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Abstract

In the last decade there has been an intense activity aimed at the quantum simulation of interacting
many-body systems using cold atoms [1,2]. The idea of quantum simulations traces back to Feyn-
man [3], who argued that the ideal setting to study quantum systems would be a quantum experimental
setup rather then a classical one - the latter one being fundamentally limited due to its hardware clas-
sical structure. This is a particularly important problem given the intrinsic complexity of interacting
many-body problems, and the difficulties that arise when tackling them with numerical simulations -
two paradigmatic examples being the sign(s) problem affecting Monte Carlo simulations of fermionic
systems, and the real time dynamics in more than one spatial dimension.

Ultracold atoms offer a very powerful setting for quantum simulations. Atoms can be trapped
in tailored optical and magnetic potentials, also controlling their dimensionality. The inter-atomic
interactions can be tuned by external knobs, such as Feshbach resonances. This gives a large freedom
on model building and, with suitable mappings, they allow the implementation of desired target models.
This allowed an impressive exploitation of quantum simulators on the context of condensed matter
physics.

The simulation of high-energy physics is an important line of research in this field and it is less
direct. In particular it requires the implementation of symmetries like Lorentz and gauge invari-
ance which are not immediately available in a cold atomic setting. Gauge fields are ubiquitous in
physics ranging from condensed matter [4H6] and quantum computation [78] to particle physics 9],
an archetypical example being Quantum Chromodynamics (QCD) [10,/11], the theory of strong nuclear
forces. Currently open problems in QCD, providing a long-term goal of cold atomic simulations, in-
clude confinement/deconfinement and the structure of color superconducting phases at finite chemical
potential [12]. Even though QCD is a very complicated theory (to simulate or study), it is possible
to envision a path through implementation of simpler models. Furthermore, it is also expected that
interesting physics is found on such “intermediate models” which may deserve attention irrespectively
of the QCD study. A very relevant model in this regard is the Schwinger model (Quantum Electro-
dynamics in 1+1 dimensions) [13]. This theory exhibits features of QCD, such as confinement [14],
and is at the very same time amenable to both theoretical studies and simpler experimental schemes.
This model was the target of the first experimental realization of a gauge theory with a quantum
simulator [15].

The work on this Thesis is, in part, motivated by the study of toy models which put in evidence
certain aspects that can be found in QCD. Such toy models provide also intermediate steps in the
path towards more complex simulations. The two main aspects of QCD which are addressed here
are symmetry-locking and confinement. The other main motivation for this study is to develop a
systematic framework, through dimensional mismatch, for theoretical understanding and quantum
simulations of long-range theories using gauge theories.

The model used to study symmetry-locking consists of a four-fermion mixture |16]. It has the basic
ingredients to exhibit a non-Abelian symmetry-locked phase: the full Hamiltonian has an SU (2) x
SU (2) (global) symmetry which can break to a smaller SU (2) group. Such phase is found in a extensive
region of the phase diagram by using a mean-field approach and a strong coupling expansion. A possible
realization of such system is provided by an Ytterbium mixture. Even without tuning interactions,



it is shown that such mixture falls inside the the locked-symmetry phase pointing towards a possible
realization in current day experiments.

The models with dimensional mismatch investigated here have fermions in a lower dimensionality
d+ 1 and gauge fields in higher dimensionality D + 1. They serve two purposes: establish mappings
to non-local theories by integration of fields [17] and the study of confinement [1§].

In the particular case of d = 1 and D = 2 it is found that some general non-local terms can be
obtained on the Lagrangian [17]. This is found in the form of power-law expansions of the Laplacian
mediating either kinetic terms (for bosons) or interactions (for fermions). The fact that such expansions
are not completely general is not surprising since constraints do exist, preventing unphysical features
like breaking of unitarity. The non-local terms obtained are physically acceptable, in this regard, since
they are derived from unitary theories. The above mapping is done exactly. In certain cases it is
shown that it is possible to construct an effective long-range Hamiltonian in a perturbative expansion.
In particular it is shown how this is done for non-relativistic fermions (in d = 1) and 3 + 1 gauge
fields. These results are relevant in the context of state of the art experiments which implement
models with long-range interactions and where theoretical results are less abundant than for the case
of local theories. The above mappings establish a direct relation with local theories which allow
theoretical insight onto these systems. Examples of this would consist on the application of Mermin-
Wagner-Hohenberg theorem [19}20] and Lieb-Robinson bounds [21], on the propagation of quantum
correlations, to non-local models. In addition they can also provide a path towards implementation of
tunable long-range interactions with cold atoms. Furthermore, in terms of quantum simulations, they
are in between the full higher dimensional system and the full lower dimensional one. Such property is
attractive from the point of view of a gradual increase of complexity for quantum simulations of gauge
theories.

Another interesting property of these models is that they allow the study of confinement beyond
the simpler case of the Schwinger model. The extra dimensions are enough to attribute dynamics to
the gauge field, which are no longer completely fixed by the Gauss law. The phases of the Schwinger
model are shown to be robust under variation of the dimension of the gauge fields |18]. Both the
screened phase, of the massless case, and the confined phase, of the massive one, are found for gauge
fields in 2 4+ 1 and 3 + 1 dimensions. Such results are also obtained in the Schwinger- Thirring model.
This shows that these phases are very robust and raises interesting questions about the nature of
confinement. Robustness under Thirring interactions are relevant because it shows that errors on the
experimental implementation will not spoil the phase. Even more interesting is the case of gauge
fields in higher dimensions since confinement in the Schwinger model is intuitively atributed to the
dimensionality of the gauge fields (creating linear potentials between particles).

This Thesis is organized as follows. In Chapter [I} some essential background regarding quantum
simulations of gauge theories is provided. It gives both a brief introduction to cold atomic physics and
lattice gauge theories. In Chapter [2] it is presented an overview over proposals of quantum simulators
of gauge potentials and gauge fields. At the end of this Chapter, in Section [2.3]it is briefly presented
ongoing work on a realization of the Schwinger model that we term Half Link Schwinger model. There,
it is argued, some of the generators of the gauge symmetry on the lattice can be neglected without
comprimising gauge invariance. In Chapter [3] the results regarding the phase diagram of the four-
fermion mixture, exhibiting symmetry-locking, is presented. In Chapter[d the path towards controlling
non-local kinetic terms and interactions is provided, after a general introduction to the formalism of
dimensional mismatch. At the end the construction of effective Hamiltonians is described. Finally,
Chapter [p] concerns the study of confinement and the robustness of it for 1+ 1 fermions. The first part
regards the Schwinger-Thirring with the presence of a #-term while, in the second part, models with
dimensional mismatch are considered. The thesis ends with conclusions and perspectives of future
work based on the results presented here.
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Chapter 1

Introductory material

As our understanding of physical phenomena develops, the problems we have to face become more
complex to be treated, as a general trend. From a conceptual point of view it is understandable that this
happens. Indeed, on general ground, the new proposed theories have to reproduce in the relevant range
of validities the previous theories, the classical limit of quantum mechanics and the non-relativistic
limit of relativity being two prototypical examples. It is then clear that the computational complexity
have to increase in order to satisfy this logical constraint. As a concrete example, the classical equation
of motion, m(‘ij—;x (t) = 0, have its counterpart in quantum mechanics in the Schrédinger equation,

that in its time-dependent form for a free paprticle reads —%SB—; (x) = Ev (x). Considering also
relativistic effects, in the realm of quantum field theory, one has to quantize an infinite number of simple
harmonic oscillators: 6‘9—;(;5 (k,t) = — (k* +m?) ¢ (k,t). This “hierarchy” depends on the theoretical
formulation one uses and it is not guaranteed that the order of difficulty does not change using other
formulations of the different theories. However, it is expected that the computational complexity
increases moving from classical to quantum systems: e.g., the Newton equations for N particle in one
dimensions requires the solution of 2N coupled ordinary differential equations, but the corresponding
solution of the quantum problem via the Schrédinger equation requires to solve a partial differential
equation in N variables. It is then no surprise that, using those tools, classical physics will tend to
provide us technically simpler problems (when compared to their quantum analogues, for example). In
this sense technical difficulties run along conceptual ones, since one may speculate that our “classical
mind” develops mathematical tools that fit better the “classical world”.

It is then possible that current unsolved problems may become simpler if we uncover a “better”
formalism to tackle them. Of course this is not in itself an easy task. A clear example of this kind
of principle is illustrated in the famous 1972 paper by Anderson “More is different” [22]. There it is
argued that the physics of many particles is more than just the some of its parts and new formalisms, as
challenging as uncovering fundamental physics, are necessary to uncover the physics of many particles.
Were we to use formalism developed for few particles to uncover many particles physics we would
quickly get stuck.

This discussion is valid also for non-analytical approaches. The success of numerics is not only
dependent on how the problem is implemented on the computer, but also on how the problem is
formulated in the first place and all the previous discussion translates here. One could hope, however,
that with an increasing computational power, more and more problems would become approachable
in this manner. This is not necessarily the case. Taking the example of statistical mechanics at finite
temperature or lattice field theory, one has to sum over configurations in order to compute expectation
values. Attempting this kind of sum directly would be in itself a formidable task due to the large volume
of the phase space. This is can be circumvented by the so-called Monte Carlo methods [23]. Here an
important sampling takes place and only the most important configurations are summed over. Monte
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Carlo methods have been very successfully in characterizing different physical systems, however a lot
of interesting systems may suffer from sign problems or complex actions [24]. As it will be explained in
more detail bellow, these problems introduce large errors on the analysis which require exponentially
larger resources on the volume of the system. In certain cases strategies exist that are able to solve
these problems, but a large class of systems remain unreachable through numerical simulations. As
a paradigmatic example, relevant for the study of QCD, a brief overview of the sign problem and
complex actions will be presented in the next Section.

1.1 Feynman and quantum simulators

The idea of quantum simulators goes back to Feynman [3]. In this seminal talk Feynman approaches
the problem of simulating quantum physics on a classical computer and how in principle the approach
is limited from a fundamental level. If, for example, one can consider a lattice where, in each state, the
degree of freedom can take one of n values (for example for a quantum spin labeled by the projection
on the z direction is n = 2). Then the wave function will have a total of n components where V is
the number of lattice points (in a cubic lattice in d dimensions V = N?). In other words, the number
of components that need to be specified scales exponentially with the volume of the system. These
values need then to be constantly updated upon time evolution. In order to plug in some numbers,
for n = 2 the total number of components is 10N log2 L 100-3N" | For a simple 10 x 10 lattice one
has already around 10%° components. For any macroscopic material with a number of spins of the
order of the Avogadro number, the task is completely hopeless. This contrasts with a classical system.
If one consider a total of NV classical particles, with some given interactions, the physics is described
by a set of 2dN differential equations where d is the dimensionality of the system (these are the d
position coordinates and the d momenta for example). At each time step one should update the
new 2dN coordinates which is dramatically different from the number of amplitudes to be updated
on the quantum system n'v *. One is then lead to try to explore whether it is possible to approach
analytically the problem, or devise an appropriate approximation scheme that allows a new numerical
or analytical solution. Of course such kind of approximations exists and are extensively used like
mean field approximation or renormalization group methods. At the numerical level the Monte Carlo
methods play an important role by doing an importance sampling over configuration space visiting more
often the more probable configurations. Even though successful in many physical systems, Monte Carlo
methods suffer sometimes of certain sign-problems and complex action problems summarized below.
Yet another class of methods, called tensor network methods, have emerged relatively recently [25].
An important feature is that they do not suffer the sign problems and complex actions and therefore
can naturally supplement the Monte Carlo methods. They found application on strongly correlated
systems [26,127] and have been applied in the context of lattice gauge theories as well [28-43]. This
approach is outside the scope of this thesis. For a pedagogical generic review see for example |44] and
for the introduction to the application on lattice gauge theories see [45].

Feynman was hinting to yet another alternative approach not contemplated above, namely that
of quantum simulations. He argues that even if one tries to use classical probabilities to imitate the
quantum probabilities, the approach is doomed to fail. This is related to a series of theorems, generally
called Bell’s theorem, which states that no physical theory of local hidden variables can reproduce the
predictions made by quantum mechanics [46]. One should not then try to imitate nature, which is
intrinsically unpredictable, but rather simulate it. And to simulate quantum probabilities there is no
way around using quantum mechanics to do so. The idea then is to construct a controllable system
which allows a mapping of its degrees of freedom with the degrees of freedom of our system of interest.
The system that one is able to control should be tuned in such a way that the transition amplitudes
match the transition amplitudes of the original model. Experiments can then be performed on the
controlled system and, thanks to the existent mapping between the two systems, one can have access
to otherwise inaccessible quantities since the controlled system, a quantum device, “performed” the
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difficult computations. This approach goes by the name of quantum simulations and poses short- and
long-term goals [47].

Far from expecting that quantum simulations completely replace classical simulations of quantum
systems it is expectable instead that both approaches shall work together. They will serve to validate
each other results and both will help on model building and making predictions for experiments.

This section shall end with the already well known last sentenced used by Feynman in 1981:

“And I'm not happy with all the analyses that go with just the classical theory, because nature isn’t
classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”

Richard P. Feynman

1.1.1 Sign problem and complex actions

In Monte Carlo methods one wants, in general, to compute the expectation value of observables by
averaging over configurations. In quantum statistical mechanics, the expectation value of an observable
O for a given system at a temperature T'= 1/8kp is given by:

<0> = %Tr (@e—fm) (1.1)

where Z is the partition function Z = Tr (e*ﬁﬁ ) For a given basis state which are eigenvectors of

the observable @, denoted here by |{S}), the expectation value of the observable can be written as:

(0) = 2> 0UsH W ((s)) (12)
{s}

where O ({S}) = ({S} OI{S}) and W ({S}) = ({S} e PH|{S}). In a Monte Carlo method one
generates configurations with a probability W ({S}) /Z and sample over them. One will never visit
all the configuration space but the most relevant configurations are generated with higher probability
which guarantees the correct sampling of the system. Ideally M independent configurations {S (i)} are
generated with ¢ = 1,..., M and the average value of the observable is approximated by:

()= 3720 ({s}) 03

In the limit of M — 400 the equation becomes an equality. The error is estimated assuming that
the configurations are completely independent and that follow a Gaussian distribution. The standard

deviation reads: )
AO = —1\/(02) —(0)* 1.4
/0%~ (1.4)
A possible drawback of this approach is that the sign of the weight W ({S}) is not necessarily
positive for the basis choice made. In that case it is no longer possible to interpret W ({S}) /Z as a
probability. This minus sign can be factored out and be averaged over (together with the observable)

as follows: A )
(0) = 2 >-0 Sy sigaW ({SH W ({S})] (1.5)
{s}
where W ({S}) is written as its modulus times its sign: W ({S}) = signW ({S}) |[W ({S})]. The same

kind of thing must be done for Z = > signW ({S}) |[W ({S})|. The result is then a modified ensemble
{s}
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which guarantees positive weights allowing the interpretation of |W ({S})| /Zas as probabilities. The
partition function is given by Zy, = Y |W ({S})| and the subscript M stands for “modified”. The
{s}

expectation value of observable of the original theory are computed from the expectation values of
quantities on the modified ensemble:
A OsignW
(0) = (OsigniV)y, (1.6)
(signW) ,,

In principle one can compute both numerator and denominator using Monte Carlo and, therefore,
have access to <(§> In practice the situation is not as simple due to the errors associated with these
averages. In order to see this one can observe that:

(signtV’) ,, = wagsignvv({sn W ({SH] = 5~ eV U0 (1.7)

where f and fj; are respectively the free energy densities of the original system and of the modified
one. By construction Z < Zj; and, therefore, the denominator of is exponentially small on the
volume. The same will happen for the numerator. As a consequence, one has a ratio of small numbers,
each one obtained by averaging quantities of order one. Large cancellations are then obtained and it
is very difficult to get accurate results for large volumes. This can be made explicit by estimating the
error of (signW),, (referring to Equation :

AsignW 1
(signW),, VM

In the first passage Equation [I.7] was used while in the second the “large volume limit” was taken. One
concludes that in order to obtain a small error, an exponentially large number of configurations on the
volume has to be taken. For large systems this is not only inefficient but also impossible in practice.

The analysis that was made here for the sign can be made as well, with the same conclusions, for
the case where the weight is complex (complex action problem) and this complex number is factorized
on the average. Sign problems appear, for example, in frustrated magnets and on fermionic systems
(due to fermionic commutation relations). Complex actions occur in quantum field theory when the
action is complex, for example, due to the presence of # terms, in the study of real time dynamics or
in QCD at finite baryon density. In certain cases sign problems or complex action problems can be
overcomed. This is possible, for example, through a change of basis which completely eliminates the
sign problem, using a meron-cluster algorithm or with a fermion bag approach. For examples of these
approaches see respectively [48], [49] and [50].

1
1 — e—2V(f—fa)eV(F—Fm) 7M6V(f*fM) (1.8)

1.2 Ultracold atoms and quantum simulations

With the idea of quantum simulations in mind, one can then take a suitable platform and try to
implement experimentally a given target system. This may include ultracold atoms, trapped ions,
photonic systems and Rydberg atoms. Here a brief introduction to ultracold atomic physics is provided
along with its potential for quantum simulations. For detailed description see for example [2}/51}H54]

Ultracold atomic gases are very close to the absolute zero. By ultracold typically one means
temperatures below 1 uK and it is possible to achieve temperatures as low as 10-102 nK in current
experiments as, for example, in [55].

Just to name a few examples, ultracold atomic physics find applications in several different fields
of physics from condensed matter (like Hubbard models and spin chains) [56-59], artificial gauge
potentials [60H63], analogue models with Hawking and Unruh radiation [64H66], to field theory and
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high energy physics. The research activity in the latter subjects include the study of the Dirac equation
[67,[68], or supersymmetry [69H71] among others. Another interesting possibility is the simulation of
nontrivial topologies and extra dimensions, realizable using internal degrees of freedom [72]. Simulation
of lattice gauge theories will be discussed in more detail in the following.

