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Abstract

This thesis conducts an investigation of four dimensional conformal field theories (CFT). With the
application of the bootstrap techniques in mind, we set out to compute the conformal partial waves
(CPW) needed to bootstrap a generic four-point function in a 4D CFT. These CPW can correspond to
the exchange of a bosonic or fermionic operator, in an irreducible representation (`, ¯̀) of the Lorentz
group. Utilizing the embedding formalism in twistor space, we introduce a basis of differential operators
that can relate any CPW to a “seed” CPW with the same exchanged operator. We compute in a closed
analytic form the seed CPW. We solve the Casimir equations by using an educated ansatz and reduce
the problem to an algebraic linear system. Many of the properties of the ansatz are deduced using the
shadow formalism.The seed CPW depends on the representation of the exchanged operator, particularly
on the value of p = |`− ¯̀| and its complexity grows with p. As an application of our results, we write
the bootstrap equations for a four-point function of two scalar and two spin-1/2 fermions. We solve
the equations in the light-cone limit and compute the anomalous dimensions of double-twist operators
as an expansion in 1/spin in the large spin limit.
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CFTUV CFTIR

Figure 1.1: One can think of UV complete QFT as a flow between UV fixed point to an IR fixed point.

1. Introduction

1.1 Conformal Field Theory

The study of Quantum field theories (QFT) can be seen as a study of RG (Renormalization Group)
flow. Usually we start with a QFT in the UV and compute how it behaves as we change the energy
scale. At large distances the theory generally becomes scale invariant, i.e. arrives at an IR fixed point
in the space of theories.

Scale invariance implies the invariance under the larger conformal symmetry group1. Conformal symme-
try group consists of transformations that looks locally as scaling and rotations. This extra symmetry
puts strong constraints on the theory and might facilitate the search for its solutions. So RG fixed
points are described by conformal field theories (CFT). Studying CFTs will let us map out the possible
endpoints of RG flows, and thus understand the space of QFTs.

Many physical systems flow to IR fixed points that are described by a CFT, for example 3d Ising model,
water at the critical point of its phase diagram and uni-axial magnets at the critical temperature.
Actually these three examples are described by the same CFT, which also arises at the Wilson-Fisher
fixed point in the IR of φ4 theory. This phenomenon is called critical universality: that in the continuum
limit microscopic details of the Lagrangian don’t matter and all theories with the same symmetry look
the same (up to identification of couplings).

CFTs play another fundamental role: they can help us by means of the AdS/CFT correspondence, in
shedding light on various aspects of quantum gravity and string theory.

The conformal bootstrap program [3, 4] aims to study CFTs without referring to any Lagrangian or
microscopic description, by making full use of the symmetry and imposing consistency conditions to
solve the theory. This non-perturbative approach was resurrected in [5], and it was since followed by
impressive improvements to the current understanding of the space of CFTs.

1.1.1 Why 4D CFT ?

This is hardly a legitimate question, understanding the space of 4D QFT is a long-time dream of
theorists. Studying 4D CFTs serve as a starting point. The conformal bootstrap could help explore 4D
fixed points, for example in QCD conformal window [6] and as the bootstrap techniques evolve, one
might move from a non-perturbative CFT to a non-perturbative QFT.

The 4D conformal bootstrap also has phenomenological importance, relevant to model building beyond
the standard model. For example partially composite Higgs model, with a strongly coupled conformal

1The statement scale invariance implies conformal invariance is supported by examples, it has been proven in d = 2
and d = 4 for Lorentz-invariant unitary theories [1, 2]. The required conditions in other dimensions are not known yet.
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Section 1.2. Conformal Symmetry Page 2

sector, the bootstrap could be used to check whether a CFT leading to a phenomenologically viable
composite Higgs model exist [7].

To achieve these goals, we need to be able to get as much constraints as possible from the bootstrap.
This was not always possible, the seminal paper [5] and many after used the 4D conformal bootstrap of
only scalars. The reason is that some technical pieces, basically what is called conformal blocks, were
missing. Our aim in this is to present these previously missing pieces and provide a manual to use the
bootstrap program in 4D CFT. First we will start by reviewing the basics of CFT andwhat the conformal
bootstrap entails .

1.2 Conformal Symmetry

1.2.1 The Conformal Algebra

On a Minkowski flat space of dimension d, whose metric is ηµν , infinitesimal conformal transformations
are defined as the coordinate transformations

xµ → xµ + εµ(x), (1.1)

that leaves the metric invariant up to a (local) scale factor

δgµν = (∂µεν + ∂νεµ) = c(x)ηµν , (1.2)

where µ = 0, . . . .d− 1. In dimensions d > 2 the equation above has four classes of solutions

εµ = a translation, c(x) = 0.

εµ = ω[µν] xν rotations, c(x) = 0,

εµ = λxµ dilatations, c(x) = 2λ,

εµ = 2(b · x)xµ − x2bµ special conformal transformation, c(x) = 4(b · x),

(1.3)

where a and λ are constants, bµ is a constant vector and ω[µν] is a constant antisymmetric tensor. The
first two classes c(x) = 0 are just Poincaré tansformations generated by

Pµ = i∂µ , Mµν = i(xµ∂ν − xν∂µ), (1.4)

while the dilatations are generated by
D = ixµ∂µ (1.5)

and special conformal transformations by

Kµ = i(2xµx · ∂ − x2∂µ). (1.6)

The operators generates form an algebra, the conformal algebra

[D,Pµ] = −i Pµ , [Pµ,Mνρ] = i (ηµνPρ − ηµρPν)

[D,Kµ] = iKµ , [Kµ,Mνρ] = i (ηµνKρ − ηµρKν)

[Kµ, Pν ] = −2i (ηµνD +Mµν)

[Mµν ,Mρσ] = i (ηνρMµσ − ηµρMνρ − ρ↔ σ) ,

(1.7)
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and the rest of possible commutations are zero.

The conformal algebra is isomorphic to SO(d, 2), the algebra of Lorentz transformations in R
d;2 space.

This can be seen as follows. Consider in the latter space the coordinates

X0, . . . , Xd, Xd+1, (1.8)

and the metric ηAB = diag(−1, 1, . . . , 1,−1) , where A = µ, d, . . . d+1. We will also use the light-cone
coordinates

X+ = Xd +Xd+1 , X− = Xd −Xd+1. (1.9)

The Lorentz generators are given by

LAB = i

(
XA

∂

∂XB
−XB

∂

∂XA

)
, (1.10)

and they satisfy the SO(d, 2)

[LAB, LCD] = i (ηBCLAD − ηACLBD − ηBDLAC + ηADLBC) (1.11)

The conformal algebra generators will be identified with the SO(d, 2) generators as follows

Mµν = Lµν , Pµ = Lµ+ , Kµ = Lµ− , D = L+− . (1.12)

This identification will be very useful later, for one the conformal quadratic casimir is defined as LABL
AB.

Also the action of SO(d, 2) on R
d;2 is linear unlike the complicated action of the conformal group on

R
d−1;1. This identification inspired the idea to embed the CFT in d+ 2 space (chapter 2).

1.2.2 Conformal Transformations of Fields

Now that we have defined the symmetry generators, we can classify the operators in the CFT into
representation (rep) of this symmetry. Let’s define the conformal conserved charges as P̂ µ, M̂µν , D̂ and
K̂µ

2 . Since [D,Mµν ] = 0, we can classify operators into scale+Lorentz rep. Local operators at the
origin transform in the irreducible rep of the Lorentz group

[M̂µν ,Oa(0)] = i (Sµν)abOb(0), (1.13)

where Sµν are matrices that satisfy the same algebra as Mµν , and a and b are indices of the Lorentz
rep of Oa. We can simultaneously diagonalize the action of D̂ at the origin

[D̂,Oa(0)] = −i∆Oa(0), (1.14)

∆ is the scaling dimension of O . Noting that Kµ acts as a lowering operator for the scaling dimension

[D̂, [K̂µ,Oa(0)]] = −i (∆− 1)[K̂µ,Oa(0)]. (1.15)

The dimensions are bounded from bellow for any physically sensible theory, there should exist operators
such that

2 Here and in what follows we use a hat to denote an operator in the Hilbert space and to distinguish it from its explicit
form in terms of differential operators, where no hat appears.
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[K̂µ,Oa(0)] = 0. (1.16)

Operators that satisfy (1.13) ,(1.14) and (1.16) are called primary operators. We can construct operators
with higher dimensions ∆ + n, which are called the descendants of Oa, by acting with P̂µ[

P̂µ1, [. . . , [P̂µn, Oa(0)] . . .
]

Descendants, (1.17)

and primary O operator and its descendants make up a conformal multiplet.

The action of the conserved charges on a primary local operators away from the origin can be deduced
from the definition

O(x) = e−ix·P̂O(0)eix·P̂ , [P̂ ,O(x)] = −i∂µO(x), (1.18)

combined with (1.13) ,(1.14), (1.16) and the algebra (1.7) to be

[D̂,Oa(x)] = −i (∆ + x · ∂)Oa(x),

[M̂µν ,Oa(x)] = −i (xµ∂ν − xν∂µ)Oa(x) + i(Sµν)abOb(x),

[K̂µ,Oa(x)] = −i
(
2∆xµ + 2xµx · ∂ − x2∂

)
Oa(x) + 2i xν(Sνµ)abOb(x).

(1.19)

1.2.3 Correlation Functions in CFT

A CFT does not admit a particle interpretation, but we can compute correlation functions. The confor-
mal symmetry strongly constrains the correlation function. Two and three-point functions of primary
operators are fixed up to constants. We can see this through a scalar primary example. Lets consider
two-point correlation functions of scalar primary operators φ1 and φ2 with a conformal invariant vacuum
|0〉.The Lorentz and translation invariance require that the correlator depends on the norm of position
difference

〈0|φ1(x1)φ2(x2)|0〉 = f(x2
12) (1.20)

where here and henceforth we use the notation

x µ
ij ≡ x

µ
i − x

µ
j , x2 ≡ xµxµ. (1.21)

We can see the implication of scale invariance by requiring that the simultaneous action of D̂ on the
two operators vanishes

0 = 〈0|
[
D̂, φ1φ2

]
|0〉 = 〈0|

[
D̂, φ1

]
φ2 + φ1

[
D̂, φ2

]
|0〉

= −i (x1 · ∂1 + ∆1 + x2 · ∂2 + ∆2) 〈0|φ1φ2|0〉,
(1.22)

which, with a simple algebra, implies that

f(x2
12) =

constant

(x2
12)

1
2

(∆1+∆2)
. (1.23)

The implication of special conformal invariance can be determined in a similar fashion
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0 = 〈0|
[
K̂µ, φ1φ2

]
|0〉 , requires ∆1 = ∆2 . (1.24)

The two point function is fixed up to a constant c and a delta function δ∆1,∆2

〈0|φ1(x1)φ2(x2)|0〉 =
cδ∆1,∆2

(x2
12)

1
2

(∆1+∆2)
. (1.25)

It is possible to diagonalize the two point functions so that only two identical operators3 have a non-zero
correlator.

We can find the implication of conformal symmetry on n−point function following the same steps, that
is, within a correlation function the action of a conformal charge should vanish 〈0|[Q̂,O1 . . .On]|0〉 = 0.
We find that three-point function of scalar primary operators is fixed up to a constant

〈φ1(x1)φ2(x2)φ3(x3)〉 =
λ〈φ1φ2φ3〉

(x2
12)∆123(x2

13)∆312(x2
23)∆231

, (1.26)

where λ〈φ1φ2φ3〉 is a constant, which we cannot scale away after diagonalizing the 2-point functions,
and we define

∆ijk ≡ ∆i + ∆j −∆k . (1.27)

We can keep doing this for higher n−point functions and work out the conformal invariant correlators.
However starting at n = 4, one can define conformal invariant functions of x1, x2, . . . xn. For n = 4
there are two such conformal invariant ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (1.28)

and thus a 4-point function can be fixed up to an arbitrary function of u and v, for example a correlator
of four identical scalar primary operators

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

(x2
12)∆(x2

34)∆
. (1.29)

For n > 4 even more conformal invariant ratios can be defined.

Here we have restricted ourselves to scalar operators, for other Lorentz rep applying the same arguments
is possible in principle but complicated in practice. We will use a different formalism to find the form
of general two and three point functions of other Lorentz reps, they will be also fixed up to a set of
constants ( usually more than one).

1.3 Operator Product Expansion (OPE)

In any QFT it is possible to expand the product of two local operators O1(x)O2(0) , as x → 0, as a
sum of local operators at 0

3Identical real scalars and tensors, for complex reps the two operators have to be complex conjugate of each other.
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O1(x)×O2(0) =
∑
i

C12iOi(0). (1.30)

In a general QFT, this sum is asymptotic. However in a CFT the OPE is actually convergent4 and
applies at finite separation. This is the result of state-operator correspondence in CFT, that any state
|O〉 defines a local operator O(0) and vice versa. So in a CFT the OPE (1.30) is equivalent to the
expansion of a state in the complete basis of states |Ψi〉

O1(x)O2(0)|0〉 =
∑
i

c12i|Ψi〉 . (1.31)

In a CFT the sum (1.30) can be taken over primary operators. The coefficients C12i(x, ∂x), thus encodes
the descendants. Furthermore in a CFT, the functions C12i are fixed by the conformal symmetry, as can
be seen by using the OPE in a three-point function, for simplicity we consider scalar primary operators
φi

〈φ1(x1)φ2(x2)φ3(x3)〉 =
∑
k

C12k(x12, ∂x12)〈Ok(x2)φ3(x3)〉 = C123(x12, ∂x12)〈φ3(x2)φ3(x3)〉,

(1.32)

and since 2- and 3-point functions are fixed by conformal symmetry up to a constant λ〈φ1φ2φ3〉, so is the
function C123 ∝ λ〈φ1φ2φ3〉. That is why the constants λ〈φ1φ2φ3〉 which appear in three-point functions
are called OPE coefficients.

The OPE is an important tool. If used in an n−point functions, it reduces the n−point function to a
sum over (n− 1)−point functions, after n− 2 steps we arrive at a 2-point function. So, in principle, all
correlation functions in a CFT can be computed in terms of the OPE coefficients. A CFT is completely
defined by its spectrum of primary operators and the set of OPE Coefficients, together called “local
CFT data”.

CFT Data = {Oaii : ∆i, λ〈OiOjOk〉} (1.33)

1.4 Conformal Bootstrap

Lets consider an arbitrary CFT data, in order for this data to define a good CFT it has to satisfy
consistency conditions. The conformal bootstrap is the procedure of applying consistency conditions to
a data and solving for a consistent CFT.

The main consistency condition a CFT has to satisfy is the crossing symmetry of all 4-point functions.
Namely all possible ways to use OPE to reduce the 4-point function to a 2-point function should be
equal. An OPE takes two operators and gives a sum, there are three ways to make pairs out of four
operators:

(12)(34) called the s−channel, (14)(23) called the t−channel, (13)(24) called the u−channel.

4As long as O1 is closer to O2 than any other operator.
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The s−channel expansion of scalar correlator look as the following

〈O1O2O3O4〉 =
∑
O
λ〈O1O2O〉λ〈OO3O4〉C12O(x12, ∂x12)C34O(x34, ∂x34) 〈O(x2)O(x4)〉, (1.34)

and we define kinematic function

W〈O1O2O〉〈OO3O4〉 ≡ C12O(x12, ∂x12)C34O(x34, ∂x34) 〈O(x2)O(x4) (1.35)

which is fixed by conformal symmetry, we call such function Conformal Partial Waves (CPW). A CPW
incorporates the contribution of a conformal multiplet ( a primary and its descendants) to the 4-point
function. If the CPW’s are known, the unknowns are only the CFT data. The the bootstrap equations

〈O1O2O3O4〉 = 〈O1O2O3O4〉 = 〈O1O2O3O4〉 (1.36)

will put constraints on the CFT data.

Determining the CPW’s is essential for the bootstrap. Even though the idea of the bootstrap was
suggested in the ‘70s by [3, 4], the breakthrough for d > 2 CFT came in 2008 [5] only after the CPW
relevant for a scalar correlator was computed in a compact form in refs.[8, 9]. Many concrete results
from the bootstrap followed, among which is the recent most precise calculation of critical exponents
of the 3d Ising Model [10, 11, 12, 13, 14].

Meanwhile, several efficient techniques for determining CPW for correlators with spins have been de-
veloped over the last decade, including index-free embedding formalism [15, 16, 17, 18, 19, 20], the
shadow formalism in the embedding space [18], “differential bases” for three-point functions [17, 15],
and recursion relations [21, 22, 23]. These developments for spinning operators lead,for example, to the
universal numerical bounds on wide classes of CFTs [15, 22] and the analytic proofs of the conformal
collider bounds [24, 25, 26, 27] and the average null energy condition [28].

One expect that more advanced understanding for operators with spin will lead to new sophisticated
bootstrap results.

1.5 Thesis Structure

Our aim from this thesis is to provide the main ingredients needed to bootstrap all possible correlators in
4D CFT. Namely, to calculate the CPW incorporating the contribution of a general conformal multiplet
to a general four-point function. We start in chapter 2 by embedding the theory in 6D space, where the
conformal symmetry acts linearly and it is easier to impose the symmetry on the correlation functions.
In particular we find the complete kinematic basis to write any three-point function. In chapter 3 we
construct a completer differential basis that relates any three-point function to a “seed” correlator.
Because of the relation between OPE and three-point function (1.32), this basis effectively allows us
to relate any CPW to a seed CPW W seed

p , where p = 0, 1, . . . and there are infinite seed CPW. We

proceed to determine W seed
p by solving the Casimr equations in chapter 4, we make use of the shadow

formalism to reduce the second order casimir differential equations to algebraic equations and manage
to find solutions in analytic closed form.

In the last chapter 5, we use the results of the previous chapters to write the bootstrap equations for a
(scalar-spin 1/2) four-point function and we solve the equations in the light-cone limit.
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The material presented in this thesis is based on published work [29, 30, 31] and soon to be published
work [32].



2. Embedding Formalism in 6D Twistor Space

As we have seen in section 1.2, conformal symmetry puts a lot of constrains on correlation functions.
However the symmetry acts non linearly and working out these constrains is not straightforward and it
gets harder when considering higher point functions or operators with spin.

However the implication of conformal symmetry are easier to understand if we go from the normal space
to the embedding space. The conformal group in d- dimensional space is isomorphic to SO(2, d) which
is the Lorentz group in d+ 2 dimensional space. One can embed the d dimensional CFT in d+ 2 space,
the non-linear action of the conformal group is induced from the Lorentz linear action. This was first
suggested by Dirac [33].

We will start by embedding d dimensional CFT in d+ 2 space in section 2.1 . A primary tensor operator
in d space will be embedded in a tensor field on the d+2 space. The latter has extra d.o.f, and one needs
to use gauge conditions to account for that. The question of writing a conformal invariant correlators
will reduce to writing d+2 Lorentz invariants. This formalism is good for considering primary symmetric
traceless tensor operators.

For our case of interest d = 4, the group SO(2, 4) is locally isomorphic to the group SU(2, 2). The
latter group has spinor and dual-spinor reps, these reps are called twistors. It is then possible to embed
4D spinors (and by extension any 4D Lorentz rep) in 6D twisor fields. In section 2.2 we how the 4D
fields are embedded in twistor fields and the gauge conditions needed to account for the extra degrees
of freedom. We also contract introduce an index free notation, where open indices are contracted by
auxiliary twistors. Subsequently, the problem of writing conformal invariant correlators reduces to a
problem of identifying SU(2, 2) invariants, we identify all possible invariants relevant for 2- , 3- and 4-
point function in section 2.3, and then we proceed to classify general 3-point functions in 4D CFT in
section 2.5. We also study their properties under parity (section 2.7) and their projection to 4D (section
2.6) and formulate the conservation condition in 6D formalism (section 2.8). Extra details about our
notation is provided in appendices A and B.

2.1 Embedding Formalism : Vector Notation

What we need is to embed our d space within this d+ 2 space in a way such that it inherits these linear
transformations. The Lorentz invariant condition

X2 = 0, (2.1)

defines a subspace of d+1 dimensions, null cone .We get a d dimensional space by quotienting the null
cone by the rescaling

X ∼ λX, λ ∈ R (2.2)

Since both conditions respect Lorentz rotations, they define a subspace (projective null cone) that
naturally inherits the actions of SO(2, d). The standard R

1,d−1 coordinates xµ should not depend on λ
and are defined as

xµ =
Xµ

X+
. (2.3)

It can be shown that conformal transformations acting on xµ are mapped to Lorentz transformations
acting on the null-cone.

9
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We identify this projective null cone with R
1,d−1 by “gauge fixing” the rescaling (2.2). For example by

setting X+ = 1, where this gauge slice is called the Poincaré section. Lorentz transformations acting
on X have to be followed by a rescaling to keep it within the Poincaré section. On this section the
coordinates takes the form X = (1,−x2, xµ) and the inner product of two null vectors

Xij ≡ −2Xi ·Xj = x 2
ij (2.4)

Primary operators on R
1,d−1 can be lifted to homogeneous, conformally-covariant fields on the null-cone.

For a primary scalar φ(x) whose scaling dimension is ∆, we can define a field over all X as

Φ(X) = (X+)−∆φ
(
Xµ/X+

)
, (2.5)

this field transforms simply under conformal transformations Φ(X)→ Φ(X ′). Its degree of homogeneity
depends on the scaling dimension of φ,

Φ(λX) = λ−∆Φ(X) (2.6)

Imposing conformal symmetry on correlation functions in this space boils down to respecting Lorentz
invariance, homogeneity of the fields and the null condition X2

i = 0. For example, the two point function
of Φi(Xi) that satisfy these conditions can only be

〈Φ1(X1)Φ2(X2)〉 = c δ∆1,∆2/X
∆1
12 , (2.7)

To get d space correlator, we need to restrict X to the Poincaré section.

φ(x) = Φ(X)|Poincaré (2.8)

From (2.7) one easily recovers the two point function of two scalar primaries (1.25).

This embedding formalism can be extended to traceless tensor φµ1...µ`(x) whose Lorentz representations
are specified by some pattern of symmetries in their indices. Such field can be uplifted to d+ 2 homo-
geneous fields ΦM1...M`

(X). This tensor embedding was first introduced in [34] and further developed
in [16, 35], where it was determined that for the tensor field Φ to be a consistent uplift of the tensor φ,
it has to satisfy particular properties

1. defined on the null cone X2 = 0,

2. traceless and posses the same index symmetries as φµ1...µ`(x),

3. defined module tensors proportional to X,

ΦM1...M`
∼ ΦM1...M`

+XMiVM1...M̂i...M`
, (2.9)

for an arbitrary tensor VM1...M̂i...M`
, the hat on the index Mi means it is missing.

4. transverse,
XMiΦM1...Mi...M`

= 0, (2.10)

5. homogeneous of degree −∆ in X.



Section 2.2. The 6D Embedding in Twistor Space Page 11

The extra conditions (3) and (4) are needed to insure that the two fields have the same number of
degrees of freedom. One can recover the d field φ from the embedding space tensor by projecting it

φµ1...µ` =
∂XM1

∂xµ1
. . .

∂XM`

∂xµ`
ΦM1...M`

(2.11)

There is further simplification to work with index-free formalism. The indecies are contracted by auxiliary
vectors. For example we will consider a symmetric traceless tensor, so that the field φµ1...µ` transform
in a spin ` rep. of the Lorentz group. We introduce an auxiliary vectors ZM ,

Φ(X,Z) = ΦM1...M`
(X) ZM1 · · ·ZM` , (2.12)

which is a homogeneous polynomial of degree ` in Z. So that under rescaling

Φ(λX, µZ) = λ−∆µ`Φ(X,Z) (2.13)

The components of ΦM1...M`
can be recovered by taking derivatives with respect to Z,

ΦM1...M`
(X) =

1

`!

∂

∂ZM1
· · · ∂

∂ZM`
Φ(X,Z)− traces (2.14)

Each property of ΦM1...M`
should be reflected by those of Φ(X,Z). We can restrict Φ(X,Z) to the null

cone Z2 = 0 (because of the tracelessness) and to the plane Z ·X = 0 (because of gauge equivalence
(2.9)).

The advantage of index-free notation is that complicated conformally-covariant tensors can become sim-
ple algebraic expressions in terms of conformal invariants. Correlators of symmetric tensors Φ(Xi, Zi)
must be gauge- and conformally-invariant functions of Xi and Zi with the correct homogeneity proper-
ties. In two- and three-point correlators, such functions can be constructed as polynomials in the basic
invariants

Hij ≡
Xi ·Xj Zi · Zj −Xi · Zj Xj · Zi

Xi ·Xj
, Vi,jk ≡

Xj · Zi
Xij

− Xk · Zi
Xik

(2.15)

This embedding formalism has successfully been used in ordinary space to study correlation functions
of traceless symmetric tensors [3, 35, 16, 17].

While this form of embedding applies in any dimension d > 2, it does not accommodate fermionic
operators. From now on we will consider only d = 4 conformal theories. In d = 4 however, a little twist
to this embedding can achieve a formalism where its simpler to workout the conformal constrains and
applies equally to fermions and bosons.

2.2 The 6D Embedding in Twistor Space

There is local isomorphism between the 4D conformal group SO(4, 2) and SU(2, 2). This means we
can use rep. of SU(2, 2) group to embed fields of 4D CFT. Conformal transformations are then induced
form linear unitary transformations of fundamental and anti-fundamental reps.
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An object transforming in the fundamental (anti-fundamental ) rep of SU(2, 2) is a 4-component object,
Ya (Zb) and it is called a twistor (dual twistor). These twistors will be used to embed 4D spinors ψα
(χβ̇) and consequently any possible rep of 4D Lorentz group. since arbitrary 4D Lorentz representation
can be built from products of spinors.

In our notation we reserve Latin letters a, b, . . . for SU(2, 2) indices and Greek letters, dotted and
undotted, α, β̇, . . . for 4D spinor indices. For extra details on our notations see please appendix A.

This form of embedding formalism in twistor space has been used sporadically in the literature, mainly
in the context of super conformal field theories (see e.g. refs.[36, 37, 38, 39]), and it has been applied
in ref.[18, 29] to study correlation functions in 4D CFTs.

2.2.1 Embedding of 1/2 spin Fields

Let us now consider spin 1/2 primary fermions ψα(x) and φ̄α̇(x), with scaling dimension ∆. As shown
in ref.[35], such fields are uplifted to 6D homogeneous twistors Ψa(X) and Φ̄a(X), with degree n =
∆−1/2. A transversality condition is imposed on the 6D fields, in order to match the number of degrees
of freedom:

X
ab

Ψb(X) = 0 ,

Φ̄a(X)Xab = 0 ,
(2.16)

where X and X are twistor space-time coordinates, defined in terms of the antisymmetric chiral gamma
matrices Σ and Σ as

Xab ≡ XMΣM
ab , X

ab ≡ XMΣ
Mab

, (2.17)

our convention for the gamma matrices is given in Appendix A. By solving eq.(2.16), we get

Ψa(X) = (X+)−∆+1/2

(
ψα(x)

−(xµσ̄
µ)α̇βψβ(x)

)
,

Φ̄a(X) = (X+)−∆+1/2

(
φ̄β̇(x)(xµσ̄

µ)β̇α

φ̄α̇(x)

)
.

(2.18)

As discussed in ref.[18], it is more convenient to embed ψα(x) and φ̄α̇(x) to twistors Ψ̄a(X) and Φa(X),
respectively, with degree n = ∆ + 1/2. In this way, we essentially trade the transversality condition for
a gauge redundancy. A generic solution of eq.(2.16) is given by

Ψa = XabΨ̄
b and Φ̄a = ΦbX

ba
, (2.19)

for some Ψ̄ and Φ, since on the cone

XabX
bc

= X
ad

Xdc = 0. (2.20)

We can then equivalently associate ψα(x) to a twistor Ψ̄a(X), and φ̄α̇(x) to a twistor Φa(X) as follows:

ψα(x) = XαaΨ̄
a(X)|Poincaré ,

φ̄α̇(x) = X
α̇a

Φa(X)|Poincaré ,
(2.21)
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where X
β̇b

= εβ̇γ̇X
b
γ̇ . The twistors Ψ̄(X) and Φ(X) are subject to an equivalence relation,

Ψ̄(X) ∼ Ψ̄(X) + XV ,

Φ(X) ∼ Φ(X) + XW ,
(2.22)

with V and W generic twistors.

2.2.2 Embedding of General Fields

We are now ready to consider a 4D primary spinor-tensor in an arbitrary irreducible representation of
the Lorentz group, with scaling dimension ∆:

f
β̇1...β̇l̄
α1...αl(x) , (2.23)

where dotted and undotted indices are symmetrized. We will denote such a representation as

(l, l̄) ,

namely by the number of undotted and dotted indices that appear. Hence, a spin 1/2 Weyl fermion will
be in the (1, 0) or (0, 1), a vector in the (1, 1), an antisymmetric tensor in the (2, 0)⊕ (0, 2) and so on.

Generalizing eq.(2.21), we encode f
β̇1...β̇l̄
α1...αl in a 6D multi-twistor field F a1...al

b1...bl̄
as follows:

f
β̇1...β̇l̄
α1...αl(x) = Xα1a1 . . .XαlalX

β̇1b1 . . .X
β̇l̄bl̄F a1...al

b1...bl̄
(X)|Poincaré . (2.24)

F is homogeneous function of X with degree n = −∆ + (l + l̄)/2

F a1...al
b1...bl̄

(λX) = λ−(∆+(l+l̄)/2)F a1...al
b1...bl̄

(X) (2.25)

Given the gauge redundancy (2.22) in each index, the 4D field f is uplifted to an equivalence class of
6D fields F . Any two fields varying by a term proportional to X or X are equivalent uplifts of f

F ∼ F + XV ∼ F + XW, (2.26)

for some multi twistors V and W because of eq.(2.20). There is yet another equivalence class, due
again to eq.(2.20). Twistors of the form F a1a2...

b1b2...
= δa1

b1
Za2...
b2...

give a vanishing contribution in eq. (2.24).
Hence, without loss of generality, we can take as uplift of f a multi-twistor F with vanishing trace,
namely:

δ
bj
aiF

a1...al
b1...bl̄

(X) = 0 , ∀i = 1, . . . , l,∀j = 1, . . . , l̄ . (2.27)

It is very useful to use an index-free notation by defining

f(x, s, s̄) ≡ f β̇1...β̇l̄
α1...αl(x)sα1 . . . sαl s̄β̇1

. . . s̄β̇l̄
, (2.28)

where sα and s̄β̇ are auxiliary (commuting and independent) spinors. Similarly, we define
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F (X,S, S̄) ≡ F a1...al
b1...bl̄

(X) Sa1 . . . SalS̄
b1 . . . S̄bl̄ (2.29)

in terms of auxiliary (again commuting and independent) twistors Sa and S̄a. We can define a projection
operation that takes 6D fields to 4D ones

f(x, s, s̄) = F (X,S, S̄)|Poincaré, (2.30)

where X is constrained to the Poincaré section and

Sa|Poincaré = sαXαa|X=(1,−x2,xµ) , S̄a|Poincaré = s̄β̇X
β̇a|X=(1,−x2,xµ) . (2.31)

The gauge redundancies (2.27) and (2.26) are easy to see from the projection (2.31), they also permit
us to restrict to

X
ab
Sb = S̄bXba = S̄aSa = 0 , (2.32)

consistently with the gauge redundancies we have in choosing F . Given a 6D multi-twistor field F , the
corresponding 4D field f is explicitly given by

f
β̇1...β̇l̄
α1...αl(x) =

1

l!l̄!

∂

∂sα1
. . .

