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INTRODUCTION

1.1 Overview

The theoretical description of the Quantum Electromagnetic Field was developed in the
thirties, shortly after the birth of quantum theory. In spite of some immediate succesful
results such as the justification of the existence of photons, it is not until the construction
of the full quantum theory of fermions interacting with the electromagnetic field, i.e. QED,
that the full power of this theory became clear. Recently, a certain number of advances
toward the construction of Quantum General Relativity (GR) have been achieved [1, 2, 3,
4, 5] (for an introduction see chapter 2 and [6, 7, 8]). However, we suspect that this theory
too will express its full physical value only when a fully interacting matter + gravity
theory is constructed, and, in particular, when the realistic fermions+gravity theory is
constructed. By analogy with QED, we shall denote the quantum theory of fermions +
gravity as Quantum Gravitational Dynamics, or QGD.

There are a number of reasons for suspecting that matter couplings are needed for
clarifying the Quantum Gravity puzzle. The first of these, is that it is very difficult to
write fully gauge invariant quantities on the phase space of General Relativity, due to
diffeomorphism invariance [1, 9]. Equivalently, it is extremely difficult to imagine well-
defined experiments to be performed on the gravitational field alone. Thus, in the
pure-gravity case we are in the situation of constructing a theory, but not being sure of

what precisely should we ask to the theory — a situation quite familiar, we believe, to
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anybody working on non-perturbative quantum gravity. On the other hand, diffeomorphism-
invariant quantities, as well as realistic experiments described by those quantities, can be
constructed in a relatively simple fashion in the presence of dynamically coupled mat-
ter [9, 10, 11]. For instance, the solar system, or a binary pulsar emitting gravitational
radiation, are examples of matter + gravity systems that we understand well as far as
measurements are concerned: we know with precision which are the observables that we
can measure meaningfully. If these observables could be measured with Planck-scale sen-
sitivity, then these systems could be seen as quantum-gravity laboratories. Clearly, we

need a matter + gravity quantum theory in order to describe them theoretically.

A second reason for coupling matter to quantum gravity, is given by the peculiarity of
the non-perturbative quantum theory of gravity. In the Loop Representation, the theory
has a characteristic geometrical structure: Quantum states of gravity are classified by
Knot Theory [1], and the dynamics can be represented in a fully combinatorial-algebraic
fashion on Knot Space [5]. These features are not accidental, but rather are consequences
of diffeomorphism invariance; equivalently, they are related to the fact that the Loop Rep-
resentation is a genuine background-independent quantum field theory. Since the theory
relies on these geometrical structure, it is mandatory to check whether these structures
are lost when further fields are coupled. If so, doubts could be cast on the value of the

Loop Representation of Quantum GR.

Motivated by the considerations above, we have studied the fermions + gravity system,
or QGD. The choice of fermions is mainly motivated by realism, but also by the fact that
they are very natural objects in the Ashtekar formalism. The study of the gravitational
interaction of fermions in the light of General Relativity, has been carried out by Dirac
and Sciama [12, 13], and, more recently, by Nelson and Teitelboim [14] using a canonical
approach. The theory has been formulated in terms of Ashtekar variables in ref. [15]; we
have developed an alternative equivalent form appearing in chapter 3. This is based on
a first-order action for a self-dual connection, with non-vanishing torsion, and a soldering
form. This alternative formulation enables one to interpret the equivalence of the self-dual

theory to general relativity via the Bianchi symmetry (including torsion) of the curvature
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tensor. It makes also possible to identify an extra term in the Dirac equation as an effect of
the non-vanishing torsion and, further, it reinforces Jacobson’s proposal of picking gravity
theories with or without torsion as different real sections of the phase space of complex
general relativity. The role of boundary terms for gravity and their extension to include
fermions is the subject of chapter 4. Supersymmetry-inspired local boundary conditions
used in 1-loop quantum cosmology are studied for a model consisting of massless Fermionic

fields on a four-dimensional Euclidean flat space bounded by a three-sphere.

We then construct, in chapter 5, the quantum theory following the lines along which
the quantum theory of pure General Relativity was constructed. We define the natural
extension of the loops observables to fermions (these are given by a parallel-transport
operator associated to an open curve with fermions at its end points), study their Poisson
algebra, and define the quantum theory as a linear representation of this algebra. In
analogy with the pure-gravity case, we also show that the resulting representation can
be heuristically obtained from a naive Schrédinger-like representation by means of a (in

defined) Loop Transform.

The loop representation of QGD turns out to be a very natural extension of the pure-
gravity case, obtained by including open curves into Loop Space. This is certainly not
surprising, since the kinematics of the loop representation can be seen as the continuum
version of the Wilson-Kogut construction in lattice Yang-Mills theory [16], where fermions
are represented by the end points of open lines of flux on the lattice. In the rest of the
thesis, we will denote both open and closed curves as loops , disregarding consistency with
the ‘dictionary. It is not difficult to solve the diffeomorphism constraint on the resulting
state space. The complete classification of the solutions is given by a generalization of the
Knot Classes of the pure-gravity case — the new classes include graphs with an arbitrary
number of intersections and open ends. Thus, quantum states of QGD admit the same
kind of topological description as the states of pure Quantum GR, contrary to the fear
that this aspect of the Loop Representation could be lost in presence of matter couplings.

We view this as an encouraging result, though a result that could have been anticipated.

On the other hand, the results we obtain about the dynamics of the theory are un-
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expected and, we believe, rather surprising. The dynamics is given by the Hamiltonian
constraint, including the fermion-gravity interaction. We construct in this thesis the cor-
responding quantum operator, and its action on the loops turns out to have an extremely
simple geometrical interpretation: The Hamilonian-constraint operator essentially ”shifts”
loops along their tangent. This same simple geometrical action of the Hamiltonian con-
straint was recognized in the context of pure gravity in ref. [1]. The surprising result here is

that the very same action, extended to open loops, codes the fermions-gravity interaction.

While suggestive, the above construction is not fully satisfactory for three reasons.
First, there is a divergence in the action of the Hamiltonian operator which is difficult
to control. Second, in spite of the simplicity of the action of the Hamiltonian operator,
we have not been able to solve the corresponding quantum constraint equation. Third,
the presence of fermions does not take us completely away from the difficulties of con-
structing gauge-invariant observables: it simplifies the task of finding three-dimensional
diffeomorphism-invariant quantities, but it does not help with the problem of finding quan-
tities that commute with the Hamiltonain constraint. Thus, the actual physical content

of the theory is still quite unaccessible, as it is in pure gravity.

To face these problems, we take one further step. In chapter 6, we combine our results
on fermions with the results obtained in ref.[5]. In that paper, the idea was proposed to
unravel the dynamics of quantum gravity by coupling a scalar field, which could behave
as a clock-field, following a long tradition [11] of ideas of using matter for simplifying the
gravitational-theory analysis (see [9, 10, 17, 18, 19]). It was shown that by a suitable
gauge fixing one can express the dynamics of gravity as intrinsic evolution with respect to
the intrinsic time (or physical time) defined by the scalar field. This evolution is explicitly
generated on the state space by a Hamiltonian operator H. Here, we extend this construc-
tion to fermions. Namely, we consider the generally covariant gravity+fermions+scalar
field system, we solve with respect to the scalar field, so that the Hamiltonian constraint
is replaced by a genuine diffeomorphism-invariant Hamiltonian that evolves both gravity
and fermions in the scalar-field-clock time. We explicitly construct the quantum Hamilto-

nian operator H (as opposed to Hamiltonian-constraint operator), by making use of the
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regularization techniques on manifolds that have recently been introduced [2] in quantum
gravity. In the fermionic sector, we recover in this way the simple action described above,
namely the shift of the loops along themselves. However, now the resulting operator is
fully diffeomorphism invariant, and finite.

The resulting QGD is then given by a set of quantum states represented by graphs with
a finite number of intersections and open ends, and by an Hamiltonian operator that acts
in a simple geometrical and combinatorial fashion on these graphs. Matrix elements of this
Hamiltonian can be interpreted as first-order transition amplitudes between the graph states
in a time-dependent perturbative expansion in the clock time. The explicit computation
is complicated by the need of extracting the square root of an infinite matrix, a task we
expect could be solved order by order. Here, we only begin the explicit computation of
matrix elements of the operator.

The picture of Quantum Gravitational Dynamics that begins to emerge from this
construction has a simple and perhaps appealing general structure: A graph with two
open ends, say, represents two fermions interacting gravitationally among themselves, and
with the surrounding gravitational field. With the machinery developed in this thesis we
could (at least in principle) follow the quantum evolution of this system in clock time.

Chapter 7 contains the conclusions reached in this thesis and the problems left over
and how it may be possible to tackle them. The rest of this introduction consists of a

review of the different ideas involved in the construction of a quantum theory of gravity.

The original contributions in the present thesis are all those concerning spi.n-% Fermionic
fields. Thus, they are the contents of chapter 3, section 4.2, chapter 5 and chapter 6. As
research papers they are references [20, 21, 22].

Conventions are the same as in [7]. Unless otherwise stated, units are used in which

G =k = ¢ = 1, un-hat-ed lower-case Latin letters, a,b,¢,... = 0,1,2,3, are used as
space-time indices whereas hat-ed ones, a, 3, éy... = 0,1,2,3, are local Lorentz indices.
Upper-case Latin letters, 4,B,... = 0,1 and 4’, B’,... = 0/,1’, are two-spinor indices.

Symmetrization operations act only on two indices, those nearest to, and contained by,

the respective symbols. Thus, [a(M A’ N)b] implies antisymmetrization in a, b and sym-
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metrization in M, N.

1.2 Review of Quantum-Gravity approaches

Most conceptual problems in Quantum Gravity (QG) concern the status of our conven-
tional ideas on space, time and matter. Such problems are usually linked with the technical
problem of the compatibility of the standard geometrical ideas of General Relativity (GR)
and Quantum Theory (QT). In fact, the analysis of this compatibility may provide a
strong motivation for doing QG [23]. Thus, as remarked by Isham [24], the discussion of
geometrical and conceptual issues in the same framework is justified. We closely follow
him in this introduction.

The significance of the conceptual problems that stem from QG has no consensus.
In constructing the theory we have in our grasp only minimal requirements for it: to
reproduce i) classical General Relativity and ii) normal Quantum Theory. These should
hold in the appropriate domains. Namely, for distances and times much bigger than the
Planck length lp and time tp. Here lp = \/%E ~ 10733em ~ 10%8eV and tp = %3 ~
10~*?sec, where G is the Newton’s constant, & is Planck’s constant and ¢ the speed of
light in vacuum. On the other hand, near the Planck-length scale itself the views vary
according to the extent to which the conceptual and structural frameworks of GR and
QT are still applicable. There is the conservative view that nothing changes at such a
scale and the revolutionary one that suggests a reassessment of the traditional ideas of
spacetime and quantum matter e.g. i) Continuum concepts (Differential Geometry) are
inapplicable in this domain and ii) Penrose’s proposal [25] that QT becomes non-linear at
the Planck length in the way needed to explain the problem of the reduction of the state
vector of Quantum Mechanics.

The above minimal requirements on a QG theory are however not strong enough to
single it out. By using a covariant quantization method, particle physicists have shown
[26, 27, 28, 29, 30] that any Lorentz-invariant theory of a spin-2 massless quantum field
coupled to a conserved energy-momentum tensor will necesarily yield the same low-energy

scattering results as those obtained from the tree graphs of a weak-field perturbative
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expansion of the Einstein Lagrangian®.

The existence of this set of “equivalent” theories comes from the fact that no precise
a priori information is known about the requirements on the theory. Probably the main
consequence is that no axiomatic formulation, Wightman-type or C*-algebras [32], exists

so far as opposite to Quantum Field Theory (see however [33] for recent developments).

The above ideas already show that the properties of a QG theory are not well-defined.
This observation is supported by the many proposals that have appeared. However, it is
through such proposals that a “feeling” can be got about what physicists understand as

QG. A rough description of them is given below.

The different proposals can be divided into two groups relying on the feature of gravity
that is emphasized: the field properties of the gravitational interaction is the viewpoint
of particle physicists and the siructure of spacetime as linked with gravity that is the

approach of general relativists.

More precisely, the former group uses techniques drawn from conventional, Poincaré-
group-based Quantum Field Theory. Here, the key concepts are special relativity and
gravitons propagating in a fixed Minkowski spacetime. The minimal expectation is to
produce scattering amplitudes for gravitons and other particles that are free of irremovable
divergences, i.e. to have a perturbatively renormalizable theory or, maybe, a genuinely
finite theory. The great goal is to have this theory as a part of a general Grand Unified
Theory (GUT) in which the presence of the gravitational sector is essential.

In the early stages of this approach the expansion g,.(z) = 7., + khy(z), with & =
/167G /c? and 7, the metric in Minkowski spacetime, was used; then the field h,,, (z) was
quantised using the standard techniques drawn from relativistic quantum field theory. The

concept of gravitons as the quanta of the gravitational field came about. Background-field

'It has been shown [31] that there exists a consistent theory of a massless interacting spin-2 field that
is not generally covariant, that is, it is not possible to change the dynamical field variable in such a way
that the background flat metric disappears from the theory. This implies that the equivalence of all the

theories mentioned above is not valid in every aspect.
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methods were introduced afterwards, taking instead of the Minkowski spacetime another
solution of Einstein equations: 7, — g‘(,(,),)(w) as the background and then quantising?
Ry (z). More recently, attention has been paid to theories of superstrings and other
extended objects where massless spin-2 fields (gravitons) also appear.

Among the most important problems in this approach is the lack of a meaningful
causal structure of the theory: there is no reason why it should be the same as that of the
background space. Also, it is difficult to handle relevant cosmological issues; for example,
when studying the influence of QG on the initial spacetime singularity, the use of a classical
cosmological model (e.g. Robertson-Walker) as the background is not sufficient. This is
obvious if one thinks, as is done in this approach, that the spacetime structure is given
by the background and gravitons — as defined on this background — are the entities that

scatter between them and with the rest of the matter particles.

General relativists emphasise instead the geometrical structure of the theory and the
role played by the spacetime structure. This can be considered closer to the essence of GR
" in which the gravitational field is replaced by the geometry of the spacetime. Quantisation
adopting any special background spacetime is not accepted. If such a spacetime has a
special role it should emerge naturally as part of the structure of the theory itself and not
just put in by hand.

The minimal expectation here is to improve the understanding of the problems posed
by spacetime singularities like those associated with black holes and similar situations
in the classical theory. In particular, one expects to recover Hawking’s results on the
quantum production of particles by black holes and to extend them to tackle the problems
of the back reaction of the created particles on the background spacetime as well as the
final state of the evaporating hole. A more ambitious idea is to apply the theory to
cosmological issues, especially to study the universe as a quantum entity.

The philosophy used here is one of “back to the basics”, by relying on QT rather than

on Quantum Field Theory. The main problems are related to i) the quantum status of

2Note that now we have a Quantum field theory for huv(z) in a non-dynamical curved background

gg)u)(x). This is because the back reaction of k. (z) exerted on gilo,,)(z:) is not taken into account.
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the spacetime concepts of classical GR and ii) the extent to which conventional QT ideas

can be applied. Thus, in this approach one is more concerned with the conceptual issues

that arise in QG.

As pointed out in [24], it is guaranteed that the uncertainty will be maintained about
what one is trying to do in QG until the following question is unswered satisfactorily: is the
central problem of Quantum Gravity one of i) physics, i) mathematics or iii) philosophy?
Moreover, how severe are the conceptual difficulties? and is it possible that one needs to
get to grips with them before any serious technical development can be made? A brief

account of some problems in QG is given below.

1.2.1 Basic problems in Quantum Gravity

Here we want to stress only the main difficulties one deals with when QG is investigated.
One of the broadest of all the problems is the extent to which a quantum theory of gravity
maintains: i) the picture of spacetime as afforded by GR and ii) the interpretative and
structural frameworks of conventional QT. It is evident that this is a highly non-trivial
question and hence it is worth mentioning it even if no satisfactory answer has been given
so far. Instead, more specific problems involved in the construction of a QG theory are

next touched on.

1. Spacetime Diffeomorphism group and the definition of the observables

General Relativity equations are covariant with respect to the group Diff(M) of
diffeomorphisms of the spacetime manifold M. In a sense the role of the diffeo-
morphisms group in both classical and quantum GR is analogous to that of the
gauge group in Yang-Mills theory. For instance, in both cases the “gauge fields” are
non dynamical®. On the other hand, however, the two groups are quite different.

Diffeomorphism group moves spacetime points around whereas the transformations

*Roughly, when one extends the partial derivatives to covariant derivatives in a theory of a free matter
field say, in order to get the corresponding invariance, one arrives at a coupling between the matter fields

and the gauge fields but does not get a kinetic term for the latter.
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involved in Yang-Mills theory are made at a fixed spacetime point. A conclusion
can be arrived at that invariance under Diff (M) means that individual mathemat-
ical points in M have no intrinsic physical significance. Certainly this is related to
the question of what is an “observable” in GR [9, 10, 34]. As an example let us
consider the Riemann scalar curvature R(z) = g"(2)Ru(z). Evenif it is a scalar
function on M its value at any z € M, hence, cannot be regarded as an observable,
At the quantum level the same result follows by considering a unitary representa-
tion of Diff(M). For instance, take f € Diff(M) and U(f) in the chosen unitary
representation. The action on the quantised metric of spacetime would lead to the

transformation law:

U(f)R@)UH] = B(F (=), (1.1)

provided R(z) can be defined as a proper operator function of the metric operator
and its derivatives. Since a physical observable is defined as one that commutes
with the action of the gauge group, R(z) turns out not to be one. Alternatives
can be tried for generating observables. One is to construct genuine invariants by
integrating scalar functions of the metric of spacetime over the entire spacetime,
e.g8 S R(z)(g(m))ild“l:c; T Ruu(:c)R“”(a:)(g(a:))%d%. It is worth noting that
these are highly non-local and the corresponding quantisation will be very different
from any conventional quantum field theory. Another possibility is an old idea about
observables in GR. The basic point is that although R(z) is not an observable, R(X)
is whenever X is a point on the spacetime manifold occupied by an actual physical
particle. That is, we locate ourselves on the spacetime manifold with the help of
a material reference system. This implies to some extent, that simple GR is an
incomplete theory since the equations of motion do not involve the reference system,
for example, its energy-momentum tensor. Adoption of this approach is related
to the so-called “physical” coordinates which are used sometimes in the canonical
quantisation of gravity, that we will deal with, as well as in the treatment of the

problem of time in QG.
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The diffeomorphism-invariance problem can be seen as arising through the insis-
tence that QG should reflect the diffeomorphism-group invariance of classical GR
[1]. Three related examples make this assertion clear. First, in normal quantum

field theory the tx;vo-point function for a scalar field ¢ shows the behaviour:

W(z,) = (013910 ~ oo (12)
(z-)
with z,y approaching each other (the distance is measured with the Minkowski
metric of the background). The dependence of W(z,y) on its arguments is a direct
consequence of the invariance of the vacuum state |0) under the action of the Poincaré
group. If we require |0) to be Diff(M)-invariant, and if ¢(z) transforms as R(z) in
(1.1) then

W(z,y) = W(f(z), f(y)) V[ € Diff(M). (1.3)

However, for any two pairs of points (z,y) and (z/,y’) which are sufficiently close
to each other —that lie in a single coordinate chart e.g.— there exists a diffeomor-
phism f such that 2’ = f(z) and y' = f(y). It follows that W(z,y) is a constant
for any y in a sufficiently small neighbourhood of z. When interpreting this result
one has to note that the value ¢(z) of the scalar field at z € M is not an observ-
able in a Diff(M)-invariant theory. The conclusion here is that the short-distance
behaviour and ultraviolet divergences are likely to be different, in quantum gravity,
from quantum field theory. In addition, the regularisation method for the operators
will have to change since now there is not a background metric affording the measure

of nearness of spacetime points.

Second, Diff(M) invariance also affects functional-integral quantisation methods.
One might try to construct a theory of QG by using functional integrals, in analogy
to standard quantum field theory, to produce vacuum expectation values of a time-

ordered product of a set of fields say
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G(@1, @2y s ) = / Dlg)R(21)R(w2)... R(zn)e’ fan HOVEL. (1.4)

Here the difficulty is to recognise what “time-ordered” product means in the absence
of any background metric providing the preferred notion of spacelike and timelike®.
Even if such a background is provided there seems to be still inconsistency since the
attribute of spacelike or timelike of any pair of points can be changed one into the

other by the action of the Diff(M) group.

Third, we have the spacetime operator version of quantisation. In quantum field

theory, a scalar field 45 obeys the microcausality condition

[qg(z),qﬁ(y)] =0, V z,y spacelike separated. (1.5)

In the case of QG it has been shown [35] that for most pairs of points z,y € M
there will exist at least one Lorentzian metric with respect to which they are not

spacelike separated, and hence, as far as all metrics are summed over in a functional

integral (e.g. (1.4)), the r.h.s of (1.5) will not vanish!

2. Background structure and the problem of time

The background structure is a key feature of any approach to QG that can take
different forms. It can consist of choosing a particular mathematical element of the
theory or it can refer to the conceptual or interpretative framework assumed a pri-
ori. In the former case we have the examples of theories that take a fixed manifold
representing spacetime or in which a particular spacetime metric is considered cen-
tral. Concerning the latter case a remark is in order. It can be argued that the
conventional Copenhagen interpretation of QT assumes as part of its background a
fixed spacetime (in both topological and metric sense) and it is therefore intrinsically

incompatible with the idea of QG. Also, the very existence of such a background is

% Apparently this problem can be circumvented by using an Euclidean-time formalism in which the
functional integral is over metrics possessing a Riemannian rather than Lorentzian signature. The problem

is transformed into one of interpreting physical amplitudes from Riemann n-point functions.
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usually associated with a division of the universe into “system” and “observer”. This
split is in fact one of the current problems in Quantum Cosmology. The importance
of the understanding of the precise background structure that is assumed should be
clear by now. The issue on the compatibility of the ideas of QT and GR mentioned
at the beginning of this chapter acquires a defined form in the background structure

here discussed.

Time is not an observable in conventional quantum physics since there is not an
operator associated to it. Instead, it is treated as a background parameter, as
in classical physics, to express the evolution of a system. This applies to non-’
relativistic quantum theory, relativistic particle dynamics as well as to quantum field
theory. Hence, time can be regarded as an element of the classical background that
is essential in the Copenhagen interpretation of the theory. We can see now that, in
any particular approach to QG, the nature of the problem of time is strongly related
to the background structure assumed. As used by particle physicists, the background
Minkowski metric provides the usual notion of time of special relativity and quantum
field theory. However, it is not clear whether or not a measure of time, as given in
such an approach, is physically correct. This is an aspect of the question about the
extent to which the spacetime concepts of GR can be described adequately by a weak-
field perturbation around a Minkowski background. For instance, the behaviour of
the lightcones at the event horizon of a black hole cannot be readily reproduced in
a graviton-based picture. This criticism holds also for the generalizations in which,

instead of a Minkowskian background, another curved background is used.

In the relativists’ approach the issue of time is different. The background is now the
“three-manifold of space”. If it is non-compact the asymptotic structure might be
used to define an absolute time. In dealing with cosmological models, however, this
three-manifold is taken to be compact and the notion of time has to be extracted
from the variables involved in the description: canonical variables of gravity, matter

fields or particles added to the system.

3. A minimal length in QG
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A problem encountered when dealing with local quantum fields may be the existence
of a minimal length (or time) related to the Planck units. It has been argued recently
[36, 37, 38] that: i)geodesic distance is intrinsically bounded from below in QG and
ii) the uncertainty relations and the existence of the Schwarzschild radius, impose
lower bounds on measurements of both space and time. The latter being a result
coming from an analysis of “quantum clocks” as related to time in the canonical
quantization of gravity. Another possibility is that the minimal length may arise in
the context of a lattice approach to QG [39]. Furthermore, there are indications that

string theory may lead to a natural minimal length.

Concerning the meaning of the existence of such a minimal length one can interpret
it as a length that can be “measured” only to an accuracy of the Planck value (in
principle w.r.t. some background metric) if the underlying model of a continuum
spacetime still holds. On the other hand, it can be interpreted as a signal of the
breakdown of the continuum picture itself. Anyway, both views make more obscure
the idea of quantising gravity by quantising the point fields of classical GR. For
instance, if time cannot be measured to an accuracy greater than the Planck time,
one needs to recast the equal-time commutation relations to make them meaningful
as well as the general quantum-mechanical idea of a complete commuting algebra of

“simultaneously” measurable observables.

A more difficult matter would be the breakdown of the continuum picture. This
amounts to think of the Diff(M) invariance as only a coarse-grained feature °. This
also causes problems to the Regge-calculus approach to QG in contrast to the case

of the gauge group in Yang-Mills theories.

4. Quantum Topology

The framework of GR involves an equivalence class of pairs (M, g); the spacetime
manifold and metrics on it. However, once the classical continuum picture of space-

time has been entertained a number of possibilities may occur: in particular if ge-

5This idea is difficult to implement in practice, partly because of the absence of any finite-dimensional
approximation to the Diff (M) group.
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ometries are to be quantised (g or related objects) it may be possible to consider
the quantisation of M. This idea goes back to J.A. Wheeler [40]. It is far from
clear what this would mean. The mathematical framework of GR has the following

symbolic hierarchical form

set — topology — differential structure — Lorentzian metric

in which each step represents a structure superimposed on the previous in the chain.
A “priori” quantisation might be applied at any of these stages. To keep M (the
manifold) fixed and just quantise the metric is not an adventurous approach. There
are other possibilities, for instance, to keep the differential structure but let the man-
ifold become part of the quantum structure. S. Hawking [41, 42] and collaborators
developed this idea through the so-called “Euclidean” quantum-gravity program.
This is based on the use of path integrals over Riemannian, rather than Lorentzian,

metrics. A typical quantity is the functional

Z[boundary data] = / D[g]eﬁw Rlg)Vad'= (1.6)
o /Riem(M)
where the integral is over the set Riem(M) of all Riemannian metrics on M and
the sum is over all four-manifolds® M. The current theory of wormholes with their
possible consequences in determining the constants of nature is an application of
this idea [43, 44, 45]. The use of certain complicated manifolds M raises intriguing
possibilities, e.g. losses of information may occur: when particles fall into the event
horizon of a (virtual) black hole. An cﬁaserver external to the black hole would
interpret this as a transition from a pure state to one that is mixed, leading to
what Hawking calls the “$-matrix”: the pure—mixed analogue of a normal S-matrix

46, 47, 48].

61t is not quite clear what is the meaning of this sum since it is not possible to classify four-manifolds

in any (algorithmic) way.
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There are other alternatives not less interesting based on the quantisation of sets,
topologies and manifolds that have been developed in a number of directions [24].
However, as remarked by C. Isham himself , they are more speculative and difficult

to relate to the conventional approaches to QG and we will not discuss them here.

Finally, we want to mention other important questions appearing in the context of
QG. They are, for example, the interpretation of the role played by complex metrics
(e.g. in Asthekar’s formalism —Chapter 3), or those that are degenerate [49]. Both
have arisen in recent work on QG posing non-trivial problems to the interpretation
of the theory. The Quantum Cosmology issue contains several points which deserve
discussion. Here we just quote them: essentially, shadows are cast when the inter-
pretative framework of the quantum theory is applied to the entire universe. i)The
conventional Copenhagen interpretation of quantum theory emphasizes the role of
measurement and probability (often considered in a relative-frequency sense). How-
ever, an observer cannot be out of the universe to measure it and, also, we do not
know what an ensemble of universes is. ii) Theories of the Quantum Creation of the
Universe (QCU) recently rely on a unique quantum state based on some quantum
boundary conditions “near the big-bang”. It is not certainly kown if this is com-
patible with the standard notions of quantum theory. iii)The world around us is
remarkably classical. It is a main question how to get this feature from a totally
quantum mechanical description. iv) QCU theories involve the idea of a beginning of
time. The compatibility of such an idea with both GR and conventional QT should
be checked.

1.2.2 Approaches to Quantum Gravity

In this section we present a brief description of several of the different approaches to
tackle the quantisation of gravity. We include only the particle physicists’ schemes since a
more complete discussion of the canonical framework, used by relativists, will be given in

chapter 2. We give the schemes followed by a series of remarks concerning their conceptual
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and geometrical aspects.