The following Subsection starts with a brief description of the structure and relevant parameters
of ultracold atoms. In the subsequent Section it is discussed how they can be further trapped, put
on lattices and tune their interactions. In the last section it is presented some of the potential of the
systems described and physical regimes achieved.

1.2.1 Atomic levels and scattering

Inside an atom the dominating interactions have their origin on the Coulomb force. This gives the well
known atomic structure built on a progressive filling of the orbitals. Depending on the valence band,
there could be an orbital angular momentum. Furthermore, electrons carry spin and the nucleus may
have spin as well. The existence of these magnetic moments generate interactions beyond the Coulomb
force which, being weaker, should not be disregarded. This means that there is a further hyperfine
structure due to magnetic interactions. For the discussion the case of alkaline atoms is considered,
where there is only one valence electron. The hyperfine levelAis characterized by two quantum numbers,

lp and mp, resulting from the total angular momentum F which is the sum of the orbital angular
angular momentum of the electron L, its spin S and the nuclear spin I:

F=L+S+T (1.9)

In the case of alkali atoms the orbital angular momentum is zero since the electron isina s orbital.

Then the total angular momentum is just a sum of nuclear and electron spin F S +I With a spin of
1/2 for the electron addition of angular momentum yields a total angular momentum [r which can be
either Iy +1/2 or Iy —1/2 (assuming I; # 0) where I is the total nuclear angular momentum. Without
magnetic interactions all the {lp,mp} states are degenerate. However, by considering a magnetic

interaction, Hpy o S . I some degeneracy is lifted. In fact, since 28 - = F2 — $2 — L2 then when
lp=l+1/2= 28.1 = 21y while when lp =1; - 1/2 = 28.] = —I; — 1. Therefore each one of these
values for I corresponds to a different manifold with different eigenvalues which still have degeneracy
due to its independence fromAm . This degeneracy can be further lifted in the presence of an external
magnetic field B: Hy x B - F.

This is a single atom description. The next step consists in understanding the interaction between
two atoms. As an initial assumption, it is assumed that the atoms are the same and that they will
not change their internal degree of freedom, that is, their initial and final hyperfine levels are the same
before and after scattering. The interaction between the atoms is assumed spherically symmetric and
short-range. The latter is a reasonable assumption since they are neutral, dilute and at a very low
temperature. One can then take the center of mass reference frame and study the equivalent problem of
scattering of a particle by a spherically symmetric potential. For a detailed discussion of this problem
see, for example, [73]. Here the calculations are briefly reviewed and the discussion is assumed to be
in three spatial dimensions. The total Hamiltonian of the system is taken to be H = Hy + V where
Hy is the usual kinetic term and V is the spherically symmetric potential. Far away from the range of
influence of the potential the wave function can be written as:

ikr

be () = W (eil_c‘-f’_’_ff ()< > (1.10)

The second term constitutes a deviation from the plane wave and is a correction to the free particle

solution. The amplitude f; ( ) depends on the wave vector k and only on the direction of spatial
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vector 7. It is formally given by:

fr (F) = =22 (1p 11 ) (1.11)

where |k7) is the plane wave with a momentum magnitude of kf in the direction of #, ’E> is the

plane wave solution of the free Hamiltonian and the operator T is defined such that T’ ’E> =V W’E

Since |¢,—5> enters in the construction of f this is not yet a closed-form solution. The function f can
be suitably written as a sum of the so-called partial waves. Since T is a scalar, from the Wigner-
Eckart theorem, it is diagonal on the basis :|im) of the angular momentum operators J? and J..
Furthermore its diagonal elements only depend on the total energy E and on orbital angular momentum
I, but not on the magnetic quantum number m. They are denoted here by T; (F). This allows
a partial wave expansion by performing a change for this basis in Equation [I.11] This results in
fe (E) = >, (2l +1) fi (k) P, (cos ) where k is assumed to be taken in the z direction, 6 is the angle
between 7 and the z axis, and P, are the Legendre polynomials. The partial-wave amplitude f; (k)
are given by —7T; (F) /k. The plane wave, which appear in the first part of admits a similar
expansion by replacing the partial-wave amplitudes by spherical Bessel functions, j;, at the point
kr: R =" (204 1)i'j, (kr) P, (cos@). In turn the spherical Bessel functions, in the limit of large
distance, can be written as a sum of an incoming and an outgoing spherical waves. Joining all these
pieces together results in:

L1 P (cos @) )
b (7) = W; (20 +1) = ((1 + 2ik f; (k)

- - (1.12)

eikr efi(krflfr) )

This expression allows a particularly transparent physical interpretation of the scattering. If the
scattering is absent then V' = 0 and consequently f; = 0 for every l. In general the plane wave solution
can be seen as a sum of incoming and outgoing waves. All the effects of the scattering are condensed
on the prefactor of the outgoing wave, that is, all that the scattering does is to change the coefficient
of the outgoing wave. Furthermore, due to conservation of the probability flux, the absolute value of
this coefficient must be 1. This means that all that scattering does, at large distances, is to change
the phases of the the outgoing waves. These phases are usually written as 1 + 2ik f; (k) = e2i0u(k)

The scattering description can be further simplified if one considers the limit of low temperature
and low energy, which also suits well the cold atomic setting. In this regime £ is small and the main
contribution comes from ! = 0. Then there is only a single parameter characterizing the scattering
between the atoms: the s-wave scattering length which is defined to be

a= (1.13)

I?HHIO k cot 50 (k)
Note that this result is independent of the form of the potential given that it is short range. In this
regime one can consider the atoms to be hard spheres, without loss of generality, having the scattering
length as the single parameter describing the interaction. It is then possible to use the so-called
pseudopotentials as shown in [74]
4mh%a

m

U =

The term 0,7 is a regulator. The coefficient of the § function is such that this potential correctly
reproduces a scattering length a. If the wave functions are regular in the limit of r going to zero the
regulator can be dropped and the potential is just a delta function with an amplitude regulated by

§ (7) Oyr (1.14)

1

IFormally T obeys the Lippmann-Schwinger equation given by T' =V + Vm

T where the small complex part
ie is present in order to deal with the singularities of the operators.
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the scattering length. The case of different atoms, which conserve their hyperfine levels, is completely
analogous where m/2 on the above expression is replaced by the reduced mass of two atoms m,..

In a general scenario collisions between (possibly different) atoms in different hyperfine levels can
change their internal state. When to alkali atoms scatter, for example, with a total nuclear spin of

l;l) and l;z), they can be found in a total of 4 (21;1) + 1) (2[;2) + 1) states. Analogous to the previous

discussion where the hyperfine structure was ignored, one now has the same structure of Equation [T.10]
with labels for the internal states (see [75]):

1 ik o' BaB (T eikr 1l
= G [T+ > (B) = 1o's) (1.15)
O‘/7Bl

where the two atoms are initially in an hyperfine state |o8) and then they can scatter through different
channels to states |o’’) which must be summed over. The new f function is given by:

50 (F) = =2 (i, ol 11, 08) (1.16)

While in the previous case the absolute value of the initial and final momenta were the same, meaning
k' = k, now this is no longer mandatory as change on the hyperfine states may absorb or emit energy

according to the equation:
2m,.

h2
where the above E’s are the single particle energies due to their respective internal state. In particular,
if the total energy from the internal states are the same, the absolute value of the momentum is the
same as well. This also points out that there may be forbidden processes. Namely, if the change of
internal states requires an energy superior to the initial kinetic energy (which would mean k"2 < 0)
then this solution should be excluded of the sum in Equation With this in mind the rest of the
analysis holds and one has a series of pseudopotentials:

E? =k? + (Eo +Es — Ey — Epg) (1.17)

27 h?

T

Uaprap () = Ao rapd (T) (1.18)

with a respective scattering length for each process aq/g/,a3-

The Dilute Gas Limit:  As described above due to their very low temperature (and the fact that
atoms are not charged) interaction between ultracold atoms can be well parameterized by contact
interactions. In principle one should account for all type of interactions that can occur in this limit:
two body, three body and so on. For the case of a dilute gas, which is the one considered here, the
probability of having a three (or higher) body collision is very low and only the two body interactions
remain relevant. Typically the density of atoms n is found to be in the range 10'? cm ™3 to 10'® cm ™3
which gives an average density n~'/? typically between 0.1 pm to 1 pm [53].

1.2.2 Traps, lattices and interactions

The existence of an external potential trapping the atoms is of fundamental importance in order to
achieve the desired low temperatures. They also allow the construction of some desired specific one-
body potentials and enable also the possibility to confine the atoms in a lower dimensionality by
creating a large potential barrier in the directions that one desires to freeze. Optical dipole traps are
grounded on the coupling between the electric dipole of the atom with light, which shall be far-detuned,
as described for example in [2,/52}[53}/76]. The key feature is that, even though the atom is neutral, it
is still polarizable. In this discussion it is assumed the single particle problem has a metastable state
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leg) with energy wo and an excited states |e;) with energy w;. The Hamiltonian of the atom can then
be written as:

Hatom = Hy ® (Zwi |ez> <ez|> (119)

where H, corresponds to the translational movement of the atom. The center of mass dynamics is
decoupled from the atomic internal states. From now, without loss of generality, the energies can be
shifted such that wg = 0. The external laser electric field with a frequency w takes the form:

B (t, ﬁ) = B, (Fz) et 4 e (1.20)

where c.c. stands for “complex conjugate” and the capital letter indicates the center of mass coordinate.
This will induce a dipole which will interact with the field but it will not influence it (assuming the
field is non-dynamical). The dipole moment of the atomic eigenstates is zero since there is an inversion
symmetry, therefore the dipole moment operator will correspond to off-diagonal transitions on the
basis of |e;):

d="> dijle:) (e] (1.21)
i#j
where d_;j are the dipole matrix elements satisfying CZ;j = d_i‘z The dipole will then interact with the

electric field through V=-E <t7 ﬁ) d coupling center of mass degrees of freedom with the internal

states. The dipole created will point in the same direction of the electric field (in a general medium
this needs not to be the case). Then, under the assumption that there is a dominant contribution from
a single excited state, this extra interacting term can be written as:

T (EO (Fz) - dyoe” "t + By (R‘) : J;Oeiwf) le1) (eo] + h.c. (1.22)
Now changing the basis for the rotating framing corresponding to consider U (t) = e~ wler)(elt,
vV=uwvre=- (EO (R’) -dyo + By (ﬁ) : Jme%wt) le1) (eo] + h.c. (1.23)

Under the rotating wave approximation, i.e. neglecting the fast rotating terms, one finds Vo=
Q (ﬁ) /2e1) {eo| + h.c. where Q (ﬁ) /2 = E (]%) -dyo. The Hamiltonian transforms under:
H =U®'HU @) —iU@®)"U t) (1.24)

The unitary transformation acts trivially on the Hamiltonian [I.19] Then the full transformed Hamil-
tonian reads:

2 (7)
H':H0®(w1 7w)|61> <€1|+T|61> <€0|+h.C. (125)

It is then assumed that the far-detuned condition is fulfilled, that is, wi; — w is sufficiently large, so
that the probability of transition to the excited state is very low. In this scenario the last term can be
treated in second order perturbation theory (first order gives no contribution) and obtain:

‘Q R
éff: Hoy — 4(w(1 —>w)

2

& ‘60> <60| + Hy® (wl - UJ) |€1> <€1| (1.26)

Now the obtained Hamiltonian, in its internal ground state, feels an effective potential provided by

N2
‘Q (R) ‘ . This potential can serve as trapping potential and in particular can generate optical lattices
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in which the atoms feel a background lattice. In fact with dig (ﬁ) = a(w)Ep (E) being « the
polarizability (which can depend on the frequency of the laser), the potential is just proportional to
the intensity. Therefore a standing periodic wave of the form E (ﬁ) = Fj cos (kx) generates a periodic

potential o cos? (kx). If two waves are counter-propagating the standing wave will have a period of
A/2 being A the wave-length of the waves. By varying the angle at which the two beams interfere large
periods of optical lattices can be achieved. The lasers can be combined in several directions in order
to create 2D and 3D lattices as well as considering deep potentials in orthogonal directions in order
to confine the atoms in a lower dimensionality [2].

Atoms in optical lattices Here it is assumed that the atoms are loaded on an optical lattice.
Therefore, neglecting further one body potentials or interactions, the wave functions 9, ; will be just
Bloch waves:

U (7) = %7 2 (7) (1.27)
where u, ; () are periodic functions with the period of the lattice. This is just Bloch theorem explained

in many textbooks as in [77]. Then the system develops band denoted by n and the wave vector k
belongs to the Brillouin zone. Alternatively the Bloch wave functions can be written in terms of
Wannier functions, denoted here by wy,:

Uit (1) = Y war, (7) 57 (1.28)

Wannier functions are orthogonal on both indices (n and 7). The sum is to be performed over the
lattice sites. They depend only on the distance | — 7| and are typically localized around 7 for the
lowest bands (less energetic states). An actual proof of this fact for all bands of a one dimensional
system was given in [78]. It is worth noting that this is not not always the case. Each Bloch wave
has, as usual, an arbitrary phase that can be chosen freely. In particular for each Bloch wave one
can choose a phase that depends on k: (s wn,;ew%. Difference choices of phases, despite a trivial
change on the Block waves, have a dramatic impact on the Wannier functions. These phases must be
chosen accordingly in order to maximize the localization of the Wannier function. In practice, for deep
lattices and in the non-interacting limit, the Wannier functions can be taken to be the eigenstates of
the harmonic potential (for which the ground state is a Gaussian), when restricting to the lowest band.
This consists on the tight-binding approximation.

In second quantization the operator that annihilates a particle at position 7 of the type a (which
can be internal state or different atomic species), Vo (7), can be written at the cost of the operators
that annihilate a particle in a Wannier state dqns,. In a low energy limit, meaning low temperature
and small energy interaction when compared with the band gap, one can consider just the lowest band.
In that case, writing @07, = @as,, the operator becomes:

o (F) = wis (7) das, (1.29)

The Hamiltonian part of one-body terms can be written as Hip = Zi ho; where the sum is over

identical particles. In term of second quantization this will give rise to a sum Hig =) ro T;Tf? &L 087
where the coefficients are given by:
T8 = / @* R (R) howgy (F) (1.30)

where the index ¢ was dropped from hy; since it is no longer necessary to indicate in which Hilbert
space hg is acting on. The typical single-particle terms in cold atomic systems are the kinetic term,
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corresponding to single particle hopping, one-body potential, corresponding to a background potential,
and Rabi terms corresponding to change of internal states. The later ones can be induced by resonant
lasers, promoting the transition between these states. The hopping is explicitly written as:

h2 RNES IR

e = =5 / &3 RV (R) Vs (R) (1.31)
(6%

where m, is the mass of the species @. An extra minus sign was introduced, with respect to [1.30}

that then is compensated by a minus sign on the Hamiltonian. There is also the two-body part

Hop =), hf]B which, as described above, correspond to contact interactions. This will give rise, in

second quantization, to Hop = ZTO Uaﬁfygalrad;?d(;ﬁ'&'yf“ with a coefficient given by:

mh? sp.a (BY .8 (B . (B0 (B
Uns = 7 e / R (R) wh (R) wgy (R) wiy (R) (1.32)
In the expression above an atomic species change the internal state from 6 — a and v — 8. The
reduced mass m,. is calculated with respect to these two species. There is a factor of 1/2 with respect
to the pseudopotential of Equation which compensates the double sum (see Hamiltonian below).
Putting all this together, in the tight-biding limit, the Hamiltonian is given by:

H=— " t%a] dor +het Y ullal ars+ > Uspystlilasein (1.33)
(7, 7Y, 7o, 7,a,8,7,0
The sum over (7, 7") is a nearest neighbor sum.. The second term includes possible background poten-
tials and changes of the hyperfine states induced by external lasers.

There is a further ingredient which makes ultracold atoms a very interesting setting for quantum
simulations. While the first two terms are allowed a certain degree of manipulation from external
lasers, the last one seems not to allow an independent tuning. Of course U,g,s depends not only on
the scattering length but also on the Wannier functions which ultimately depend on the external lasers
building the lattice. However these laser dependence does not give a great freedom and only allows a
variation that is coupled to a variation in the hopping term. There are however ways in which this
term can be tuned separately, e.g. by using Feshbach resonances to change the effective scattering.
Therefore also this term enjoys an extra freedom of choice.

Feshbach resonances rely on the existence of a low energy bound state. In the limit in which the
energy of this bound state is close to the energy of the scattering state (large atomic separation between
scattering particles), a Feshbach resonance can occur. Since the magnetic moments of the atomic and
molecule (bound) states are different, this energy difference can be controlled by an external magnetic
field. Then, a proper tuning of this difference in energies leads to the so-called Feshbach resonances.
The effect can be calculated in second order perturbation theory and can be interpreted as a virtual
process in which the particles initially form a bound state and then decay to the scattering state.
When the energy of the bound state is below the scattering state this gives rise to an attraction while
if the bound state has a greater energy it will give rise to a repulsion. The correction on the s-wave
scattering length ag (when there is only the open channel) for a given external magnetic field B can
be parameterized by the equation (introduced in [79]):

a(B) = ao (1 - B_ABO) (1.34)

where B is the resonant value of the magnetic field for which the energies of the scattering and bound
states are the same. The parameter A is the resonance width and indicates the value for which the
scattering length vanishes (explicitly for B = By 4+ A). A similar phenomena of magnetic Feshbach
resonances described above are the optical Feshbach resonances. In the later case the two atoms couple
to an electronically excited bound state through a laser field. The study of the resonance phenomena
was initially carried out by Feshbach [80L[81] and by Fano [82]. Currently the subject can be found in
several reviews and books, for example [52}53]75},83].
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1.2.3 Quantum simulations with ultracold atoms

The features described in the previous sections makes the ultracold atom setting an interesting platform
to explore new physics, as concisely exposed in [1]. In this subsection two examples are given illustrating
their potential where successful experimental implementation was achieved. These will be the BCS-
BEC transition in the and the Superfluid-Mott transition on the lattice.

