be included to allow for
star-formation processes.

For more information see Romeo (1985), Bertin and Romeo (1988); see
also Romeo (1988, 1989).

7.3 Global Analysis

7.3.1 Proposals

The aim of this section is to evaluate whether and possibly how the presence
of the cold interstellar gas modifies the morphology of global spiral modes
with respect to the case of a one-component system, modelled as an active
disc consisting of an equivalent (representative) population of low-velocity
dispersion stars. This requires a proper choice of the basic states which
support them, as explained below.

7.3.2 Choice of the Equilibrium Models

Methodology. Given a basic one-component equilibrium model
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e 2 =Q(r),
o o = alr),
e Q = Q(r), supposed to be consistent with a mechanism of self-regula-

tion,

we modify it into a two-component equilibrium model according to the fol-
lowing prescription:

s = Q(r);

woc = 0c(r), ox = ou(r) =0(r) —oc(r) = a=a(r);

mce = co(r), Qu = Qu(r) = Q(r) Qla(r),B(r)] => B = B(r), where
the last condition expresses the Self-Regulation constraint and the ratio
Qx/Q plays the role of an Effective Q)-parameter. In fact, the equation

L 1+«
VB =16 G0P (79)

can be solved iteratively starting from
1
VBO = 2 = 7.10
p mGo @ ( )

Recall in this context that the cold interstellar gas provides a welcome source
of self-regulation for spiral instabilities, by inhibiting excessive heating in the
stellar disc. This fact shows again how crucial is its role in the physical
picture of spiral galaxies.

Practical Applications. The basic one-component equilibrium model,
which has been derived from a family of models provided for us by Lowe
(1988), is shown in Figure 7.4. Correspondingly, we have derived two two-
component equilibrium models which incorporate the essential features of the
cold interstellar gas, and whose (8, ) tracks lie outside the two-phase region
in Star-dominated regimes. They are shown in Figures 7.5-7.6. Figure 7.5
shows also the (8, ) tracks for models of the galaxies NGC 4565 and NGC
5907 provided for us by Casertano (1985, private communication), where for
simplicity it is assumed that all the cold interstellar gas is in the form of
neutral atomic hydrogen with ¢; = 8 kms™.

Peculiar two-component equilibrium models involving Gas-dominated re-

gimes will be considered in future applications.

For more information see Romeo (1985), Bertin and Romeo (1988); see

also Romeo (1988, 1989).



84 CHAPTER 7. STABILITY OF THIN GALACTIC DISCS

7.3.3 Discrete Global Spiral Modes

Methodology. For a given equilibrium model the local dispersion relation
(7.3) can be used to determine k = k(r;m,wy). The discrete global spiral
modes are then calculated by imposing the quantum condition derived in
the one-component case, which is expected to hold also for two-component
systems in star-dominated regimes:

Wh,

j{k(r;m,ﬂp) dr=(2n+1)m, where O, = o (7.11)

taken between the inner turning point 7., where the bulge terminates, and
the corotation circle r.,. This equation fixes the pattern frequency 2, of the
(m,n) mode. The growth rate of the mode is inversely proportional to the
propagation time taken along the relevant wave cycle.

Results. The propagation diagrams k = k(r) which identify the relevant
wave cycles and excitation mechanisms of the (m = 2, n = 0) mode for
our two-component equilibrium models are shown in Figure 7.7. When gas
is included, we observe a shift of the mode towards a more tightly wound
spiral structure with a smaller corotation radius. Note that, even in the
case in which no qualitative modifications are present, the basic states which
support this mode are characterized by relatively high stellar radial velocity
dispersions, as shown in Figure 7.6, and interestingly enough the qualitative
behaviour of the local stability parameter @y resembles that inferred from
observations of gas-rich galaxies (see the references cited in the introductory
Section 7.1).

For more information see Romeo (1985), Bertin and Romeo (1988); see
also Romeo (1988, 1989).

7.3.4 Peculiar Gas-Dominated Equilibrium Models

How to Construct Them. Consider the reference one-component model
used for deriving two-component models in more standard (star-dominated)
regimes. The self-regulation constraint (7.9) shows that small values of B
require relatively large values of o and small ratios (cck/mG o), which can
be obtained by changing properly the scale of the rotation curve and of the
density distribution for a fixed cc.

Qualitative Predictions. When the (8, ) tracks of the equilibrium model
intersect the two-phase region, the use of the previous quantum condition
(7.11) is no longer justified because we have a different (more complicated)
eigenvalue problem. We expect to have “Double propagation diagrams” char-
acterized by other turning points in addition to r.. and 7c. Thus, more
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complicated wave channels and cycles are available (“Short and Long gaseous
waves”). The structure of the modes is expected to be considerably modified.
In particular, the presence of the gaseous peak at short wavelengths suggests
a high degree of winding.

More comments are reported by Romeo (1985); see also Romeo (1988,
1989).

7.4 Astrophysical Implications

o Gas-rich early normal spiral galaxies should exhibit relatively high stel-
lar planar velocity dispersions, consistently with a mechanism of self-
regulation. Non-monotonic profiles are expected for relatively high H,
densities.

o A new regime of eztremely tightly wound spirals is expected when the
stellar component is much hotter than the gaseous component in gas-
rich early-type galaxies (e.g., NGC 4887). Correspondingly, a discont:-
nuity in the behaviour of the stellar planar velocity dispersion profile
may be observed.

For a more complete discussion see Romeo (1985); see also Romeo (1987,
1088, 1989).
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Figure Captions

Figure 7.1. Two-fluid marginal stability curves in the (X, Q%) plane for
some values of the local parameter a and fixed § = .01. Note the quick
appearance of the Gaseous peak occurring at short wavelengths AR %a with
Q2% ~ (a?/B) + 4a, and the smoother behaviour of the Stellar peak occurring
at intermediate wavelengths A ~ 1 with Q2 ~ 1 + 4a. '

Figure 7.2. Phase diagram summarizing the properties of the marginal
stability curve. Inside the Two-Phase region of the (8, a) plane, which is the
triangular region with vertex (8o, o), the marginal stability curve exhibits
two maxima, so that the local stability properties are qualitatively different
from those of single-component systems. In the Stellar (Gaseous) regime the
stellar (gaseous) peak is dominant. The curve oo = /f corresponds to the
Transition between these two regimes. A cusp formed by the intersection
between the upper and the lower boundaries of the two-phase region and the
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transition curve occurs at the “Triple point” (8o, @) = (17—12+/2, 3—2 V2).
Correspondingly, the marginal stability curve exhibits a single flat maximum
at Ap = 1 — (1/+/2) with Q2 = 2. Four points are marked corresponding to
the cases illustrated in Figure 7.1.

Figure 7.3. Q% contours in the (3, ) plane, showing the transition inside
the two-phase region (a) and the large-scale behaviour in the ranges 0 < a <
1,0 < 8 < 1 (b). Each contour is labeled with the appropriate value of Q2.
Note the flat behaviour in Star-dominated regimes.

Figure 7.4. Rotation curve, disc density distribution and @-profile for
the one-component equilibrium model E3y. The rotation curve is supported
by the combined effect of an active disc and a spheroidal bulge-halo which
does not participate in the spiral perturbations (the density distribution of
the latter component is not shown here). The @Q-profile is consistent with
the presence of a bulge in the inner regions and with a mechanism of self-
regulation in the active disc.

Figure 7.5. The (8, ) tracks for the galaxies NGC 4565, NGC 5907 and
for the two-component equilibrium models E3a, E3b. The model E3a is char-
acterized by a flat gas mass distribution ¢ = 3-10° Mg kpc™2, simulating the
neutral atomic hydrogen distribution, and by a constant equivalent acoustic
speed ¢cc = 8 kms™'. The model E3b is characterized by a gaussian ring
overlapped to a flat background oo = {4+ 6 exp[—4 (# — 4)?]} - 10° Mg kpc™>
with # = r/1 kpc, simulating the presence of a ring of molecular hydrogen,

and by a constant equivalent acoustic speed cc = 6 km s7h

Figure 7.6. The Local Stability parameter Qy for the two-component equi-
librium models E3a and E3b. These profiles have been derived by imposing
the condition Qu(r) = Q(r) Q[a(r),B(r)] (Self-Regulation constraint), Q(r)
being specified in the basic one-component equilibrium model E3,. Note
that Qg lies above unity everywhere.

Figure 7.7. Propagation diagrams relative to the (m = 2, n = 0) mode
for the two-component equilibrium models E3a (a) and E3b (b), with the
indication of the corresponding bulge radius r.., corotation circle 7o, loca-
tion of the outer Lindblad resonance roux and pattern frequency Q. The
propagation diagram in a essentially coincides with that obtained for the
one-component equilibrium model E3o. The distortion affecting appreciably
the short-wave branch in b is due to the presence of the ring of molecular
hydrogen. Thus, when gas is included, there is a shift towards shorter wave-
lengths and the size of the pattern, as measured by the radial range of the
loop, shrinks.
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Chapter 8

The Cold Interstellar (zas
and the Stability

of Galactic Discs:
Vertical Structure

at Equilibrium

Summary

The crucial role that the cold interstellar gas can play in the dynamics and
structure of early normal spiral galaxies has been shown in Chapter 7, where
finite-thickness effects have not been taken into account. In view of the
importance that such effects might have in the self-regulation mechanisms
which are expected to operate in galactic discs and to be at the basis of their
secular heating, we have tried to evaluate them. This can be done only after
that their vertical structure at equilibrium has carefully been investigated.