1. Quantisation of GR

Detailed reviews in this respect are [50, 51, 52]. The analysis involves several points

to be discussed.
Gravitons

Gravitons are the quanta of the gravitational field. The particle is conceived of as
propagating on a background Minkowski spacetime and it is associated (like the other
elementary particles) with a specific representation of the Poincaré group labelled
by its mass m and spin s [32]. The especification of m and s for the case of the

graviton is obtained as follows:

i) t-channel exchange of a particle of mass m can give rise to a static force of the form
e ™" /72 where 7 is the distance between two particles. Thus, the usual gravitational

inverse-square law can be secured only if the graviton is massless.

ii) s cannot be half-odd since the Pauli exclusion principle makes it impossible to

construct a classical-sized field from a coherent superposition of fermions.

iii) S. Weinberg showed [28, 29] that a particle whose spin is greater than two will
not produce a static force. Furthermore, s = 1 gives a repulsive force between like
particles (e.g. spin-1 photons play this role in Electrodynamics). Hence one arrives

at the only two possibilities that s = 0 or s = 2.

Scalar fields, ¢(z) are associated with zero spin while symmetric Lorentz tensor
fields h,,(z) are associated with spin-2. They can be interpreted as corresponding
to Newtonian gravity and General Relativity respectively. According to quantum
field theory (based on special relativity) a free massless spin-2 field satisfies the field

equation

o o o af a B
h,uu,a - hu av hu ) + hpp,uu + ym (h af h a, g) = 0. (17)
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It is worth mentioning two properties of this equation: it is invariant under 2) a
redefinition of the field, hy, — hu + Anuh%,, with A # % to avoid the new fields
being traceless, and b) the gauge transformations hy, — hu, + £ + &u,p, Where

¢,(z) is an arbitrary Lorentz tensor field”.
Gravitons from GR

The derivation of the graviton field from GR is through the lowest-order approxi-

mation of the Einstein-Hilbert action in the absence of boundaries

S19) = = [ Rlg(a)lldetgliFd'z (18)

in the expansion g,.(z) = g,,(z) + khu(z). The field eq. for huv(z) is precisely
(1.7) when the lowest order in & is considered. The two properties mentioned above
concerning the field equation have an interpretation here. The first corresponds to
using g,,,(|detg|)* as the field variable instead of g,,. The second is just the effect
induced by an infinitesimal diffeomorphism of Minkowski space generated by the
vector field £.

Advantages

The advantages of adopting such a scheme can be summarised in:

1) Short-distance behaviour, operator-product expansions, regularisation and related

topics are faced conventionally due to the existence of the background metric.

2) A fixed causal structure is afforded by the background metric that allows to
define microcausal spacetime commutation relations for spacetime fields, equal-time
commutation relations for canonical fields and a good notion of time ordering for use

in a functional integral or other formalisms of coventional quantum field theories.

"This invariance is a consequence of the graviton being massless and it turns out to be necessary to

project out the lower-spin ghosts which are otherwise associated with the tensor field hpu(z)-
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3) Some of the difficulties with the Diff(M) invariance are translated into standard

problems for gauge-invariant quantum-field systems and then they can be tackled

with such methods.

4) The definition of observables can be approached by using the underlying Minkowski
structure in analysing the asymptotic behaviour of the fields. The key point is that
the gauge-group generators £ have compact support and therefore do not affect the

fields asymptotically®.

Criticisms

Concerning the geometrical and conceptual criticisms we have:

1) There is no reason to adopt the causal structure of the Minkowski metric as
the physically correct one. In fact, it has been suggested that a non-perturbative
treatment could lead to light cones that do not coincide with those provided by the

Minkowski structure. The status of the initial microcausal structure is uncertain.

2) The Minkowski background fixes also the topology of spacetime to coincide with
that of a trivial vector space. In this way any feature of classical GR involving non-
trivial topological structure is made difficult to discuss, e.g. cosmological problems,

spacetimes singularities, black holes and event horizons.

3) The expansion the graviton field comes from is a poor one in the geometrical
perspective of classical GR. For example, g,,,(z) will be a genuine metric tensor (an
invertible matrix with signature (-1,1,1,1)) only for small values of k. (z). However,
in some quantisation methods, one integrates over all values of h,,. Indeed, rather
than quantising on the space of pseudo-Riemannian metrics, we are quantising on

the tangent space to the specific 7,,.

8 Asymptotic observables played an important role in the seminal investigations of B.S. DeWitt [53, 54,

55] on the spacetime covariant approach to QG.
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Non-Renormalizability

When the corresponding expansion, for the metric in terms of the graviton field,
is inserted in the Einstein-Hilbert action (1.8) the resulting Lagrangian for h,.(z)
contains terms that are non-polynomial, derivatively-coupled and with a dimensional
coupling constant x. Each one of the last features is an indication of the perturbative
non-renormalisability of a quantum field theory in four spacetime dimensions. This
can be considered the major disease of the approach to QG?® we are discussing now.
And that is the reason why several schemes have been proposed to avert it. This is the
case, for instance, of the “R+ R?” theories in which to the Einstein-Hilbert action is
added the square of the Riemann curvature [58, 59, 60] but which have not succeded
because of problems of non-unitarity and negative-norm states [61]. Supergravity
theory [62] was another major program aimed at removing ultraviolet divergences
with the hope that the additional fermionic loops would cancel the infinities produced
by the bosonic graviton loops. The appealing feature of this approach is that it yields
a definite prediction for the fundamental matter Lagrangian to be coupled to GR.
Unfortunately, it was found the idea does not work for more than 2 loops in the case

of N = 1 supergravity and for more than 7 loops in the N = 8 case.

2. Quantisation of a theory that gives GR as its low-energy limit

The key step here is to find a system possessing a well-defined quantum theory and
which yields classical GR as a low-energy limit, even though that is not the starting

point.

Induced gravity

Here, the Einstein-Hilbert action is not fundamental, but rather an effective action

induced by the quantum structure (for a detailed account see [63]). In constructing

°In the early stages, only power-counting estimates indicated the non-renormalisability of the theory.
Due to kinematical reasons the pure-gravity one-loop graphs are finite on-shell. This is not the case when

matter is included. Finally, two-loop calculations [56, 57] explicitely showed this failure.
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the theory one starts with an action including only the usual coupling of matter
fields to the metric tensor, and the pure-gravity term arises as a counterterm from
quantised matter fields. Such term coincides with the weak-field expansion of the
Einstein-Hilbert action. Hence, the criticisms to the weak-field scheme apply to the

present scheme.
String theory

This is a more sophisticated scheme in which the graviton occurs as just one of an

infinite number of particles associated with the quantised string.

The idea that a quantum theory of gravity can be constructed starting from closed
strings comes from studies of zero-slope limit of the dual resonance model for non-

hadrons [64, 65] (an extensive review on this link is [66]).

The main idea is to quantise certain fields appearing in the Polyakov action

Slg, X] = /‘ . ¢ (0)8: X*(0)8; X" (0) (X (o)) [detg]2 d* (1.9)

-_ 1
dra

where ¢;; is a metric on the two-manifold W (the world-sheet), X : W — M are the
string fields which map W into the spacetime manifold M, and g, is a background

metric on M. The constant ¢ is related to the string tension and is assumed to be

of the order of the Planck length.

The classical system is invariant under the conformal transformations g;;(c) —
F(o)gj(0), F(o) > 0, which can hold at the quantum level only when the metric
g, satisfies an equation that is effectively the vanishing of the trace of the energy-
momentum tensor of the two-dimensional quantum field theory. Such an equation

has the form

1
0= Ry + ;o R,0gRPT + - (1.10)
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where higher-order powers and derivatives of the Riemann curvature are not written
down explicitely. Other background spacetime fields may also be introduced (e.g.

massless dilatons and 2-form fields) producing similar equations.

Conformal invariance also constrains the dimension of M to be equal to some critical
value depending on the background fields that are present or any two-dimensional

spinor fields added to the system (like in superconformal field theories).

The above field equations are the string-theory substitute for the classical equations
of GR. The metric g,, is not considered as background structure since it comes
about as a solution of the dynamical equations. However, it works like that once

calculations of quantum fluctuations around it are performed.

Several exact solutions to (1.10) have been found but probably among the most
interesting ones are those which contain spacetime singularities [49, 67, 68]. The
existence of these singular solutions may be taken as disappointing if one thinks that
quantum gravity is supposed to remove the singularities coming from the classical
framework of GR. Also, it is often claimed that the existence of a minimal length in
the theory implies that quantum amplitudes should be free of ultraviolet divergences
that plague conventional quantum field theory. However, this idea does not clarify
whether the strings can only probe to a minimal length (keeping the spacetime
continuum) or this fact shows the breakdown of the whole continuum picture. It
cannot be decided adopting the Polyakov approach since the presence of a continuum

manifold M is part of the background structure.

The main problem arises when an assessment of the singular solutions of the effec-
tive field equations is made. The next step following this line of work involves the
calculation of the quantum fluctuations around the classical background solutions;
we are back to the weak-field scenario of the old approaches to QG. Even when
many of these high-energy calculations involve non-perturbative methods for sum-
ming the various contributions, any complete, non-perturbative alternative to the
Polyakov approach is lacking. This might help to investigate the main issues in QG:

spacetime singularities, quantum topology, quantum cosmology, etc.
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3. General-Relativise Quantum Theory

Rather than starting with classical GR which is then quantised, one begins instead
with conventional quantum theory and studies the extent to which it can be made
compatible with the ideas of GR. This is very intriguing but it has not been developed
much as the quantum field theory has. Remarkable in this approach is the work of
K. Fredenhagen and R. Haag [35] who study the problem of making a quantum
theory invariant under spacetime diffeomorphisms (see also [69]). This seems to be

the reason why C.J. Isham used the term “General-Relativise”.

4. The semi-classical option

An idea of Moller [70] in the opposite extreme to the one here exposed is that
perhaps it is not necessary to quantise the gravitational field but only the matter to
which it couples. This is in general what is meant by semi-classical approach. The

induced-gravity approach mentioned above is an example.

Originally, the idea was to study the system

Gu(9) =d{¥|Tyu(matter, g)[)s, (1.11)
. d —
zh:lzhl))t = H(matter, g)|¢); (1.12)

where the source of the gravitational field is the expectation value of the energy-

momentum tensor in some special state |1);. Several remarks are in order.

1) higher powers of the Riemann curvature appear when regularisation and renor-
malisation of the energy-momentum tensor are made. These are needed because of

the quantum matter fields considered as source in the first equation [71].

2) the system seems to be intrinsically unstable [72, 73, 74, 75]; the two equations are
strongly coupled and the effective equations for the metric tensor are far more non-
linear than those of GR. The calculations used were, however, mainly of perturbative

nature and have been recently challenged [76, 77].
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3) the effective equation for |#); is non-linear, hence, the superposition principle is
lost. Whether or not this is a problem is related to one’s attitude to conventional

quantum theory.

It is not at all clear that quantising everything but the gravitational field is some-
thing inconsistent. For instance, the Bohr-Rosenfeld argument [78] showing that
the electromagnetic field should be quantised if it couples consistenly to the current
generated by the quantised matter does not apply to the gravitational case. This
can be seen as follows. The proof for electromagnetism involves taking to infinity
the ratio e/m of the electric charge e to the inertial mass m of a test particle. This
is forbidden in the gravitational case by the equivalence principle since the analogue
of e is the gravitational mass [79]. Several attempts have appeared [80, 81, 82] but

no-one has succeeded in clarifying the situation completely (see also [23]).

The semiclassical approach has recently reappeared in the form of a Born-Oppenheimer
(-WKB)approximation to QG. Again, quantum matter effectively couples to a clas-
sical gravitational field. Now, however, this is considered as an approximation to the

unknown full theory of Quantum Gravity (see [83] for a comprehensive analysis).

There is no hope the lack of any experimental evidence on the would-be quantum
aspects of gravity can be soon remediated. This makes it rather difficult to decide what
approach to follow in investigating the theory. Self-consistency and indirect consequences
on experimentally accesible phenomena will be the only guide to study it in the immediate
future. Nevertheless, the formalisms put forward by Ashtekar and Rovelli-Smolin seem to
be highly promising in the sense that they have managed to cope with some long-standing
problems of quantum gravity. It remains to be seen, however, how much we can push
the standard ideas on quantum theory and general relativity so that they can succeed at
least in some respects towards the understanding of the quantum gravity issue. Thus,
the following chapter reviews the basics of the general relativity based theory of quantum
gravity, i.e. Non-perturbative canonical gravity. The rest of the present thesis will present

results concerning the inclusion of Fermionic matter along these lines.
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NON-PERTURBATIVE CANONICAL GRAVITY

This chapter is devoted to summarize the basis which are at the root of the results
reported in this work. These basis are the canonical program for classical and quantum
gravity introduced by Bergmann, Dirac, DeWitt, Wheeler and others, and the recent
variations of it coming in the form of the Ashtekar and Rovelli-Smolin Loop approaches.
They appear under the generic name of Non-perturbative canonical gravity.

In the introductory chapter the advantages and disadvantages of the different quantum-
gravity approaches were elucidated. Now the general relativistic view is adopted. From
here on the guideline will be Non-Perturbative Canonical gravity as described below. First,
by discussing the initial-value problem for general relativity, as in [84], the constrained
character of the theory is established. That is to say, initial data are not enough to get the
“evolution in time” of gravity; the initial data must satisfy certain constraints. The explicit
form of these constraints is given together with the interpretation of the Cauchy problem
in this case, contrasting it with the standard field-theories analogue. Then, following [84],
the Hamiltonian formulation is set. Hereby geometrodynamical variables are introduced
to express the contents of general relativity. Using these variables the two constraints
of the theory: vector and scalar, are interpreted as generating spatial diffeomorphisms
and dynamics, respectively. This set of constraints are consistent, i.e. they form a closed
algebra in Dirac’s terminology. The quantisation of the theory is described following the
Dirac quantisation method for constrained systems as given in [24, 85]. The quantum

version of the constraints admits the original classical interpretation as generating three-

25
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dimensional diffeomorphisms and dynamics, respectively, of the quantum states for the
gravitational field. Indeed, physical states are defined to be those which are anihilated
by such quantum generators. Also, the main problems coming out by using this whole
framework are remarked. Among them, the lack of exact solutions to the above equations
involving the quantum constraints is taken as a strong motivation for the next two ap-
proaches to be discussed. This problem can be traced back to the one of making sense of

non-polynomial functionals of the basic canonical operators.

Having introduced the gemetrodynamical framework makes it easier to understand the
aim of the Ashtekar formalism. The idea is to define new canonical variables to describe

gravity so that quantum dynamics becomes more manageable.

To settle the formalism we start with the action functional of Samuel and Jacobson
and Smolin [86] containing a (complex) self-dual connection and a soldering form. It
is shown this action is equivalent modulo the equation of motion for the connection to
the standard Einstein-Hilbert action for pure gravity by virtue of Bianchi symmetry of
the curvature tenmsor. It is worth stressing the connection here is assumed to be torsion-
free. (This is not automatic, e.g. when spin—% fields are coupled to gravity the connection
develops a non-zero torsion, as it is shown in chapter 3). The constraints of the theory
are read off from the action just introduced. It turns out mow there are four types of
constraints: Gauss, vector, scalar and reality conditions. The first three types can be
interpreted as generators of internal rotations, three-dimensional diffeomorphisms and
dynamics, respectively. The reality conditions are necessary to pick out the real section of
the phase space of the complex theory introduced hereby corresponding to classical general
relativity. With this connection-dynamics description one gets polynomial structure for
the constraints, including the reality conditions, in the canonical variables. The transition
to quantum theory becomes slightly easier because of this. The quantization program put
forward by Ashtekar [7] is then described. In particular, the quantum Gauss constraint
is automatically solved by looking at Wilson-loop-like objects [87]. The solutions to the
quantum scalar constraint (wave functionals with support on smooth loops or containing

certain kind of kinks and intersections) found by Jacobson and Smolin [87] are commented
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upon. The remaining problems once the geometrodynamical approach is replaced by the
connection-dynamical one are stressed.

The search for solutions to the vector, or rather diffeornorphism quantum constraint,
together with the character of connection of one of the Ashtekar canonical variables, led
Rovelli and Smolin to put forward the Loop quantization framework. We briefly describe

their approach at the end of this chapter.

2.1 Initial-value formulation for General Relativity

Every theory considered to have predictive power ought to have an initial-value formula-
tion. Normally one considers spacetime as a given background and poses the problem of
determining the evolution of quantities starting with their initial values and derivatives.
The difficulty with general relativity is that spacetime itself is the quantity looked for; the
notions of “initial data” and “time evolution” acquire their familiar significance only after
one has obtained a solution of the field equations. Thus, the problem here becomes to
find what quantities should be prescribed initially so that spacetime can be determinated
from them.

In addressing the above problem we follow [84, 89]. Their approach is based on work of
Lichnerowicz [90]. The idea is to define induced fields on a spacelike hypersurface using a
four-dimensional metric and then to translate Einstein’s equations in terms of these fields.
This yields a theory of fields on a three-manifold with no reference to any four-geometry.
Four-manifold and four-metric are the end products here.

To begin with we take a Lorentzian four-manifold M , with topology £ X IR and a
metric gop, defined on it with signature (= 4,4, +). M is assumed to admit foliations into
three-manifolds ¥;, spacelike w.r.t. 9ab, each of which is diffeomporphic to X. As in (84],

they represent instants of time. The fields on 2 induced by g, which are useful for our

aim are:

o the future-directed timelike unit normal to DIFERE (S

e the positive-definite three-metric (first fundamental form) h;; = gij induced by ¢, :=

gab + MaMp. Such a g, clearly serves as a projector for tensor fields on M to X,
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e the extrinsic curvature (second fundamental form) containing information about how

¥, is embedded in (M, gab): Kab := 2" @' VinTin-

Since notation may be confusing it is worth noticing that, given that M and ¥ are two
different manifolds, tensor fields associated with them should appear with different indices.
Nevertheless, qq5, which is orthogonal in each index to n®, and Kgp, although defined on
(M, g),reduce on T to the induced three-metric h;; and extrinsic curvature K;; respectively
since they are automatically projected down. Thus, these tensor fields on (M, g) and (%, k)
are (naturally) isomorphic. Whenever appropriate, howevef, we shall still use h;; = ¢;;
rather than ¢u, to avoid any residual confusion between the projector, the four-metric
and the three-metric.
The vacuum Einstein equations

. 1
Gap i="Rap = 5 9ap’R =0 (2.1)

having 10 components get decomposed when using the above three-dimensional quantities
into 4 constraint equations and 6 dynamical equations [84, 89]. It is convenient to introduce
first the unique connection on ¥, D, which is metric-compatible (Dyh;; = 0) and torsion-
free (D;D;) f = 0). With it, four- and three-dimensional curvatures can be related (88,

89, 84]. The constraint equations are (m =1,2,3)

2Gapnon® = R+ (KM - KupK*® =0, (2.2)

Gap n%¢d = "Dy (Kam — ¢amK7) =0. (2.3)

Where R stands for the Ricci scalar formed with the three-dimensional curvature tensor
of D on X, and hence it is a function of ¢;; = h;; and its derivatives. Hence, go5 and Kgp
are restricted to satisfy (2.2) and (2.3).

To settle the evolution equations two more quantities are required. A function ¢ on M
with each of its level surfaces diffeomorphic to ¥ and the timelike future-directed vector
field t* so that t?V, ¢ = —1. In this way t® can be identified with % and its integral
curves can be interpreted as connecting a spatial point at different times (t = constant

hypersurfaces). At every hypersurface the vector field ¢* can be decomposed into normal
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and tangential components:

t* 1= Nno 4 N¢ (2.4)

with V measuring the rate at which time elapses (lapse) and N@ representing the necessary

spatial shift to remain perpendicular to the hypersurface (shift). Finally, the equations of

motion can be written as [84]

G = (Lia)ay = 2VEw + (Lgq) (2.5)

Koy = (LiK)y = ~NRap+ 2K Ky — NKKop+ D,DyN + (ENK) . (2.6)

ab
The first of them gives the sense in which K ab is interpreted as the “velocity” of Gab- In the
second use was made of (2.3). It yields the evolution of K ab- It is worth stressing they refer
only to three-dimensional fields and contain all the information of the four-dimensjonal
Einstein equations, for giving t* (i.e. N and N?) one solves (2.5)-(2.6) to get gop and hence
Jab-

We end this section with some further remarks [84]. The constraints (2.2) and (2.3)
are preserved in time, as can be seen by taking their Lie derivatives and making use of
the equations of motion (2.5) and (2.6). The inverse problem, however, is more difficult:
a set of initial data satisfying the constraints can be evolved for a finite time so as to
obtain a solution to Einstein field equations (well-posed Cauchy problem). This problem
is solved by a theorem [91] asserting that given the pair (¢,5,K;;) of positive-definite metric
¢;j and symmetric second-rank tensor field K,j on I, satisfying the constraints (2.2)-(2.3),
there exists a metric g, unique up to diffeomorphisms, with signature (—,+, +,+) on
the four-manifold ¥ x IR and an embedding ¢ : & — M such that the induced metric and
extrinsic curvature of i(X) are identified with the images under ¢ of the original ¢;; and
K;;.

Based on the ideas just described concerning the structure of the initial-value problem

for general relativity, in the next section the canonical quantisation program applied to

general relativity is reviewed.
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2.2 Geometrodynamical variables

As summarized by K. Kuchaf [85] the canonical quantisation program applied to any
classical theory can be set as follows: 1) Translate the classical theory into the Hamiltonian
formalism and identify the corresponding canonically conjugate variables. 2) Turn such
variables into operators satisfying the Dirac commutation relations, and substitute these
operators into the Hamiltonian in order to get the Schrédinger equation. 3) An inner
product should be defined that is conserved by this equation along the dynamical evolution
of the state. The existence of this product makes the space of solutions into a Hilbert space
where the probabilistic interpretation of the theory comes from.

In the case of gravity, however, there is no Hamiltonian in the usual sense but Hamilto-
nian constraints as described in the previous section. The implementation of the canonical
quantisation approach is not straightforward and, in particular, a completely satisfactory
Hilbert space has not been constructed so far. Among the most important consequences
is that a clear probabilistic interpretation of the theory is lacking. Nevertheless, it worth

understanding the sources of the difficulties for, eventually, circumventing them.

2.2.1 The Canonical Structure of Classical GR

This section can be considered as the first step, mentioned above, of the canonical quan-
tisation program. Early studies aiming to cast classical GR in a canonical form, that
is, adapting it to a Hamiltonian structure, were developed by using a specific coordinate
system for spacetime. Thus, the involved global aspects were not emphasized [92, 93, 94].
These aspects of global character turn out to be of vital importance for the analysis of topo-
logical structure in QG, e.g. changes of topology, wormholes. Also, a clear understanding
of them is convenient in carrying out the 341 foliation of spacetime. Here we do not
consider such a kind of problems and hence we use a rather standard approach as adopted
by Ashtekar [84]. Details of the geometrical, global view are given in [95, 96, 97, 98, 99]
(see also [24]).

Starting with the structure provided by the initial-value formulation discussed in sec-

tion 3.1 one readily realizes an adequate configuration variable for the canonical description
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is the three-metric h,;. The next step is of course to determine its canonically conjugate
momentum p”/. The standard procedure is to use the corresponding Lagrangian L and
define it in the form p¥ := -;%;. Since the Lagrangian, Jd3z v/=9 *R, associated to the
Einstein-Hilbert action dependes on second time derivatives of h;; this task is not straight-
forward. This can be settled by substracting a total divergence that removes the undesired

second-order time derivatives!®. Indeed, the Gauss-Codazzi equations yield the identity

> 2 0K 2 . .
dp __ N 7a¥] 2 _ f T Ly DN _ N'D.
R=R+ K K7+ K 5 N(h D;D;N ND,K) : (2.7)

Thus, using /=g = N+v/A, and adding suitable boundary terms (see chapter 4), the

Langrangian we look for is found to be
L= /d% VAN (R+KyKY - K?) . (2.8)
x
The canonical momentum conjugate to h;; is hence the weight-one tensor density
5L g g
V= — =Vh (K7 - KR . 2.9
P ( ) (2.9)
As usual, to obtain the Hamiltonian of the theory a Legendre transform has to be carried

out. In our case, bearing in mind that h;; = ¢ij, one looks for

. 3 5.
Hlg,p]:= /Ed z [(p ql,) L] . (2.10)
Neglecting surface terms the result of using the above definitions is

 Hlg,p] = /Ed% N [—h%R+h‘% (p"fpij— %pQ)] +/Ed3:c N, (-2Dp%) . (211)

which is actually a combination of the constraints (2.2)-(2.3) weighted by the lapse and
shift as can be shown using the definition of the momentum p. This is not exactly the
same in the case when ¥ is non-compact; the Hamiltonian then turns out to contain a
boundary term [84]. It should be clear at this point the relevance of the constraints for
general relativity: they are linked to the dynamics of gravity.

We go on with the analysis of the contraints. In section 2 we saw that not all pairs

(¢ij, K*7) are allowed as initial data because they must fulfil the constraints (2.2)-(2.3).

'®This problem and its solution are made clear in chapter 4, where the variational problem is studied.
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Thus, also the points (qij,pij) of the phase space T should be restricted so that only
physical states of the gravitational field are picked up. To do so one first has to recast the

constraints (2.2)-(2.3) in terms of the canonical variables ¢:;,p". They become (I =1,2,3)

Cl(q’p)

L L i 1
C(q,p) = héR—!—h ; (pjp,'j—ip?) . (2.13)

_2‘1!manmn 3 (2.12)

Several technical details can be faced more easily if these constraint maps from phase
space into covector and scalar densities are smeared out with test fields on X. For this

purpose, take

Cslg,p) = /Z Pz v Ci(g,p) , (2.14)

Cn /d% NC(q,p) - (2.15)

Il

These constraint functions generate motions in phase space. This was expected since the
Hamiltonian of the theory (¢f(2.11)) is a combination of these functions (Although for
the non-compact case the situation is more complicated the results hold the same [84]).
Indeed, calculating the transformations they generate by using the canonical pair g;j, P,

one gets [84] the vector field on the phase space T produced by Cy as

§ ]
X._:/dsaz L39);; — + (Lsp)” —= 2.16
Cs 5 [( Q)J 6q1_7 ( p) 5p,_]] ’ ( )
whereas the one associated to Cn, when restricted to the constraint surface T (2.e. the
surface defined by Ci(g,p) = 0 and C(g,p) = 0)), becomes

§ )
X . = d:3 n s T n il —_T . .
CN /:‘: z [(Equ),J S + (Ln7ap) 5P”} (2.17)

J

The geometrical interpretation of this construction is that, in light of (2.16), every vector
field v defined on X generates a one-parameter family of diffeomorphisms on . An
infinitesimal diffeomorphism acting on the fields g;;, p'7 on ¥, maps them into ¢;;+€(Lzq);;
and p + e(Lyp), respectively. This is why C; is called the diffeomorphism constraint.
On the other hand the insight one gains through (2.17) is that, on the constraint surface
T, the initial data (g;;, K*7) (or equivalently (gj, p')) “evolve in time” along the integral

curves of the timelike vector field Nn®. Thus, C(g,p) is called the Hamiltonian constraint.
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These constraints turn out to be first-class in that the Poisson bracket, with canon-

ical variables g;;,p", between any two of them gives a combination of the constraints

themselves. Explicitly

{Cs,C5} = —Cp (2.18)
{Cs,Cn} = —Cryn (2.19)
{Cn,Cn} = —Cp (2.20)

where K* := ND'M — MD'N. This algebra is sometimes Dirac algebra. It is not a
Lie algebra since (2.18)-(2.20) involve structure functions rather than structure constants.
In particular, they are not a realization of the Lie algebra of vector fields on spacetime.
This can be traced back to the necessity of using the spacetime metric to decompose the
vector field t* = Nn® + N? into lapse and shift and does not depend only on the manifold
structure of spacetime.

Physical degrees of freedom. It is possible to construct a reduced phase space, I’
by dividing out the constraint surface (C(g,p) =0, Ci(g,p) = 0) T by orbits of the fields
generated by the constraints (2.16) and (2.17). To every point of I' there are associated
two true degrees of freedom of the gravitational field. This is readily seen by first noticing
that a point in T represents twelve functions (g;;, pi ) per point of ¥. Beacuse of the four
constraints, each point of T' has associated eight functions and, by divinding out by the
four constrainf vector fields, T’ represents four functions or, equivalently, two true degrees

of freedom.

