
19 April 2024

.                                       SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

                                                                               SISSA Digital Library

R-n gravity is kicking and alive: the cases of Orion and NGC 3198 / Salucci, Paolo; Martins, C. F.; Karukes,
Ekaterina. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS D. - ISSN 0218-2718. - 23:12(2014), pp.
1442005.1-1442005.5. [10.1142/S021827181442005X]

Original

R-n gravity is kicking and alive: the cases of Orion and NGC 3198

Publisher:

Published
DOI:10.1142/S021827181442005X

Terms of use:

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/14252 since:

note finali coverpage



ar
X

iv
:1

40
5.

63
14

v1
  [

as
tr

o-
ph

.G
A

] 
 2

4 
M

ay
 2

01
4

May 27, 2014 0:26 WSPC/INSTRUCTION FILE fronrio3198

International Journal of Modern Physics D
c© World Scientific Publishing Company

Rn gravity is kicking and alive: the cases of Orion and NGC 3198

PAOLO SALUCCI

SISSA, via Bonomea 265

Trieste, 34136, Italy

INFN, Sezione di Trieste, QSKY

salucci@sissa.it

CHRISTIANE FRIGERIO MARTINS

Instituto de Astronomia e Geof́ısica, Universidade de São Paulo, Rua do Matão 1226

São Paulo, 05508-090, Brazil

uelchris@hotmail.com

EKATERINA KARUKES

SISSA, via Bonomea 265

Trieste, 34136, Italy

ekarukes@sissa.it

We analyzed the Rotation Curves of two crucial objects, the Dwarf galaxy Orion and
the low luminosity Spiral NGC 3198, in the framework of Rn gravity. We surprisingly
found that the no DM power-law F(R) case fits them well, performing much better than
LCDM Dark Matter halo models. The level of this unexpected success can be a boost
for Rn gravity.
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1. Introduction

It is well-known that the Rotation Curves (RCs) of spiral galaxies show a non-

Keplerian circular velocity profile which cannot be explained by considering a New-

tonian gravitational potential generated by the baryonic matter.15 Current possible

explanations include the postulate of a new yet not detected state of matter, the

dark matter, e.g.,15 a phenomenological modification of the Newtonian dynamics,12

and higher order Gravitational Theories, see e.g2, 4, 6, 9–11

A recent theory proposed by5 modifies the usual Newtonian gravitational poten-

tial generated by (baryonic) matter as an effect of power-law fourth order theories

of gravity that replace in the gravity action the Ricci scalar R with a function

f(R) ∝ Rn, where n is a slope parameter. The goal is that the galaxy kinematics

resulting in the f(R) scenario from the luminous matter alone would account for

those observations that the front runner candidate of the competing scenario, i.e. a

Cold Dark Matter particle, fails to account.

In the current theory the Newtonian potential generated by a point-like source

gets modified in to

φ(r) = −Gm

r
{1 + 1

2
[(r/rc)

β − 1]}, (1)

where β is a function of the slope n, and rc is a scale length parameter. At a fixed

n, β is a universal constant, while rc depends on the particular gravitating system

being studied. In a virialized system the circular velocity is related to the derivative

of the potential through V 2 = r dφ(r)/dr. In short, can Eq. (1) explain, without

a Dark Component, the circular velocity in spirals and specially that in cases in

which halos of (Cold) Dark Particles fail?

Frigerio Martins and Salucci8 investigated the consistency and the universality of

this theory by means of a sample of spirals, obtaining a quite good success that was

encouraging for further investigations. Recently, crucial information for two special

objects has been available and we are now able to test the theory in unprecedented

accurate way.

Orion is a dwarf galaxy of luminous mass < 1
100 the Milky Way stellar disk

mass with a baryonic distribution dominated by a HI disk, whose surface density

is accurately measured and, noticeably, found to have some distinct feature. The

stellar disk, on the other side, is a pure exponential disk. The available rotation

curve17 is extended and it is of very high resolution. Noticeably, this is one of the

smallest galaxies for which we have a very accurate profile of the gravitating mass.

NGC3198 is a normal spiral about 2 times less luminous than the Milky Way.

For a decade it held the record of the galaxy with the (HI) rotation curve showing

the clearest evidence for Dark Matter.20 Then, the record went to other galaxies

with optical RCs, but recent radio measurements of a high-resolution18 has likely

brought it back to this galaxy. In contrast with Orion, both its stellar and the HI

disk are relevant.

The heart of this paper is that these two galaxies show without doubt a “Dark
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Matter Phenomenon” but, when we analyse the issue in detail, we realise that well

physically motivated halos of dark particles fail to account for their Rotation Curves.

Our idea is to use these them to constrain proposed modifications of gravity: in the

framework of those, can the baryonic matter alone account for the observed RCs

when, in Standard Newtonian Gravity, the baryonic + dark matter together badly

fail?

2. Newtonian limit of f(R) gravity

The theory proposed by5 is an example of f(R) theory of gravity.9, 13 In these

theories the gravitational action is defined to be:

S =

∫

d4x
√−g [f(R) + Lm], (2)

where g is the metric determinant, R is the Ricci scalar and Lm is the matter

Lagrangian. They consider f(R) = f0R
n, where f0 is a constant to give correct di-

mensions to the action and n is the slope parameter. The modified Einstein equation

is obtained by varying the action with respect to the metric components.