∂

∂sαl
∂

∂s̄β̇1

. . .
∂

∂s̄β̇l̄
F
(
X, sX, s̄X

)
|X=(1,−x2,xµ) . (2.33)

It is useful to compare the index-free notation introduced here with the one introduced in ref.[16] and
reviewed in the last section 2.1 for symmetric traceless tensors in terms of polynomials in auxiliary
variables zµ and ZM . In vector notation, a 4D symmetric traceless tensor tµ1...µl can be embedded in
a 6D tensor TM1...Ml

. The 4D and 6D fields can be encoded in the polynomials

t(x, z) = tµ1...µnz
µ1 . . . zµn ,

T (X,Z) = TM1...MnZ
M1 . . . ZMn ,

(2.34)

where in Minkowski space zµ is a light-cone vector, zµz
µ = 0. A null vector can always be written as a

product of two spinors:

zµ = σµ
αβ̇
sαs̄β̇ . (2.35)

Given the relation (B.6) between symmetric traceless tensors written in vector and spinor notation, the
spinors sα and s̄α̇ appearing in eq.(2.35) are exactly the ones defined in eq.(2.28). On the contrary,
there is not a simple relation between the 6D coordinates ZA and the 6D twistors Sa and S̄a.

2.3 Ingredients of Correlation Functions

Let us denote by Fi = Fi(Xi, Si, S̄i) the index-free 6D multi tensor field corresponding to some (li, l̄i)
4D tensor field fi. Homogeneity properties of Fi are

Fi(λXi, µSi, νS̄i) = λ−κiµ`iν
¯̀
iFi(Xi, Si, S̄i), (2.36)
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where we have defined

κi ≡ ∆i +
`i + ¯̀

i

2
. (2.37)

A correlator involving Fi would be a function of Xi, Si, S̄i that is

1. invariant under SU(2, 2) transformations,

2. satisfies the homogeneity properties (2.36) for each field and

3. gauge redundancy at every point X2
i = XiSi = S̄iXi = S̄iSi

We deduce that an m-point correlator involving Fi fields will have the following form

〈F1F2 . . . Fm〉 = Km(X1, . . . , Xm)

Nm∑
s=1

λsTs(X1, S1, S̄1, . . . Xm, Sm, S̄m). (2.38)

Here the tensor structures Ts are SU(2, 2) invariant homogeneous functions with degree 0 ∀Xi and
degree `i (¯̀

i) in each Si (S̄i). The index s runs over all the possible different independent tensor
structures compatible with conformal invariance. While Km is a kinematic factor which is a homogeneous
function with degree −κi in each Xi and λs are either constants (for m < 4) or functions of conformal
invariant cross-ratios (for m ≥ 4). For m = 4, the conformal invariant cross ratios (1.28) are uplifted
to 6D cross-ratios

U =
X12X34

X13X24
, V =

X14X23

X13X24
, (2.39)

where we used a 6D short-hand notation

Xij ≡ −2Xi ·Xj . (2.40)

2.3.1 Kinematic Factor

We will start by the kinematic factor, for (m = 2)-point functions

K2 ≡ X−κ1
12 δκ1,κ2 , (2.41)

for (m = 3)-point functions

K3 ≡ X
1
2

(κ3−κ1−κ2)

12 X
1
2

(κ2−κ3−κ1)

13 X
1
2

(κ1−κ2−κ3)

23 , (2.42)

and for (m = 4)-point functions, the homogeneity condition does not fully determine K4 since we can
multiply it by arbitrary powers of U and V , we choose

K4 ≡ X
− 1

2
(κ1+κ2)

12 X
− 1

2
(κ3+κ4)

34

(
X14

X24

) 1
2

(κ2−κ1)(X13

X14

) 1
2

(κ4−κ3)

. (2.43)

Finding the tensor structures Ts is a much less trivial problem. Any Ts will be a product of some
fundamental SU(2, 2) invariant building blocks that are to be determined.
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2.3.2 Invariant Building Blocks

The fundamental group-theoretical objects carrying SU(2, 2) indices, which should eventually be com-
bined with the auxiliary twistors Sa and S̄b to form SU(2, 2) invariants, are obtained as products of

δab , εabcd, ε
abcd, Xab, X

ab
. (2.44)

Let us first focus on the ε tensors. Their contraction with any other object in eq.(2.44) does not give
any new structures, because they reduce to a sum of already existing elements in eq.(2.44), for example:

εabcdεaefg = δbeδ
c
fδ
d
g − δbeδcgδdf − δbfδceδdg + δbfδ

c
gδ
d
e + δbgδ

c
eδ
d
f − δbgδcfδde , (2.45)

εabcdXae = −δbeX
cd

+ δceX
bd − δdeX

bc
, (2.46)

Actually, the ε-symbols drop from the discussion completely. It can be seen using the index-free formal-
ism where ε is encoded into εabcdS̄

a
i S̄

b
j S̄

c
kS̄

d
l , which vanishes unless i 6= j 6= k 6= l, such structure is still

related to other elements because of the gauge redundancy condition (see section 2.4).

The fundamental group-theoretical objects can be grouped into three sets{
δba, [XiXj ]

b
a , [XiXjXkXl]

b
a , . . .

}
,
{

[Xi]
ab, [XiXjXk]

ab, . . .
}
,
{

[Xi]ab, [XiXjXk]ab, . . .
}
. (2.47)

Multiplying these objects by auxiliary twistors S and S̄ will give us the SU(2,2) invariant building blocks
needed to characterize the m-point function. They are not all independent, given the relations (2.20),
(2.32) and (A.13).

2.3.3 Tensor Structures of 2- and 3-point Functions

Let us first determine the general form of two-point functions 〈F1F2〉. It is clear in this case that the
only non-vanishing independent SU(2,2) invariant is obtained by contracting one twistor S̄1 with S2 or
viceversa. The form of the two-point function is uniquely determined:

〈F1(X1, S1, S̄1)F2(X2, S2, S̄2)〉 = cX−κ1
12

(
I21
)l1 (I12

)l̄1 δl1,l̄2δl2,l̄1δ∆1,∆2 , (2.48)

where c is a normalization factor and we have defined the SU(2,2) invariant

Iij ≡ S̄iSj . (2.49)

For three-point functions three more invariants arise:

K̂jk
i ≡ Ni,jkSjXiSk , (2.50)

K̂
jk

i ≡ Ni,jkS̄jXiS̄k , (2.51)

Ĵ ijk ≡ Nj,kS̄iXjXkSi . (2.52)
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The normalization factors

Njk ≡
1

Xjk
, Ni,jk ≡

√
Xjk

XijXik
, (2.53)

are introduced to make the SU(2, 2) invariants in eqs.(2.49)-(2.52) dimensionless and well-defined on
the 6D light-cone.1 Notice that in eqs. (2.50)-(2.52) i 6= j 6= k and indices are not summed. The
invariants (2.50)-(2.52) are anti-symmetric in some indices:

K̂jk
i = −K̂kj

i , K̂
jk

i = −K̂
kj

i , Ĵ ijk = −Ĵ ikj , (2.54)

due to the anti-symmetry of X, X and the relations (2.32), (A.13).

Every other SU(2, 2) invariant object obtained from eq.(2.47) can be written in terms of different

combinations of Îij , K̂jk
i , K̂

jk

i and Ĵ ijk. Using eqs.(2.49)-(2.52), the most general tensor structure can
be written as follows:

Ts =
3∏

i 6=j 6=k=1

(
Îij
)mij (

K̂jk
i

)ki (
K̂
jk

i

)k̄i (
Ĵ ijk

)ji
(2.55)

where mij , kij , k̄ij and ji are a set of non-negative integers. Demanding that Ts is homogeneous
function of degree `i in each Si and degree ¯̀

i in each S̄i gives us six constraints:

li = ji +
∑
n6=i

(mni + kn) , l̄i = ji +
∑
n6=i

(min + k̄n) ∀i, (2.56)

It is useful to define
∆` ≡ `1 + `2 + `3 − (¯̀

1 + ¯̀
2 + ¯̀

3) . (2.57)

Using the system (2.56), we immediately get

∆` = 2(k1 + k2 + k3 − k̄1 − k̄2 − k̄3) , (2.58)

k1 + k2 + k3 ≤ min(`1 + `2, l1 + `3, `2 + `3) , k̄1 + k̄2 + k̄3 ≤ min(¯̀
1 + ¯̀

2, ¯̀
1 + ¯̀

3, ¯̀
2 + ¯̀

3) ,

and hence

− 2 min(¯̀
1 + ¯̀

2, ¯̀
1 + ¯̀

3, ¯̀
2 + ¯̀

3) ≤ ∆` ≤ 2 min(`1 + `2, `1 + `3, `2 + `3) . (2.59)

These are the conditions for the 4D three-point function 〈f1f2f3〉 to be non-vanishing. They exactly
match the findings of ref.[41]. Indeed, in that paper it was found that the 3-point function 〈f1f2f3〉,
with fi primary fields in the (li, l̄i) representations of SL(2, C), is non-vanishing if the decomposition
of the tensor product (l1, l̄1)⊗ (l2, l̄2)⊗ (l3, l̄3) contains a traceless-symmetric representation (l, l).

This would have completed the classification of the three-point functions if the tensor structures Ts were
all linearly independent, but they are not, and hence a more refined analysis is necessary.

1Notice the different normalization and slight different index notation in the definition of the invariants I, K, K and J
with respect to the ones defined in ref.[18]. The notation here matches the recent paper [40] with the most comprehensive
presentation yet of 4D CFT.
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2.3.4 Tensor Structures of 4-Point Functions

The tensor structures Ts are formed from the three-point invariants (2.49) and (2.50)-(2.52) (where
i, j, k now run from 1 to 4) and the following new ones:

Îijkl ≡ Nkl S̄iXkXlSj , (2.60)

L̂ijkl ≡ Njkl SiXjXkXlSi , (2.61)

L̂
i

jkl ≡ Njkl S̄iXjXkXlS̄i , (2.62)

where i 6= j 6= k 6= l = 1, 2, 3, 4; L̂ijkl and L̂
i

jkl are totally anti-symmetric in the last three indices and
the normalization factor is given by

Njkl ≡
1√

XjkXklXlj

. (2.63)

The invariants Îijkl satisfy the relation

Îijkl = −Îijlk + Iij (2.64)

Any four-point function can be expressed as a sum of products of the invariants (2.49)-(2.52) and
(2.60)-(2.62). However, not every product is independent, due to many relations between them.

2.4 Relations between Invariants

The dependence of the structures (2.55) has its roots in a set of identities among the twistors Si and
the coordinates Xj , when i = j. Combining the guage redundancy condition (2.32) and (2.20) with

εabcdXcd = −2X
ab
, −2Xab = εabcdX

cd
, (2.65)

lead to the identities

SaXbc + SbXca + ScXab = 0 , (2.66)

XabXcd + XcaXbd + XbcXad = 0 . (2.67)

Analogous relations apply for the dual twistors S̄ and X. We have not found identities involving more
S’s or X’s that do not boil down to eqs.(2.66) and (2.67).

Now we can explain why we dropped the ε symbol when we constructed the invariants, using the identity
(2.66) we see

− 2XijεabcdS̄
a
i S̄

b
j S̄

c
kS̄

d
l = S̄iXjS̄l S̄jXiS̄k − S̄jXiS̄l S̄iXjS̄k (2.68)

2.4.1 Relations between Three-Point Function Invariants

Applying eqs.(2.66) and (2.67) (actually it is enough to use only eq.(2.66)) to bi-products of invariants
we get the following relations (no sum over indices):
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K̂ik
j K̂

jk

i = IkiIjk − IjiĴkij , (2.69)

K̂ij
k K̂

ij

k = Ĵ ijkĴ
j
ik − I

ijIji , (2.70)

Ĵ jikK̂
ik
j = −IjiKjk

i + IjkK̂ij
k , (2.71)

Ĵ jikK̂
ik

j = −IijK̂
kj

i − IkjK̂
ij

k . (2.72)

We have verified that higher order relations involving more than two invariants always arise as the
composition of the relations (2.69)-(2.72). This is expected, since the fundamental identities (2.66) and
(2.67) involve only two tensors. A particularly useful third-order relation is

Ĵ1
23Ĵ

2
13Ĵ

3
12 = I21I13I32 − I12I31I23 + I23I32Ĵ1

23 − I13I31Ĵ2
13 + I12I21Ĵ3

12, (2.73)

which is obtained by applying, in order, eqs.(2.70), (2.72) and (2.69). The relations (2.69)-(2.73) have
been originally obtained in ref.[18], though it was not clear there whether additional relations were
possible.

2.4.2 Relations between Four-Point Function Invariants

When we consider the basis of invariants (2.49)-(2.52) and (2.60)-(2.62), the eqs.(2.66) and (2.67) will
lead to much more relations. Case in point, we get a linear relation

Ĵ ijl = nijklĴ
i
kl + nlijkĴ

i
jk , (2.74)

where we have defined

nijkl ≡
XijXkl

XikXjl
. (2.75)

And of-course more bi-product relations. For example the product K̂K̂ have seven relations

K̂jk
i K̂

jk

i = Ĵ jikĴ
k
ij − IjkIkj , (2.76)

K̂jk
i K̂

jk

l =
√
nijkl

(
niljkI

jkÎkjli − nikjlĴ
j
ikĴ

k
jl − IjkIkj

)
, (2.77)

K̂jk
i K̂

ik

j = Iij Ĵkij + IikIkj , (2.78)

K̂jk
i K̂

lk

j =
√
nijkl

(
Ikj Î lkji + I lj Ĵkij

)
, (2.79)

K̂jk
i K̂

ij

l = −√nilkj
(
Iij Îjkli + IikĴ jil

)
, (2.80)

K̂jk
i K̂

li

j =
√
nilkj

(
Iij Î lkji − IikI lj

)
, (2.81)

K̂jk
i K̂

jl

i = −√nilkj
(
I lj Îjkli + Ĵ jilÎ

lk
ji

)
, (2.82)

compared to just two relations (2.69) and (2.70) in the three point function case. In both cases the

relations will allow us to eliminate the all product of the K̂K̂. Another relation is

Îjikl Î
lk
ij = 4

(
I liIjk − nikjlI liIjk + niljkI

jiI lk
)

+ 2niljk

(
I liÎjkli − I

jkÎ likj

)
. (2.83)
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Much more relations can be found and classifying them is a very laborious task. Having a general
classification of 4-point tensor structures is crucial to to bootstrap a four-point function with non-zero
external spins. When we equate correlators in different channels, we have to identify all the factors in
front of the same tensor structure, thus it is important to have a common basis of independent tensor
structures. It seems impractical to classify structures of 4-point function in twistor formalism, in [40]
they showed that this problem is better addressed in non-covariant way by going to the conformal frame.

2.5 Three-Point Function Classification

The application of therelations in subsection 2.4.1 depend on the value of ∆` defined in (2.57). Lets
first consider the case ∆` = 0: Combining eqs.(2.69) and (2.70), we see that a product of any K̂ and

K̂ can be reduced to a combination of I’s and Ĵ ’s and thus

∆` = 0 =⇒ ki = k̄i = 0 ∀i (2.84)

We can also apply eq.(2.73) successively. At each step the tensor structure splits into five ones, each
time with a reduced number of J ’s. We keep applying eq.(2.73) until the initial tensor structure is
written as a sum of tensor structures where all have at least one value of j1, j2, or j3 equal to zero.

∆` = 0 =⇒ j1 = 0 or j2 = 0 or j3 = 0. (2.85)

Next we consider the case ∆` > 0: the combined application of eqs.(2.69) and (2.70) remove all the K̂

∆` > 0 =⇒ k̄i = 0 ∀i (2.86)

Then we apply eq.(2.72) so that products of the form K̂ ..
i Ĵ

i
.. can be rewritten using only K̂’s of a different

type. It is not difficult to convince oneself that this boils down to the following further constraints on
eq.(2.55):

∆` > 0 =⇒


k1 = 0 or j1 = 0
k2 = 0 or j2 = 0
k3 = 0 or j3 = 0

(2.87)

The last case of ∆` < 0 is equivalent to the case ∆` > 0 replacing K̂i with K̂i. The result of this
analysis is that the most general three-point function 〈F1F2F3〉 can be written as2

〈F1F2F3〉 =

N3∑
s=1

λs〈F1F2F3〉〈F1F2F3〉s , (2.88)

where

〈F1F2F3〉s = K3

( 3∏
i 6=j=1

(Iij)mij
)
Cn1

1,23C
n2
2,31C

n3
3,12 . (2.89)

The index s runs over all the independent tensor structures parametrized by the integers mij and ni,
each multiplied by a constant OPE coefficient λs. The invariants Ci,jk equal to one of the three-index
invariants (2.50)-(2.52), depending on the value of ∆` defined in (2.57) for the external fields.

2The points X1, X2 and X3 are assumed to be distinct.
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Three-point functions are non-vanishing only when ∆` is an even integer and satisfy the condition (2.59)
[41]. We have

• ∆l = 0: Ci,jk = Ĵ ijk and the power of J ’s satisfy the constraint (2.85)

• ∆l > 0: Ci,jk = Ĵ ijk or K̂jk
i

• ∆l < 0: Ci,jk = Ĵ ijk or K̂
jk

i .

The number of tensor structures is given by all the possible allowed choices of nonnegative integers mij

and ni in eq.(2.88) subject to the above constraints and the ones coming from matching the correct
powers of Si and S̄i for each field (2.56). The latter requirement gives in total six constraints.

2.6 6D to 4D Dictionary

The transition from the 6D index-free form to the 4D one is extremely easy. Given a 6D three-point
function, we just need to rewrite the invariants I,K, K̄, J in 4D form. We have

Îij |Poincaré = s̄iα̇(XiXj)
α̇
αs
α
j |Poincaré = s̄iα̇(xij · σε)α̇α sαj , (2.90)

K̂ij
k |Poincaré = Nk,ij s

α
i s
β
j (XiXkXj)αβ|Poincaré

K̂
ij

k |Poincaré =
1

2

|xij |
|xik||xjk|

s̄iα̇s̄jβ̇

(
(x2
ik + x2

jk − x2
ij)ε

α̇β̇ + 4xµikx
ν
kj(σ̄µνε)

α̇β̇
)
, (2.91)

Ĵkij |Poincaré = Nij s̄kα̇(XkXiXjXk)
α̇
αs
α
k |Poincaré = −

x2
ikx

2
jk

x2
ij

sαk (Zk,ij · σε)α̇αs̄kα̇ , (2.92)

where

Zµk, ij ≡
xµki
x2
ik

−
xµkj
x2
jk

, Zµk, ij = −Zµk, ji . (2.93)

Explicit 4D correlation functions with indices are obtained by removing the auxiliary spinors si and s̄i
through derivatives, as described in eq.(2.33).

2.7 Transformations under 4D Parity

Under the 4D parity transformation (x0, ~x) → (x0,−~x), a 4D field in the (l, l̄) representation of the
Lorentz group is mapped to a field in the complex conjugate representation (l̄, l). We parametrize the
transformation as follows:

f
β̇1...β̇l̄
α1...αl(x)→ η(−)

l+l̄
2 f α̇1...α̇l

β1...βl̄
(x̃) , (2.94)

where η is the intrinsic parity of the field and x̃ is the parity transformed coordinate. Applying parity
twice gives

η ηc(−)l+l̄ = 1 , (2.95)
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where ηc is the intrinsic parity of the conjugate field. We then see that ηηc = +1 for bosonic operators
and ηηc = −1 for fermionic ones. Under parity, in particular, we have

(x · σε)β̇α ↔ −(x · σ̄ε)α̇β , εαβ ↔ −εα̇β̇ , xµyν(σµνε)αβ ↔ −xµyν(σ̄µνε)
α̇β̇ . (2.96)

We can see how parity acts on the 6D invariants (2.49)-(2.52) by using their 4D expressions (2.90)-(2.92)
on the null cone and eqs.(2.96). We get

Iij → − Iji ,

K̂jk
i → + K̂

jk

i ,

K̂
jk

i → + K̂jk
i ,

Ĵ ijk → + Ĵ ijk .

(2.97)

In general, parity maps correlators of fields into correlators of their complex conjugate fields. Imposing
parity in a CFT implies that for each primary field (l, l̄) there must exist its conjugate one (l̄, l), and
the constants entering in their correlators are related. Of course, we can also have correlators that are
mapped to themselves under parity. Since ∆l → −∆l under parity, where ∆l is defined in eq.(2.57),
such correlators should have ∆l = 0. Due to eqs.(2.59) and (2.84), the structures K and K cannot
enter in correlators with ∆l = 0, which depend only on the invariants Iij and Ĵ ijk. For correlators that
are mapped to themselves under parity, one has to take linear combinations of the tensor structures
appearing in eq.(2.88) that are even or odd under parity, according to the transformation rules for I’s and
J ’s in eq.(2.97). Depending on the intrinsic parity of the product of the fields entering the correlator,
the coefficients multiplying the parity even or parity odd structures should then be set to zero if parity
is conserved.

A particular relevant class of correlators that are mapped to themselves under parity are those involving
symmetric traceless tensors only. In this case we have verified that eqs.(2.97) lead to the correct number
of parity even and parity odd structures as separately computed in ref.[16].

2.8 Conserved Operators

Primary tensor fields whose scaling dimension ∆ saturates the unitarity bound [42, 43]

∆ ≥ l + l̄

2
+ 2 , l 6= 0 and l̄ 6= 0 , (2.98)

are conserved. Three-point functions with conserved operators are subject to further constraints which
will be analyzed in this section. Given a conserved spinor-tensor primary field in the (l, l̄) representation
of the Lorentz group, with scaling dimension ∆, we define

(∂ · f)
β̇2...β̇l̄
α2...αl(x) ≡ (εσµ)α1

β̇1
∂µf

β̇1...β̇l̄
α1...αl(x) = 0 . (2.99)

Let us see how the 4D current conservation (2.99) can be uplifted to 6D as a constraint on the field
F a1...al
b1...bl̄

. This will allow us to work directly with the 6D invariants (2.49)-(2.52), providing a great
simplification. The analysis that follows is essentially a generalization to arbitrary conserved currents of
the one made in ref.[16], where only symmetric traceless currents were considered. From eq. (2.24), we
get

(∂ · f)
β̇2...β̇l̄
α2...αl(x) = (X+)∆−(l+l̄)/2∂µ

(
(eµ) b1a1

Xα2a2 . . .XαlalX
β̇2b2 . . .X

β̇l̄bl̄F a1...al
b1...bl̄

(X)

)
, (2.100)
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where

(eµ) ba ≡ −Xaα(εσµ)α
β̇
X
β̇b

= (Mµ+) ba , (2.101)

in terms of the tensor
MMN = 2

(
XMΣN

PX
P −XNΣM

PX
P
)
. (2.102)

Applying the derivative to each term gives

(∂ · f)
β̇2...β̇l̄
α2...αl = (X+)∆−(l+l̄)/2Xα3a3 . . .XαlalX

β̇3b3 . . .X
β̇l̄bl̄

(
(∂µe

µ) b1a1
Xα2a2X

β̇2b2 +
∂XM

∂xν
(eν) b1a1(

(l − 1)
(∂Xα2a2

∂XM

)
X
β̇2b2 + (l̄ − 1)

(∂X
β̇2b2

∂XM

)
Xα2a2 + Xα2a2X

β̇2b2 ∂

∂XM

))
F a1...al
b1...bl̄

.

(2.103)

After some algebraic manipulations, eq.(2.103) can be recast in the form

(∂ · f)
β̇2...β̇l̄
α2...αl = (X+)∆−(l+l̄)/2+2Xα2a2 . . .XαlalX

β̇2b2 . . .X
β̇l̄bl̄Ra2...al

b2...bl̄
, (2.104)

where

Ra2...al
b2...bl̄

= 2

(
−
(
XMΣMN ∂

∂XN

) b1
a1

+
1

X+

(
∆− l + l̄

2
− 2
)
XM (ΣM+) b1a1

)
F a1...al
b1...bl̄

. (2.105)

In writing eq.(2.105), we used the fact that F is a homogeneous function of degree ∆ + (l + l̄)/2 and
the following two identities hold:((

XMΣMN ∂

∂XN

) b1
a1

Xα2a2

)
F a1...al
b1...bl̄

=

((
XMΣMN ∂

∂XN

) b1
a1

X
β̇2b2

)
F a1...al
b1...bl̄

= 0 , (2.106)

since F is symmetric in its indices and satisfies eq. (2.27).

Analogously to what found in ref.[16] for symmetric traceless operators, we see here what is special
about operators that saturate the unitarity bound (2.98). They are the only ones for which the 6D
uplifted tensor R is SO(4, 2) covariant. In our index-free notation, current conservation in 6D takes an
extremely simple form:

∂ · f(x, s, s̄) = (∂ · f(x))
β̇2...β̇l̄
α2...αls

α2 . . . sαl s̄β̇2
. . . s̄β̇l̄

= D · F (X,S, S̄) = 0 , (2.107)

where3

D =
2

`¯̀(`+ ¯̀+ 2)

(
XMΣMN∂N

) b
a
∂ a
b , (2.108)

where

∂ a
b =

1

`+ ¯̀+ 1
∂a∂b

=
(
4 + S · ∂S + S̄ · ∂S̄

) ∂

∂Sa

∂

∂S̄b
−
(
Sb

∂

∂Sa
+ S̄a

∂

∂S̄b

)
∂2

∂S · ∂S̄

(2.109)

3the operator we computed in [29] was wrong and was corrected by the authors of [40]
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2.9 Examples

In this section we show some examples on how to use the formalism presented in section 2.5. We will
consider here correlation functions where two of the three primary operators are either scalars (0,0) or
spin 1/2 Weyl fermions in reps (1,0) and (0,1). We consider these particular correlators because they
are very simple and also because they are relevant for later discussions in this thesis.

2.9.1 Scalar - Scalar - Tensor Correlator

Two scalars with scaling dimensions ∆φ1 and ∆φ2 and tensor O in rep (`, ¯̀) and scaling dimension ∆O.
For this correlator ∆` defined in (2.57) should satisfy the condition (2.59)

∆` = `− ¯̀, satisfies 0 ≤ ∆` ≤ 0 (2.110)

So only symmetric traceless operators O in rep (`, `) have a non-vanishing 3-point functions with two
scalars. Using 6D embedding formalism

〈Φ1(X1)Φ2(X2)O(X3, S3, S̄3)〉 = K3(κφ1, κφ2, κO)λ〈φ1φ2O〉

(
Ĵ3

12

)`
, (2.111)

where λ〈φ1φ2O〉 is the OPE coefficient and K3 is defined in eq.(4.39). This correlator can be projected
to 4D using (2.90)-(2.92) and Xij |Poincaré = x2

ij

〈φ1(x1)φ2(x2)O(x3, s3, s̄3)〉 = 〈Φ1(X1)Φ2(X2)O(X3, S, S̄)〉|Poincaré (2.112)

Furthermore, if needed, we can get open indices by taking derivatives of s3 and s̄3 as in (2.33)

〈φ1(x1)φ2(x2)Oβ̇1...β̇`
α1...α`

(x3)〉 =
1

`!¯̀!

∏̀
i=1

∂

∂sαi3

∂

∂s̄3β̇i

(
〈Φ1(X1)Φ2(X2)O(X3, S, S̄)〉|Poincaré

)
(2.113)

If O is a conserved tensor ` > 0, its dimension fixed to ∆O = 2 + `. Taking the divergence (2.108) of
(2.111) and using eqs. (2.32) and (A.13) gives

D3〈Φ1(X1)Φ2(X2)O(X3, S3, S̄3)〉 = K3(κφ1, κφ2, κO)`(`+ 1)2(∆φ2 −∆φ1)λ〈φ1φ2O〉

(
Ĵ3

12

)`−1
= 0,

(2.114)
where the subscript 3 in D indicates that derivatives are taken with respect to X3, S3 and S̄3. Eq.
(2.114) has the form of scalar-scalar-spin (`− 1) correlator as it should. This implies that the correlator
(2.111) with a conserved O vanishes unless ∆φ1 = ∆φ2 .

2.9.2 Scalar - Fermion - Tensor Correlator

A scalar φ and spin-1/2 ψα primary operators with scaling dimensions ∆φ and ∆ψ and a primary operator
in rep (`, ¯̀). For this correlator ∆` defined in (2.57) should be an even number and satisfy the condition
(2.59)

∆` = `− ¯̀+ 1, satisfies 0 ≤ ∆` ≤ 2, (2.115)

so the third operator has to be in the rep (1+`, `) or (`, 1+`) , where ` is clearly a non-negative integer.
Using 6D embedding formalism, A is a primary operator in rep (`, 1 + `) with scaling dimension ∆A

〈Φ(X1)Ψ(X2, S2)A(X3, S3, S̄3)〉 = K3(κφ, κψ, κA)λ〈φψA〉I
32
(
Ĵ3

12

)`
, (2.116)
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while B is a primary operator in rep (1 + `, `) with scaling dimension ∆B

〈Φ(X1)Ψ(X2, S2)B(X3, S3, S̄3)〉 = K3(κφ, κψ, κB)λ〈φψB〉K̂
32
1

(
Ĵ3

12

)`
, (2.117)

where λ〈φψA〉 and λ〈φψB〉 are the corresponding OPE coefficients and again K3 is defined in eq.(4.39).

2.9.3 Fermion - Fermion - Tensor Correlator

We will determine all the three-point functions involving two fermion fields ψ1α, ψβ̇2 and a general
primary operator O. According to eq.(2.59), the only non-vanishing 3-point function occurs when O is
in one of the following three Lorentz representations: (l, l), (l+ 2, l) and (l, l+ 2), with l ≥ 0. We will
determine the form of the correlators in two cases: with non-conserved and conserved operator O.

Non-conserved Tensor

Let us start by considering the (l, l) representations. According to eq. (2.89), for l = 0 there is only
one possible structure to this correlator,

〈O(0,0)(X1)Ψ1(X2, S2)Ψ2(X3, S̄3)〉 = K3(κO, κψ1, κψ2) λ1
〈Oψ1ψ2〉I

32, (2.118)

with λ1
〈Oψ1ψ2〉 a complex parameter. For l ≥ 1, two independent structures are present,

〈O(X1, S1, S̄1)Ψ1(X2, S2)Ψ2(X3, S̄3)〉

= K3(κO, κψ1, κψ2)

(
λ1
〈Oψ1ψ2〉I

32
(
Ĵ1

23

)`
+ λ2

〈Oψ1ψ2〉I
12I31

(
Ĵ1

23

)`−1
)
, l ≥ 1 ,

(2.119)

where λ1,2
〈Oψ1ψ2〉 are two complex parameters and K3 is defined in eq.(4.39).

Using eqs.(2.33) and (2.90) we find

〈Oβ̇1...β̇l
α1...αl

(x1)ψ1α(x2)ψβ̇2 (x3)〉 = K3(κO, κψ1, κψ2)|Poincaré
1

(`!)2
×(

λ̃1
〈Oψ1ψ2〉(x32 · σε) β̇α (Z1,23 · σε) β̇1

α1
. . . (Z1,23 · σε) β̇lαl +

x2
23

x2
12x

2
13

λ̃2
〈Oψ1ψ2〉(x12 · σε) β̇1

α (x31 · σε) β̇α1
(Z1,23 · σε) β̇2

α2
. . . (Z1,23 · σε) β̇lαl + perms.

)
.

(2.120)

In eq.(2.120), λ̃1
〈Oψ1ψ2〉 and λ̃2

〈Oψ1ψ2〉 are proportional to λ1
〈Oψ1ψ2〉 and λ2

〈Oψ1ψ2〉 in eq.(2.119) respectively

with the same proportionality factor, Zµ1,23 is defined in eq.(2.93) and perms. refer to the (l!)2−1 terms

obtained by permuting the αi and β̇i indices.