Having studied the canonical structure of GR we face in the following section its

quantisation.

2.2.2 Canonical Quantisation

Whenever constraints are involved in a canonical theory the quantisation becomes difficult.
Several possibilities may be tried. The most natural perhaps is to reduce the theory to
a true canonical form by eliminating the constraints and the corresponding Lagrange

multipliers before the quantisation is carried out. We have already faced the constraint
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equations of GR and, in fact, they cannot be solved in a closed form, the only known
alternative being the Ashtekar formalism (where the corresponding constraints have a
simpler structure, see next section) and the perturbative weak-field methods we critiziced
in chapter 1. Further unappealing reasons, given in [24, 100], make this reduction to the

true canonical form a program not easy to implement.

The possibility that has received more attention is the one in which the complete set
of variables (g;;(z), p*(z)) are given a quantum status and only at the quantum level the
problem of the constraints and other (like gauge fixing) are tackled. The first step consists

in setting the form of the canonical commutation relations:

0

[Qij(‘b'), le(ml)]
[67(2),5"(=")] = 0

[6:5(2),8°(=)] = in6*6;'8(2,a") (2.21)
Remarks in order are:

1. The Schrddinger representation is adopted since the canonical variables do not carry

any time dependence (however, see the analysis of the quantum constraints below).

2. Smeared operators should be introduced in order to avoid eventual use of the com-

ponents of ¢ and p in a specific coordinate system. That is:

0

I

[a(h), a(h)]
[6(k), (k)] = 0
[am,p0)] = i [ Kt(@)kas(z)d (2.22)

where h and k are, respectively, a tensor density and a tensor 1.

1 The third of these equations is coordinate independent since the r.h.s. is integrated over all
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3. Microcausality. The first equation in (2.21) might be interpreted as a mean to

guarantee that the points on I can be taken as spacelike separated, independently

of the spacetime structure that could be adopted.

4. Affine commutation relations. By insisting in the metric character of ¢ij(z) it should
be investigated whether there exists the corresponding quantum operator and if it is
compatible with the above canonical commutation relations. It has been argued that
a positive-definite smeared operator may correspond to the notion of the classical
metric ¢;; and even more there are suggestions that certain degeneracy should be
allowed [49, 101, 102, 103}, i.e. the action of the smeared operator on non-zero vectors
can give zero. Furthermore, it turns out to be case that there is no compatibility of
the semi-definite smeared operator and the canonical commutation relation. Affine

commutation relations should replace the canonical ones!? [105].

2.2.3 Treatment of the constraints a la Dirac

What Dirac demands concerning the quantisation of theories with first-class constraints
is that such constraints should be imposed on the physical states [106]. That is to say, at
the quantum level the constraints should pick out only those states which are physically

meaningful, i.e. those annihilated by the quantum constraint operators. In the present

case we have:

Cl&,p)E = 0 (2.23)
C(4,p)T = 0 (2.24)
They are the quantum analogue of the classical result about the equivalence of the

constraints and dynamical equation, i.e., they are the whole technical content of the theory

of QG. This can be related also to the following result. The canonical Hamiltonian (2.11)

"?The analogue is a particle restricted to move in R™. Canonical commutation relations, [¢,5] =
ik, imply the spectrum of £ is R. However, compatibility is obtained by replacing the conventional

commutation relation by the affine algebra: [#,5] = ik [104].
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is taken with N and N regarded as c-number functions in constructing the “Schrédinger

equation”:

d -~ —
i %, = H[N, N]¥, (2.25)

which by virtue of (2.24) implies tha ¥, is time independent. Also, it seems to be mean-
ingless to talk about “Schrédinger” or “Heisenberg” picture since matrix elements between
physical states in both pictures will coincide. These aspects of QG can be traced back
to the absence of any intrinsic definition of “time” in GR. We have not gauge-fixed the
theory and hence no such coordinate has been selected.

The problems arising when the implementation of Dirac scheme is attempted may
be very severe. Probably among the most difficult ones is whether and to what extent

the classical Poisson-algebra structure (2.20) can be translated into the quantum theory.

Other important issues are:

1. Regularisation and renormalisation of the operators constraints (2.12)-(2.13). The
origin of these problem is the non-linearity of these equations in the field operators
expressed also as products evaluated at the same point. This is the analogue of the

ultraviolet divergence problem in the quantum field theory.

2. Operator ordering. Its origin is the appearance of product operators in the con-

straints and, more precisely,

(2) e.g. it has to be decided where to place §;;(z) on the r.h.s. of the third equation
in (2.20). A restriction here can be set in that no further constraints on the

physical state vectors are desired to be generated by the commutators of the

given first-class constraints.

(b) the Hermiticity or non-Hermiticity of the constraints [107, 108]. The non-
hermiticity option comes about because of the absence of a well-established
relation between the Hilbert-space structure carrying the representation of the
canonical (or affine) algebra and the one that should be impésed on the physical

states (i.e. those satisfying tha constraints).
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(c) singular operator products in the constraints seem to imply that any ordering

is likely to be ambiguous [109).

(d) an anomaly should, possibly, be present in the theory as a genuine Planck-
length effect. The mathematical problem here is that, for example, not much

is known about central extension of the Dirac algebra.

3. The lack of a clear definition of the inmer product on the physical states to be
constructed from the Hilbert-space structure on the original space M that carries

the representation of the canonical, or affine, commutation relations.

4. The recovering of the Diff(M) group. This is the converse problem of the translation

of the Diff (M) invariance into the Dirac algebra in the canonical decomposition [101].

2.2.4 The meaning of the quantum constraints

Our aim here is to extract information from the quantum constraints since, as we have
seen, they provide the whole dynamical content of QG. We will see that the quantum
version of the vector constraints imposes a structure on the domain of the state vectors of
QG leading to the notion of superspace, while the classical Hamiltonian constraint becomes
the so-called Wheeler-DeWitt equation which provides us with the, more properly said,
dynamics of gravity.

To achieve the above goals, however, the introduction of a given representation for the
canonical algebra is needed. It is natural to adopt the analogue of the quantum operators

associated to the canonically conjugate variables in standard quantum mechanics, i.e.

(hij(z)®)[h] = hij(z)¥[R] and

(=) W)k = i), (2.26)

6hk1(:l:)

il

for the quantum operators § and p. They are commonly used in spite of the following:

1. the incompatibility of the positiveness (or semi-positiveness) of the classical Rieman-

nian metric with the above canonical algebra implies that the states functionals do
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not have domain Riem(X). This is possible only if the commutation relations are

the affine ones.

2. the measure problem. There do not exist Lebesgue measures on the space Riem(X)

of Riemannian metrics with which an Hermitian inner product between state vectors

can be defined 13.

3. distributional metrics are expected to be the objects around which any measure
can be concentrated. However, Riem(X) is not a vector space and hence its dual
space cannot be deﬁned (at least conventionally). The above distributions could
live in such a dual space. On the other hand, affine commutation relations do allow
an appropriate distribution of a distributional metric and, furthermore, they admit
representations in which state vectors are concentrated on distributional analogues
of degenerate metrics, as well as some in which the state vector has an internal index

analogously to the spin of a relativistic particle [101, 105].

Now we face the interpretation of the quantum momentum-constraint. We expect,
as in the classical case, to have the C/(£) as the generator of Diff(¥). While insisting in
keeping at quantum level the structure of the classical algebra of the C (f )'s (i.e. Diff(%)
algebra) operator-ordering problems come about.

One way to avoid these problems is to force the C(£)'s generators to form a Hermitian
representation of the algebra of Diff(X). Thus it is assumed that the quantum theory carry

a unitary representation of Diff(¥) and the quantum momentum constraint is translated

into :

(D(£)¥9)[A] = [R] (2.27)

"“There is the possibility of introducing an infinite-dimensional weighted measure which requires

(37 (z)T)[h] = _ihTff(‘ﬁ[h] + 2p(h)¥[h] where p(h) is a function that compensates for the weight fac-
tor in the measure [24].

Y“Roughly, D(f) is an element of the group Diff(Z) and then it can be obtained by exponentiating the
generators C(£) belonging to the Lie algebra of Diff(Z). Since (C(£)¥)[k] = 0 we get (eé(g)‘ll)[h] = U[h]
the desired result.

3
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where D(f) is a unitary operator representing f € Diff (X). On the other hand, the natural

representation of the operators ¢ and p (2.26) suggests the action of D(f) on ¥ as:

(D(f)¥)[h] = ¥[f h] (2.28)

where f*h is the usual pull-back of A by the diffeomorphism f : ¥ — ¥. From the above

two aspects of the action of D(f) on ¥ one is led to the conclusion that

T[f k] = ¥[h] Vf € Diff(2), h € Riem(X). (2.29)

We see the group Diff(Z) acts on the space Riem(X) by sending A to f~h, both elements
of Riem(X), through f € Diff(Z). Modulo metrics with isometry groups 13, one can think
of Riem(X) as a fibre bundle with base space Riem(X)/Diff(X) and fibres the orbits of
Diff(%).

The base space Riem(X)/Diff() of “inequivalent Riemannian metrics” under diffeo-
morphisms was called superspace by J.A.Wheeler [40, 110]. The quantum vector constraint
in its version (2.29) says that the state functional ¥ is constant on the orbits of Diff(%)

and hence it is a function on superspace, i.e. superspace is the true domain space of the

QG state vectors.

Among the cautionary remarks once the above view is adopted are:

'i) f-states may be present due to the possible existence of non-trivial transformations
under large diffeomorphism which cannot be continuously connected to the identity. We

have discussed here only infinitesimal transformations [111, 112].
ii) (2.28) contains a unitary action only if the Hilbert-space measure on the domain
space is itself a Diff (¥) invariant, which probably does not exist. The only alternatives are

to modify the structure of (2.28) and hence the idea that the state functional is constant
on the Diff(X) orbits does not hold anymore.

'3 This problem can be circumvented by considering only those diffeomnorphisms that leave fixed some

particular frame at a base point in X.
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iii) If the domain space of the state vectors is a space of distributional metrics, the

action of Diff(Z) on it would change. The bundle picture is no longer correct.

The analysis of the quantum Hamiltonian constraint is not as straightforward as in the
case of the quantum vector constraint. Essentially, the implicit A factor in the r.h.s. of
(2.20) spoils the Lie-algebra structure and as a. consequence the operator-ordering problem
is far more severe. By choosing the simple ordering in which the p*’s are always to the

right of the ¢;; = h;j the quantum Hamiltonian constraint becomes

52 @
8hi; by

h)l/?

K2

— B’k Gijri(h) [A] - (

R(W)[R] =0 (2.30)

where G,;ri(h) = ﬁ (hikhﬂ + hihjr — h,-jhk,) They are the Wheeler-DeWitt equation
(WDW) and the “metric” on Riem(Z), respectively [54].

We now briefly describe the main problems concerning the WDW equation. Their
relevance coming from the fact that the whole canonical-quantisation program has been

reduced to this equation.

Factor ordering The WDW equation was obtained by using a specific ordering inspired
by simplicity. Other orderings are possible, for example one commonly used is to
express the “kinetic term” (the one containing functional derivatives) as a covariant
functional Laplacian taking the DeWitt metric as the underlying structure. The
appealing property of this ordering is the invariance under “coordinate transforma-
tions” on Riem(X). From our point of view the most relevant aspect to be taken

into account when deciding the operator ordering, is whether the ¢ (z) are expected

to be Hermitian.

Regularization The second-order functional derivative taken at the same spatial point
when acting on some state functionals is likely to produce §3(0) singularities. A

regularization procedure will be eventually required.
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Time and time-evolution These concepts should be introduced in some way. The key
idea is to consider time as an internal property of the gravitational system, probably

including matter, instead of taking it as an external parameter of the universe.

Solutions of WDW The immediate plan of attack may be to handle it by using the
notions on functional differential equations. The validity of this view depends on
the interpretation of the constraint equation C (z)¥ = 0. If it is considered to be
a self-adjoint functional differential equation with eigenvector ¥ corresponding to
the zero eigenvalue, some sort of boundary conditions should be imposed on U, as
in conventional eigenfunction problems. The theory, however, does not give much
information about it. In addition, problems due to the zero eigenvalue lead to the
suggestion that a renormalisation of the Wheeler-DeWitt operator is required [24].
Other ways to look for solutions of WDW are the expansion in 1 /G corresponding
to perturbation theory where the coupling constant is the coefficient in front of
R(h) in WDW and the WKB approximation, which has been used in tackling the
problem of time. Another possibility exists that has become the most popular way
of studying the WDW. This is the minisuperspace technique, it involves freezing all
but a finite number of the infinite degrees of freedom in Riem(Z) and quantising
the small number that remain. WDW becomes a second-order partial differential
equation that can be studied using the conventional methods of differential equations.
Such an approach is mainly used in the studies of quantum cosmology since the finite
number of degrees of freedom can be chosen in a way that is adapted to the classical
models of cosmology. Note that there is no way of estimating the effect of the infinite
degrees of freedom that are dropped and thus any conclusion coming from this
approach should be handled carefully. Remarkable, however, is the claimed utility

of the minisuperspace models in the discussion of the problem of time, interpretation

of the state vector and related issues.

We end this review of methods for solving WDW by talking about the use of func-

tional integrals. The motivation is traced back to the result of ordinary quantum me-
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chanics that a solution of the time-dependent Schrédinger equation ih0% /8t = HT

can be given as

Y(z,t) = /Dz[s]eif:o L(s)de (2.31)

where the path integral is over paths that end at the point z of the path at the
initial time ¢o. The case of gravity has been studied in detail by C. Teitelboim (113,
114, 115], and has been recently used in the Hartle-Hawking approach to quantum
cosmology [116] in which the Euclidian-time version of the Einstein action is adopted.
It was formally shown that the state function constructed in this form is in fact a
solution of WDW [117, 118]. It is worth mentioning that all the above proposals
provide approximate solutions in that the full WDW is not solved. The situation

seems to be improved by the introduction of the Ashtekar variables (cf next section).

We end this section by noting the advantages of a canonical approach to QG. Since
canonical QG is discussed in an operator-based framework, the problems involved appear
more explicitly than in the conventional methods of quantisation of gravity mentioned in
chapter 1. In the canonical framework several techniques are background-metric indepen-
dent. This leads to the possibility of developing a non-perturbative analysis of QG and
therefore the problems of quantum cosmology, spacetime singularities and related issues
may be faced in a more suitable way. Also, as we have seen, in this approach a strong
emphasis is made on the geometrical structure of the spacetime as viewed in GR, and
thus, the extent to which it holds in the quantum theory can be addressed as well as other

deep conceptual problems like the one of “time”.

2.3 Ashtekar variables

Apart from the severe conceptual problems mentioned in chapter 1, progress in the canon-
ical approach to gravity has been so far slowed down by the highly non-trivial structure
of the field equations when expressed in the canonical variables (q,'j,pk’), Recently, A.

Ashtekar introduced a set of new variables which seem to have improved the situation
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(102, 119]. In terms of the Ashtekar variables all the equations of the theory become
polynomial (at most quartic). Also, when these variables are used, a relation between
Yang-Mills theory and GR is revealed. This relation allows an exchange of techniques
between them. These two features, polynomiality of the constraints and Yang-Mills-like
structure, hold even in the cases where one adds to the gravity system a non-zero cos-

mological constant, matter fields (scalars, spinors or Yang-Mills fields) or considers the

supersymmetric extension of the theory [15, 120, 121].

There exist several equivalent approaches to arrive at the Ashtekar variables each one
stressing different aspects of the construction (see e.g. [7] and references therein). Since
we will be using the same kind of ideas in the next chapter to couple Fermionic fields to

gravity, within this framework we here describe the work of Jacobson and Smolin [86].

2.3.1 Canonical variables

The aim here is to see how Ashtekar variables come out from a four-dimensional action

rather than by a canonical transformation in the phase space of GR.

One of the Ashtekar variables is a connection, thus, it is natural to start with the

first-order form of the Palatini-like tetrad action

Sle,w] = / iz e et MR (w), (2.32)

where e is the determinant of the tetrad. It is known that every rank-two antisymmmetric
tensor can be decomposed into self-dual and anti-self-dual parts [122]. Decomposing the

connection w in this way leads to the curvature decomposition
Ropap("w + 7w) = By (fw) + Ry (") (2.33)
with %w the self-dual and anti-self-dual parts of w, defined by (cf Appendix A)

= —;—(w:g:i*w) (2.34)

* being the Hodge duality operator acting upon the local Lorentz indices &, b. It is worth

noticing this decomposition of the curvature is only possible in four dimensions because
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only there the Hodge dual of a two-form is a two-form. Consider the action
Sle,fw] = /d4m e e ebéRabd5(+w) . (2.35)

Such an action is complex with real part (2.32), and, at first, one may think such an action
produces too many equations of motion for the fields. This is not the case as it is shown
next. The variation w.r.t. Tw yields the result that tw =" w(e), i.e. it is the self-dual part
of the tetrad connection w(e). Using this result one gets

1 1
+Rabdl}(+w) = ERabéb(w) — 5 * Rabdé(w) B (2.36)

Now the product e - *R appearing in (2.35) becomes, by virtue of the Bianchi symmetry

of the curvature tensor,

e x R, .i(w(e)) = gebbeéé CdRabéd =5 b dRal}c‘ci =0. (2.37)

Hence, modulo the equation of motion for *w, (2.35) is exactly half the standard Einstein-

Hilbert action for GR (up to boundary terms, cf chapter 4):
Sle,Tw] = %S[e,w(e)] . (2.38)

It will be shown in chapter 3 this result also holds, with suitable generalizations, when
Fermionic fields are coupled to gravity. In this argument no use was made of complex
conjugation. Thus, the same reasoning applies to complex relativity where both e,w are
complex.

‘We present here the results of [86] using two-component spinor notation. There are at
least two reasons to work with spinors when Ashtekar variables are studied. First, since
one deals only with the self-dual part of the connection spinors are naturally adapted
to do so (cf[122]). Second, when coupling Fermionic fields to gravity spinors become a
necessary ingredient.

Local Lorentz indices @,b,... are replaced by pairs of unprimed and primed indices
AA’ BB',... associated to an internal two-complex-dimensional vector space W and its
complex conjugate W. These internal indices become spinor indices via one of the dynam-

adA!

ical variables: o , the soldering-form. A non-degenerate antisymmetric two-form e4p
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is fixed and together with its inverse e? and complex conjugates €, pr, e4'B’ are used to
lower and raise spinor indices (cf Appendix A and [122]).
An action will be formed with the quantities D and ¢®*%’. The former isa SL(2,C)

connection defined only to act on unprimed indices'® by

Daeap = 0. (2.39)

It is convenient to introduce a connection one-form Aypc through

DUA.4 = 8aAA + Aa]\[NAN 9 (240)

which by virtue of (2.39) leads to the result that Aupc is traceless (or, equivalently,
symmetric in BC), having then associated twelve complex degrees of freedom. Such an
Aqpc contains the same information as self-dual connection *w due to the correspondence
(cf[122]) fw_ ;. < Aapcepic, since the identification of BB',CC' with b, ¢ can be made
with a fixed map known as Infeld-Van der Waerden'symbols (cf Appendix A): Ingl.

The latter variable o®**' is an invertible linear map between the four-dimensional
space of (1,1) spinors (i.e. those belonging to W x W) and the (complexified) tangent

space. It is the spinor version of the tetrads: o244’ — T4 ¢ g the metric is given b
P P & g g y

g%t = gadd'gh 4.4+ For real relativity it is required to be imaginary 17 244’ = _gadd’ 14
yields 16 complex or real degrees of freedom respectively. The determinant of o®*4' is a
density of weight minus one whose inverse is denoted o. Finally, according to the analysis
at the beginning of this section and the language just settled down, a convenient action

to adopt is [86]

S[O'G"HI, Ach] = /cf‘m o O'G%I/O'blwul Fooarn (2.41)

where 3 Fopnrn = O Agary + Anrl Aepn-
This is indeed an action for general relativity in light of the correspondence with the
Palatini-like tetrad action (2.32) and the correspondence Fopnrnearnt < TRopmn. In fact

this is done explicitly in [86], here, however, we just mention that the variation of the

' Although it is possible to extend it to act on spacetime indices it turns out not to be necessary [86].

'"This is so due to the signature we chose to work with: (—,+, +, +);cf Appendix A of [7].
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action (2.41) w.r.t. independent variables o4 Aype yields two equations of motion,
the first of which tells us D is the self-dual part of the unique torsion-free “o-compatible”
connection (say Vo8B = 0) whereas the second is the spinorial form of the Einstein
equations for pure gravity [86].

Similarly to the case of geometrodynamics above one should develop a 3+1 decompo-
sition of the action and identify convenient canonical variables: the Ashtekar variables.
Since this is carried out in detail in chapter 3 for the Einstein-Dirac system we limit
ourselves to quote the main results for pure gravity.

Following the lines of the geometrodynamical approach it is assumed that the spacetime
manifold M admits a foliation through three-dimensional hypersurfaces. A vector field
t® = Nn® 4+ N¢ is introduced besides the time ¢ defined by t*V,t = —1 and so on. The

action (2.41) becomes

Ssp = /dt @z {iv2 tr (% %As) + (t- A)PCGpe + N°Vo + §5}  (2.42)
i

Gap = —iV2 3Db35'b_43 (2.43)

Vo = ~iv2ur(% Fa) (2.44)

§ = —u(%" % Fa) (2.45)

Because of their structure G,;B,v'a, ? are called the Gauss, vector and scalar constraints
of the theory respectively. The factors in front of them in (2.42) are Lagrange multipliers
due to the absence of their time derivatives in the action. The canonical variables can be
read off from the structure [dt [pg — H(p, g)] of (2.42): the set 4,5¢,%" 45 is a canonical
pair. They are the Ashtekar variables in spinor form [86, 102]; Ashtekar used another way
to arrive to them though. The symplectic structure for the phase space I' formed by the

fields 4, % is given thus by
a 1
{%a6(@)2 4P W)} = -5 8°(2,9) 80,057 (2.46)

besides the trivial result that {34,pc,>4spE} = {35'mA[N,3&"RS} = 0. Using this sym-

plectic structure and smearing the constraints

GT = /z‘:dsiﬂ TBA BDa 35'(18.-1 (2.47)



TWO: Non-perturbative Canonical Gravity 47

D; = / &3z vitr (3EbFab — Aa?’Db:”&b) (2.48)
PN

Hy = /2 / @z Nt (5° %" Fuy) (2.49)
~ z

With T4B, v, IV test flelds with compact support, D has been chosen as a combination

of G4p and V, since in this way it acquires a direct significance as the generator of small

diffeomorphisms on X. The action of the constraints on the phase-space variables is given

by:

{G’T,?’AGBC} = —D,TF, - (2.50)
(or,%°5) = 1,097, 251)
{D,;.,BAGBC} = LAA5 (2.52)
{05%"F} = %" (2.53)
{Hy 405} = "%[ﬂs&'b’f’ab}; (2:54)
{#p,%" 7} = -°p, (1335["3&”])‘43 (2.55)

That is to say, G generates infinitesimal canonical transformations which are infinitesimal

gauge rotations on spinor indices, and D generates diffeomorphisms. The scalar constraint

generates “dynamics” on the constraint surface T (cf 7).

To conclude this section we just stress the following [7]

The lapse appearing above is a density of weight minus one. This is natural since
the scalar constraint is a density of weight two. Integrals of densities of weight one

can be carried out with no reference to a specific volume element.

The constraints are polynomial in the canonical variables and, furthermore, the

inverse of %°, p does not appear anywhere; degeneracies of the three-metric q =

—tr (3‘ 3"1) can be allowed.

The constraints turn out to form a first-class set in that the Poisson bracket between
any two of them is a linear combination of constraints. However, because the coeffi-
cients are functions of the canonical variables they do not form a proper Lie algebra

(cfnext chapter and [7] for more details).
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e The phase space of general relativity in terms of the Ashtekar variables is identical
to that of the complex Yang-Mills theory with internal group SU(2): the Gauss-
law constraint appears to be the same in both theories. General relativity has the
additional vector and scalar constraints. This is why it is often stated the constraint

surface of general relativity is embedded in the Yang-Mills constraint surface.

o Reality Conditions. Since the original action (2.41) is complex the Hamiltonian
coming from it is also complex. In other words, even though % can be Hermitian
initially so that a three-metric built out of it is real, under evolution it will not be
so necessarily. This can be solved by imposing reality conditions on the canonical
variables so that the Hermitian character of % is preserved and Lorentzian general
relativity is projected out of the complexified phase space of general relativity. Such

conditions are [7]

(3&)}“’—_—3&“ (Aag_rag)*z_(Aag_rag). (2.56)

Here T', P is the unique torsion-free intrinsic three-dimensional connection compati-
ble with %%, g on . These conditions are more easily understood taking into account
that A; =T'(o); — j—éKjIUI, where Kj; is the extrinsic curvature of X. Roughly, the
reality of the extrinsic curvature ensures the reality of the “time” derivative of the
three-metric, thus, (2.56) implements how to pick out the real-relativity section of
the phase space of complex GR. Obviusly (2.56) is not polynomial when translated,
as they are, into the Ashtekar variables, nevertheless, Ashtekar et alhave found
an equivalent form of reality conditions which are indeed polynomial in the basic

canonical variables 34;,% [7, 15] (see also [123]).

To discuss the quantisation based on the Ashtekar variables we have found it easier to
set first the program to be applied and then summarize the advances and problems left in

performing it. This is done next.
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2.3.2 Ashtekar Quantisation Program

We outline the quantisation program given by A. Ashtekar [124]. The scheme will be
given by insisting on the canonical algebra and the connection representation even when
there exist alternatives. For instance, one of them is the 7-algebra and its loop repre-
sentation that will be considered in the next section. For the sake of simplicity we use
the isomorphism between SU(2) spinors and triads [7]. In the discussion of the loop for-
mulation we shall come back to spinor notation. Take the Pauli matrices divided by 1/2:
7k, A,B=1,2 and let

1

A = AinE, (2.57)
B

(2.58)

Let us set the program in the following steps.

1. Introduce operator-valued distributions, E"‘i(w) and Abj(z), subject to the canonical

commutation relations

Aai(“’%Abj(y) = 0,
Ea(e), B%(y)| = o,
l*:';“,-(:c), 14;](3/) = k&Y 6z-j 63(z,y). (2.59)

2. On the algebra generated by these operators, introduce a x-operation by Tequiring
that Eal be its own *-adjoint as well as its “time derivative”, yielded by the commu-
tator with the Hamiltonian, be its own *-adjoint. Thus, the reality conditions are

incorporated at the algebraic level.

3. Choose a representation for the algebra. The most convenient choice is to use for
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6.

states holomorphic functions!® of the complex connection Abj , Tepresent Ahbj as a
multiplication operator and E:“i as a differential operator, hs.éTa"' At this stage the
s-relations are ignored. This is so because to incorporate such relations requires
the availability of a Hermitian inner product. An unambiguous inner product is
expected to exist only on physical states and thus it is appropriate to postpone the
incorporation of these ¢ quantum reality” conditions until after the physical states

have been extracted.

. Solve the quantum constraints. Since at the classical level the constraints involve

only Abj and Eai and not their complex conjugates, we can continue avoiding to use
the *-relations in the algebra. The space of solutions is the complex vector space of
physical states. The operators of interest will be those in our algebra that map this

space to itself.

. On this space of physical states, introduce a Hermitian inner preduct that now

incorporates the x-relations. The operators E’”, and its “time derivative” themselves
will not be observables. Nevertheless, the *-relations of the initial algebra induce
x-relations on the space of observables, which maps the space of physical states onto
itself, and these relations are to be faithfully reflected in the Hermitian adjointness
relations by the appropriate choice of the inner product. Thus, in the quantum
theory, the secondary constraints (Gauss,vector and scalar) and the reality conditions
are not on the same footing; the former determine the space of physical states (step
4) while the latter constrains the inner product on this space. In practice, the
introduction of an inner product may require that we isolate “time” from among

the various components of Abj and interpret the scalar constraint as a Schrédinger

equation.

Select physically interesting observables and make predictions.