An asymptotic analysis has thus been carried out to study the thickness-
scales relevant to both the equilibrium and stability of two-component galac-
tic discs in regimes of astrophysical interest. Two parametrizations have been
introduced and examined in view of their relevance to the stability analysis
which we shall perform in Chapter 9.

8.1 Introduction

The spiral structure theory relies on a number of working assumptions which
allow to make the linearized system of the coupled fluid (or Vlasov) and Pois-

99
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son equations more tractable. However, in some situations of astrophysical
interest the validity of such assumptions may be questioned.

For instance, we know that real galactic discs have finite, although small,
thickness and the possibility of regarding them as infinitesimally thin de-
pends on the relevant wavelengths of the perturbations excited. In some
cases, when the underlying spiral structure has a high winding degree, finite-
thickness effects should be taken into account in the stability analysis. In
view of the importance that such effects may have in the self-regulation mech-
anisms which are expected to operate in galactic discs and to be at the basis
of their secular heating, we have tried to evaluate them. This can be done
only after that their vertical structure at equilibrium has carefully been in-
vestigated.

In performing this analysis, we have made use of simplified models of
galactic discs in which the stars and the cold interstellar gas are treated
as two different components (see Chapter 7). Although such models might
be thought of as being inaccurate to describe actual galactic discs, which
are known to consist of different populations of stars and gas components,
they incorporate indeed the most essential features as regard their stability
properties. In this context it should be noted that such a single equivalent
stellar component is taken to be representative of the whole active stellar disc
consisting of low-velocity dispersion stars (high-velocity dispersion stars do
not participate appreciably in spiral structure), whereas the single gaseous
component is taken to simulate HI regions of neutral atomic hydrogen and
giant molecular clouds and complexes.

Generally, even more drastically simplified galactic models are used, in
which the cold interstellar gas is not taken into account. In some situations
of astrophysical interest this further simplification is not justified, because
the cold interstellar gas is expected to play an important or even crucial
role in the stability of galactic discs due to its low turbulent velocities (see
Chapter 7).

The vertical structure of galactic discs has long been investigated in detail
by a number of authors, who made use of multi-component locally isothermal
models (e.g., Woolley 1957; Bahcall 1984; Bahcall and Casertano 1984; see
Boulares 1989 for a discussion of non-thermal effects). These analyses take
into account the fact that galactic discs are nearly self-gravitating perpen-
dicularly to their symmetry plane, so that standard asymptotic expansion
techniques can be employed. While in the case of one-component stellar
discs this is all that is needed to make the problem analytically tractable
(see Vandervoort 1967, 1970 for the most rigorous analysis in this context),
when multi-component models are considered, further assumptions are to be
made to this end: generally, the component with the largest scale-height is
taken to have the largest mass density, so that a perturbative approach can
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be employed.

In our two-component model this assumption is certainly satisfied, but a
perturbative approach of this kind may not always be suitable because in the
outermost regions of galactic discs the mass density of the cold interstellar
gas becomes comparable to that of disc stars. For this reason we have relaxed
this assumption, and this has allowed us to perform a detailed analysis in
regimes of astrophysical interest only at small and large distances from the
galactic plane (Romeo 1987, 1990a,b). Anyway, as will be shown in Chapter
9, these distances are those most relevant to the stability analysis, and also
from an observational point of view. The results obtained in this chapter are
at the basis of the further investigation which we shall carry out in Chapter 9.

8.2 Omne-Component Case

We shall now briefly discuss the one-component case because the investiga-
tion of two-component galactic discs, although it is much more complicated,
employs similar methods.

The system, which is assumed to be in an axi-symmetric and plane-
symmetric equilibrium state and to be locally isothermal perpendicularly
to the galactic plane, is described by the Poisson equation

5 10% 0?9

57 T ar e TOP (8.1)

supplemented by the “locally isothermal” condition

P, 2) = utr) exp { -2 20 (82)

If (r) and (z) are the characteristic radius and the thickness-scale of the
system (defined to be positive) respectively, then (8°®/0r?) +r~1(0®/0r) =
O(®/(r)?) and (82®/92%) = O(®/(z)?). Therefore, taking into account the
fact that galactic discs are highly flattened, we can perform an asymptotic
expansion in powers of the small parameter ¢ = (z)/(r) < 1. We obtain the
following hierarchy of Poisson equations (Vandervoort 1967, 1970):

5?9
. 8.3
022 0, (8:9)
03
S 47"GP(0)= (8.4)
2g(n-2) H(n—2) 2g(n)
9 + 19 + 0 = 47Gp" ™M (n >2), (8.5)

Or? r  Or 022
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where in these notations ®™, p(® = O(e"). In the following we shall con-
sider only non-trivial lowest-order contributions, which are represented by
equation (8.4).

Combining this equation with the “locally isothermal” condition (8.2)
and suppressing the order-indices for simplicity of notations, we find in di-
mensionless form: s

‘(%f =272, \ (8.6)

where we have adopted the following scaling:

=2 where A= — (8.7)
z= where =\ 2nCpo’ .

¢ — @,

2
Cz

) , where ®,=®(r,z=0). (8.8)

This non-linear second-order differential equation can easily be integrated by
quadratures (see, e.g., Bahcall 1984). Imposing the boundary conditions

do

= =0, (8.9)

z2=0

(:=0)=0,

we find:
= 2|%|, (8.10)

/'i’ dd’
0 \/1—e¥
&(3) = In(cosh? 7). (8.11)

The corresponding volume density is

whose solution is

p(r, z) = po(r) sech? [AZ‘T)} . (8.12)

The following two asymptotic limits are of interest:

2
P ~ Po €Xp (—%—) , where z;=A; (8.13)
[zl—»O ZG
2] 1
p ~ 4poexp|——|, where zz==-A; (8.14)
lzl—=+c ZE : 2

which define the gaussian and the exponential thickness-scales, respectively.
Integrating the volume density given in equation (8.12) over z, we find the
following expression for the surface density:

o= po(24), (8.15)
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so that

CZ

= —= a1
A e (8.16)

and in this one-component case the expansion thickness-scale is

(z) = é%; =A. (8.17)

8.3 Two-Component Case

8.3.1 Formal Integration
of the Fundamental Equations

While the investigation of the one-component case is more or less straightfor-
ward to the non-trivial lowest order of approximation, the same is not true
for two-component galactic discs: several complications arise, some of which
are already hidden in the one-component case.

The two components are denoted by different subscripts, “H” (HOT)
and “C” (COLD), in order to recall that they are characterized by different
vertical velocity dispersions. Having in mind cases of astrophysical interest,
we tefer to them as the stars of the active disc (H) and the cold interstellar
gas (C). However, we could also consider the case in which gas is absent
but two stellar populations with different scale-heights can be identified.
It is assumed that the system possesses the same symmetry properties as
in the one-component case, and that each component is locally isothermal
perpendicularly to the galactic plane. The only interaction between the two
components is taken to occur via the gravitational field (Poisson equation)

2 2
ZT?+%%§+%§:4WG(pH+pC) (8.18)
supplemented by the “locally isothermal” condition

pir,2) = pu(r) exp{ -2 _me). o

Czi

Proceeding along the same line as in the one-component case, we find
that equation (8.6) is replaced by

~

d*®
dz?

where we have adopted the following scaling and parametrization:

=2 (e"‘i’ - ")161_'6;1@) , (8.20)

z cZ,
— = = ; 8.21
AL’ where Ay 5m G ( )

z =
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¢ — 9,

$ = —, where $o=&(r,z= 0); (8.22)
CzH
o2
5= P ﬂ_ﬁ (0 <7 < +oo, 0<B. <1). (8.23)
Pom zH
The cases v = 0, v — +oo represent the limit of a one-component sys-

tem, and the case 3, = 1 represents the limit of a system in which the two
components have the same scale-height. Equation (8.20) can formally be
integrated by quadratures imposing the same boundary conditions as in the
one-component case:

/ de __ —9)3]. (8.24)
T o)

However, in contrast to the one-component case, the left-hand side of this
equation cannot explicitly be expressed in terms of elementary or special
functions for arbitrary values of the local parameter 3, (see, e.g., Gradshteyn
and Ryzhik 1980; Prudnikov, Brychkov and Marichev 1986).

In order to overcome this difficulty two strategies can be employed:

e One consists in assuming 703, < 1 and in carrying out a perturba-
tion series expansion in powers of this small quantity (perturbative
approach).

o The other consists in investigating the asymptotic behavmur of F[®]
as ® — 0 and ® — 400 so as to estimate $(2) at small and large |2|
(asymptotic approach).

Both methods will be considered and the corresponding results will be com-
pared in such a way as to draw as much information as possible.

8.3.2 Perturbative Approach

Let us first consider the perturbative approach developed by Bahcall (1984).