Solving the vacuum field equations for a Schwarzschild-like metric in the Newto-

nian limit of weak gravitational fields and low velocities, the modified gravitational

potential for the case of a point-like source of mass m, is given by Eq. (1), where

the relation between the slope parameter n and β is given by:

β =
12n2 − 7n− 1−

√
36n4 + 12n3 − 83n2 + 50n+ 1

6n2 − 4n+ 2
. (3)

Note that for n = 1 the usual Newtonian potential is recovered. The large and small

scale behavior of the total potential constrain the parameter β to be 0 < β < 1.

The solution Eq. (1) can be generalized to extended systems with a given density

distribution ρ(r) by simply writing:

φ(r) = −G

∫

d3r′
ρ(r’)

|r− r’| {1 + 1

2
[
|r− r’|β

rβc
− 1]}

= φN (r) + φC(r), (4)

where φN (r) represents the usual Newtonian potential and φC(r) the additional

correction. In this way, the Newtonian potential can be re-obtained when β = 0.

3. Data and methodology of the test

Let us remind following17–19 that for these galaxies we have high quality RC and a

very good knowledge of the distribution of the luminous matter. Any result of the

mass modelling could not be questioned on base of putative observational errors or

biases. It is matter of fact that NFW halos + luminous matter model badly fits

these very RCs17, 19 and many others.1, 14, 16

We decompose the total circular velocity into stellar and gaseous contributions.

Available photometry and radio observations show that the stars and gas in these
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spirals are distributed in an infinitesimal thin and circular symmetric disk; from

the HI flux we directly measure Σgas(r) its surface density distribution (multiplied

by 1.33 to take into account also the He contribution) In these galaxies, the stars

follow the usual Freeman exponential thin disk:

ΣD(r) = (MD/2πR2
D) e−r/RD . (5)

MD is the disk mass and it is kept as a free parameter, RD is the scale length,

measured directly from optical observations.

The distribution of the luminous matter has, to a good extent, a cylindrical

symmetry and hence potential Eq. (4) reads

φ(r) = −G

∫ ∞

0

dr′ r′Σ(r′)

∫ 2π

0

dθ

|r− r’| {1 +
1

2
[
|r− r’|β

rβc
︸ ︷︷ ︸

−1]}. (6)

Σ(r′) is the surface density of the stars, given by Eq. (5), or of the gas, given by

an interpolation of the HI mesurements. β and rc are, in principle, free parameters

of the theory, with the latter perhaps galaxy dependent. We fix β = 0.7 to have

agreement with previous results (see also8).

Defining k2 ≡ 4r r
′

(r+r′)2
, we can express the distance between two points in cylin-

drical coordinates as |r − r’| = (r + r)2(1 − k2cos2(θ/2)). The derivation of the

circular velocity due to the marked term of Eq. (6), that we call φβ(r), is now

direct:

r
d

dr
φβ(r) = −2β−3r−β

c π α (β − 1)G I(r), (7)

where the integral is defined as

I(r) ≡
∫ ∞

0

dr′r′
β − 1

2
k3−β Σ(r′) F(r), (8)

with F(r) written in terms of confluent hyper-geometric function: F(r) ≡ 2(r +

r′) 2F1[
1
2 ,

1−β
2 , 1, k2] + [(k2 − 2)r′ + k2r] 2F1[

3
2 ,

3−β
2 , 2, k2].

The total circular velocity is the sum of each squared contribution:

V 2
CCT (r) = V 2

N,stars + V 2
N,gas + V 2

C,stars + V 2
C,gas, (9)

where the N and C subscripts refer to the Newtonian and the additional modified

potentials of the two different contributions (gas and stars) to the total potential

Eq. (4).

In Fig. 1 the velocities are shown only in the ranges of r where their square are

positive.

The RCs are χ2 best-fitted with the free parameters: the scale length (rc) of

the theory and the gas mass fraction (fgas) related to the disk mass simply by

MD = Mgas(1− fgas)/fgas with the gas mass measured . The errors for the best fit

values of the free parameters are calculated at one standard deviation.

Let us recall that we can write

V 2
stars(r) = (GMD/2RD) x

2B(x/2), (10)
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where x ≡ r/RD, G is the gravitational constant and the quantity B = I0K0−I1K1

is a combination of Bessel functions.7

4. Results

We summarize the results of our analysis in Fig. 1. We find that the velocity model

VCCT is well fitting the RCs for very reasonable values of the stellar mass-to-light

ratio. The resulting disk masses are (3.7± 0.8)× 108M⊙ and (3.4± 0.8)× 1010M⊙

respectively for Orion and NGC3198. The other parameters are: Orion rc = (0.013±
0.002) kpc and gas fraction=(55 ± 20)%, NGC3198 rc = (0.4 ± 0.05) kpc and gas

Fig. 1. Black: best-fit total circular velocity VCCT . Blue: Newtonian gaseous contribution. Ma-
genta: Newtonian stars contribution. Green: non-Newtonian gaseous and stars contributions to the
model.
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fraction=(29± 10)%. The values of χ2 are ≃ 1 confirming the success of the fit.

The value for the scale-length parameter rc is found smaller for the less massive

galaxy and larger for the more massive one, in line with previous results and with

the idea of a scale dependent modification of gravity3 .

5. Conclusions

Extended theories of gravity, created to tackle theoretical cosmological problems

have something to say on another issue of Gravity, the Phenomenon of Dark Matter

in galaxies. We have tested two objects with state of the art kinematical data that,

in addition, are not accounted by the dark matter halo paradigm and we found

that a scale dependent Rn Gravity is instead able to account for them. Extended

theories of Gravity candidate themselves to explain the phenomenon of dark matter

with only the luminous matter present in galaxies.
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