When ψ2 is the complex conjugate of ψ1, namely ψβ̇2 = ψ̄β̇1 = (ψ1β)† and the symmetric traceless tensor

components are real, the OPE coefficients λ̃1,2
〈Oψ1ψ2〉 are either purely real or purely imaginary, depending

on l. When xµ1,2,3 are space-like separated, causality implies that the operators commute between each
other [5]. Taking β = α and βi = αi, we then have

〈Oα̇1...α̇l
α1...αl

(x1)ψ1α(x2)ψ̄α̇1 (x3)〉∗ = −〈Oα̇1...α̇l
α1...αl

(x1)ψ1α(x3)ψ̄α̇1 (x2)〉 . (2.121)



Section 2.9. Examples Page 26

Since Z1,23 = −Z1,32 we get(
λ̃1
〈Oψ1ψ̄1〉

)∗
= (−1)`λ̃1

〈Oψ1ψ̄1〉 ,
(
λ̃2
〈Oψ1ψ̄1〉

)∗
= (−1)`λ̃2

〈Oψ1ψ̄1〉 . (2.122)

Let us now consider the parity transformations of eq.(2.120). Parity maps the three-point function

〈Oβ̇1...β̇l
α1...αl(x1)ψ1α(x2)ψβ̇2 (x3)〉 to the complex conjugate three-point function 〈Oα̇1...α̇l

β1...βl
(x̃1)ψ̄α̇1 (x̃2)ψ̄2β(x̃3)〉.

When ψ2 = ψ̄1, and αi = βi, the three-point function is mapped to itself, provided the exchange
x2 ↔ x3 and α↔ β. The two structures appearing in eq.(2.120) have the same parity transformations.
If we impose parity conservation in the CFT and we choose a negative intrinsic parity for the traceless
symmetric tensor, ηO = −1, then the three-point function must vanish: λ̃1

〈Oψ1ψ̄1〉
= λ̃2

〈Oψ1ψ̄1〉
= 0. For

positive intrinsic parity ηO = 1, instead, parity invariance does not give any constraint.

Let us next consider the (` + 2, `) representations. According to eq. (2.89), there is only one possible
structure to this correlator, for any `:

〈O(X1, S1, S̄1)Ψ1(X2, S2)Ψ2(X3, S̄3)〉 = K3(κO, κψ1, κψ2)λ〈Oψ1ψ2〉I
31K̂12

3

(
Ĵ1

23

)`
, (2.123)

that gives rise to the 4D correlator

〈Oβ̇1...β̇l
α1...α`+2

(x1)ψ1α(x2)ψ̄β̇2 (x3)〉 =K3(κO, κψ1, κψ2)|Poincaré

λ̃〈O2+`,`ψ1ψ2〉

(l!)(l + 2)!

(
(x31 · σε) β̇αl+1

×(
(x2

23 + x2
31 − x2

21)εααl+2
+ 4xµ23x

ν
31(σµνε)ααl+2

)
×

(Z1,23 · σε) β̇1
α1
. . . (Z1,23 · σε) β̇lαl + perms.

)
,

(2.124)

where λ̃〈Oψ1ψ2〉 is proportional to λ〈Oψ1ψ2〉 in eq.(2.123).

A similar analysis applies to the complex conjugate (l, l + 2) representations. The only possible 6D
structure is

〈O(X1, S1, S̄1)Ψ1(X2, S2)Ψ2(X3, S̄3)〉 = K3(κO, κψ1, κψ2)λ〈Oψ1ψ2〉I
12K̂

13

2

(
J1

23

)`
, (2.125)

and gives

〈Oβ̇1...β̇`+2
α1...α` (x1)ψ1α(x2)ψ̄β̇2 (x3)〉 =K3(κO, κψ1, κψ2)|Poincaré

λ̃〈O`,2+`ψ1ψ2〉

(l!)(l + 2)!

(
(x12 · σε)

β̇l+1
α ×(

(x2
23 + x2

21 − x2
31)εβ̇β̇`+2 + 4xµ32x

ν
21(σ̄µνε)

β̇β̇l+2

)
×

(Z1,23 · σε) β̇1
α1
. . . (Z1,23 · σε) β̇lαl + perms.

)
.

(2.126)

If ψ̄2 = ψ1, as expected, eq.(2.126) is mapped to eq.(2.124) under parity transformation. In particular,
in a parity invariant CFT, we should have the same number of (l, l + 2) and conjugate (l + 2, l) fields,
with

λ〈O(2+`,`)ψ1ψ2〉 = ηOλ〈O(`,2+`)ψ1ψ2〉 . (2.127)
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Conserved Tensor

Let us start by considering (`, `) representations. The scaling dimension of O is now fixed to be
∆O = `+ 2. Taking the divergence (2.108) of eq. (2.119) and using eqs. (2.32) and (A.13) gives

D1〈O(X1, S1, S̄1)Ψ1(X2, S2)Ψ2(X3, S̄3)〉 = K3(κO, κψ1, κψ2)(`+ 1)(∆ψ1 −∆ψ2)(
λ2
〈Oψ1ψ2〉(`+ 2)(1− `)I12I31

(
Ĵ1

23

)`−2
+ (λ2

〈Oψ1ψ2〉 − `(`+ 1)λ1
〈Oψ1ψ2〉)I

32
(
J1

23

)`−1
)

(2.128)

where the subscript 1 in D indicates that derivatives are taken with respect to X3, S3 and S̄3. Eq.(2.128)
has the correct form for a Fermion-Fermion-spin (l− 1) symmetric tensor, as it should, and is automat-
ically satisfied if ∆ψ1 = ∆ψ2. For ∆ψ1 6= ∆ψ2 we have

λ2
〈Oψ1ψ2〉(`+ 2)(1− `) = 0 , λ1

〈Oψ1ψ2〉 =
λ2
〈Oψ1ψ2〉

`(`+ 1)
. (2.129)

For ` = 1 we get one independent structure in eq.(2.119) with λ2
〈Oψ1ψ2〉 = 2λ1

〈Oψ1ψ2〉. For ` > 1

eq.(2.129) admits only the trivial solution

〈Oβ̇1...β̇l
α1...αl

(x1)ψ1α(x2)ψβ̇2 (x2)〉 = 0 , ` > 1 , ∆ψ1 6= ∆ψ2 . (2.130)

Let us next consider the (`+2, `) representations, where O(`+2,`) is a conserved tensor with ∆O = `+3,
` > 0. The divergence (2.108) of eq.(2.123) gives now

D1〈O(X1, S1, S̄1)Ψ1(X2, S2)Ψ2(X3, S̄3)〉 =
λ〈Oψ1ψ2〉`(`+ 2)(`+ 3)

K3(κO, κψ1, κψ2)
(∆ψ2−∆ψ1−1)I31K̂12

3

(
Ĵ1

23

)`−1
.

(2.131)
For ∆ψ2 = ∆ψ1 +1 eq.(2.131) is automatically satisfied. When ∆ψ2 6= ∆ψ1 +1, there are no non-trivial
solutions of eq.(2.131) for ` > 0:

〈Oβ̇1...β̇l
α1...α`+2

(x1)ψ1α(x2)ψβ̇2 (x3)〉 = 0 , ` > 0 , ∆ψ2 6= ∆ψ1 + 1 . (2.132)

A similar result applies for conserved O(`,`+2) operators replacing ∆ψ1 ↔ ∆ψ2.



3. Deconstructing Conformal Partial Waves

In this chapter we make use of 6D embedding formalism to find relations between CPW. We will see
how three-point functions of spinors/tensors can be related to three-point functions of lower spin fields
by means of differential operators. We explicitly construct a basis of differential operators that allows
one to express any three-point function of two traceless symmetric and an arbitrary bosonic operator
Ol,l̄ with l 6= l̄, in terms of “seed” three-point functions, that admit a unique tensor structure.This
would allow to express all the CPW entering a four-point function of traceless symmetric correlators in
terms of a few CPW seeds. These seeds will be computed in chapter 4.

We first start by seeing how a relation between three-point functions leads to a relation between CPW.We
introduce a basis of differential operators for three point functions. We will construct an explicit basis
of differential operators for external symmetric traceless operators, where the exchanged operator is
traceless symmetric and then pass to the more involved case of mixed tensor exchange. We also propose
a set of seed CPW needed to get CPW associated with the exchange of a bosonic operator Ol,l̄. As an
example a four correlation function of two scalars two fermions is deconstructed.

3.1 Relation between CPW

Let us consider for instance the 4-point function of four primary tensor operators:

〈OI11 (x1)OI22 (x2)OI33 (x3)OI44 (x4)〉 = K4

N4∑
n=1

gn(u, v)T I1I2I3I4n (xi) . (3.1)

In eq.(3.1) we have schematically denoted by Ii the Lorentz indices of the operators Oi(xi),

K4 =

(
x2

24

x2
14

)κ1−κ2
2
(
x2

14

x2
13

)κ3−κ4
2

(x2
12)−

κ1+κ2
2 (x2

34)−
κ3+κ4

2 (3.2)

is a kinematical factor, the 4D equivalent of (2.43), κi are defined in (2.37), u and v are the conformally
invariant cross ratios (1.28).

T I1I2I3I4n (xi) are tensor structures. These are functions of the xi’s and can be kinematically determined.

Their total number N4 depends on the Lorentz properties of the external primaries. For correlators
involving scalars only, one has N4 = 1, but in general N4 > 1 and rapidly grows with the spin of the
external fields.

All the non-trivial dynamical information of the 4-point function is encoded in the N4 functions gn(u, v).
As we mentioned, a bootstrap analysis requires to rewrite the 4-point function (3.1) in terms of the
operators exchanged in any channel. In the s-channel (12-34), for instance, we have

〈OI11 (x1)OI22 (x2)OI33 (x3)OI44 (x4)〉 =
∑
i,j

∑
Or

λiO1O2Orλ
j
Ōr̄O3O4

W
(i,j)I1I2I3I4
O1O2O3O4,Or(xi) , (3.3)

where i and j run over the possible independent tensor structures associated to the three point functions
〈O1O2Or〉 and 〈Ōr̄O3O4〉, whose total number is N12

3r and N34
3r̄ respectively,1 the λ’s being their

corresponding structure constants, and finally W
(p,q)I1I2I3I4
O1O2O3O4

(u, v) are the associated CPWs.

1Strictly speaking these numbers depend also on Or, particularly on its spin. When the latter is large enough, however,
N12

3r and N34
3r̄ are only functions of the external operators.

28
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The CPWs depend on the external as well as the exchanged operator scaling dimension and spin,
dependence we omitted in order not to clutter further the notation.2

The sum over the exchanged primary operators Or includes a sum over all possible representations
(`, ¯̀) that can appear in the 4-point function and, for each representation, a sum over all the possible
primaries, i.e. a sum over all possible scaling dimensions ∆Or . It is useful to define δ = |¯̀− `| and
rearrange the sum over (`, ¯̀) in a sum over, say, ` and δ. There is an important difference between
these two sums. For any 4-point function, the sum over l extends up to infinity, while the sum over δ
is always finite. More precisely, we have

δ = 0, 2 , . . . , p− 2, p, Or bosonic

δ = 1, 3 , . . . , p− 2, p, Or fermionic.
(3.4)

In both cases, the integer p is defined to be

p = min(`1 + ¯̀
1 + `2 + ¯̀

2, `3 + ¯̀
3 + `4 + ¯̀

4) , (3.5)

and is automatically an even or odd integer when Or is a boson or a fermion operator.

By comparing eqs.(3.1) and (3.3) one can infer that the number of allowed tensor structures in three
and four-point functions is related:3

N4 =
∑
r

N12
3rN

34
3r̄ . (3.6)

There are several CPW for each exchanged primary operator Or, depending on the number of allowed
3-point function structures. They encode the contribution of all the descendant operators associated
to the primary Or. Contrary to the functions gn(u, v) in eq.(3.1), the CPW do not carry dynamical
information, being determined by conformal symmetry alone. They admit a parametrization like the
4-point function itself,

W
(i,j)I1I2I3I4
O1O2O3O4,Or(xi) = K4

N4∑
n=1

g
(i,j)
Or,n(u, v)T I1I2I3I4n (xi) , (3.7)

where g
(i,j)
Or,n(u, v) are the CBs, scalar functions of u and v that depend on the dimensions and spins of

the external and exchanged operators.

Once the CPW are determined, by comparing eqs.(3.1) and (3.3) we can express gn(u, v) in terms of
the OPE coefficients of the exchanged operators. This procedure can be done in other channels as well,
(13− 24) and (14− 23). Imposing crossing symmetry, requiring the equality of different channels, gives
us the bootstrap equations.

The computation of CPW of tensor correlators is possible, but technically is not easy. In particular it
is desirable to have a relation between different CPW, so that it is enough to compute a small subset
of them, which determines all the others. In order to understand how this reduction process works, it is
very use the embedding formalism in the 6D twistor space with index-free notation explained in chapter
2.

2For further simplicity, in what follows we will often omit the subscript indicating the external operators associated to
the CPW.

3We do not have a formal proof of eq.(3.6), although the agreement found in ref.[29] using eq.(3.6) in different channels
is a strong indication that it should be correct.
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It is useful to consider the parametrization of CPW in the shadow formalism [44, 45, 46, 47]. It has
been shown in ref.[18] that a generic CPW can be written in 6D as

W
(p,q)
O1O2O3O4,Or

(Xi) ∝
∫
d4Xd4Y 〈O1(X1)O2(X2)Or(X,S, S̄)〉pG〈Ōr̄(Y, T, T̄ )O3(X3)O4(X4)〉q .

(3.8)
In eq.(3.8)

Oi(Xi) ≡ Oi(Xi, Si, S̄i),

are the index-free 6D fields associated to the 4D fields Oi(xi), Or(X,S, S̄) and Ōr̄(Y, T, T̄ ) are the
exchanged operator and its conjugate, G is a sort of “propagator”, function of X,Y and of the twistor
derivatives ∂/∂S, ∂/∂T , ∂/∂S̄ and ∂/∂T̄ , and the subscripts p and q label the three-point function
tensor structures. Finally, in order to remove unwanted contributions, the transformation X12 → e4πiX12

should be performed and the integral should be projected to the suitable eigenvector under the above
monodromy.

Suppose one is able to find a relation between three-point functions of this form:

〈O1(X1)O2(X2)Or(X,S, S̄)〉p = Dpp′(X12, S1,2, S̄1,2)〈O′1(X1)O′2(X2)Or(X,S, S̄)〉p′ , (3.9)

where Dpp′ is some operator that depends on X12, S1,2, S̄1,2 and their derivatives, but is crucially
independent of X, S, and S̄, and O′i(Xi) are some other, possibly simpler, tensor operators. As long
as the operator Dpp′(X12, S1,2, S̄1,2) does not change the monodromy properties of the integral, one
can use eq.(3.9) in both three-point functions entering eq.(3.8) and move the operator Dpp′ outside the
integral. In this way we get, with obvious notation,

W
(p,q)
O1O2O3O4,Or

(Xi) = D12
pp′D

34
qq′W

(p′,q′)
O′1O

′
2O
′
3O
′
4,Or

(Xi) . (3.10)

Using the embedding formalism in vector notation, ref.[17] has shown how to reduce, in any space-time
dimension, CPW associated to a correlator of traceless symmetric operators which exchange a traceless
symmetric operator to the known CPW of scalar correlators [8, 9].

Focusing on 4D CFTs and using the embedding formalism in twistor space, we will see how the reduction
of CPW can be generalized for arbitrary external and exchanged operators.

3.2 Differential Representation of Three-Point Functions

We look for an explicit expression of the operator Dpp′ defined in eq.(3.9) as a linear combination of
products of simpler operators. They must raise (or more generically change) the degree in S1,2 and
have to respect the gauge redundancy we have in the choice of O. As we explained in section 2.5,
multitwistors of the form

O ∼ O +O(S̄X)G+O(XS)G′ , O ∼ O +O(X2)G , (3.11)

where G and G′ are some other multi-twistors fields, are equivalent uplifts of the same 4D tensor field.
Eq.(3.9) is gauge invariant with respect to the equivalence classes (3.11) only if we demand

Dpp′O(XiXi,XiSi, SiXi, X
2
i , SiSi) = O(XiXi,XiSi, SiXi, X

2
i , SiSi) , i = 1, 2 . (3.12)

It is useful to classify the building block operators according to their value of ∆l, as defined in eq.(2.57).
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At zero order in derivatives, we have three possible operators, with ∆l = 0:√
X12, I

12 , I21 . (3.13)

At first order in derivatives (in X and S), four operators are possible with ∆l = 0:

D1 ≡
1

2
S1ΣMΣ

N
S1

(
X2M

∂

∂XN
1

−X2N
∂

∂XM
1

)
,

D2 ≡
1

2
S2ΣMΣ

N
S2

(
X1M

∂

∂XN
2

−X1N
∂

∂XM
2

)
,

D̃1 ≡ S1X2Σ
N
S1

∂

∂XN
2

+ 2I12 S1a
∂

∂S2a
− 2I21 S

a
1

∂

∂S
a
2

,

D̃2 ≡ S2X1Σ
N
S2

∂

∂XN
1

+ 2I21 S2a
∂

∂S1a
− 2I12 S

a
2

∂

∂S
a
1

.

(3.14)

The extra two terms in the last two lines of eq.(3.14) are needed to satisfy the condition (3.12). The
SU(2, 2) symmetry forbids any operator at first order in derivatives with ∆l = ±1.

When ∆l = 2, we have the two operators

d1 ≡ S2X1
∂

∂S1

, d2 ≡ S1X2
∂

∂S2

, (3.15)

and their conjugates with ∆l = −2:

d1 ≡ S2X1
∂

∂S1
, d2 ≡ S1X2

∂

∂S2
. (3.16)

The operator
√
X12 just decreases the dimensions at both points 1 and 2 by one half. The operator I12

increases by one the spin l̄1 and by one l2. The operator D1 increases by one the spin l1 and by one l̄1,
increases by one the dimension at point 1 and decreases by one the dimension at point 2. The operator
D̃1 increases by one the spin l1 and by one the spin l̄1 and it does not change the dimension of both
points 1 and 2. The operator d1 increases by one the spin l2 and decreases by one l̄1, decreases by one
the dimension at point 1 and does not change the dimension at point 2. The action of the remaining
operators is trivially obtained by 1↔ 2 exchange or by conjugation.

Two more operators with ∆l = 2 are possible:

d̃1 ≡ X12S1Σ
M
S2

∂

∂XN
1

− I12S1aX
ab
2

∂

∂S
b
1

,

d̃2 ≡ X12S2Σ
M
S1

∂

∂XN
2

− I21S2aX
ab
1

∂

∂S
b
2

,

(3.17)

together with their conjugates with ∆l = −2. We will shortly see that the operators (3.17) are redundant
and can be neglected.
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The above operators satisfy the commutation relations

[Di, D̃j ] = [di, dj ] = [d̄i, d̄j ] = [di, d̃j ] = [d̄i, d̃j ] = [d̃i, d̃j ] = [d̃i, d̃j ] = 0 , i, j = 1, 2 ,

[D1, D2] = 4I12I21
(
−XM

1

∂

∂XM
1

+XM
2

∂

∂XM
2

)
,

[D̃1, D̃2] = 4I12I21
(
XM

1

∂

∂XM
1

−XM
2

∂

∂XM
2

+ S1
∂

∂S1
+ S̄1

∂

∂S̄1
− S2

∂

∂S2
− S̄2

∂

∂S̄2

)
,

[d̃1, d̃2] = 2X12I
12I21

(
−XM

1

∂

∂XM
1

+XM
2

∂

∂XM
2

− S̄1
∂

∂S̄1
+ S2

∂

∂S2

)
,

[di, d̄j ] = 2X12

(
Sj

∂

∂Sj
− S̄i

∂

∂S̄i

)
(1− δi,j) , i, j = 1, 2 ,

[di, Dj ] = −2δi,j d̃i , i, j = 1, 2 ,

[d1, D̃1] = 2d̃2 , [d2, D̃1] = 0 ,

[d̃1, D1] = 0 , [d̃2, D1] = −2I12I21d2 ,

[d̃1, D̃1] = 2I12I21d2 , [d̃2, D̃1] = 0 ,

[d1, d̃1] = −X12D̃2 , [d1, d̃2] = X12D2 .

(3.18)

Some other commutators are trivially obtained by exchanging 1 and 2 and by the parity transformation
(3.24). The operators

√
X12, I12 and I21 commute with all the differential operators. Acting on the

whole correlator, we have

Si
∂

∂Si
→ li , S̄i

∂

∂S̄i
→ l̄i , XM

i

∂

∂XM
i

→ −κi , (3.19)

and hence the above differential operators, together with X12 and I12I21, form a closed algebra when
acting on three-point correlators. Useful information on conformal blocks can already be obtained by
considering the rather trivial operator

√
X12. For any three point function tensor structure, we have

〈O1O2O3〉s = (
√
X12)a〈O

a
2
1 O

a
2
2 O3〉s , (3.20)

where a is an integer and the superscript indicates a shift in dimension. If ∆(O) = ∆O, then ∆(Oa) =
∆O + a. Using eqs.(3.20) and (3.10), we get for any 4D CPW and pair of integers a and b:

W
(p,q)
O1O2O3O4,Or = xa12x

b
34W

(p,q)

Oa1Oa2Ob3Ob4,Or
. (3.21)

In terms of the conformal blocks defined in eq.(3.7) one has

G(p,q)
Or,n(u, v) = G(p,q)a,a,b,b

Or,n (u, v) , (3.22)

where the superscripts indicate the shifts in dimension in the four external operators. Equation (3.22)

significantly constrains the dependence of G(p,q)
Or,n on the external operator dimensions ∆i. The conformal

blocks can be periodic functions of ∆1, ∆2 and ∆3, ∆4, but can arbitrarily depend on ∆1−∆2, ∆3−∆4.
This is in agreement with the known form of scalar conformal blocks. Since we are mostly concerned in
deconstructing tensor structures, we will neglect in the following the operator

√
X12.

The set of differential operators is redundant, namely there is generally more than 1 combination of
products of operators that lead from one three-point function structure to another one. In particular,
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without any loss of generality we can forget about the operators (3.17), since their action is equivalent
to commutators of di and Dj .

On the other hand, it is not difficult to argue that the above operators do not allow to connect any
three-point function structure to any other one. For instance, it is straightforward to verify that there is
no way to connect a three-point correlator with one (l, l̄) field to another correlator with a (l± 1, l̄∓ 1)
field, with the other fields left unchanged. This is not an academic observation because, as we will see,
connections of this kind will turn out to be useful in order to simplify the structure of the CPW seeds.
The problem is solved by adding to the above list of operators the following second-order operator with
∆l = 0:

∇12 ≡
(X1X2)ab
X12

∂2

∂S
a
1∂S2,b

(3.23)

and its conjugate ∇21. The above operators transform as follows under 4D parity:

Di → Di , D̃i → D̃i , di ↔ −di , d̃i ↔ d̃i , (i = 1, 2) , ∇12 ↔ −∇21 . (3.24)

It is clear that all the operators above are invariant under the monodromy X12 → e4πiX12. The addition
of ∇12 and ∇21 makes the operator basis even more redundant. It is clear that the paths connecting
two different three-point correlators that make use of the least number of these operators are preferred,
in particular those that also avoid (if possible) the action of the second order operators ∇12 and ∇21.
We will not attempt here to explicitly construct a minimal differential basis connecting two arbitrary
three-point correlators. Such an analysis is in general complicated and perhaps not really necessary,
since in most applications we are interested in CPW involving external fields with spin up to two. Given
their particular relevance, we will instead focus in the next section on three-point correlators of two
traceless symmetric operators with an arbitrary field O(l,l̄).

3.3 Differential Basis for Traceless Symmetric Operators

In this section we show how three-point correlators of two traceless symmetric operators with an arbitrary
field O(l3,l̄3) can be reduced to seed correlators, with one tensor structure only. We first consider the
case l3 = l̄3, and then go on with l3 6= l̄3.

3.3.1 Traceless Symmetric Exchanged Operators

The reduction of traceless symmetric correlators to lower spin traceless symmetric correlators has been
successfully addressed in ref.[17]. In this subsection we essentially reformulate the results of ref.[17] in
our formalism. This will turn out to be crucial to address the more complicated case of antisymmetric
operator exchange. Whenever possible, we will use a notation as close as possible to that of ref.[17], in
order to make any comparison more transparent to the reader.

Three-point correlators of traceless symmetric operators can be expressed only in terms of the SU(2, 2)
invariants Iij and Ĵ ijk defined in eqs.(2.49)-(2.50), since ∆l defined in eq.(2.57) vanishes. It is useful to
consider separately parity even and parity odd tensor structures. Given the action of parity, eq.(2.97),
the most general parity even tensor structure is given by products of the following invariants:

(I21I13I32 − I12I31I23), (I12I21), (I13I31), (I23I32), Ĵ1
23, Ĵ

2
31, Ĵ

3
12 . (3.25)

These structures are not all independent, because of the identity (2.73).
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While in chapter 2, eq.(2.73) has been used to define an independent basis where no tensor structure
contains the three SU(2, 2) invariants Ĵ1

23, Ĵ
2
31, Ĵ

3
12 at the same time. A more symmetric and convenient

basis is obtained by using eq.(2.73) to get rid of the first factor in eq.(3.25).

We define the most general parity even tensor structure of traceless symmetric tensor correlator as ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

 ≡ K3(I12I21)m12(I13I31)m13(I23I32)m23(Ĵ1
23)j1(Ĵ2

31)j2(Ĵ3
12)j3 , (3.26)

where li and ∆i are the spins and scaling dimensions of the fields, the kinematical factor K3 is defined
in eq.(2.42) and

j1 = l1 −m12 −m13 ≥ 0 ,
j2 = l2 −m12 −m23 ≥ 0 ,
j3 = l3 −m13 −m23 ≥ 0 .

(3.27)

Notice the similarity of eq.(3.26) with eq.(3.15) of ref.[17], with (IijIji)→ Hij and Ĵ ijk → Vi,jk. The
structures (3.26) can be related to a seed scalar-scalar-tensor correlator. Schematically ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

 = D

∆′1 ∆′2 ∆3

0 0 l3
0 0 0

 , (3.28)

where D is a sum of products of the operators introduced in section 3.2. Since symmetric traceless
correlators have ∆l = 0, it is natural to expect that only the operators with ∆l = 0 defined in eqs.(3.13)
and (3.14) will enter in D.

Starting from the seed, we now show how one can iteratively construct all tensor structures by means of
recursion relations. The analysis will be very similar to the one presented in ref.[17] in vector notation.
We first construct tensor structures with m13 = m32 = 0 for any l1 and l2 by iteratively using the
relation (analogue of eq.(3.27) in ref.[17], with D1 → D12 and D̃1 → D11)

D1

 ∆1 ∆2 + 1 ∆3

l1 − 1 l2 l3
0 0 m12

+ D̃1

∆1 + 1 ∆2 ∆3

l1 − 1 l2 l3
0 0 m12

 =

(2 + 2m12 − l1 − l2 −∆3)

∆1 ∆2 ∆3

l1 l2 l3
0 0 m12

− 8(l2 −m12)

∆1 ∆2 ∆3

l1 l2 l3
0 0 m12 + 1

 .
(3.29)

The analogous equation with D2 and D̃2 is obtained from eq.(3.29) by exchanging 1↔ 2 and changing
sign of the coefficients in the right hand side of the equation. The sign change arises from the fact that
Ĵ1

23 ↔ −Ĵ2
31 and Ĵ3

12 → −Ĵ3
12 under 1↔ 2. Hence structures that differ by one spin get a sign change.

This observation applies also to eq.(3.31) below. Structures with m12 > 0 are deduced using (analogue
of eq(3.28) in ref.[17]) ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

 = (I12I21)

∆1 + 1 ∆2 + 1 ∆3

l1 − 1 l2 − 1 l3
m23 m13 m12 − 1

 . (3.30)
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Structures with non-vanishing m13 (m23) are obtained by acting with the operator D1 (D2):

4(l3 −m13 −m23)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 + 1 m12

 = D1

 ∆1 ∆2 + 1 ∆3

l1 − 1 l2 l3
m23 m13 m12


+4(l2 −m12 −m23)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12 + 1

−
1
2(2 + 2m12 − 2m13 + ∆2 −∆1 −∆3 − l1 − l2 + l3)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

 ,
(3.31)

and is the analogue of eq (3.29) in ref.[17]. In this way all parity even tensor structures can be constructed
starting from the seed correlator.

Let us now turn to parity odd structures. The most general parity odd structure is given by ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12


odd

≡ (I12I23I31 + I21I32I13)

∆1 + 1 ∆2 + 1 ∆3 + 1
l1 − 1 l2 − 1 l3 − 1
m23 m13 m12

 . (3.32)

Since the parity odd combination (I12I23I31 + I21I32I13) commutes with D1,2 and D̃1,2, the recursion
relations found for parity even structures straightforwardly apply to the parity odd ones. One could
define a “parity odd seed”

16l3(∆3 − 1)

∆1 ∆2 ∆3

1 1 l3
0 0 0


odd

= (d2d̄1 − d̄2d1)D1D2

∆1 + 2 ∆2 + 2 ∆3

0 0 l3
0 0 0

 (3.33)

and from here construct all the parity odd structures. Notice that the parity odd seed cannot be obtained
by applying only combinations of D1,2, D̃1,2 and (I12I21), because these operators are all invariant under
parity, see eq.(3.24). This explains the appearance of the operators di and d̄i in eq.(3.33). The counting
of parity even and odd structures manifestly agrees with that performed in ref.[16].

Once proved that all tensor structures can be reached by acting with operators on the seed correlator,
one might define a differential basis which is essentially identical to that defined in eq.(3.31) of ref. [17]:{

∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

}
0

= (I12I21)m12Dm13
1 Dm23

2 D̃j1
1 D̃

j2
2

[
∆′1 ∆′2 ∆3

0 0 l3
0 0 0

]
, (3.34)

where ∆′1 = ∆1 + l1 + m23 −m13, ∆′2 = ∆2 + l2 + m13 −m23. The recursion relations found above
have shown that the differential basis (3.34) is complete: all parity even tensor structures can be written
as linear combinations of eq.(3.34). The dimensionality of the differential basis matches the one of
the ordinary basis for any spin l1, l2 and l3. Since both bases are complete, the transformation matrix
relating them is ensured to have maximal rank. Its determinant, however, is a function of the scaling
dimensions ∆i and the spins li of the fields and one should check that it does not vanish for some
specific values of ∆i and li. We have explicitly checked up to l1 = l2 = 2 that for l3 ≥ l1 + l2 the
rank of the transformation matrix depends only on ∆3 and l3 and never vanishes, for any value of ∆3

allowed by the unitarity bound [42]. On the other hand, a problem can arise when l3 < l1 + l2, because
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in this case a dependence on the values of ∆1 and ∆2 arises and the determinant vanishes for specific
values (depending on the li’s) of ∆1 −∆2 and ∆3, even when they are within the unitarity bounds.4

This issue is easily solved by replacing D̃1,2 → (D̃1,2 +D1,2) in eq.(3.34), as suggested by the recursion
relation (3.29), and by defining an improved differential basis{

∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

}
= (I12I21)m12Dm13

1 Dm23
2

j1∑
n1=0

( j1
n1

)
Dn1

1 D̃j1−n1
1

j2∑
n2=0

( j2
n2

)
Dn2

2 D̃j2−n2
2

[
∆′1 ∆′2 ∆3

0 0 l3
0 0 0

]
(3.35)

where ∆′1 = ∆1 + l1 + m23 −m13 + n2 − n1, ∆′2 = ∆2 + l2 + m13 −m23 + n1 − n2. A similar basis
for parity odd structures is given by{

∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

}
odd

= (d2d̄1 − d̄2d1)D1D2

{
∆1 + 2 ∆2 + 2 ∆3

l1 − 1 l2 − 1 l3
m23 m13 m12

}
. (3.36)

In practical computations it is more convenient to use the differential basis rather than the recursion
relations and, if necessary, use the transformation matrix to rotate the results back to the ordinary basis.
We have explicitly constructed the improved differential basis (3.35) and (3.36) up to l1 = l2 = 2. The
rank of the transformation matrix depends on ∆3 and l3 for any value of l3, and never vanishes, for any
value of ∆3 allowed by the unitary bound.5

3.3.2 Antisymmetric Exchanged Operators

In this subsection we consider correlators with two traceless symmetric and one antisymmetric operator
O(l3,l̄3), with l3 − l̄3 = 2δ, with δ an integer. A correlator of this form has ∆l = 2δ and according to
the analysis of section 2.5, any of its tensor structures can be expressed in a form containing an overall

number δ of K̂jk
i ’s if δ > 0, or K̂

jk

i ’s if δ < 0. We consider in the following δ > 0, the case δ < 0
being easily deduced from δ > 0 by means of a parity transformation. The analysis will proceed along
the same lines of subsection 3.3.1. We first show a convenient parametrization for the tensor structures
of the correlator, then we prove by deriving recursion relations how all tensor structures can be reached
starting from a single seed, to be determined, and finally present a differential basis.