1%Tn simple examples as the harmonic oscillator, studied with complex variables, this requirement is

equivalent to choosing the Hilbert space L?(IR,dz) for the conventional variables. In more general cases

the situation is not clear.
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Several remarks are in order.

1. The variable which is diagonalised is 4, the analogue of the canonical momentum in
the conventional theory, whereas the triad variable acts through a functional deriva-
tive. The A-representation is analogous to the functional Fourier transform of the
representation used in the conventional canonical program, and thus the geometrical
interpretation of the functionals on which the above operators act is very different

from the familiar functionals ¥[A].

2. When imposing the constraints a’ la Dirac it is necessary first, to choose an ordering

for the operator version of the constraints. Jacobson and Smolin [87] chose the

expressions

5 0

Ci(z) = DlﬁAli(z)’ (2.60)
Ci(=) = ﬂmi(z)@f,.ﬁ@), (2.61)
) = i p 2 (2.62)

§4,/(z)6 A5 ()’

which have the virtue that C; and G, correctly generate the Lie algebras of the gauge
groups C*°(X, §O(3)) and Diff(%), respectively. Remarkably, Jacobson and Smolin
were able to find a number of exact solutions to the WDW equation in the present
case: C¥ = 0. Among them there is the functional U[A] = 1 that satisfies all the
constraints. The lack of knowledge about measures in the space of connections does
not allow any physical interpretation of this result. Another, formal, solution to the

WDW equation was found to be [87]

@ ooy [A] = I] Hp 4] (2.63)
a€l

where the product extends over the finite set I of indices s.t. {Nala € I} is a set of

smooth non-intersecting loops, and
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H,[A] = Tr(PempéA) (2.64)

is an element of a class of holomorphic C*(X, §O(3)) gauge-invariant functionals.
The P means that the line integral is a path-ordered one and 7 is supposed to be
smooth in ¥. Further solutions exist which include intersecting curves; they involve
linear combinations of states corresponding to the different ways in which such curves

can be splitted.

3. The main problems raised by this line of work are:

(a) The loop-based solutions given above come from exploiting the antisymmetry
properties of F,p. It is surprising they capture the full content of the WDW

equation.

(b) The operator products in the quantum constraints are ill-defined since they
contain factors of §3(0). The regularisation method is still subject of debate
(a point-splitting regularization needs a background metric and curve; the ul-

timate effect of this undesirable background is unclear).

(c) The dependence of the functional solutions on loops in ¥ amounts to their non-
Diff(¥)-invariant character. The Diff(¥) constraints seem to be intractable
here whereas in the conventional approach they are considered as innocuous.

A way to get round this difficulty is given below in the loop formalism of QG.

The problem of finding physical states, and hence also of implementing the *-relations,
remains open in the connection representation. Comnsequently, as far as full quantum
gravity is concerned, so far, the connection representation has not led to qualitatively new
insight into the dynamics of the gravitational field in the Planck regime. At present, its
importance lies mainly in the fact that it provides a suitable general framework to address
certain conceptual issues of QG in a concrete way. Among these are the issue of time

and the large gauge transformations as related to §-vacua and CP-violation. They are
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discussed in [7]. Also, using the connection representation some solutions to the quantum
minisuperspace models have been found (125, 126]. It is worth mentioning that for some
cosmological models [127] and spherically symmetric model [128] the above quantisation

program has been fully completed.

2.4 Loop formalism

The motivations leading to this construction were the Ashtekar reformulation of GR and
the Jacobson and Smolin’s discovery of a class of solutions to the WDW equation, in terms
of the Ashtekar variables, related to loops in three dimensions. No solution was found to
the spatial diffeomorphism constraint. The loop representation was invented to solve this
problem by introducing a representation space on which the spatial diffeomorphism group
acts naturally, whereas the simplicity of the action of the Hamiltonian constraint in the
self-dual representation is preserved. Recent reviews are [6, 7, 8].

Once the loop representation is introduced, the complete set of solutions to the con-
straints that generate diffeomorphisms of 3 are readily found. They can be related to a
countable basis, whose elements are in one-to-one correspondence with the knot and link
classes of & (More properly said, the elements are in one-to-one correspondence with the
generalized link classes, which allows the loops to intersect and be kinked). The basic tool
to handle the structure of the space of physical states of nonperturbative QG will be knot
theory [129, 130, 131, 132]. The action of the Hamiltonian constraint on elements of the
loop representation gets simplified. Thus, a large class of solutions to the Hamiltonian con-
straint is obtained which contains, in turn, a set of states that are also annihilated by the
diffeomorphism constraints. It may happen that they are not the most general solutions

to the combined set of constraints but they are exact physical states of the gravitational

field.

2.4.1 Dirac quantisation to include loop variables

The strategy followed in the case of the loop approach is the Dirac method, whose steps

we give now. We follow Smolin in [124].
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1. Choice of a preferred subalgebra A of the classical observables to be the elementary

observables of the quantum theory.

2. Choice of a linear space S, on which there exists a completely regularized algebra of
linear operators A that is a deformation of the classical algebra of the elementary

observables, A.

3. Definitions of the constraints and the Hamiltonian of GR in terms of the elements

of A.

4. Solution of the quantum constraints by finding the subspace Sphys of S that is in the

kernel of the regularized constraints in the limit that the regularization is removed.

5. Definition of the physical observables that constitute the operator algebra on the
space Sppys- At this stage, we are required to do two things; first, find the algebra,

and second, give its elements a physical interpretation.

6. Definition of the physical inner product on Sphy,. This choice must implement both
the reality conditions of the classical theory and the physical interpretation of phys-
ical observables in that operators which correspond to classical physical observables

that are real must be Hermitian w.r.t. the physical inner product.

The first three steps have been completed in the loop representation, whereas 4, 5 and
6 are still under study. Indeed, points 4 and 5 are the matter of chapters 5 and 6 for the
Einstein-Dirac system, while about point 6 some encouraging results have been recently
obtained by Ashtekar and Lewandowski [33]. We sketch the progress that has been made,
in this approach, on points 1-3.

2.4.2 Classical loop algebra

Quantisation of any classical theory comsists of the association of classical observables,
defined as functions on the phase space of the theory, with linear operators on some repre-

sentation space such that the commutator algebra of the latter goes over into the Poisson



TWO: Non-perturbative Canonical Gravity 55

algebra of the former in the limit & — 0. Due to the operator ordering and regularisa-
tion problems in any quantisation of a field theory, most of the classical observables will
not have an unambiguous representation in terms of the operator algebra of the quantum
theory. What we can do is to choose a subalgebra of classical observables that will be rep-
resented unambiguously in terms of the operator algebra of the quantum theory. These
are called the elementary observables. We say that the rest of the quantisation procedure
is constrained by the choice of these elementary observables in the following sense. The set
of elementary observables should form a closed algebra under the Poisson brackets. This
set must be small enough so that every element in its algebra can be represented in terms
of a well-defined linear operator on the representation space (regularisation). Also, the
set must be large enough so that the constraints, Hamiltonian, and a large enough set of
physical observables must be expressible at the classical level through limits of sequences
of elementary observables. When this happens it is said that the algebra of the elementary

observables is complete.

The uppercase indices of the connection AaBC take values in the spin-one-half representa-

tion of the so(3) Lie algebra.

To construct the loop representation we choose a set of elementary observables based on
loops in the three-manifold £. The phase space of GR will be coordinatized by the Ashtekar
variables (A4, E). The loops are assumed to be piecewise smooth and parametrized, with
non-vanishing tangent vectors.

.Given a loop v, and two points on it given by the parameter values, s and ¢, one defines

the parallel transport to be

A
3

U, (s, ), = | Pel. d"Aa(V(”)H“(”)} (2.65)

B
where P means path ordered. The trace of this paralle] transport all around the loop is
known as the Wilson loop of the Ashtekar connection. In fact another symbol is used for

it

T°[y] = TeU, = TrPedr ™, (2.66)
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and it is one of the loop variables we will define that form a closed algebra under Poisson
brackets which is called the classical 7-algebra. It is found necessary to introduce observ-
ables corresponding to unordered sets of loops in X. Such a set is called a multiloop, and

is denoted by {7} = {71,72,...}. Corresponding to each multiloop {7}, we have also a T?

observable

T[{y}] = ] Ty (2.67)

Under Poisson bracket, the T°’s form an overcomplete set of commuting SU(2) gauge-
invariant observables. This result arises from certain relations that hold because of the
involved SL(2,C) matrices and their definitions in terms of parallel transport. They

include
i) Invariance under reparametrisation of the loop parameter s.

ii) Invariance under inversion

Ty~ = Tl (2.68)

iii) The spinor identity:

T [a)T°1B] = TPla#tB] + T [a#B71, (2.69)
wh;ere the loop a#f is defined as follows. If a and § intersect at a point P, it is the loop

obtained starting from P, going through ¢, then through 3, and finally closing at P. This

equation only holds if a and  intersect.
iv) The “retracing” identity:

T ] = T°[a-1-171) (2.70)

where [ is a line with one end on a and a-[-I7! is the loop obtained by going around a,

then along the line, and then back along the line to a.
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To have a complete algebra of observables we need some observables that also depend
on the conjugate E fields. Looking ahead to the problem of regularization, at quantum
level, we should require that the elementary observables do not include any that involve
more than one E at any point of X. A T observable is defined by inserting a conjugate

E field into the trace of the parallel transport around the loop at some given point s:

T [7]%(s) = Te{Us (s) E*(7(s)))- (2.71)

This definition can be extended to the T™ observable, and to multiloops also. Such inser-
tion of the E variable is called a “hand”. The important consequences relevant for the

quantization program are

1. The T™’s form a closed algebra under Poisson brackets.

{T"[a], T™B]} = ¢ Z Ala, B]T™ ™ result of the grasp] (2.72)

grasps
the grasps are the resulting loops by considering the possible combinations of the

initial loops at the “hands”.

2. Completeness on the gauge-invariant observables. Any gauge-invariant and local
functions of F, E° may be constructed in terms of limits of sequences of T observ-

ables. (e.g. the constraints)

3. The loop algebra is closed under the action of the spatial diffeomorphisms. The
easiest example is the T°. Given ¢ € Diff(Z)

¢oT%a] =T [poal (2.73)

4. The distributional singularities appearing in the loop algebra may be removed by an

appropriate regularization procedure.
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2.4.3 Loop-representation construction

The key idea in the program is to use the above algebra as the basic algebra whose
representations determine the quantum theory. In particular, it is possible to construct a
type of Fock-space quantization in which the analog of a “n-particle” state is a function

¥(n1, M2, - . - M) of n loops. The TV acts like a creation operator, for example

(To)[€] = ¢[n, €], (2.74)

while the 7! operators map each n-loop sector into itself. By this means a deformation of

the classical 7T-algebra is successfully constructed:

[Tn,Tm] — RATTT L RZAATT 4o+ BRALLLAT™. (2.75)

The next major step is to construct the quantum constraints as a limit of sequences of
these 7' variables. Rovelli and Smolin showed that the WDW equation, C¥ = 0, can be
satisfied provided the Fock-space functions ¥(m1,72,...7.) are concentrated on smooth,
non-intersecting loops [1].

Evidently, these states are not Diff(Z)-invariant since the diffeomorphism group moves
the loops around. Nevertheless, Diff(2)-invariant states can be found by requiring the n-

loop functions 1(71,72,...7,) to be constant on the Diff(X) orbits, which are the link

classes of the manifold X.

2.4.4 Advances and perspectives

So far, it is possible to summarize the advances in the loop representation as follows.

1. The loop representation can be considered as a complete quantisation of the phase
space of GR. It is completely regularized and diffeomorphism-covariant since the

operators involved, once regularized, carry a representation of the spatial diffeomor-

phism group.
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2. The diffeomorphism and Hamiltonian constraints may be expressed in the loop rep-

resentation, the former by their natural geometrical action on the loop space, the

latter in regularized form.

3. The general solution to the diffeomorphism constraint is found in the loop repre-
sentation, and expressed in terms of a countable basis. This countable basis is in

one-to-one correspondence with the generalized link classes of the manifold.

4. An infinite, but not complete, set of states that are in the kernel of the Hamiltonian
constraint is also found. These states consist of all loop functionals with support on

loops that are smooth and non-intersecting.

5. The Hamiltonian and diffeomorphism constraints are compatible, in that an infinite
set of physical states that are in the simultaneous kernel may be constructed. This

space has a countable basis, which is in one-to-one correspondence with the ordinary

link classes.

6. A functional transform taking states in the self-dual representation to states in the

loop representation may be constructed formally.

7. For free-field theories this transform may be explicitly constructed, and gives a con-

struction of a loop representation for the Fock space of free photons and free gravitons

[133, 134].

The perspectives, on the other hand, can be set in the following manner.

e Completeness of the solution space of the constraints. The set of solutions to the
Hamiltonian constraint mentioned above is almost certainly not a complete set.
There are two reasons for that. First, a large set of additional solutions has been
found in the self-dual representation associated with intersecting loops [87, 135]. It
is expected that those solutions will exist in the loop representation as well. The

second is that the mentioned solutions are constructed using only the antisymmetry
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of the indices of the operator. Thus, it is not impossible that there exist other
operators whose continuum limit classically is not the Hamiltonian constraint, but

that also annihilate the above states.

e Physical interpretation of the physical operator algebra. Given a description of the
solution space to the constraints in terms of a countable basis implies that one knows
how to construct the general operator acting on that space. Thus, given the results
about states, we have the general diffeomorphism-invariant operator, and a large
class of completely physical operators. What we do not have is any correspondence

between these operators and diffeomorphism-invariant or physical observables in

classical GR.

e The Physical inner product. We already mentioned that the choice of an inner
product is related to the reality conditions. This means that, if anyone proposes
an inner product on the space of physical states, one must be able to check that
any operator on the physical states whose classical limit is real when the reality
condition are imposed is Hermitian. However, this condition requires that we have
a correspondence between classical and quantum physical observables, which, as we
have just mentioned, we do not have. Thus, at present, while there are candidates
for the physical inner product (e.g. an L? norm, if any, for the countable basis of link
classes) it has not been possible to check whether any of them correctly expresses

the reality condition.
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SELF-DUAL FRAMEWORK FOR FERMIONIC FIELDS
AND GRAVITATION

To extend the non-perturbative canonical formulation in coupling matter to gravity using
Ashtekar and Loop variables it is very convenient to start with an analysis of the corre-
sponding action. This yields the important result of identifying the canonical variables of
the theory and makes it easier to relate them to the standard geometrodynamical vari-
ables, for the same system, we are used to. The action functional for spin-% fields and
gravity within the framework of Ashtekar’s variables was put forward by Jacobson [120]
and thoroughly studied including other matter fields by Ashtekar et al [15]. In this chapter
an alternative construction of this action is presented and its canonical analysis carried
out.

Since the gravitational part of the action using these variables is first-order it is natural
to consider a gravitational connection admitting torsion!® [20]. By extending the self-dual
connection to admit torsion and using the Bianchi symmetry of the curvature tensor for
non-vanishing torsion, a self-dual action is obtained and shown to be equivalent to the
ECSK-Dirac one. Results by Ashtekar et al are recovered when splitting out the above
self-dual connection into its torsion-free part and its torsion contribution. Hereby the

modification to the Dirac equation they found is shown to be a torsion effect. Then the

!9There are several kinds of matter which can support a non-vanishing torsion when coupled to gravity

[13, 136]. Attention is here focused on the spin-{ Dirac field minimally coupled to gravity.

61
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reality conditions are briefly discussed. The possibility is considered of adopting the reality
of the antisymmetric part of the extrinsic curvature as part of the reality conditions to
keep or eliminate torsion, so that two different real sectors of the phase space of complex
general relativity and spinor fields can be associated to ECSK-Dirac and Einstein-Dirac

theories respectively.

The results given here can be regarded as complementary to those of Jacobson and
Ashtekar et al, for spin——% fields, by providing a specific link between two first-order ac-
tions: the ECSK-Dirac (Einstein-Cartan-Sciama-Kibble-Dirac) [136, 13] and the self-dual
Einstein-Dirac action [120, 15], hereafter referred to as ECSKD and sd-ED respectively;
ED will stand for torsion-free Einstein-Dirac theory in either its first- or second-order
forms. Furthermore, since the key of the equivalence is based on the Bianchi symmetry of
the curvature tensor for non-vanishing torsion, this is an extension of the Jacobson and
Smolin [86] idea of using the Bianchi identity (with vanishing torsion) for pure gravity
to establish the equivalence between its chiral and Palatini-like actions. The equations of
motion, Einstein and Dirac, have the standard structure, the difference coming from the
existence of a non-vanishing torsion supported by the fermionic fields. By expressing the
above results in terms of a torsion-free connection, the results of Ashtekar et al[15] are
recovered. In particular, the interpretation of an extra term in the Dirac equation in [15]

naturally emerges from the present analysis as a torsion effect, considered previously in

the literature [137].

“The present analysis also enables one to revive and idea put forward by Jacobson
[120] of identifying ECSKD and ED theories with two different sectors of the phase space
of complex general relativity via the reality conditions, to be imposed on the canonical

variables, necessary to get real gravity.

In section 1 the standard second-order action for gravity coupled to four-component
Dirac fields is given as well as its first-order analogue, t.e. the ECSKD one using the
language of two-component spinors. This provides the origin of the chiral action to be
studied. Further details concerning four- and two-spinors are given in Appendix A. Section

2 establishes the equivalence between the sd-ED and ECSKD actions. The equations of
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motion coming from the self-dual action are the contents of section 3 together with their
relation to the results of [15]. The canonical decomposition of the theory is studied in

section 4. Section 5 deals with the issue of the reality conditions. Finally, in section 6,

some conluding remarks are given.

3.1. Einstein-Dirac and ECSKD actions

In coupling fermionic fields to gravity the introduction of orthonormal tetrads is natural
because spinors are defined w.r.t. orthonormal frames [122]. Furthermore, whenever
tetrads are adopted, connections also enter the description of gravity. In building up an
action from which to obtain the equations of motion, one has the possibility of considering
tetrads and connections as independent fields or not. If they are not one gets the Einstein-
Dirac (second-order) action. Instead, by taking them as independent, one gets the ECSKD
(first-order) action. The corresponding variational problems differ on what should be fixed
on the boundary. One finds it is necessary to add boundary terms to get a well-posed
problem only in the second-order case [138]. In the first-order case, on the other hand,
one is left with an equation of motion associating a non-vanishing torsion to the connection
[13, 136].

Alluding to both minimal coupling and equivalence principles one is led to the fol-

lowing second-order Einstein-Dirac action [14] (see also [12]), written here with all of its

consta.ntszu,

e 1
cp = [ diz = {-————~—R
SeD Al e c | 167G/c? [e; w(e)]
the , T\ ~@ T pr
-!-76 d[ (VQ‘II) 74T — Uy (VQ‘I’)] + mc*¥ ¥ + Boundary Terms (3.1)
where ¥ is a four-component Dirac spinor, 7% are standard Dirac 4 X 4-matrices defined in
flat space-time and ¥ := \I'i'yo is the Dirac-conjugate spinor; the ! stands for the standard
hermitian-conjugation operation acting on complex matrices including order reversal in

the case of Grassmann-valued fields. The tetrads are such that ea&eb‘i = Gab, eadeai)

20We assume the dimension of the spinors ¥ to be length"%; TP is associated to a probability density

in first-quantized theories.
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7, = diag{—-1,4+1,+1,+1} and e = det(eqs). Rle,w(e)], as usual, is the scalar of curva-
ture formed with the tetrads and the curvature of the connection w_;(e) = ebd (Vaebi)).
Namely, Rle,w(e)] := eaéeb‘jRabéd-[w](e). On the other hand, V,¥ = [0,% — B, ¥] together
with V,¥ = [0,% +TI’—BQ] are the extension of the unique torsion-free connection V to act

on four-component spinors, with B, := %wadé[va,'yi’] [14].

Then a first-order action is formed which is compatible with the action introduced by
Ashtekar et al [7, 15]. This is achieved by translating four- into two-spinors through the
chiral representation for the Dirac 4’s (¢f Appendix) and using the two-spinor decompo-
sition of the curvature (c¢f[7]). In it G = ¢ = A = 1 and the 16« factor is dropped so it
yields a different numerical factor in the Einstein equations. Furthermore, an extra factor
of 2 is included in the fermionic contribution to the action. Both numerical factors can
be compensated through the definition of the stress-energy tensor. The resulting action

functional is

SEcsKkp = /A [d4:c { o [Ua;\fA’gbAA, Ry [fw] + gadn’ ”bAA'EabAﬁV[_w]]
~V20 0%, [E.-l’ (Va RA) _ (Va #A) -ﬂA’]
+vV20 0%y [(VaEA’) g — pt (Vaﬁ"y)]

— 2imo [,uAnA - —.‘EAl_ﬁA/] } (3.2)

where o := det(s,?"") and ¢,**" is the soldering form (i.e. the two-spinor version of
the tetrad in curved space-time). Note that the connection, here splitted into self-dual
and anti-self-dual parts (cf Appendix), develops a torsion contribution supported by the
fermionic fields as we use a first-order formalism with connection and soldering forms
taken to be independent fields instead of adopting a priori a relation between them [14].
Furthermore, should Grassmann variables for fermions be used this action would remain

even and manifestly real. The even character holds by adopting a chiral action but not

its reality.
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3.2. Self-dual action for Einstein-Dirac theory

Ashtekar et alstudied the coupling of fermions to gravity in terms of a chiral action
containing the self-dual part of a connection only [15], disregarding the anti-self-dual part.
They based their analysis on the unique torsion-free connection defined by the metric

gab = 0'014‘410',;4‘4'. In this chapter the analysis is carried out by extending the connection

to admit torsion. Let the chiral action [15] be

Sep = /A[d4z { — o ™M G Frn
~V200y [EA, (DaﬁA) = (Da/-l'A) ﬁA’]
—imo [,u,;nA - RA’}ZAI] } (3.3)

where Fuparn is the curvature of the connection D defined at this stage to act only on
unprimed spinor indices. Clearly, (3.3) is obtained from (3.2) by taking only the contribu-
tion of the self-dual piece of the connection, *w (= w,4p cf Appendix A), and half of the
mass term. The name chiral hence accounts for this. Thus (3.3) is manifestly not real.
Nevertheless, it will be shown below it reproduces (3.2) modulo the equations of motion
for D and via the Bianchi symmetry of the curvature for a “metric-compatible” connection
having torsion so that no spurious equations of motion are picked up.

The goal here is to determine D dynamically. The variation of (3.3) with respect to
D can be carried out by introducing the auxiliary forms @ 4, and Pc , so as to define D

with respect to V, the connection compatible with the soldering form
Vo' =0 (3.4)
and having associated a non-vanishing torsion T,,°
2V Vyf = Ty" Vef, fa zero — form. (3.5)
Namely,
Do’ = VoA + Q% AP + P2,y A7 (3.6)
with associated torsion 7,°
2D Dy f = T,°V.f, fazero— form (3.7)

Ty = Top —2P%. (3.8)



66 THREE: Self-Dual framework for Fermionic fields and gravitation

By requiring the annihilation of the symplectic form €4p one gets a restriction on Q448

above:

Do€sp = Va€ap =0 = Quap = Qqup) (trace — free). (3.9)

Concerning the action on space-time indices, and thus P°,, it is known that to control
both metricity (compatibility condition (3.4)) and torsion it is necessary to include kinetic
terms for them in the corresponding action [139]; otherwise one should impose either of
them and get the other as an equation of motion [139]. We follow the latter possibility by
imposing

Pcab = 0 . (310)

This amounts to specify that the torsion of V, T,,¢, is exactly that of D, T, (cf(3.8)),
to be determined dynamically. Also, from (3.6), the action on space-time indices of both
D and V is identified.

Varying D is equivalent to varying @ so the action (3.3) should be re-expressed in terms
of V, Qaarny and T, ©. The curvatures, Fupasy and Roparn of D and V, respectively, fulfill
[122]

Fuorrn = Raary = 2VQuary + 2Quans Qupn + Tap® Qerrn. (3.11)

Plugging (3.9) in (3.3) to carry out its variation makes it necessary a previous integration

by parts of the VQ term. This gives a total divergence and a term containing the derivative

of products of soldering forms

/” diz {_20 Ua‘”‘yab"\;;lv[aQb]MN}
!
_ [M die {—2Va [U o.[al\[‘-l’a_b]]\";l QWN] +92 [Va (a o_[aMA'o_b]A‘;')] QbMN}

= =2 . ds, O.[a.z\fA'o_b]]:/ O.,bﬂl:’\-" _ 2/;[ d413 Tan:n o a[aﬂ[.»\’o_b]{\.;, QbAIN . (312)
]

The second term on the second line above drops by virtue of the compatibility condition

(3.4) whereas the total divergence turns into a sum of a boundary and a volume term, the

latter containing torsion?!.

2INote that whenever a connection V has torsion T, a tensor density of weight 41, q?“, has divergence

Va;;a — aa;ga . Tann~a .
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Using the above results in varying (3.3) w.r.t. Q asn yields the equation
ol ) (o1, 6,7 - T, %) + 40846 | QM 14090 BN — 0. (3.13)

Here [a(M A’ b]N) means antisymmetrization in a,b and symmetrization in M, N and

similarly for the other terms. k% and k™ are defined by

T U —iV/32 (k—.-l' kA MAEA’)

km

o™y B (3.14)

One readily solves (3.13) for Q,n/nv observing that iorg("‘i, V)4 = io-g(ﬂ‘i, eRN)kRA',

whose r.h.s., in turn, obeys the identity??

. g(pI N) _ _p(MB' _gN) m g
2i0%", en ) = oPMB'y A1 O'RBY €pgn - (3.15)

Note that there is an implicit antisymmetrization in p,q in the r.h.s. of this identity
due to the contraction with the volume four-form. It is possible now to factor out the

soldering-form factors in (3.13). This leads to

! m p ¢ 1 m ] 7
PR a'qSA, {(QT[pm 6q]g - qug) eR(MeSN) + 465‘45[p‘qu] AR GRM) + §epqmg k eR(”eSA)} =0.
(3.16)

! - . °
@4B" is non-degenerate enables one to set to zero the factor in braces. Tracing

Assuming o

over R, M of such a factor then yields

. 1 .
es” (2T[pm 5q]g B qug) - 4Q[qSA 5 Tt gt KT e =0 (3.17)

9 “pgmn

Since @) is traceless, taking the traces over S, N and ¢, g, one arrives at

T, =0 (3.18)

so that torsion takes the value

1
Ty = Sempd K™ . (3.19)

*2Given the real, totally antisymmetric (in pairs of indices AA’, ...) four-form [7]

€ANA'BB'CC'DD! ‘= —1€A\BECDE yici€gipt + 1€ y1pi€cipr€aceRD , Telated to the volume four-form through

AA" _BB' _ccC’
Ty Oc

€abed = € \A'BBICC'DD'Tq adDD' , (3.15) is a lengthy but otherwise straightforward result.
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Furthermore, this value of torsion substituted back in (3.17) yields

Qasn =0 . (3.20)

Hence, according to (3.11), D is the self-dual part of the connection V and it has associated
torsion (3.19) by virtue of (3.8) and (3.10).
Reproducing (3.2) from (3.3) is easy at this stage. Recall that the Bianchi symmetry

of the curvature of a connection V having torsion T (see e.g. [122])

R[abc]d - T[abe T]ed - V[aTbc]d =0 (3.21)

C

where antisymmetrization is understood on all three indices a, b, ¢, can be related to the

self-dual Riemann tensor [7]

+R d _

abc

N =

med b dm n B _ AM' _d
(50 6n —5¢ n) Rab = RabA L g BAr' - (322)

2C m

Such a relation is as follows. The self-dual scalar curvature providing the total pure-gravity

contribution to the self-dual action can be written as

1 .
+.R = 6dbgac +‘Rabcd = ER - ifabmn Rabmn' (3.23)
The second term of the last equality can be obtained by means of the Bianchi symmetry

(3.21) and of the torsion (3.19) as
€™ Rop = €% V[ Ty it = 3Vak® . (3.24)

The term quadratic in torsion drops out in view of the form of the torsion (3.19). Finally,

one arrives at
31
4

Correspondingly, the terms containing derivatives of the fermionic fields in the self-dual

TR = %R + 2V k. (3.25)

action (3.3) can be re-written in terms of V and &™ as follows:

~vV20 0% [7Y (Dart) - (Da;ﬁ) ‘;1‘4'] = — %UGAA, [ (Var) = (Vo) 5]

e [(72) - (7]

- %avaka : (3.26)
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In light of (3.25) and (3.26) we have shown that the ECSK-Dirac action (3.2) and the
chiral action (3.3) are equivalent modulo total divergences and the equation of motion for
D (i.e. D is the self-dual part of V). Note that the mass terms in the actions differ by a
factor of 2. Because of the non-vanishing torsion of V these divergences give, apart from
the boundary terms, volume terms involving the trace of the torsion. However, for the
Einstein-Dirac system, torsion is traceless (¢f(3.18)) and hence we get, indeed, a complete

dynamical equivalence. Explicitly,

1 7
.S'SD[+w, o, li,u] = ‘Q‘SECSKD[W, o, K, [L] + Z oAl dS%k, (3.27)
I

*w being the self-dual part of the connection w. For real GR, it is then evident that,
although Sgp is not real, its imaginary part is a boundary term. This is a non-trivial

generalization to spin-% fields coupled to gravity of the results given in [86] for pure

gravity.