For the first case one considers a gas of atomic fermions that have an attractive interaction between
them. In such gases there are two relevant length scales. One is the average interatomic distance
which is related to the inverse of the Fermi momentum k;;l. The other is the scattering length that
characterizes the interactions between the atoms (it is being considered a single fermionic mixture
so that only one scattering length is present). Such mixture can then be characterized by a single
dimensionless parameter given by the ratio of these two length. The goal is then to explore the physics
of the system as the scattering length (or equivalently the interaction) is varied.

For a weak attractive interaction the scattering length is small and negative. By increasing the
attraction the scattering length increases in absolute value but remains negative. At a certain finite
value of the interaction the scattering length actually diverges (to —oo). This is associated to the
development of a bound state. By continuing to increase the interaction the scattering length jumps
to +oo and starts to decrease becoming smaller and smaller as the interaction becomes more and more
attractive (see for example [73]). This behavior is then translated to the parameters 1/kra: it goes to
—oo for weak attraction, the 0 is associated with a a development of a bound state and finally at +oo
one finds the large attractive regime. The first and last limits are well understood:

e Weak attractive regime, 1/kpa — —oo: Fermions form pairs that are large than the interparticle
distance. This is the well know BCS state (due to Bardeen-Cooper-Schrieffer [84]).

e Large attractive regime, 1/kpa — +o00: Fermions experience such a strong attraction that form
bound states (molecules). Two fermions together form a boson, and these bosons are now weakly
coupled. Therefore they form a BEC (Bose-Einstein condensate).

In between these values the system passes through several regimes and together they form what is
known as the BCS-BEC crossover (see for example [85[86]). The behavior of the intermediate regime,
as a many-body problem, poses a challenge in the theoretical understanding since no small parameter
exist to be used in perturbation theory. The fact that these system can be implemented with ultracold
atoms allows, not only to gain insight into the physics of these systems, but also to validate other
techniques giving an accurate reference to be compared to. As an example, precise measurements of
the equation of state in the unitary limit (1/kra — 0) [87,[88] were able to validate the diagrammatic
Monte Carlo technique [88].

In a completely different setting, now a lattice system loaded with bosons is considered and the
resulting model is the Hubbard model. It is a special case of the lattice Hamiltonian of [[:33] where
there is only one species. There are two energy scales involved: the hopping parameter ¢t and a density-
density same site interaction U (the interaction term takes the form ~ Un, (n, — 1) where n, is the
site number operator on site r). The relevant parameter is given by the ration U/t. Considering the
case of repulsive interactions (U > 0) one finds the same general structure as before, in which there
are two regimes that can be understood in perturbation theory:

e Small repulsion, U/t — 0: Hopping dominates. Bosons are spread through the entire lattice with
a macroscopic wave function — Superfluid state

e Strong repulsion U/t — 0: Interaction dominates. Bosons are localized and there is a fixed
number of bosons per site — Mott insulator state.

There is therefore a quantum phase transition for some critical value of U/t [561/89,090]. Again this
ratio can be varied experimentally in a cold atomic setting and new regimes can be investigated.
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This variation can be done by tuning the interactions (by Feshbach resonances) but also changing
the hopping by varying the amplitude of the lattice potential. Both approaches have been used,
respectively, in [91] and [56]. The simulator can give insights into the physics of non-perturbative
regimes. For example, it is actually possible to achieve single-atom and single-site resolution which
can give access to thermal and quantum fluctuation [92]. Insights into hidden order parameters is
another interesting application. Typically these are local quantities. However that is not always the
case which makes the identification of suitable order parameters much more complicated. An example
of this is the identification of a string order in one dimensional gas of bosons [93}94].

1.3 Gauge theories

A gauge theory is a model which has a gauge symmetry. Such symmetry is a redundancy on the
description of the degrees of freedom. In other words, this means that one can have two mathemati-
cally distinct solutions of the equations describing the system and nonetheless they describe the same
physical situation. The most well known gauge theory is most likely classical electrodynamics. It
describes the behavior of the electric field E (¢,#) and the magnetic field B (¢, %) throughout space
in the presence of an electric charge density p (t,Z) and the current density j(tj’). The system is
governed by the Maxwell equations:

-

V-E(t,F) =p(t,7) VxB(E-0E(T)=](t7)
B

) g 1.35
V-B(t,©) =0 V x E (t,%) + 0,8 (t,&) = 0 (1.35)

In the above equations and in the rest of this Thesis natural units shall be adopted, A = ¢ = 1, unless
for the particular cases in which explicitly ranges for experimental parameters are calculated. The
homogeneous equations, which are independent of charges and currents, can be automatically solved
by introducing a scalar potential ¢ (¢,Z) and a vector potential /Y(t, Z):

E(t,%) = -V (t,7) —0,A(t, &), B(t,7) =V x At T) (1.36)

Using these two relations the equations of the last row are automatically solved and the ones from the
first row can be written in terms of ¢ (¢, &) and A (¢, &). After a solution is found it can be plugged in
again in Equation in order to obtain the electric and magnetic fields. However not all different
¢ (t,7) and A (t, ) will give different electric and magnetic fields. In fact if two other fields ¢ (¢, %)’
and A (t, %) are related to other solution by:

ot %) = o (t,2)+dat,Z), At,Z) =A@ T) - Val(t,) (1.37)

for some function, « (¢, %) then the electric and magnetic fields, given by Equation remain un-
changed. This means that the solutions ¢, A and ¢, A correspond to the same physical situation and
therefore they are just redundant descriptions of the same physics. The transformations of Equation
are called gauge transformations.

The existence of a gauge symmetry does not require that the field is dynamical. Consider a charged
quantum particle in a background of a classical electromagnetic field. The Schrodinger equation for
this system can be written as the equation in the absence of any field and “correcting” the canonical
momentum p — p — eA. In the presence of an electromagnetic field the mechanical momentum,
associated with the kinetic energy of the particle and denoted here by 7, is no longer the canonical
momentum given by p. The relation between them is 7@ = 7—eA which is at the core of this substitution.
The same happens for the time derivative with the scalar potential 19, — i0; — e¢. The Schrodinger
equation reads then, in the absence of any other interactions:

N2

(i0; — ed) b (t, T) = (—N - eA) b (t, ) (1.38)



CHAPTER 1. INTRODUCTORY MATERIAL 19

Also this equation is invariant under the transformation [I.37] provided that the wave function is trans-
formed by a phase: ' .
Y (t, &) = e G2y (¢, ) (1.39)

In quantum field theory an illustrative example is provided by QED. The Lagrangian is given by:

L= (0" (10— edy) —m) b~ |
From this point it will always be assumed sum over repeated indices unless otherwise stated. " are
the gamma matrices satisfying the Clifford algebra {v*,~+} = 2n*¥ n*" is the Minkowski metric
n = Diag(1,—1,—1,—1), ¥ the Dirac spinor and 1 = T40. The indices p run from 0 to 3 where
0 corresponds to the time index. The A, is called gauge field and the last term of the Lagrangian
corresponds to their kinetic term where F),, = 9,4, — 0,A,. Again here there is a local set of
transformations that leave this Lagrangian invariant. Explicitly:

F, F (1.40)

Ay () = Ay (2) = 0,0 (2), 3 () = O (2) (1.41)

This is an example of a U (1) gauge theory: a gauge transformation is defined, at each point, by
phases a € [0, 2| which combine according to the group U (1). However gauge symmetries can belong
to other gauge groups, like Zy, or also non-Abelian, like SU (N), for N an integer number. For
example, the Kitaev toric code is a Zs (Abelian) gauge theory [7] while Quantum Chromodynamics
(QCD), the theory that describes strong interactions in particle physics, is a SU (3) (non-Abelian)
gauge theory [95197]. In the following a brief description of non-Abelian gauge invariance in quantum
field theory is provided. For more details see, for example, [10].

As just presented the QED Lagrangian has a local symmetry described by the transformations
1.41} This transformation is said to be local since the phases « (z,) can depend arbitrarily on the
position (provided that their derivative exist). In the absence of the gauge field this symmetry no
longer holds. Instead only a very small subset of the transformations survive. These are the global
transformations which transform the same way in all space-time points, i.e. for « a constant function.
From another point of view, gauge invariance was obtained by replacing the “regular” derivative by a
covariant derivative

D, =0, +ieA, (1.42)

When applied to the field, the covariant derivative does not change under a gauge transformation [[.41]
By this it is meant that under such transformations D, (z,) — €**@) D 1) (2,) and therefore it acts
just like the regular derivative for o constant. Note that the covariant derivative can be defined to be:

DH,(/) _ hm’l/) (I“ + 5) -U (IE“ + €,xu) ’l/) (J;M)

e—0 e

(1.43)

where the the quantity U (z, +€,,2,) should have the asymptotic behavior U (z, +¢€,,2,) = 1 —
ieeAy (zo) + O (€?). In general U will be dependent on two points U (z,y). Assuming that U is a
phase and that it conjugates under exchange of variables (U (z,y) = U (y,x)") fixes U to be U (y,x) =
exp (—teA(y,z)) for some real function A (y,z). This function should obey, for y = x + e*n, with
e” infinitesimal and n, an unitary vector pointing in an arbitrary direction, A (y,z) = e*A, (z) . A
choice which satisfies this criteria is

A(y,x) :/P dz"'A, (z) (1.44)

where Py, is a path connecting the points = and y (for example a straight line). The resulting path
dependent object Up is called Wilson line and transforms, under gauge transformations

Up (y,2) — *WUp (y,z) e~ (1.45)
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Up (& + e, +e(p+ )

x4ev :( z+e(ii+0)

Up (z,2 +e0) ' A Up(z+ef,x+e(i+0))

T » T+ el

Up (@,2+ &)

Figure 1.1: In order to find the correct build block for the pure gauge term, one can take a closed path
un a form of a square as shown in the figure. By taking a square of size € and taking the limit of small
€ one arrives to Equation Note that U (z,y) = U (y,z)".

The Wilson line allows, in particular, to construct easily gauge invariant objects by simply choosing a
closed path P. Equivalently one can combine products of different paths to form a closed path. This
actually allows the construction of the kinetic term of the gauge field. In fact, F),, (x) can be derived
from Up (y,x) where P is the closed path formed by a square starting at the point  and running
counter-clockwise first in the direction p and then v, see Figure In the infinitesimal limit where
the length of the edge of the square is € one finds:

Un =1—ies’Fy, (1.46)

Summing up: starting from the Dirac Lagrangian one can construct in a natural way a gauge theory
by imposing the existence of a local symmetry. In particular U gives the receipt to obtain a gauge
invariant quantity F},, which has to be contracted with F'** in order to form a gauge invariant quantity.
This approach can be used to construct the Lagrangian for other symmetry groups.

In the case described above the gauge invariance was U (1) and it corresponded to just a phase. In
order to explore other symmetries, an extra index must be inserted (in the paradigmatic example of
QCD these are the color indices). In order to simplify the notation, whenever v it is used it is meant:

(N

wf (1.47)
by

where each one of the 1); corresponds to a (four-component in 3+ 1 dimensions) Dirac spinor. Consider

then a general symmetry group and a respective set of generators represented by Hermitian N x N
matrices t®. The goal is to build a Lagrangian which is invariant under the set of local transformations

Y (z) — el @ty (z) (1.48)

This transformation mixes the N components of the vector [1.47] The object constructed for the
Abelian case, that was identified as the Wilson line now has to be a matrix and transforms
under:

U (y,z) = " @0 (y, ) et @1 (1.49)

which allows the construction of a covariant derivative, like in Equation [[.43] If this transformation is
to hold, then the composition rule: U (y,z) U (z, z) = U (y, z) must hold. In order to derive the form
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of U (y, z) consider a path between an initial point z and a final point y and consider z infinitesimally
close to y. Then the equation can be written as:

Uly,y —e)U(y—¢&,2) =U(y,2) & (1 +"0,U (yy)) (U (y,2) = €"0,U (y,2)) = U (y,2)  (1.50)

where it was assumed that U (y,y) = 1 and U (y, z)Jr = U (z,y). The derivatives act on the first entry
(in the expansion of U (y,y —¢) it is possible to pass the derivative to the first entry by using the
conjugation properties of U and of the derivative operator). Then U obeys the equation:

igt" A3, (y) U (v, 2) = 0,U (y, 2) (1.51)

where the derivative of U at the same point in space was written as J,U (y,y) = igt®A}, (y). One
has to be careful in solving this equation because U at different points do not commute in general.
However this problem is exactly the same that one faces on finding the unitary time evolution operator
for a time dependent Hamiltonian (which may not commute at different times). As the solution in
that case is the time ordering exponential, the solution here is a path ordering, here denoted by P:

Uly,z) =P {eigt“ I dw“f“i} (1.52)
Then using the prescription for the covariant derivative of Equation [[.43] one finds:
D, =0, —igAjt® (1.53)

The kinetic term can also be constructed in a similar way choosing a path corresponding to an in-
finitesimal square running counter-clockwise in the directions p and v (again see Figure [L.1)). The
result is given by:

Un (z) = 1 +ige®FY, (z)t* + O (%) (1.54)

nv

where £, is calculated by direct computation:
Ff, = 0,A% — 0,A% + g " A} A (1.55)

and £ are the structure constants given by [t“,tb] = it°f%c. Note that now Ug () is not gauge
invariant since it transforms under Ug (z) — €!*" (@) Ug (x) e~ (@) and there is not a trivial com-
mutation relation between U and the exponetials. However it is straightforward to construct a gauge
invariant quantity by taking the trace of Ug (). As the generators t® are traceless one has to go to
higher than second order in Going though the computation one finds that the fourth order is the

lowest non-trivial order giving a gauge invariant quantity Fjj, F**”. The Lagrangian can be written:

- 1
L=L =9 ("Dy—m) — F F (1.56)
In this equation 1) is to be interpreted as line vector with components 1; and v* are diagonal on the
color indices, i.e. act the same for every color by standard matrix multiplication vy*;.

1.4 A primer on lattice gauge theories

The target of this Section is to do a very brief introduction to lattice gauge theory setting the stage
for simulation of theories in which the gauge components of the system are also dynamical. Naive
discretization of bosons and fermions plus the doubling problem (occurring for fermions) are introduced.
The alternative formulation of lattice gauge theory with quantum links is particularly advantageous
for quantum simulations and is introduced at the end of this Section.
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1.4.1 Naive discretization of bosons

In this Section the action for the free bosonic field shall be discretized. In Euclidean time the action

reads:
1

Slel = / a0 ((0,6) +mo?) (1.57)
For symmetry the kinetic term is written as —¢d2¢, where 8% = L 82 is the Laplacian in d + 1
dimensions (u = 0,...,d), which can be done integrating by parts in the action. Now naive dis-
cretization is applied which consists in substituting the derivatives by finite differences, factorized by a
lattice spacing a. There are different ways to do this discretization. Here the derivative is discretized
as: 0,0 (z) — (¢ (xr+ait/2) — ¢ (x —afi/2)) /a. This implies that the Laplacian is discretized as:
?¢(z) — (¢ (x4 apt) + ¢ (x —ap) —2¢ (2)) /a* = (pnip + Gn—p — 26n) /a®. A general point x of
the lattice has components that are multiple integers of the lattice spacing = = a (ng,...,nq) = an
so a notation was adopted to make this explicit. The integral is also transformed in a discrete sum
[d¥* 1tz — a?t13". To avoid unnecessary complications the lattice is considered to have the same
n

extension in all the directions: n; = 0,..., N —1 so the total volume is V = (aN)dH. The discretized
action is then written as:

1 _ 1
S[e) = 50D (On (Gnip + np — 20n) a~ +mey) = 5a™D 01 Kingy  (158)
n ln
where a matrix K was defined having components:
On it + Oni—p — 20
Ky = — 2t Ondop = Bont (1.59)

a

Within path integral quantization expectation values are calculated integrating over configuration
(here still in Euclidean time):

©l) = [ Dsolg)es (1.60)

where Z = [ Dge'SI9). In this discretized version the measures were abbreviated by: D¢ = [[d¢,. The

n
next step consists on calculating the two point function and see if the continuum two point function
is obtained on the limit @ — 0. The action is quadratic on the fields and therefore the integration is
carried out explicitly. The propagator reads:

1
(G1n) = WKZ?S (1.61)

This is most easily computed in momentum space where K is diagonal. Defining

d+1
Ky, = (1) > Kppeltr=na (1.62)
pq — alN in .
lin

and substituting directly on [I.59] results in:

1 2 2
Kpq = ad+1 <_CLZZCOS (apu) + 2 + m2> Opq (1.63)
m

The two point function in momentum space can be written as:

1

T Ay sin? () +m?
I3

(¢ (=p) & (p))

(1.64)
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where there was a simple rearrangement of the denominator. Here also ¢ (p) = (a/N )(d'H)/ 2 >, Pne P

and equivalently ¢, = ((/LN)_({H_U/2 Zp ®peP™. When the continuum limit is taken, when a — 0, the
Brillouin zone where p,, takes values, p, € [—m/a,m/a[, covers the entire real line. In that limit the
function becomes simply:

1

1.65
p2 + m2 ( )

(0 (=p) D (P))asso =

where p? = Z“ pi. This is precisely the two point function of the continuum theory and therefore the
expected two point function is obtained.