Performing an asymptotic expansion in powers of the small local param-
eter 73, < 1 and retaining only first-order terms, we obtain:

&~ 3O 446,80, 48,8 « &) (8.25)
$O)(3) = In(cosh? 2); (8.26)

Q.
o3

1 287 5
®W(2) = I(%;8.) tanh 2, where I(é;,b’z).—‘_-/ 1 —sech™ 2 (8.27)

0 tanh? 2
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I(%;8.) cannot explicitly be expressed in terms of elementary or special func-
tions for arbitrary values of the local parameter 3,, so that only its asymp-
totic behaviour can be investigated analytically. We shall not pursue this
line, because this will be done even without the restriction v3. < 1 in the
asymptotic approach which we shall discuss later on. Rather, we shall con-
sider the case in which first-order contributions can be neglected, so that
only (% is relevant to the following analysis.
The volume densities of the two components are:

z
Z) ~ r) sech® , 8.28
pulry2) o pursec” | 5] (5.29)
(v<1)
7,2) ~ pPocl” sech?’ [ z ] . 8.29
pel )7/3_2:<§ ;po (r) Al (829)

The further restriction v < 1 has been derived by comparing the gaussian
and the exponential thickness-scales of each component found in this lowest-
order approximation to those determined exactly in the asymptotic approach
[see equations (8.32) and (8.33) of next subsection]. It can be identified with
the self-consistency condition of this perturbative approach.

For an interesting discussion of the observational implications of this anal-

ysis see Bahcall (1984) and Bahcall and Casertano (1984).

8.3.3 Asymptotic Approach

Let us now consider the asymptotic approach developed by Romeo (1987,
1990a,b), which turns out to be richer in information than the perturbative
approach considered above except in the asymptotic regime v < 1.

Expanding the integrand function of the implicit equation (8.24) in powers
of ® as ® — 0 and retaining only first-order terms, we obtain:

. 24/® . ;
F[®] ~ =  ®(3) ~ (1+~)3%. 8.30
8] = —F= () = (1+7) (8:30)

Studying the behaviour of the integrand function in the range 0 < $ < +oo,
it can be shown that the following reasonable lower estimate can be given

for F[®] as & — +co:

5 ® R / .

G too [2]—+oo
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The volume densities of the two-components have the following asymp-
totic behaviours:

2? c2
i ~ poi exp | —— where zg; = = ; 8.32
P lzl_-*()po P ( Z(Z-,.i> ’ ' ¢ J 27T'G (pOH -+ pOC) ( )
4Fip; e ( 'Zl) where z i (8.33)
i~ "Poi €Xp | —— | ere i=
P [zt oo poi €xP Zgi ® 871G (poucy + pPocc?s) ’
and hereafter (i =H,C); (8.34)

which define the gaussian and the exponential thickness-scales, respectively.
The z-independent exponents K; depend on higher-order corrections, and
can only formally be expressed as series in terms of the local parameters y

and S.:

Ky = \/1_*_7'32/0‘*""’[ = !

Ve 8. (1 - e

— lim ! = }d@log‘,e
boioo \J(1—et) 49 (1 e F)
B ‘i" (2n + 1)U 1
S @)U (1 4B
e TL+1) k ﬂz
. : log, e
+o0 (27’&-}—1)” +oo nt1 <n+l) <n+1>
= 1+
¥Bz <1 nz;) (2n + 2)! gkz;) k
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1 (2n + DI I n+l n+1
Br<l ,8_z+§_:(2n+2” zz;k}—j k
l+k>0
1
) I+k
(7ﬁ2) L +,8; (n i 1 — k) 1Og4e' (8'36)

The exponential thickness-scales of the two components can be expressed in a
more compact and physically transparent form, by integrating the non-trivial:
lowest-order Poisson equation [the two-component analogue of equation (8.4)]
over z

02 = 27G (0u + 0¢c) (8.37)

62 z—-oo

and making use of the asymptotic form of the “locally isothermal” condition
(8.19)

0 ln p; 1 0%
“l=_ 2 0 = 8.
Zpi 2 R = (8.38)

The meaning of equations (8.32) and (8.37), (8.38) is clear: the total vol-
ume density in the plane determines the Gaussian thickness-scales of the two
components

2

C,i ZGc

Zgi = m 3 ZGH 3., where po= pou -+ Poc, (8‘39)

while the total surface density determines their Exponential thickness-scales

Cz- Zuc

in=-2—ﬂ_z;+d, ;:ﬂz, where o =o0y +o0c. (8.40)
The Global Effective thickness-scale of the system, which can be identified
with the Expansion thickness-scale (z), can easily be expressed in terms of the
asymptotic thickness-scales of the two components:

o Zé, . ZgHZGC (8 41)

<Z> = 200 2p 2ZE1 v/ ZZEH M ZZEC

Equations (8.39), (8.40) and (8.41) admit a trivial generalization to the case
of n-component systems.

As regards the Effective thickness-scales of the two components, the situa-
tion is not so straightforward. They can only formally be expressed as series
in terms of the local parameters v and f,:

Zeffn = QO-H = 2zm { \/1 + 0. / \/ du

Pox )+ 8. (1 —uf)
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12 (2n4+ 1) 1
= 22pn
) [* 2 G ot TR

n=0

5:3(”“) ﬂz)ksz(flz—k)]

1 = (2n—l—1)!!

S 6]

1=0 k= o
———r’
14+k>0
. I+k 6z
(7IBZ) k+ﬁz(n+2~k)] ’
where u=e%; (8.42)
Oc
Zeffc = = 2z V1498 /
S 2 - [ Ja -vﬁ’)+7ﬂz(1 —v)
1.1 = @2n+ 1! 1
e [2 = (2n+2)! (1475
ey [ ———
k=0 k+1+ﬂ::(n+1—k)
1% 2n+1)”
_ -1 -1 1
4B2<1 2ZEC|: 8. B( N )+ Z (2n +2H
Betaﬁmctlon
£
1=0 k= o k
N —r’
1+k>0
(2. 1
Yo k+1+8.(n+1-k)|’
where v=ef 2, (8.43)

Similar expressions can be given for z.g; scaled in terms of zg; instead of zg,
making use of the following relations between the asymptotic thickness-scales
of the two components:

————%] , (8.44)

V1+78.
B:(L+7)

Zeu = 2Zpn {

(8.45)

Zge = 22Zpc
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Such series representations of z.g; in terms of the local parameters v and S,
are useful for investigating asymptotic regimes of astrophysical interest. Note
that the following inequalities hold between the relevant thickness-scales:

2zpc < Zefe < Zac < <Z> < Zgu < Zein < 2Zgm - (8-46)

The determination of the effective thickness-scales of the two components
is indeed a delicate point. Some authors (e.g., Talbot and Arnett 1975; see
also Jog and Solomon 1984), in fact, have superficially generalized equa-
tion (8.15) found in the one-component case obtaining the wrong relation
oi = poi (22¢;), in which the effective thickness-scales are identified with the
gaussian thickness-scales. On the other hand, the tricky relation

deduced combining equations (8.33) and (8.40) does not imply the further re-
lation oy = po; (42s;), in which the effective thickness-scales are identified with
twice the exponential thickness-scales (cf. Mihalas and Binney 1981). The
reason for the existence of such a simple relation involving pg; and zg;, as ex-
pressed by equation (8.47), lies in the fact that, while the volume densities are
not separately integrable in terms of elementary or special functions, a proper
linear combination of them is elementarily integrable. The gaussian and the
(self-consistent) exponential approximations to the effective thickness-scales
of the two components are thoroughly justified only in the asymptotic regimes
in which the system can suitably be represented by a single equivalent com-
ponent or by two components with the same vertical velocity dispersions.
This difficulty is not apparent in the one-component case, where the gaus-
sian, the exponential and the effective thickness-scales are identical apart
from numerical factors [see equations (8.13), (8.14) and (8.17)].

The behaviour of the relevant thickness-scales, which play a significant
role in the discussion of the stability properties of galactic discs when finite-
thickness effects are taken into account (see Chapter 9), has been investigated
numerically in regimes of the local parameters 7 and 8. which are of astro-
physical interest, and it is shown in Figures 8.1-8.3.

It is apparent that in general the gaussian and the (self-consistent) ex-
ponential approximations to the effective thickness-scales do not work well
for both components, except in the asymptotic regimes in which the system
approaches the limiting cases mentioned above. Substantial differences with
respect to the relevant limiting cases can be ascribed to the strong gravi-
tational coupling between the two components. However, the use of such
analytical approximations is reasonably justified for each component. More
precisely, the gaussian approximation works fairly well for the cold compo-
nent, whereas the exponential approximation works fairly well for the hot
component.
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Finally, note the non-monotonic behaviour characterizing the hot com-
ponent shown in Figure 8.1, which is not intuitive at all. However, it has no
significant implications on the behaviour of the local parameters defined be-
low, whose monotonicity properties turn out to be preserved. Such a peculiar
behaviour can also be deduced, together with other qualitative properties,
by a careful analytical inspection of the relevant asymptotic regimes.