3.3. Equations of motion

The structure of the action (3.3) makes it easy to get the equations of motion for the rest
of the fields. By varying w.r.t. p*, 7%, ﬂA,EA' and using 0%, ,, 1= 00?, ,,, the equations

of motion for the Dirac field are

~a p im _ ~a A im
%41 Dar™ = 37 P D (0 _4‘4"’34) =57 M and
- RV im - im _
D, (craAA,,uA ) = —\7_50 K4 7% 4 Dapt = -\—/—ia K4t . (3.28)

Note that D does not act on primed indices (hence its compatibility with the soldering
form is undefined) but one needs to know its action on space-time indices, whereas in the
pure-gravity case it is independent of its extension to act on space-time indices because
of the torsion-free condition [7]. Here, however, it develops a non-vanishing torsion. This
problem is solved by introducing the connection V to coincide with D when acting on
space-time indices and thus having identical torsion (cf(3.6), (3.10)).

To compare with the standard Dirac equations of motion we simply replace D with V.
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One gets
a mn__ a —4! im
(23 AAIVGKA = 75[1‘41 (23 AAIVQK4 = "—2/_11‘4 and
roim im
oy VaE! = —=ry 0% g4 Vap" = —=Far . (3.29)

V2 V2

With our conventions ¢ |, are taken to be antihermitian (cf Appendix). Although (4.2)
resemble ordinary Dirac equations in curved space-time one should bear in mind V is not
torsion-free. These are the equations for a Dirac field minimally coupled to gravity with
torsion (see e.g. [137]).

The field equation for 0% |, can be more easily understood by adopting the cbnventions

of Ashtekar et al [7]. Set

1 JSGravity 1 65Dirac
Hy = = ,—SD d Eg:=-— ,—5D 3.30
ab i= —0Obid 500 an ab 5o b 500, o (3.30)
so that
Hop = 87Eqy

are the Einstein equations we are looking for. Using the connection V, due to its simple

relation with D, one easily gets

Hep Tpayr [20634,17-@‘43 + UdDD,UCBD'RchB%M’] (3.31)
V2 oy 40 {754/ (VanA) - (Valﬁ) ﬁA’]

VB a0 [1 () - (7) 8]

8w Eu

—im gap (pos® — 7' Ep) (3.32)

which can be reduced to?3
Hypy = Gap+ gvakb - %gabvckc (3.33)
8TEw = V20444 [EA' (Vach) - (Va;f“l) ﬁ‘“‘l] - %gabvck“ (3.34)

**Use has been made of (3.21) modified to be antisymmetric in the last three indices
b b
€m’“a Rapd = €y (ViaType = $T,0.% Tyo* = $T0" T 9) .
This can be verified by relating the curvature tensors, of a torsion-free connection, Rabcd (e,,f’CdRabcd = 0)

and that of a connection with non-vanishing torsion, Rasea (cf[122]).
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where Gy is the Einstein tensor of the curvature of V. The resulting Einstein equation
can be further simplified by developing the term %Vakb. One thus finds

Gap = %my [ (Vars) - (va#') et (Vapt) - (Vap) Y] . (3.35)
Apart from a factor of %, due to our conventions (cf(3.2)), the r.h.s. of this equation
is the stress-energy tensor of a Dirac field in a curved space-time with torsion, i.e.in a
U,-theory (see e.g. [13, 136, 137]).

It is now possible to make contact with the results of Ashtekar et al[15]. They found
a cubic term in fermionic fields in their Dirac equation and stressed it has its origin in the
kind of theory they started with, i.e. torsion in the ECSK-Dirac theory. This is explicitly
shown below by splitting out the torsion contribution from the connection V introduced
above.

Let Téo be the unique torsion-free conmection compatible with the metric Jab =

| ! ] . 3 . -~ .
Tanal 0'5,“ - Hence, there exists a tensor Q,,°, and its spinor version @45, Ouprcr, relating

%
both vV and V through [122]

T=0 b b, c
Va-Vajv = Qac v (336)
T=0 ] }
( V a —Va> = 0, kP (3.37)
T=0 ' — '
( Va —Va) A= 9,7 AB (3.38)

where the spinor decomposition

1 _— ! e
Qa® = [@aCB eg + 0, g EBC] o ? oG (3.39)
1 '
Oupc = 505’35/ ° P Qape (3.40)

is implied. With our notation, ©®,pp corresponds to C,5p appearing in [15]. Furthermore

Tabc = 2Q[abr]: (341)

1
Qabe = Tappe) = 5 Tbea (3.42)

T=0
the first of which states V is torsion-free and the second is a result of the metricity

condition [122]. The torsion information is so thrown into ®,5¢. In the case of Dirac
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fields one gets, plugging (3.19) into the above relations,

1

3
Oapc = 7 k(B uc)” - (3.43)

Hereby the modification to the Dirac equation found in [15] is explicitly determined, its
origin being the non-vanishing torsion; by virtue of (3.37) and (3.43), the first of the Dirac
equations (3.29) takes the form

T=0 31 im__
U'GAAIVQKA = UGAA, ( V a —“é‘ka> K,A = —\/—jp‘_ll B (3.44)

This result extends to the primed-indices spinor equations (3.29) through ©,p:c/, and,
similarly, to the Einstein equations (3.35). Such a modification was discussed previously
in a Uy-theory [137]. The reduced action of Ashtekar et al[15] is thereby obtained. In
particular, the four-Fermi interaction term, ok, k™, is brought into the action; in other
words, using the space-time-indices version of the identity (3.11) (cf[122]) for the cur-
vatures of V and Téo, one gets the following relation between the corresponding scalars:

T#0 T=0
1 1 _3 m
7 R=3 16kmk .

3.4 Canonical sd-ED theory

The strength of Ashtekar’s framework shows up in studying the canonical form of GR.
Polynomiality of the constraints, among other appealing features, holds the same when
matter flelds are minimally coupled to the gravitational field [15, 120]. The novel feature
now is the explicit non-vanishing torsion of the connection D. From now on *w,pg¢c will be
denoted by Aupc. A non-vanishing torsion when one Weyl Fermionic field is considered
was obtained by Jacobson [120]. The case of a Dirac field turns out to coincide, structurally,
with the case studied by Ashtekar et al, because of the totally antisymmetric torsion.
Setting the 3+1 decomposition of the chiral action (3.3) is based on two main ingre-
dients [7, 15] as shown in chapter 2. First it is assumed that the spacetime manifold
M admits a foliation through three-dimensional hypersurfaces. Thus, four-dimensional
quantities are related to the three-dimensional ones so as to express dynamics in their
terms. Second, since spinors are here the building blocks of the theory and it is known

that for a Riemannian three-dimensional hypersurface SU(2)-spinors are natural whereas
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those associated to a Lorentzian four-dimensional manifold are S L(2,C), one requires a
translation between them (cf Appendix A). The spacetime foliation is obtained as follows.
Let ¢ be the “time” defining the foliation such that £, the hypersurfaces of constant t, are
all diffeomorphic to an initial one ¥y. Take 0% 4+ to be anti-hermitian and such that I,
are all spacelike w.r.t. it. For X; the unique future-directed timelike normal is denoted by
n® and the tensor field inducing the positive-definite three-metric hi; BY qab 1= gap + nams.
Introduce the vector field t* having affine parameter ¢: 2V ¢ = 1. It is decomposed into
lapse, IV, and shift, N, functions: ¢ := Nn%4+ N®. The second ingredient is implemented
by providing an hermitian metric G4y = —iv/2n% 4. It picks the unprimed SL(2,C)
spinors on M as SU(2) spinors on ¥;. Hereby the operation | defined as (Xi) L= Gj’y_ 4
yields the hermitian conjugate of x 4. Finally, a soldering form on SU(2) spinors is intro-
duced through %5 := 1 20"’(‘4‘4/713)_4:. It is hermitian —w.r.t -, trace-free and it is, by
definition, automatically projected into %;.

The pure-gravity piece of the integrand of (3.3) becomes, after use of the definition of

the SU(2) soldering form inverted for 0’4 and the decomposition of t* in lapse and shift,
o tr (~iVZN ' Fyy + %" % By + ivZN TN Y Fy) . (3.45)

Here the first subtle difference w.r.t. [7] comes about, because of the torsion. The
Lie derivative of the self-dual connection Aypgc is given by L4y = t°DyA, + Ay Dpt® —
T,° t*A., containing an additional torsion term. It can be re-expressed as L[; 4, =
Dy(A 1) + 2 [2D[0Ab] ~-T, CAC]. The last term being just the one necessary to cancel

out the torsion contribution in P4 and to yield the curvature Fp,. Hence,
'CtAb = Db(Aata) + taFab . (346)

This equation can be inverted for the projection of the curvature 1% Fyp. The result further

simplifies by introducing

%a‘4B =% BUHAB and N := %N (3.47)

where % is the inverse of the determinant det(30'aAB). The following equality hence holds

c=+v—=¢g=Nvh=—-N %, with g and h the determinants of g,; and h;;, respectively.
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At the end one is left with
— o0, obpy FidP = tr [iV2 % LAy — VAN 5 Fuy - N5 Fa| . (3.48)

Next, using ¢,® to project on I; every quantity originally defined w.r.t. M gives us
340BC,  Faspc,°Df besides the identity (cf Appendix B) ¢,°L; 4, = ¢,°L:34, thus produc-

ing for the pure-gravity part of (3.3)
§Eipstein _ / dt / Pr ot [iV2B LM, - V2 Dy(Ant?)
I
~iV2N® % Fo — N %" % ) (3.49)

It is already apparent here one can adopt 34,45 and 35'1 p as a canonical pair. A further
integration by parts of the second term above in order to identify the Lagrange multipliers
in full of the theory reveals the existence of a volume term containing the trace of the
torsion apart from the boundary term —iv/2 tr [abnfz'(Aat“)]. Because of the antisym-
metry of the torsion in our case such a volume term vanishes whereas the boundary term
drops out as soon as one considers ¥ to be compact. No time derivatives of 4,t%, N® and
N appear at all so they are the Lagrange multipliers. This still holds, as shown below,
when a Dirac field is coupled to gravity.

Concerning the Dirac contribution to the self-dual action (3.3) the treatment goes
through similarly as for the pure-gravity case. Substituting the primed-indices spinors
by the corresponding hermitian conjugate, e.g. (n")A = —EA’GAA“ using the relation

between SL(2,C) and SU(2) soldering forms as well as n® = N~!(t* — N?) it is found

that
70"y B Dart = N }5&.43 (Ef)B Dar’ 4 %36 (Fj)A Lo
_ 3 ) 4 () B _ L3 pa 4
7 (og (Abt )B (n >.—! K 7 o N (n )3Dan . (3.50)
Here £k = t*Dyk* and there is no explicit torsion contribution. As before, every

quantity has been projected on X;. Similarly the results apply to o U“AA,ﬁAIDa/,L'l. Also,

’ ! .
the factor & 4 becomes (rzT) (;ﬂ) R Finally, the Dirac-field contribution to the self-
dual action (3.3) is

i = foe [ s (VBN T [ (<), P = (), D]
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(), o () 0] - 0 (), () () )
—i%N® [ (n*) . Dart = (,;)B 3p, ”A]

vim (o) [t - ()" ()]} - (3.51)

Now it is clear one can adopt x*,% (n*) . and pt,% (/ﬁ) , 38 the fermionic canonical
couples. Note that there is no explicit torsion contribution and the Lagrange multipliers

are the same as in .S'Ei[‘)‘“em above. Indeed, one can rewrite the action (3.3) in the more

transparent form [15, 120]

Ssp = /dt e { [Z\/i tr ( 35'b BAb) + "fvl"_ll"i“1 + (IJA,L'I,A]
L,
+ (- 4)%Gpe + NV, + N5} (3.52)
GAB = —7,\/5 3Db35'bAB + 7‘?(4 K’B) + [’3(.4 ”B) (3.53)
Va = —iv2tr( %" %Fap) ~ F4%Dar? — 3,°Dop (3.54)
g? 1= ——tr( % 3,0._b BFab) + V2 3'5'a‘4B (7?331905’1 + cTJBsDa/_LA)
+im (( 30)2 Ky — 7?-4&_4) (3.55)

The factors in front of GAB,VQ,? are Lagrange multipliers since no time derivative of
them appears anywhere in the action. G’AB,Va,? are called, respectively, the Gauss,
vector and scalar constraints of the theory. The canonical momenta are readily recognized
from the structure [dt[pg — H(g,p)] [15]. They are: —iv/2 % g, Fai=ic (’““:) and
Wyi= —i0 (;ﬁ>,

.As in the study of the equations of motion of the previous section the link with previous
results can be established by expressing the self-dual connections here and in [15] in terms
of the torsion-free connection compatible with 30048 (the soldering form defined on ).
In other words, we are identifying the torsion contribution of our self-dual connection
D via O,4p, Eq. (3.43), with the C, 45 of Ashtekar et al [7, 15] defining their self-dual
connection.

The constraints of the theory do form an algebra (such a term is actually loose, since
one deals with structure functions rather than structure constants, as emphasized below)

which admits an interpretation along the same lines of the pure-gravity case. We will be
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dealing only with the case in which ¥ is compact so that boundary conditions for the differ-
ent fields do not play any role. The non-compact case is discussed in [15]. The symplectic

structure one ends up with for the phase space I' consisting of the fields A% kT, @ s

thus
{5 152, = = (2,9) 8,56, 65)°
V2
{Fa@h W)} = -8 (3.56)
CHONT O CRL (3.57)

The analysis of the constraints is highly simplified by smearing them with suitable func-

tions as usual (cf previous chapter). Hence, let us set

Gr = /dsz TBAC:'AB (3.58)
z

Vy = /d3:c vV, (3.59)
z

Hy = iﬁ/d%;ys. (3.60)

~ z

With TAB,'v“,]r\\f test fields with compact support. The action of the smeared Gauss

constraint on the phase-space variables is given by:

{61,4,F(2)} = -D.T.P(2), (3.61)
{61,5°P(2)} = [T,0°(a), (3.62)
{6r,5%(2)} = —kP(2)T5 (), (3.63)
{Gr,7p(2)} = T5'(e)Ta(z) (3.64)
{Gr.pi(2)} = -pP(2)T5' (@), (3.65)
{Gr,@5(2)} = Tg'(2)@a(z). (3.66)

That is to say, Gt generates infinitesimal canonical transformations which are infinitesimal
SU(2) rotations on spinor indices. Obviously then the Poisson bracket with the other two

constraints vanishes (no free spinor indices!), whereas one gets

{G1,Gr} = -G(1,R) (3.67)
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for Ryp(z) a test function with compact support. Going over to the vector constraint it

turns out that it is rather a combination of the vector and Gauss constraint which has a

nice and direct meaning. This is

Dy :=V; - / d’z Tr (4,G) , (3.68)
by

whose action on the canonical variables becomes, for f any of the set 4,%, Ky Ty @,

{Ds f} = Ls7 . (3.69)

It yields infinitesimal three-dimensional diffeomorphism transformations. According to the
lines of chaper 2, the constraints of the theory should by implemented either classically or
quantum mechanically by selecting quantities that are invariant under the corresponding
action. We shall be looking at objects which are invariant under the actjon of the Gauss-
law constraint in chapter 5 and hence it will be Dy rather than V; the form of the constraint
of interest for us. It is called the Diffeomorphism constraint.

The rest of the algebra satisfied by the constraints involves some lengthy calculations
but still simpler w.r.t. the analogue using geometrodynamical variables. This is one of the

aspects that is simplified in Ashtekar’s framework. We just give the results here (cf[15]),

{D#,Gr} = -Gryur (3.70)
{D5, Dz} = -Diy (3.71)
{Dm HQV!} = —Hg,n (3.72)
{Hy,Hy} = Dg+ Gy (= V5) (3.73)

where K¢ = (]AY Op M — MOy N ) Tr (3’50 356). Further remarks in order here are as follows.

e The constraints are polynomial in the canonical variables. As stressed in chapter
2 this is relevant for the quantisation and is by itself one of the motivations of the

whole framework.

e Note that it is the connection with non-vanishing torsion the one that appears in

the constraints. Although in [15] the connection is torsion-free the authors have
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an extra term which can be eliminated by the addition of yet another term to the
action quartic in Fermionic fields. In our case such additional terms analogously do
cancel torsion out of the theory. Nevertheless it is obviously simpler to work with
the non-vanishing-torsion connection and hence sd-ECSKD theory. Furthermore, as
shown below, it may be possible to eliminate the torsion via the reality conditions.
In this way the problem of facing the quartic term in Fermionic fields is not faced
at the starting point of the quantization, or more precisely, it is postponed until the

implementation of the quantum reality conditions.

o The structure of the algebra of the constraints is the same as that in the pure-gravity
case. Hojman et al [140] have emphasized this is so because the algebra itself has its
roots in geometrodynamics. On the other hand although they are first-class in the
language of Bergmann and Dirac, since they involve structure functions rather than
structure constants they do not generate a proper Lie group [141]. A consequence
of this is that the above algebra is not isomorphic to the obvious group in tetrad-
gravity, i.e. the semi-direct product of tetrad rotations with the four-dimensional-

diffeomorphisms group acting on % x IR.

o At last, it is worth stressing that, by construction, exactly as in the pure-gravity
case of chapter 2, there is no reference to the anti-self-dual part of the connection
and hence at this point the two parts are independent one of the other. This means
that we have a description of complex GR [142]. That is to say, within Ashtekar’s
framework further constraints are needed to obtain real GR or, rather, real ECSKD

as here: the reality conditions. They are discussed in the next section.

3.5. Reality Conditions

The role of the reality conditions in Ashtekar’s formalism has been studied by several
authors (see e.g. [123] and ref. there). Originally it was found that in spite of having
polynomial structure at the level of constraints the quantisation program put forward
by Ashtekar was spoiled through the non-polynomiality of the reality conditions in the

canonical variables. More recently Ashtekar et al [15, 7] have introduced another equivalent
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form of the reality conditions which does not have this problem. Still, a clear solution to
the issue is missing. Since one is more used to think in terms of geometrodynamical
variables the non-polynomial form is straightforward to interpret. According to chapter
2, these conditions reduce to the reality of the three-metric and its time derivative. This
is the form we shall bear in mind in this section although it may be possible to translate
our proposal to the polynomial form following the lines of [7, 15].

Although it has been shown that the constraints of the sd-ED theory keep their struc-
ture, independently of whether the connection is taken to develop torsion [120] or not [15],
a definite answer to the question put forward by Jacobson [120] of identifying real ED
and ECSKD theories with two different real sectors of the phase space of complex GR via
the reality conditions has not been given. Ashtekar et al [15] gave a partial answer in the
negative to it by looking at the effect on the reality conditions of adding the quartic com-
bination of fermionic fields required to translate the ECSKD action into the ED one; this
term decouples torsion in ECSKD theory from the rest of the dynamics and it does not
affect the reality conditions as obtained by Ashtekar et al. Though, in their analysis, as
remarked above, torsion was dealt with in an implicit fashion. Here, however, we adopt a
self-dual connection developing a non-vanishing torsion. As given in [143] torsion vanishes
for ECSK theory in vacuum (i.e. no source for torsion), using a Hamiltonian framework,
by virtue of a second-class constraint, in contrast with the Lagrangian framework in which
its vanishing can be traced back to the Lagrangian equations of motion. In [143], however,
splitting torsion out of the connection is required to get this result. Though different, both
strategies lead to a vanishing torsion. It may be possible to replace the way torsion is set
to zero by imposing an extra constraint at the Hamiltonian level, rather than adding a
quartic term in fermionic fields to the Lagrangian.

The reality conditions, for instance, to pick out real ECSKD from sd-ED, which is a
complex theory, can be written in terms of the extrinsic curvature

b b4B
K = Kuip’r

Kipc = 1V/2 (3Ach - 3I‘ch) (3.74)

and fermionic canonical variables Ky Ty @ (cf [7]). 24AuBc and °T,pc being associated,
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respectively, to the projection of D, and the intrinsic connection, D, on X;, compatible

with the soldering form %0, 15. They can be expressed as [7, 84]

o%p = (%) (= gab real)

i ) # ) (3.75)
K@y = (K(ab)) (= dab real) Kjgp = (K[ab]) (= Torsion real ) .

The conjugation T [144, 145] is that of Ashtekar [7]; it affects the matrix character
only for spinor indices whereas on space indices it yields ordinary complex conjugation.
In general the second condition would involve a symmetric piece of the torsion 2T(4,p)n™

(cf [143]) which however vanishes in the present case.

The antisymmetric part of the extrinsic curvature is different from zero because of the
non-vanishing torsion. In fact, using the definitions of extrinsic curvature in terms of the
normal and that of torsion, one gets K, = %qamqb” T,.7 np, qab = gab + nen® being
the projector to translate four-dimensional space-time indices to spatial three-dimensional
ones, whereas n, is the normal to ¥; [7]. Note that no splitting of the torsion contribution
out of the connection has been required. These conditions should be supplemented by the
reality conditions for fermionic fields [7]. It is worth emphasizing that the above reality
conditions do involve explicitly torsion. They are reasonable since initial reality of g,s,
and of its time-derivative, §qp, ensure it will keep being real as it evolves. Torsion is fully
specified with a single (initial-) reality condition, since it does not propagate [143]. It is
then clear that one can actually set torsion to zero through a suitable selection of the
reality conditions, rather than decoupling it from the rest of the dynamics, to get ED. A
similar approach was considered by Maluf [146] in the pure-gravity case. For instance one
can alternatively demand

Ky = — (K{ab])T .. (3.76)
K |4) being purely imaginary would lead to areal ED-theory with vanishing torsion because
the combination of soldering form and connection forming K|, is no longer equal to the
combination of soldering form and fermionic fields forming ¢;" ¢," T},,P np, (which is real).
This, we think, amounts to a vanishing torsion, and, because torsion was not splitted out

of the connection anywhere, the constraints (3.53)-(3.55) would simply remain the same.
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Should it work, we expect this form of reality conditions has to be cast in a polynomial
form so that it matches the important requirement in the Ashtekar quantization program.

Yet, another possibility may be considered. Penrose [147] has shown that complex-GR
admitting complex conformal transformations, gop = 2Qgas, leads to torsion related to
the complex function Q. It remains to be seen whether this may provide more insight into
the issue of identifying theories with and without torsion as different sectors of the phase

space of complex-GR by restricting the properties of the conformal factor .

3.6. Final Remarks

The equivalence between the self-dual and the ECSK forms of the action coupling Dirac
fields to gravity has been shown by introducing a connection with non-vanishing torsion.
The key steps of the proof are the use of the Bianchi symmetry of the curvature of such a
connection, here including torsion, and the result that the torsion for this system is totally
antisymmetric. Thus, the actions differ by total divergences. They lead to boundary terms
only because the volume terms they involve are proportional to the trace of the torsion,
and hence vanish. This can be considered the explicit version of an observation first
made by Dolan [148]. He studied the canonical transformation, in pure gravity, from
tetrad and connection variables to Ashtekar variables. According to [148], the generating
function, when torsion is present, remains the same structurally, whenever torsion is totally
antisymmetric; this is the case for the ED and supergravity. On the other hand, Jacobson
[120] used another approach to prove the above equivalence of the actions. The boundary
terms he finds, can thus be traced back to the Bianchi identity using the present results.

For real GR, the above-mentioned boundary terms are the imaginary part of the self-
dual action. This explains why there are no spurious equations of motion (cf(3.27)).
Moreover, these imaginary terms, having origin in the Bianchi symmetry for the cur-
vature of the connection with torsion (and certain combinations of the fermionic fields
(3.25), (8.26)), provide a generalization of the analogous pure-gravity case [86], where
equivalence between the Palatini-like and self-dual forms of the action follows from the

Bianchi symmetry of the curvature for a torsion-free connection.
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We have also shown explicitly that the extra term entering the Dirac equations obtained
by Ashtekar et al[7, 15] from the self-dual action is essentially a torsion term. By splitting
the self-dual connection into its torsion-free and torsion parts, the standard four-Fermi
interaction in the action comes about [15, 120]. These results completely agree with Hehl
and Datta [137]. They investigated the four-Fermi interaction using certain anholonomic
basis and related connection; a Uj-theory [136, 137] with fermions admiting a V' — A4
(vector-axial) structure for the fermionic interaction. It is tempting to further analyze the
problem within Ashtekar’s framework so as to elucidate any implication concerning other
non-gravitational interactions, where connections play an essential role.

To conclude this chapter, we find it helpful for the reader to emphasize again the
main differences between our analysis and the work appearing in [15, 120], at the risk of
repeating ourselves. They are as follows.

(1) We find that the imaginary part of the chiral action is a boundary term using
the Bianchi identity. This point of view is a direct generalization to fermionic matter of
the pure-gravity result. This is completely different from the analysis in [120]. Moreover,
torsion effects in the Dirac equation were not considered by the author of [120], and we
have tried to formulate our proposal for reality conditions in a more precise way.

(2) We work with the full connection, without splitting out torsion contributions (rele-
vant applications of this point of view to a different, cosmological framework may be found
in [145]) as done implicitly in [15]. This makes it possible for us to propose a set of reality
con_ditions different from the ones appearing in [15], yielding real ED-theory.



FOUR

VARIATIONAL PROBLEMS FOR GRAVITY
AND FERMIONIC FIELDS

Variational problems are relevant in approaching the problem of quantum gravity. As
shown in the previous chapter, defining canonically conjugate variables for the theory is
straightforward by starting with an action principle. Its availability also makes it easier
to elucidate the coupling of matter fields to gravity for instance when using Ashtekar
variables. On the other hand, in the path-integral approach, knowing what the action for
gravity and matter flelds is enables one to calculate the semiclassical value of transition
amplitudes. In the present chapter the results by York [149] concerning boundary terms
for pure gravity are described so that well-posedness of the corresponding variational
problem is attained. Then, after touching on the relevance for quantum cosmology of
the boundary conditions for the wave function of the universe as a motivation for our
approach, the analogous classical variational problem for Fermionic fields is studied for a
model consisting of a massless spin-% field in flat Euclidean 4-space bounded by a three-
sphere, S3 [21]. At last, the local boundary conditions used in the one-loop quantum
cosmological analysis in [150] for the massless Fermionic fields on 53 are implemented

through a boundary term to be included in the classical action.

83
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4.1 Gravitational boundary terms

In second-order theories of gravitation in the presence of boundaries, boundary terms are
essential to obtain a well-posed variational problem, i.e. a differentiable action functional
which is stationary under arbitrary variations of the four-metric. Moreover, boundary
terms lead to a Lagrangian density such that the corresponding Hamiltonian is well-
defined, they yield a non-vanishing action for vacuum general relativity, and the funda-
mental formula relating entropy of black holes to the area of their event horizon is recovered
using Wick-rotated path-integral techniques.