1.4.2 Naive discretization of fermions and doubling problem

The free Dirac fermion action in d + 1 dimensions in Euclidean time is given by:

S[4,9] = / A1) (7,0, +m) (1.66)

From this point it will always be assumed sum over repeated indices unless otherwise stated. ~*
are the gamma matrices satisfying the Clifford algebra {y#*,v"} = 2§**, §** the Euclidean metric (0
is the identity matrix in d + 1 dimensions) and 1 = 149 The gamma matrices have dimensions
2[(d+1)/2] 5 2l(d+1)/2] and the spinor 9 2[(4+1/2 x 1 where [z] means the integer part of 2. The naive
discretization follows the same procedure as for the bosonic theories replacing derivatives for finite
differences. In order to do this in a symmetric way first the kinetic term is written as:

/ddﬂxlﬁ%aﬂb = %/dd_ﬂf ("/}V;Aa;ﬂl) - 3;#/;%1/)) (1.67)

using integration by parts. The discretization is taken explicitly as: 0,1 () = (¢ (z + aft) — ¢ (x)) Ja =
(Yn+p — ¥n) /a . The discretized action will read:

" 1- 1- - _
S [1/)7 M = adz <2wn+ﬂ’7uwn - §¢n’7#'l/)n+ﬂ + amwnqpn) = ad+1zleln¢n (168)
n lL,n
where the matrix K as components:
1
K, = Z%’y” (O1,n+4 — O1n—p) + Smm (1.69)

Within path integral quantization expectation values are calculated integrating over configuration
(here still in Euclidean time):

(O [d,9]) = %/D&szo [, 5] e S[¥] (1.70)

where Z = [ Dy Dipe®s [0, Again in this discretized version the measures were abbreviated: D1y =
[[dv,, with the analogous formula for Dip. The fermionic fields are Grassman variables. The next step

n
consists on calculating the two point function and see if the continuum two point function is obtained
on the limit @ — 0. The action is quadratic on the fermion fields is still quadratic and therefore the

integration is carried out explicitly:
_ 1 .
(Vthn) = 7 Koy (1.71)
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sin (ap,,) 3

Figure 1.2: Continuum limit of naive fermions. On the vertical axis the value of k, = sin (ap,) /a
which will be the momentum in the continuum limit. The interval k,, € |—o0, 400 is covered twice:
for p,, in the interval indicated by A and again by joining B, (negative momentum) and Bs (positive
momentum).

Again by going to momentum space and substituting directly on [I.69] results in:

a
m

1 1 .
Kypq = qd+1 (Z,Y# sin (apy,) + m) Opq (1.72)

as a result the two point function in momentum space are:

1
%Z’yﬂ sin (ap,) +m
N

(W (=) (p)) = (1.73)

here also 4 (p) = (a/N) /2 Sg,e7#" and 4 (p) = (a/N) V2 g0

In order to check the continrlllum limit here, one has to be more Zareful than for the bosonic case.
For the later case, in Equation the sin? (ap,,/2) was a monotone function on p,, in all the Brillouin
zone. This is not the case for sin (ap,) as it is schematized on Figure In the continuum limit
k, = ilgb sin (ap,) /a there are two values of p, which give the same momentum. This results in

an extra quantum label which consists in an extra flavor that was not intended to be there. This is
commonly referred as the doubling problem and consists on the fact that naive discretization leads, in
the continuum limit, to extra fermionic flavors. For every discretized dimension one has two degrees
of freedom to choose from which will correspond to the same momentum. This means that in total,
for d + 1 discretized dimensions, there are 2¢t! fermionic flavors instead of just 1.

In order to solve this problem it is useful to refer to the Nielsen-Ninomiya Theorem [98-100]. This
theorem states that for a free fermion lattice action that is:

e real

sufficiently local (smooth fourier transform)

translation invariant (under lattice translations)

e chiral invariant
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suffers from fermion doubling problem. Nielsen-Ninomiya Theorem hints to what kind of things one
might think to give up in order to solve the fermion doubling problem. The most natural condition
to give up is chiral symmetry. One of such solutions was proposed by Wilson by adding to the action
a term that explicitly breaks chiral symmetry. This term is also responsible for giving a large mass
to the doublers in the continuum limit. This term is added to the action and takes the form
adt! Zn u (211_)“/1“ - 1Z_Jn+ﬂ’yﬂwn - 7/_1n’Y;ﬂ/1n+[L) /2a. Explicitly computation shows that the doublers
are removed.

Another approach consists on using the so called staggered fermions (also known as Kogut-Susskind
fermions). This is however less severe and a U (1) symmetry remains with respect to the Wilson
approach. The idea consists use the doublers to build the Dirac spinors. Assuming that d + 1 is even
then the Dirac spinor has (d 4+ 1) /2 components. Distributing each of the doubler for the components
of the spinor one reduces the number of doublers to: 2¢+1/2(d+1)/2 — 2(d+1)/2 " Naturally this is a
drawback of the approach since it does not eliminate completely the fermion doubling problem. The
construction of staggered fermions for 1+ 1 dimensions are described in detail in the last section using
the Hamiltonian approach instead of the path integral. Generalizations for higher dimensions are also
presented. A particularity of the 1 + 1 Hamiltonian case is that, since time is not discretized, there is
an extra factor of 1/2 reducing the doublers and the doubling problem is completely solved. In other
words, when keeping time continuous, the number of doublers is 2¢. Using staggered fermions they
are reduced to 2¢/2(4+1)/2 = 2(d=1)/2 1f § = 1 than this is equal to 1 and there are no doublers.

1.4.3 Staggered fermions

In this Section, since is the Hamiltonian approach that will be discussed, real time is taken instead
of Euclidean time. First the construction of the Hamiltonian for the case of 1 + 1 Dirac fermions is
discussed by using the idea of encoding the degrees of freedom of the spinor in different lattice sites.
In the end the lattice formulation is generalized to 3 + 1 dimensions by recognizing that it is possible
to decouple spinor degrees of freedom.

1+1 fermions The Dirac Hamiltonian in continuous space time takes the form:
H= /ddmz (=i7'0; + m) ¥ (1.74)

where i takes the values of special indices: 7« = 1,...,d. Now, focusing on the d = 1 case, given a
lattice n € Z instead of placing a ,, 2 x 1 spinor in each lattice site, a single fermion ¢,, is inserted.

Then the spinors are represented by:
1
U = ( C2n ) (1.75)

Vst Con+1

being ag; the lattice spacing. The pre-factor ensures the correct dimensions so that one can work
with the usual adimensional operators on the lattice as well as guarantees the correct scaling for the
continuum limit ass — 0. A concrete representation of the Clifford algebra is adopted. The two gamma
matrices in 1+ 1 are taken here to be the Pauli matrices v° = o, and 4! = io,. Then one should
discretize, with the above recipe, the Hamiltonian . To discretized the Hamiltonian is written as

H= /dx (=it ooy +id1pTo™y + myplo.ip) (1.76)

In this expression o, was decomposed into o+ = (0, £ig,) /2 (and therefore o, = o+ + 0~ ) and,
on the o~ , integration by parts was used. This may look as a strange way to write the same theory.
The goal is to have, after discretization of the derivatives, a lattice theory without second nearest
neighbor hoppings. This will be made clear at the end of the discretization process. Both derivatives



CHAPTER 1. INTRODUCTORY MATERIAL 26

are replaced by 019 — (¥, —¥n_1) /as and Oppt — (wIL — ¢l_1> /as. Plugging all this in the
Hamiltonian

Ng—1

H= 3 (Wz%% + o 1 — il 10T P+ astmiﬁlazwn) (1.77)

n=0

and expanding the spinor components:

1 Ngt—1
. 1CypCo2n+1 T 1Coy 1 1C2n T 1Cy), C2n—1 — 1Coy,_1C2n T AstTMCop Co2p — AstTNCoy 1 1C2n+1
st
n=0

(1.78)
which can be written as a sum on a lattice with twice as much lattice sites. The number of sites in
the new lattice is N = 2N and the lattice spacing is half the original one a = as/2 (the physical
dimension of the system remains the same). Then the resulting lattice Hamiltonian can be written as:

N-1

{ !
H= Z (—%c;clﬂ +hec. +m(-1) cjcl> (1.79)
1=0

As mentioned before the lattice discretization would have a different look depending on how one
would approach the discretization. For example if instead of 019 — (1, — ¥n—1) /ast one uses 019 —
(¥n41 — ¥n) /ast, which is the same in the continuum limit, there would be second nearest neighbor
hopping. For the lattice model this is of course different but it should not matter when the continuum
limit is take. Particularly in taking the continuum limit naively the corrections are of higher order on
the lattice spacing and the differences on the lattice model vanish.

Higher dimensions The discussion above can be generalized to higher dimensionality. Here the case
of three spatial dimensions shall be described. Now there are four Dirac component to be distributed
on the lattice. In the one dimensional case there were two sublattices, corresponding to even and odd
sites, building respectively the upper and lower component of the Dirac spinor. Now there should be
four sublattices that will encode the four degrees of freedom. The procedure followed here could also be
followed for the later case. The starting point corresponds to a naive discretization of the Hamiltonian
analogous to the case of one spatial dimension:

H= adz |:21a (_d_}"’}/iqbn-&-% + ,(;n—i-i’yiwn) + m&nwn (180)

The idea consists on performing a spin diagonalization (effectively diagonalizing the gamma matrices)
by a local transformation of the spinors:

Yn = Cn‘ﬂna 7/}; = @ILCIL (181)
with C,, an unitary transformation. The y-matrices are replaced by the following matrices:
Civ°y'C, s = A (n), CIA°Cr = Ag (n) (1.82)

The goal consists on choosing the C' matrices in such a way that the A’s are diagonal. For concreteness
it will be considered the case of d = 3 and, furthermore, one can fix the chiral representation of the

Clifford algebra:
0 __ 0 12 i O ag; _ IQ O
Y= ( 1'2 0 y V= —0; 0 y V5 = 0 7]2 (183)

There are possible choices like, for example:
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Co =T (357" (7)™ (37°)"™ (1.84)
where the different n; are the components of the lattice index n and I' is defined to be:
1 (I, —I,
r=— 1.85
0w (1:59)

This matrix commutes with the 4* and diagonalizes 4°: TTAOT = ~5. It is useful to observe that the
matrices 57" are Hermitian, unitary and anticommute between each other. One finds:

Aj(n) = (=1t L0 Ay (n) = (—1)™ 218 (1.86)

What is observed is that, in this transformed variables, each component of the Dirac spinor is decoupled

from the other due to the fact that the “new ~v-matrices”, A, are diagonal. One can then keep a single

component per site throwing away the rest which are decoupled from the system. For instance, choosing

the first component of the spinor and denoting it by [¢,]; = ¢,/ a’/? (in general dimensions one has
d/2Y vielde-

cn/a™?) yields:

é NLTeTNi—1 1 e
H = Z |:_2a (_1) +...+n (Cilcn_,’_;; . CIH_%Cn) + (_1)TL +n2+ng mCLCn] (187)

This generalizes the previous staggered fermions Hamiltonian in 1+ 1 dimensions. Writing the hopping
explicitly for clarity:

i
H = Z |:2a |:(lecn+i - Cib-‘,—ic’n') + (*1)”1 (CILC”Z“FQ — CL+QCn)
n

(=1t (cjlcw_g - CL+Scn)] 4 (—1)mrtnetne méncn}

(1.88)

The structure of the minus signs in from of each hopping term is not unique. Other choices are possible
by alternative solutions to , for example by considering: C,, =T ('yl)nl (’y?)nz (73)n3.
This construction can be carried out to any dimension generalizing to:

nn+i n+1

H— |: (71)n1+...+ni_1 (CTC o CT ACn) + (,1)n1+"'+nd mcjlcn:| (189)

where, naturally, 4 runs from 1 to d.

1.4.4 Lattice gauge theory

Since the final goal will be to provide an Hamiltonian formulation of a lattice gauge theory, it is useful
to start by considering the continuum Hamiltonian formulation for Abelian gauge theory. Consider
the Lagrangian of QED It is seen that the component Aj is non-dynamical (there is no term
dpAp) and acts as a Lagrange multiplier enforcing the Gauss’ law as a constraint of the system. The
equations of motion for this component are simply dL/0Ay = 0 resulting in

— 9, F% —epTp =0 (1.90)

which is the Gauss law, as announced. The electric field is E?* = —F% and it is the conjugate
momentum of the variable A; (E* = dL£/0A; with the dot denoting time derivative). In order to
construct the Hamiltonian the temporal gauge, Ag = 0, shall be adopted. As a consequence the Gauss
law must be imposed as a constraint of the system. The resulting Hamiltonian density reads:

H =1 (—iv" (0; +ied;) +m) Y+ % (E'E; + B'B;) (1.91)
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where B; = 5¢jk8j AF is the magnetic field. In canonical quantization, since E; is the canonical
conjugate of A;:
[4; (z) , Ej (y)] = 656 (x — y) (1.92)

The operator Ej; (y) can be represented as E; (y) = —i0/0A; (y). The constraints on the states read:
G(x)|¥)=0 (1.93)

where G (z) = 0;E" — eyt is the generator of the residual gauge invariance. In fact the gauge
fixing used, Ayg = 0, does not fix completely the gauge as any gauge transformation with « time
independent leaves the gauge fixing condition untouched. The residual gauge transformations are
therefore time independent phases.

1.4.4.1 U (1) gauge theory in 1+ 1 dimensions

Now the goal is to construct a gauge invariant lattice Hamiltonian. The starting point shall be the
staggered fermions Hamiltonian of Equation [I.79in 1 + 1 dimensions. The final Hamiltonian should
have a local symmetry corresponding to the transformation ¢,, — e*®»¢,. As expected the Hamiltonian
[1.79)does not have such symmetry. The solution passes by including a a link variable connecting the two
fermion operators CLUn,nH ¢n+1 which under gauge transformations compensates the transformations
of the fermions. This amounts to say:

cn — €%nc,
{ Un,n+1 — €ia" U,L7n+1e_i°‘ﬂr+l (194)
Making contact with the continuum theory the link variable can be written as:
a(n+1)
Un,nJrl = exp ie / d.’EAl (ZL') (195)

an

which transforms correctly under the gauge transformation. These link variables are then inserted on
the kinetic term. Furthermore, one should supply the pure gauge part corresponding to the electric field
E,, (which is also a link variable). In fact this is, in spirit exactly, the same approach that was carried
out in Section [I.3] to build a gauge theory out of the idea of a local symmetry. The link variable [T.95]is
nothing more than the Wilson line constructed in specialized for 141 case of U (1) with a straight
line path P between an and a (n + 1). In the small lattice spacing limit U, ,+1 = exp (iead,) = Uy,
where A,, = A; (an), and with F,, = —id/0A,, one finds [Uy,, Epn] = €0pmUs, H It is then convenient
to introduce the variables L,, = F,,/e and the commutation relation becomes:

(Lo, Un] = SpmUn, [Lin, US| = =6nmU;l, (1.96)

The link variables U,, can also be written in terms of a phase 6,,: U, = e*». The variable 6, is the
canonical conjugate of L,:

[0ry Lin) = i0nm (1.97)
With all these ingredients the Hamiltonian takes the form:
H = i T i0n n ae2 9
=5 3 (cheepir —he) + m; (=1)"clen + 7;Ln (1.98)

2The Dirac delta § (x — y) = § (na — ma) was replaced, in its discretized version, by dnm /a. That this is the correct

discretization can be seen by considering the representation of the Delta function as § (z) = lim w By
a—0

considering = a multiple integer of a and removing the limit one obtains the desired discretized version dnm /a.
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Finally it remains to be imposed the Gauss law through the generator for the gauge transformations
of Equation [1.94] To identify the generators an infinitesimal transformation is considered where, say,
«, is infinitesimal and all the other a’s are set to zero. Then the only variables affected by the gauge
transformation are
en = (L4+iay) ey
el — (1 —iay)ch
0, — 0, + a,
en—l — en—l — Qp

(1.99)

For a generator G of a transformation with a parameter «, an operator O is transformed according to
O — ¢ *GO0e™*C | For infinitesimal transformations O — O +ia [G, O]. Applying this for the present
case yields:

[Gna Cn} =Cn
[Gn,cm = —cl
[Gr,0,] = —i
[Gna en—l] =1

while it should commute with all the other operators. The solution of these equations takes then the
foom G,, = L, — L,_1 — cjlcn + const. The constant can be determined by imposing that the bare
vacuum, with no electric field, is a physical state. Such state is the ground state of the limit of infinite
mass and is characterized by:

(1.100)

1-=) (_1)n, L, |0) =0 (1.101)

lecn 0) = B)

This fixes the generators to be:

1— (="
Gn=Ly—Lp1—clen+ # (1.102)
Of course any other constant choice will not alter the symmetry for which G,, is a generator. This
choice just allows to impose the Gauss law requiring that the states are annihilated by G,,:

Gn|¥) =0 (1.103)

Bare vacuum, pair creation on the lattice and the Gauss law: The bare vacuum defined in
Equation [I.I01] has fermions filling the odd number sites while leaving the even number emptied. This
is the same ground state for the infinite massive case of the free staggered fermions of the Hamiltonian
The interpretation of this structure is related to the fact that the spinor degrees of freedom are
distributed along the lattice. Occupied odd sites have the interpretation of a filled Dirac see. When
a fermion hops from a odd to an even site it creates a hole on the Dirac see while creating a particle
above the Dirac sea. This is interpreted as the creation of particle/anti-particle pair where the hole
plays the role of an anti-particle. When in the presence of gauge fields, the hop described above must
be accompanied by a change on the electric field according to Equations and Given the
bare vacuum and an an odd site n from which lattice fermion hops to the neighboring even site n+ 1,
then L,, goes from 0 to 1 according to Equation [[.79] This initial fermion hopping breaks the Gauss
law for the sites n and n + 1 which are both restored by the above change on L,,.