We first consider the situation where l3 ≥ l1 + l2 − δ and then the slightly more involved case with
unconstrained l3.

Recursion Relations for l3 ≥ l1 + l2 − δ

It is convenient to look for a parametrization of the tensor structures which is as close as possible to
the one (3.26) valid for δ = 0. When l3 ≥ l1 + l2 − δ, any tensor structure of the correlator contains
enough Ĵ3

12’s invariants to remove all possible K̂12
3 ’s invariants using the identity

Ĵ3
12K̂

12
3 = I31K̂23

1 − I32K̂31
2 . (3.37)

4A similar problem seems also to occur for the basis (3.31) of ref. [17] in vector notation.
5The transformation matrix is actually not of maximal rank when l3 = 0 and ∆3 = 1. However, this case is quite

trivial. The exchanged scalar is free and hence the CFT is the direct sum of at least two CFTs, the interacting one and
the free theory associated to this scalar. So, either the two external l1 and l2 tensors are part of the free CFT, in which
case the whole correlator is determined, or the OPE coefficients entering the correlation function must vanish.
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There are four possible combinations in which the remaining K̂23
1 and K̂31

2 invariants can enter in the
correlator: K̂23

1 I23, K̂23
1 I21I13 and K̂31

2 I13, K̂31
2 I12I23. These structures are not all independent. In

addition to eq.(3.37), using the two identities

I12K̂31
2 = Ĵ1

23K̂
23
1 + I13K̂12

3 ,

I21K̂23
1 = −Ĵ2

31K̂
31
2 + I23K̂12

3 ,
(3.38)

we can remove half of them and keep only, say, K̂23
1 I23 and K̂31

2 I13. The most general tensor structure
can be written in terms of the parity even structures of traceless symmetric correlators as[

∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

]
p

≡
(K̂23

1 I23

X23

)δ−p(K̂31
2 I13

X13

)p [ ∆1 ∆2 ∆3

l1 − p l2 − δ + p l3
m23 m13 m̃12

]
, p = 0, . . . , δ , (3.39)

where the subscript p in the lhs differentiate this tensor structure from the traceless-symmetric case6.
On the rhs we have parity even structures (3.26) of traceless symmetric correlators, where

j1 = l1 − p− m̃12 −m13 ≥ 0 ,

j2 = l2 − δ + p− m̃12 −m23 ≥ 0 ,

j3 = l3 −m13 −m23 ≥ 0

m̃12 =

{
m12 if p = 0 or p = δ
0 otherwise

. (3.40)

The condition in m12 derives from the fact that, using eqs.(3.38), one can set m12 to zero in the tensor
structures with p 6= 0, δ, see below. Attention should be paid to the subscript p. Structures with
no subscript refer to purely traceless symmetric correlators, while those with the subscript p refer to
three-point functions with two traceless symmetric and one antisymmetric field. All tensor structures are
classified in terms of δ + 1 classes, parametrized by the index p in eq.(3.39). The parity odd structures
of traceless symmetric correlators do not enter, since they can be reduced in the form (3.39) by means
of the identities (3.38). The class p exists only when l1 ≥ p and l2 ≥ δ − p. If l1 + l2 < δ, the entire
correlator vanishes.

Contrary to the symmetric traceless exchange, there is no obvious choice of seed that stands out. The
allowed correlator with the lowest possible spins in each class, l1 = p, l2 = δ − p, mij = 0, can all
be seen as possible seeds with a unique tensor structure. Let us see how all the structures (3.39) can
be iteratively constructed using the operators defined in section 3.2 in terms of the δ + 1 seeds. It is
convenient to first construct a redundant basis where m12 6= 0 for any p and then impose the relation
that leads to the independent basis (3.39). The procedure is similar to that followed for the traceless
symmetric exchange. We first construct all the tensor structures with m13 = m32 = 0 for any spin l1
and l2, and any class p, using the following relations:

D1

 ∆1 ∆2 + 1 ∆3

l1 − 1 l2 l3
0 0 m12


p

+ D̃1

∆1 + 1 ∆2 ∆3

l1 − 1 l2 l3
0 0 m12


p

= (δ − p)

∆1 ∆2 ∆3

l1 l2 l3
0 0 m12


p+1

(3.41)

−8(l2 − δ + p−m12)

∆1 ∆2 ∆3

l1 l2 l3
0 0 m12 + 1


p

+ (2m12 − l1 − l2 −∆3 + 2 + δ − p)

∆1 ∆2 ∆3

l1 l2 l3
0 0 m12


p

,

together with the relation[
∆1 − 1 ∆2 − 1 ∆3

l1 + 1 l2 + 1 l3
0 0 m12 + 1

]
p

= (I12I21)

[
∆1 ∆2 ∆3

l1 l2 l3
0 0 m12

]
p

. (3.42)

6The tensor structure defined here clearly depends on the value of δ, but we drop this dependence from the notation
we use hereafter.
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Notice that the operators D1,2 and D̃1,2 relate nearest neighbour classes and the iteration eventually

involves all classes at the same time. The action of the D2 and D̃2 derivatives can be obtained by
replacing 1 ↔ 2, p ↔ (δ − p) in the coefficients multiplying the structures and p + 1 → p − 1 in the
subscripts, and by changing sign on one side of the equation. Structures with non-vanishing m13 and
m23 are obtained using

4(l3 −m13 −m23 + δ − p)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 + 1 m12


p

− 4(δ − p)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 + 1 m13 m12


p+1

=

4(l2 − δ + p−m23 −m12)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12 + 1


p

+D1

 ∆1 ∆2 + 1 ∆3

l1 − 1 l2 l3
m23 m13 m12


p

(3.43)

−1

2
(2m12 − 2m13 + ∆2 −∆1 −∆3 − l1 − l2 + l3 + 2δ − 2p+ 2)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12


p

together with the corresponding relation with 1 ↔ 2 and p → p + 1. All the structures (3.39) are
hence derivable from δ + 1 seeds by acting with the operators D1,2, D̃1,2 and (I12I21). The seeds, on
the other hand, are all related by means of the following relation:

(δ − p)2

 ∆1 ∆2 ∆3

p+ 1 δ − p− 1 l3
0 0 0


p+1

= R

∆1 + 1 ∆2 + 1 ∆3

p δ − p l3
0 0 0


p

, (3.44)

where

R ≡ −1

2
d̄2d2 . (3.45)

We conclude that, starting from the single seed correlator with p = 0,[
∆1 ∆2 ∆3

0 δ l3
0 0 0

]
0

≡
(K̂23

1 I23

X23

)δ [∆1 ∆2 ∆3

0 0 l3
0 0 0

]
, (3.46)

namely the three-point function of a scalar, a spin δ traceless symmetric operator and the antisymmetric
operator with spin (l3 + 2δ, l3), we can obtain all tensor structures of higher spin correlators.

Let us now see how the constraint on m12 in eq.(3.40) arises. When p 6= 0, δ, namely when both K1

and K2 structures appear at the same time, combining eqs.(3.38), the following relation is shown to
hold:  ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12+1


p

= −1

4

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12


p

−

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13+1 m12


p

−

 ∆1 ∆2 ∆3

l1 l2 l3
m23+1 m13 m12


p

−8

 ∆1 ∆2 ∆3

l1 l2 l3
m23+1 m13+1 m12


p

+

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13+1 m12


p−1

+ 4

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13+2 m12


p−1

+

 ∆1 ∆2 ∆3

l1 l2 l3
m23+1 m13 m12


p+1

+ 4

 ∆1 ∆2 ∆3

l1 l2 l3
m23+2 m13 m12


p+1

. (3.47)

Using it iteratively, we can reduce all structures with p 6= 0, δ to those with m12 = 0 and with p = 0, δ,
any m12.7 This proves the validity of eq.(3.39). As a further check, we have verified that the number
of tensor structures obtained from eq.(3.39) agrees with those found from eq.(3.38) of ref.[29].

7One has to recall the range of the parameters (3.40), otherwise it might seem that non-existant structures can be
obtained from eq.(3.47).
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Recursion Relations for general l3

The tensor structures of correlators with l3 < l1 + l2 − δ cannot all be reduced in the form (3.39),

because we are no longer ensured to have enough Ĵ3
12 invariants to remove all the K̂12

3 ’s by means of
eq.(3.37). In this case the most general tensor structure reads ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12


p,q

≡ η
(K̂23

1 I23

X23

)δ−p(K̂31
2 I13

X13

)q( K̂12
3 I13I23√

X12X13X23

)p−q  ∆1 ∆2 ∆3

l1 − p l2 − δ + q l3
m23 m13 m̃12

 , (3.48)

with p = 0, . . . , δ, q = 0, . . . , δ, p− q ≥ 0 and

j1 = l1 − p− m̃12 −m13 ≥ 0 ,

j2 = l2 − δ + q − m̃12 −m23 ≥ 0 ,

j3 = l3 −m13 −m23 ≥ 0 ,

m̃12 =

{
m12 if q = 0 or p = δ
0 otherwise

η =

{
0 if j3 > 0 and p 6= q
1 otherwise

.

(3.49)

The parameter η in eq.(3.49) is necessary because the tensor structures involving K̂12
3 (i.e. those with

p 6= q) are independent only when j3 = 0, namely when the traceless symmetric structure does not

contain any Ĵ3
12 invariant. All the tensor structures (3.48) can be reached starting from the single seed

with p = 0, q = 0, l1 = 0, l2 = δ and mij = 0. The analysis follows quite closely the one made for
l3 ≥ l1 + l2 − δ, although it is slightly more involved. As before, it is convenient to first construct a
redundant basis where m12 6= 0 for any p, q and we neglect the factor η above, and impose only later the
relations that leads to the independent basis (3.48). We start from the structures with p = q, which are
the same as those in eq.(3.39): first construct the structures with m13 = m23 = 0 by applying iteratively

the operators D1,2 + D̃1,2, and then apply D1 and D2 to get the structures with non-vanishing m13 and
m23. Structures with p 6= q appear when acting with D1 and D2. We have:

D1

 ∆1 ∆2 + 1 ∆3

l1 − 1 l2 l3
m23 m13 m12


p,p

= 2(δ − p)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12


p+1,p

(3.50)

−4(l2 + p− δ −m12 −m23)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12 + 1


p,p

+ 4(l3 −m13 −m23)

 ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 + 1 m12


p,p

+
1

2

(
2m12 − 2m13 + ∆2 −∆1 −∆3 − l1 − l2 + l3 + 2(δ − p+ 1)

) ∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12


p,p

.

The action of D2 is obtained by exchanging 1 ↔ 2 and δ − p ↔ q in the coefficients multiplying the
structures and replacing the subscript (p + 1, p) with (p, p − 1). For m13 + m23 < l3 the first term in
eq.(3.50) is redundant and can be expressed in terms of the known structures with p = q. An irreducible
structure is produced only when we reach the maximum allowed value m13 + m23 = l3, in which case
the third term in eq.(3.50) vanishes and we can use the equation to get the irreducible structures with
p 6= q. Summarizing, all tensor structures can be obtained starting from a single seed upon the action
of the operators D1,2, (D1,2 + D̃1,2), I12I21 and R.
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Differential Basis

A differential basis that is well defined for any value of l1, l2, l3 and δ is{
∆1 ∆2 ∆3

l1 l2 l3
m23 m13 m12

}
p,q

= η (I12I21)m̃12Dm13+p−q
1 Dm23

2

j1∑
n1=0

( j1
n1

)
Dn1

1 D̃j1−n1
1

j2∑
n2=0

( j2
n2

)

Dn2
2 D̃j2−n2

2 Rq

[
∆′1 ∆′2 ∆3

0 δ l3
0 0 0

]
0

,

(3.51)

where ∆′1 = ∆1 + l1 +m23 −m13 + n2 − n1 − p+ q, ∆′2 = ∆2 + l2 +m13 −m23 + n1 − n2 + 2q − δ,
and all parameters are defined as in eq.(3.49). The recursion relations found above have shown that the
differential basis (3.51) is complete. One can also check that its dimensionality matches the one of the
ordinary basis for any l1, l2, l3 and δ. Like in the purely traceless symmetric case, the specific choice of
operators made in eq.(3.51) seems to be enough to ensure that the determinant of the transformation
matrix is non-vanishing regardless of the choice of ∆1 and ∆2. We have explicitly checked this result
up to l1 = l2 = 2, for any l3. The transformation matrix is always of maximal rank, except for the
case l3 = 0 and ∆3 = 2, which saturates the unitarity bound for δ = 1. Luckily enough, this case is
quite trivial, being associated to the exchange of a free (2, 0) self-dual tensor [48] (see footnote 5). The
specific ordering of the differential operators is a choice motivated by the form of the recursion relations,
as before, and different orderings can be trivially related by using the commutators defined in eq.(3.18).

3.4 Computation of Four-Point Functions

We have shown in section 3.1 how relations between three-point functions lead to relations between
CPW. The latter are parametrized by 4-point, rather than 3-point, function tensor structures, so in
order to make further progress it is important to classify four-point functions. It should be clear that
even when acting on scalar quantities, tensor structures belonging to the class of 4-point functions are
generated. For example D̃1U = −UJ1,24.

A general classification of 4-point tensor structure is very complicated in twistor language. The reason
is that while the formalism enable us to write all possible tensor structures, the problem lies with
determining a linearly independent bases. Third forth order relations between structures arise. Finding
all possible relations then working out their consequences is not very practical. An easier way to do
this is to work in a non-covariant method, by using conformal symmetry to fix (x1, x2, x3, x4) to special
values, on what is called conformal frame. In this frame the correlator has only to satisfy the remaining
symmetry requirements. This has been work out nicely in [40]. In this thesis however, we will work with
low spin 4-point functions that don’t require such classification.

3.4.1 Relation between “Seed” Conformal Partial Waves

Using the results of the last section, we can compute the CPW associated to the exchange of arbitrary
operators with external traceless symmetric fields, in terms of a set of seed CPW, schematically denoted

by W
(p,q)

Ol+2δ,l(l1, l2, l3, l4). We have

W
(p,q)

Ol+2δ,l(l1, l2, l3, l4) = D
(p)
(12)D

(q)
(34)WOl+2δ,l(0, δ, 0, δ) , (3.52)
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where D
(p)
12 schematically denotes the action of the differential operators reported in the last section,

and D
(q)
34 are the same operators for the fields at X3 and X4, obtained by replacing 1 → 3, 2 → 4

everywhere in eqs.(3.14)-(3.17) and (3.23). For simplicity we do not report the dependence of W on
U, V , and on the scaling dimensions of the external and exchanged operators.

The seed CPW are the simplest among the ones appearing in correlators of traceless symmetric tensors,
but they are not the simplest in general. These will be the CPW arising from the four-point functions
with the lowest number of tensor structures with a non-vanishing contribution of the field Ol+2δ,l in
some of the OPE channels. Such minimal four-point functions are8

〈O(0,0)(X1)O(2δ,0)(X2)O(0,0)(X3)O(0,2δ)(X4)〉 = K4

2δ∑
n=0

gn(U, V )In42(Î42
31 )2δ−n , (3.53)

with just
N seed

4 (δ) = 2δ + 1 (3.54)

tensor structures. In the s-channel (12-34) operators Ol+n,l, with −2δ ≤ n ≤ 2δ, are exchanged. We
denote by Wseed(δ) and W seed(δ) the single CPW associated to the exchange of the fields Ol+2δ,l and
Ol,l+2δ in the four-point function (3.53). They are parametrized in terms of 2δ+ 1 conformal blocks as

follows (G(0)
0 = G(0)

0 ):

Wseed(δ) = K4

2δ∑
n=0

G(δ)
n (U, V )In42(Î42

31 )2δ−n ,

W seed(δ) = K4

2δ∑
n=0

G
(δ)
n (U, V )In42(Î42

31 )2δ−n . (3.55)

In contrast, the number of tensor structures in 〈O(0,0)(X1)O(δ,δ)(X2)O(0,0)(X3)O(δ,δ)(X4)〉 grows
rapidly with δ. Denoting it by Ñ4(δ) we have, using eq.(6.6) of ref.[29]:

Ñ4(δ) =
1

3

(
2δ3 + 6δ2 + 7δ + 3

)
. (3.56)

It is important to stress that a significant simplification occurs in using seed CPW even when there
is no need to reduce their number, i.e. p = q = 1. For instance, consider the correlator of four
traceless symmetric spin 2 tensors. The CPW WOl+8,l(2, 2, 2, 2) is unique, yet it contains 1107 conformal
blocks (one for each tensor structure allowed in this correlator), to be contrasted to the 85 present in
WOl+8,l(0, 4, 0, 4) and the 9 in Wseed(4)! We need to relate 〈O(0,0)(X1)O(2δ,0)(X2)O(l+2δ,l)(X3)〉 and
〈O(0,0)(X1)O(δ,δ)(X2)O(l+2δ,l)(X3)〉 in order to be able to use the results of section 3.3 together with
Wseed(δ). As explained at the end of Section 3.2, there is no combination of first-order operators which
can do this job and one is forced to use the operator (3.23):

〈O(0,0)
∆1

(X1)O
(δ,δ)
∆2

(X2)O
(l, l+2δ)
∆ (X)〉1 =

( δ∏
n=1

cn

)
(d̄1∇12D̃1)δ〈O(0,0)

∆1+δ(X1)O
(2δ,0)
∆2

(X2)O
(l, l+2δ)
∆ (X)〉1 ,

(3.57)

8Instead of eq.(3.53) one could also use 4-point functions with two scalars and two O(0,2δ) fields or two scalars and two
O(2δ,0) fields. Both have the same number 2δ + 1 of tensor structures as the correlator (3.53).
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where9

c−1
n = 2(1− n+ 2δ)

(
2(n+ 1) + δ + l + ∆1 −∆2 + ∆

)
. (3.58)

Equation (3.57) implies the following relation between the two CPW:

WOl+2δ,l(0, δ, 0, δ) =
( δ∏
n=1

c12
n c

34
n

)(
∇43d3D̃3

)δ(
∇12d̄1D̃1

)δ
Wseed(δ) , (3.59)

where c12
n = cn in eq.(3.58), c34

n is obtained from cn by exchanging 1 → 3, 2 → 4 and the scaling
dimensions of the corresponding external operators are related as indicated in eq.(3.57).

Summarizing, the whole highly non-trivial problem of computing W
(p,q)

Ol+2δ,l(l1, l2, l3, l4) has been reduced

to the computation of the 2× (2δ + 1) conformal blocks G(δ)
n (U, V ) and G(δ)

n (U, V ) entering eq.(3.55).

Once they are known, one can use eqs.(3.59) and (3.52) to finally reconstruct W
(p,q)

Ol+2δ,l(l1, l2, l3, l4).

3.5 Example

In this section we would like to elucidate various aspects of our construction. In the subsection 3.5.1 we
give an example in which we deconstruct a correlation function of four fermions. We leave the domain
of traceless symmetric external operators to show the generality of our formalism. It might also have
some relevance in phenomenological applications beyond the Standard Model [7].

3.5.1 Four Fermions Correlator

Our goal here is to deconstruct the CPW in the s-channel associated to the four fermion correlator

〈ψ̄α̇(x1)ψβ(x2)χγ(x3)χ̄δ̇(x4)〉 . (3.60)

For simplicity, we take ψ̄ and χ̄ to be conjugate fields of ψ and χ, respectively, so that we have
only two different scaling dimensions, ∆ψ and ∆χ. Parity invariance is however not imposed in the
underlying CFT. The correlator (3.60) admits six different tensor structures. An independent basis of
tensor structures for the 6D uplift of eq. (3.60) can be found using the relation (2.83). A possible
choice is

〈Ψ(X1, S̄1) Ψ̄(X2, S2) X̄ (X3, S3)X (X4, S̄4)〉 =
1

X
∆ψ+

1
2

12 X
∆χ+

1
2

34

(
g1(U, V )I12I43 + (3.61)

g2(U, V )I42I13 + g3(U, V )I12J43,21(Î43
21 ) + g4(U, V )I42(Î13

24 ) + g5(U, V )I43(Î12
34 ) + g6(U, V )I13(Î42

31 )

)
.

For l ≥ 1, four CPW W
(p,q)

Ol,l
(p, q = 1, 2) are associated to the exchange of traceless symmetric fields,

and one for each antisymmetric field, WOl+2,l and WOl,l+2 . Let us start with W
(p,q)

Ol,l
. The traceless

symmetric CPW are obtained as usual by relating the three point function of two fermions and one Ol,l

9Notice that the scalings dimension ∆1 and ∆2 in eq.(3.58) do not exactly correspond in general to those of the external
operators, but should be identified with ∆′1 and ∆′2 in eq.(3.51). It might happen that the coefficient cn vanishes for some
values of ∆1 and ∆2. As we already pointed out, there is some redundancy that allows us to choose a different set of
operators. Whenever this coefficient vanishes, we can choose a different operator, e.g. D̃1 → D1.
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to that of two scalars and one Ol,l. This relation requires to use the operator (3.23). There are two
tensor structures for l ≥ 1:

〈Ψ(S̄1)Ψ̄(S2)Ol,l〉1 = KI12J l0,12 = I12〈Φ
1
2 Φ

1
2Ol,l〉1, (3.62)

〈Ψ(S̄1)Ψ̄(S2)Ol,l〉2 = KI10I02J
l−1
0,12 =

1

16l(∆− 1)
∇21

(
D̃2D̃1 + κI12

)
〈Φ

1
2 Φ

1
2Ol,l〉1,

where κ = 2
(
4∆− (∆ + l)2

)
, the superscript n in Φ indicates the shift in the scaling dimensions of the

field and the operator Ol,l is taken at X0. Plugging eq.(3.62) (and the analogous one for X and X̄ ) in
eq.(3.10) gives the relation between CPW. In order to simplify the equations, we report below the CPW
in the differential basis, the relation with the ordinary basis being easily determined from eq.(3.62):

W
(1,1)

Ol,l
=I12I12I43W

1
2
, 1
2
, 1
2
, 1
2

seed (0) ,

W
(1,2)

Ol,l
=I12∇34D̃4D̃3W

1
2
, 1
2
, 1
2
, 1
2

seed (0) ,

W
(2,1)

Ol,l
=I43∇21D̃2D̃1W

1
2
, 1
2
, 1
2
, 1
2

seed (0) ,

W
(2,2)

Ol,l
=∇21D̃2D̃1∇34D̃4D̃3W

1
2
, 1
2
, 1
2
, 1
2

seed (0) ,

(3.63)

where D̃3 and D̃4 are obtained from D̃1 and D̃2 in eq.(3.14) by replacing 1→ 3 and 2→ 4 respectively.
The superscripts indicate again the shift in the scaling dimensions of the external operators. As in
ref.[17] the CPW associated to the exchange of traceless symmetric fields is entirely determined in
terms of the single known CPW of four scalars Wseed(0). For illustrative purposes, we report here the

explicit expressions of W
(1,2)

Ol,l
:

K−1
4 W

(1,2)

Ol,l
= 8I12I43

(
U
(
V − U − 2

)
∂U + U2

(
V − U

)
∂2
U +

(
V 2 − (2 + U)V + 1

)
∂V +

V
(
V 2 − (2 + U)V + 1

)
∂2
V + 2UV

(
V − U − 1

)
∂U∂V

)
G(0)

0

+ 4UI12J43,21

(
U∂U + U2∂2

U +
(
V − 1

)
∂V + V

(
V − 1

)
∂2
V + 2UV ∂U∂V

)
G(0)

0 , (3.64)

where G(0)
0 are the known scalar conformal blocks [8, 9]. It is worth noting that the relations (2.76)-

(2.83) have to be used to remove redundant structures and write the above result (3.64) in the chosen
basis (3.61).

The analysis for the antisymmetric CPW WOl+2,l and WOl,l+2 is simpler. The three point function of
two fermions and one Ol,l+2 field has a unique tensor structure, like the one of a scalar and a (2, 0)
field F . One has

〈Ψ(S̄1)Ψ̄(S2)Ol+2,l〉1 = KI10K1,20J
l
0,12 =

1

4
d̄2〈Φ

1
2F

1
2Ol+2,l〉1 ,

〈Ψ(S̄1)Ψ̄(S2)Ol,l+2〉1 = KI02K2,10J
l
0,12 =

1

2
d̄2〈Φ

1
2F

1
2Ol,l+2〉1

(3.65)

and similarly for the conjugate (0, 2) field F̄ . Using the above relation, modulo an irrelevant constant
factor, we get

WOl+2,l = d̄2d4W
1
2
, 1
2
, 1
2
, 1
2

seed (1) ,

WOl,l+2 = d̄2d4W
1
2
, 1
2
, 1
2
, 1
2

seed (1) ,
(3.66)
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where Wseed(1) and W seed(1) are defined in eq.(3.55). Explicitly, one gets

√
U

4
K−1

4 WOl+2,l =I12I43

(
G(1)

2 + (V − U − 1)G(1)
1 + 4UG(1)

0

)
− 4UI42I

13G(1)
1 + UI12J43,21G(1)

1

− UI42J13,24G(1)
2 + UI43J12,34G(1)

1 − 4UI13(Î42
31 )G(1)

0 .
(3.67)

The same applies for WOl,l+2 with G(1)
n → G(1)

n . The expression (3.67) shows clearly how the six

conformal blocks entering WOl,l+2 are completely determined in terms of the three G(1)
n .



4. Computing Seed Conformal Blocks

Now we are at the last step of obtaining general CBs in 4D CFT. In the last chapter 3, we have seen how
to relate, by means of differential operators, mixed tensor CBs appearing in an arbitrary spinor/tensor
4-point correlator to a basis of minimal mixed tensor CBs. These “seed” blocks arise from 4-point
functions involving two scalars and two tensor fields in the (0, p) and (p, 0) representations of the
Lorentz group, with p an arbitrary integer. Such 4-point functions are the simplest ones (i.e. with the
least number of tensor structures) where (`+ p, `) or (`, `+ p) mixed symmetry (bosonic or fermionic)
tensors can be exchanged in some OPE limit, for any `.

The aim of this chapter is to compute the those “seed” CBs. We set out to solve the Casimir system
of differential equations (p + 1 coupled equations), but we first use the shadow formalism to get an
educated ansatz. Using this ansatz, we manage to reduce the Casimir second-order differential equations
to a system of algebraic equations and get the blocks in a closed analytic form.

We start in section 4.1 where we summarize the results of the last chapter, generalizing to the case where
p can be odd as well as even integer. In section 4.2 and derive the system of p + 1 Casimir equations

satisfied by the CBs G
(p)
e , for any p. Next, in section 4.3, we use the shadow formalism to deduce the

asymptotic behaviour of the CBs from which we write an ansatz for the CBs in section 4.4. Finally, we
insert the ansatz into the Casimir system of equations and solve it for any p and `, using generalizations
of the methods introduced in ref.[9] (and further refined in ref.[49]) to compute 6D symmetric CBs for
scalar correlators. Like scalar blocks in higher even dimensions, the mixed tensor CBs are found using
an ansatz given by a sum of hyper-geometric functions with unknown coefficients cem,n. In this way a
system of p + 1 linear coupled differential equations of second order in two variables is reduced to an
algebraic linear system for cem,n. The set of non-trivial coefficients cem,n, determined by solving the linear
system, admits a useful geometric interpretation. They span a two-dimensional lattice in the (m,n)
plane. For large p, the total number of coefficients cem,n grows like p3 and their explicit form becomes
more and more complicated as p increases. We point out that a similar geometric interpretation applies
also to the set of non-trivial coefficients xm,n entering the solution for the symmetric scalar blocks in
even number of dimensions.

4.1 Deconstructing Conformal Partial Waves

It has been shown in chapter 3 that the CPWs associated to an operator O(`,`+p) (and similarly for its

conjugate O(`+p,`)
) exchanged in the OPE channel (12)(34) of a 4-point function 〈O1O2O3O4〉, can

be obtained from a single CPW W seed
O(`,`+p) as follows:

W
(i,j)

O1O2O3O4,O(`,`+p) = Di12D
j
34W

seed
O(`,`+p) , (4.1)

where Di12 and Di34 are differential operators that depend on O1,2 and O3,4, respectively. For even
integer p = 2n, the seed CPWs are those associated to 4-point functions of two scalar fields with one
(2n, 0) and one (0, 2n) bosonic operators, while for odd integer p = 2n + 1, they consist of 4-point
functions of two scalar fields with one (2n+ 1, 0) and one (0, 2n+ 1) fermionic operators:

〈φ1(x1)F2,α1α2...α2n(x2)φ3(x3)F
β̇1β̇2...β̇2n

4 (x4)〉 , p = 2n , (4.2)

〈φ1(x1)ψ2,α1α2...α2n+1(x2)φ3(x3)ψ
β̇1β̇2...β̇2n+1

4 (x4)〉 , p = 2n+ 1 . (4.3)

45
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In the above correlators, in the OPE channel 〈(12)(34)〉 primary operators O(`,`+δ) and their conjugates

O(`+δ,`)
can be exchanged only with the values of δ indicated in eq. (3.4) and any `. There are

several 4-point functions in which the operators O(`,`+p) and O(`+p,`)
are exchanged and in which the

corresponding CPWs have a unique structure. Among these, the correlators (4.2) and (4.3) are the ones
with the minimum number of tensor structures and hence the simplest. This is understood by noticing

that for any value of δ (and not only for δ = p) the operators O(`,`+δ) and their conjugates O(`+δ,`)

appear in both the (12) and (34) OPE’s with one tensor structure only, since there is only one tensor
structure in the corresponding three-point functions:

〈φ(x1)Fα1...α2n(x2)Oβ̇1...β̇`+δ
α1...α` (x0)〉 , 〈Oβ̇1...β̇`

α1...α`+δ
(x0)φ(x3)F

β̇1...β̇2n(x4)〉 , (4.4)

〈φ(x1)ψα1...α2n+1(x2)Oβ̇1...β̇`+δ
α1...α` (x0)〉 , 〈Oβ̇1...β̇`

α1...α`+δ
(x0)φ(x3)ψ

β̇1...β̇2n+1
(x4)〉 . (4.5)

This implies then that the number of 4-point tensor structures appearing in eqs.(4.2) and (4.3) is the
minimum possible and equals to N4 = p+ 1.

Summarizing, the problem of computing CPWs and CBs associated to the exchange of mixed symmetry

operators O(`,`+p) and O(`+p,`)
in any 4-point function is reduced to the computation of the p+ 1 CBs

appearing in the decomposition of W seed
O(`,`+p) and W

seed
O(`+p,`) .

Despite this simplification, the above computation is still technically challenging. A further great sim-
plification occurs by using the 6D embedding formalism of chapter 2.

An independent basis for the p+ 1 tensor structures appearing in the 6D uplift of the correlators (4.2)
and (4.3) can be given as:

〈Φ1(X1)F
(p,0)
2 (X2, S2)Φ3(X3)F

(0,p)
4 (X4, S4)〉 = K4

p∑
n=0

gn(U, V )(I42)n(Î42
31 )p−n , (4.6)

where I42 , Î42
31 , K4, U and V are defined in section 2.3.