There are a number of different forms of the action integral from which the vacuum
Einstein field equations can be derived. York has performed a comprehensive analysis of
this issue [149] by focusing on the question of what is fixed on the spacetime boundary.
Consider spacetime (M, g), with g having diagonal form (—,+,+,+) on each tangent
space, to be smoothly sliced and let one of such slices be the spacetime boundary 8M.
Take n® to be the unit normal vector field associated to the slicing, such that n%n, = e,
€ = +1 if n? is spacelike (i.e. OM is timelike), ¢ = —1 if n, is timelike (i.e. OM is
spacelike). The tensor field on (M, g) whose restriction on 8M yields the positive-definite
three-metric induced on every slice is denoted by h (h;; = ¢,;) and the extrinsic-curvature
tensor K of the slice is here defined as K, = ¢)"¢*V,,n,,, where V is the unique torsion-
free four-dimensional connection of (1, g), compatible with g. York’s results are expressed

in terms of the gravitational action, in ¢ = 1 units, as
1 / (—1)R \/_ d* i b ] K! \/— 43
p— q: —
167G Jar g ot 167G JB; 1vaae®

+é 8jrkG/dt/Bk Bi{\/ﬁ (K'zNi— giijj)]d3z+C (K'uﬁ) (4.1)

where all contributions are given in terms of ¢, K, the lapse NV and shift vector N® [149].

S =

Morover, Kll = ¢®®K,p, with ¢?® the inverse of ¢ab, @nd the B; are the components of
the spacetime boundary which add up to M. Finally, the values of the dimensionless
parameter b are determined according to what is fixed on M. b = 0 is consistent with
fixing 7°¢, the canonically conjugate variable to gup, on the boundary, b = % when the

conformal three-metric, .y = (det q)“%ch, and the trace K/, are both fixed on &M under
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the variation, whereas b = 2 corresponds to the cas‘e when qqp is fixed (i.e. dgaplors = 0).
The constant C = C(K',, M) is a term which, without affecting the equations of motion
enables one to have a finite action in the asymptotically-flat case, and depends on K ’,
and a suitable four-manifold M different from M [151]. Note also that the second sum
appearing in equation (1.1) is here included to cancel an opposite-sign contribution arising
from the Einstein-Hilbert part of the full action [54], so as to obtain the familiar ADM
form of the action integral [84, 149]. Of course, ¢; = —1 if B, is spacelike (the case we are
interested in), and ¢; = +1 if B; is timelike.

To ilustrate how the analysis goes through an example is next given. Consider the

Einstein-Hilbert action

1

Igy = d*z /=g YR 4.2
BH = 15ra ), eV R (4.2)
Varying it w.r.t. the metric g,p yields [89]
167G 6Tpy = —/ d'z /=g G% 5gab+/ &Pz VEncbv, (4.3)
Al oM
§v. = V°(89e) — 9%V, (6gba) - (4.4)

Hence, Igy is not stationary under arbitrary variations of g,p; due to the presence of
the boundary contribution the normal derivatives of the variations of the metric should
vanish on §M. As prescribed above, to build up an action which is stationary one can add
suitable terms to Igy such that they cancel out the corresponding contribution. Writing

down dv. explicitly in terms of the variations of the metric one gets [89]

[n°8velan = — [ncqbdvc (59bd)] ony = 20K Tlonr - (4.5)

In the first equality use is made of the facts that ¢) gop = gap+nanp and i) [quV (6gab)} orr =
0 because one is taking [6gab)g,, = 0. The second equality can be seen to hold by directly -
working out the variation of the trace of the extrinsic curvature of the boundary K™ |ga/**

Hence, the action

4 7t 3 !
= T G./ d'z «/— R+87rG/ d’z /g K') (4.6)

2K = K7 = ¢5V.n® becomes, upon variation, 6K = ¢°% (JC’GC) n®, where C2, is defined by V,n’ =
Vanb + Cl.n°. Thus, using again condition ii) above, [6K]pp =3 [ncqadvc (6gad)} sar’ the result one was

looking for.
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is stationary under arbitrary variations of the metric, §g.p, with the condition [8gaplyy, ==
0. Morover, it can be verified that it is also stationary when only the three-metric induced
on the boudary is fixed, i.e. §h|5,, = 0 [89]. The boundary term in (4.6) accounting for

the extra boundary term coming from Igy.

4.2 Boundary terms for massless Fermionic fields
4.2.1 Quantum Cosmology and the Hartle-Hawking proposal

The motivation for studying the boundary terms and boundary conditions discussed below
can be traced back to the Hartle-Hawking proposal for the wave function of the universe
in quantum cosmology [116]. The specific form, however, is taken from supersymmetry
[152].

When fermionic fields are incorporated with gravity in a cosmological model using
the path-integral approach [116, 138, 145] one looks for a solution of the Wheeler-DeWitt
equation defined by the path integral over the class C of Riemannian four-metrics and

matter fields matching the boundary data

¥ = [ deldigaldBaldixaldFal 7T (47)
where ec{’ are the tetrads and ¢, @, X4, X4 the (two-component) spinor matter fields.
Moreover, I is the Euclidean action for the coupled system. The Hartle-Hawking proposal
[116] demands that four-metrics summed over in (3.7) should be compact, and that there
is only a “final” boundary Sr for the Riemannian four-manifold. Since the fermionic
action is quadratic in the corresponding Grassmann fields, and Berezin integration rules
hold, the evaluation of the path integral is essentially semiclassical. Thus, boundary
conditions suitable for investigating the Hartle-Hawking quantum state may be found by
studying the classical version of the Hartle-Hawking path integral, i.e. , by asking for data
on a three-sphere bounding a compact region with a Riemannian metric, such that the
boundary-value problem for the Dirac equation is well-posed.

Local supersymmetry leads to boundary conditions for fermionic fields in one-loop

quantum cosmology involving the Euclidean normal enlﬁ' to the boundary and a pair



FOUR: Variational Problems for Gravity and Fermionic Fields 87

of independent spinor fields ¥ and J"V [145]). Tt is here found that if /2 enf{“" P T
P = &4 is set to zero on a 3-sphere bounding flat Euclidean 4-space, the modes of the
massless spin-% field multiplying harmonics having positive eigenvalues for the intrinsic 3-
dimensional Dirac operator (n g eBB' ((B)Dj) on §3 should vanish on S3. Remarkably,
this coincides with the property of the classical boundary-value problem when spectral
boundary conditions are imposed on §2 in the massless case. Moreover, the boundary

term in the action functional turns out to be proportional to the integral on the boundary

1
of @4 ny gy,

4.2.2 Variational problem for fermionic fields: a model

Locally supersymmetric boundary conditions have been recently studied in quantum cos-
mology to understand its one-loop properties (see references in [145]). They involve the
normal to the boundary and the field for spin %, the normal to the boundary and the spin-
g potential for gravitinos, Dirichlet conditions for real scalar fields, magnetic or electric
field for electromagnetism, mixed boundary conditions for the 4-metric of the gravitational
field (and in particular Dirichlet conditions on the perturbed 3-metric). The aim here is
to describe the corresponding classical properties in the case of massless spin—% fields.
For this purpose, we consider flat Euclidean 4-space bounded by a 3-sphere of radius a.
This is the limiting case of a more involved boundary-value problem, where flat Euclidean
4-space is bounded by two concentric 3-spheres of radii r; and ry, say, and one finally takes
the limit 1 /ro — 1. The spin-% field, represented by a pair of independent spinor fields
¥ and {Z;A', is expanded on a family of 3-spheres centred on the origin as [138, 145, 150]

| T—% oc (r+1)(n+2) (n+1)(n+2) ) \
¢l = o Y Y b [map(r)e™ 4 ()] (4.8)
n=0 p=1 g=1
ot o (mE)(2) (e )(n42) , )
Vo= = Y Y el A dr(r)e ] L (49)
n=0 p=1 q=1

With our notation, 7 is the Euclidean-time coordinate, the a?? are block-diagonal matrices

1
with blocks

1 -1
identities described in [138, 145]. Last but not least, the modes my, and r,, are regular at

), p and o are spinor harmonics on the three-sphere, they obey the
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7 = 0, whereas the modes m,, and 7,,, are singular at 7 = 0 if the spin-% field is massless.
Bearing in mind that the harmonics p"? and 6™ have positive eigenvalues 3 (n—i— %) for
the 3-dimensional Dirac operator on the bounding S3 [145], the decomposition (4.8-4.9)

can be re-expressed as

o= P+ o (4.10)
v o= gy el - (4.11)
In (4.10-4.11), the (+) parts correspond to the modes m,;, and r,,, whereas the (—) parts
correspond to the singular modes m,,, and 7,,,, which multiply harmonics having negative
eigenvalues —3 (n + %) for the 3-dimensional Dirac operator on §3. If one wants to find a
solution of the Weyl equation which is regular V7 € [0, a, one is thus forced to set to zero
the modes m,, and 7,, V7 € [0, a] [138]. This is why, if one requires the local boundary
conditions [145]

V2 enAA’ = '(ZAI =34 on §° (4.12)

such a condition can be expressed as [145]

V2en i gy = & ons? (4.13)

oty = & on$? (4.14)

where é'l‘" and @‘jl are the parts of the spinor field ' related to the 7- and o-harmonics
respectively. In particular, if @'14’ = @'2"1 = 0 on $° as in [145, 150], one finds

oo (n+1)(n+2) (n+1)(n+2)

Z Z Z afzq mnP(a) enAAI p:q = 0 (4‘15)

n=0 p=1 g=1
oc (n+1)(n+2) (n+1)(n+2)

2% Zl Zl aﬁq rnp(a) 0',;1(; = 0 (4.16)
n= p= g=

where a is the 3-sphere radius. Since the harmonics appearing in (4.15-4.16) are linearly
independent, these relations lead to m,,(a) = r,p(a) = 0 Vn,p. Remarkably, this simple
calculation shows that the classical boundary-value problems for regular solutions of the

Weyl equation subject to local or spectral conditions on S° share the same property
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provided ' is set to zero in (4.12): the regular modes m,, and r,, should vanish on the
bounding $°3.
To study the corresponding variational problem for a massless fermionic field, we should

now bear in mind that the spin-% action functional in a Riemannian 4-geometry takes the

form [145, 150]

o= [ 5 (Oat) - (Pt ek Ty

This action is real, and the factor i occurs by virtue of the convention for Infeld-van der
Waerden symbols used in [145, 150]. In (4.17) Ip is a suitable boundary term, to be
added to ensure that I is stationary under the boundary conditions chosen at the various
components of the boundary (e.g. initial and final surfaces, as in [138]). Of course, the
variation 6/ of Ig is linear in the variations §7-* and MZA'. Defining « = % and kg = Ip,

variational rules for anticommuting spinor fields lead to

“(615) = [ Lo () ]va e - [ [(Vaud")a0] 5 0
B »/81\[ [en‘“' (&ZA,) wA] Vhd's + ./azu [8”-4.411}4, (5%&‘4)] Vh d’z
o (4.18)

where Ig should be chosen in such a way that its variation &I p combines with the sum of
the two terms on the second line of (4.18) so as to specify what is fixed on the boundary
(see below). Indeed, setting € = +1 and using the boundary conditions (4.12) one finds

€

et = \/5%1’.4 —eenap® on S | (4.19)

Thus, anticommutation rules for spinor fields [138] show that the second line of equation

(4.18) reads

Torr =~ [ [(09)erasw? VA&t [ [inaui (s9%)|Vh &
~ . / e[ (88 )9 - 8 5y ) |VR e . (4.20)

oM

Now it is clear that setting

Ig=c¢ @Ale’n,g,y ¢4\/E 3z R (4.21)
oM
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enables one to specify &' on the boundary, since

5[131\1 +IB] = 26-/;1’\[

Ty (5@'4’)¢'4\/E d*z

Hence the action integral (4.17) appropriate for our boundary-value problem is

i

Ir = 5 M[’Z‘y (VA:V’:&A)“(VAA"‘ZAI)@bA]\/.—q- d'z
. 3% nyu pVh &P

1€

—2- oM
Note that, by virtue of (4.12), equation (4.20) may also be cast in the form

o = 75 [ [ (0240) - (69) 2] VR =

which implies that an equivalent form of Ip is

1 ~—
IE——/ A" & yv/det b d°
B \/§am¢ AV ae ‘

(4.22)

(4.23)

(4.24)

(4.25)

The local boundary conditions studied at the classical level here, have been applied

to one-loop quantum cosmology in [145, 150, 153]. Interestingly, the present result seems

to add evidence in favour of quantum amplitudes having to respect the properties of

the classical boundary-value problem. In other words, if fermionic fields are massless,

their one-loop properties in the presence of boundaries coincide in the case of spectral

[138, 145, 152] or local boundary conditions [145, 150, 153] while we find that classical

modes for a regular solution of the Weyl equation obey the same conditions on a 3-sphere

boundary with spectral or local boundary conditions, provided the spinor field 34" of

(4.12) is set to zero on S3. Furthermore, the analysis presented in Eqgs. (4.17)-(4.25)

may clarify the spin-% variational problem in the case of local boundary conditions on a

3-sphere as a particular matter-field analogue of the analysis in [149] for pure gravity.
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LOOP VARIABLES FOR EC-WEYL THEORY

In this chapter, we study the quantum fermions+gravity system, that is, the gravita-
tional counterpart of QED. Based on the results of chapter 3 we look at a theory of a Weyl
field coupled to gravity: the Einstein-Cartan-Weyl theory in self-dual form. We construct
the related non-perturbative quantum theory by extending the Loop Representation of
General Relativity as described in [22].

To this aim, we introduce the fermion equivalent to the loop variables, and we define
the quantum theory as a representation of their Poisson algebra. Not surprisingly, the
fermions can be incorporated in the Loop Representation by simply including open curves
into “Loop space”, as expected from the experience in lattice Yang-Mills theory. We
explicitely construct the diffeomorphism and hamiltonain operators. The first can be fully
solved as in pure gravity. The hamiltonian constraint admits the same simple geometrical
interpretation as its pure gravity counterpart: it is the operator that shifts curves along
themselves (“shift operator”). An explicit divergence afflicts the results when adopting
this approach. This is highlighted at the end of the chapter. To cope with it will be the
matter of chapter 6.

91



92 FIVE: Loop variables for EC-Weyl theory

5.1 Classical fermion paths

As described in chapter 2, Non-perturbative quantum General Relativity can be con-

structed in terms of the loop variables

Tla] := Us'la] = Hq] (5.1)
T°B)(s) = U.LB)(s)3%5" (B(s))- (52)

We indicate loops by greek letters. A loop is here a closed continuous piecewise differen-
tiable curve in ¥, a : §; — ¥; and s is the parameter along the loop: a: s — a?(s). We
indicate by U [P[a](s) the parallel transport SL(2,C) matrix of the Ashtekar connection
around the loop a, starting from the parameter value s; that is, the path order exponential

of the line integral of the connection around the loop:
B

U Pla] = [7: exp [ ds &) Aa] o (5.3)
The properties of these loop variables were also discussed in chapter 2. In order to con-
struct the extension of the loop representation to fermions, we want to generalize these
loop variables to the presence of the spinor field. We want to define objects invariant
under the action of the Gauss constraint. Loop-like variables in theories with connections
involving fermions, have been dealt with by Rovelli and Smolin [154] for lattice Yang-
Mills, and by Kim et al [155], for 241 gravity. For earlier related ideas, see [16, 156].
We follow here the lines of [154]. Let us consider piecewise differentiable continuous open
curves in X. Since it turns out to be convenient, we will also call these open lines loops,
certainly with an abuse of terminology; and we denote them too by means of greek letters:
a:(0,1) —» ¥; and a : s — a’(s). We denote as a; and ay the initial and final point of

the loop, namely:

a; = a0),

ay = afl). (5.4)
If ay = B;, we denote the open line obtained joining o and 8 as « - f; that is

[a- B(s) == a(25), if s€[0,1/2] (5.5)
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[@-B](s) :=p(2s - 1), if s€[1/2,1]. (5.6)

We then define
Xle] = ¢(a) UsPla] ¥p(ay) (5.7)
Y[o] = #(es) UPla] ¢n(ay). (5-8)

X and Y, are parametrized by open curves. They are defined as path integral exponentials
of the Ashtekar connection along these curves, with Grassmann-valued spinor variables at-
tached to the end points. They are SU(2)—invariant?® as can be shown in a straightforward
manner by recalling the transformations induced by the Gauss law constraint (cf section
3.4) on the canonical variables of the theory. Other important properties of the X and Y

variables are the following.

1. They are invariant under a positive derivative monotonic reparametrization of the

open loops (as it is readily deduced from the definition (5.3)).

2. X is invariant under inversion of the open loop, X[a~!] = X[a]. This important

property follows from the fact the fermions are Grassmann variables. In fact:

Xe = ¢ e )UaPla (g ")
= P ap)UaPla ¥p(a)
= — ¢4 (ap)Uapla P ()
= + ¥ (ay)UpalalyP(a)
= — ¢B(a)Up.alefy(ay)
=+ 9%(a)Us*[a]tpa(ay)
= + ¥ (i)UsP[a)9pp(ay)
= X|a] (5.9)
In the third and sixth line we have used the spinor index property £%py = —¢4p%. In
the fourth line we have used the parallel propagator property U,p[a] = —U pala!]

#They become SL(2, T )-invariants by choosing accordingly an SL(2, C)-connection thus describing

complex general relativity.
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(recall that if the parallel propagator U.®[a] is the identity, then Usp[a] = €1p). In
the fifth line, we have switched the two fermions, gaining a minus sign due to their

Grassmannian character.

3. Retracing identity. As their closed loops counterparts, the fermionic loop variables
X and Y satisfies the retracing and spinor identities that follows from their being
defined in terms of parallel propagators of an SU(2) connection. For instance, if
the open curve « is formed by the three segments 8,7,§ with 8; = v; = §;, as
a=pf-v-7y71-6, then X[a] = X[ §].

4. Spinor identity. The following notation is useful. Let « be an (oriented) open line.

We define

ot = P () Up?lal. (5.10)
Then, if ay = B, we can write
Xla-p7'=a"By (5.11)

Now, consider a point p where 4 lines terminate, that is ay = fy = 75 = éy = p.
There are three possible ways of connecting these four lines to form two gauge

invariant X variables:

X[a-y7YX[6- e — a‘47‘453ﬁ3 = a?BByY8Pescepn (5.12)
X[a-6"YX[v-871 = asbtypB? = a?BP1%6Peapenc (5.13)
X[ - YX[y- 671 = asf?vp88 = PPy 6 espech. (5.14)

By using the fundamental spinor identity, which is at the root of the Mandelstam

relations

€ABECD + €aD€BC + €ac€pB = 0, (5.13)

we have the fermion version of the spinor identity, namely

X[y X[6- 87" + X[a- 6 X[y 67 + X[a- )X [y-67] = 0. (5.16)
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Similarly, it is simple to derive the identitity that refers to the intersection between

the open loop a - 8 and the closed loop 7, where ay = 8; = v; = 75:
Xla Bl Tlyl=X[a-7- 0]+ X[a-v7"- B (5.17)

5. Fermionic(Grassmann) identities. Since Grassmann variables anticommute, and
since the fermion field has only two components, if we multiply three or more fields
in the same point we obtain zero. It follows that we can have products of X variables

with at most two coinciding ends with Fermions. Thus, for instance, if o; = 8; = 75,

then X[a]X[B]X[y] = 0.

6. Gauge observables algebra. Finally, the most important property of the X,Y,T,T*

variables is that their Poisson algebra closes. A direct computation yields

{x[8], X[a]} = 0
Y8, X[a]} = 8(aspB)X[a-B]+8(Bi,0i) X[a™" - ]
{¥(el, Y81} 8oz, Bi) Y]a- Bl - 8(a:inBy) Y[ - o (5.18)

i

Whereas the nonvanishing brackets with the T variables are

{T°[7)(s), X[a]} = iA%y(s),a] ) nX[a#a"]

p==x1

{T°[4)(s), Y[a]} = iA%[y(s)a] 3 n¥[a#a"]- (5.19)

p==x1

As for pure gravity, one may define also higher order observables, which will have sim-
ple quantum operators associated. For instance we can insert “hands” (i.e. gravitational
momentum variable) into the X variable, and so on. In order to treat the dynamics, the

following variable will be particularly useful.

Yoal(s) = 7 () UsP[a](0,8) 5°5° (a(s)) Uc[el(s, 1) ¥nlay), (5.20)

where the notation U4 ?[a](s,t) indicates the matrix of the parallel transport along « from

s tot. This variable is quadratic in the momenta, 7, 350443, and will play a role analogous
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to the role of the T2 variable in pure gravity, which is also quadratic in the momenta.
Indeed, we will use it for defining the hamiltonian constraint.

Finally, we may introduce a further small simplification in the notation: if the context
is clear, we may write X[a] as T[a]. Namely we can use the same notation, T[a], to
indicate the the trace of the holonomy of o if a is a closed loop, and to indicate the

parallel propagator along a sandwiched between two fermion fields if o is open.

5.2 QGD: kinematics

Let us now begin the construction of the quantum theory. Following the philosophy
described in refs. [1, 6, 105], we look for a quantum representation of the classical loop
algebra. Rather than simply writing the representation, it is perhaps more instructive to
use the Loop Transform, introduced in ref. [1], as an heuristic device to help us in this task.
Thus we first consider a “Schrédinger-like”; or perhaps “Bargmann-like”, representation of
the quantum EC-Weyl theory. We consider functionals ¥[4, ] on the configuration space,
and we define the canonical coordinates operators A and ¢ as multiplicative operators,

and the corresponding momentum operators as functional derivative operators

&4 B(z) = %m—(w—) (5.21)

- N
7‘1."4(I) = im.

(5.22)
Since we are using this construction only as an heuristic tool to find a possible form for
the fermion loops operators, we are not particularly concerned with mathematical rigor
here. We focus on loop states in this representation. These are defined as follows. Given
a closed loop a, we write

To[d4, 9] = Ula]s™ (5.23)

In the case of an open loop a, we have

Tal4, 9] = 97 (e) Ulela® 95 (ay). (5.24)

Thus, for an arbitrary collection 8 of a finite number of open or closed loops a3, as, ..., an,

we use

Ty =0, ¥,,.. 0, (5.25)
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Note that we follow here the usual convention of denoting loops (open or closed) and
multiple loops (namely collections of a finite number of loops) by means of the same
notation, that is greek letters from the begining of the alphabet. The idea of the loop
representation is to take the ¥ states as an overcomplete basis of quantum states. We

thus introduce the (ill defined) Loop Transform [1, 6] as follows.

¥(g):= [ DADY T5l4,9] T[4, 4. (5.26)

Here U[A, ] represents a generic wave functional in the connection representation, and
U[J3] represents its Loop Transform. The novel features entering here come from the
inclusion of fermions; states containing no fermions are described exactly as in the pure
gravity case [1]. The transform (5.26) has a well defined meaning on the lattice, where
the ¥ states are the Wilson-Susskind states. In the lattice case it is possible to show
that the transform defines a unitary transformation to a new basis in the Hilbert space
of the theory. The mathematics of the Loop representation in the continuum is under
investigation, with extremely encouraging results by Ashtekar, Lewandowski and others
[33].

Eq.(5.26) suggests that we may look for a representation of the full EC-Weyl loop
algebra on a space of functionals of multiple loops, where the multiple loops are sets of
closed as well as open loops. Then the transform gives us immediately the action of the

X and Y operators in the loop representation

(Zele) i8] = f DADY ¥g[4, 9] (X[a]?) [4, ¥]
= /DADI/J \I’ﬁ[A,'(,b]‘I'a[Aa 'Qb]‘I’[Aa 'ﬁb]
_ /DADd; Tuald, Y] T[4, Y]

= Y[BUda]; (5.27)

where the union operaton U of set theory is well defined between the multiple loop 8 and

the single open loop a. Thus we have

X[a)T[8] = T[BU al. (5.28)
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Note that this is essentially the same action as the action of T'[a] in pure gravity. Using

the notation suggested at the end of the previous section, we can write

T(a]¥[8] = ¥[ U a] (5.29)

for open as well as for closed a’s.

As far as Y is concerned, we have

i

(Plal2) (8] / DADY (4, 9] (Pa]¥) [4, 9]
= /’DAD'gb (Y’[a]@'g) [4,¢] T[4, 9]
/DAsz (1/)B(af)U_4B[a]6¢4( 3 ) (4, ] T[4, Y]

= 263<a,,ﬁf)w B+ 2000 0 B8 - 7' (530)

Here 3~ 4, indicates the sum over all the initial points of the open loops in the multiple loop
B, and Zﬁ, indicates the sum over all the final points of the open loops in the multiple
loop . We introduce the following notation. We write 3. to indicate any end point of the
multiple loop 8. If B = «;, the notation f - a indicates the multiple loops obtained by
attaching a; with .. Thus we have

Vo] ¥[8 =" 6%(ai, Be) T[B - al. (5.31)
Be

In words, the action of the operator Y[a] is simply to attach the open loop a to any open
end that happens to be in the point a;.

Next, we supplement (5.28), (5.31) with the usual quantum 7T-variables in the loop
representation [1, 6]. The computation of the quantum commutation relations of the entire
set is then straigthforward. The result is that the set of operators X,V,T, T provides a
representation of the classical algebra (5.18), (5.19) and the classical T—-algebra.

We can also naturally introduce quantum operators corresponding to higher order loop
variables. As their pure gravity counterparts, these have a quantum algebra that reduces
to the corresponding classical Poisson algebra in the limit in which the Planck constant

goes to zero. We write here the quantum operator corresponding to the Y'* variable defined
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above, since it will be used in the construction of the Hamiltonian

Y?[a](s) ¥[6]

%;63(ﬂe,ai) /3 dt ()5 (a(s), B(2))

[II'(C“ * *j,tﬂ) + ¥(a* *;tﬂ)] =
S 8By i) [ dt B2(1)5%(als), B(1))
ﬁe !

PR ACEEC) (5.32)
g=x=+

Il

Here we have indicated by a**j‘tﬁ and axx*_ 3 the twoloops obtained by joining the 8. end
point of 8 with the point «;, and rerouting the intersection a(t) = f(s) in the two possible
ways. Note the plus sign between the two terms, which will play an important role in
what follows. The expression (5.32) can be obtained for instance from the loop transform.
To determine the correct overall coefficient and sign, an accurate computation with the
SU(2) index algebra is needed. Note however, that the relative plus sign between the two

terms in parenthesis is forced by symmetry, since neither of the two can be preferred.

5.3 Diffeomorphisms and diff-invariant states

The classical vector constraint generates spatial diffeomorphisms when acting on gauge
invariant objects. This is also true in the quantum theory provided the correct ordering of
the vector constraint quantum operator is chosen. Precisely as in the pure gravity theory,

there are several fully equivalent ways for reaching this conclusion:

1. As suggested by Isham [105], the vector constraint can simply be defined as the
generator of the natural action of the diffeomorphism group on the space of the open
and closed loops. The commutator algebra of these generators among themselves
and with all the other operators in the theory, then, reproduces the corresponding
classical Poisson algebra. This is a sufficient condition to ensure that the classical
limit of the quantum theory that we are constructing reproduces the classical theory
we started from. Since the correct classical limit is the sole requirement we have on
the theory, the quantum diffeomorphism constraint defined in this way represents a

consistent quantization of its classical counterpart.
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2. We can use the transform, and define the loop representation vector constraint op-

erator as the transform of the vector constraint operator in the representation that

diagonalizes A and .

3. We can express the classical vector constraint in terms of loop variables, as a suitable
limit of a sequence of these variables. The corresponding quantum constraint is then

defined as the limit of the corresponding quantum loop operators.

As in pure gravity, it is not difficult to show that these different strategies yield the same
quantum diffeomorphism constraint, and that this is can be expressed as follows. For

every diffeomorphism ¢ € Diff[%]
Ula] = ¥[¢-q] (5.33)

where [¢- a](s) := ¢#(a(s)). The general solution of the diffeomnorphism constraint is given
by the loop functionals constant along the orbits of the action of the Diff group on the

loop space, namely, they are given by
Ula] = ¥[K(a)] (5.34)

where K () is a generalized knot class, that is, an equivalent class under diffeomorphisms
of sets of graphs formed by open and closed lines.

For every generalized knot class K, we can define a corresponding quantum state ¥
as the reprsentative function of the class. We will also use a Dirac notation ¥[a] = (a|¥),

and denote the state Ug as |K >. Thus

(k) = 1 i K=K(),

(a|K) = 0 otherwise, (5.35)

Let us begin here some preliminary investigation of the structure of the ensemble of quan-
tum states |K >.