Let us now introduce the local parameters

o= E—"Yﬁzeﬁ'a ﬂzeﬁ'-— Sl (0<a<+oo, 0<’Bzeﬁ‘<1)’ (848)
Oy Zeffu

since in a flat galactic disc the surface densities are more relevant than the
volume densities. More restrictive limitations can be given by considering

the chain of inequalities (8.46):

Vﬁz <a< 7@7 :Bz < :Bzeff < \/B:: (849)

where the lower and the upper bounds are nothing but the estimates provided
by the (Self-Consistent) Exponential approximation

Zeffi ~ 22m = Q. 7ﬂz v Brew ~ 182 (8'50)

and the Gaussian approximation

Zeffi ™ Zai T Q@YY Bzy Bresr ~ V B, (8'51)
respectively. The Mixed approximation

Zeffu N 2ZEH7 Zeffc =~ Zac

/1+7B 1478
a7y :Bz 1+ zeff \/_ 1+7 (852)

which should provide more reliable and accurate estimates, as mentioned in
the previous paragraph, suggests that the local parameters o and (.. are
indeed closer to their gaussian approximations in regimes of astrophysical
interest.

The behaviour of these local parameters is shown in Figures 8.4-8.5. In
particular, in Figure 8.4 the “exact” « is compared to its gaussian and expo-
nential approximations. It is apparent that, although only the exponential
approximation is self-consistent, as expressed by equation (8.47), the gaus-
sian approximation works better in regimes of astrophysical interest. Inter-
estingly enough, note the regularization of the divergences characterizing the
cold component in the singular limit §, — 0 shown in Figure 8.2.

A simple numerical approximation, much more accurate than those con-
sidered so far, has been derived employing a rough fitting procedure in the
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ranges 0 < v < 1 and 0 < 8, < 1, which are those most relevant from an
astrophysical point of view. In the following we shall refer to it as the Fit
approximation:

o= 7/63/5 ) ﬂzeﬂ' s :Bf/s - (853)

No intuitive physical interpretation can be given for this specific power-law.
The remarkable accuracy of such a simple approximation is shown in Figure
8.6. When v = 1 and 8, < 5-1072 (these estimates are quite rough and
mutually dependent) this approximation does no more adequately represent
the real physical situation. More accurate approximations can be obtained
by sacrificing the mathematical feature which it shares with the gaussian
and the exponential approximations and makes it so attractive: it avoids the
~v-dependence of 3, .

Using the fit approximation, we have expressed all the dimensionless
quantities introduced so far (the ratios between the relevant thickness-scales
and the remaining local parameters) in terms of «, (3, and «, B..q. These
parametrizations will be used in Chapter 9 for investigating the stability of
galactic discs when finite-thickness effects are taken into account. Note that
this “inversion of coordinates” is made possible by the fact that the three
parametrizations considered are diffeomorphic, as shown in Figures 8.4-8.5.

The results are shown in Figures 8.7-8.11 for the parametrization involv-
ing o, . and in Figures 8.14-8.18 for the parametrization involving «, 3; .-
Non-monotonic features are present for both components, and even in these
cases can easily be justified by simple analytical considerations concerning
the relevant asymptotic regimes. The location and height of the correspond-
ing minima occurring at relatively low 8, or 3; s is expected to be inaccurate,
also because they imply relatively high v at fixed c.

Finally, we have performed a test to check “a posteriori” the accuracy of
the fit approximation. We have first recalculated the relevant local parame-
ters at the second step of iteration, and then we have compared these values
to those obtained at the first step of iteration. The result of this test is shown
in Figures 8.12-8.13 for the parametrization involving «, 8, and in Figures
8.19-8.20 for the parametrization involving «, f..g. In standard regimes
the agreement is satisfactory, whereas significant discrepancies occur near
the “forbidden” asymptotic regimes mentioned in the previous paragraph as
expected.
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Figure Captions

Figure 8.1. Ratio of the gaussian to the exponential thickness-scale and
ratios of the effective thickness-scale to the asymptotic thickness-scales of
the hot component as functions of the local parameters 4 and [, in regimes
of astrophysical interest. Note the non-monotonic behaviour of zegn/2%ex
with varying (. at fixed 7, which does not appear in the case of the cold
component.

Figure 8.2. Same as Figure 8.1 for the cold component.

Figure 8.3. Ratios of the global effective thickness-scale of the system to
the effective thickness-scales of the two components as functions of the local
parameters v and 3, in regimes of astrophysical interest.

Figure 8.4. Ratio between the surface densities of the two components as a
function of the local parameters v and (3, in regimes of astrophysical interest,
compared to its gaussian and (self-consistent) exponential approximations.
Note that none of such analytical approximations is particularly accurate
throughout the ranges considered.

Figure 8.5. Ratio between the effective thickness-scales of the two compo-
nents as a function of the local parameters v and 3, in regimes of astrophys-
ical interest. :

Figure 8.6. Comparison between the “exact” a and its fit approximation.
Note the remarkable accuracy of such a simple approximation throughout
the ranges considered, except for vy = 1 and 8, < 5-1072.
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Figure 8.7. Same as Figure 8.1 for the parametrization involving e, f;.

Figure 8.8. Same as Figure 8.2 for the parametrization involving o, S..
Note the non-monotonic behaviour of zegc/zec With varying f, at fixed «a,
which does not appear in the case of the parametrization involving 7, 3.

Figure 8.9. Same as Figure 8.3 for the parametrization involving a, f;.

Figure 8.10. Ratio between the volume densities of the two components
at z = 0 as a function of the local parameters a and 3, in regimes of astro-
physical interest. '

FigureA 8.11. Ratio between the effective thickness-scales of the two com-
ponents as a function of the local parameter 3,.

Figure 8.12. Result of the test performed to check “a posteriori” the
accuracy of the fit approximation to 7. Note the satisfactory agreement in
standard regimes.

Figure 8.13. Same as Figure 8.12 for 3, .¢. Significant discrepancies occur
at low (3., as expected.

Figure 8.14. Same as Figure 8.7 for the parametriza,tion involving «, B; -
Figure 8.15. Same as Figure 8.8 for the parametrization involving e, ;-
Figure 8.16. Same as Figure 8.9 for the parametrization involving a, 3, ef-

Figure 8.17. Same as Figure 8.10 for the parametrization involving a,

,Bchf-

Figure 8.18. Ratio between the vertical velocity dispersions of the two
components as a function of the local parameter 3, .g.

Figure 8.19. Same as Figure 8.12 for the parametrization involving a,

ﬂzeﬁ'-

Figure 8.20. Result of the test performed to check “a posteriori” the
accuracy of the fit approximation to 3..
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Chapter 9

The Cold Interstellar Gas
and the Stability

of Galactic Discs:
Local Finite-Thickness Effects

Summary

The results obtained in Chapter 8 as regards the vertical structure at equi-
librium of two-component galactic discs are used to investigate their local
linear stability properties. Under reasonable assumptions finite-thickness
corrections to the local dispersion relation can be expressed in terms of two
reduction factors lowering the response of the two components or, equiva-
lently, their equilibrium surface densities. Different ansatz for such reduc-
tion factors, justified by extending the analysis performed by Vandervoort
(1970a) for one-component purely stellar discs, are compared by studying the
corresponding two-fluid marginal stability curves in standard star-dominated
and peculiar gas-dominated regimes. It is found that the stabilizing role of
finite-thickness effects can partially counterbalance the destabilizing role of
the cold interstellar gas in linear regimes.

9.1 Introduction

Several attempts have already been made to estimate finite-thickness correc-
tions to the local dispersion relation in one-component galactic discs (e.g.,

Sweet and McGregor 1964; Toomre 1964, 1974; Goldreich and Lynden-Bell

148



9.1 Introduction 149

1965a,b; Vandervoort 1970a; Genkin and Safronov 1975; Bertin and Caser-
tano 1982; Yue 1982a,b,c; Balbus and Cowie 1985; Morozov and Khoperskov
1986; Peng 1988; Fridman 1989; see also Fridman and Polyachenko 1984 for a
review). While it is generally agreed that the form of the dispersion relation
remains the same provided the unperturbed surface density is multiplied by
a suitable reduction factor, different estimates of such reduction factor have
been given by the various authors.

The most reliable and complete analysis is that performed by Vander-
voort (1970a), which is local in the galactic plane and global perpendicularly
to it. The reduction factor, found by solving an eigenvalue problem, has been
shown to be very well approximated by the simple expression

1

PTG

|k|(z) = O(1), (9-1)
where k is the local radial wave-number of the perturbation and (z) is the

thickness-scale of the galactic disc. This estimate should be compared to
that naively obtained by Toomre (1964):

1 — eIkl
Rz

The aim of our calculations is just to extend the rigorous partially global
analysis carried out by Vandervoort (1970a) in such a way as to include the
cold interstellar gas as well.

The investigation performed by Yue (1982a,b,c) is also of considerable
interest, because it represents an attempt to take finite-thickness effects into
account at a fully global level. As a compromise of this extension, the k-
dependent reduction factor has been approximated by replacing the wave-
number with its characteristic local value corresponding to the maximum of
the marginal stability curve.

|k|(z) < 1. (9.2)

As regards more realistic models of galactic discs in which more (than
one) components are present, no so rigorous partially global analysis has
been performed (e.g., Shu 1968; see also: Lin 1970, Lin and Shu 1971; Van-
dervoort 1970b; Nakamura 1978; Jog and Solomon 1984a,b). Among these
attempts the contribution of Shu (1968) is surely the most important one,
while Vandervoort (1970b) refers only to a particular continuous model of
stellar populations without performing a proper stability analysis.