We denote the 6D seed CPW associated to the exchange of the fields O(`,`+p) and O
(`+p,`)

in the

4-point function (4.6) by W seed(p) and W
seed

(p), respectively. They are parametrized in terms of p+ 1
CBs as follows:

W seed(p) = K4

p∑
e=0

G(p)
e (U, V )(I42)e(Î42

31 )p−e,

W
seed

(p) = K4

p∑
e=0

G
(p)
e (U, V )(I42)e(Î42

31 )p−e.

(4.7)

For simplicity, we have dropped in eq.(4.7) the dependence of G
(p)
e and G

(p)
e on ∆ and `. The CBs

depend also on the external operator dimensions, more precisely on a and b, defined as

a ≡ τ2 − τ1

2
=

∆2 −∆1

2
+
p

4
, b ≡ τ3 − τ4

2
=

∆3 −∆4

2
− p

4
. (4.8)

For simplicity of notation, we no longer distinguish between even and odd values of p, since we can

consider both cases simultaneously. It is then understood that in the corrrelator (4.6) F
(p,0)
2 and F

(0,p)
4

are 6D uplifts of 4D fermion fields for p odd.
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It is possible to get W seed(p) from W
seed

(p), or vice versa, using the results of chapter 3 and a parity
transformation P. We have

W
seed

(p) = P WΦ1F 2Φ3F4,O(`,`+p) , (4.9)

where

WΦ1F 2Φ3F4,O(`,`+p) =
1

22p (p!)2

( p∏
n=1

cn

)
(∇12d̄1D̃1)p(∇43d3D̃3)pW seed(p)

∣∣∣
a→a− p

2
, b→b+ p

2

(4.10)

is the CPW associated to the parity dual 4-point function 〈Φ1F
(0,p)
2 Φ3F

(p,0)
4 〉, and

(cn)−1 = (4 + 3p− 2a− κ− 2n)(4 + 3p+ 2b− κ− 2n) , κ = ∆ + `+
p

2
. (4.11)

In fact, we will not use eq.(4.9) to compute W
seed

(p), because we will find an easier way to directly

compute both W seed(p) and W
seed

(p).

Instead of eq.(4.6), we could have considered the alternative 4-point function

〈Φ1(X1)F
(p,0)
2 (X2)F

(0,p)
3 (X3)Φ4(X4)〉 (4.12)

to calculate an analogue seed CPW W̃ seed(p). Since eq.(4.12) is equal to eq.(4.6) under the permutation

3↔ 4, the CBs appearing in the decomposition of W seed(p) and W̃ seed(p) are related as follows:

G̃(p)
e (U, V ; a, b) = V aG(p)

e

(U
V
,

1

V
; a,−b

)
, e = 0, . . . , p . (4.13)

The 4D CPWs W seed
O(`,`+p) and W

seed
O(`+p,`) are obtained by projecting to 4D their 6D counterparts W seed(p)

and W
seed

(p). There is no need to explicitly perform such projection, because the 4D CBs are directly
identified with their 6D counterparts. One has simply

G(p)
e (U, V ) = G(p)

e (u, v) , G
(p)
e (U, V ) = G

(p)
e (u, v) , (4.14)

where G
(p)
e (u, v) and G

(p)
e (u, v) are the 4D CBs entering the r.h.s. of eq.(3.7) when expanding the 4D

CPWs W seed
O(`,`+p) and W

seed
O(`+p,`) .

4.2 The System of Casimir Equations

In this section we derive the system of second order Casimir equations for the seed conformal blocks
defined in eq. (4.7). Before addressing the more complicated case of interest, let us recall how the
Casimir equation for scalar correlators is derived. One starts by considering the 4-point function

〈[Ĉ, φ1(x1)φ2(x2)]φ3(x3)φ4(x4)〉 , (4.15)

where Ĉ is the quadratic Casimir operator.1 Recasting the generators of the 4D conformal group in a
6D form as L̂MN , with M,N 6D indices, we have

Ĉ =
1

2
L̂MN L̂

MN . (4.16)

1CBs satisfy also higher order equations obtained by means of higher Casimir invariants. We will not consider them
here, since the quadratic Casimir will be enough for us to find the CB’s.
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The Casimir equation is derived by expressing eq.(4.15) in two different ways. On one hand, we can
replace in eq.(4.16) the operator L̂MN with its explicit action in terms of differential operators acting on
the scalar fields inserted at the points x1 and x2: [L̂MN , φ(x)] = LMN (x, ∂)φ(x). On the other hand,
we might consider the (12) OPE. Scalar operators can only exchange symmetric traceless operators, so
p = 0 in this case, and one has

φ1(x1)φ(x2) =
∑
O(`,`)

λφ1φ2OT µ1...µ`O(`,`)
µ1...µ`

(x2) + descendants , (4.17)

where T is a tensor structure factor whose explicit form will not be needed. In the latter view, we end
up having the commutator of Ĉ with O(`,`) which gives the Casimir eigenvalue

[Ĉ,O(`,`)(x)] = E0
`O(`,`)(x) (4.18)

where
Ep` = ∆ (∆− 4) + `2 + (2 + p)(`+

p

2
) (4.19)

is the value associated to an operator in the (`+ p, `) or (`, `+ p) Lorentz representations. Using then
eq.(3.3) one derives a differential equation for each CPW, for any fixed ∆ and `.

The explicit form of the second order differential operator acting on the CPW or directly on the CB is
best derived in the 4 + 2-dimensional embedding space. The CPW of scalar correlators is parametrized

by a single conformal block G
(0)
0 (z, z̄). When acting on scalar operators at x1 and x2, the Lorentz

generator can be written as LMN = L1,MN + L2,MN , where

LiMN = i
(
XiM

∂

∂XN
i

−XiN
∂

∂XM
i

)
. (4.20)

Plugging eq.(4.20) in eq.(4.16), one finds after a bit of algebra the Casimir equation [9]

∆
(a,b;0)
2 G

(0)
0 (z, z̄) =

1

2
E0
`G

(0)
0 (z, z̄) , (4.21)

where a and b are defined in eq.(4.8), u = zz̄ and v = (1 − z)(1 − z̄). The second-order differential
operator ∆ is defined as

∆(a,b;c)
ε = D(a,b;c)

z +D
(a,b;c)
z̄ + ε

zz̄

z − z̄

(
(1− z)∂z − (1− z̄)∂z̄

)
, (4.22)

in terms of the second-order holomorphic operator

D(a,b;c)
z ≡ z2(1− z)∂2

z −
(
(a+ b+ 1)z2 − cz

)
∂z − abz . (4.23)

The above derivation can be generalized for CPWs entering 4-point correlators of tensor fields. As
we have seen in section 4.1, in the most general case the exchange of a given field O(`,¯̀) is not
parametrized by a single CPW, but by a set of CPWs W (i,j), whose number depends on the number of
tensor structures defining the three-point functions (12O) and (34O). In order to derive the second order
differential equation satisfied by W (i,j) one has to properly identify the OPE coefficients λi appearing in
the generalization of eq.(4.17) with those in eq.(3.3). This is not needed for the seed correlators (4.6)
since the CPW is unique, like in the scalar correlator. For each p, we have

CW seed(p) = Ep` W
seed(p), (4.24)
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where C is the explicit differential form of the Casimir operator to be determined and Ep` is as in

eq.(4.19). An identical equation is satisfied by W
seed

(p). Contrary to the scalar case, the single

differential equation (4.24) for W seed(p) turns into a system of equations for the p + 1 CBs G
(p)
e . Let

us see how this system of equations can be derived for any p.

The action of the Lorentz generators Li,MN on tensor fields should include, in addition to the orbital
contribution (4.20), the spin part. one can label the 6D spin representations by two integers (s, s̄)
which count the number of twistor indices in the 4 and 4̄ representations respectively (see Appendix
A for details and our conventions). The Lorentz generators acting on generic 6D fields in the (s, s̄)
representation are then given by

[LiMN ]b1.. bs; c1.. cs̄a1.. as̄; d1.. ds
= i(XiM∂iN −XiN∂iM )(δc1a1

.. δcs̄as̄)(δ
b1
d1
.. δbsds)

+ i

(
[ΣMN ]c1a1

δc2a2
..δcs̄as̄ + [ΣMN ]c2a2

δc1a1
..δcs̄as̄ + ..

)
δb1d1
..δbsds (4.25)

+ i

(
[ΣMN ]b1d1

δb2d2
..δbsds + [ΣMN ]b2d2

δb1d1
..δbsds + ..

)
δc1a1
..δcs̄as̄ .

We can get rid of all the twistor indices by defining the index-free Lorentz generators

LiMN = i(XiM∂iN −XiN∂iM ) + i(SiΣMN∂Si) + i(S̄iΣMN∂S̄i). (4.26)

Given any 6D tensor O(X,S, S̄) , we have

[L̂MN , Oi(Xi, Si, S̄i)] = LiMNOi(Xi, Si, S̄i) , (4.27)

where L̂MN satisfy the Lorentz algebra

[L̂MN , L̂RS ] = i
(
ηMSL̂NR + ηNRL̂MS − ηMRL̂NS − ηNSL̂MR

)
. (4.28)

The explicit form of the Casimir differential operator entering eq.(4.24) is obtained by plugging eq.(4.26)
in eq.(4.16). The single equation (4.24) for the CPW turns into a system of second-order coupled

differential equations for the p+1 conformal blocks G
(p)
e , e = 0, . . . , p, since the coefficients multiplying

the p+ 1 tensor structures in eq.(4.7) should vanish independently. Schematically

(C−Ep` )
(
K4

p∑
e=0

G(p)
e (U, V )(I42)e(Î42

31 )p−e
)

= K4

p∑
e=0

Cas(p)
e (G)(I42)e(Î42

31 )p−e = 0 ⇒ Cas(p)
e (G) = 0 ,

(4.29)

where Cas
(p)
e (G) are the p+1 Casimir equations, in general each one involving all conformal blocks G

(p)
e .

Determining the Casimir system Cas
(p)
e (G) is conceptually straightforward but technically involved. The

main complication arises from the spin part of the Lorentz generator (4.26) that generates products of
SU(2, 2) invariants not present in eq.(4.7). The new invariants are linearly dependent and must be
eliminated using relations among them. See section 2.4.2 for a list of such relations. This is a lengthy
step, that however can be automatized in a computer. When redundant structures have been eliminated,

one is finally able to read from eq.(4.29) the Casimir system Cas
(p)
e (G). Despite the complicacy of the

computation, the final system of p+ 1 equations can be written into the following remarkably compact
form:

Cas(p)
e (G) =

(
∆

(ae,be;ce)
2+p − 1

2

(
Ep` − ε

p
e

))
G(p)
e +Ape zz̄ L(ae−1)G

(p)
e−1 +Be L(be+1)G

(p)
e+1 = 0 , (4.30)
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where e = 0, . . . , p,

εpe ≡ 3
4 p

2 − (1 + 2e) p+ 2e (2 + e), Ape ≡ 2(p− e+ 1), Be ≡
e+ 1

2
, (4.31)

and the coefficients Ep` are given in eq.(4.19). In eq.(4.30) it is understood that G
(p)
−1 = G

(p)
p+1 = 0.

An identical system of equations is satisfied by the conjugate CBs G
(p)
e . Interestingly enough, only

two differential operators enter into the Casimir system: the second-order operator (4.22) that already
features p = 0, with coefficients ae, be and ce given by

ae ≡ a, be ≡ b+ (p− e), ce ≡ p− e , (4.32)

and the new linear operator L(µ) given by

L(µ) ≡ − 1

z − z̄

(
z(1− z)∂z − z̄(1− z̄)∂z̄

)
+ µ. (4.33)

Another remarkable property of the Casimir system (4.30) is that, for each given e and p, at most three
conformal blocks mix with each other in a sort of “nearest-neighbour interaction”: Ge mixes only with

Ge+1 and Ge−1. The Casimir equations at the “boundaries” Cas
(p)
0 and Cas

(p)
p involve just two blocks.

For p = 0, the second and third terms in eq.(4.30) vanish and the system trivially reduces to the single
equation (4.21).

Finding the solution of the system (4.30) is a complicated task, that we address in the next sections.

4.3 Shadow Formalism

Another method to obtain CBs in closed analytical form uses the so called shadow formalism. It was
first introduced by Ferrara, Gatto, Grillo, and Parisi [44, 45, 46, 47] and used in ref.[8] to get closed
form expressions for the scalar CBs. In this section we apply the shadow formalism, using the recent

formulation given in ref.[18], to get compact expressions for W seed(p) and W
seed

(p) in an integral form

for any p and `.2 Using these expressions, we compute the CBs G
(p)
e and G

(p)
e for ` = 0 and generic p.

We then provide a practical way to obtain G
(p)
e and G

(p)
e for any ` in a compact form. We finally use

this method to compute G
(p)
e and G

(p)
e for p = 1 and G

(p)
e for p = 2 explicitly.

Despite the power of the above technique, it is computationally challenging to go beyond the p = 2
case. Moreover, as we will see, we do not have any control on the final analytic form of CBs. In light of

this, we will provide the full analytic solution for G
(p)
e and G

(p)
e , for any p, only in section 4.4, where we

solve directly the set of Casimir differential equations by using an educated ansatz for the solution. The
results obtained in this section are however of essential help to argue the proper ansatz. They will also

allow us to get the correct physical asymptotic behaviour of G
(p)
e and G

(p)
e that will be used as boundary

conditions to solve the Casimir system of equations (4.30). Finally, the explicit computation of G
(p)
e

and G
(p)
e for p = 1 and G

(p)
e for p = 2 using the shadow formalism provides an important consistency

check for the validity of the full general solution (4.112) to be found in section 4.4.

2The shadow formalism given in an index-free 6D embedding twistor space has also been used in refs.[50, 51] to compute
CBs in supersymmetric CFTs.
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4.3.1 CPW in Shadow Formalism

We start by briefly reviewing the shadow formalism along the lines of ref.[18], where the reader can
find more details. The CPW associated to the exchange of a given operator Or with spin (`, ¯̀) in a
correlator of four operators On(Xn), n = 1, 2, 3, 4 (in embedding space and twistor language) is given
by

W
(i,j)

O(`,¯̀)
(Xi) = ν

∫
d4X0〈O1(X1)O2(X2)Or(X0, S, S̄)〉i

←→
Π `,¯̀〈Õr(X0, T, T̄ )O3(X3)O4(X4)〉j

∣∣∣
M
,

(4.34)
where ν is a normalization factor, the projector gluing two 3-point functions is given by

←→
Π `,¯̀ = (

←−
∂ SX0

−→
∂ T )`(

←−
∂ S̄X0

−→
∂ T̄ )

¯̀
, (4.35)

and Õr is the shadow operator

Õr(X,S, S̄) ≡
∫
d4Y

1

(−2X · Y )4−∆+`+¯̀Or̄(Y, Y S̄, Ȳ S) . (4.36)

In eq.(4.34) we have omitted for simplicity the dependence of On on their auxiliary twistors Sn, S̄n, and
the subscripts i and j in 〈O1O2Or〉 and 〈ÕrO3O4〉 denote the three point functions stripped of their
OPE coefficients:

〈O1O2O3〉 ≡
∑
i

λiO1O2O3
〈O1O2O3〉i . (4.37)

The integral in eq.(4.34) would actually determine the CPW associated to the operator Or(X,S, S̄)
plus its unwanted shadow counterpart, that corresponds to the exchange of a similar operator but
with the scaling dimension ∆ → 4 −∆. The two contributions can be distinguished by their different
behaviour under the monodromy transformation X12 → e4πiX12. In particular, the physical CPW
should transform with the phase e2iπ(∆−∆1−∆2), independently of the Lorentz quantum numbers of the
external and exchanged operators. This projection on the correct monodromy component explains the
subscript M in the bar at the end of eq.(4.34).

We use eq.(4.34) to get an integral form of W seed(p) and W
seed

(p) in eq.(4.7). The explicit expressions
of the needed 3-point functions are given by

〈Φ1(X1)F2(X2)O(`,`+p)(X0)〉 = K3(τ1, τ2, τ)Ip02J
`
0,12 ,

〈Φ1(X1)F2(X2)O
(`+p,`)

(X0)〉 = K3(τ1, τ2, τ)Kp
1,02J

`
0,12 , (4.38)

where

K3(τ1, τ2, τ3) = X
τ3−τ1−τ2

2
12 X

τ2−τ1−τ3
2

13 X
τ1−τ2−τ3

2
23 , (4.39)

is a kinematic factor and

Ki,jk ≡

√
Xjk

XijXik
SjXiSk , Ki,jk ≡

√
Xjk

XijXik
S̄jXiS̄k , Ji,jk ≡

1

Xjk
S̄iXjXkSi (4.40)

are SU(2, 2) invariants for three-point functions. The “shadow” 3-point function counterparts are given
by

〈Õ(`,`+p)(X0)Φ3(X3)F̄4(X4)〉 ∝ 〈O(`,`+p)(X0)Φ3(X3)F̄4(X4)〉
∣∣∣
∆→4−∆

= K3

∣∣∣
∆→4−∆

K
p
3,04J

`
0,34,

〈Õ
(`+p,`)

(X0)Φ3(X3)F̄4(X4)〉 ∝ 〈O(`+p,`)
(X0)Φ3(X3)F̄4(X4)〉

∣∣∣
∆→4−∆

= K3

∣∣∣
∆→4−∆

Ip40J
`
0,34.
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Using the above relations, after a bit of algebra, one can write

W seed(p) =
ν

X
a12+ `

2
12 X

a34+ `+p
2

34

∫
D4X0

N`(p)

X
a01+ `

2
01 X

a02+ `+p
2

02 X
a03+ `+p

2
03 X

a04+ `
2

04

∣∣∣
M=1

, (4.41)

W
seed

(p) =
ν

X
a12+ `+p

2
12 X

a34+ `
2

34

∫
D4X0

N `(p)

X
a01+ `+p

2
01 X

a02+ `
2

02 X
a03+ `

2
03 X

a04+ `+p
2

04

∣∣∣
M=1

, (4.42)

where

a01 =
∆

2
+
p

4
− a, a02 =

∆

2
− p

4
+ a, a12 =

∆1 + ∆2

2
− ∆

2
,

a03 =
4−∆

2
+
p

4
+ b, a04 =

4−∆

2
− p

4
− b, a34 =

∆3 + ∆4

2
− 4−∆

2
, (4.43)

and

N`(p) ≡ (S̄S2)p(S̄X2X̄1S)`
←→
Π `,`+p(S̄4X3T̄ )p(T̄X4X̄3T )`, (4.44)

N `(p) ≡ (S̄4S)p(S̄X3X̄4S)`
←→
Π `+p,`(S2X1T )p(T̄X1X̄2T )`. (4.45)

We will not need to determine the normalization factors ν and ν̄ in eqs.(4.41) and (4.42). Notice
that the correct behaviour of the seed CPWs under X12 → e4πiX12 is saturated by the factor X12

multiplying the integrals in eqs.(4.41) and (4.42). Hence the latter should be projected to their trivial
monodromy components M = 1, as indicated. Notice that eqs.(4.44) and (4.45) are related by a simple
transformation:

N `(p) = PN`(p)
∣∣∣
1↔3, 2↔4

, (4.46)

where P is the parity operator.

We can recast the expression (4.44) in a compact and convenient form using some manipulations. We
first define 3 variables

s ≡ X12X34

4∏
n=1

X0n, t ≡
1

2
√
s

(
X02X03X14 −X01X03X24 − (3↔ 4)

)
, u ≡ X02X03X34√

s
. (4.47)

Then we look for a relation expressing the generic N`(p) in terms of the known N `(0):

N`(0) = (−1)`(`!)4 s`/2C1
` (t) , (4.48)

where Cp` are Gegenbauer polynomials of rank p. Starting from eq.(4.44), after acting with the S and
T derivatives, one gets

N`(p) = (`!)2(
−→
∂ S̄X0

−→
∂ T̄ )`+p

(
(S̄S2)p(S̄4X3T̄ )p(S̄ΩT̄ )`

)
, (4.49)

where we have defined Ωab = (X2X̄1X0X̄3X4)ab . In order to relate N`(p) above to N`+p(0) in

eq.(4.48), we look for an operator D̃ satisfying

D̃p (
−→
∂ S̄X0

−→
∂ T̄ )`+p(S̄ΩT̄ )`+p = (

−→
∂ S̄X0

−→
∂ T̄ )`+p

(
(S̄S2)p(S̄4X3T̄ )p(S̄ΩT̄ )`

)
. (4.50)

We deduce that D̃ should be bilinear in S̄4 and S2 and should commute with (
−→
∂ S̄X0

−→
∂ T̄ ). In addition

to that, it should have the correct scaling in X’s and should be gauge invariant, namely it should be
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well defined on the light-cone X2 = 0 and preserve the conditions (2.32). It is not difficult to see that
the choice D̃ = D/(8X01X04), where

D = (S̄4X0Σ̄NS2)
∂

∂XN
2

(4.51)

fulfills all the requirements. One has D̃(S̄ΩT̄ ) = (S̄S2)(S̄4X3T̄ ). Iterating it p times gives the desired
relation:

N `(p) ∝ D̃pN`+p(0) . (4.52)

The operator D annihilates all the scalar products with the exception of X12, in which case we have
DX12 = I2, and we define

I1 ≡ X03 Î
42
30 , I2 ≡ X01 Î

42
01 . (4.53)

The action on the s, t, and u variables is

D s = X−1
12 s I2, D t = −1

2
X−1

12 (u−1 I1 + t I2), D u−1 =
1

2
X−1

12 u−1 I2 , (4.54)

on Gegenbauer polynomials is
DCλn(t) = 2λCλ+1

n−1(t)D t , (4.55)

and vanishes on J42,01 and J42,30. Using recursively the identity for Gegenbauer polynomials

n

2λ
Cλn(t)− t Cλ+1

n−1(t) = −Cλ+1
n−2(t) , (4.56)

we can write the following expression for N`(p):

N`(p) ∝ s
`
2

p∑
w=0

(
p

w

)
uw Cp+1

`−w(t) Ip−w1 Iw2 , (4.57)

where
(
p
w

)
is the binomial coefficient and for compactness we have defined the dimensionful tensor

structures Combining together eqs.(4.41), (4.42), (4.46), (4.47) and (4.57) we can finally write

W seed(p) = ν ′
p∑

w=0

(
p

w

)
1

X
a12+w

2
12 X

a34+ p−w
2

34

∫
D4X0

Cp+1
`−w(t) Ip−w1 Iw2

X
a01+w

2
01 X

a02+ p−w
2

02 X
a03+ p−w

2
03 X

a04+w
2

04

∣∣∣∣
M=1

,

W
seed

(p) = ν̄ ′
p∑

w=0

(
p

w

)
1

X
a12+ p−w

2
12 X

a34+w
2

34

∫
D4X0

Cp+1
`−w(t) Iw1 I

p−w
2

X
a01+ p−w

2
01 X

a02+w
2

02 X
a03+w

2
03 X

a04+ p−w
2

04

∣∣∣∣
M=1

(4.58)

where ν ′ and ν̄ ′ are undetermined normalization factors.

4.3.2 Seed Conformal Blocks and Their Explicit Form for ` = 0

The computation of the CBs G
(p)
e and G

(p)
e starting form eq.(4.58) is a non-trivial task for generic `

and p, since we are not aware of a general formula for an integral that involves Cp+1
`−w(t) for p 6= 0. For

any given `, one can however expand the Gegenbauer polynomial, in which case the CBs G
(p)
e and G

(p)
e

can be computed. In this subsection we discuss the structure of CBs for generic ` and compute G
(p)
e

and G
(p)
e for ` = 0 and generic p.
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Recalling the definition of t in eq.(4.47), one realizes that the Gegenbauer polynomials in eq.(4.58), when
expanded, do not give rise to intrinsically new integrals but just amounts to shifting the exponents in the
denominator. The tensor structures in the numerators bring p open indices in the form XN1

0 . . . X
Np
0 ,

which can be removed by using eq.(3.21) in ref. [18]. In this way the problem is reduced to the
computation of scalar integrals in 2h = 2(2 + p) effective dimensions, of the form:

I
(h)
A02, A03, A04

≡
∫
D2hX0

1

XA01
01 XA02

02 XA03
03 XA04

04

∣∣∣∣
M=1

, (4.59)

where A01 + A02 + A03 + A04 = 2h. The capital A0i are used for the exponents in the denomentaor
with all possible shifts introduced by the Gegenbaur polynomials. This integral is given by

I
(h)
A02, A03, A04

∝ XA04−h
13 XA02+A03−h

14 X−A02
24 Xh−A03−A04

34 ×R(h)(z, z̄; A02, A03, A04), (4.60)

where

R(h)(z, z̄; A02, A03, A04) ≡
(
− ∂

∂v

)h−1
f(z; A02, A03, A04)f(z̄; A02, A03, A04), (4.61)

f(z; A02, A03, A04) ≡ 2F1(A02 − h+ 1, −A04 + 1; −A03 −A04 + h+ 1; z). (4.62)

The derivative −∂/∂v in (z, z̄) coordinates equals

− ∂

∂v
=

1

z − z̄

(
z
∂

∂z
− z̄ ∂

∂z̄

)
. (4.63)

In the case of ` = 0, all the above manipulations simplify drastically. The Gegenbauer polynomials
Cp+1
`−w(t) vanishe for all the values w except for w = 0, leaving only one type of tensor structure: Ip1 for

W seed(p) and Ip2 for W
seed

(p). This leads to a one-to-one correspondence between CBs and integrals:

G(p)
e ∝ Xp−e

13 Xe
34K−1

4 I
(2+p)

a02+ p
2
, a03+ p

2
, a04+e

∝ (zz̄)
∆+

p
2

2 R(2+p)(z, z̄; a02 +
p

2
, a03 +

p

2
, a04 + e), (4.64)

G
(p)
e ∝ Xe

12X
p−e
13 K

−1
4 I

(2+p)

a02+e, a03+p−e, a04+ p
2
∝ (zz̄)

∆− p2
2

+eR(2+p)(z, z̄; a02 + e, a03 + p− e, a04 +
p

2
).

We have omitted here the relative factors between different CBs. They must be restored if one wants

to check that G
(p)
e and G

(p)
e in eq.(4.64) satisfy the Casimir system (4.30). For generic ` the CBs are

a sum of expressions like eq.(4.64) with different shifts of the parameters A0i, weighted by the relative
constants and powers of v (coming from the Gegenbauer polynomial). Since all these terms have p+ 1

derivatives with respect to v, the highest power in 1/(z − z̄) appearing in G
(p)
e and G

(p)
e is( 1

z − z̄

)1+2 p
. (4.65)

The asymptotic behaviour of the CBs when z, z̄ → 0 (u→ 0, v → 1) for ` = 0 is easily obtained from
eq.(4.64) by noticing that R(h)(z, z̄; A02, A03, A04) is constant in this limit. Then we have

lim
z→0, z̄→0

G(p)
e ∝ (zz̄)

∆
2

+ p
4 , lim

z→0, z̄→0
G

(p)
e ∝ (zz̄)

∆
2
− p

4
+e . (4.66)

By knowing that the CBs should be proportional to the factor in eq.(4.65), we can refine eq.(4.66) and
write

lim
z→0, z̄→0

G(p)
e ∝

(zz̄)
∆
2

+ p
4

(z − z̄)1+2p
(z1+2p − z̄1+2p) , (4.67)

lim
z→0, z̄→0

G
(p)
e ∝

(zz̄)
∆
2
− p

4
+e

(z − z̄)1+2p
(z1+2p − z̄1+2p) . (4.68)
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Notice that the behavior (4.67) and (4.68) of the CBs for z, z̄ → 0 when ` = 0 is not guaranteed to be
straightforwardly extended for any ` 6= 0. Indeed, we see from eq.(4.58) that for a given p, the generic
CPW is obtained when ` ≥ p, in which case all terms in the sum over w are present. All the values of
` < p should be treated separately.

4.3.3 Computing the Conformal Blocks for ` 6= 0

A useful expression of the CBs for generic values of ` can be obtained using eq.(4.52) and the known
closed form of W seed(0). Recall that

W seed(0) =

(
X14

X13

)b(X24

X14

)−a G
(0)
0 (Z, Z̄)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

, (4.69)

where a and b are as in eq.(4.8) for p = 0 and G(0)(z, z̄) are the known scalar CBs [8, 9]

G
(0)
0 (z, z̄) = G

(0)
0 (z, z̄; ∆, l, a, b) = (−1)`

zz̄

z − z̄

(
k

(a,b;0)
∆+`

2

(z)k
(a,b;0)
∆−`−2

2

(z̄)− (z ↔ z̄)

)
, (4.70)

expressed in terms of the function3

k(a,b;c)
ρ (z) ≡ zρ 2F1(a+ ρ, b+ ρ; c+ 2ρ; z) . (4.71)

Comparing eq.(4.69) with eq.(4.58) for p = 0, one can extract the value of the shadow integral in closed
form for generic spin ` [18]:

I` ≡
∫
D4X0

C1
` (t)

Xa01
01 X

a02
02 X

a03
03 X

a04
04

∣∣∣
M=1

∝
(
X14

X13

)b(X24

X14

)−a G(0)
0 (Z, Z̄; ∆, `, a, b)

X
∆
2

12X
4−∆

2
34

. (4.72)

Using the relations (4.48) and (4.52) one can recast W seed(p) and W
seed

(p) in the form

W seed(p) ∝
DN1 ...DNp
X
a12+ `

2
12 Xa34

34

X
`+p

2
12

∫
D4X0

C1
`+p(t)X

N1
0 ...X

Np
0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

∣∣∣∣
M=1

,

W
seed

(p) ∝
DN1 ...DNp
Xa12

12 X
a34+ `

2
34

X
`+p

2
34

∫
D4X0

C1
`+p(t)X

N1
0 ...X

Np
0

Xa01
01 X

a02+ p
2

02 X
a03+ p

2
03 Xa04

04

∣∣∣∣
M=1

, (4.73)

where D = PD|1↔3,2↔4, as follows from eq.(4.46), D = DMXM
0 , D = DMXM

0 . The tensor integral
is evaluated using SO(4, 2) Lorentz symmetry. One writes∫

D4X0

C1
`+p(t)X

M1
0 ...X

Mp

0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

=
∑
n

An(Xi) τ
M1...Mp
n (Xi) , (4.74)

where n runs over all possible rank p traceless symmetric tensors τn which can be constructed from
X1, X2, X3, X4 and ηMN ’s, with arbitrary scalar coefficients An to be determined. Performing all
possible contractions, which do not change the monodromy of the integrals, the An coefficients can be

3We adopt here the notation first used in ref.[5] for this function, but notice the slight difference in the definition:
kthereρ = khereρ/2 .
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solved as linear combinations of the scalar block integrals I` defined in eq.(4.72), with shifted external
dimensions.

In this way, we have computed the CBs G
(p)
e with p = 1, 2 and G

(p)
e with p = 1 for general ∆, `, a, b.

We have also verified that the CBs G
(1)
e obtained from G

(1)
e using eqs.(4.10) and (4.9) agree with those

arising from the direct shadow computation. There is a close connection among the CBs G
(p)
e and G

(p)
p−e,

for any p. More on this point in section 4.4. In all cases the CBs satisfy the Casimir system (4.30).

As mentioned at the end of subsection 4.3.2, the asymptotic behaviour of the CBs for z, z̄ → 0 depends
on whether ` ≥ p or not. For p = 1 we can expand the obtained solutions, which for ` ≥ 1 read as

limz→0, z̄→0G
(1)
e ∝ (zz̄)

∆−`
2 + 1

4

(z−z̄)3

(
z̄`+e+2 − (z ↔ z̄)

)
, ` ≥ 1 (4.75)

limz→0, z̄→0G
(1)
e ∝

(zz̄)
∆−`

2 − 1
4

(z−z̄)3

(
zez̄`+3 − (z ↔ z̄)

)
, ` ≥ 1 , (4.76)

while for ` = 0 they match eqs.(4.67) and (4.68). The above relations, together with eqs.(4.65), (4.67)
and (4.68), will allow us to settle the problem of the boundary values of the CBs for any value of p and

`, that will be reported in eqs.(4.85) and (4.89). The explicit form of G
(p)
e found for p = 2 using the

shadow formalism provides a further check of the whole derivation.