1.4.4.2 U (1) gauge theory in d + 1 dimensions

The principle applied above translates to higher dimensions. While in the d = 1 case the links could be
labeled by just one index (the lattice site from which they emanate) for higher dimensions a direction
must supplement this label. Therefore they are represented by U,; meaning “link emanating from n in
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N

,I,,’,

a) No dynamical links b) Dynamical links: Lattice gauge theory

Figure 1.3: Illustration of the construction of a lattice gauge theory by introducing dynamical links.
In a) the links are not dynamical and only fermions are present. Their kinetic terms are represented
which consist on nearest neighbor hopping. In b) the links become dynamical through plaquette terms
(represented by the circular arrows).

the i-th direction. Analogously one has U,,; = e and L,y;, related to the discretized electric field by

Ly = En;a%1 /e, with commutation relations [0, Ly, = 10;j0nm. The gauge transformations are:
Cp — €%,
; Zio L 1.104
{ Ui = €4 U™ i (1104

For U,,; again one can use the Wilson line [L1.95] Now, for d > 1 there is a magnetic field which corre-

sponds to a plaquette term. For an ij plaquette in the point n this means Ug = UmUnJr;,j U:L—s—j‘ iUl’j

(this is the same situation presented in Figure where now, instead of an infinitesimal distance &,
one uses the lattice spacing). This is exactly the same principle that was used in the continuum: using
the Wilson line to construct the kinetic term for the gauge fields (see Equation . Equation m
can also be written as Ug = e~ie’Fuv _Since here one is dealing only with spatial plaquettes it actually
correspond to Ug = e~iea’Fij  This expression indicates what must be the pre-factor of this terms in
the Hamiltonian in order to recover the correct continuum limit:
H—_ 2% (_1)n1+...+ni71 (cifleiemanrg — h.C.) + mz (—1)n1+...+nd Clcn
n

n,i

a27d62 9 ad74 i
M L= 2 (UD - UD)
O

n,t

(1.105)

In Figure [I.3]it is illustrated the construction of a lattice gauge theory: degrees of freedom are intro-
duced on the links that become dynamical. This allows the implementation of a local symmetry.

The generators of the gauge symmetry can be built again by imposing that they implement the
transformations This will lead to Gy, =), Ly — L i chn + const and the constant can be
determined again by imposing that the bare vacuum:

1— (_1)n1+..~+nd
2

is a physical state. This condition fixes the generators to be:

clen |0) = , L [0y =0 (1.106)

2

Gn=> Lni—L, ;;—chen+ (1.107)
%

1.4.4.3 U (N) and SU (N) gauge theories

While for U (1) there was only one generator of the group, here there is a given set {¢t*} which translates
to the generators of the gauge transformation. In order to build the quantum links for the SU (N)
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symmetry, one can look at the transformation law:

Ui > Uy +1 (OéztaUm‘ —a

n+;Umaa) (1.108)

for a set of small parameters a®. The goal is to find a set of generators that will fulfill this transfor-
mation in the usual way: U,; — Up; — ia® [G%,Upy;]. This implies that the following relations should
hold:

(G2, Upi] = —t°Uns, {G‘,’L,Un_; } —U, ;1 (1.109)

32

This generators obey the same algebra of {¢}:
(G2, GV] = i6nm [*°GE (1.110)

They can be realized by distinguishing a “left” and “right” part of a link, and identifying in each site
the right end and left end of the links connected to it:

Go=> (R, + 1) (1.111)

K2

R,; and L,; are called, respectively, right and left generators where

[Ryis Unil = Unit®, [Ly;, Uni] = —t"Unp; (1.112)

ne?

with the commutation at different sites and/or directions trivial. Furthermore there are non-trivial
relations between them:

(R, ani’] = i6mn i f*°RS;, (g, Lb

| = i0mndi f°°LE,, [RY;, LY ] =0 (1.113)

ni? ne
Including the fermions one should have [G%, xn] = t®x, or in terms of components: [G%, [xn];,] =
[t°], j [Xn] ;- Fermions were denoted by x to remind that they are vectors now. The generator can then
be written as:

Ge =% (L‘}m + RZ—;,J + 9y (1.114)

?

The lattice Hamiltonian for the non-Abelian theory will then be:

H— _%Z (_1)n1+...+n¢71 (XIzUn’anJr% — h.C.) + mz (_1)n1+~~«+’ﬂd XILXH

" g2 " (1.115)
FEE S (2607 + (R)*) - i T (U + UE)

n,i,a

This Hamiltonian has an extra U (1) symmetry. For an operator obeying [E,,;, Unj} = 0nm0;jUn; and
commuting with the rest of the the operators. Than the generator: G, = —x/! x, + > (Em —-E,
commutes with the Hamiltonian and with the other generators G2¢. If one wishes to study the SU (N)
theory rather than a U (INV), terms breaking this last symmetry should be added like

> (det Upi + det an) (1.116)

n,t

which still preserve the original SU (V) symmetry.
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1.4.5 Quantum links formulation

The so called quantum link models constitute a generalization of the formulation above, following
Wilson prescription, where the U,, variables are constructed from the gauge field according to
These kind of models were introduced by Horn in 1981 [101] and were further studied in [102({106].
Particularly, in [104-106|, they were studied as an alternative formulation to Wilson’s gauge field
theories on the lattice.

Recently they proved to be an interest target for the quantum simulation of gauge theories since
several proposals rely on them (see reviews on quantum simulations for example [45,/107,[108] and next
Chapter for more details). The fundamental motivation is that the algebra of the links, characterized
by Equation [I.96] and all the other commutation relations zero, span an infinite Hilbert space per each
link. In the quantum links formulation the Hilbert space is finite and an implementation becomes,
theoretically, simpler. This is achieved by giving up the unitarity of the U,; operators.

—

U (1) Quantum Links In a quantum link model each link is associated with a given spin S,; =
(Si,,SY..Sz,) and these spin variables are used to construct the link variables analogous to Uy, and

L,; necessary to construct the gauge theory. It consists on taking alternative links:

Lin, =S8 +1iSY., Ly =SZ, (1.117)
With this construction the relation ﬂ?_ﬁ;l is still satlsﬁed However other commutation relations, which
were zero, are not anymore. Namely L. ,; and Lt L i = L_n; no longer commute:

This is just another way of writing the angular momentum algebra. Even though the algebra itself is
different, these operators can be equally used to construct a gauge theory without compromising the
gauge symmetry. The dimensional of the Hilbert space in each of these links is 25+ 1 with S a positive
half integer (corresponding to, in the spin language, to the total spin). One expects that in the limit of
large S the Wilson formulation should be recovered. Explicitly one can use the following link variables
Uni = Lini//S(S+1). Then again the commutation relations still hold and there is a extra
non-zero commutation relation corresponding to:

2

1 =
[Un, Un] = S+

(1.119)
In the limit of S — +o00 the right hand side of the above equation goes to zero and the initial algebra
is recovered. In the quantum link formulation the Hamiltonian for U (1) gauge theory reads:

H=— 1) Lypie, o — hue) +mY (1) T ey,

—V;ﬁ&

2 d_2 d—4 (1.120)
== ZL T S ETr L (LD +LE)

where the plaquette terms U were replaced by the analogous plaquette terms on the new link variables
L,

Non-Abelian Quantum Links A non-unitary U,,; is built upon 2N? Hermitian operators (referring
to real and imaginary part). By other side each L% and R® are Hermitian having N2 — 1 components
plus E which is another Hermitian operators. In total this gives a number of generators that is equal
to2N2 +2(N? —1) 4+ 1= (2N)? — 1. These are precisely the number of generators of SU (2N) and
therefore the algebra can be realized in an embedding SU (2N) algebra. In fact, this was observed
previously for the particular case of U (1) that was realized by an SU (2) algebra.
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Giving up unitarity of U,; will allow a representation of the algebra in terms of fermions [106].
These are the so-called “rishon fermions” and are written in terms of the operators ¢!, . The index n
indicates the site, & is an extra fermionic label associated with left and right, and ¢ is the color index.
Then one can write:

!\t k L PR
(¢ns) tiuCny> BRoi= B} (Cn+’27) kCri
t f

! ! ! l

((Cm—%—) Cntio — (Cn+) Cn+> ) (1.121)
T
Kl k !
U’ni = C,n+ (Cn+%7>

It is worth reinforcing that quantum link models are well suited for quantum simulations due to the

finiteness of the links Hilbert space. In the the standard Wilson approach, in path integral formulation,

the fields are classical taking a continuum set of values. By use of an extra dimension and a posterior

dimensional reduction, the effective continuum limit can be achieved even if one uses quantum link
models |104].



Chapter 2

Simulation of gauge potentials &
fields

In the previous Chapter two very different types of physical systems were presented. The cold atomic
system where atoms are neutral, and a general scenario of gauge theories where charged particles
interact with bosonic fields. One might wish to understand if the control allowed by a cold atomic
setting can be pushed as far as the simulation of gauge theories. After all they are both local theories.
Such implementation is, however, far from straightforward, as remarked above, since neutral particles
must behave as charged ones. In order to achieve the desired effect one has to be able to implement
an “artificial field” which mimics a real magnetic field on charged particles (or generalizations like
non-Abelian fields). It turns out that this is indeed possible.

Here the distinction between “gauge potentials” and “gauge fields” shall be made. The first concerns
the existence of static fields, external potentials which enjoy a gauge symmetry. They are responsible
by the existence of Landau levels (for example [109-111]) and other generalizations like topological
insulators ( |[112-114]). By other side, the study of many-body properties in the presence of a static
magnetic field and a periodic potential is a major area of research. Such systems provide a paradigmatic
example of, for instance, exotic energy spectrum with a fractal structure as the Hofstadter butterfly
[115]. Furthermore, as in the example of the Hall conductance of electrons in a periodic potential in
the presence of a constant magnetic field [116], there is a close connection with topological invariants
which further motivates the study of these systems. Implementation of such artificial static potentials
is possible and was already realized. For example signatures of the Hofstadter bands, not observed yet
in natural crystals, were already found in artificial settings [117H120]. The second case of dynamical
gauge fields, with emphasis to their lattice formulation, have direct application not only to particle
physics but also in other areas like quantum computation. Experimental implementations are more
difficult to achieve with the firs example reached just last year [15]. In the following, an overview over
some proposals, for both cases, is done. At the end of this Section an overview over some original
material is presented, regarding the possibility of simpler target models for quantum simulation of
lattice gauge theories.

2.1 Gauge potentials

The inclusion of an external static magnetic field on the Hamiltonian can be achieved by replacing the
momentum components of each particle by p; — p; — eA; where e is the charge of the particle and A;
the i-th component of the vector potential. On the lattice, instead, this can be approximated by the
Peierls substitution, valid in a tight-binding regime and for a slow varying magnetic field, where the

34
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hopping parameter becomes complex. Explicitly:

:g:tja;+jaF-+1Lc.-+ zg:tja;+jeiaﬂr>a;-%1Lc. (2.1)
3 ]

In this notation the sum of 7 is taken over lattice sites and the sum of j is taken over all d directions
corresponding to the dimensionality of the system. The angle §; () is just a phase that can depend,
on general grounds, on both the direction of the hopping and on the position. This was described
in detail in the Introduction in the context of U (1) gauge theories. The key difference is that this
phase here is non dynamical, so there is no kinetic term. Effectively corresponds to allow the hopping
parameter to be complex. Not all complex hoppings represent different physical scenarios as there
is gauge invariance. In what follows three example of techniques to engineer complex phases on the
hopping parameters are discussed. Reviews can be found in [121H123].

2.1.1 Adiabatic change of external parameters

The idea of this approach has in its core the tight relation between the Aharonov-Bohm phase [124]
and the Berry phase which was a concept introduced by Berry in [125]. The first is the phase acquired
by a particle traveling around a closed contour. At the end of the path, when it is back to the initial
position, the wave function acquires a new phase which is independent of the details of how the path
was done and only depending on the total magnetic flux through the contour. By other side the Berry
phase corresponds to the phase acquired when some external parameters of the system are varied on
time, “slowly”, coming back again to their initial value for a non-degenerate state. In a more precise
way, the starting point is an Hamiltonian H (g%, \;) where ¢* are degrees of freedom and )\; are a set
of external parameters. If this parameters are varied sufficiently slow returning, in the end, to their
initial value, and if the state is non degenerate, then the system is back to its initial state. The most
it can do is to acquire a phase:

) = e y) (2.2)

adiabatic chage

v can be derived by computing the time evolution operator and subtract the “trivial” phase acquired
simply due to time evolution (e~%/ P14t where E (t) is the energy of the state at each time). The
result is

1= g A (2.3)
C
where C is the closed path on space of the parameters \; and A; are given by:

AW =ioW] 51

16 (\) (2.4)

and |4 (\)) are reference states which have a fixed choice of phases. A ()) is called the Berry connection.
Different choices of reference states with some other phase, for example e N |4 (X)), would just
reproduce a gauge transformation on A:

Oa
o\

A— A+ (2.5)

This principle can be applied in multi-level atomic systems in order to reproduce artificial gauge
fields in an ultracold atomic setting. As an exemple the computation can be done for a two level atom,
where it is shown how this vector potential appears explicitly at the Hamiltonian level. These two
levels correspond to two internal states, a ground state |¢g) and an excited state |e). The center of mass
Hamiltonian, assumed diagonal on the internal states, is taken to be just the free particle Hamiltonian.
The total Hamiltonian H = Hy + U. By an appropriate choice of a constant shift of all the energies
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one can assume that £, = —F, where the referred quantities are respectively the energy of the ground
state and excited state. Then, in general U can be written as:

Q ( cosf  e®sind )

U= 2 \ e?sinf® —cosb

(2.6)

where 6 and ¢ may depend on the position. The frequency €2 characterizes the strength of the coupling
between the two states and it is assumed to be position independent. The eigenstates of this operator,
that shall be called “dressed states”, are given by:

2] —e—gin 8

_ €os 5 _ e '?sin g
par= (580 ) b= (i) 27)
with eigenvalues +AQ/2 respectively. It will be assumed that initial internal state is |x1) and that
an adiabatic following occurs, so the system remains on it through all times. Then the state of
the system can be described by a wave function |¢ (¢,7)) = ¢ (¢,7) |x1 (7)) where ¢ (¢,7) will obey a

modified Schrodinger equation due to the dependence of |y; (7)) on the position. Plugging this into
the Schrodinger equation and projecting on |x1 (7)), one finds an effective Hamiltonian governing ¢:

i — 1@ )| 52 r ’ 7)| 2~ 1 (7 2
o (v <xl<;>7lnam i (7)) RUELTE TG o

As expected due to the discussion of the Berry connection in the begining of the Section, a vector
potential is found A; (7). Furthermore a potential V (7) is also created which is related to virtual
transitions to the other state |y2 (7)). Explicitly these two quantities are given by, in the two level ap-
proximation, A; (F) = %g—i and V (7) = W. Discussion of practical implementation
on optical lattices can be found in [121}/126,(127]. First experimental evidence of scalar potentials in
quantum optics was found in |128] and the first observation of geometric magnetic fields in cold atomic
physics was done in [129]. By considering a set of degenerate or quasi-degenerate dressed states it is
possible to achieve non-Abelian gauge potentials as well [121].

2.1.2 Effective Hamiltonian in periodic driven system

In contrast to the approach of the previous Subsection, where the creation of the magnetic field relied
on a slow change in time of external parameters, in this case one relies in fast oscillations. The
basic principle consists on having two very distinct timescales. A fast oscillating time dependent
potential will give rise to an effective time independent Hamiltonian which will present the desired
complex hopping term. A general technique was proposed in [130] and consists on considering a time
dependent periodic Hamiltonian:

H=Hy+V(t) (2.9)

where all the the time dependence is relegated to V (¢) which can be decomposed into

V(t)=> (Ve +V,_em) (2.10)

n

where V,,+ are operators. The condition V,,; = V,;L guarantees the Hermiticity of the Hamiltonian.
The expansion shall rely on the small parameter 7 = 27 /w which is the period of the Hamiltonian.
Applying an unitary transformation e*(*) generates an effective Hamiltonian given by:

Hepp = e KO e KO 4 <gt€iK(t)> oK () (2.11)
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The operator K (t) should also be periodic and should be chosen such that the effective Hamiltonian is
time independent. Under the time independence of H, s the time evolution operator can be represented
as U (t; — tf) = et (tr)e=iHess(tr=ti)e=iK(t1)  One can then show [130] that the effective Hamiltonian
can be written in lowest order as:

1
H.p5 = Ho + TZE [Vits Vo] + O (77) (2.12)

This expansion turns out to be very useful in the effective description of ultracold atomic systems
though care should be taken, in a case by case scenario, in order to be sure about the convergence of
the series.

Lattice Shaking The lattice shaking approach consists on having an external time dependent optical
potential that is changing in time in accordance to the previous description. Then a change of basis is
performed for a co-moving frame that, along with a time average, will create an effective Hamiltonian
with the desired complex hopping. As an example, a brief prescription is presented along the lines of
the first realization in a Rb Bose-Einstein condensate [131]. The Hamiltonian considered is the usual
tight-biding Hamiltonian in 2D with the usual hopping and on-site part H,s (by on-site it is intended
one body potential and scattering terms that act in single sites). There is an extra time dependent
term which corresponds to a time dependent potential:

H= _Ztgja;jaf +Heo+ Y vr(t)alan (2.13)

The function v; (t) is a periodic function of time with period T v; (t) = v; (¢t +T). Now an unitary
transformation on the states is performed and plugged in on the Schrodinger equation (new states
[') given by |¢(t)) = U (¢)|¢’ (t))). The Hamiltonian, after this unitary transformation becomes
H' (t) = U )" HU (t) — iU (t)' U (t) (where the dot stands for time derivative). The transformation
is given by
—if;t/zw(t’)d;d;

Uty=e ©° 7 (2.14)
It is straightforward to see that this transformation will cancel the part of H (which will be present also
on UTHU) corresponding to v; (t) d;&;. By other side, since this does not commute with the kinetic
term, the time dependence will be carried to hopping term. For a rapid set of oscillating function v; (¢)
the Hamiltonian can be replaced by an effective one, resulting from time averaging over a period. The

new hopping parameters will read: ‘
tiy — by (€1207) (2.15)

where (), stands for average over a period: T~ fOT dt and Avyj = vz (t) —v,7; (1) — <v7z (t) — v, (t)>

Laser-assisted hopping In this case the effective dynamics is induced by the coupling of the atoms
on the optical lattice with a pair of Raman lasers. A fundamental ingredient consists on introducing
an energy offset A on neighboring sites. It is enough to consider such scenario along a single direction.
Considering a 2D lattice:

H=—ty" (aj?”éf + h.c.) + %Z (—1)" cler + V (1) (2.16)
7,J T

where 7 = (z,y) runs through the lattice sites. The offset term characterized by A can be obtained by
tilting the lattice, introducing magnetic gradients or through superlattices. The potential V' (¢) is the re-

sult of the two external lasers that induce an electric field E4 cos (El ST — wlt) + FE5 cos (Eg T — wgt).
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It is assumed that the frequencies are fine tuned such that they match the offset w; — wy = A. Ne-
glecting fast moving terms the potential is written as:

V(t) = 2E1E226i(’5R'F*At)c;c;+ h.c. (2.17)

with kp = k1 — ks. Then one can get the effective Hamiltonian in two steps. First performing an

—it§ Y (-1)"cler A
unitary transformation e 7 will create oscillatory hopping terms (with e**2* in front).