The basis of our investigation, as already mentioned, is the stability anal-
ysis performed by Vandervoort (1970a) in the case of one-component purely
stellar discs. The method we have employed is in fact a straightforward ex-
tension of that developed by Vandervoort (1970a) to the case in which two
components are present (the consideration of a fluid component does not
give rise to difficulties), but the resulting analysis is indeed much more com-
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plicated than in the one-component case (Romeo 1987, 1990a,b). For this
reason we shall briefly discuss the one-component case before.

9.2 Omne-Component Case

9.2.1 Derivation of the Reduction Factor

The working assumptions made by Vandervoort (1970a) are the same as
those used in the local kinetic formulation of the spiral structure theory (see
Section 6.3), except that concerning the infinitesimal thickness of the models.

The method employed to solve the Vlasov equation when z-motions are
taken into account is based on the existence of an adiabatic invariant J.,
whose approximate constancy characterizes the vertical motion of disc stars.
This is a characteristic of highly flattened galactic discs, where the frequency
of the oscillation in the z-direction is large compared to the frequency of the
epicyclic motion in the symmetry plane, which in turn is generally of the same
order as the pattern frequency of spiral waves. To the non-trivial lowest order
of approximation, assuming an unperturbed distribution function of modified
Schwarzschild type, it is found that the perturbation induced in the volume
density is

P 1 /+oo 2
= — &, —
P1 G f———zﬂ_cg - (81— (®1)) exp ( 22
plk| 1 /+°° v:
_ & — == dv,, g
ImG ool P—_27rc§ . D(®,) exp 5l dv (9.3)

where we have adopted the same notations as in Sections 6.3 and 8.2, and
(...) denotes the average over the angles conjugated to the action J,. More-
over,

A G poAlk| 2nGolk|
D= F'nu in) — iny in) ) 4
k2 — (w — m)? kinv(@1n) k? — (w — mQ)? Fnv(@1in) (9 )

1 —_ U2 Ve_zkill +m

F inv in) = 1-— N / T Tkin €OSP d > '5
kin (i) Tkin [ 2 sin(vm) Jon ¢ cos(vp) dp (9:5)

_ , 2
I/E(—u——*ﬂﬁ, whnzkz%. (9.6)

K K

In these formulae, D = 1 is just the uncorrected local dispersion relation,
Fiin, is a reduction factor which lowers the response of high radial velocity
dispersion stars, and v is the dimensionless Doppler-shifted frequency of the

spiral wave.
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In considering the Poisson equation, we shall assume that the following
ordering holds:

cr

<1, T <1, [ka=00). (9.7)

(r) [kl

Self-consistency requires

0*®,

+°° 2
~ K%, = [ (e =) dv, — @
0z? ' POA [,/271’02 ) exp ( 263) ° 1:‘
(8, v ) g
- exp | ——= | dv,,
P0A2 ,/27rc§ /~°° ' 2¢2

where A = |k|AD, (9.8)

to the same order of approximation. This wave equation is to be solved with
the boundary conditions

lim ®(r,0,2;t) =0. (9.9)

lz|>+o0

This complicated eigenvalue problem for A can be reduced to a simpler
eigenvalue problem, by observing that the effective perturbation induced in
the volume density

it

. plk|
- : 10
pl 47TGPOA Dil (9 )

gives rise to the same perturbation induced in the surface density as p; to
the order of approximation to which we are working. Thus, a reasonable
approximation to the eigenvalue problem for A can be obtained by replacing
p1 with pj:

5.2 kE*®, = —Zgz— sech? (%) o, ]411141}00 ®4(r,0,2;t) =0, (9.11)
which is a Schrodinger-type wave equation. Note, however, that this eigen-
value problem differs from the usual quantum-mechanical problem, for it con-
sists in fixing the energy of the particle (in a bound state) and in seeking the
depths of the potential well for which that energy is allowed. Nevertheless,
the solution can be obtained along a line similar to the quantum-mechanical
case (see, e.g., Landau and Lifshitz 1977).
The corresponding quantum condition is (cf. Vandervoort 1970a)

A, =(n+klA)(n+]k|A+1) (neN). (9.12)

Note that only the lowest eigenvalue is physically relevant, because all the
others do not vanish as |k|A — 0 in such a way as to recover the equation
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valid for infinitesimally thin discs, which is just equation (9.11) with the
right-hand side replaced by the term 4wGoy §(z). Therefore, imposing the
restricted quantum condition

Ao = [k|A(1+k]A) = Do=1+ kA (9.13)

and taking equation (9.4) into account, we find that finite-thickness cor-
rections to the local dispersion relation correspond to a weakening in the
response of disc stars, which can equivalently be thought of as a lowering in
their equilibrium surface density by the reduction factor

. Ored 1 1
T = = = . 9.14
o 1+ klA 1+ |k|(z) (9-14)
Therefore, the reduced surface density o..q and not ¢ is relevant to the local
stability of one-component purely stellar discs. From the form of the reduc-
tion factor it is apparent that such a simple result does no longer hold when
a global (in the galactic plane) analysis is performed.

9.2.2 Local Stability

The analysis performed by Vandervoort (1970a), strictly speaking, refers to
a single stellar component described in the framework of a kinetic approach.
However, to the order of approximation to which we are working, equation
(9.10) still holds in the case of a single fluid component and the same results
presented above apply, provided the kinetic reduction factor Fi,, defined in
equation (9.5) is replaced by the fluid reduction factor

1
1+ (mﬁ/l - Vz) ’
whose dimensionless argument involves the same scaling defined in equation

(9.6) with the radial velocity dispersion ¢, replaced by the equivalent planar
acoustic speed c:

(9.15)

Fﬁy(wﬂ) =

2

zq =k’ 2—2- . (9.16)

Taking this fact into account, in what follows we shall adopt the usual
fluid description, which is more convenient for investigating the stability
properties of galactic discs analytically and reproduces the main results al-
most completely except near the Lindblad resonances.

Taking equations (8.16) and (8.17) into account, the reduction factor
% derived in the previous subsection can conveniently be rewritten in the

dimensionless form ,

Tr=1+ o% 5, (9.17)
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where we have adopted the following scaling and parametrization:

- kg K2
A= 1k where k; = 5 G (9.18)
<
5":‘}7 (0<6<1); (9.19)
Q= — (9.20)

7Go’

@ being the well-known local stability parameter. The case ¢ = 0 represents
the limit of an infinitesimally thin system. The marginal stability curve in
the (A, @?) plane can easily be derived from its uncorrected expression, by
applying the reduction factor to each dimensionless quantity involving the
surface density:

Q* = (%) : [~(2L5 +1)+4/43262 — 438 + (1 +85) | , (9.21)

which we consider in the range 0 < <1,
Alternatively, the reduction factor can conveniently be rewritten in an-

¢
i ’
where we have adopted the same scaling defined in equation (9.18) and a
new parametrization involving

other dimensionless form:

Tr=1+ (9.22)

(= ke(z). (9.23)

The case ( = 0 represents the limit of an infinitesimally thin system. Pro-
ceeding along the same line as before, we derive the following expression for
the marginal stability curve:

_4x
T +¢

Q? (1-0-7], (9.24)
which we consider in the range 0 < A<1-¢.

The astrophysical relevance of the two parametrizations introduced above
and their mathematical implications will be clarified in Subsection 9.3.2 in
the more general case of two-component galactic discs, to which our analysis
is mainly devoted. For the moment it is sufficient to note that these two
parametrizations are so related:

(=3Q%, (9.25)
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as can be established comparing equations (9.17) and (9.22). As we shall
explain in more detail in Subsection 9.3.2, for a given 6 only the prescription

(=(=:0Q% (9.26)

involving the maximum of the marginal stability curve @ = Q*(§) is phys-
ically meaningful in a local approach, because it refers to situations charac-
terized by the same critical level of stability. The marginal stability curves
derived in the context of the two parametrizations (9.19) and (9.23) are com-
pared according to the prescription (9.26) in Figures 9.1-9.2, respectively.
Their different qualitative behaviours can be ascribed to the different physi-
cal meaning of the two parametrizations, as will be discussed extensively in
the two-component case.

9.3 Two-Component Case

9.3.1 Ansatz for the Reduction Factors

When two stellar populations are considered instead of one, the method em-
ployed by Vandervoort (1970a) to solve the Vlasov equation when z-motions
are taken into account applies separately to each component. As we have
stressed in Subsection 9.2.2, the same relation between the perturbations
induced in the volume density and in the potential can be obtained in the
framework of a fluid approach to the non-trivial lowest order of approxima-
tion, provided a proper reinterpretation of the relevant quantities is given
(cf. Shu 1968). Therefore, assuming that the ordering

@ _m__N Cru ) = _
o < T e < |k|(z) = O(1) (9.27)

holds, we find that the wave equation (9.11) is replaced by

2P A
0 1——k2@1=—<AH fi'i‘ c Bf_)(pl,

922 zlgn Por  Zigc Poc
| ‘HIE ®,(r,0,2;t) =0, where A;=|k|zesiD;. (9.28)

In analogy with the one-component case we have defined

4 G i Ze ik 2 G ik
Di: ™ PoZﬁ‘l lz-Fiu(wi)" ™ 0'[ | ZRV(wi)7 (929)

k2= (w—m0) _mz—(w——mﬂ)

where Dy + Do = 1 is just the uncorrected local dispersion relation and
the reduction factors Fi,(z:) = Fiiniv(Zkini), Faw(zai) are given by equations
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(9.5), (9.6) and (9.15), (9.16) respectively, depending on the kind of approach

employed to describe each component.