4.4 Solving the System of Casimir Equations

The goal of this section is to find the explicit form of the conformal blocks G
(p)
e and G

(p)
e appearing in

eq.(4.7) by solving the Casimir system (4.30). In doing it we adopt and expand the methods introduced
by Dolan and Osborn in refs. [9, 49] to obtain 6D scalar conformal blocks. We will mostly focus on the

blocks G
(p)
e , since the same analysis will apply to G

(p)
e with a few modifications that we will point out.

Before jumping into details let us outline the main logical steps of our derivation. We first find, with

the guidance of the results obtained in section 4.3, the behaviour of G
(p)
e and G

(p)
e in the limit z, z̄ → 0

in which the Casimir system (4.30) can be easily solved. Using this information and eq.(4.65), we then
write an educated ansatz for the form of the CBs. Using this ansatz, we reduce the problem of solving
a system of linear partial differential equations of second order in two variables to a system of linear
algebraic equations for the unknown coefficients entering the ansatz. Then we show that the non-zero
coefficients in the ansatz admit a geometric interpretation. They form a two-dimensional lattice with
an octagon shape structure. This interpretation allows us to precisely predict which coefficients enter
in our ansatz for any value of p. Finally, we show that the linear algebraic system admits a recursive
solution and we discuss the complexity of deriving full solutions for higher values of p.

4.4.1 Asymptotic Behaviour

Not all solutions of the Casimir system (4.30) give rise to sensible CBs. The physical CBs are obtained

by demanding the correct boundary values for G
(p)
e and G

(p)
e . Possible boundary values are given by

considering the OPE limit z, z̄ → 0 of W seed(p) and W
seed

(p). The limits of G
(p)
e and G

(p)
e for z, z̄ → 0

could be computed by a careful analysis of tensor structures. This analysis has been partly done in

section 4.3, where we have obtained the boundary values of G
(p)
e and G

(p)
e for z, z̄ → 0 for special

values of p and/or `. Luckily enough, there will be no need to extend such analysis because the form
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of the system (4.30) in the OPE limit, together with eqs.(4.67), (4.75) and (4.76), will clearly indicate

the general form of the boundary values of G
(p)
e and G

(p)
e .

Let us then consider the form of the conformal blocks G
(p)
e in the limit z, z̄ → 0, with z → 0 taken first.

In this limit
G(p)
e → Nez

λ(e)
z̄λ̄

(e)
, (4.77)

where Ne, λ
(e) and λ̄(e) are parameters to be determined. For simplicity of notation we have omitted

their p-dependence. The differential operators (4.22) and (4.33), when acting on eq.(4.77) give, at
leading order in z and z̄,

∆(ae,be;ce)
ε → λ(e)(λ(e) − 1) + ce(λ

(e) + λ̄(e)) + λ̄(e)(λ̄(e) − 1)− ελ(e) , (4.78)

L(µ)→ 1

z̄
(λ(e) − λ̄(e)) . (4.79)

Let us now focus on the specific equation Cas
(p)
e with e = p. In the limit z, z̄ → 0 it reads

Cas(p)
p (G)→ Np

(
λ(p)(λ(p) − 1) + λ̄(p)(λ̄(p) − 1)− (p+ 2)λ(p) − 1

2
(E`,p − εpp)

)
zλ

(p)
z̄λ

(p)

+2Np−1(λ(p−1) − λ̄(p−1))zλ
(p−1)+1z̄λ̄

(p−1)
= 0 . (4.80)

For generic values of `, we have λ(e) 6= λ̄(e). Hence we cannot have λ(p−1) +1 < λ(p) in eq.(4.80), since
this would imply that the last term dominates in the limit and Np−1 vanishes, in contradiction with the
initial hypothesis (4.77).

Let us first consider the case in which λ(p−1)+1 > λ(p), so that the terms in the second row of eq.(4.80),

coming from G
(p)
p−1, vanish. It is immediate to see that the only sensible solution for λ(p) and λ̄(p) that

reproduce the known OPE limit for the p = 0 case is

λ(p) =
∆− `

2
+
p

4
, λ̄(p) =

∆ + `

2
+
p

4
. (4.81)

Notice that eq.(4.81) agrees with the asymptotic behaviour for the CBs G
(p)
e found in eq.(4.75) for

e = p = 1 and ` ≥ 1. Consider now the equation Cas
(p)
p−1. For z, z̄ → 0 we have

Cas
(p)
p−1(G)→ Np−1

(
λ(p−1)(λ(p−1) − 1) + λ̄(p−1)(λ̄(p−1) − 1) + (λ(p−1) + λ̄(p−1))− (p+ 2)λ(p−1)

−1

2
(E`,p − εpp−1)

)
zλ

(p−1)
z̄λ̄

(p−1)
+
p

2
Np(λ

(p) − λ̄(p))zλ
(p)
z̄λ̄

(p)−1

+4Np−2(λ(p−2) − λ̄(p−2))zλ
(p−2)+1z̄λ̄

(p−2)
= 0 . (4.82)

According to eq.(4.75), we expect λ(p−2) = λ(p−1) = λ(p), λ̄p−1 = λ̄(p)−1, λ̄p−2 = λ̄(p)−2 in eq.(4.82).
In this case the last term is higher order in z and eq.(4.82) is satisfied by simply taking

Np−1

Np
= − `p

2(`+ p)
. (4.83)

Notice that we have tacitly assumed above that λ(p)− λ̄(p) = −` does not vanish, i.e. ` 6= 0. For ` = 0,
more care is required and one should consider the first subleading term in z̄ in the expansion (4.77).
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The above analysis can be iteratively repeated until the last equation Cas
(p)
0 is reached and all the

coefficients Ne, λ
(e) and λ̄(e) are determined. Analogously to the ` = 0 case in eq.(4.82), all the low

spin cases up to ` = p should be treated separately at some step in the iteration, as already pointed out
in subsection 4.3.2. Skipping the detailed derivation, the final values of λ(e) and λ̄(e) are given by

λ(e) = λ(p) , ∀` = 0, 1, 2, . . .

λ̄(e) = λ̄(p) − (p− e) , ∀` = p− e, p− e+ 1, . . .

λ̄(e) = λ̄(p) , ∀` = 0, 1, . . . , p− e− 1 , (4.84)

where λ(p) and λ̄(p) are as in eq.(4.81) and e = 0, . . . , p− 1. The asymptotic behaviour of the CBs in
the OPE limit is given for any ` and p by

lim
z→0, z̄→0

G(p)
e ∝

(zz̄)λ
(p)

(z − z̄)1+2p

(
z̄λ̄

(e)−λ(p)+1+2p − (z ↔ z̄)
)
. (4.85)

We do not report the explicit form of the normalization factors Ne, since they will be of no use in what
follows.

We still have to consider the case in which λ(p−1) + 1 = λ(p) in eq.(4.80). By looking at eq.(4.76), it

is clear that this case corresponds to the asymptotic behaviour of the conjugate CBs G
(p)
e . We do not

report here the similar derivation of the Casimir equations for G
(p)
e in the OPE limit. It suffices to say

that the analysis closely follows the ones made for G
(p)
e starting now from the equation with e = 0. If

we denote by

G
(p)
e → N̄ez

ω(e)
z̄ω̄

(e)
(4.86)

the boundary behaviour of G
(p)
e when z, z̄ → 0 (z → 0 taken first), one finds

ω(e) = ω(0) + e , ∀` = 0, 1, 2, . . .

ω̄(e) = ω̄(0) , ∀` = p− e, p− e+ 1, . . . (4.87)

ω̄(e) = ω̄(0) + e , ∀` = 0, 1, . . . , p− e− 1

where

ω(0) =
∆− `

2
− p

4
, ω̄(0) =

∆ + `

2
− p

4
. (4.88)

The asymptotic behaviour of the conjugate CBs are given for any ` and p by

lim
z→0, z̄→0

G
(p)
e ∝

(zz̄)ω
(e)

(z − z̄)1+2p

(
z̄ω̄

(e)−ω(e)+1+2p − (z ↔ z̄)
)
. (4.89)

4.4.2 The Ansatz

The key ingredient of the ansatz is the function k
(a,b;c)
ρ (z) defined in eq.(4.71), which is an eigenfunction

of the hyper-geometric like operator D
(a,b;c)
z :

D(a,b;c)
z k(a,b;c)

ρ (z) = ρ (ρ+ c− 1) k(a,b;c)
ρ (z). (4.90)

Using eq.(4.90) one can define an eigenfunction of the operator ∆
(a,b;c)
0 as the product of two k’s:

F (a,b;c)
ρ1, ρ2

(z, z̄) ≡ k(a,b;c)
ρ1

(z)k(a,b;c)
ρ2

(z̄), (4.91)

F± (a,b;c)
ρ1, ρ2

(z, z̄) ≡ F (a,b;c)
ρ1, ρ2

(z, z̄)±F (a,b;c)
ρ1, ρ2

(z̄, z). (4.92)
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These functions played an important role in ref.[9] for the derivation of an analytic closed expression
of the scalar CBs in even space-time dimensions. In our case, the situation is much more complicated,
because we have different blocks appearing in the Casimir equations. We notice, however, that the

second order operator ∆ in each equation Cas
(p)
e acts only on the block G

(p)
e , while the blocks G

(p)
e−1

and G
(p)
e+1 are multiplied by first order operators only. Since, as we will shortly see, first order derivatives

and factors of z and z̄ acting on the functions F can always be expressed in terms of functions F
with shifted parameters, a reasonable ansatz for the CBs is to take each Ge proportional to a sum of

functions of the kind F (ae,be;ce)
ρ1, ρ2 (z, z̄) for some ρ1 and ρ2. Taking also into account eq.(4.65), found

using the shadow formalism, the form of the ansatz for the blocks G
(p)
e should be4

G(p)
e (z, z̄) =

( zz̄

z − z̄

)2 p+1
g(p)
e (z, z̄), g(p)

e (z, z̄) ≡
∑
m,n

cem,nF
− (ae,be;ce)
ρ1+m, ρ2+n(z, z̄), (4.93)

where cem,n are coefficients to be determined and the sum over the two integers m and n in eq.(4.93)
is so far unspecified and possibly infinite. Notice that all the functions F entering the sum over m and
n have the same values of ae, be and ce. Matching eq.(4.93) in the limit z, z̄ → 0 with eq.(4.85) allows
us to determine ρ1 and ρ2, modulo a shift by an integer. We take

ρ1 = λ̄(p) , ρ2 = λ(p) − p− 1 , (4.94)

in which case the sum over n is bounded from below by nmin = −p. At this value of n, we have
m(nmin) = e− p. There is no need to discuss separately the behaviour of the blocks with ` ≤ p. Their
form is still included in the ansatz (4.93) with the additional requirement that some coefficients cem,nmin
should vanish. This condition is automatically satisfied in the final solution. In the next subsections we
will discuss the precise range of the sum over m and n and explain how the coefficients cem,n can be
determined.

4.4.3 Reduction to a Linear System

The eigenfunctions F± (a,b;c)
ρ1, ρ2 (z, z̄) have several properties that would allow us to find a solution to the

system (4.30). In order to exploit such properties, we first have to express the system (4.30) for G
(p)
e in

terms of the functions g
(p)
e (z, z̄) defined in eq.(4.93). We plug the ansatz (4.93) in eq.(4.30) and use

the following relations

∆(a,b;c)
ε

( zz̄

z − z̄

)k
=
( zz̄

z − z̄

)k(
∆

(a,b;c)
ε−2k + k (k − ε+ c− 1)− k (k − ε+ 1)

zz̄(z + z̄)− 2zz̄

(z − z̄)2

)
,

L(µ)
( zz̄

z − z̄

)k
=
( zz̄

z − z̄

)k(
L(µ) + k

z + z̄ − 2zz̄

(z − z̄)2

)
, (4.95)

to obtain the system of Casimir equations for g
(p)
e :

C̃as
(p)

e (g) ≡ Cas0 g(p)
e + Cas+ g

(p)
e+1 + Cas− g

(p)
e−1 = 0 . (4.96)

We have split each Casimir equation in terms of three differential operators Cas0, Cas+, Cas−, that

act on g
(p)
e , g

(p)
e+1 and g

(p)
e−1, respectively. In order to avoid cluttering, we have omitted the obvious e

4Recall that the conformal blocks are even under z ↔ z̄ exchange, that leaves u and v unchanged.
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and p dependences of such operators. Their explicit form is as follows:

Cas0 =
(z − z̄

zz̄

)2(
∆

(ae,be;ce)
0 + (1 + 2p)(2p− 2− e)− 1

2

(
Ep` − ε

p
e

))
−3p

z − z̄
zz̄
×
(

(1− z)∂z − (1− z̄)∂z̄
)
− p (1 + 2p)

z + z̄ − 2

zz̄
, (4.97)

Cas+ = Be
z − z̄
zz̄
× z − z̄

zz̄
L(be+1) + (1 + 2p)Be

z + z̄ − 2zz̄

zz̄

1

zz̄
, (4.98)

Cas− = Ape
z − z̄
zz̄
× (z − z̄)L(ae−1) + (1 + 2p)Ape

z + z̄ − 2zz̄

zz̄
. (4.99)

Notice that the action of ∆
(ae,be;ce)
0 in eq.(4.97) on g

(p)
e is trivial and gives just the sum of the eigenvalues

of the F− (a,b;c)
ρ1, ρ2 (z, z̄) entering g

(p)
e . It is clear from the form of the ansatz (4.93) that the system (4.96)

involves three different kinds of functions F−, with different values of a, b and c (actually only b and c
differ, recall eq.(4.32)).

Using properties of hypergeometric functions, however, we can bring the Casimir system (4.96) into an

algebraic system involving functions F− (ae,be;ce)
ρ1+r, ρ2+t (z, z̄) only, with different values of r and t, but crucially

with the same values of ae, be and ce. In order to do that, it is useful to interpret each of the terms
entering the definitions of Cas0, Cas+ and Cas− as an operator acting on the functions F− shifting
their parameters. Their action can be reconstructed from the more fundamental operators provided in
the appendix C. For each function F− appearing in the ansatz (4.93), we have

Cas0F −(a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R0

A0
r,t(m,n)F− (a,b;c)

ρ1+m+r, ρ2+n+t(z, z̄) , (4.100)

Cas+F− (a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R+

A+
r,t(m,n)F− (a,b+1;c+1)

ρ1+m+r, ρ2+n+t(z, z̄) , (4.101)

Cas−F− (a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R−

A−r,t(m,n)F− (a,b−1;c−1)
ρ1+m+r, ρ2+n+t(z, z̄) , (4.102)

where A0, A− and A+ are coefficients that in general depend on all the parameters involved: a, b, ∆, `,
e and p but not on z and z̄, namely they are just constants. For future purposes, in eqs.(4.100)-(4.102)
we have only made explicit the dependence of A0, A− and A+ on the integers m and n. The sum over
(r, t) in each of the above terms runs over a given set of pairs of integers. We report in fig. 4.1 the
values of (r, t) spanned in each of the three regions R0, R+ and R−. We do not report the explicit
and quite lengthy expression of the coefficients A0

r,t, A
+
r,t and A−r,t, but we refer the reader again to

appendix C where we provide all the necessary relations needed to derive them. Using eqs.(4.93) and
(4.100)-(4.102), the Casimir system (4.96) can be rewritten in terms of the functions F− only, with the
same set of coefficients ae, be and ce:

5∑
m,n

( ∑
(r,t)∈R0

A0
r,t(m,n) cem,n +

∑
(r,t)∈R+

A+
r,t(m,n) ce+1

m,n +
∑

(r,t)∈R−

A−r,t(m,n) ce−1
m,n

)
F− (ae,be;ce)
ρ1+m+r, ρ2+n+t = 0 .

(4.103)
The functions F− appearing in eq.(4.103) are linearly independent among each other, since they all have
a different asymptotic behaviour as z, z̄ → 0. Hence the only way to satisfy eq.(4.103) is to demand

5It is understood that c−1
m,n = cp+1

m,n = 0 in eq.(4.103).
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Figure 4.1: Set of points in the (r, t) plane forming the regions R0 (13 points), R+ (12 points) and
R− (12 points) defined in eqs.(4.100)-(4.102).

that terms multiplying different F− vanish on their own:∑
(r,t)∈R0

A0
r,t(m

′ − r, n′ − t)cem′−r,n′−t +
∑

(r,t)∈R+

A+
r,t(m

′ − r, n′ − t)ce+1
m′−r,n′−t

+
∑

(r,t)∈R−

A−r,t(m
′ − r, n′ − t)ce−1

m′−r,n′−t = 0 , ∀m′, n′, e = 0, . . . p , (4.104)

where m′ = m + r, n′ = n + t. The Casimir system is then reduced to the over-determined linear
algebraic system of equations (4.104).

4.4.4 Solution of the System

In order to solve the system (4.104), we have to determine the range of values of (m,n) entering the
ansatz (4.93), that also determines the size of the linear system. Because of the results of the shadow
formalism we expect that the size of the linear system, and the range of (m,n), is finite. By rewriting
the known p = 1 and p = 2 CBs found using the shadow formalism in the form of eq.(4.93), we have
deduced the range in (m,n) of the coefficients cem,n for any p (a posteriori proved using the results
below). For each value of e, the non-trivial coefficients cem,n span a two-dimensional lattice in the
(m,n) plane. For each e, the shape of the lattice is an octagon, with p and e dependent edges. The
position and shape of the generic octagon in the (m,n) plane is depicted in fig. 4.2. One has

nmin = − p, nmax = e+ p, mmin = e− 2 p, mmax = p . (4.105)

For e = 0 and e = p, the octagons collapse to hexagons. The number N e
p of points inside a generic

octagon is
N e
p = 2p (2p− e) + (1 + e) (3p+ 1− e) (4.106)

and correspond to the number of non-trivial coefficients cem,n entering the ansatz (4.93). The total
number Np of coefficients to be determined at level p is then

Np ≡
p∑
e=0

N e
p = (1 + p)

(
1 +

17

6
p+

25

6
p2
)
. (4.107)
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Figure 4.2: The dimensions of the generic octagon enclosing the lattice of non-vanishing coefficients
cem,n entering the ansatz for mixed tensor CBs in eq.(4.112).

The size of the linear system grows as p3. The first values are N1 = 16, N2 = 70, N3 = 188, N4 = 395.
For illustration, we report in fig. 4.3 the explicit lattice of non-trivial coefficients cem,n for p = 3.

The system (4.104) is always over-determined, since it is spanned by the values (m′, n′) whose range

is bigger than the range of (m,n) ∈ Oct
(p)
e (spanning all the coefficients to be determined) due to

the presence of (r, t) ∈ [−2, 2]. There are only Np − 1 linearly independent equations, because the
system of Casimir equations can only determine conformal blocks up to an overall factor. The most
important property of the system (4.104) is the following: while the number of equations grows with
p, the total number of coefficients cem,n entering any given equation in the system (4.104) does not.
This is due to the “local nearest-neighbour” nature of the interaction between the blocks, for which at
most three conformal blocks can enter the Casimir system (4.30), independently of the value of p. More
precisely, all the equations (4.104) involve from a minimum of one coefficient cem,n up to a maximum
of 37 ones. Thirty seven corresponds to the total number of coefficients A0, A+ and A− entering
eqs.(4.100)-(4.102), see fig.4.1. The only coefficients that enter alone in some equations are the ones
corresponding to the furthermost vertices of the hexagons, namely

cp0,−p, c
p
0,2p, c

0
p,0, c

0
−2p,0 . (4.108)

For instance, let us take n′ = −2 − p and e = p in eq.(4.104), with m′ generic. Since nmin = −p, a
non-vanishing term can be obtained only by taking t = −2. Considering that cp+1 = 0 and R− does
not include t = −2 (see fig.4.1), this equation reduces to

A0
0,−2(m,−p)|e=p cpm,−p = 0 , ∀m, (4.109)
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Figure 4.3: Set of non-vanishing coefficients cem,n (represented as black dots) entering the ansatz for
mixed tensor CBs in eq.(4.112) for p = 3 and e = 0, 1, 2, 3. For e = 0 and e = p the octagons collapse
to hexagons.

where m′ = m, since the point in R0 with t = −2 has r = 0. This equation forces all the coefficients
cpm,−p to vanish, unless the factor A0

0,−2(m,−p) vanishes on its own. One has

A0
0,−2(m,n)|e=p ∝ (m+ n+ p)∆ + (m− n− p)`+m2 +

1

2
m(p− 2) + (n+ p)(n+

3

2
p− 2) .

This factor is generally non-vanishing, unless m = 0 and n = −p, in which case it vanishes for any ∆,
` and p. In this way eq.(4.109) selects cp0,−p as the only non-vanishing coefficient at level n = −p for

e = p. Notice that it is crucial that A0
0,−2(m,n)|e=p vanishes automatically for a given pair (m,n),

otherwise either the whole set of equations would only admit the trivial solution cem,n = 0, or the system
would be infinite dimensional. A similar reasoning applies for the other three coefficients. One has in
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particular

A0
0,2(0, 2p)|e=p cp0,2p = 0 ,

A0
2,0(p, 0)|e=0 c0

p,0 = 0 , (4.110)

A0
−2,0(−2p, 0)|e=0 c0

−2p,0 = 0 ,

that are automatically satisfied because the three coefficients A0
0,2, A0

2,0 and A0
−2,0 vanish when evaluated

for the specific values reported in eq.(4.110) for any ∆, ` and p.

The system (4.104) is efficiently solved by extracting a subset of Np− 1 linearly independent equations.
This can be done by fixing the values (r, t) = (r∗, t∗) entering the definitions of (m′, n′). There are
4 very special subsets of the Np − 1 equations (corresponding to very specific values (r∗, t∗)) which
allows us to determine the solution iteratively starting from eq.(4.104). They correspond to a solution
where one of the four coefficients (4.108) is left undetermined, in other words (r∗, t∗) can be set to be
(0,−2), (0, 2), (2, 0) or (−2, 0). For instance, if we choose c0 ≡ cp0,−p as the undetermined coefficient,

a recursion relation is found from eq.(4.104) by just singling out the term with t = −2 in A0 and setting
(r∗, t∗) = (0,−2). Such a choice leads to m′ = m, n′ = n− 2, and one finally gets

−A0
0,−2(m,n)cem,n =

∑
(r,t)∈R0

(r,t) 6=(0,−2)

A0
r,t(m− r, n− 2− t)cem−r,n−2−t

+
∑

(r,t)∈R+

A+
r,t(m− r, n− 2− t)ce+1

m−r,n−2−t (4.111)

+
∑

(r,t)∈R−

A−r,t(m− r, n− 2− t)ce−1
m−r,n−2−t .

It is understood in eq.(4.111) that cem,n = 0 if the set (m,n) lies outside the e-octagon of coefficients.
The recursion (4.111) allows us to determine all the coefficients cem,n at a given e = e0 and n = n0 in
terms of the ones cem,n with n < n0 and cem,n0

with e > e0. Hence, starting from c0, one can determine
all cem,n as a function of c0 for any p. The overall normalization of the CBs is clearly irrelevant and
can be reabsorbed in a redefinition of the OPE coefficients. However, some care should be taken in the
choice of c0 if one wants to avoid the appearance of spurious divergencies in the CBs for specific values
of ` and ∆. These divergencies are removed by a proper ∆ and ` dependent rescaling of c0. From
eq.(4.104) one can easily write the three other relations similar to eq.(4.111) to determine recursively
cem,n starting from cp0,2p, c0

p,0 or c0
−2p,0.

We can finally write down the full analytic solution for the CBs G
(p)
e :

G(p)
e (z, z̄) =

( zz̄

z − z̄

)2 p+1 ∑
(m,n)∈Oct(p)e

cem,nF
− (ae,be;ce)
∆+`+

p
2

2
+m,

∆−`+ p
2

2
−(p+1)+n

(z, z̄), (4.112)

where cem,n satisfy the recursion relation (4.111) (or any other among the four possible ones) and (m,n)
runs over the points within the e-octagon depicted in fig.4.2.

A similar analysis can be performed for the conjugate blocks G
(p)
e . We do not report here the detailed

derivation that is logically identical to the one above, but just the final solution:

G
(p)
e (z, z̄) =

( zz̄

z − z̄

)2 p+1 ∑
(m,n)∈Oct(p)p−e

c̄em,nF
− (ae,be;ce)
∆+`− p2

2
+e+m,

∆−`− p2
2

+e−(p+1)+n
(z, z̄). (4.113)
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where
c̄em,n(a, b,∆, l, p) = 4ecp−em,n

(
− a+

p

2
,−b− p

2
,∆, l, p

)
. (4.114)

Generating the full explicit solution from eq.(4.111) can be computationally quite demanding for large
values of p. For concreteness, we only report in appendix D the explicit form of the 16 coefficients cem,n

for p = 1 and a = −b = 1/2. The blocks G
(p)
e for p = 1, 2 and G

(p)
e for p = 1 are in complete agreement

with those computed using the shadow formalism. By choosing specific values for the parameters a and
b, we also have determined the coefficients cem,n up to p = 8, i.e. the value of p that is obtained in the
4-point function of four energy momentum tensors, see eq.(3.5).

It is important to remind the reader that the CBs G
(p)
e computed here are supposed to be the seed

blocks for possibly other 4-point correlation functions, whose CBs are determined by acting with given

operators on G
(p)
e [30]. The complexity of the form of the blocks G

(p)
e at high p is somehow compensated

by the fact that the operators one has to act with become simpler and simpler, the higher is p. An
example should clarify the point. Let us consider a 4-point function of spin two operators. In this case,

one has to determine conformal blocks associated to the exchange of operators O(`,`+p) (and O(`+p,`)
)

for p = 0, 2, 4, 6, 8 (and any `). The conformal blocks associated to the traceless symmetric operators
are obtained by applying up to 8 derivative operators in several different combinations to the scalar CB

G
(0)
0 . Despite the seed block is very simple, the final blocks are given by (many) complicated sum of

derivatives of G
(0)
0 . The p = 8 CBs, instead, are essentially determined by the very complicated G

(8)
e

(and G
(8)
e ) blocks, but no significant extra complications come from the external operators. An example

of such phenomenon in a four fermion correlator is shown (though in a less significative way) in section
7.1 of ref.[30]. For any given 4-point function, after the use of the differential operators introduced in
ref. [30], there is no need to compute the coefficients cem,n for any a and b but only for the values of
interest. This considerably simplifies the expression of cem,n.

4.4.5 Analogy with Scalar Conformal Blocks in Even Dimensions

It is worth pointing out in more detail some similarities between the CBs G
(p)
e for mixed symmetry tensors

computed above and the scalar conformal blocks Gd in d > 2 even space-time dimensions (G4 = G
(0)
0

in our previous notation). The quadratic Casimir equation for scalar CBs in any number of dimensions
is

∆
(a,b;0)
d−2 Gd(z, z̄) =

1

2
E`(d)Gd(z, z̄) , (4.115)

where
E`(d) = ∆ (∆− d) + `(`+ d− 2) (4.116)

is the quadratic Casimir eigenvalue for traceless symmetric tensors. The explicit analytical form of
scalar blocks in d = 2, 4, 6 dimensions has been found in refs.[8, 9]. The same authors also found a
relation between scalar blocks in any even space-time dimensionality, eq.(5.4) of ref.[9] (see also the
more elegant eq.(4.36) of ref.[49]), that allows us to iteratively determine Gd for any d, starting from
G2. The d = 4 and d = 6 solutions found in ref.[9] have the form

Gd(z, z̄) =
( zz̄

z − z̄

)d−3
gd(z, z̄) , gd(z, z̄) =

∑
m,n

xm,nF− (a,b;0)
∆+`

2
+m, ∆−`+2−d

2
+n

(z, z̄), (4.117)

where a and b are as in eq.(4.8) with p = 0 and xm,n are coefficients that in general depend on ∆, l, a
and b. In d = 4 there is only one non-vanishing coefficient centered at (m,n) = (0, 0), while in d = 6
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Figure 4.4: The dimensions of the generic slanted square enclosing the lattice of non-vanishing coeffi-
cients xm,n entering the ansatz for scalar symmetric CBs in eq.(4.117).

there are five of them. They are at (m,n) = (0,−1), (−1, 0), (0, 0), (1, 0) and (0, 1). These five points
form a slanted square in the (m,n) plane, centered at the origin. The explicit form of the coefficients
xm,n is known, but it will not be needed in what follows.6 It is natural to expect that eq.(4.117) should
apply for any even d ≥ 4, with a number of non-vanishing coefficients that increases with d.7 This is
not difficult to prove. From the first relation in eq.(4.95) we can get the form of the Casimir equation
for the function gd(z, z̄) defined in eq.(4.117), that can be written as(1

z̄
− 1

z

)(
∆

(a,b;0)
0 + 6− 2d− 1

2
E`(d)

)
gd = (d− 4)

(
(1− z)∂z − (1− z̄)∂z̄

)
gd . (4.118)

Using the techniques explained in subsection 4.4.3 and the results of appendix C, it is now straightforward
to identify which is the range of (m,n) of the non-vanishing coefficients xm,n for any d (see fig.4.4).8

In d dimensions, the minimum and maximum values of m and n are given by

nmin =
4− d

2
, nmax =

d− 4

2
, mmin =

4− d
2

, mmax =
d− 4

2
. (4.119)

The number Ñd of coefficients xm,n entering the ansatz (4.117) for scalar blocks in d even space-time
dimensions is easily computed by counting the number of lattice points enclosed in the slanted square.
We have

Ñd =
d2

2
− 3d+ 5 . (4.120)

6En passant, notice that there is a typo in eq.(2.20) of ref.[9] where the block G6 is reported. In the denominator
appearing in the last row of that equation, one should replace (∆ + `− 4)(∆ + `− 6)→ (∆− `− 4)(∆− `− 6).

7See also ref.[52], where similar considerations were conjectured.
8Alternatively, one might use eq.(4.36) of ref.[49] to compute Gd and then recast it in the form (4.117).
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For large d, Ñd ∝ d2 and matches the behavior of Np
e ∝ p2 for large p in eq.(4.106).

In light of the above analogy between scalar CBs Gd in even d dimensions and mixed tensor CBs G
(p)
e in

four dimensions, it would be interesting to investigate whether there exist a set of differential operators

that links the blocks G
(p+1)
e (or G

(p+2)
e ) to the blocks G

(p)
e , in analogy to the operator (4.35) of ref.[49]

relating Gd+2 to Gd. It would be very useful to find, in this or some other way, a more compact

expression for the blocks G
(p)
e .

Let us finally emphasize a technical, but relevant, point where the analogy between Gd in d dimensions

and G
(p)
e in 4 dimensions does not hold. A careful reader might have noticed that in the Casimir equation

for gd the term proportional to (z + z̄)− 2, namely the third term in the r.h.s. of the first equation in
eq.(4.95), automatically vanishes. Indeed, if we did not know the power d− 3 in the ansatz (4.117), we
could have guessed it by demanding that term to vanish. On the contrary, no such simple guess seems

to be possible for the power 2p+ 1 entering G
(p)
e , given also the appearance of the operator L defined

in eq.(4.95). As discussed, we have fixed the power 2p+ 1 by means of the shadow formalism.



5. Application: Analytic Bootstrap

The analytic exploration of the bootstrap equations in one of the most notable directions of developments
of the bootstrap program. The underlying idea is to take a kinematic limit in which the crossing
equations simplify enough to be solved analytically, because they admit a perturbative expansion in
small parameter.