Then one applies the previous formalism building an effective Hamiltonian using Equation [2.12

H=—1tY (& tays1+he)

z,y

2.18)
2UFE, E B Tn T (
BB (b ) (o e ) <] +0 (a0

T even,y

It is clear that this generates complex hopping but looking more carefully one finds that the lattice
has a staggered flux. With a choice kg = (®,®) (choice also made in the experiment [132]) one can
write upon a gauge transformation:

H=—1tY (el ,rys1+he)

z,Y

2t Eo sin ®/2 byt _idy A ~ —
- % ) {(e@ycl,ycxﬂ,ﬁe @yclfl,ycw’y) +h'C~} +0(A7%)

(2.19)

T even,y

where it is clear that there is an alternated sequence of +® along the z direction. This issue can
be addressed by making use of an extra pair of Raman lasers with opposite frequency shifts +A as
it is shown in |133]. The Chern number of the Hofstadter bands was measured in |134] within this
framework. It is worth noting that other kind of one body terms, beyond the staggered term, can be
used as it was done in the first quantum simulations of this model with ultracold atoms [135,|136].
In that case a linear potential is used. These kind of approaches can be adapted to more general
scenarios including different geometries and multi-component species. The later one, for example, can
be achieved by introducing spin dependent potentials as done in [135].

2.2 Gauge fields

In the context of Abelian gauge theories, the goal of simulating gauge fields consists in attributing
dynamics to the complex phases on the hopping parameters that were identified in the previous Section.
In order to construct such dynamics one should identify degrees of freedom that will play the role of
the gauge field. Several proposals have been put forward which map the gauge degrees of freedom
into some other controllable variables. The platforms used include ultracold atoms, trapped ions and
superconducting qubits. They may be analogue or digital quantum simulators and include Abelian or
non-Abelian symmetries [639,137H161]. A more detailed description of two particular approaches in
analogue cold atomic simulators will follow: gauge invariance from energy penalty and from microscopic
symmetries. Furthermore the symmetries addressed are either U (V) and SU(N).

There are other symmetries which have been explored, namely Z, [39,/150] which, in particular,
can provide an alternative route towards U (1) symmetry in the large n limit [39] and can be addressed
with similar approaches. Proposal for the realization of CP (N — 1) |162}/163] models have bee put
forward in [156,[157]. These models can serve as toy models for QCD and are also relevant in studying
the approach to the continuum limit, in the context of D-theories , where the continuum limit is taken
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via dimensional reduction [105/106]. Furthermore other formulations are possible for specific groups
[31,[37,/164,|165]. Gauge theories with Higgs fields have also been the target of quantum simulation
proposals [166H169].

Other relevant approach is the so-called quantum Zeno dynamics which takes inspiration on the
quantum Zeno effect. The later states that a system which is being continuously observed does not
evolve on time. Furthermore, if the measurement commutes with a certain part of the Hamiltonian,
then it can freeze a certain part of the Hilbert space but still enable dynamics in another subspace [170].
This feature can be used in order to freeze gauge dependent quantities and let the system evolve in
the gauge invariant subspace. The Hamiltonian to be implemented has the form Hyse = Ho + Hy +
V2K Zx’a G% where Hy and H; are time independent and are, respectively, gauge invariant and gauge
variant parts of the Hamiltonian. The operators G¢ are associated to the constraint one wishes to
impose G¢ |¢) = 0. In the case of gauge theories G% are the generators of gauge transformations. An
advantage of this approach, with respect to the energy punishment approach of the next Section, is
that only linear terms on the generators must be imposed on the Hamiltonian (energy punishment
requires quadratic terms). By other side leakage from the gauge invariant subspace of the Hilbert
space happens as a function of time, which does not happen in the energy penalty approach. This
approach was developed in [148].

Yet another approach, that was successfully implemented in the first quantum simulator of a gauge
theory using trapped ions [15], is the digital quantum simulator [171]. The key idea consists on in
dividing the full time evolution operator e~** into smaller pieces of sizes 7 = ¢/N and apply time
evolution of smaller parts of the Hamiltonian at a time. Consider for example an Hamiltonian which
is a sum of M contributions : H = Zy H,. Each part H, can represent, for example, a nearest
neighbor spin interaction in which case only two spins are coupled on each H,. For large enough N
one can write:

o N
e—iHt _ (e—iHT)N ~ <He—iHaT> (2.20)
a=1

Each time step can now be interpreted as an individual gate. While in the analogue simulation the great
difficult lies on building the appropriate gauge invariant Hamiltonian, in digital quantum simulations
that is not a problem. The difficulty lies, however, in building an efficient sequence of gates. Beyond
the scheme used in the experimental realization [172], proposals towards implementation of lattice
gauge theories have been put forward [137,|138}146,(1541|158}/159]

2.2.1 Gauge invariance from energy punishment

The energy punishment approach is widely used in the field of frustrated quantum magnets. This
is however a quite general approach which allows the theoretical construction of models which will
exhibit a given symmetry in its low energy sector. This consists on building an Hamiltonian which
does not prohibit the symmetry violation to occur but instead punishes it with a large energy. In a
more concrete way, suppose one wants to implement a set of symmetries which has as a respective set of
generators {G} commuting with each other [G;, G,] = 0. Furthermore consider a typical Hamiltonian
Hy which does not respect these symmetries. Then one constructs the following Hamiltonian:

H=Hy+TY G2 (2.21)

where I is a large energy scale, meaning much larger than the energy scales involved in Hy. Since G,
are Hermitian G2 have non-negative eigenvalues. One can choose the lowest eigenvalue to be zero by
an appropriate definition of G,. Then, at low energy (< I'), the states will respect approximately the
condition G 1) ~ 0. If not, this would give a state automatically in an energy scale ~ I". Tt is then
possible to construct an effective Hamiltonian, valid in low energy, which will respect the symmetries
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generated by {G.}. Let G be the projector operator on the subspace of the total Hilbert space obeying
G, |¢) =0 and let P =1— G. Then the low energy Hamiltonian can be written as:

1
Hep = GHoG — 5 GHoP 2PH0G+(9( %) (2.22)

e

which respect the symmetries. Within this framework an effective Abelian gauge theory can be con-
structed. In non-Abelian theories the generators of the gauge transformation do not commute and
this construction fails. There are, of course, several possible drawbacks even in a theoretical level. For
example the Hamiltonian even though gauge invariant, may contain terms which one does not
intend to implement or miss some particular terms which are present on the target system.

In order to construct a quantum simulator the first task is naturally to map the degrees of freedom
of the target theory into the laboratory controlled ones, in this case the atomic variables. The matter
fields, which are fermionic, will naturally be described by fermionic atomic species Regarding gauge
fields, the target will be the quantum links formulation discussed on Section [I Therefore the goal

consists on building the quantum links satisfying the algebra [Ly,;, Up;] = 0;; 6ann and [Umi7 U, J} =

0ij0mn2Ly. This can be achieved using the Schwinger representation. Given two bosonic species )
with ¢ = 1,2 which are associated to each link, one can write

1
Ui = ST, Lo = & (62182) — 5002) 229)

Each link is loaded with a total of 25 bosons where S is an half integer. Then one has the desired
representation for the quantum links in terms of atomic variables. Now the variables are identified.
One then can then build a d dimensional optical lattice where fermions are allowed to hop among
lattice points and in each links there are a total of 25 bosons. For 1D, the target Hamiltonian is of

the form: ,
H= —tzn: (ch Umensr +hec) + mzn: (—1)"chep + %;Li (2.24)

When comparing to the general structure of [[.1T5] there are three ingredients missing: the plaque-
tte term, the alternating sign on the mass and the kinetic term which is picking the “real part” of
cl eifni C,4; instead of its “imaginary part. The plaquettes are naturally absent in 1D. The second
issue is easily solved by a canonical transformation ¢, — (—i)" ¢,,. This Hamilton now has structure
that can be targeted with the approach described. Making use of the Schwinger representation it has
the form:

_ 2 2
H=—ty" (cjlb;"”bﬁf)cn + h.c.) +m> ()" chen + %Z (bfﬁbf) - bS}”bﬁf)) (2.25)
n n n

The two last terms can be, in principle, implemented directly using a proper tune of the interactions

between the bosons and the potential for the fermions. The first term, instead, is a correlated hopping
between bosons and fermions which come less easily. Furthermore the terms like b(U)Tb(U) and cILcn i
which are not gauge invariant, must be suppressed. This is solved by the energy punishment approach.

In general the non-gauge invariant Hamiltonian with the ingredients described has the form:

Hy=— Z [tF (chensr + h.c.) —tp (bg?”bg) + h.c.)}

n,t

> ( chen + ZvBﬂbm *bﬁfﬂ) M U

(2.26)
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Figure 2.1: Superlattice configurations for the the two boson species and the fermionic one. Bosons of
the species 1 at an even site 25 can only hop to 25 — 1 while a boson of species 2 has only access to
the site 2j + 1. The Figure presents a an example of a gauge invariant state configuration (on these
three sites) where G, [¢) = 0.

Using the generators for the U (1) gauge symmetry in Equation one considers the full Hamilto-
nian: )

H=H +FZ(L —Ln_1—cle +1(1)n> (2.27)

0 n n—1 ntn 9 .
n

It is crucial that one has access to the interactions that are introduced on the last term corresponding
to the energy punishment. To see that this is the case it useful to be more specific about the labels
o. One can take, as in [139], the labels ¢ = 1,2 meaning respectively left and right part of the link,
which can be thought to coincide with the lattice site. In this way bg)Tbg) are just regular hopping
terms. Furthermore it is recalled that the total number of bosons associated to each link is conserved.
Therefore one can write: L,, = —S + b,(f)Tbg) =5 - b%l)“bgll). This means that terms like Li and and
L,L, 1 can be written as a density-density interaction. Regarding the last case, recall that b D and
b( )1 are effectively in the same site, see Figure [2.1] Now Equatlon can be applied. The number
of particles in each site is a good quantum number to describe the eigenstates of G;. The number of

particles in the site j are denoted by nf = c;cj, nj = b§1)Tb§1) and n3 = b§2_)14fb§.2_)1. The subspace of
gauge invariant states is then characterized by:
1— (-1

F 1 2
nj +nj+nj =25+ (2.28)
In the lowest order only the two last terms of survive as any single hopping destroys the above
relation. At the next order there are three possible virtual processes that preserve this condition. Up
to some linear terms on the particle density operator, they are:

1. Boson-boson hopping: a boson hops to the neighboring, same link, site and another boson hops
back. Gives rise to a boson density-density interaction.
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2. Fermion-Fermion hopping: a fermion hops to a neighboring site and then hops back. Only
possible if neighboring site is unoccupied and gives rise to a nearest neighbor fermion density-
density interaction.

3. Boson-Fermion hopping: a fermion hops to a neighboring site and a boson belonging to the link
that connects the two sites does the opposite path. Gives rise to a correlated hopping.

The terms coming from 1. should be joined with the last term of in order to form the correct
kinetic term for the gauge fields. The terms in 2. are somehow unwanted and correspond to a repulsion
between neighbor fermions nf'nf’ 1. Naturally, they do not spoil gauge invariance and their inclusion
should not be a problem [139]. Finally the terms originating from 3. give rise to the correlated hopping
responsible for the matter-gauge coupling as written on the first term of [2:23] There is another issue
which should be addressed. From the beginning it was assumed that the the number of bosons in each
link is conserved. In particular this means that bosons are not allowed to pass to a neighboring link.
In order to guarantee this condition in an experiment one should introduce an extra bosonic species
and this is the reason that bosons in neighboring links were represented with different colors on Figure
2] Then one bosonic species is trapped on the even links and the other in the odd links. This will
prevent bosonic hopping between links. A numerical study of real dynamics of the the model as well
as accuracy of the effective gauge invariance obtained was also done in [139].

Finally, in a possible experimental realization, the first fundamental step is to guarantee that
the system is initialized on a gauge invariant state. This can be done by loading the atoms in a
deep lattice such that they are in Mott phase. After the system should evolve according to the fine
tuned Hamiltonian described above (after lowering the lattice barriers). Finally measures of relevant
quantities can be performed.

This principle is valid in higher dimensionality where one has to face the difficulty of generating
plaquette terms. This was done for the pure gauge in [173] and [144] by suitably allowing hopping
between links. In the first case each link has an infinite dimensional Hilbert space that is represented
by a Bose-Einstein condensate. In the second the proposal is simplified by considering a quantum link
model.

2.2.2 Gauge invariance from many body interaction symmetries

This approach consists on building a lattice which will have the necessary local gauge invariance arising
from microscopic symmetries. Specific proposals may vary significantly even though the same principal
is used. For example in [161] the simulation is built upon the global symmetry conserving the total
number of excitations and is achieved via a state-dependent hopping. In turn, for example [1504/174], are
built upon conservation of angular momentum. For concreteness the later approach will be described
in more detail below. In the case of [147] SU (V) symmetries of the ground state manifold of alkaline-
earth-like atoms are exploited in order to built non-Abelian gauge theories. This approach shall be
discussed in Section 2.2.3]

Symmetries only allow certain type of processes to occur and, by exploiting these constraints,
one can build a gauge symmetry. This can be done, as said before, considering angular momentum
conservation. To this end one can take the Schwinger representation, placing the bosons that will
make up the gauge fields at the two boundaries of the links. Because the goal consists, partially, in
forbidding gauge dependent terms like simple boson or fermion hopping, the lattice should be spin
dependent. In this way a single hopping is forbidden as it does not conserve angular momentum. By
other side one should guarantee that correlated spin between bosons and fermions is allowed. This
can be achieved by a judicious choice of respective hyperfine angular momentum in each lattice site.
For concreteness, consider a single link connecting two sites and a total of two bosonic (b(") 5()) and
two fermionic species (¢,d). The site at the left of the link can only be populated by ¢ while the right
side by d. Analogously the left end of the link can only be populated by b) while the right end
can only be populated by b2). Then the conditions described above for allowed /forbidden hopping



CHAPTER 2. SIMULATION OF GAUGE POTENTIALS & FIELDS 43

are automatically satisfied if one chooses the hyperfine angular momentum of each atomic species to
satisfy:

mp (d) — mp (¢) = mp (b<1>) —mp (b<2>) (2.29)

It is intended that in a spin dependent lattice mp (d) # mp (¢) and mp (b)) # mp (b?). In other
words, what the expression above means is that the difference of angular momentum caused by a
fermion hop can be exactly compensated by a bosonic hop in the opposite direction. This leads
directly to the correlated hopping desired, which in fact comes from the scattering terms between
bosons and fermions (last term of Equation . The only other allowed scattering term between
fermions and bosons correspond to density-density interactions like ¢f¢ (b(Q)Tb@) + b(l)Tb(l)). These
are just linear terms on the fermionic number operator due to the conservation of the total number of
bosons per link. Summing over all lattice sites this gives a simply a constant shift of the energy. The
scattering terms between bosons give rise to the gauge kinetic term as before (in 1 + 1 dimensions).

Again, for higher dimensionality, there is a non-trivial extra step consisting on building plaquette
interactions. If plaquettes are ignored and the model described above is loaded on an higher dimensional
lattice the result corresponds to a strong coupling limit where plaquettes can be ignored. Obtaining
plaquette terms can be achieved, instead, by the so-called loop method which uses perturbation theory
in a similar way that was used in the energy penalty approach. Here gauge invariant building blocks
instead are used. There are progressive layers of difficulty:

e no dynamical fermions and unitary links corresponding to regular Kogut-Susskind or equivalently
a quantum link model in the limit S — 4o0: [U, UT] =0,

e no dynamical fermions and truncated links corresponding to quantum link models: [U,UT] =
2/S(S+1),

e dynamical fermions and unitary/truncated links.

The first two points correspond to an effective pure gauge theory and only in the third point one has
the matter coupling present. Here the general framework is described indicating the difficulties on
passing to each new step. The first aim is to build then the pure gauge theory as an effective theory
g 2 1 i
Higrget = 5 Ly, — @ (UD + UEI) (2.30)
n,i O
The description will be specialized for 2 + 1 dimensions but the theoretical construction for higher
dimensions is analogous. As announced the structure consists on adopting the structure of the energy
penalty approach of Equation but instead in this case Hy is already a gauge invariant Hamiltonian.
For reasons that will be explained below one should have two fermionic species, say x and 1, and build
the trivial part of the generalization of the 1 + 1 process:

2
g
Hy = —tY  (5Unith, 3 + XEUniX,q; +hoc) + 52@5”. (2.31)

n,:

These fermionic species are auxiliary and in the effective model they will be integrated out. There
should be no interacting term between them. For building this one should use the ingredients described
in the beginning of this Section with an energy penalty that will enforce the following conditions at
each site n = (n1,n2):

e there is a fermion ¥ if both n; and ns are even
e there is a fermion x if both n; and no are odd

e no fermion otherwise
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Figure 2.2: In the panel a) it is depicted the positions of the auxiliary fermions that are used to
construct the plaquette term using gauge invariant building blocks. One of the species, say 9, is
represented in red and placed on sites with both coordinates even. In turn y, in pink, is placed on sites

with both coordinates. This correspond to the ground-state of In the panel b) it is represented
a virtual process that gives rise to a plaquette term.