In contrast to the one-component case which is exactly soluble, for ar-
bitrary values of the local parameter 8, = c2./c2, or, equivalently, B..s =
Zesrc/ zegn the wave equation (9.28) cannot be reduced to a Fuchsian differ-
ential equation or to other well-known classes of differential equations whose
solutions are expressible in terms of elementary or special functions, even in
the gaussian and exponential asymptotic limits (see, e.g., Abramowitz and
Stegun 1970; Bender and Orszag 1978; Erdélyi 1956, 1981; Gradshteyn and
Ryzhik 1980; Morse and Feshbach 1953; Smirnov 1964).

In order to overcome such difficulties connected with the solution of this
Double-eigenvalue problem for Ay and Ac, we have developed a perturbative
method (Romeo 1987) similar but not identical to that employed in quan-
tum mechanics to solve the time-independent Schrédinger equation when the
potential is of the form U(z) = V(z)+ W (z), W(z) representing a small per-
turbation to V(z) (see, e.g., Bender and Orszag 1978). Differences between
our perturbative method and that used in quantum mechanics arise because,
in quantum-mechanical language, the energy of the particle is kept fixed and
two eigenvalues are associated with a double-term potential. This method
has further been investigated and refined by the author, but the results are
still in a preliminary form. Note that a WKBJ approach leading to a quan-
tum condition of Bohr-Sommerfeld type cannot be employed here because it
fails for small values of the quantum number (recall that we are interested
in n = 0), as can be deduced by a comparison with the one-component case.

For what follows it is sufficient to make some general remarks concerning
the wave equation (9.28), without going into the details of the perturbative
method.

The quantum condition of this double-eigenvalue problem, which deter-
mines the corrected local dispersion relation, is expected to be of the form

Q(A;, |k|zesrj, 5m) = 0. (9.30)

While it seems reasonable that also in this two-component case only the
lowest eigenvalues (n = 0) are physically relevant, it cannot be expected “a
priori” that such relation can be reduced to the particular form

Dy Tu([k|zers, @) + Do To(|k|zems, o) = 1 (9.31)

in analogy with the one-component case, where Ti(|k|zesj, @) are the reduc-
tion factors of the two components. If this is not the case, finite-thickness
corrections to the local dispersion relation cannot simply be expressed in
terms of two reduction factors, one for each component. In other words, the
local dispersion relation cannot be reduced to the form obtained in the case
of infinitesimally thin discs by a suitable scaling of the surface densities of
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the two components.

It is interesting to note in this context that the condition for the oc-
currence of a restricted quantum condition giving rise to a local dispersion
relation of the “reduced” form (9.31) can be identified with the convergence
criterion of the perturbative method, which is expected to take place only in
particular asymptotic regimes of the local parameters , 3. or equivalently

B s (Romeo 1987, and unpublished results; cf. Shu 1968).

From the considerations made above it follows that, in contrast to the one-
component case, finite-thickness corrections to the local dispersion relation
do not generally reduce to a simple scaling of the surface densities of the two
components. The use of two corresponding reduction factors can reasonably
be justified only when the two components are not strongly coupled. For the
moment we are not able to express this statement in a precise mathematical
form. In most situations of astrophysical interest, such as in the case in
which the two components are identified with the stars of the active disc
and the cold interstellar gas, this condition is rather general and is fulfilled
throughout the galactic disc, except possibly in the outermost parts where
the mass density of the cold interstellar gas becomes comparable to that of
low-velocity dispersion stars. It is to such cases that our analysis is devoted.

We shall now make some simple ansatz concerning the form of the two
reduction factors, which for the moment can only be justified at an intuitive
level. A comparison between the wave equations (9.11) and (9.28) derived in
the one-component and in the two-component cases, respectively, shows that
A and z.g; play in a sense a similar role: they are the effective thickness-
scales which allow to express the local dispersion relations in terms of the
unperturbed surface densities, introduced in place of the unperturbed vol-
ume densities in the plane. On the other hand, the different z-dependence of
the equilibrium volume densities in the two cases is a source of dissimilarity
in such a role.

This argument suggests that when the contribution of the last effect can
be neglected, or in other words when the two components are not strongly
coupled (cf. the non-restrictive condition mentioned above), the correspond-
ing reduction factors should fairly well be approximated by the Effective
ansatz

Oredi 1
% e Tgi= —— k]2 = O(1)], 9.32
S = e, (M =00, (032

where we have indicated the formal ordering which we expect to be required
by the underlying approximation.

Other reasonable ansatz involving the asymptotic thickness-scales of the
two components and characterized by a lower level of accuracy can heuristi-
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cally be justified. We shall refer to them as the Gaussian ansatz
1

ATy = —— k 1], 9.3
z G 1+ ]kIZGi “ IZGC > ] ( 3)
the Exponential ansatz
1
‘Ii ~ T = 2|k 1 , 9.34
= g (2l < 1) (030
and the Mixed ansatz
1
T Ty = ————— k 1
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1 .
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Attention must be paid not to confuse these ansatz with the homonymous
approximations introduced in Subsection 8.3.3, both involving the asymp-
totic thickness-scales of the two components but in conceptually different
contexts. Note that the orderings specified in equations (9.27) and (9.32) are
to be understood in the maximal sense (cf. maximal orderings in asymptotic
perturbation expansions), and hence do not exclude the more particular or-
derings relevant to equations (9.33)—(9.35).

As mentioned above, the effective ansatz should provide more accurate
estimates than the asymptotic ansatz (the level of accuracy is comparable
in regimes of astrophysical interest), and in any case has a wider range of
applicability. A similar level of accuracy is accomplished when the system
approaches the limiting cases in which only one component is present or two
components with the same vertical velocity dispersions can be identified,
apart from the obvious infinitesimally thin case. These asymptotic regimes
are correctly described and the corresponding limiting cases exactly repro-
duced by all the ansatz introduced above. Moreover, asymptotically our
ansatz match the reduction factors derived by Shu (1968) in such particular
regimes.

Finally, note that when a single equivalent component is taken to be
representative of the whole active disc, the Global Effective ansatz

1

‘~. ~ = —
e = TR
represents the correct prescription for estimating the corresponding reduction
factor. One should be careful, anyway, not to identify this ansatz with the
reduction factor derived by Vandervoort (1970a): (z) has a different concep-
tual meaning in the two cases [cf. equations (8.17) and (8.41), respectively].
We argue that our estimate is more accurate than that provided by Vander-
voort (1970a), just because it refers to the whole system and thus contains
implicitly also the contribution of the cold interstellar gas.

[[El(z) = 0(1)] (9.36)
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9.3.2 Local Stability

The qualitative discussion given in the previous subsection will now be quan-
tified, by studying in the framework of a fluid approach the marginal stability
curves corresponding to the ansatz introduced above. In the same spirit as in
Subsection 9.2.2 we shall introduce two parametrizations, the use of which is
suggested by their astrophysical relevance and/or mathematical convenience,
as will be explained in detail later on.

Let us first consider the two-component extension of the parametrization
(9.19). The reduction factors of the two components can be expressed in the
following general dimensionless form:

Tl = 1+Q—§‘Ql~ (9.37)
1 2A 13 .
where the functions 2l; depend on the ansatz employed:
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in the same subscript notations used for the reduction factors. In these
formulae we have adopted the same scaling and basic parametrization defined
in equations (7.7) and (7.5), (7.6) respectively, and the additional Velocity-
Dispersion parametrization ‘

O
S

=2 (0<féc<ba<l, 0<é:.<1), (9.41)

C

e

based on the parametrization involving «, 8, introduced in Subsection 8.3.3
and so related to it:

B. =0 be. (9.42)

The case § = 0 represents the limit of an infinitesimally thin system. When
the two components are identified with the stars of the active disc and the
cold interstellar gas (6 = 1, due to its collisional nature), the cases éx =
(ie., B. = 1) and & = 1 correspond to a totally ineffective vertical heating
and to an isotropic heating, respectively.

The marginal stability curve in the (X, @%) plane can be derived from its
uncorrected expression along a line similar to the one-component case:

QL XA Te XA Te
pig Elgern- (e o) reglg-(reg)] 0
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B AQ
+2XQ8[2X (1 4 B) Mo + B (e + o))

+ 4:\2Q§{45\221H9lc +2X (1 + B) (U + Ac) + [B — 2 (s + ﬂmc)]}
+ 16/—\36212{{2/_\2 (2 + 20) + A[(1+ 8) = 2 (o + )] — (o + ﬂ)}
+64X° A= (1+a)| =0, (9.43)

which we consider in the range 0 < A < 1 4+ «. From this relation a local
stability criterion can be stated in analogy with the case of one-component
systems. A function @ = Q*(«,,6), which reduces to unity when o = 0
and § = 0, can be defined in such a way that when Q3 > @Q? the system is
locally stable at all wavelengths. For Q2 < Q? we expect the system to be
locally unstable in ranges of wavelengths defined by the marginal stability
condition.