It was shown in [53, 54] that crossing equations in the light-cone limit admit a large-spin expansion.
The light-cone limit mentioned here amounts to taking u → 0 while v is fixed. From the definition
of crossing ratios, this limit is equivalent to x2

12 → 0 in Lorentzian signature, i.e x2 approaches the
the light-cone of x1 (and not necessarily x2 → x1, see fig. 5.1). In [53, 54] it was proved that if a
CFT spectrum contains two scalar primary operators Φ1 and Φ2 with scaling dimensions ∆1 and ∆2,
crossing symmetry requires the existence of infinite towers of operator with increasing spin ` whose twist
τ ≡ ∆− ` goes as ∆1 + ∆2 + 2n+O (1/`), for each non-negative integer n. These operators can be
written schematically as

Φ1∂µ1 . . . ∂µ`(∂
2)nΦ2. (5.1)

These operators are usually called double-twist operators. Of course operators like (5.1) do not make
sense in a strongly coupled theory, however the results of [53, 54] say that they do in large spin limit.
We will follow [55] and denote the family of large-spin operators whose twist ∼ ∆1 + ∆2 + 2n as

[Φ1Φ2]n .

The dimensions and OPE coefficients of [Φ1Φ2]n are computable as an asymptotic expansion in 1/spin.
Analytically, [53, 54, 56, 57, 58, 59, 60, 61, 62] computed anomalous dimensions and OPE coefficients of
high-spin operators starting in terms of low-twist primaries exchanged in a scalar four point correlator.
The results matched AdS observables such as binding energies [53, 54, 63, 25] and Eikonal phases
[64, 65, 66].

In this work instead, we will analytically explore a scalar-fermion correlator using the knowledge of
spinning conformal blocks in 4D to write the bootstrap equations and solve them in the light-cone limit;
we uncover a picture similar to the scalar case [53, 54], i.e. double-twist operators whose dimensions
and OPE coefficients we compute as an asymptotic expansion in 1/spin. In d = 4 we define the twist
τ of an operator in the rep (`, `) as

τ ≡ ∆− `+ `

2
, in unitary CFT

{
τ ≥ 1 ` = 0 or ` = 0

τ ≥ 2 otherwise
(5.2)

To a leading order, double-twist operators resemble a generalized free theory (GFT), indicating that
interactions in the corresponding AdS5 falls for large impact parameter [53].

The picture here also differs from the scalar simple case, operators exchanged in different OPE channels
can belong to one of three classes of representations of the Lorentz group SO(1, 3). These are bosonic
operators of the rep (`, `), fermionic operators in the reps (1 + `, `) and (`, 1 + `). Each of these classes
will contribute in the light-cone limit. The main results of this chapter are the corrections to OPE
coefficients (5.51) (and (5.54)) and corrections to the twist, referred to as anomalous dimensions, in

68
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Figure 5.1: Lght-Cone Limit I: On z, z plane we use the conformal symmetry to fix the points to the
configuration x1 at (0, 0), x2 at (z, z) , x3 at (1, 1) and send x4 to ∞ . In the light-cone limit z → 0
x2 is approaching the light cone of x1.

(5.50) (and (5.53)) corresponding to the existence of a bosonic (and fermionic) operator with low twist
in the spectrum of CFT.

Some tensor correlators have been explored in the light-cone limit, correlators involving conserved spin-1
current and spin-2 stress-energy tensor were used to prove the conformal collider bounds, first proposed
in [67], from CFT first principles [25, 26, 27].

The layout of the chapter is as follows: we will start by reviewing the scalar case in section 5.1 to show
how the computation works in a simpler instance, following arguments of [53]. In section 5.2 we write
the two different sets of bootstrap equations for the correlator 〈φψψφ〉. We solve the equations in two
light-cone limits , we first prove the existence of double-twist operators [φψ]n and then compute the
bosonic and fermionic corrections to their OPE coefficients and scaling dimensions. We calculate in
appendix E the OPE coefficients of double-twist operators in a GFT.

5.1 Review of Scalar Correlator Case

We will consider four point function of identical scalars Φ with scaling dimension ∆Φ in 4 dimensions
for simplicity

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
g(u, v)

(x2
12x

2
34)∆Φ

, (5.3)

where g is an arbitrary function for now, but using OPE it can be written as a sum of conformal blocks.
The crossing equation

(zz)−∆Φ
∑
O
|λ〈ΦΦO〉|2f∆,`(z, z) = ((1− z)(1− z))−∆Φ

∑
O
|λ〈ΦΦO〉|2f∆,`(1− z, 1− z), (5.4)

where O runs over primary operators in the Φ×Φ OPE and ∆, ` are the dimension and spin of O. Note



Section 5.1. Review of Scalar Correlator Case Page 70

that in this case O are even spin primary tensors. The functions f∆,`(z, z) are the p = 0 conformal
blocks defined in eq. (4.70)

f∆,`(z, z) = G
(0)
0 (z, z)|a=b=0 . (5.5)

The light cone limit is given by z � 1− z ≡ ε� 1 (equivalent to u→ 0 with u� v ) . In this limit,
the functions in the left-hand side of (5.4) behaves as follows, taking into account that ` is even:

f∆,`(z, z) = zτ/2
(
k0,0;0
τ
2

+` (1− ε) +O(z)
)
, (5.6)

where the ka,b;cρ (x) function (4.71) is basically a hypergeometric function. It is clear that the left-hand
side of (5.4) is dominated by operators of minimum twist, these are lead by the unit operator τunit = 0.
Next leading terms will come operators which satisfy unitarity bounds

τ ≡ ∆− `, in unitary CFT

{
τ ≥ 1 ` = 0.

τ ≥ 2 otherwise
(5.7)

Meanwhile a conformal block on the right-hand side of (5.4) can be replaced by it expansion for small
ε = 1− z

f∆,`(1− z, 1− z) = ε
τ
2
−∆Φ f̃τ (ε) k0,0;0

τ/2+`(1− z) +O
(
ετ/2+`

)
,

f̃τ (ε) ≡ 1

1− ε 2F1(
τ

2
− 1,

τ

2
− 1, τ − 2, ε).

(5.8)

Hence the bootstrap eq. (5.4) in the light-cone limit

z−∆Φ(1− ε)−∆Φ + · · · = ε−∆Φ
∑
O
|λ〈ΦΦO〉|2ετ/2 f̃τ (ε) k0,0;0

τ/2+`(1− z), (5.9)

where we have isolated the contribution of the unit operator in the left-hand side, which is a power-law
divergence in z. However, individual terms on the right-hand side are analytic in z up to a logarithm
ln z

ka,b;cρ (1− z) =
Γ(a+ b+ 2ρ)

Γ(a+ ρ)Γ(b+ ρ)

∞∑
m,n=0

(−ρ)m(a+ ρ)n(b+ ρ)n
m!(n!)2

zm+n

(
2ψ(n+ 1)− ψ(a+ n+ ρ)− ψ(b+ n+ ρ)− ln(z)

)
,

(5.10)

the notation used here (x)n = Γ (x+ n) /Γ (x) is the Pocchamer symbol and ψ(y) = Γ′(y)/Γ (y) is the
digamma function.

The resolution of this dilemma is that the sum over O, which is a double sum over τ and `, does not
converge uniformly around z = 0. The sum over τ is actually convergent, but the sum over ` diverge
for z < 0. To understand the convergence of the blocks we only need to see how they behave for large
τ or large `. In large τ limit with |z|, |ε| < 1, the blocks are suppressed by powers ετ/2 . This means
that the sum over τ will converge for small z and ε.

Instead, in the large ` limit1

ka,b;cτ
2

+`(1− z) =
22`+τ+c`

1
2

√
πz

1
2

(a+b−c)
Ka+b−c(2`

√
z) +O

(
`−

1
2

)
≈ 2c+2`+τ−1

z
1
2

(a+b−c+ 1
2

)
e−2`

√
z (5.11)

1One can get this approximation by writing the hypergeometric function in the integral form, expanding in powers of
1/` while z`2 ∼ 1. It was proved in [53] that the region z`2 ∼ 1 gives the greater contribution.
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where Kα(x) is the modified Bessel function. Note that for Re(
√
z) > 0 there is an exponential

suppression, but for Re(
√
z) < 0 the block diverge as `→∞. Hence the sum over ` in the right-hand

side of (5.9) converges at large ` for positive real
√
z, and so we will define it by analytic continuation

elsewhere in the complex z plane. Crucially, the analytic continuation of the sum contains the power law
divergence in z that is not exhibited by any of the individual terms in the sum. The terms in the sum
over large ` which reproduce z−∆Φ should also have τ → ∆Φ since the leading term on the left-hand
side in independent of ε. These are the double-twist operators [ΦΦ]0 .

5.1.1 Existence of [ΦΦ]n

The sum over ` of families [ΦΦ]n reproduce the z−∆Φ divergence. To see that, first we assume the
dependence of the OPE coefficients on τ and ` factorizes for `� 1

|λ〈ΦΦ [ΦΦ]n〉|
2 = q(τ)2−2``X +O(`X−1), (5.12)

for some unknown power X and function q. The the sum in the right-hand side of (5.9) will contain
the sum over spin of the [ΦΦ]0 family of operators

∑
O∈[ΦΦ]0

|λ〈ΦΦO〉|2 f̃2∆Φ
(ε) k0,0;0

∆Φ+`(1− z) ≈
p(2∆Φ) f̃2∆Φ

(ε)√
π

∑
`�1

22∆Φ`X+ 1
2K0(2`

√
z), (5.13)

where we used the approximation (5.11). Next we approximate the sum over ` as an integral and make
use of the formula ∫ ∞

0
dxxαKβ(x) = 2α−1Γ

(
1 + α+ β

2

)
Γ

(
1 + α− β

2

)
, (5.14)

Since the sum admit only even spin, we have to divide the integral by 2 ,so that
∑

` →
1
2

∫
d` . We get

the right divergence z−∆Φ provided that the OPE coefficients behave at large ` as:

|λ〈ΦΦ [ΦΦ]0〉|
2 =

√
π `2∆Φ− 3

2

22∆Φ+2`−3Γ(∆Φ)2
+O(`2∆Φ− 5

2 ) (5.15)

Considering higher orders in ε one needs the contribution of operators families [ΦΦ]n, for all positive
integers n, to match the identity contribution to in the bootstrap equation (5.9). The OPE coefficients
can be computed to be

|λ〈ΦΦ [ΦΦ]n〉|
2 = lim

`→∞
PGFT
n,` +O(`2∆Φ− 5

2 ), (5.16)

where PGFT
n,` are the OPE coefficients of double-twist operators [ΦΦ]n in a generalized free theory

(GFT). A GFT (also called mean field theory) is dual to a free theory on AdS. It is a theory in which
any correlator is given as a sum over the 2-pt function contractions:

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉
∣∣∣
GFT

=
1

(x2
12x

2
34)∆Φ

+
1

(x2
14x

2
23)∆Φ

+
1

(x2
13x

2
24)∆Φ

(5.17)

and double-twist operators [ΦΦ]n are the only primary operators that appear in the OPE Φ× Φ.
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5.1.2 Corrections to Dimensions and OPE Coefficients

We can determine the anomalous dimensions of double-twist operators by matching additional terms on
the left-hand side of (5.4). Let Om be be the smallest-twist operator in the Φ×Φ OPE that is not the
unit operator. It can be a low-dimension scalar or the conserved stress energy tensor Om = Tµν . Om
contributes a power law divergence in z to the crossing equation

z−∆Φ(1− ε)−∆Φ + |λ〈ΦΦOm〉|
2 z

τm
2
−∆Φ

(1− ε)∆Φ
k0,0;0
τm/2+`m

(1− ε) + . . .

= z−∆Φ(1− ε)−∆Φ + |λ〈ΦΦOm〉|
2 z

τm
2
−∆Φ

(1− ε)∆Φ

Γ(τm + 2`m)

Γ(τm/2 + `)2

(
2ψ(1)− 2ψ

(τm
2

+ `m

)
− ln(ε)

)
+ . . .

= ε−∆Φ
∑
O
|λ〈ΦΦO〉|2ετ/2 f̃τ (ε) k0,0;0

τ/2+`(1− z),

(5.18)
where we have used the first term of (5.10). The divergence z

τm
2
−∆Φ is reproduced on the right-hand

side by the sum over [ΦΦ]0 with corrections to scaling dimensions and OPE coefficients that goes as
1/`τm

|λ〈ΦΦ [ΦΦ]0〉|
2 =

(
1 +

δP0

`τm

)
lim
`→∞

PGFT
0,` . (5.19)

To match the ln(ε) term in (5.18), we can take

τ[ΦΦ]0 = 2∆Φ + γ0(`). (5.20)

and calculate

γ0(`) = − 2

`τm

|λ〈ΦΦOm〉|2Γ(∆Φ)2Γ(2`m + τm)

Γ
(
∆Φ − τm

2

)2
Γ
(
`m + τm

2

)2 , δP0(`) = γ0(`)
(
ψ
(
`m +

τm
2

)
+ γ + ln(2)

)
(5.21)

Again comparing higher order in ε will allow us to compute similar corrections for [ΦΦ]n for n > 0.

Note that |λ〈ΦΦ [ΦΦ]n〉|2 calculated here is an asymptotic density of OPE coefficients at large spin. From
the argument used here it’s not clear how this density is distributed, it could be distributed evenly with
one operator at each spin, or one operator every other spin or another way.

Assuming that there is only one operator of the family [ΦΦ]n at each spin, crossing symmetry had
allowed us to the compute their scaling dimensions and OPE coefficients as an asymptotic expansion 1/
spin [56] This assumption has been confirmed in explicit examples, for instance in the three-dimensional
Ising model, where the resulting expansion appears to remain accurate all the way down to spin two
[59, 60, 55]. Recently, [68, 69, 70, 71] have developed an inversion formula to extract CFT data from
4-point correlators, in the light-cone limit this formula gives an exact analytic result confirming the
previous assumptions and providing a new promising method to solve bootstrap equations.

5.2 The Scalar-Fermion Bootstrap Equations

Let φ be a primary scalar with scaling dimension ∆φ, ψ a spin 1/2 Weyl fermion in the rep (1, 0) with
scaling dimension ∆ψ and ψ = ψ† transform in the rep (0, 1) . We are going to study the 4-point
correlator
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〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 (5.22)

in the light-cone limits, where one operator approaches the light-cone of another. Let’s first set the
notation we are going to use in this section.

5.2.1 Notations

There are three ways to take OPE in the correlator (5.22): s−channel φ(x1) × ψ(x2, s2) , t−channel
φ(x1)× ψ(x4, s̄4) and u−channel φ(x1)× φ(x3).

The operators that appears in these OPE’s belong to one of three Lorentz reps: bosonic symmetric
traceless tensors (`, `) and fermionic rep (`+ 1, `) and (`, 1 + `), where ` is a non-negative integer. To
make it easier to differentiate between these different families of operators in the following discussion
we will refer to them with different letters

O(`)
∆ in the rep (`, `),

A(`)
∆ in the rep (`, `+ 1),

B(`)
∆ in the rep (`+ 1, `),

(5.23)

the subscript ∆ is the scaling dimension of the respective operator. Note that the reps (`, `+ 1) is the
complex conjugate of (` + 1, `) and vice versa. So A ≡ A† transform as a B operator, while B ≡ B†
transform as an A operator.

In the absence of global symmetries (charges) all the bosonic operators are hermitian

O(`)
∆ ≡

(
O(`)

∆

)†
= O(`)

∆ . (5.24)

The Correlation Function 5.22 can be written in terms of two tensor structures

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 =

1∑
I=0

gI(z, z̄) TI , (5.25)

where the tensor structures are defined as

T0 ≡ K4 Î
42
31

∣∣∣
Poincaré

, T1 ≡ K4 Î
42
∣∣∣
Poincaré

, K4 ≡
(
x2

12 x
2
34

)−∆φ+∆ψ
2

− 1
4

(
x2

13

x2
24

)∆ψ−∆φ
2

+ 1
4

. (5.26)

Î42
31 , Î42

31 are 4 point tensor structures where defined in section 2.3 and K4 is the kinematic factor.

5.2.2 The OPE Decompositions

Note that the correlator (5.25) is exactly the p = 1 seed correlator in section 4. 4.1, therefor the CPW

that appear in the s−channel (and in t−channel) are the seed CPW W seed(1) and W
seed

(1) computed

there. In the u− channel expansion the operators exchanged are O(`)
∆ , so the CPW are related by

differential operators to W seed(0). Here we will change the notation slightly compared to chapter 4 .
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The s−channel decomposition is given by

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 =
∑
A,B

(
PAW

seed
〈φψA〉〈Aφψ〉 + PBW

seed
〈φψB〉〈Bφψ〉

)
, (5.27)

W seed
〈φψB〉〈Bφψ〉 and W

seed
〈φψA〉〈Aφψ〉 are W seed(p = 1) and W

seed
(p = 1) computed in chapter 4 , with

the right replacement of parameters that depend on external operators. We have also introduced the
subscript to clearly indicate what operator is exchanged. We have also defined the OPE coefficients

PA ≡ λ〈φψA〉λ〈Aφψ〉 , PB ≡ λ〈φψB〉λ〈Bφψ〉, (5.28)

where λ〈f1f2f3〉 is the OPE coefficient that appears in the 3-point function 〈f1f2f3〉. The 3-point
functions involving the coefficients (5.28) are defined in the section 2.9 and they have the following
relation

λ∗〈φψA〉 = λ〈Aφψ〉, λ∗〈φψB〉 = −λ〈Bφψ〉. (5.29)

or equivalently
PA =

∣∣λ〈φψA〉∣∣2, PB = −
∣∣λ〈φψB〉∣∣2 , (5.30)

and PA is a positive real number while PB is negative real number.

The t− channel expansion is similar to the s−channel up to exchanging x1 ↔ x3

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 =
∑
A,B

(
PAW

seed
〈φψA〉〈Aφψ〉 + PBW

seed
〈φψB〉〈Bφψ〉

)∣∣∣∣∣
1↔3

. (5.31)

In the u−channel expansion symmetric traceless operators O appear. Their CPWs are related to
W seed(p = 0) by differential operators as explained in chapter 3

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 =
∑
O

2∑
a=1

λ〈φφO〉λ
a
〈Oψψ〉D

a
34W

seed
〈φφO〉〈Oφ′φ′〉

∣∣∣∣∣
2↔3

. (5.32)

Let’s explain how to arrive to this form (5.32): W seed
〈φφO〉〈Oφ′φ′〉 is W seed(p = 0) with subscript that to

external and exchanged operator. φ′ is a scalar. The CPW W seed(p = 0) is computed for O appearing in
the correlator s−channel, because of this we have to take 2↔ 3. The differential operators Da34 act on
the points 3 and 4, they relate the correlator 〈Oψψ〉 to 〈Oφ′φ′〉. The former correlator has two tensor
structures, hence the index a = 1, 2. Using the techniques of chapter 3, we find that [φ′] = ∆ψ + 1

2 and
the differential operators to be

D1
34 = I43 ,

D2
34 =

4∆− (`+ ∆)2

4`(∆− 1)
I43 +

1

4`(1−∆)
∇43D̃34D̃43X

−1
34 ,

(5.33)
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where `,∆ are the spin and dimension of the exchanged operator O.

We will define

P a
O ≡ λ〈φφO〉λa〈Oψψ〉 (5.34)

One of the operators O exchanged in this channel is the unit operator, its contribution is just a product
of 2-point correlators

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 =
−i I42|Poincaré

(x2
13)∆φ(x2

24)∆ψ+ 1
2

+ · · · = −iT1

(zz)−
1
2

(∆φ+∆ψ)− 1
4

+ . . . (5.35)

Conformal Partial Waves (CPW): Each one of the CPW in s−, t− and u−channels can be expanded
in the basis (T0,T1) of the correlation function 5.25. So when we equate any two of the three crossing
channels we get two equations, one for each of the linearly independent tensor structure TI .

W seed
〈φψB〉〈Bφψ〉 =

1∑
e=0

G(1)
e (z, z)Te (5.36)

W seed
〈φψB〉〈Bφψ〉

∣∣∣
1↔3

=
1∑
e=0

G(1)
e (1− z, 1− z)(Te|1↔3) (5.37)

where G
(p)
e are the seed conformal blocks which were computed in chapter 4 , under permutation

z|1↔3 = 1 − z and z|1↔3 = 1 − z. The CPW W
seed
〈φψA〉〈Aφψ〉 have similar expansion in terms of G

(p)
e

seed blocks. The tensor structures defined in (5.26) have the following properties under permutation

T0|1↔3 =

(
zz

(1−z)(1−z)

)∆φ+∆ψ+ 1
2

2

(T1 −T0) , T1|1↔3 =

(
zz

(1−z)(1−z)

)∆φ+∆ψ+ 1
2

2

T1 . (5.38)

Meanwhile u−channel CPW can be written

W a
〈φφO〉〈Oψψ〉 = (ωω)

1
2

(∆φ+∆ψ+ 1
2

)
1∑
e=0

D̃ae (∂ω, ∂ω̄) f∆,`(ω, ω̄) Te, (5.39)

where

ω ≡ 1

z
= z|2↔3 , ω̄ ≡ 1

z
= z|2↔3 , (5.40)

and f∆,` is the seed scalar block defined in (5.5).

5.2.3 The Bootstrap Equations

Here we investigate two sets of bootstrap equations :
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the u− t equations

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 = 〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 (5.41)

and the s− t equations

〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 = 〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 (5.42)

5.3 Analytic Analysis of Bootstrap Equations

In this section we will analyze the bootstrap equations (5.41) and (5.42) in the respective light-cone
limit. These limits will be ω � 1 − ω̄ � 1 for u − t bootstrap eq. (5.41) and z � 1 − z � 1 for the
s− t bootstrap eq. (5.42). If the scalar case is an indication, we would expect to prove the existence of
double-twist operators [φψ]n in the large spin tail of the spectrum of the CFT. Our analysis will prove
this picture, double-twist operators are required to produce the contribution of low-twist operators in
the crossed channel. It then possible to compute the anomalous dimensions and OPE coefficients of
the double-twist operators as asymptotic expansions in 1/spin.

In this case double-twist operators belong to two families: A in rep (`, `+ 1) and B in the rep (`+ 1, `).
Because of the light-cone limits we study these operators dominate the t−channel expansion. At leading
order of 1/` they resemble GFT operators and reproduce the unit operator in the u−channel. At
subleading order of 1/` they also reproduce low-twist bosonic operators in the u−channel and low-twist
fermionic oprators in the s−channel.

τA = ∆φ + ∆ψ −
1

2
+ 2n+ γA(`, n), γA(`, n) = γbA(`, n) + γfA(`, n)

τB = ∆φ + ∆ψ +
1

2
+ 2n+ γB(`, n), γB(`, n) = γbB(`, n) + γfB(`, n),

(5.43)

where we differentiate the anomalous dimensions γ according to their source, they can result from
low-twist bosonic operator γb (sec 5.3.1) or a low-twist fermionic operator γf (sec 5.3.2). We make a
similar distinction for the corrections of OPE coefficients

PA = lim
`→∞

PGFTA (n, `) + δPA, δPA = δP bA + δP fA, (5.44)

PB = lim
`→∞

PGFTB (n, `) + δPB, δPB = δP bB + δP fB . (5.45)

In the next two sections we go into details of these computations, which largely follows that of [53] we
reviewed in section 5.1.

5.3.1 Equations: u-t-channel

We start by analyzing the equations (5.41). The light-cone limit we will take here is ω � 1 − ω � 1
which in equivalent to x2 approaching the light-cone of x4 (see fig. 5.2).
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x
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x4
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x1 ∞

Figure 5.2: Lght-Cone Limit II: On ω, ω plane we use the conformal symmetry to fix the points to the
configuration x4 at (0, 0), x2 at (ω, ω) , x3 at (1, 1) and send x1 to ∞ . In the light-cone limit ω → 0
x2 is approaching the light cone of x4.

Within this limit the, individual terms on the sides of bootstrap equation (5.41) behaves differently,
schematically as2

RI +
∑
Om

P aOmG
′ I
a (ω, ω) =

∑
A
PAG

′′ I
A (1− ω, 1− ω) +

∑
B
PBG

′′ I
B (1− ω, 1− ω), (5.47)

where G′ and G′′ is a leading term in the light cone limit, RI is the identity contribution, where R1 = 1
and R0 = 0 and Om are low-twist symmetric traceless operators exchanged in the u−channel. Here we
just indicate the leading behaviour

G′ ∼ ωτOm/2, G′′ ∼ ω∆ψ+1/2 lnω. (5.48)

The LHS is dominated by power-law divergence in ω coming from low-twist operators, leading by the
unit operator (τ11 = 0). On RHS however each term made up of hypergeometric function of 1− ω and
has at most a logarithmic divergence.

Only an infinite sum of terms in the RHS can possibly reproduce the power low divergence on the LHS.
Specifically, the sum of high spin operators with fixed twist will give a power low divergence on the
RHS. Matching also the powers of ω , we conclude that these large-spin operators should have twists,
in leading powers of 1/`, that match those of double-twist operators in GFT (5.43).

The sum over ` will give rise to the leading singularity in ω ( unit operator contribution the u−ch)

2To express t−channnel blocks in ω, ω variables, we make use of the F function property

F−(a,b,c)
ρ1,ρ2

(
1− 1

ω
, 1− 1

ω

)
= (−1)ρ1−ρ2 (ωω)a F−(a,c−b,c)

ρ1,ρ2 (1− ω, 1− ω) (5.46)
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provided that the OPE coefficients behave asymptotically as:

PA(n, `) ≈ −
2−2n−2`

√
2π (∆φ − 1)n

(
∆ψ − 3

2

)
n

n! Γ (∆φ) Γ
(
∆ψ + 1

2

) (
∆φ + ∆ψ + n− 7

2

)
n

(
`

2

)∆φ+∆ψ−1

= lim
`→∞

PGFT
A ,

PB(n, `) ≈
2−2n−2`−2

√
2π (∆φ − 1)n

(
∆ψ − 3

2

)
n+1

n! Γ (∆φ) Γ
(
∆ψ + 1

2

) (
∆φ + ∆ψ + n− 5

2

)
n

(
`

2

)∆φ+∆ψ−2

= lim
`→∞

PGFT
B ,

(5.49)

matching GFT coefficients in the limit `→∞ , while n takes all non-negative integer values.

Actually the asymptotic behavior of PA and PB at large ` match the leading and subleading terms in
GFT coefficients expansion around ` → ∞. We can state these results by saying the theory spectrum
contains operators that looks as general free theory at high spin.

Now we solve the bootstrap equation to sub-leading order in ω going beyond the identity contribution
in the u− channel to low-twist operators Om in the OPE φ×φ (and ψ×ψ). Assuming there is a stress-
tensor, then τOm ≤ 2 , in this case the Om contribute a power low divergence in ω in the LHS of (5.47).
This divergence is again reproduced by a sum over spin of double-twist operators, with corrections to
their twists ( γbX , γb

Y
) and OPE coefficients (δP bA, δP bB ). The corrections fall with increasing spin with

a rate controlled by the τOm , they go as `−τOm

γA(`, n) = −i `−τOm
2(−1)`OmΓ (τOm + 2`Om)P 1

Om

(∆φ)−
τOm

2

(
∆ψ + 1

2

)
−
τOm

2

Γ
( τOm

2 + `Om
)2

×
n∑
i=0

(n)i
(
∆φ + ∆ψ + n− 7

2

)
i

( τOm
2 + `Om − i

)
2i

i!(∆φ − 1)i
(
∆ψ − 3

2

)
i

,

γB(`, n) = −i `−τOm 2(−1)`OmΓ (τOm + 2`Om)

(∆φ)−
τOm

2

(
∆ψ + 1

2

)
−
τOm

2

Γ
( τOm

2 + `Om
)2

n∑
i=0

(n)i
(
∆φ + ∆ψ + n− 5

2

)
i

( τOm
2 + `Om − i

)
2i

i!(∆φ − 1)i(∆ψ − 1
2)i

×

×
(

2∆ψ − τOm − 3

(2∆ψ − 3)
P 1
Om −

2∆ψ − τOm − 1

(2∆ψ − 3)
P 2
Om

)
,

(5.50)

We also solved for δP (n) and δP (n) for n = 0, 1, 2

δPA(`, 0) = γA(`, 0)
(
ψ
( τOm

2 + `Om
)
− ψ (1)− ln 2

)
,

δPB(`, 0) = γB(`, 0)
(
ψ
( τOm

2 + `Om
)
− ψ (1)− ln 2

)
,

(5.51)

where τOm and `Om are the twist and spin of Om the minimum-twist operator exchanged in the u−
channel, (x)n = Γ (x+ n) /Γ (x) is the Pocchamer symbol and ψ(y) = Γ′(y)/Γ (y) is the digamma
function.

When Om is the stress-energy tensor. The Ward identities imply

λ〈φφT 〉 = −
2∆φ

3π2
, λ1

〈Tψψ〉 =
−i (2∆ψ − 3)

12π2
, λ2

〈Tψψ〉 =
i

2π2
, (5.52)

see appendix F for details. The anomalous dimensions (5.50) are negative ∀n.
Negativity of the anomalous dimensions caused by the exchange of the stress tensor in 4 dimensional
CFT has been related to the gravity being attractive in 5 dimensional Ads [53, 54].
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5.3.2 Equations: s-t-channel

We have already proved from the t− u bootstrap equations that at high spin, the spectrum of a CFT
contains a GFT-like part. We also computed the correction due to the exchange of a bosonic minimum-
twist operator. In this section, we will instead compute the correction due a fermionic minimum-twist
operator, since in both s− and t− channel fermionic operators are exchanged.

The limit we will take here is z � 1 − z � 1. In this limit the s− channel expansion get the leading
contributions from minimum-twist fermions. Suppose a low-twist operator Ψm, which transform in the
rep (`Ψm + 1, `Ψm) and has a twist τΨm , is exchanged in the s−channel with OPE coefficient PΨm .
The complex conjugate operator Ψm, which transform in the rep (`Ψm , `Ψm + 1), is exchanged in the
s−channel with OPE coefficient PΨm

3. In a similar reasoning to the previous sections we compute the
n = 0 fermionic contribution to the anomalous dimensions

γfA(`, 0) = 2 (−1)``−τΨm PΨm

Γ(∆φ)Γ(∆ψ + 1
2)Γ(1 + 2`Ψm + τΨm)

Γ
(

1
4(2∆φ + 2∆ψ − 2τΨm + 1)

)2 ×

(−1)`Ψm

Γ
(

1
4(2∆φ − 2∆ψ + 2τΨm + 4`Ψm + 3)

)
Γ
(

1
4(−2∆φ + 2∆ψ + 2τΨm + 4`Ψm + 1)

) ,
γfB(`, 0) = 2 (−1)1+``−τΨm PΨm

Γ(∆φ)Γ(∆ψ + 1
2)Γ(1 + 2`Ψm + τΨm)

(∆ψ − 3
2) Γ

(
1
4(2∆φ + 2∆ψ − 2τΨm − 1)

)2×
(−1)`Ψm

Γ
(

1
4(2∆φ − 2∆ψ + 2τΨm + 4`Ψm + 1)

)
Γ
(

1
4(−2∆φ + 2∆ψ + 2τΨm + 4`Ψm + 3)

) ,

(5.53)

and the correction to the OPE coefficients

δP fA(`, 0) =
1

2
γfA(`, 0)

(
− 2ψ(1)− ln 4 + ψ

(
∆φ −∆ψ + τΨm

2
+ `Ψm +

3

4

)
+ ψ

(1

4
(−2∆φ + 2∆ψ + 2τΨm + 4`Ψm + 1)

))
,

δP fB (`, 0) =
1

2
γfB(`, 0)

(
− 2ψ(1)− ln 4 + ψ

(1

4
(2∆φ − 2∆ψ + 2τΨm + 4`Ψm + 1)

)
+ ψ

(1

4
(−2∆φ + 2∆ψ + 2τΨm + 4`Ψm + 3)

))
.