The positions of these fermions is represented on Figure a). This kind of constraint can be obtained,
for large I', with an Hamiltonian of the form:

Hpenatry = ~T) {(1 i (_l)m)f FEDD iy, + 1 (_l)m)f %] e

The ground state of this Hamiltonian is the one described above points, one can then construct
perturbation theory on this system according to [2:22] In order to get the plaquettes one has to go
until the fourth order. For each order one has:

1. Only the pure gauge part of [2.31] contributes, no fermionic term occurs.

2. Trivial constant contribution assuming that U, are unitary. The virtual process giving rise to
this contribution is a single link interaction where a fermionic-bosonic correlated hopping occurs
back and forth restoring the initial state. There are never fermions on the neighbor lattice site.
In turn in the unitary limit there are an infinite number of bosons so the bosonic hopping does
not distinguish a hopping “up” on the lattice (U) from a hopping “down” on the lattice (UT):
[U,UT] = 0. If the number of bosons is finite the two processes will not be equivalent. One can
see, however, that this extra contribution corresponds to a renormalization of the pure gauge
term of 2.31) and another term which can be discarded by application of the Gauss law.

3. Trivial constant contribution assuming that U, are unitary. Virtual contributions evolving links
constitute again back and forth hopping plus an a pure gauge term at any stage of the process.
The extra contributions coming from considering a finite number of boson per link cannot be
disregarded trivially as in the second order for this case.

4. Gives the desired plaquette term plus renormalization of the pure gauge term of assuming
that U, are unitary. The last case corresponds to the virtual process where a fermion goes around
a plaquette and returns to the initial place. This virtual process is represented on Figure b).
Naturally, in the non-unitary case, more terms appear.

Up to forth order there are only two non-trivial contributions involving ¢ for the standard infinite

dimension. Giving up unitarity of U,; will allow a representation of the algebra in terms of fermions:
22,2

an electric field term ~ &)+ Zm L?. and plaquette terms ~ 13—2 >0 (Ug + Ué,) so effectively the

T3 ni

plaquette term is a second order (on the parameter ¢2/T°2).
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When one considers a finite number of bosons in the links there are extra contributions appearing
which cannot be disregarded. As in the case of the energy penalty, these contributions, even though
unwanted, can be tolerated as they are naturally gauge invariant. However one should guarantee that
these extra contributions are not more important than the plaquette term which is the target term.
That can be achieved if the coupling term is parameterized is g2 is taken to be small in units of t. By
taking g? ~ t2/T" one makes the unwanted terms at third order effectively of the same order as the
plaquettes and unwanted terms of the fourth order effectively of higher order than the plaquettes.

Finally one can consider, on top of these ingredients, an extra species of fermions to play the role
of matter fields. They will consist, in the initial Hamiltonian, to the usual correlated hopping with the
bosons. Furthermore the staggered mass term (of Equation should also be introduced. In the
unitary case this extra piece commutes with the interacting part of 2.31] and no further contribution is
obtained in perturbation theory. In the truncated case there is an extra (gauge invariant) correlated
hopping coming at third order. Another different aspect of the introduction of dynamical fermions is
that the Gauss law (Y, Ln; — L,,_; ; = const) can no longer be used to trivialize terms. The divergence
of the electric field becomes gets a contribution from the charge density of the dynamical fermions.
Nonetheless it can still be employed and the extra charge density terms can be compensated on the
initial Hamiltonian if proper fine tuning is available experimentally.

In [174] it was proposed a realization of the Schwinger (1 + 1) model using a mixture of 23Na for
the bosons and SLi for the fermions as well as an extensive study on the influence of the finiteness of
the number of bosons per link in that case.

2.2.3 Non-Abelian quantum simulations

Due to the non-commutativity of the generators and complicated structure of interactions demanded
by (Gg)2 quantum simulations of non-Abelian theories typically rely on microscopic symmetries [147]
149}|150] (but this is not necessarily the case [148]).

In [147) the symmetry exploited concerns the SU (N) symmetry of alkaline-earth-like atoms on their
ground state manifold. Pure gauge terms are not addressed in this proposal. The rishon representation
for the algebra of the hnks is considered. In this representation the correlated hopping is written as
YIRUE I = it ol ! k’(/J The notation is fixed in the following way: the operator Uy, indicates
the link that connects = and y, k is the direction of the link and ¢, 4 (c, 1) are associated with
the rishon fermions immediately up (down) of the site  in the direction k, see part a) of Frgure .
These terms can be suitably written in terms of the “constituent quark” operators Qg 4+ = c; N
It is interesting to observe that these operators are gauge invariant. The correlated hopping is then
written as Q; +ka7_ - The fundamental aspect of the simulation scheme consists on interpreting the

constituent quarks as a lattice hopping. In other words, instead of thinking about z/J”ch NG kwj as
a lattice site (quark) hopping coupled to a rishon hopping, one can interpret it as the conversron of
a quark into a rishon coupled with an opposite process in neighboring sites as represented in Figure
part b) and ¢). In this way one has only to guarantee that these two hoppings occur at the same
tlme which can be done by imposing that the number of atoms in a rishon is conserved The number
of rishons in the link connecting the two sites z and y is given by Ny, = cJJrkcx T cy _kCy - The

term to be introduced in the Hamiltonian takes the form I' Z<z o) (Ngy — No) where I' should be the
largest energy scale of the Hamiltonian and Ny the total number of rishons per link. Analogously to
what was seen above, not only the desired terms appear but also other gauge invariant terms are part
of the model at second order in perturbation theory. Those terms are given by ZL Lk Q; 11 Qe+
The Hamiltonian to be implemented has the form:

H=—t) (=)™ (Quar+he)+m Y (=)™ glyy 4T Y (N — No)* (2.33)

z,+,k z, 4.k (@,y)

requiring I' > ¢. There are two features of this Hamiltonian which are fundamental to achieve the
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+1 -1 +1 -1 ~<— Fermion count
Yn—1 Cn—1,+ Cn,— Yn Cn,+ Cn+1,— Yny1 C)
AN N

Figure 2.3: Rishon representation in 1D. a) Rishons building the links are blue (and dashed) and the
lattice sites red (and full). Each rishon is indicated with a + or a — depending if it is right or left of the
lattice site associated. b) Schematization of the correlated hopping. Looking at the variation of the
number of fermions in each site (called in the picture “fermion count”), the process can be interpreted
as a simultaneous hopping site/rishon represented in c).

correct implementation:

e The hopping between lattice sites and rishon sites should be the same irrespective of the color
index j. All these hopping parameters appear on the Hamiltonian as ¢.

e The interaction coefficient between any two rishons must be the same. In the Hamiltonian this
is a repulsion and the coefficient is given by I'.

These are feature that can be achieved with alkaline-earth atoms using the nuclear spins degrees
of freedom. The hopping will be the same if the atomic species is the same. By other side the
scattering the length is almost SU (2 + 1) symmetric being I the nuclear spin. This results in an
effective interaction which is independent of the magnetic number. As an example one can consider
the realization of the U (2) symmetry. This means that in each site there should be two color indices.
In a 1D setting, atoms will only hop among a triple well centered in the lattice site and connected
to the two neighboring rishon sites as represented in Figure a). Then one can load each triple
well alternatively with m; = —3/2,—1/2 and m; = 3/2,1/2. Hoppings are realized by adequate
choices of laser frequencies and polarizations while the repulsion between the rishon neighbor sites
can be controlled by Feshbach resonances. In the case of realizing SU (N) one should add the terms
of the Hamiltonian as (det Uyy + det U;y) in accordance with This contribution forces
the introduction of hopping of two particles on the SU (2) case. This can be realized, in principle,
through a Raman process with large detuning that prohibits single particle transition but allows the
two particle tuning. For more details on the implementation see [147].

As in the Abelian case, the non-Abelian gauge theory can also conceive an implementation making
use of angular momentum conservation [149/150]. In this case, instead of the rishon representation
which writes the link variables in terms of fermionic variables, these proposals represent the links in
terms of bosons. Specifically, for SU (2) in the one dimensional case the links are realized by four
bosonic species: two on the left (a1,as) and two on the right (by,bs) side of the link. The operators
are given by:

1 al —as 1 ol Bl
U=UlUp Up=—-o- [ Up=—o [ 1 D& 2.34
LR L Np+1 ( a£ ay > R Np+1 ( —by by ( )

where Nj and Ny are respectively the total number of bosons on the left and right part of the link.
Furthermore one should have N; = Ni. The generators are given by:

1 1
L, = *izag [Ua]ij aj, Ro = izbj [Ua]ij b (2.35)
» 4g
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which satisfy, as usual [La; Lb] = i€qpcLe, [Raa Rb] = i€qpcRe, [Laa U] = 70’aU/2 and [Raa U] = UUa/2~
This is enough to realize pure gauge in 1D however, as discussed before, there is no interesting
dynamics for the pure gauge case since no plaquette terms exist:

2
g
Hp = ?;Lg (2.36)

with > RZ = >~ L2. For realizing the desired theory with dynamical fermions it is required four
bosonic species in each link and two fermionic species (¢, x) being one of them auxiliary (), integrated
out in the end. The fermions are placed in alternating sites on the lattice: ¥ — x — —.... The bosons
placed in the link connecting i) — x are denoted by a;, ¢c; and on the link connecting x — ¢ are denoted
by b;,d; with ¢ = 1,2. Here the links contain all bosonic species plus the auxiliary fermion y. The
effective link, as above, will be built on the bosons a and b. In turn the auxiliary bosons c,d are
prepared on a coherent state ¢; |a) = a|«) (same for d; with the same « for all). By suitably choosing
the hyperfine levels of each population, as in the Abelian case, one can get a “correlated hopping”
through scattering. This hopping is given in such a way that when a x fermion hops to its neighboring
site, it is transformed into 1 at the cost of an analogous transformation between a and c or b and d
(depending on which mixture is between them). Explicitly, one should engineer hoppings of the form:

~ Y (EWL X + X WR 1 +hec) (2.37)
where : : : :
aley —aqe bidi  byda
W — 1 2 W — 1 2 238
g ( abez  arc] >7 f < —bodl  byd] )’ (2.38)

Note that the role of the auxiliary bosons is to place a creation/annihilation operator next to the
annihilation/creation operator of our target link interaction m To realize these interactions one
should have, for example: mp (a1) + mp (1) = mp (¢1) + mp (x1). More details are found in [149).
Being in a coherent state one can replace approximately c;,d; — « constituting an interaction which

has the form:
~Y (1/1;[” /N + 1ULXn + X/ Nam + 1WUktns1 + h.c.) (2.39)

What remains to be done is to “glue” the two processes above in order to build the desired v} Uy, Urt, 11
hopping term. This can be done penalizing the occupancy of the x vertices with a large energy
through ') X! xn. Perturbation theory will give, in second order, the desired term. The initial
state shall be prepared with all x sites empty. Other terms in second order perturbation theory

include v} ), (al,ian’i + bl_lyibnfl,i)- These should also be included as possible scattering processes
on the initial Hamiltonian and by a suitable choice of parameters can cancel each other. The other
possible terms x/, x» (aL’ian,i + b;,ib%i) are zero on this perturbative regime where x sites are always
unoccupied. One gets effectively the contributions [2:36] 2.39] plus the alternating chemical potential
term that should always be added mY",, (—1)" ¥} ¢,. The presence of \/NL », + 1\/Ng,, + 1 does not
spoil gauge invariance and with the appropriate parameters yields qualitatively analogous results [150].
Construction of plaquette terms follow the same principle of the loop method of the Abelian case,
having naturally some new particularities due to the nature of the group. Details are found in [150].

2.2.4 Encoding in 1+ 1 fermions and the first experimental realization

The case of the Schwinger model, 1+ 1 Dirac fermions coupled to a gauge field, is an interesting exper-
imental and theoretical playground. It shares some non-trivial features with QCD like confinement,
chiral symmetry breaking and a topological theta vacuum [107]. However, due to its simplicity, it
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allows analytical and numerical studies which may become significantly harder in more complicated
theories. Furthermore it was the target of the first experimental implementation of a lattice gauge
theory [15]. In the context of quantum simulations it may not only provide the entrance door towards
more complicated experimental realizations but also a way of benchmarking experimental techniques.

One of the reasons why this model bares an intrinsic simplicity, as mentioned previously, is the
fact that the gauge fields are non-dynamical. This is reflected on the absence of plaquette terms in
the Hamiltonian formulation. Furthermore the Gauss law fixes the gauge field and can be used to
perform the integration of the gauge fields leaving behind a long range interacting model. This shall
be addressed next. In the following the lattice Hamiltonian formulation is considered for N lattice

sites:
N—1 9 N—1

H= —itz (el Uneny1 —hoc] + Z( )"l e + g ZLQ (2.40)

n=1 n=1

Here the infinite dimensional Hilbert space per link is considered therefore U,, are unitary and the
non-trivial commutation relations on the links are given by [Ly,, Up] = Updmn. Equivalently the link
can be written as U, = €. The Gauss law imposed is, in accordance with previous discussion,

Gn )y =0: .
Gpn =1Ly —Ln_1—clcn+ 5 (1= (—1)") (2.41)

This model can be formulated in terms of Pauli spin operators [175] and this result will be reproduced
here. A Jordan-Wigner transformation [176] is defined by:

en =[] (io. (1)) o~ (n)

I<n
ch = ll;[ (—io. (1)) o+ (n) (2.42)

where o; (n) represents the n-th component of the spin in the site [ and o (n) = o, (n) iy, (n). In
terms of the spins the Gauss law takes the form:
1 n
Gn=L,—Lp_1— 3 (. (n)+(-1)") (2.43)
Now, since one will be restricted to work on the physical space for which G,, |¢) = 0, the Gauss law can
be used to eliminate almost any trace of link variables. Using periodic boundary conditions: Lo = Ly
one finds:

= Lot 50 (02 () + (1)) (244)
=1

The value of Lg is a parameter of the theory and corresponds to a background field. For simplicity it
will be taken to zero at the present discussion. By using the above relation on the last term of
the pure gauge term is exclusively written in terms of the spins:

N 2

N N
:tnz::1 [a"‘(n)ei "o~ (n+1)+hc|+ %Z %Z

n=1 n=1

[Z (0. (1) + (—1)”)1 (2.45)

=1

where a trivial constant term was dropped. The remaining gauge field variable #,, can be eliminated
by a residual gauge transformation [177]:

oF (n) = oF (n) Heiwi (2.46)

<n
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Plugging this transformation and expanding the interaction term, the resulting model is a long-range
interacting spin model:

N N m 92 92 N—-2N-1
H=ty [ot(n)o~ (n+1)+hc]+) (2 (—1)" — T - (1)n)> ox (n)+7, S (N=1Do.(n)o- (1)
n=1 n=1 n=1 =1

(2.47)
This is an attractive formulation since the total of N particles and N — 1 gauge fields are simu-
lated by just N spins (with exotic long-range interactions). The difficulty was moved towards an
efficient way of implementing the long-range asymmetric interaction between spins. This Hamiltonian
was implemented as a digital quantum simulator in [15] using trapped ions (“°Ca™). The system
was composed of four qubits. The Schwinger mechanism of pair creation of particle-antiparticle was
explored, as well as real time evolution of entanglement in the system. From the Jordan-Wigner
transformation cfc, = (0. (n)+1)/2 and from the discussion of the Section a particle on
an odd site is effectively interpreted as empty and a hole as an antiparticle (the contrary holds for
particles in the even sites). Following this picture the number of particles at the site n is given
by v, = (1—(=1)")/2 + (=1)"¢clc, and therefore a relevant observable is the particle density
v(t) = (2N)! Y, {1+ (=1)"0.(n)). Starting from a bare vacuum (v (0) = 0) it is observed a
rapid increase of the particle density followed by a decrease which is due to recombination. Also
vacuum persistence G (t) = (0] e~** |0) and entanglement are evaluated. The later is done by recon-
structing the density matrix and evaluating the entanglement in one half of the system with the other
half through logarithmic negativity. Entanglement is produced through particle creation that get dis-
tributed across the two halves. More details on the simulation and experimental results can be found
in [15,/172]. Future challenges include the simulation of larger systems as well higher dimensionality
and non-Abelian symmetries.

2.3 Half Links Schwinger (HLS) model

This Section concerns ongoing work and provides some ideas concerning an alternative approach for
the lattice implementation of gauge theories. The fundamental idea is that one can give up some
of the dynamical links of the staggered fermionic lattice gauge models without compromising gauge
invariance. In the 1+ 1 dimensional case, which will serve as illustrative example in this Section, this
principle will lead to consider only half of the dynamical links and therefore will be referred as Hal
Links Schwinger (HLS) model.