Let us now consider the two-component extension of the parametriza-
tion (9.23). The reduction factors of the two components will be evaluated
according to the Effective ansatz alone, which is expected to provide more
accurate estimates than the asymptotic ansatz. They can be expressed in
the following dimensionless form:

- - ¢
cﬁ]:H:l—i_%) ‘s”eéczl_{__il'ﬁzeﬁ; (944)
where we have adopted the same scaling and basic parametrization used

above, and the additional Wave-Number parametrization

Ze
Ca = hazen, Beer = —2 (0< foer <1), (9.45)

<eff H

based on the parametrization involving o, (3, e introduced in Subsection 8.3.3
and similar to that adopted by Shu (1968). The case (4 = 0 represents the
limit of an infinitesimally thin system, and the case §3,.¢ = 1 represents the
limit of a system in which the two components have the same scale-height
(and hence the same vertical velocity dispersions).

Proceeding along the same line as before, we derive the following expres-
sion for the marginal stability curve:

BQA[? + X (1 + B err) + (2B sl
+AVQA{N (1 +8) = A(a+8) ~ (1 +8) Gu (1 + Brea)]

+ CH[(l +ﬂ) CaBres — (O‘ +:Bﬂzeﬁ'):‘}
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1
+ GafGabeer — (a4 Bem)] } = 0, (9.46)

which we consider in the range 0 < X < 5\% , where the upper zero is given

by

;\*I* = ';'{(1 + @) = Ca (1 + Bzerr)
+ \/[(1 + Ot) - CH (]— +/Bzcﬁ')}2 - 4(:1-1 [Cﬂﬂzeﬁ' - (a 'I"ﬁzeﬁ')] }
< 1+a. (9.47)

Note that in the context of this parametrization the marginal stability curve
can degenerate into the origin of the (A, Q2) plane in the critical regimes
of the local parameters (4 and B..g corresponding to the vanishing of its
upper zero. The condition which should be satisfied for avoiding this singular
behaviour of the marginal stability curve can thus be expressed by imposing
the positivity of its upper zero:

(9.48)

- a
Mg >0 = CH<1+ﬂzeﬂ'
However, this is not a physical limitation for (4 because it corresponds to the
obvious conditions § < 400, as can be deduced comparing the dimensionless
forms of the reduction factors of the two components evaluated according to
the effective ansatz in the context of these two parametrizations. Moreover,
values of ( sufficiently close to such a critical upper bound are not consistent
with the working assumption |k|(z) = O(1) in the range of wavelengths
relevant to the marginal stability curve. Taking these considerations into
account, the same local stability criterion stated in the context of the velocity-
dispersion parametrization applies, with Q% = Q*(e, 3, (u, Bz eft)-

We shall now discuss the advantages and drawbacks inherent in these two
parametrizations.

A considerable advantage of the wave-number parametrization lies in the
fact that the equation for the marginal stability curve can be solved analyti-
cally according to the standard technique employed in the case of quadratic
algebraic equations. The equation for its stationary points can thus be given
in a relatively simple explicit form, which turns out to be extremely useful
for investigating the corrected two-phase region. Instead, when the velocity-
dispersion parametrization is adopted, the stationariness condition can only
be given in the implicit form of a system of two non-linear (quartic and cu-
bic) algebraic equations, the alternative explicit relation being of no practical

utility.
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An advantage of the velocity-dispersion parametrization which should
not be underestimated lies in the fact that, when the two components are
identified with the stars of the active disc and the cold interstellar gas, the
lower and the upper physical limitations corresponding to a totally ineffec-
tive vertical heating and to an isotropic heating of the stellar component
respectively, as derived on observational grounds and suggested by stabil-
ity considerations, can directly be included and the collisional nature of the
gaseous component can trivially be taken into account. Instead, when the
wave-number parametrization is adopted, the previous conditions do not ad-
mit any straightforward translation.

Even though the wave-number parametrization is not as physically trans-
parent as the velocity-dispersion parametrization, its use can reasonably be
justified in view of its considerable mathematical convenience. Therefore,
in order to make up for such a drawback, it is of extreme interest to study
the way in which the results obtained in the context of one of them can be
translated into corresponding results for the other.

The first step consists in noting that these two parametrizations are so
related:

1 2 du  Zefinm
L et =t (9.49)
as can be established comparing equations (9.37), (9.38) and (9.44).

Now the question arises which value of the local stability parameter should
be used in this relation. If the two-component equilibrium model is specified
(global stability analysis), there is no ambiguity: the relevant value of the
local stability parameter is that corresponding to the point where all the
other profiles are calculated. If the two-component equilibrium model is not
specified (local stability analysis), and if we want to compare the marginal
stability curves derived in the context of these two parametrizations, a natu-
ral and physically meaningful choice is represented by the Global prescription

6}1 ZeffH

14+ o 2zzy

Il

DO | bt

Ca = Cu Q* (9.50)
involving the global maximum of the marginal stability curve, which refers to
situations characterized by the same critical level of stability. Note, however,
that this is not the only reasonable choice if peculiar gas-dominated regimes
are involved: depending on the various situations, it could be of more interest
to consider one of the other stationary points of the marginal stability curve.

If the global prescription is used to relate these two parametrizations,
the corresponding marginal stability curves are characterized by a global
maximum having the same location and height. On the other hand, any
other point (X, Q%) belonging to the marginal stability curve derived in the
context of the wave-number parametrization can be viewed as belonging to
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the marginal stability curve derived in the context of the velocity-dispersion
parametrization for correspondingly larger values of the local parameters 6;:

O

—-— > &, 9.51)
2 (

as can be deduced comparing equations (9.49) and (9.50) once the mono-

tonic behaviour of B,.g with varying 3, at fixed o is taken into account.
Unfortunately, these descriptive complications cannot be avoided.

5{2&5&

As an immediate consequence of the considerations made above, it can
be shown that the wave-number parametrization exhibits some unphysical
features already suspected in the discussion concerning the upper limitation
(9.48). Here we do not want to consider this problem in detail, but just to
give a correct idea of the reason for such a singular behaviour.

For any given value of (i, however small, the upper physical limitations
§; < 1 can only be fulfilled in a part of the range of wavelengths relevant to the
marginal stability curve, because as ) approaches the lower and upper zeros
the corresponding & take arbitrarily large values [see in particular equation
(9.51) and relative discussion]. Note in this context that, as regards the
consistency with the working assumption expressed by the maximal ordering
|k|(z) = O(1), the upper bounds § = 1 roughly correspond to the onset
of a “dangerous” situation at the global maximum of the marginal stability
curve or at the gaseous peak, if present (the gaseous peak is always more
“dangerous” than the stellar peak, even in the case in which it is less high,
because it occurs at much shorter wavelengths). On the other hand, the
lower physical limitations &z > B6c > 0 do not give rise to such difficulties
when the global prescription is used.

From these considerations it follows that the marginal stability curve
derived in the context of the wave-number parametrization does not provide
a faithful representation of the local stability properties of galactic discs.

In presenting the results of the local stability analysis performed in this
chapter, we have considered the standard star-dominated and the peculiar
gas-dominated regimes already investigated in Chapter 7 in the less general
context of infinitesimally thin two-component models of galactic discs. More-
over, other regimes of the relevant local parameters which are typical in the
solar neighbourhood have been considered.

The marginal stability curves derived according to the effective ansatz in
the context of the velocity-dispersion and of the wave-number parametriza-
tions are compared in Figures 9.3-9.4, respectively. We have used the global
prescription to relate these two parametrizations, and the fit approximation
to express the equilibrium-related dimensionless quantities in terms of @ and
B.. The non-perfect agreement between the critical levels of stability char-
acterizing corresponding situations (in the sense of the global prescription)
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can be ascribed to two facts: the low accuracy of the fit approximation in
peculiar gas-dominated regimes, and the evaluation of the input values for
the wave-number parametrization only up to the second decimal digit. Apart
from these numerical effects, the qualitatively different behaviour of corre-
sponding marginal stability curves can be traced back to the fact that the
wave-number parametrization contains the local value of the stability param-
eter implicitly, as already explained.

A comparison is also made between the gaussian, the exponential and the
mixed ansatz in the context of the velocity-dispersion parametrization sup-
plemented by the fit approximation (not necessary in the exponential case).
The corresponding marginal stability curves are shown in Figures 9.5-9.7,
respectively. In addition, a comparison is made between the gaussian and
the mixed ansatz in the context of the velocity-dispersion parametrization
supplemented by the (self-consistent) exponential approximation. The cor-
responding marginal stability curves are shown in Figures 9.8-9.9, respec-
tively. The quantitative discrepancies found in Figures 9.5-9.9 can easily be
understood by taking into account the decoupling of the two components
in peculiar gas-dominated regimes, and noting that the chain of inequalities
(8.46) between the relevant thickness-scales implies the following chain of
inequalities between the reduction factors evaluated according to the various
ansatz:

Ton < Tesrm < Ton < Tglob < Tae < Tere < Fpe - (9.52)

As a result, when finite-thickness effects are taken into account, the sys-
tem tends to be more stable. More precisely, the stabilizing role of such
effects can partially counterbalance the destabilizing role of the cold inter-
stellar gas in linear regimes. As a consequence of these competing roles, in
some cases the properties of the marginal stability curve are qualitatively
different from the infinitesimally thin case.