(5.54)

3It is not necessary that both the operator Ψm and its complex conjugate Ψm appear in the OPE expansion, their OPE
coefficients PΨm and PΨm

are independent and either can be set to zero.



6. Conclusions

In this thesis we explore 4D CFT. For the larger part of ( chapter 2 - 4 ) our gaol is to provide the tools
needed to bootstrap a correlators with operators in general Lorentz rep.

We computed in chapter 2 the most general three point function occurring in a 4D CFT between bosonic
and fermionic primary fields in arbitrary representations of the Lorentz group. We have used the 6D
embedding formalism in twistor space with an index free notation, as introduced in ref.[18], to efficiently
recast the result in terms of 6D SU(2,2) invariants. The main result of the chapter is the compact 6D
formula (2.88), from which any 4D correlator can easily be extracted. The constraints arising from
conserved operators take a very simple form, see eqs.(2.107) and (2.108), and can be solved within the
formalism.

Understanding three-point functions is the first step. Next, in chapter 3, we use our knowledge of
three-point functions and introduce a set of differential operators, eqs.(3.14), (3.15) (3.16) and (3.23),
that enables us to relate different three-point functions. In particular, three-point tensor correlators with
different tensor structures can always be related to a three-point function with a single tensor structure.

Particular attention has been devoted to the three point functions of two traceless symmetric and one
mixed tensor operator, where explicit independent bases have been provided, eqs.(3.48) and (3.51).
These results allow us to deconstruct four point tensor correlators, since we can express the CPW in
terms of a few CPW seeds. We argue that the simplest CPW seeds are those associated to the four
point functions of two scalars, one O2δ,0 and one O0,2δ field, that have only 2δ + 1 independent tensor
structures. The argument extends beyond the traceless symmetric operators and δ = p/2 can be an
integer or half integer.

In chapter 4 we do the computation of the seed conformal blocks G
(p)
e (and G

(p)
e ) associated to the

exchange of mixed symmetry bosonic and fermionic primary operators O(`,`+p) (and O(`+p,`)
) in the

four point functions (4.6). We have found a totally general expression for G
(p)
e for any e, p, ∆, ` and

external scaling dimensions, by solving the Casimir set of differential equations, that can be written in
the compact form (4.30). The shadow formalism has been of fundamental assistance to deduce it and
also as a useful cross check for the validity of the results. The final expression for the conformal blocks
is given in eq.(4.112).

The conformal blocks are expressed in terms of coefficients cem,n, that can be determined recursively,
e.g. by means of eq.(4.111). For each CB, the coefficients cem,n span a 2D octagon-shape lattice in
the (m,n) plane, with sizes that depend on p and e and increase as p increases. We have reported in
Appendix D the explicit form of cem,n for the simplest case p = 1. We have not reported the cem,n for
higher values of p, since their number and complexity grows with p.

In chapter 5 we use the technology provided in chapter 2 - 4 to write the bootstrap equations for
〈φ(x1)ψ(x2, s2)φ(x3)ψ(x4, s̄4)〉 and solve it in the light-cone limit. We prove the existence of two
families of fermionic double-twist operators, resembling the generalized free theory (GFT) . The main
results of the chapter is anomalous dimensions (5.50) and corrections to OPE coefficients (5.51) related
to low-twist boson in the spectrum, and the corresponding (5.53) and (5.54) related to low-twist fermions
in the spectrum. In appendix E we compute the OPE coefficients of double-twist operators in a GFT.
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Appendix A. Conventions of 6D Twistor Space

We follow the conventions of Wess and Bagger [72] for the two-component spinor algebra in 4D (See in
particular Appendix A). Six dimensional vector indices are denoted by M,N, . . ., with M = {µ,+,−};
four dimensional vector indices are denoted by µ, ν, . . .; four-dimensional spinor indices are denoted
by dotted and undotted Greek letters, α, β, . . ., α̇, β̇, . . .; six-dimensional spinor (twistor) indices are
denoted by a, b, . . ., with a = {α, α̇}. We use capital and small letters for 6D and 4D tensors; in
particular, 6D and 4D coordinates are denoted as XM and xµ, where xµ = Xµ/X+.

The conformal group SO(4, 2) is locally isomorphic to SU(2, 2). The spinorial representations 4± of
SO(4, 2) are mapped to the fundamental and anti-fundamental representations of SU(2, 2). Roughly
speaking, SO(4, 2) spinor indices turn into SU(2, 2) twistor indices. We denote by Va and W

a ≡
W †bρab , where ρ is the SU(2,2) metric, twistors transforming in the fundamental and anti-fundamental
of SU(2, 2), respectively:

V → UV , W →W U . (A.1)

In eq.(A.1), U and U ≡ ρ U †ρ satisfy the condition UU = UU = 1.

The non-vanishing components of the 6D metric ηMN and its inverse ηMN in light-cone coordinates
are

ηµν = ηµν = diag(−1, 1, 1, 1) , η+− = η−+ =
1

2
, η+− = η−+ = 2 . (A.2)

Six dimensional Gamma matrices ΓM are constructed by means of the 6D matrices ΣM and Σ
M

,
analogues of σµ and σ̄µ in 4D:

ΓM =

(
0 ΣM

Σ
M

0

)
, (A.3)

obeying the commutation relation
{ΓM ,ΓN} = 2ηMN . (A.4)

It is very useful to choose a basis for the Σ and Σ̄ matrices where they are antisymmetric. This is
explicitly given by

ΣM
ab =

{(
0 σµαγ̇ε

β̇γ̇

−σ̄µα̇γεβγ 0

)
,

(
0 0

0 2εα̇β̇

)
,

(
−2εαβ 0

0 0

)}
,

Σ
Mac

=

{(
0 −εαγσµ

γβ̇

εα̇γ̇σ
µγ̇β 0

)
,

(
−2εαβ 0

0 0

)(
0 0
0 2εα̇β̇

)}
,

(A.5)

where, in order, M = {µ,+,−} in eq.(A.5). The 6D spinor Lorentz generators are defined as(
ΣMN

) b

a
=

1

4
(ΣM

acΣ
N cb − ΣN

acΣ
M cb

) ,(
Σ
MN
)a

b
=

1

4
(Σ

M ac
ΣN
cb − Σ

N ac
ΣM
cb ) .

(A.6)

Useful relations among the ΣM and Σ
M

matrices, used repeatedly in this thesis, are the following:

Σ
Mab

=− 1

2
εabcdΣM

cd , ΣM
ab = −1

2
εabcdΣ

Mcd
,

ΣM
abΣMcd = 2εabcd, Σ

Mab
Σ
cd
M = 2εabcd,

ΣM
abΣ

cd
M =− 2(δcaδ

d
b − δdaδcb) ,

(A.7)

81



Page 82

where ε1234 = ε1234 = +1.

The 6D null cone is defined by

X2 = XMXNηMN = 0 =⇒ X− = −XµX
µ

X+
. (A.8)

On the null cone we have

X1 ·X2 = XM
1 XN

2 ηMN = −1

2
X+

1 X
+
2 (x1 − x2)µ(x1 − x2)µ , (A.9)

where xµ = Xµ/X+ are the standard 4D coordinates. We define

xµij ≡ x
µ
i − x

µ
j , x2

ij ≡ x
µ
ijxµ,ij . (A.10)

Twistor space-coordinates are defined as

Xab ≡ XMΣM
ab = −Xba , X

ab ≡ XMΣ
Mab

= −X
ba
. (A.11)

A very useful relation is

XacX
cb

= XMXNΣM
acΣ

N cb
=

1

2
XMXN (ΣM

acΣ
N cb

+ ΣN
acΣ

M cb
) = XMX

M δba = X2 δba, (A.12)

and similarly, suppressing twistorial indices, XX = X2. One also has

X1 acX
cb
2 + X2 acX

cb
1 = X

bd
1 X2 da + X

bd
2 X1 da = 2X1 ·X2 δ

b
a . (A.13)

In the basis defined by eq.(A.5), we have
Xαγ = −X+εαγ

X γ̇
α = −Xµσ

µ

αβ̇
εβ̇γ̇

Xα̇
γ = Xµσ

µα̇βεβγ

Xα̇γ̇ = X−εα̇γ̇


X
αγ

= −X−εαγ

X
α
γ̇ = −Xµε

αβσµβγ̇
X

γ
α̇ = Xµεα̇β̇σ

µβ̇γ

Xα̇γ̇ = X+εα̇γ̇

(A.14)

The 4D spinors are embedded as follows in the 6D chiral spinors (twistors):

Ψa =

(
ψα
χ̄α̇

)
, Φ̄a =

(
φα

ξ̄α̇

)
. (A.15)

In order to avoid a proliferation of spinor indices, we define

(σµε)γ̇α ≡ σ
µ

αβ̇
εβ̇γ̇ . (A.16)

Notice that in writing eq.(A.16) we have used the usual convention of matrix multiplication. A similar
comment applies for other similar expressions involving σ̄µ, σµν and σ̄µν .



Appendix B. Spinor and Vector Notation for 4D
Tensor Fields

We usually write bosonic fields transforming in the lowest representations of the Lorentz group in vector
notation: Aµ, Tµν , etc. With the notable exception of symmetric traceless tensors of the form T(µ1...µl),
the vector notation becomes awkward for higher spin. On the contrary, by using the isomorphism
between SO(3, 1) and SL(2, C), a generic irreducible representation of the Lorentz group is defined by
two integers (l, l̄). The matrix σµ provides the link between the vector and spinor representations of
fields. Given a reducible bosonic tensor field tµ1...µn or fermionic spinor-tensor fields ψα,µ1...µn , ψ̄α̇µ1...µn ,
we have

(σµ1ε) β̇1
α1
. . . (σµnε) β̇nαn tµ1...µn =

n∑
l,l̄

t
β̇1...βl̄
α1...αlεαl+1αl+2

. . . εαn−1αnε
β̇l̄+1β̇l̄+2 . . . εβ̇n−1β̇n ,

(σµ1ε) β̇1
α1
. . . (σµnε) β̇nαn ψγµ1...µn =

n∑
l,l̄

ψ
β̇1...βl̄
γα1...αlεαl+1αl+2

. . . εαn−1αnε
β̇l̄+1β̇l̄+2 . . . εβ̇n−1β̇n ,

(σµ1ε) β̇1
α1
. . . (σµnε) β̇nαn ψ̄

γ̇
µ1...µn =

n∑
l,l̄

ψ̄
γ̇β̇1...βl̄
α1...αl εαl+1αl+2

. . . εαn−1αnε
β̇l̄+1β̇l̄+2 . . . εβ̇n−1β̇n ,

(B.1)

where the sum over l, l̄ runs over even or odd integers, for even or odd n, respectively. Taking symmetric
and antisymmetric combinations in the undotted and dotted indices of the r.h.s. of eq.(B.1) allows us to
find the explicit relations between the different field components in vector and spinor notations. Inverse
relations are obtained by multiplying eq.(B.1) by powers of (εσµ):

tµ1...µn = 2−n
n∑
l,l̄

(εσµ1)α1

β̇1
. . . (εσµn)αn

β̇n
t
β̇1...β̇l̄
α1...αlεαl+1αl+2

. . . εαn−1αnε
β̇l̄+1β̇l̄+2 . . . εβ̇n−1β̇n ,

ψγµ1...µn = 2−n
n∑
l,l̄

(εσµ1)α1

β̇1
. . . (εσµn)αn

β̇n
ψ
β̇1...β̇l̄
γα1...αlεαl+1αl+2

. . . εαn−1αnε
β̇l̄+1β̇l̄+2 . . . εβ̇n−1β̇n ,

ψ̄γ̇µ1...µn = 2−n
n∑
l,l̄

(εσµ1)α1

β̇1
. . . (εσµn)αn

β̇n
ψ̄
γ̇β̇1...β̇l̄
α1...αl εαl+1αl+2

. . . εαn−1αnε
β̇l̄+1β̇l̄+2 . . . εβ̇n−1β̇n .

(B.2)

It may be useful to work out in detail the case for, say, a bosonic rank-two tensor tµν . We have

(σµε) β̇1
α1

(σνε) β̇2
α2
tµν = tεα1α2ε

β̇1β̇2 + tα1α2ε
β̇1β̇2 + tβ̇1β̇2εα1α2 + tβ̇1β̇2

α1α2
, (B.3)

which corresponds to the decomposition (0, 0)⊕ (1, 0)⊕ (0, 1)⊕ (1, 1), scalar, self-dual antisymmetric
tensor, anti self-dual antisymmetric tensor, symmetric tensor. From eq.(B.3) we get

t =
1

2
ηµνtµν ,

tα1α2 = tµν(σµνε)α1α2 ,

tβ̇1β̇2 = tµν(εσ̄µν)β̇1β̇2 ,

tβ̇1β̇2
α1α2

=
1

4
tµν

(
(σµε) β̇1

α1
(σνε) β̇2

α2
+ (σµε) β̇1

α2
(σνε) β̇2

α1
+ (µ↔ ν)

)
.

(B.4)
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Notice that in the last relation in eq.(B.4) the trace part of tµν automatically gives a vanishing contri-
bution. We get the inverse relations by means of eq.(B.2). Decomposing tµν = ηµνt/2 + t[µν] + t(µν),
where t(µν) = 1/2(tµν + tνµ)− ηµνt/2 and t[µν] = 1/2(tµν − tνµ), one has

t[µν] =
1

2
(εσµν)α1α2tα1α2 +

1

2
(σ̄µνε)β̇1β̇1

tβ̇1β̇2 ,

t(µν) = (εσµ)α1

β̇1
(εσν)α2

β̇2
tβ̇1β̇2
α1α2

.
(B.5)

For arbitrary symmetric traceless fields t(µ1...µl), in particular, we have

tβ̇1...β̇l
α1...αl

=
1

l!
t(µ1...µl)

(
(σµ1ε) β̇1

α1
. . . (σµlε) β̇lαl + perms.

)
,

t(µ1...µl) =(εσµ1)α1

β̇1
. . . (εσµl)

αl
β̇l
tβ̇1...β̇l
α1...αl

.
(B.6)



Appendix C. Properties of the F Functions

In this Appendix we provide all the properties of the functions F (a,b;c)
ρ1, ρ2 needed for the system of

Casimir equations and more specifically to derive eqs.(4.100)-(4.102). We will not consider the functions

F± (a,b;c)
ρ1, ρ2 here, since their properties can trivially be deduced from the ones below by demanding both

sides to be symmetric/anti-symmetric under the exchange z ↔ z̄.

The fundamental identities to be considered can be divided in two sets, depending on whether the values
(a, b, c) of the functions F are left invariant or not. The former identities read(1

z
− 1

2

)
F (a,b;c)
ρ1,ρ2

= F (a,b;c)
ρ1−1,ρ2

−D(a,b,c)
ρ1

F (a,b;c)
ρ1,ρ2

+B(a,b,c)
ρ1

F (a,b;c)
ρ1+1,ρ2

(C.1)(1

z̄
− 1

2

)
F (a,b;c)
ρ1,ρ2

= F (a,b;c)
ρ1,ρ2−1 −D

(a,b,c)
ρ2

F (a,b;c)
ρ1,ρ2

+B(a,b,c)
ρ2

F (a,b;c)
ρ1,ρ2+1 (C.2)

L0F (a,b;c)
ρ1,ρ2

= ρ2F (a,b;c)
ρ1,ρ2−1 − ρ1F (a,b;c)

ρ1−1,ρ2
− (ρ2 + c− 1)B(a,b,c)

ρ2
F (a,b;c)
ρ1,ρ2+1 + (C.3)

(ρ1 + c− 1)B(a,b,c)
ρ1

F (a,b;c)
ρ1+1,ρ2

+
1

2
(2− c)(D(a,b,c)

ρ1
−D(a,b,c)

ρ2
)F (a,b;c)

ρ1,ρ2
,

where L0 =
(

(1− z̄)∂z̄ − (1− z)∂z
)

and we have defined

C(a,b,c)
ρ =

(a+ ρ)(b− c− ρ)

(c+ 2ρ)(c+ 2ρ− 1)
, (C.4)

B(a,b,c)
ρ = C(a,b,c)

ρ C
(b−1,a,c−1)
ρ+1 =

(ρ+ a)(ρ+ b)(ρ+ c− b)(ρ+ c− a)

(2ρ+ c)2(c+ 2ρ+ 1)(c+ 2ρ− 1)
,

D(a,b,c)
ρ =

(2a− c)(2b− c)
2(c+ 2ρ)(c+ 2ρ− 2)

. (C.5)

The latter identities read

F (a,b;c)
ρ1,ρ2

= F (a,b−1;c−1)
ρ1,ρ2

− C(a,b,c)
ρ1

F (a,b−1;c−1)
ρ1+1,ρ2

− (C.6)

C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1,ρ2+1 + C(a,b,c)

ρ1
C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

F (a,b;c)
ρ1,ρ2

= F (a−1,b;c−1)
ρ1,ρ2

− C(b,a,c)
ρ1

F (a−1,b;c−1)
ρ1+1,ρ2

− (C.7)

C(b,a,c)
ρ2

F (a−1,b;c−1)
ρ1,ρ2+1 + C(b,a,c)

ρ1
C(b,a,c)
ρ2

F (a−1,b;c−1)
ρ1+1,ρ2+1 ,

1

zz̄
F (a,b;c)
ρ1,ρ2

= F (a+1,b+1;c+2)
ρ1−1,ρ2−1 , (C.8)

(z − z̄)L(a)F (a,b;c)
ρ1,ρ2

= (ρ2 − ρ1)F (a,b−1;c−1)
ρ1,ρ2

− (ρ1 + ρ2 + c− 1)C(a,b,c)
ρ1

F (a,b−1;c−1)
ρ1+1,ρ2

+ (C.9)

(ρ1 + ρ2 + c− 1)C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1,ρ2+1 − (ρ2 − ρ1)C(a,b,c)

ρ1
C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

z − z̄
zz̄

L(b)F (a,b;c)
ρ1,ρ2

= (ρ2 − ρ1)F (a,b+1;c+1)
ρ1−1,ρ2−1 − (ρ1 + ρ2 + c− 1)C(b,a,c)

ρ1
F (a,b+1;c+1)
ρ1,ρ2−1 + (C.10)

(ρ1 + ρ2 + c− 1)C(b,a,c)
ρ2

F (a,b+1;c+1)
ρ1−1,ρ2

− (ρ2 − ρ1)C(b,a,c)
ρ1

C(b,a,c)
ρ2

F (a,b+1;c+1)
ρ1,ρ2

.

The relations (C.1)-(C.3) were first derived in ref.[9] (see also ref.[49]), while the relations (C.9) and
(C.10) were derived in [31]. It is straightforward to see that eqs.(4.100)-(4.102) can be derived using
proper combinations of eqs.(C.1)-(C.10). For instance, the action of the first term appearing in the
r.h.s. of eq.(4.99) is reproduced (modulo a trivial constant factor) by taking the combined action given
by ( (C.2)−(C.1) )× (C.9)× (C.6). All other terms in eqs.(4.97)-(4.99) are similarly deconstructed.
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Appendix D. The Conformal Blocks for p = 1

We report in this appendix the full explicit solution for the two conformal blocks G
(1)
0 and G

(1)
1 associated

to the exchange of fermion operators of the kind O(`,`+1) for the specific values

a =
1

2
, b = −1

2
. (D.1)

We choose as undetermined coefficient c1
0,−1 and report below the values of the coefficients normalized

to c1
0,−1. We have

c0
−2,0 =

(2 + `)

2 (1 + `)
, c0
−1,−1 = − `

2 (1 + `)
, c1
−1,0 = −(3 + `)

1 + `
. (D.2)

c0
−1,0 =

(3 + `)(−1 + 2∆)(−1 + 2`+ 2∆)

8(1 + `)(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
−1,1 = − (2 + `)(5 + 2`− 2∆)2(−7 + 2∆)

32(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)
,

c0
0,−1 = −(−1 + 2∆)(−1 + 2`+ 2∆)

8(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
0,0 =

`(−7 + 2∆)(−1 + 2`+ 2∆)2

32(1 + `)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
,

c0
0,1 = − (3 + `)(5 + 2`− 2∆)2(−5 + 2∆)(−1 + 2`+ 2∆)

128(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
1,0 =

(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)2

128(−3 + 2∆)(1 + 2`+ 2∆)2(5 + 2`+ 2∆)
,

c1
−1,1 = − (2 + `)(5 + 2`− 2∆)(−1 + 2∆)

4(1 + `)(7 + 2`− 2∆)(−3 + 2∆)
,

c1
0,2 =

(2 + `)(1 + 2`− 2∆)(5 + 2`− 2∆)2(−5 + 2∆)

64(1 + `)(3 + 2`− 2∆)2(7 + 2`− 2∆)(−3 + 2∆)
,

c1
1,0 = −(−7 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

16(−3 + 2∆)(1 + 2`+ 2∆)2
,

c1
1,1 = −`(5 + 2`− 2∆)(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

64(1 + `)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)2
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c1
0,0 =

1

4(1 + `)(11 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
×(

576− 384∆ + `
(

627− 2`(−29 + 2`(7 + 2`))− 472∆ + 4`(−47 + 4`(3 + `))∆

+8(−9 + `(19 + 2`))∆2 − 16(−6 + `)∆3 − 16∆4
))

,

c1
0,1 =

(5 + 2`− 2∆)

16(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
×(

`(643− 14`(−3 + 2`(9 + 2`))) + 4`(−232 + `(−115 + 4`(1 + `)))∆ + 8(3 + `)

(−24 + `(17 + 2`))∆2 − 16(−7 + `)(3 + `)∆3 − 16(3 + `)∆4 + 27(9 + 4∆)

)
.

The asymptotic behaviour of the CBs for z, z̄ → 0 (z → 0 first) is dominated by the coefficients with
n = −1 and the lowest value of m, i.e. c0

−1,−1 and c1
0,−1. For ` = 0, the asymptotic behaviour of

G
(1)
0 is given by the next term c0

0,−1, since c0
−1,−1 in eq.(D.2) vanishes. This in agreement with the

asymptotic behaviour of the CBs found in subsection 4.4.1. Notice how the complexity of the cem,n
varies from coefficient to coefficient. In general the most complicated ones are those in the “interior”
of the octagons (hexagons only for p = 1).



Appendix E. Generalized Free Field Theory
(GFT)

Generalized free theories, also called mean field theories, are defined as the theories where all the
correlators are computed by the sum over all possible 2-point function Wick-contractions.

Here we consider a GFT with a scalar and a fermion of scaling dimensions ∆φ and ∆ψ. All correlators
in the theory will be sums of the 2-point functions

〈φ(x1)φ(x2)〉 =
1

(x2
12)∆φ

, 〈ψ(x1, s1)ψ(x2, s̄2)〉 =
−i I21

(x2
12)∆ψ+ 1

2

(E.1)

The 3-point function
〈φ(x1)ψ(x2, s2)O(`, ¯̀)(x3, s3, s̄3)〉 6= 0, (E.2)

then the primary O(`, ¯̀) has to be some fermionic operator with |`− ¯̀| = 1, it can be one of the reps

O(`,1+`) = A(`) or O(`+1,`) = B(`), (E.3)

These operators clearly have to be double-twist operators [φψ]n, schematically

A(`)
n (x3, s3, s̄3) =

(
s3σ∂s̄3

)`
[∂2]n φ(x3)

(
s̄α̇3 ψ̄α̇(x3)

)
,

B(`)
n (x3, s3, s̄3) =

(
s3σ∂s̄3

)`
[∂2]n φ(x3)

(
sα3σ

µ

αβ̇
∂µψ̄

β̇(x3)
)
.

(E.4)

One can then read off the scaling dimensions

∆A = ∆φ + ∆ψ + `+ 2n, ∆B = ∆φ + ∆ψ + `+ 2n+ 1, (E.5)

or the twists

τA = ∆φ + ∆ψ + 2n− 1

2
, τB = ∆φ + ∆ψ + `+ 2n+

1

2
. (E.6)

GFT Solution for the OPE Coefficients We want to calculate the OPE coefficients of the double-
twist operators (E.4). Since we can calculate the 4-point function 〈φψφψ〉 as a sum of Wick contractions,
we use its expansion in conformal blocks to calculate the OPE coefficients. The 4-point function is given
by the expression

〈φ(x1)ψ(x2, s2)φ(x3)ψ̄(x4, s̄4)〉 = 〈φ(x1)φ(x2)〉〈ψ(x2, s2)ψ(x4, s̄4)〉 =
−i I42

(x2
13)∆φ(x2

24)∆ψ+ 1
2

, (E.7)

Using the s− channel expansion given in (5.27) with the twists (E.6)

〈φ(x1)ψ(x2, s2)φ(x3)ψ̄(x4, s̄4)〉 =

∞∑
n,`=0

(
PGFT
A W

seed
〈φψA〉〈Aφψ〉 + PGFT

B W seed
〈φψB〉〈Bφψ〉

)
. (E.8)

Now we can equate the equations (E.7) and (E.8), the only unknowns are PGFT
A ’s and PGFT

B ’s . Ex-
panding around z = z = 0, the OPE coefficients can be computed order by order to be
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PGFT
A (n, `) =

(∆φ − 1)n(∆ψ − 3
2)n+1

n!(∆φ + ∆ψ + n− 5
2)n
×

(`+ 1)(∆φ)`+n+1(∆ψ + 1
2)`+n

(l + n+ 2)!(∆φ + ∆ψ + n+ `− 3
2)1+n(∆φ + ∆ψ + 2n+ `+ 1

2)`

PGFT
B (n, `) =−

(∆φ − 1)n(∆ψ − 3
2)n

n!(∆φ + ∆ψ + n− 7
2)n
×

(1 + `)(∆φ)`+n(∆ψ + 1
2)`+n

(`+ n+ 1)!(∆φ + ∆ψ + `+ n− 3
2)n(∆φ + ∆ψ + `+ 2n− 1

2)`
.

(E.9)

It is nice to note that PGFT
A ≥ 0 and PGFT

B ≤ 0 as required by (5.30).



Appendix F. Ward Identities

Here we want to work out the constraints on the OPE coefficients λi〈Tψψ〉 resulting form Conformal

Ward identities. The stress-tensor operator Tµν is conserved and traceless, the operator equations

∂µT
µ
ν = 0 and Tµµ = 0

should be satisfied within any correlator, up to contact terms.
The OPE coefficients λi〈Tψψ〉 appear in the 3-point function (we will drop the subscript in the calculations

λi〈Tψψ〉 → λi )

〈Ψ(x1, S1)Ψ(x2, S̄2)T (x3, S3, S̄3)〉 =
(
X

∆ψ−5/2
12 X3

13X
3
23

)−1(
λ1I21(J3

12)2 + λ2I23I31J3
12

)
, (F.1)

projecting to 4D, and restoring the tensor indices using (B.6)

〈ψα(x1)ψ̄α̇(x2)T σω(x3)〉 =(
− λ1

2

(
x

2∆ψ−1
12 x2

13x
2
23

)−1
xµ12Z

ν
3,12Z

ρ
3,12 α(σµε)

α̇
(
8ησν η

ω
ρ − 2ηρνη

σω
)

+
λ2

4

(
x

2∆ψ−3
12 x4

13x
4
23

)−1
xµ23x

ν
13Z

ρ
3,12

(
4ηωρ α(σµσ̄

σσνε)
α̇ + 4ησρ α(σµσ̄

ωσνε)
α̇

− 2ησω α(σµσ̄ρσνε)
α̇
))
,

(F.2)

where Zµ3,12 = xµ23/x
2
23 − x

µ
13/x

2
13. This 3-point function has to satisfy the ward identity:

∂

∂xσ3
〈ψα(x1)ψ̄α̇(x2)T σω(x3)〉 = −δ4(x1 − x3)∂ω〈ψαψ̄α̇〉 − δ4(x2 − x3)∂ω〈ψαψ̄α̇〉, (F.3)

We take the limit x1 → x3 , s = x1 − x3 and x23 = s− x12 . In this limit

Zµ3,12 → −
sµ

s2
− xµ12

x2
12

. (F.4)

we can write the 3-point function in this limit as

〈ψα(x1)ψ̄α̇(x2)T σω(x3)〉 =

− λ1

2x
2∆ψ+1
12

(
(∂σ∂ωs−2) +

8sωxσ12 + 8sσxω12

x2
12s

4
+ 16

s · x12s
σsω

x2
12s

6
− 8ησω

s · x12

x2
12s

4

)
xµ12 α(σµε)

α̇

+
λ2

4x
2∆ψ+1
12

xµ12

1

8
(∂ν∂ρs−2)

(
4ηωρ α(σµσ̄

σσνε)
α̇ + 4ησρ α(σµσ̄

ωσνε)
α̇
)

+
λ2

4x
2∆ψ+1
12

(sνxρ12x
µ
12

x2
12s

4
− sνsρsµ

s6
+ 4

s · x12 x
µ
12s

νsρ

x2
12 s

6

)(
4ηωρ α(σµσ̄

σσνε)
α̇

+ 4ησρ α(σµσ̄
ωσνε)

α̇ − 2ησω α(σµσ̄ρσνε)
α̇
)
.

(F.5)

Here we Adopt the methods of differential regularisation [73]. Once we apply ∂σ on the correlator (F.5),
we will have a term ∂2s−2 = −4π2δ4(s), and this can be checked taking the integration

∫
ds4.
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Other terms in (F.5), once taking the divergence, are zero for any s 6= 0 and so equivalent to a #δ4(s)∫
ds4∂σ(

8sωxσ12 + 8sσxω12

x2
12s

4
− 8ησω

s · x12

x2
12s

4
+

16 s · x12s
σsω

x2
12s

6
) = 24π2x

ω
12

x2
12

,∫
ds4∂σ

(sνxρ12x
µ
12

x2
12s

4
− sνsρsµ

s6
+ 4

s · x12 x
µ
12s

νsρ

x2
12 s

6

)
=
π2

2

ηνσx
ρ
12x

µ
12

x2
12

− π2

12
(ηνση

ρµ + ηµση
ρν + ηρση

νµ) +
π2

3

xλ12 x
µ
12

x2
12

(ηλση
νρ + ηνλη

ρ
σ + ηρλη

ν
σ)

(F.6)

The integrands in the last two equations (when contracted with sigma matrices as in (F.5)) are zero for
any s 6= 0. So ,as implied by (F.6), the integrands are equivalent to a #δ4(s). So taking divergence of
(F.5):

∂

∂xσ3
〈ψα(x1)ψ̄α̇(x2)T σω(x3)〉

=
2π2λ1

x
2∆ψ+1
12

(
∂ωδ4(s)

)
xµ12 α(σµε)

α̇ − π2λ2 xµ12

2x
2∆ψ+1
12

(
∂ωδ4(s) α(σµε̄)

α̇ + ∂νδ4(s) α(σµσ̄
ωσνε)

α̇
)

+
(
− 2π2λ2 α(σωε)α̇

x
2∆ψ+1
12

− 4π2(3λ1 − 2λ2)
xω12 x

ν
12 α(σνε)

α̇

x
2∆ψ+3
12

)
δ4(s).

(F.7)

Meanwhile the identity (F.3) tells us

∂σ〈ψα(x1)ψ̄α̇(x2)T σω(x3)〉 = −i
(
α(σωε)α̇

x
2∆ψ+1
12

− (2∆ψ + 1)
xω12x

ν
12 α(σνε)

α̇

x
2∆ψ+3
12

)
δ4(s) , (F.8)

using the normalization 〈Ψ(x1, S1)Ψ(x2, S̄2)〉 = −i I21X
−∆ψ−1/2
12 . The equations (F.7) and (F.8) imply:

λ2
〈Tψψ〉 =

i

2π2
and λ1

〈Tψψ〉 =
−i (2∆ψ − 3)

12π2
(F.9)
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