Consider a fixed class K. Let a be one of the (diff-equivalent) multiple loops that
belongs to K. Let a be composed by ¢ closed loops and o open loops. There are 20 end

points a, in a. We distinguish the end points as simple or doubles. An end-point o is
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simple if there is no other end point o, in a such that a. = al. It is double otherwise.
Note that there cannot be “triple” end points, because of the Pauli principle. Let S and
D be the number of simple and double end points. And N = § 42D = 20 be the number
of end points.

Consider the points ¢ in the image of a such that one or more than one of the following

is true:
1. a is non injective in ¢ (i.e. it is an intersection point),
2. 7 is an endpoint,
3. « is non differentiable in 7 (e.g. a kink) ;

we denote these points 7 as generalised intersections, or, simply as intersections. We
assume that the number of these intersections is finite, and we denote this number as
I. Given an intersection ¢, we assume there is only a finite number of components of a
coming out of it. We denote this number as m;, and we call it the order of the intersection.
Intersections of order 1 are single end points. Intersections of order 2 are either double
end points or kinks along a loop. Intersections or order 3 are single end points that fall
over a loop. Intersections of order 4 are either crossings of two loops, or a double endpoint
that falls over a loop, and so on. We call the intersections of order one free end-points.

Consider an intersection 7 of order m; in a loop a. Let aj(s), with 7 = 1...m;, and
a;j(0) = i, be the m; lines (components of the loop @) that come out from 4. Let I;, j =
1...n(7) be the n(¢) tangents of a;(s) in i. Let then i(jk), where k is a positive integer, the
kth derivative of the jth component of the loop in i. For instance, if m; = 1, and 7 = «(0),
then [; = da(s)/ds, and l—gz) = d’a(s)/ds?, and so on.

The vectors i(jk) transform among themselves under reparametrization of @ and under
diffeomorphisms. Considering any possible intersection of order m;, we denote the space
of the equivalence classes of the (full collection of) l_(jk) vectors, under reparametrization
of a and under diffeomorphisms, as the moduli space of the intersection of order m;. The
moduli space of an intersection of order n < 5 is discrete; this is not so, in general, for

larger n. However, the moduli space is always finite dimensional. Let al(-m") be a collection
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of parameters that coordinatizes this moduli space, as well as characterizing the rootings
of a through the ¢ intersection.
Finally, let K% be a discrete index that labels the braids with P (ordered) open hands

and ¢ closed loops. We can (over-) characterise a quantum state as (see ref. [5]):
|N,I,D; al...al’; OE-'""> (5.36)

where, we recall, N is the number of end-points, I is the number of intersections, D is the

(mi)

(1)
1 ....aI

number of double hands, m;....m; are the orders of the I intersections, a are

the moduli space parameters of the intersections and ICOZM, is the discrete topological

class of the braid obtained by taking away the intersection points from the loop.

5.4 The hamiltonian constraint has a simple action

Our last and main task is to deal with the dynamics, which is contained in the hamiltonian
constraint. (The Hamiltonian constraint of the pure gravity Loop Representation was
discussed in [1, 157, 158]. For a comprehensive and critical discussion of the various
approaches see ref [159].) We shall perform this task in two stages. In the present section
we introduce a simple and naive non- regularized definition of the quantum hamiltonian
constraint. This is not really satisfactory because it does not allow us to control the
divergences of the theory. However, we think it is usefull to present this non-regularized
version of the dynamics first, because it allows one to appreciate the striking simplicity
of the geometrical action of the EC-Weyl Hamiltonain constraint, which otherwise could
improperly appear as an improbable product of the technicalities of the regularization
procedure. In the next cahpter, we will transform the formal outcome we obtain here in
a more solid result.

Thus, we begin by defining the hamiltonian constraint by using the simplest procedure,
namely we define it in the connection representation and we transform it to the Loop Rep-
resentation by using the Loop Transform. We choose the ordering in which the momenta
are always to the right of the configuration variables. Taking into account the Grassmann

character of the fermionic variables, the Hamiltonian constraint, smeared against a test
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(inverse density) scalar N(z) is

AN = - / d’z NTr (Fabé"éb) — i35 P oyt 7p
: § 5
= — [ d&® N(z)TcF;5()
Jo e M o) s
5 5

—iv/2 Db (z) (5.37)

JA;;*B(:E) §9B(z)
In order to compute the Loop transform of this operator, we have to compute its action

on the kernel of the Loop Transform, that is, on the basis loop states ¥,[A4,1]. We need

to compute

HIN] 9a[4,]. (5.38)

If « is formed by closed loops alone, then ¥,[A, ] is independent from ¢ and therefore
the second term in (6.4) does not act. It follows immediately that the action of H[N]
on the closed loop states is fully equivalent to the action of the pure gravity hamiltonian
constraint. Let us then assume a is a single open loop. A straigthforward calculation

gives

H[N) 9a[4,9] =
[l [*as Na@F(als), a@)e(s) 6
0 0
¥ (a;) Ugir(0,£) Fop "B () Upyn (8, 1) ™ (ay)
1
B /o ds IV (c:)6%((s), i) 6°(0) Datp™ () Vsl 7 (af)
1
+ [ ds Nlans(als), o) 61 ¥P(@)Upala) Du(es). (5:39)
We immediately see the difficulty in this equation: the three- dimensional delta functions

are integrated only against two line integrals, leaving a divergent factor. As we said, let

us disregard this infinity for the moment.

We now recall from ref.[1] that, if we disregard divergences, the action of the Hamil-

tonian operator on a pure loop state can be written as

AIN) 2. = SN)¥a (5.40)
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where S, denoted as the “Shift operator”, is a simple operator acting on the loop argument,

as
1 1
S[N1¥, ::/ ds / dt ]j(a(s))d“(s)&“(a(s),a(t))——6—~ v,. (5.41)
0 0 ba(t)
If a has no self-intersections, and up to a divergent factor k, the Shift operator becomes
simply
SINIZa = klim o, (5.42)
where
agy(s) = a®(s) + 1Y (a(5))&(5) (5.43)

The action of the Shift operator has thus a very simple geometrical interpretation: it shifts
the loop ahead along its tangent. Clearly, it sends a smooth closed loop into itself, while
it deforms a loop with kinks or intersections. This simple action is one of the ways in
which one can (formally) understand the well known result that loop states corresponding
to smooth non intersecting loops are in the kernel of the Hamiltonian constraint. The fact
that the action of the hamiltonian constraint on the kernel of the Loop Transform can be
expressed in terms of an operator acting on the loop variable enables us to interpret this
operator as the operator that represents the Hamiltonian constraint in the Loop Repre-
sentation [1]. Thus in pure gravity the Hamiltonian constraint can be simply expressed as
the Shift operator.

How does the picture change if we include the fermions ? The striking result that we
have mentioned in the introduction is that the picture does not change at all: Eq (5.40),
which expresses the Hamiltonian as the Shift operator still holds. The shift operator being
still given by equation (5.41), where now we also allow the loops to be open, or in the
absence of intersections, by equation (5.42). Indeed, by computing the action of S[N],
as defined in equation (5.41) on an open loop state, we get precisely the right hand side
of equation (5.39). What happens is that the fermion term in the classical hamiltonian
constraint give rise to the second and third term in equation (5.39) and these terms are
precisely the terms that “move” the two fermions at the end of the loop in the correct
direction !

Thus we have the following result:
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e In pure gravity the action of the hamiltonian constraint on Loop Space can be ex-

pressed as the action of the Shift operator (5.41), which simply shifts non-intersecting

loops along their own tangent.

o By applying this same geometrical operator on open loop states, we have the action

of the EC-Weyl hamiltonian constraint.

We have been deeply puzled by this result, and we do not see any simple way of
interpreting it. We have not been able to find any reason for which this result could be
understood in terms of the “classical” Fermion dynamics. Its simplicity seems to us an
indication of something, but we have not been able to decode the indication. We shall
study in the next chapter how we can free the result from the divergences, i.e. the way to

clean it up from the divergent factor k.



SIX

QUANTUM GRAVITATIONAL DYNAMICS

This chapter deals with the problem of making more rigourous in both physical and
technical senses the analysis of the Hamiltonian constraint operator found in chapter 5
for the EC-Weyl theory using the Loop representation. This is based on ref. [22]. In
particular, we aim to adopt a viewpoint in which there are no divergences present as it
was the case in chapter 5.

To unravel the dynamics of the ‘theory we study the evolution of the fermion-gravity
system in the physical-time defined by an additional coupled (“clock”-) scalar field. We
explicitely construct the Hamiltonian operator that evolves the system in this physical
time. We show that this Hamiltonian is finite, diffeomorphism invariant, and has a simple
geometrical action confined to the intersections and the end points of the “loops”. The
quantum theory of fermions+gravity evolving in the clock time is finally given by the
combinatorial and geometrical action of this Hamiltonian on a set of graphs with a finite

number of end points.
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6.1 Coupling a clock field

To cope with the difficulties found in trying to define a sensible quantum operator for
the Hamiltonian constraint of the EC-Weyl theory, we now modify our point of view and
consider a richer theory: we couple a scalar field to EC-Weyl theory. We use a scalar field
in order to define a physical internal time, or clock-time, in terms of which we can study

physical evolution.

We have two independent motivations for choosing this road. First this procedure
allows us to unravel the physics of the general covariant quantum theory, otherwise hidden
in the frozen-time formalism, as discussed in detail for instance in refs.[9, 10]. Second, this
is a way to overcome the divergence difficulties we had in the previous chapter. Indeed,
we have learned from the experience in pure Quantum GR that non-diffeomorphism-
invariant operators tend to be ill-defined in a generally covariant quantum field theory,
while all the diffeomorphism invariant operators that we have been able to construct
have good finiteness properties [2]. Thus, we wish to replace the Hamiltonian constraint
with some diffeomorphism invariant operator [the Hamiltonian constraint, being a scalar
(density) is diffeomorphism covariant, not diffeomorphism invariant]. As shown in ref.[5],
the coupling of a scalar clock field and the replacement of the hamiltonian constraint
with an hamiltonian is a way to achieve this result. The hamiltonian that generates
the evolution in the clock time is a diffeomorphism invariant quantity and replaces the

hamiltonian constraint.

We refer to [5] for the details of the scalar field construction and the gauge fixing
that allows to define the hamiltonian. We simply recall here the main idea, so that this
chapter can be independently read. Physical quantum states are represented (say in the
connection representation) as functionals ¥[A, 9] of the spatial fields A(Z), P(Z), satisfying
the Wheler-DeWitt equation. As it is well known, the time coordinate ¢ disappears from
this frozen time formalism. In principle, the disappearence of the coordinate time is not
a problem, since the observables of the theory must be 4-dimensional general covariant
anyway , and thus, in particular, must be independent from t. Examples of these 4-

dimensional general covariant observables are given by the invariant distance d, of the



108 SIX: Quantum Gravitational Dynamics

solar system planets from the Earth, seen as a function dependent from, say, the invariant
distance d of the Earth from the sun. In practice, however, it is notoriously too difficult to
write the dynamical equations of GR directly in terms of coordinate invariant quantities:
in classical GR we almost always work with coordinate dependent quantities, and extract
coordinate invariant predictions only after the dynamics has been fully worked out in a
particular gauge. For instance, we study the motion of the planets, including perhaps
emitted gravitational radiation, in some arbitrary coordinate system (with some arbitrary
coordinate time #: d,(t) and d(t)), and only when the dynamics has been solved we
compute coordinate invariant quantities d,(d), which can be compared with astronomical
observations. The quantum frozen time formalism, however, does not allow us to work
with quantities dependent on the fictitious arbitrary coordinate time ¢, and thus makes the
dynamical analysis particularly cumbersome: what one should do is to view the physical
states ¥[A, )] as coding the quantum evolution of any variable in terms of any other
variable. In general this is not easy.

The problem can be simplified by studying a version of the theory in which there is a
simple quantity to be taken as the independent variable; that is, in which we know from the
scratch which variable we want to use as the “clock variable”. We thus introduce a scalar
field T(Z, t), and we decide to study the evolution of the gravitational and fermions degrees
of freedom, as they evolve in the value of T. If A(Z,t),(Z,t),T(&,t) is a solution of the
field equations, we extract information invariant under a time coordinate transformation
by solving ¢ with respect to T, and substituting the resulting ¢(#,7) in 4 and ): We get

the two functions
A(Z,T) = A(L,t(&,T)),
(2, T) = ¥(&1,T)), (6.1)
which are invariant under coordinate time reparametrization. Equivalently, we choose a
(physical) coordinate system in which T'(Z,t) = ¢.
In the quantum theory, the frozen time formalism is defined in terms of the functionals

@[A, 1, T] of the spatial fields A(Z),(Z), T(Z). We can interpret these states as giving
the amplitude for a A(%), (%) configuration at the given configuration T(&) of the clock
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field , and to interpret the Wheeler-DeWitt equation as an evolution equation in the
multifingered time T(Z). We can then further fix the multifingered T'(Z) time as a constant
function T(Z) = T, (we keep the same letter T to indicate also the real number T, besides
the function T'(Z)), and restrict ¥[4, v, T] (functional of the field T(&)) to v‘P[A, Y|(T) =
(A, ¥, Tllr(s=1 (function of the real numeber T), without any loss of information.
The state ¥[A4,9](T) expresses the quantum amplitude for the evolution in 7' of the
fields A(Z,T),¥(Z,T) defined above. Moreover, if ¥[A, 1, T] satsfies the Wheeler-DeWitt
constraint, it is shown in [5] that ®[A, ¢](T') satisfies the equation

4 O =
i U4, YI(T) = B 9(4,4)(T), (62

where the operator H will be defined in a moment. We can view equation (6.2) as a
genuine Schrédinger equation which evolves in the time T'.
More precisely, we can express the Einstein-Weyl-scalar-field theory in a canonical

gauge-fixed form, in terms of the configuration variables Aa‘f and ¥, the constraints

Gap = —iV2Dye 45 + T(a¥p)

Va = —iV2Tr (6"Fup) — FaDayp? (6.3)

and the hamiltonian (as opposed to hamiltonian constraint)

H= / da /—Tr (7955 Fp) + iv25°,F 7pDatp. (6.4)

It is shown in [5] that the solutions of this theory, A(Z,T), (&, T), are related to the
solutions of the full Einstein- Cartan-Weyl-scalar-field theory via equation (6.1). We
can define the kinematics of the quantum theory and treat the diffeomorphism constraint
exactly as in the chapter 5, but now we do not have a quantum hamiltonian constraint, but
rather a Schédinger equation (6.2) and a quantum hamiltonian H, which is the quantum
operator corresponding to the classical variable H given in (6.4).

The next section is devoted to the construction of the quantum operator H. This time
we will not be content with formal manipulations of divergent expressions, and we require

a somehow higher level of rigor.
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6.2 Definition of the regularized hamiltonian

Following ref.[5], our first step is to define a regularised classical hamiltonian in terms
of loop variables. We introduce a fictitious background flat metric and a preferred set
of coordinates in which this metric is euclidean; in the following everything is written in
those coordinates and we use the euclidean metric to define norms of vectors and raise
and lower vector indices. It will be our task, later, to show that the operator we define is

independent of the regularization background metric introduced here. We write

H= 1lm Hrisir, (6.5)
L—048§—-0
A—0 70
A,L,S L,76
HLJA" = Z Ls\/—CEinstein I~ C\\'eyl I (66)
I

Here we have partitioned three-dimensional space into cubes of sides L, labelled by the

index I. The quantity Cl-gi’rfsfein I

is the regularized form of the pure gravity hamiltonian
constraint (integrated over the I-th cube), and has been defined in [5].

With the purpose of defining the fermion term C\I(v’;'fls » We begin by defining the open
loop 77 5, where T is a regularization parameter (to be taken small), £ is a point in space
and 7 is a vector in the tangent space around &. Since we have a background flat metric
we can write expressions as Z + s, for any real s, with obvious meaning. The open loop
7%y is defined as the (uniformly parametrized) straight line (in the background metric)

that starts at & in the ¥ direction and is long 7. That is

(v2,7)°(0) = 2%, (¥245)°(s) = E:]y“- (6.7)
Note that
(Vig) (1) ==+ ‘—yﬁy“ (6.8)
and
(vzg)(l9l/7) = =* + y°. (6.9)

By making use of this loop, we define the regularised fermion hamiltonian constraint by

L6 1 5 (=
CWei1 = ”Egﬁds@ Ciyen(Z) (6.10)
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Cla(®) = e /dyea—umﬂ * vz (151/7) - (6.11)

3 1
= - 6.12
eré T w63 (6.12)

Here 0(z) is the conventional step function, that is the characteristic function of R*. Note
the three different roles of the three regularization parameters L, 7 and §: the parameter
L fixes the size of the boxes. As we will see, the introduction of these boxes will allow us
to deal with the square root. For every space point z, the fermion term of the Hamiltonian
constraint Cyyey1(€) is approximated by means of the loop variable Y¢ corresponding to
the “small” loop Vi that starts at z. The parameter 7 gives the length of the “small”
loop. The direction of this loop is integrated over (d®y angular integration). Y has
a special point where the gravitational “hand” is inserted. This point is chosen to be
7z4(lyl/T) = 2 + y°. Thus, also the position of this point (the hand) is integrated over
(d’y radial integration). This smearing of the position of the hand is what determines
the point split of the functional derivatives operators in the quantum theory. Note that
the d%y integral is restricted (by the 6 function) to a ball of size § around z. Thus, the
parameter § gives the point splitting separation between the initial point of the loop and
its hand. Note that in order this definition to make sense we must have 7 > §.

A straigthforward expansion in 7 and é§ shows that equation (6.5) is satisfied, namely
that the quantity that we have defined represents a genuine regularization of the Hamilto-
nian. For completness, let us sketch this expansion. We begin by writing the regularized

expression explicitely, by using the expression for Y%, given in eq.(5.20)

CToal@) = ews [dyo(e - 1) m (1250 0a® [135] (0, 131/7)
5°5° (vE (17U [25] (1917 1)n(vEgs)- (6.13)
By using the explicit definition of the loop 'yfg., this becomes
CToal@) = cos [Ly6(5 - ly) %7—1 =N @)UL® [1%] (0, 1vl/7)
55 (& + U [v5) (lvl/7, Vo(@ + 75/191)- (6:14)

We may now expand everything in powers of § and 7 around the point &. Before doing

so, however, let us note what follows. Since we have a (d°y) integration over a volume
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of order 63, and we divide by §° (in c,s5) before taking the limit § — 0, only the term in
the integrand of zero order in § may survive the limit. We also divide by 7 and take the
limit 7 — 0, thus only terms of first order in 7 survive in the limit. This means that to
the relevant order we may replace quantities in Z + ¥ by quantities in & (recall the d3y
integration is over a sphere of radius §), and quantities in T + 74/|¥], which is a distance
7 from # by the first two terms in their Taylor expansion around Z. By doing so, the first
of the two parallel propagators is just replaced by the identity, while the second can be
replaced with the entire parallel propagator along the small loop. We therefore have, up

to terms of order § or T,

CHa(®) = cns /d v 66 - 171) = = ()57
5°(#) (57 +wa 2(8)) (¥p(8) + T3°0:4p()) =
= s fd o6 - 1) 2 (@)
5 4° (&) [9e(8) + rhaty” (A% @)n(E) + 00 (2))]  (6.15)
with §° the components, in the euclidean background, of the unit vector Iiz;l The first term

in the square brackets vanishes because [ d®yy® = 0, and the second term is the covariant

derivative. Thus

OF(®) = eosr [ [ 06 - 17) | # @070 @Petc(@). (639)
The integration is now immediate
yig© 1 4

/dSy 05 — |g1) - = 5 6 57 (6.17)

Restoring the explicit form of ¢,s we thus obtain
City = 5 Degpe + 0(6) + O(7), (6.18)

namely the fermion term of the hamiltonian constraint, as we wanted.
We have shown that the quantity (6.11) provides indeed a regularized form of the

fermion hamiltonian constraint. We now come to the quantum theory and define the
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corresponding regularized quantum operator

73 A,LS L,r6
Hisar = ZLB\/ Ciimtoin 1 — C\\e\l[ (6.19)
L6
C\\eT\u = ﬁ/[dS '\e\l(m)) (6.20)
ya ra T
Cita(®) = e /d?’ye(a—lyx)mzf [v25] (wl/7) - (6:21)

The operator Y* is defined in equation (5.32). Note that in this regularized operator the
two hands of the operator [1] do not overlap: they are point split.

Let us study the action of the operator that we have defined: in spite of it apparent
complexity, this action will turn out to be relatively simple. Plugging the explicit definition
of ¥ (5.32) in (6.21) gives

Cri (@) ] = cns/dBy c’?(ﬁ—l.v,‘ﬂ)f’—;l ; 83(Z, o)
[ ds a2(s) 8 (z(191/7), () S o festeirz] - (622

‘We now use the explicit form of the small loop, and we keep only terms small in 7 and 4.
The first 63 function in the last equation forces the loop a to have an end-point a, at Z.
The integration over the small ball (size §) around this point, and the second §° function,
pick up a second point a(s) = £ + ¥ in a, close to a.. If a. is a free end point, we can
write this second point (up to the relevant order) as Z + |7|I., where I, was defined in the
previous section as the tangent of a at the end-point .. In general, however, o, needs not
be a free end-point; in the general case there will be several components of o originating
from o.. Thus [, takes a finite number of values, and the radial d®y integration together
with radial part of the second delta function pick up all these values; note that they turn
out to be proportional to §. The radial d®y integration is then straightforward, and we

obtain
— CTIS =4
C\'\e\l( ) [a] = F‘S Z 63(aeam) Z Zﬂ:\p [a * % 657—(I+61‘)] (623)
Qe l’; g=

We introduce the notation

Cho (=) ¥la] = 2’;5 Z §3(ae, ) FI° Ula] (6.24)
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Friw Z Z 1\ [ ax *9g 57..(75_*_5{)] (6.25)

[, ==
Finally, we may come to the Hamiltonian. Let us assume for a moment that the loop
we are dealing with has no intersection nor kinks, so that we can set the Einstein term to

zero. Inserting our last result into the Hamiltonian we have

HOlal = & I3 ’55/ Bz S 63(ce,z) F18 T 6.26
o= i S [0 [ #eY Seen) FO el 029

7—0

For L small enough, and assuming that § < L, so that “boundary effects” of the box can
be neglected, every cube I contains only one end-point, and since C’\\re).l gives zero unless
there is an end-point in I, we have

. 3 ~ 1
= — 3 E ,T-Ta 2 . .
Hele] L-—];(IDI?-»U \/ 72 7r63L § -~ ( € ) 7 9o (6.27)

7—0

where we have restored the explicit expression for cs.

It is now time to study the limits explicitely. Let us first focus on the crucial prefactor

3 1 | L
(L T, 6) T%-;r——é 2\/%__ 1"60. (6.28)

The question we have to address is the finitness of the above limit. Clearly the result
depends on the order in which the limits are taken. This is precisely what we should have
expected: different orders in which the limit is taken correspond to inequivalent definitions
of the quantum operator. Since all these definitions correspond to the same classical limit,
the choice amount to a choice of different orderings of the quantum hamiltonian. The
question is whether there is one choice that gives us a finite quantum operator.

Of course we may not confine ourselves to the choice between taking one first or another
one first of the three limits: we choose any combination. More precisely, we may consider
the three dimensional L,T,§ space, and study the limit of C(L, T, §) as we approach the
point L = 0,7 = 0,8 = 0: this point can be approached in a variety of alternative ways,
not just along one of the coordinate axis. Let us introduce a parameter ¢, and consider a
curve L(¢), 7(€), 6(¢) in this tree dimensional space, such that L(0) = 0,7(0) = 0,6(0) = 0.

Our problem is to understand wether we can choose this curve in such a way that the limit

lim O(L(e),7(e), () (6.29)
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is finite. We are not free to choose the curve L(¢€), 7(¢), §(¢) in a completly arbitrary way,
because there is a certain number of conditions that we have imposed on the regularization
parameters along the way. First, of course, we must have L > 0,7 > 0,§ > 0. Then, have
required 7 > §, and, in order to avoid “boundary effects” in the box, L > §. Can all the
conditions be satisfied and a finite limit be obtained ?

The first crucial point to be noted is that powers of lengths cancell exactly and the
quantity C(L,T,6) is dimensionless. This is a necessary condition for having a finite
limit. (It was precisely the fact that we got a divergent quantity with the dimensions of a
length, measured in the background metric, that prevented us from achieving a background
independent renormalization in chapter 5). By itself, however, this fact does not suffice
to guarantee a well defined limit. We now claim that this hrmt can indeed be chosen

consistently with all the requirements, as follows

L(e) = kéa,
7(e) = ea,
6(e) = €'a, - (6.30)

where a is an arbitrary length, and % is a arbitrary dimensionless positive number. It is

easy to see that all the requested conditions are satisfied. In the limit, we have

3 L3(e) 3k,
v\ T - e (6.31)

A is a free constant that emerges from the regularization procedure. Thus, the prefactor

lim C(L(¢), 7(¢), 8(¢)) =

is finite in the limit.
Thus, we write the action of the hamiltonian as

H¥la] =X 3 (%)% ¥[q] (6.32)

Ce

where we have introduced the “end-point operator”

F.¥[a] = lim FT&8E) g[q]. (6.33)

e—0

We now examine this ”end-point operator”, its action, its finiteness and its transformation

properties under diffeomorphisms.
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Since § (the point splitting distance of the two grasps) goes to zero much faster than
7 (the length of the added loop, we can now simply take the § — 0 limit first, and the
T — 0 limit second. Let us consider the § — 0 limit of 7%®[a] (with finite 7). It is easy
to see that if the end- point is free, the action of the operator is simply to add a small
straight line of length 7 = ea to the end point of the loop, in the direction of the loop
tangent. If the end-point is not free, the action of the operator produces one term for each
component of a emerging from the end-point. The terms corresponding to the component
of a that ends in o, is again just an addition of a small straight line to the end-point;
while the other terms imply the addition of the small loop and also a rerouting through
the intersection. The rerouting pattern can be calculated in straight forward way from
equation (6.25).

Before taking the limit 7 — 0, let us now assume that ¥[a] is a diffeomorphism
invariant state. Thus ¥[a] depends only on the diffeomorphism equivalence class of a. If
o, is a free end-point, we have then

lim F79¥[a] = lin'(l) 2%+, 4] = 2¥(a], (6.34)

T—0

because for small enough 7 the added loop will not intersect any other loop, and the
addition of a small line at the end of a loop does not change the diffeomorphism equivalent

class of the loop.

If, on the other way, . is not a free end-point, then the loop « * *7;’1.; does belong
to a different knot class than a. For instance, if the end point a. falls over a smooth
component 8 of the loop a, then one of the terms in (6.25) will add to it a small straight
line, so that the resulting loop contains an intersection and a free end-point.

The key point, now, is that in any case, since ¥[a] is diffeomorphism invariant, for
small enough 7 we have that Fr0%[a] becomes independendent from 7. Therefore the
limit is the limit of a constant function, and therefore is finite.

Moreover, it is clear that the resulting action of F. is well-defined on the diffeomor-

phism invariant states. Thus, the operator H is finite and diffeomorphism invariant in the

limit.
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If we now reinstate Cgintsein # 0, We have

H= Y M+ )£, (6.35)

intersections ¢
end—points e

where M was constructed in [5]. H is a finite operator defined on knot states. Its action

follows immediately from the construction above.

The matrix elements of the operators M; and E. can be directly computed between any
two given knot states. The calculation amounts to a straightforward exercise in geometry
and combinatorics. The next problem is to compute the square root of the resulting
(infinite) matrix. We expect that the square root can be computed order by order as the
complexity of the knots considered increase.. Work is in progress to compute explicitely
the matrix elements, and thus understand if the structure of the resulting matrix allows a

simple argoritm for extracting the square root.

6.3 QGD: dynamics

We are now in the position of describing the general structure of Quantum Gravitational
Dynamics, or QGD, the quantum theory of gravitationally interacting fermions, evolving

in the clock time defined by a scalar field.