We shall now use some qualitative arguments, based on the first step of an
iterative method for calculating @2 from its uncorrected value, to provide a
simple justification of these results. Such arguments are only indicative, and
may be quite inaccurate if the convergence of the iterative method is slow.
For what follows it is sufficient to understand the way in which the points
of the marginal stability curve relevant to the stability analysis are modified
when finite-thickness effects are taken into account. However, it should be
borne in mind that such simple arguments are indeed able to account for all
the basic properties of the marginal stability curve. Specifically, we find for
the Upper zero

)‘*P ~ %+ a¥ <1+ a; (9.53)
for the Stellar peak
< 1 1
A~§'zﬂs-2—, Q% ~ T2 +4aTy T < 1+ 4o (9.54)
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and for the Gaseous peak

2

T2 4 4aT,Te < % +da. (9.55)

B

In these formulae the reduction factors of the two components are intended
to be calculated to the non-trivial lowest order of iteration. From these
expressions it follows, in agreement with physical intuition, the decoupling of
the two components in peculiar gas-dominated regimes, as expressed by the
leading terms in the stellar and in the gaseous peaks.

Although such qualitative arguments account for the stabilization of these
two peaks and their shift toward shorter wavelengths, a more sophisticated
asymptotic expansion analysis is required to obtain more reliable estimates.
Specifically, in the context of the wave-number parametrization, we find for
the Upper zero

< 1 1
)\Né—a‘lcs§a, Q% ~

5\&4 14 (a—Ca)
[a<1; B=0(a)VB=0(a"); (u,Brer = O(a)]; (9.56)
for the Stellar peak
A=, Qrl+4(a—Cu)
a)V B =0(a); Cu,Ben = O(a)]; (9.57)

DO

[ak1; =0

and for the Gaseous peak

o, Q; o g_z_ + 4o {1 . ( 2CH + Cﬁﬂzcﬂ”)]

~~

X =

DN

;3 a+ 2CH ,B
[ < 1; B=0(?); Cu,B:en = O(c)]. (9.58)

The orderings indicated below the corresponding asymptotic expressions are
suggested by the analysis performed in the infinitesimally thin case, where
they characterize the Two-Phase region of the (8,a) plane. Note in this
context that the formal ordering involving the local parameters (x and 3. .x
is to be viewed as a maximal ordering, which at this stage we are not able
to specify more precisely.

We shall now make some simple considerations concerning the astrophys-
ical relevance of the two parametrizations introduced in this chapter. Even
though the velocity-dispersion and wave-number parametrizations cannot
easily be compared in a local stability analysis, when the two-component
equilibrium galactic model is specified and a global stability analysis is per-
formed, these two parametrizations turn out to be equivalent (mathematical
complications apart). As suggested by observations, for our galaxy the proper
input local parameters might be &(r) while for external galaxies (x(r) and
B; esr(r) might be more appropriate.



References 165

Thus, apparently, the situation seems to be more complicated for our
galaxy: the local stability analysis which should be carried out to determine
the global maximum Q?(r) of the marginal stability curve in the context of
the velocity-dispersion parametrization is considerably more difficult. If we
want to bypass this difficulty adopting the wave-number parametrization, re-
call that relating the former to the latter is also not an easy task and, indeed,
is equivalently difficult because it requires the knowledge of Q*(r). The sit-
uation would certainly be more tractable, but still complicated, if the input
profiles were c.;i(7), in which case it would be convenient to derive z.g;(r) and
to adopt the wave-number parametrization. In my opinion, since the verti-
cal and planar heating mechanisms in galactic discs are almost decoupled
as well as their relevant stability properties, the constancy of éx(r) through-
out the Galactic disc, commonly invoked to fit or deduce the relevant stellar
velocity dispersion profiles, should be viewed as a convenient observational
working assumption rather than a well-established observational constraint.
Therefore, &(r) might not be so meaningful as input parameters even for our
galaxy.

Also in the case of external galaxies there might be some interpretative
complications in finding out whether the observed zegi(r) have the same phys-
ical meaning as those inferred on theoretical grounds: generally gaussian,
exponential or sech-squared profiles are used to fit the observed brightness
distribution of the stellar component, and a constant mass-to-light ratio is
assumed to derive the corresponding volume mass density profiles. Conse-
quently, these fitting analyses are not able to discriminate between the true
zeru(7) and zeu(r) or zsa(r), so that we should carefully reinterpret all the
related local parameters and derive their correct values. Alternatively, it
could be wise to abandon the idea of performing a “strictly” correct analy-
sis, and to be content with performing an “approximately” correct analysis
in the spirit of the gaussian and (self-consistent) exponential approximations
discussed in Subsection 8.3.3 and of the homonymous ansatz discussed in
this subsection: the essential physics is not missed.

Other discussions of related topics can be found in Subsection 6.4.2 and

in Bahcall (1984), Bahcall and Casertano (1984).
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Figure Captions

Figure 9.1. One-fluid marginal stability curves in the (X, Q?) plane for
some values of the local parameter §. The case § = 0 represents the limit of
an infinitesimally thin system.

Figure 9.2. Same as Figure 9.1 for the parametrization involving (. The
input values of ¢ correspond to the input values of é§ in Figure 9.1. They
are calculated according to the prescription ¢ = %Qzﬁ discussed in the text,
which refers to situations characterized by the same critical level of stability,
with an accuracy of two decimal digits.

Figure 9.3. Two-fluid marginal stability curves in the (X, Q%) plane de-
rived evaluating the reduction factors of the two components according to
the effective ansatz for some values of the local parameters &, o and fixed
B = .01 (top), and for values of the same local parameters corresponding to
typical lower and upper bounds in the solar neighbourhood (bottom). The
fit approximation has been used to express the equilibrium-related dimen-
sionless quantities in terms of o and ;. The case é = 0 represents the limit
of an infinitesimally thin system. The cases éy = 8 and 6z = 1 correspond to
a totally ineffective vertical heating and to an isotropic heating, respectively.

Figure 9.4. Same as Figure 9.3 for the wave-number parametrization. The
input values of (;; and 3, .q correspond to the input values of §; in Figure 9.3.
They are calculated according to the global prescription discussed in the text,
which refers to situations characterized by the same critical level of stability,
with an accuracy of two decimal digits.

Figure 9.5. Same as Figure 9.3 for the gaussian ansatz.

Figure 9.6. Same as Figure 9.3 for the exponential ansatz. The fit approx-
imation has not been used in this case.

Figure 9.7. Same as Figure 9.3 for the mixed ansatz.

Figure 9.8. Same as Figure 9.5 for the (self-consistent) exponential ap-
proximation.

Figure 9.9. Same as Figure 9.7 for the (self-consistent) exponential ap-
proximation.
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Chapter 10

Concluding Remarks and
Topics for Further Investigation

The analysis performed in this thesis represents the first step of a long-term
project devoted to the study of self-regulation mechanisms, which are ex-
pected to drive the dynamical evolution of galactic discs and, in particular,
to be responsible for their secular heating. A deep understanding of the
problem which we have tackled can only be attained by a scrupulous in-
vestigation into the stability properties of galactic discs, taking into account
effects which are generally neglected for mathematical convenience but which
we have shown to be important or even crucial.

The analysis carried out in this thesis can surely be improved in the fol-
lowing two ways.

The good absolute accuracy of the fit approximation introduced in Chap-
ter 8 is satisfactory only in standard star-dominated regimes. In peculiar
gas-dominated regimes a more satisfactory relative accuracy is required. An
ezact determination of the local parameters o and 3, . would thus be wel-
come.

Work is in progress for deriving more accurate estimates of the reduc-
tion factors of the two components, by employing a perturbative method to
solve the double-eigenvalue problem for finite-thickness effects discussed in
Chapter 9.

As a practical application of the analysis carried out in this thesis, the
profiles of the local stability parameter Qy for two-component models of the
Galaxy will be derived in the framework of global spiral mode calculations
and compared to those inferred on observational grounds. In particular, this
extension might require a deep knowledge of the properties of the marginal
stability curve and of the behaviour of its global maximum in the peculiar
gas-dominated regimes characterizing the two-phase region, which at present
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is not available.

Only after that stage we could reasonably proceed to consider specific
local models of self-regulation and to formulate a global quasi-linear theory
of spiral structure, crowning our dreams.

Finally, the analysis carried out in this thesis to evaluate finite-thickness
effects in two-component galactic discs is restricted to perturbations which
propagate in the symmetry plane without affecting the vertical motion of the
stars. The role of the hose-pipe instability associated with bending (even)
waves should be estimated as well. An instability of this kind can in fact
enhance the vertical component of the stellar velocity dispersion by collective
effects (see, e.g., Kulsrud, Mark and Caruso 1972; Shlosman and Begelman
1989), and provide a welcome source of wvertical heating, as suggested in
Chapter 6.

References

Kulsrud R. M., Mark J. W.-K. and Caruso A. (1972), in JAU Coll. 10, Reidel,
Dordrecht, Lecar M. ed., p. 180 (Cambridge, UK, 1970).
Shlosman I. and Begelman M. C. (1989), Ap. J. 341, 685.