A physical quantum state |K) of the theory is specified by a generalized knot, namely
an open braid K of order N (with N open end-points, N even), with an arbitrary finite
number I of intersections. A more accurate notation for these states is given in equation
(5.36). The quantum dynamics is given by the matrix H in braid space, given in equation
(6.35), the matrix elements of which are computed, order by order, according to the
geometrical and algebraic rules given by equations (6.25) and (6.33), and in ref.[5]. We
can interpret the matrix elements of H as first order transitions amplitudes in a time
dependent perturbation expansion in the clock time 7. In principle, the exponentiation

of the H action gives the full evolution.
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6.3.1 The simplest states

For instance, we can start from the simplest state formed by a single nonself intersecting

open line. In terms of the notation (5.36), this can be denoted as
12,2,0;19) (6.36)

where we have indicated the simplest value of K3, a single line, by 19. The moduli space of
free open-ends is clearly formed by a single point, and thus we do not need ag; parameters.

There are two fermions in this quantum state. We have that M;|2,2,0;19) = 0 because
there are no intersections of kinks in |2,2,0;13). On the other side, we have from (6.34)

that

F,12,2,0;19) = A%|2,2,0;19), (6.37)

so that we get

H12,2,0;19) = 2A]2,2,0;15). (6.38)

~ Therefore |2,2,0;13) is an eigenstate of the theory, or equivalently, the time dependent

Schrédinger quantum state

5
12,2,0;19, T) = exp {i,\,/% T} 12,2, 0;19) (6.39)

is a solution of the ezact quantum interacting theory. (We have restored physical units,
for clarity.) Perhaps this state corresponds to an extremely simple “universe” in which
there are only two fermions gravitating around each other in the simplest of the quantum
geometries. It is suggestive to think at this state as a kind of “atomic” “ground state” of
a simple 2-fermions universe.

Next we can consider the generalized knot formed by n non intersecting copies of the
above, and denote it as |2n,2n,0;13,). It is then straight forward to see that the time

evolution of this state is given by

5

|20, 2n,0;19,, T) = exp {z n\ r‘;:G T} |2n, 21, 0;13,) (6.40)
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and that the corresponding energy eigenstates are

5t
En=nE =n ) CG . (6.41)

As soon as we consider simple intersecting states, the full complexity of the operators M;

and F, becomes relevant, and we have non-trivial time evolution.

6.4 Remarks on QGD

Before concluding, we list here a certain number of comments and considerations. In

particular, we want to point out several important problems that remain open.

1. Conservation of particle number. The operator F, defined above acts on end-points
by displacing them, and possibly by changing the associated rootings at intersections,
but never creates or destroys end-points. Since the operator M; too, conserves the
number of end-points, it follows that the hamiltonian that we have defined conserves
the number of particles. This is at first surprising, given that in general there is
particle creation from space-time dynamics. But a more close analysis shows that
this conservation is to be expected. Unlike the Einstein-Dirac theory (in the standard
semiclassical approach), indeed, the EC-Weyl theory does conserves particle number.

This can be seen classically from the fact that the quantity

N = /Zd?’m Pi(z) Ta(2) (6.42)

commutes with all the constraints, including the hamiltonain constraint [155]. One
can immediately define the corresponding operator (say, using the Loop Transform),

which turns out to be
N||N,I,D; aP...a]t; $ mi) = NIN,I,D; al™...a]"; § ) (643)

This confirms the interpretation of the number IV of end-points as the particle num-
ber. Since [N, H] = 0, the number of end-points NN is a conserved quantum number

in the theory.
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2. Particle anti-particle distinction. The Weyl field theory describe a particle-antiparticle
couple (say a neutrino and its anti- neutrino). In the Langrangian formulation the
fermions are described by two complex fields. Since the action contains only first
derivatives, the phase space has the same dimension as the space of the lagrangian
fields, namely four real dimensions per point. These give two degrees of freedom,
which describe, indeed, the particle and its antiparticle. Do the end-points of the
loops represent particles or anti-particles ? The answer is that the distinction is not
gauge invariant, thus the question is not well posed in the theory. In flat space one
can globally distinguish particles from antiparticles; but when the Weyl system is
coupled with gravitation, something curious happens: the particle antiparticle dis-
tinction becomes local. Consider two field excitations in two different space position,
and assume the first is a particle; then, the fact that the second be a particle or an
antiparticle depends on the parallel transport operator between the two. This is
because the particle and the antiparticle are distinguished by different directions in
the internal spin space, and we can only compare directions in spin space in different
points by using the connection. Since the particle anti-particle distinction is gauge
dependent, in a gauge-independent formulation there is not way to distinguish par-
ticles from anti-particles. This is why the end-points of the loop represent at the

same time both kinds of excitations.

3. Regime of validity of the formalism, and complez energy eigenvalues. This is an
important feature of the clock field formalism that we must be discussed in detail.
The formalism cannot be used in any regime of the system. This is already ob-
vious at the classical level: Consider an arbitrary solution of the field equations
A(Z,t),%(Z,t), T(Z,t): in general it is not possible to invert T(Z,t) — t(Z,T) glob-
ally. Thus, we certainly cannot use T’ as a time variable for every solutions of the
field equations and for every spacetime region. On the other side, there are solutions
and spacetime reions where we can make the inversion. Consider an initial configu-
ration of the A(&),%(Z), T(Z) fields and their time derivatives A(&),¥(%), T(%) on a

given space like surface. This defines a point in phase space. Assume that T ()< 0
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in a spacial region R. There will be a time interval At for which T(i:') will remain
positive in R. More precisely, we can determine a region I' in phase space, and a
corresponding spacetime region §, such that for any initial condition in T, T(i:’) is
positive in 5. We shall say that the gravitational-fermion-scalar field system is in
the clock regime in § if the initial conditions are in T', namely if T(:E’) is positive all
over S. By definition, we can perform the inversion T'(Z,t) — ¢(Z,T) in the region
in which the system is in the clock regime. Thus, as far as the classical theory is
concerned, the formalism makes sense only in this regime. The same is true in the
quantum theory. The quantum formalism that we have constructed is meanigfull in

the clock regime.

A paradigm for this construction can be found in the quantum system of two un-
coupled simple harmonic oscillator variables g(t), f(¢), if we fix the total energy E
and decide to never consider the evolution in the external clock time ¢, but rather
use one of the two variables, say f as internal clock; namely if we decide to ask
questions concerning what is the position g of the first oscillator, when the second
isin f. We obtain the classical evolution g(f) by inverting f(t) — t(f) and defining
g(f) = g(t(f)). We can also do the same in quantum mechanics (see ref. [19], where
the example is worked out in detail). However, along any orbit there is a point in
which the internal time variable f ”comes back” (in t), and therefore we obtain a non
unitary evolution operator in f. The physical interpretation of this non-unitarity is

clear: there is "no system” anymore for f arbitarry large.

The formalism reflect this fact, both classically and quantum mechanically, in the
form of the hamiltonian. The hamiltonian that evolves the two oscillators in the
external time ¢ is pg + p} + ¢? + f2. The hamiltonian that evolves the systemin the

internal time f is easilly obtained solving for p; (see ref.[19])

H(f)=/E~p}~g* - f* (6.44)

(where E is the total energy of the system in the ¢ time). This (time dependent)

hamiltonian generates the evolution equations for g(f). The important point to note
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is that the hamiltonian becomes immaginary for large f. This simply signal the fact
that it doesn’t make sense anymore to evolve g(f) in f. If we want to continue the
evolution by using an internal time, we have to choose another, distinct, internal
time, and ”patch” the evolution. Note that this does not mean that the formalism
that evolves in f is inconsistent or incorrect: it simply means that is has a certain
domain of validity. The same holds in quantum mechanics. Indeed, it was shown in
ref.[19] that the quantum hamiltonian corresponding to (6.44) is self- adjoint when
suitably restricted to an (f—dependent) region of the Hilbert space, but develops

immaginary eigenvalues if applied outside this region.

Similarly, we expect that the the hamiltonian that we have defined will also have
immaginary eigenvalues. These simply signal that twe are going out from the domain
of validity of the formalism, namely from the clock regime. We are trying to use
evolution in T to describe the gravitational field in regions where the T fields fails to
be monotonic. Explicitely, this possibility can be easilly traced back to the classical
hamiltonian constraint. Roughly speaking, since the form of this constraint is I +
CEinstein + Cwey1 = 0 (II being the scalar field momentum) and since in order T to
change sign Il must vanish, it follows that the save region, is where CEinstein+Cweyl >

0, which is of course a sufficient condition for the Hamiltonian we have definined,

H = [ +/CEinstein + Cwey1 to be real. Thus, imaginary eigenvalues of H signal that
we are exiting the regime of validity of the formalism we have developed here: the
object we have chosen as clock is running backward. We must therefore exclude
from the state space of QGD, as formulated here, the graphs that are eigenvalues of

H witha an eigenvalue that is not a real positive number.

In particular, all the vacuum solutions of pure quantum GR that where previously
found lie outside the clock regime. They are eigenstate of H whith vanishing eigen-
value. Classically, the vacuum solutions of the theory are only compatible with
II = 0, namely T = 0, which clearly indicates that we are outside the regime in

which we can take the scalar field as a good clock.
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We do not consider this necessary restriction of the formalism as a serious limitation.
Our long term aim is to develop a usable theory that can be employed, at least in
principle, to describe Planck scale measurements and the Planck scale evolution of
quantum geometry. We would be very content of having a sensible general covariant
field theory that correctly describe this physics in the regime in which whatever we

are using as a clock keeps behaving as a clock.

. Scalar product. One of the weak points of the Loop Representation is given by the
fact that a complete and consistent definition of the scalar product is not yet avail-
able. The conventional wisdom is that once physical observables on the physical
state space have been constructed, the scalar product is determined by the require-
ment these physical observables be self-adjoint. The present work is a step in this
direction. The (real eigenvalue) eigenstates of the hamiltonian H must form, if the
formalism is consistent, an orthogonal basis. Thus, working out explicitely the eigen-
states of H in knot space should at the same time lead to a partial definition of the

scalar product.

. Taking limits on knot space. Finally, let us discuss a subtle point in the definition of
H, which we percieve as the most delicate and potentially problematic point in the
construction above. We refer to the different way in which the § — 0 and the 7 — 0

limit have been dealt with, when dealing with knot states.

To focus the point, let us consider a model example. Consider the space C[R] of
the continuous functions f(z) on the real line. Consider the closure D of the space
C|[R], say in the pointwise topology, such that D contains also piecewise continuous

functions as the step function 6 defined by
f(z)=1 if 2 >0 ;0(z) =0 otherwise. (6.45)

Now define the linear functional k on C[R] as follows: (k, f) := lim;_of(z), and
assume you want to extend k from C[R] to D. There are two possible strategies:

one is to keep the definition
(k. ) = lim f(2). (6.46)
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The other is to note that an equivalent definition of k on C[R] is (k, f) = f(0), and
thus to define

(k, f) = £(0). (6.47)
According to the first definition
(k,0) =1, (6.48)
according to the second
(k,6) = 0. (6.49)

We are in a similar situation when we need to study the action of the hamiltonian
H on knot states. In quantum mechanics, operators are often defined on dense
subspaces of the state space. For instance we begin by defining the momentum
operator in Schrédinger mechanics not on the full L, state space but on the dense
subspace of the differentiable functions; then we can extend it. The Hamiltonian
H that we define in this paper contains a certain number of limiting procedures.
We may first rigourously define it on a suitable restricition of the space of the loop
functionals. For instance we may assume that the loop functionals are continuous in
all the deformations that we consider. H is well defined on this space. Then, however,
we want to consider the action of H on the knot states. These are not continuous in
the deformations that we consider and thus we need to define a suitable extension
of the operator. At this point we have a choice that essentially reflects the choice
we described in the simple example above. As far as we understand, this choice, if
not dictated by internal consistency, is again part of the quantization ambiguities as

the ordering of the dynamical operators.

The important point we want to make here is not that a choice of the extension has
been made in computing the action of H on the knot states, but that two different
choices have been made for the two limits § — 0 and 7 — 0. In fact, as far as
the § — 0 is concerned, we have assumed that we should first take the limit, and
then consider the extension of the action of the operator to diffeomorphism invariant

states; while as far as the 7 — 0 limit is concerned, we have assumed that we should
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first extend the the operator to diffeomorphism invariant states, and then take the
limit.

This choice is not completely arbitrary: § must go to zero faster that 7, and, if we take
away the fake dimensions added by the integration, we see that the first significative
term, which is the one that we are considering, is of order zero in § and of first order
in 7. Ths means that already at the classical level what we are doing is precisely
considering a function f(6,7) and picking up terms of the form a%f(ﬁ, 7)|s=r=0-
Thus it is not completely unreasonable that this difference gets translated in the
different ways in which the two limits are taken on loop space: roughly, we are
"really” looking at the § = 0 point, and we are "really” looking at the limit in the
first order expansion in 7. However, these are very wand-waving justifications of
our choice. Untill a well-defined calculus on Loop Space is constructed [33], we do
not see a way to transform these tentative explorations into solid mathematics. Qur
only real justification at this point, if any, is the hope that the (finite) structure we

are constructing be internally consistent and, perhaps, related to Nature.

6. Future developments

(2) The next step in the construction of the theory should be to compute explicitely
matrix elements of M; and F, (see eq.(6.35)), and understand whether there
is a direct algoritm for extracting the square root. If this can be dome, the
theory is essentially at the stage where the evolution of physical states can be

described.

(b) As noted above, the scalar product is partially fixed by the construction itself.
The energy and the particle number are conserved observables. There are
other observables in the theory that one may consider, and evolve, as the area
observable discussed in references [2, 4]. A crucial test for the consistency of
the scheme developed here is, as was noted in [5], whether the second order

term of the time dependent perturbation expansion develops divergences.



SEVEN

CONCLUSIONS AND OUTLOOKS

In this thesis the coupled system formed by Fermionic fields and gravity has been stud-
ied along the lines of the recently introduced non-perturbative canonical gravity frame-

works of Ashtekar and Rovelli-Smolin or Loop quantisation.

Coupling matter to gravity becomes mandatory when defining physically meaningful
observables in the light of general relativity; purely gravitational experiments are rather
difficult to implement. Furthermore, the Loop formalism applied to pure gravity yields an
underlying genuinely background independent field theory, thus, one is entitled to prove
whether this geometrical result holds the same after one has coupled matter to gravity. We
chose Fermion fields as the matter in the present work mainly because of realism, but also
because they are very natural objects when describing gravity in terms of the Ashtekar

variables.

We can divide the results obtained here into classical and quantum aspects for the

Fermionic fields + gravity system.

The classical aspects concern two problems. First, we have investigated the form of
the action functional for our system a la Ashtekar and second, we looked at a model to
study the variational problem for massless Fermionic fields.

For the first problem we have generalized the pure gravity result about the equivalence

between the Einstein-Hilbert and the self-dual actions to the case in which Fermion fields
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are coupled to gravity. This generalization is made possible by using, in the case of
the self-dual action, a self-dual connection developing torsion and is based on the Bianchi
symmetry of curvature tensors. Thus the theory one deals with is actually Einstein-Cartan-
Sciama-Kibble-Dirac; the result goes trough because of the property of the torsion for this
theory of being totally antisymmetric. Our approach is appealing because it enables one
to interpret the different modifications to the general relativistic equations of motion in
Ashtekar framework directly to torsion and because it makes possible to propose a set of
reality conditions, different from the standard ones, such that one can pick a real theory

2

of gravity and Fermionic fields without torsion 6 out from the phase space of complex

general relativity.

The second problem we dealt with at the classical level was a model consisting of a
massless spin-% field in flat Euclidean four-space bounded by a three-sphere. This could
be considered as an an example of the matter field counterpart of the variational problem
for gravity. We showed that this model has associated a well-defined variational problem
which implements certain supersymmetric-inspired local boundary conditions used in one-
loop quantum cosmology. This result adds evidence in favour of quantum amplitudes
having to respect the properties of the classical boundary-value problem, i.e. the one-loop
properties for masless Fermionic fields in the presence of boundaries coincide for both

spectral and local boundary conditions.

Now we proceed with the quantum aspects of the gravity + Fermion fields system we

analyzed.

Although we did not aim to investigate the role of torsion at the quantum level the
loop formalism was indeed developed for the theory with torsion Einstein-Cartan-Weyl
because it is simpler than having to deal with the quartic term in Fermion fields necessary
to eliminate torsion. In any case, if our proposal concerning reality conditions worked we
would have a way to deal with it at the quantum level. Besides, a Weyl field simplifies

the work a great deal.

26That this could happen was originally proposed by T. Jacobson [120].
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Based on the classical canonical structure obtained for the Einstein-Cartan-Sciama-
Kibble-Dirac theory, in its self-dual form, we performed the Loop quantization to get

Quantum Gravitational Dynamics (QGD) in two stages.

First we constructed the loop representation for the EC-Weyl theory. As a generaliza-
tion of the pure gravity case loop variables for the theory were defined to account for the
Fermions. This was readily accomplished by admiting not only closed curves parametriz-
ing parallel transport operators (defined with the Ashtekar connection) but also including
open ones with the condition that Fermions sit at the end points. For convenience we
referred to both, open and close curves, as loops the right meaning being clear from the
context. They form an Poisson algebra compatible with the 7 -algebra of loop variables
for pure gravity. A linear representation of this algebra acting on wave functionals in the
space of loops defines the quantum theory, which, we showed can be equivalently obtained

through an heuristic Loop transform.

The diffeomorphism constraint in the resulting state space was solved. the solutions
are classified by the generalization of the Knot classes that appeared in pure gravity. Now
more classes are defined that include graphs with an arbitrary number of intersections and
open ends. Hence, quantum states of QGD admit the same topological description as the

states of pure Quantum General Relativity.

The action of the Hamiltonian constraint on the quantum states is, interestingly, rather
simple: it shifts loops along themselves. This is again a generalization to the case of

massless Fermions of the pure gravity results.

Though intuitively appealing various important problems made this first stage unsus-
tainable as it is: 1) a divergent quantity appears in the action of the Hamiltonian constraint
on quantum states, ii) in spite of the simplicity of the action of the quantum constraint
equation we did not find any non-trivial solution for it and, iii) the presence of Fermions
by itself does not eliminate the diﬁ"lc'ulties of constructing physical observables, although
makes it easier to find three-dimensional diffeomorphism invariant quantities, it does not

help in providing quantities that commute with the Hamiltonian constraint.



SEVEN: Conclusions and QOutlooks 129

To face part of the above difficulties in the second stage of the application of the
Loop quantization we adopted the old idea of using matter as reference to define the
gravitational analysis. A scalar fleld is coupled to the gravitational field and thus we
have a compound system gravity+Fermions+scalar field, so that the scalar field plays
the role of a clock-field. By a suitable gauge fixing the theory is solved for the scalar
field and rather than a Hamiltonian constraint we end up with a genuine diffeomorphism
invariant Hamiltonian that evolves gravity and Fermions in the scalar field clock time. We
succeded in regularizing this quantum Hamiltonian so that it is diffeomorphism invariant
and finite. Furthermore, it acts exactly the same way as the analogue constraint on loop

states, 1.e. shifting loops along themselves.

The picture is thus one in which quantum states are represented by graphs containing
a finite number of intersections and open ends, the Hamiltonian being an operator that
acts in a simple, geometrical, combinatorial way on these graphs. A time perturbation
expansion may be considered in which the matrix elements of the operator Hamiltonian

are the first order transition amplitudes between the graph states.

Further insight could be gained by obtaining the above mentioned matrix elements of
the Hamiltonian operator. A rather difficult task that involves calculating the square root
of an infinite matrix. It would give the first step in describing “time evolution”. It remains
to be seen whether the second order contribution to the time perturbation expansion does

not diverge.

Among the most impressive results using the Loop representation for non-perturbative
Quantum General Relativity is the physical interpretation of states [2]. Even though local
operators such as the metric at a point may not be well-defined, there do exist non-
local operators as for instance the area of a two-surface of which one can make perfect
sense. Furthermore, there exists quantum states, weaves, which approximate a given flat
or slightly curved geometries [160] at large scales having associated a discrete structure at
the Planck scale. We believe, according to our results, this intepretation holds the same
also when matter is coupled to gravitation. The precise form in which the matter fields

enter this scheme started coming out from our analysis above as Fermions siting at the
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end points of open curves or at special points of closed curves. Obtaining the analogue of

the weave states inlcuding matter has not been done so far.

The above conclusions and comments already outline some of the possible lines along
which further work can be done. We end by mentioning some possible future developments
which can be regarded as natural extensions to the results here reported.

We chose to work with a Weyl field because of simplicity since automatically, then,
there is no mass term in the Hamiltonian constraint nor in the associated Hamiltonian,
when a clock-field is used. It is very tempting to try to figure out what kind of interpre-
tation can be given for instance to the mass of the Fermions in terms of quantum states
labeled by graphs. Are they associated to the connectivity of the graphs? or some kind
of topological defect of the graphs? There are results using other approaches in which
a quantum-gravitational origin for masses is proposed [161]. As it could be expected,
they get masses of order of the Planck scale, since it is this scale the only natural scale
appearing in the Fermions+gravity system. They also figured out what kind of mecha-
nisms could account for the suppresion of the Planck-size effective mass. An alternative
solution along the lines of the Loop quantization may be tried by for instance alluding
to the topological properties of the graphs associated to quantum states. This possibility
requires more development.

After having studied spin-] fields coupled to gravity if one thinks in incorporating
further symmetries that may lead to a better understanding of the problem of quantum
gravity the obvious option is to try a supergravity theory. Some advances have been done
in this direction for some models in lower than four-dimensional spacetimes [162]. Indeed
it is known supergravity plays a rather restricting role in the way gravity and matter can
couple. Thus, it would not be surprising this can shed some further light on the structure

of spacetime and matter at the Planck length.
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SPINORS CONVENTIONS

A translation between two- and four-spinors is next given. Starting with the matrices
T; such that 7,_; is the two-dimensional unit matrix, I, whereas Ti=is3 aTe the Pauli

matrices, introduce the anti-hermitian Infeld-van der Waerden symbols [122, 163]

Id‘“l‘“l' = —’ﬁrd = I‘?LM, = -—)\aﬁpd (no sum over a) (A.1)
where A,_; = —1 and A; is +1 otherwise; p® = 7; as matrices. Note that the primed

index is always last thus assigning entries to the corresponding matrices; hat-ed and two-
component spinor indices are raised and lowered with 7.; and the antisymmetric forms
[122, 163] €.4p, €4 pr, respectively (e.g. AP = eP4) 4 and x¢ = xPepc). The space V of
spinors whose complex conjugate satisfies a4 = —a* can be shown to be isomorphic
to a real four-dimensional space admiting a Minkowski metric of signature (—, +, +, +) [7].
The Infeld-van der Waerden symbols (A.1) provide such an isomorphism. A convenient

two-component representation for the Dirac spinor field can be obtained as follows. Define

oA
U= (A.2)

P

as well as the action of the Dirac «’s
) I&A.~1’ﬁAI ) 0 V2 naf: T.AL
7O‘I’ = \/5 ) 1 = 70 = 5 Transposed b
=TI p K -2 [I ‘4.4'} 0

(A.3)

Since the Infeld-van der Waerden symbols fulfill
€4B €4'B! = ’I')di) I%.A’ IbBBI (A.4)

1 /

o ab e = Tpaw I(',)BA (A.5)
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it is straightforward to show that the Clifford algebra 7(d7i’) = 17&5 holds. In terms of

the two-dimensional identity matrix and Pauli matrices one gets
, o\ 1 0 —ily : N 0 7
i)' - p=-)'=|
il 0 iT;
(A.6)

I, 0
0 —-I

75 = 0yl i = () =

This is a chiral representation for the v’s since it naturally enables one to split the four-

spinor ¥ into left- and right-parts. Namely [163], ¥ = ¥ + ¥p,

r 0
Upi=3(Ii+7;)¥ = . | Upi=5(Li—7:)¥=| _ ; (A.7)
Y

I, being the four-dimensional unit matrix. The Dirac-conjugate spinor T = \11170 thus
becomes

T =—i(pa,-=") . (A.8)
The extension of the connection V to four-spinors can now be translated to the two-

component language. One only has to re-express B, 8“’aa6 [7&,76} accordingly with the

above results. It turns out that

v, kA Burt — w4y kP
V¥ = = (A.9)

VoE.y Oufiy +w, P Bp

and analogously for V,¥. Here, w, 4B := zwaab ATV b s "and @, 415 1= FW_ a0 ATV b4 B
are the two-spinor version of the connection w ;. They correspond, on hat-ed indices, to

the self-dual (*w,,;) and anti-self-dual ("w_,;) parts respectively, defined by [7, 122]

1 -
+ - c éd
Yaab *= 2 (6 6 :F 2 €ab )waéd
Namely, the (anti-) self-dual part of the connection couples to the (left-) right-part of the

fermionic field.

Thus, the fermionic terms of (3.1) become, in two-component spinor language,

i€t [(Va®) 772 T (Va)] = V2o [FY (Ver?) - (V') B
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+v20% o [(Var) & = pt (Var')|(A.10)

2m¥T = —2im (yAnA - R‘“‘I'ﬁA/) (A.11)

where the definition of the soldering forms ¢?, ,, := e% T% ,, has been used. With our

conventions, they are anti-hermitian for e% real; i.e. for real general relativity.
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THREE-DIMENSIONAL PROJECTION OF LIE DERIVATIVES

Proof of: qmbEtAb = q,,,b»Ctg'Ab < qmbﬁtqbd =0 = Etgab =0

From the definition of the Lie derivative,
Loyw® = [v,w]", (B.1)
and torsion, 2V, Vy f 1= T, “V.f, one gets
L.w® =v" (Vyaw') —w (Varf) + v T, w™ . (B.2)
Since L£,(f) = v(f) then one also has
Loug = v (Vinta) + un (Vov™) — v T, un (B.3)

Using the above relations it is possible to show that the Lie derivative along the normal

n® of the projector g5 becomes

Lngab = 1"Viab 4+ gmbVan™ + €am Ven™ — 2™ (Trg" gnb + Trnp” an)
= 1" [Vimgab = Vadmb — Vodam — Trna dnb = T’ dan]
= ¢," Vi + 6" Vmna — 0™ [T1g" s + Tinp" dan)
= 2K(ap) — 20" T (g Qo) > (B.4)
where, in order to go from the first to the second equality, the orthogonality between gqp
and n® and the Leibnitz rule were used, whereas to produce the third one use was made

of the explicit form gup = gap + nanp together with the identity n™V,n,, = 0. Finally the

form of the extrinsic curvature, Kqp = ¢, Vinnip, yielded the fourth equality.
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The Lie derivative along t* can be cast as

Et‘_Zab = NEnQab + ‘CNQGb 3 (B5)

which holds because the factors in front of the derivatives of N are the contraction of

gamm™ = 0. By next using the above expression for L, ¢35, one arrives at
Ligap = QNK(ab) - 2Nanm(qu)n + Lgdab - (B.6)

The combination of interest to us is ¢,%£;q,°. Taking into account ¢,® = §,% + non®

and using the Leibnitz rule for the Lie derivative, one gets
q.°Liq,t = nb¢.oLin,
= n°[g. " Vg + ¢.%nm Vat™ — t™T, "q.%ny) . (B.7)
Decomposing ¢™ into shift and lapse the first term in square bracktes yields
7.“t"Vane = Nn"'Vn.+ N K, (B.8)
whereas the second term can be fiddled as
2. "nmVat™ = ¢.*[Va(nmt™) = " Vann]
= —q."VoN - N"K., . (B.9)
One is hence left with
0.%L1g," = n® [Nn"Vune — g0Vl + 2N Ky — E T g, | (B.10)

Recalling the relation n, = aV,t, which for our election of ¢ (t°V,t = 1) amounts to

ng = —NV,t, it is possible to prove

2 n
2V mma) = ~ (V) ) + T 1n (B.11)

and thus that

Nn™T, "q.%n, = N Vpne — ¢.°VoN . (B.12)
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Putting all together yields

0.°Ligt = n° [Nnm ma e n + 2N Ky — tmeangcann]

= w0 [2N" Ky — N T, | (B.13)

which is zero for non-vanishing torsion by actual cancellation of the antisymmetric part

of the extrinsic curvature with the torsion contribution (Recall K|, = 38, Tpg "0 Tns
using the definition of K.). For the vanishing-torsion case each term is zero separately.
Furthermore, because of the identity qbdgc“qab = ¢, ¢ taking Lie derivatives L; on both

sizes and using Leibnitz rule for it yields

(Ltqbd)QCb + Qad(ﬁtqca) = L:tq,:d (B.14)

with each of the terms on the L.H.S. being zero and then L. = 0.
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