2.3.1 Local symmetry: Continuum vs Lattice

Staggered fermions were discussed in Section and the associated gauge theory for 1+ 1 dimensions
in Section [[.4:4.1] As a quick recapitulation, the components of the spinors are placed on different
lattice sites. The spinors are recovered in the continuum limit according to Equation [I.75] In order to
get a local symmetry and introduce gauge fields on this model, the links become dynamical according
to Equation and display a set of local symmetries characterized by (or equivalently .
In turn the local symmetries of the Schwinger model, on its continuum version are characterized by
To facilitate the discussion, the fermion transformations on both formulations are written here
as well:

Continuum : v (z) — e'*®)q) ()

(2.48)
Lattice : ¢, — e’ c,

There is an interesting consequence of this construction: an higher symmetry, in a certain way, is being
required in the lattice model which is not being required on the continuum. In fact, since even/odd
consecutive sites build up different components of the same spinor, on the lattice the symmetry allows
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the components of the same spinor (in the perspective of Equation [1.75)) to transform with a different

phase:
c e'Y2ne
S R an (2.49)
Con+1 erantl Con+1

Such general symmetry does not survive the continuum limit. In fact this would mean that the
Schwinger model would have a symmetry:

eia(:r)
@ ()7 bt )o@ (2.50)

for arbitrary function « and /3, which is not true and only when « (z) = g () this is in fact a symmetry.
One can investigate what happens to this symmetry in the naive continuum limit. To this end consider
the generators of the gauge symmetry in Equation 7?7 and define the alternative set of generators:

Gopi1 = Gant1 £ Gay, (2.51)

There are now two types of generators +, but they are only make sense for even sites. This is just an
equivalent way of describing the same symmetry but puts in evidence the distinction made above where
G5, is the generator responsible for transformations with different phases in consecutive even/odd sites.
Explicitly they read:

G;n—&-l = Lopy1 — Lopn—1 — cgnCQn - C£n+102n+1 +1 (2.52)
Gapi1 = Lons1 + Lon—1 — 2Loy + chy,con — chyy iy 21 + 1

By requiring that G5, [¥) = 0 one sees that G5, is exactly the Gauss law:

10F
g o~2 = -yl 2.
G, ~ 2a (e o P w> (2.53)
while the other generator is of higher order on a:
10°E 1
_ 2 +
G35, ~a <e(9m2 — Ez/; 021/)) (2.54)

Since this symmetry does not survive the continuum limit one may choose to give it up all together
from the start.
2.3.2 Formulation of the model

As discussed above, giving up this symmetry on the lattice is equivalent to drop the requirement that
consecutive even/odd links transform with a different phase. This is then:

Conp — el:"% Con,
Con+1 —> 67’&2"62n+1 (255)
Uzng1 — €2 Uzp €7 "¥2n+2

where now the link variables U; are only defined for [ odd. The generators of these symmetries are
given by G;Ln in Equation (2.52)). The Hamiltonian will read:

. 2
] n ae
HHLS = —%Z (anc2n+1 + C£n+1U2n+lc2n+2 — h.C.) + mz (—1) CLCn + 72 ZL%HJA (256)

This Hamilton is represented on Figure 2.32] and it is invariant under the transformations 2.55] As in
the usual formulation, one can represent the link variables Us, 11 = e*¥2nt1 and can also encode the
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Fv Dynamical link

n even
Non-Dynamical link J

Figure 2.4: Representation of the HLS model where only the links between odd/even sites are dynam-
ical. The pair even/odd is used to build the spinor and does not require a dynamical link.

model in terms of spins, integrating the gauge fields, as done in Section (2.2.4]). Using the Jordan-
Wigner transformation:

1
G;L = Lgn — Lgn_g — 5 (O'Z (2’[7,) + Oy (27’l + 1)) (257)

Again setting a possible background field to zero, the Gauss law imposes:

12n+1
Lon =5 ; o. (1) (2.58)

This relation can be used in (2.56)) and a residual gauge transformation can be constructed to eliminate
the s from the Hamiltonian:

ot (2n) — ot (2n) [] etz

i<n )
ot (2n+1) = o (2n + 1) J] e (2.59)

i<n

The resulting model reads:

1
_Qan

9 2041 2
(o7 (n) o™ (n+1)+h.c] + %Z (—1)" 0. (n) + %Z [Z o, (Z)] (2.60)
=1

n n

When comparing this to the resulting case of the usual formulation, Equation [2.45] one can make an
interesting observation. While in all symmetries that involve o, (I) = —o (I) are forbidden, even
for m = 0, due to the oscillating term that originates due integration of the gauge fields, here it is not the
case. This model exhibits then symmetries that does not, like, for example, o, (1), 04 (1), 0, (I) —

oz (1), =0y (1), =0 (1)

2.3.3 Experimental implementation and perspectives

The possible advantages of this formulation for experimental implementation are clear: there are less
degrees of freedom to be implemented and, in particular less, correlated hopping between bosons and
fermions must be constructed. By eliminating the dynamics on every other link, one is then able to
implement this model. For example, in the energy punishment approach introduced on Section [2.2.T
one was forced to introduce an extra bosonic species to alternate the occupancy of the links in such a
way that no hoping between neighboring links could occur. By eliminating every odd link, this is no
longer necessary. It is, however, interesting to observe that there are certain possible implementations
which do not find a counterpart on other proposals that are meant to implement the Kogut-Susskind
Hamiltonian fully. This can be a fundamental key to achieve more suitable proposals.
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Figure 2.5: Scheme for a possible implementation of the HLS model. In the panel a) the two hyperfine
states of the fermions with their respective optical potentials are represented in red and pink. The two
bosonic hyperfine states are placed in the same site and are unable to escape. They are represented in
two different shades of blue. Independentely of the fermionic state, the fermion will only feel a double
well potential and is trapped there. The only way it can leave the trap is to scatter with the bosons
changing their hyperfine states only to find itself trapped in another double well. Normal hopping
between double wells corresponds to hoping without gauge link while the change in hyperfine state
implies the existence of a gauge link. In panel b) it is represented how the lattice sites of the fermions
in the different hyperfine states map to the sites of the HLS Hamiltonian.

As an example, consider a fermionic and a bosonic atomic species that can take two possible
hyperfine levels. The bosonic mixture is placed on a single site and hoping is forbidden. Each fermionic
species is only on a double well, unable to escape. The two double wells of the fermions are aligned in
such a way that a fermion, in order to proceed in a given direction, can do so if it changes its hyperfine
state. It can do so, in the spirit of angular momentum conservation, by scattering with the bosons.
Normal hoping will correspond to even/odd jump on the Hamiltonian while the change on the
hyperfine state, which is effectively a same site scattering term, corresponds to an odd/even jump. See
Figure

This formulation puts in evidence a non-trivial consequence: it may be possible to implement a
lattice gauge theory without correlated hoping. In fact this general scheme only requires same site
scattering and usual hopping. It is worth to note that a hoping 2n — 2n 4 1 is a physical hoping
on the experimental scheme but in the lattice gauge theory will serve to construct a same site spinor.
In turn, a change in the hyperfine state on the experimental scheme corresponding to 2n — 1 — 2n,
without an actual change of the physical position, will correspond to build a change on the spinor in
two different sites.



Chapter 3

Non-Abelian symmetry locking for
fermionic mixtures

The results of this Chapter can be also found in [16]. Ultracold multicomponent mixtures, including
quantum gases where more atomic species are simultaneously trapped, also opened in a natural way
the possibility to study exotic phases and unconventional superfluidity, in accordance with the previous
discussion [178]. In this Chapter it shall be addressed the realization of non-Abelian superfluid phases,
focusing in particular on the so-called symmetry-locked phases. Such phases are realizable in suitable
fermionic mixtures in which the components can be divided in two subsets, and they are induced by
a order parameter connecting fermions belonging to the different subsets. The peculiar property of
this parameter is that it involves all the possible pairing channels permitted by the symmetry of the
system.

The concept of symmetry-locking is a central concept for various areas of high energy physics.
It occurs in the presence of a phase (typically superfluid), characterized by a particular non vanish-
ing vacuum expectation value, acting as an order parameter and inducing a spontaneous symmetry
breaking pattern. Indeed, because of this expectation value, two independent symmetry groups of the
normal phase are mixed in a residual symmetry subgroup.

In the system considered in the present Chapter it is addressed the dynamics of four fermionic
components which will be generically divided in two sates conventionally denoted as ¢ and f. In other
words, two of the fermionic components will be associated with the label ¢ while the other two with the
label f. In this system, a symmetry-locking occurs in the presence of a non-vanishing order parameter
between two atoms (one belonging to ¢ and the other to f). The pairing can occur, in principle,
between any pair of atomic species. Depending in pairing combinations some symmetry is retained or
not.

Symmetry-locking results in a number of peculiar properties, especially when the locked groups are
non-Abelian, for instances ordered structures as nets and crystals [179}{180] or vortices and monopoles
with semi-integer fluxes, confining non-Abelian modes [181-185]. A remarkable example of this phe-
nomenon appears in the study of nuclear matter under extreme conditions, as in the core of ultra-dense
neutron stars [186]. There the locking interests the SU(3). (local) color and the SU(3)¢ (global) flavor
groups. Similarly the chiral symmetry breaking transition involves a locking of global SU (3) 1, and
right SU (3) g global flavor symmetries [179}/180].

In [187] a study of symmetry-locked states was presented based on multi-component fermionic
mixtures. In there it was proposed the synthesis of a superfluid phase locking two non-Abelian global
symmetries has been presented. This state has been denoted as a two-flavor symmetry-locked (TFSL)
state. In the analysis presented in |187] it was considered a four component mixture. The setting is
described by the four component mixture described above with labels ¢ and f. The system considered

53
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has an attractive interaction between all the components with an Hubbard parameter U, as described
in Section In the following U > 0 will correspond to attractive interactions while U < 0 to
repulsive. This system hosts very peculiar phenomena significant for high-energy physics as TFSL
states, fractional vortices and non-Abelian modes confined on them [187]. Besides the intrinsic interest
of such setting, it also represents a first step towards the simulation of phases involving the breaking
of gauge symmetries, as in the QCD framework.

Multi-component fermionic mixtures present a natural playground to simulate symmetry-locking.
A prominent example is given by multi-components Yb gases, that can be synthesized and controlled
at the present time |188]. Yb atoms, as all the earth-alkaline atoms, have the peculiar property that
their interactions do not depend on the hyperfine quantum number labeling the states of a certain
multiplet. This fact allows the realization of interacting systems, bosonic and fermionic, with non-
Abelian U (N) or SU (N) symmetries [189]. This property was already used explicitly to construct a
non-Abelian gauge theory in Section following [147]. One can make use of this property to realize
the mixture described above using a mixture of 171'Yb and '"3Yb atoms [187]. This will be described
here as well. One can populate can attribute the label ¢ to two hyperfine levels of '"'Yb and the label
f to two hyperfine levels of 172Yb. Each species is selectively populated in two different hyperfine
levels and loaded on a cubic optical lattice. For such mixture one has three kinds of interactions (for
the following values see [190]):

e '"'Yb and '"3Yb: Scattering length a171_173 is negative and rather large (a171-173 = —578ay,
with ao the Bohr radius). Attractive interaction.

o '"'Yb and '"'Yb: Scattering length a171_171 is negative and small (a171-171 = —3ap). Weakly
attractive interaction.

e YD and 1™Yb: Scattering length a;73_173 is negative and small (aj73_173 = +200ap). Repul-
sive interaction.

In the case discussed above, an attractive interaction between the "1Yb and '"3Yb atoms favors the
symmetry-locked phase, while a too strong attraction or repulsion between the populated hyperfine
levels of 171Yb or of 173Yb may spoil it. Therefore a natural question is to what extent the TFSL phase
can remain stable. This question fits into the more general problem of determining the phase diagram
and the actual extension of the TFSL phase as the interactions between the atoms of the considered
four-component mixture are varied. This question shall be addressed on the following Sections by
determining the phase diagram of a the four component mixture with attractive inter-pair interaction.
By this it is meant that it will be assumed that interactions between atoms ¢ and f will be attractive
while interactions between atoms within ¢ or within f can be attractive or repulsive. It will be observed,
in particular, that the interactions described above fall within a region of a symmetry-locked phase.
This results is particularly relevant in the light of the known difficulty to tune interactions between
earth alkaline atoms, as the Yb, without destructing their U (N) invariance and avoiding important
losses of atoms or warming of the experimental set-ups.

3.1 Four fermion mixture model

According to the scenario described above, a four species fermionic mixture involving atoms in two
different pairs of states (possibly pairs of hyperfine levels) is considered. For convenience these four
degrees of freedom will be labeled as o € {r,g,u,d} and they will be grouped like{r, g} and {u,d}.
The first pair will be associated to the label ¢ and the second to the label f. In other words, when one
speaks about an atom ¢ (f) it means that it belongs to the pair {r,g} ({u,d}).

Even if the mechanism that is going to described is independent of the space where the atoms are
embedded, in the following the mixture will be considered to be loaded in a cubic optical lattice. A
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discussion of possible advantages of this choice will be presented in Section[3.4] The system is described
by an Hubbard-like Hamiltonian H = Hy;y, + Hipt

H=—t Z cjgcjo — Z UsoMigMig: (3.1)

(i,3),0 i,001

In the above equation and in the following it is considered that U,, > 0 corresponds to an attractive
interaction while U,,» < 0 describes a repulsive interactions. The matrix U,,s is symmetric with
vanishing diagonal elements (because of the Fermi statistics).

As advanced before the situation of interest in the context of symmetry-locking is the one where
the interactions between the multiplets ¢ and f does not depend on the specific levels chosen in each
pair. The system in Equation is therefore characterized by three interaction parameters labeled
as Urg = Ugy Uyg = Up and U,y = Uypg = Ugy = Ugq = Ucy. In the following it will referred to
interactions associated with U. and Uy as "intra-pair" interactions and to the ones associated with
U.s as "inter-pair" interactions.Due to the sign convention, a TFSL phase is expected to be found for
U.y positive (attractive) and large enough. Once the hoppings and the occupation numbers of the
species are set equal in each multiplet, the system in the normal (Fermi liquid) state has a group
symmetry G = U (2), x U (2), corresponding to independent rotations on the ¢ and f degrees of
freedom respectively. More in detail, these transformations act as:

(5)-w(s) (h)-w(}) 32)

, 0 are the Pauli matrices and 6. a vector parameterizing the rotation and corre-

where U, = 7

sponding to free parameters. The same goes for Uy = %77 These transformations are independent

and one has:

UHU ' =H, UHU;' = H (3.3)

By other side, as it was shown in [187], when superfluidity is induced, G may undergo in general a
spontaneous symmetry breaking into a smaller subgroup . In particular, when superfluidity occurs
between the ¢ and the f atoms, the following spontaneous symmetry breaking (SSB) pattern takes
place:

U(2)e x U2) s = U(2)ess. (3.4)

This means that the superfluid phase has a residual non-Abelian invariance group H = U (2) ¢4y
composed by a subset of the group of elements (U.,Us) = (Uc,U;) = (Us,Uy), where U, and Uf
belong to U (2), and U (2) ¢ respectively. Notably H = U (2) .4 involves at the same time ¢ and f
transformations, originally independent.

The SSB at the basis of the symmetry-locking is explicit in the fact that the superfluid is described
by a gap matrix A.; transforming under G as ucACfu—l, and left invariant by the subgroup of
transformations H = U (2) o4 . This mechanism is called symmetry-locking(see e.g. [186]).

The mentioned relevance and generality of the symmetry-locking phenomenon, as well as the in-
trinsic interest for non-Abelian superfluid phases (as for instance for some models of high-temperature
superconductivity ), motivate an effort to realize the model in Equation in current ultracold atoms
experiments.

3.2 Mean field energy and consistency equations

In this Section it shall be investigated the emergence of of superfluid states, considering all possible
pairings in the system described by Equation. (3.1)), investigating more in general the superfluid BCS
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phases that can arise in it. The discussion here will be based a mean field approximation. Strong-
coupling results in Section [3.3
In mean field approximation the energy F at zero temperature can be written as:

1 A R
_ T
F= §Z¢Eszpk + F, (3.5)
E
where ﬁ;% = (ckT .. Chd, —cikr = cikd>, and F} is the 8 x 8 matrix:
gE QAO'O'/
- — Ao} ; 3.6
- (ke Z )

In this equation the labels on A,/ run through their four possible values: o € {r, g, u,d}, therefore
Ay, represents a 4 X 4 matrix. The factor 2 in front of A,, is due to the double sum in Equation
. Moreover

&, = Diag (e — fio) ,

where .
ep = —2t Z cosk;
=1

and
fio = fto + VoUs + 205U (3.7)

are the chemical potentials shifted by the Hartree terms. In Equation v, denote the fillings of
each component o and ¢ denotes “opposite” degree of freedom, meaning that if ¢ is a ¢ index then &
is an f and vice-versa. It is implicitly assumed that, at most, one is considering two different fillings:
Vp = Vg = v, and v, = vq = vy. This is in the origin of the factor 2 in from of v5U.s in Equation
:it accounts for the two possible labels belonging to the opposite degree of freedom. The constant
F, in Equation has the form:

1 -1 2
F, = 5Z§E0 +V Y U A (3.8)
k,o oFo’
V being the number of the lattice sites, <CLUC;MI> = Joone and Apyr = —V 1 U0 S (ChoCotor),

assumed real. Moreover p, = pg = pe and p, = g = 1y which holds since it is assumid that each
pair {r, g} and {u,d} have the same fillings, v, and vy, the same intra-pair interactions, U, and Uy,
and the same inter-pair interactions Uy.

The problem to describe superfluid phases of the Hamiltonian in Equation is then reduced,
at the mean field level, to the diagonalization of F; and to the subsequent determination of of A,
and fi, by the solution of self-consistent equations. In a general case the self-consistent equations will
have more than one solution and the energy of each one should be computed in order to determine the
ground state.

The general situation can be approached numerically finding the matrix P that as the column
vectors the eigenvectors of Fy

The diagonalization of the matrices may not be easy analytically but can be accessed numerically.
This way a matrix Py can be found such that P,IF,;Pk is diagonal D = Diag(Aa),—; g The eight
eigenvalues obtained are, of course, an artifice of writing 7];,; with both creation and annihilation
operators and do not constitute extra modes. Omne can get rid of them observing that, for 7 =
Ii; @0, =171, the relation T_lFE’T = —F7} holds if A,p are real. In this way if v is an eigenvectors of
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Fi. with eigenvalue A, one can get Fy7v = —7Fv = —A7v and as a result 7v is also an eigenvectors of
Fy with symmetric eigenvalue —A. Once found the eigenvectors of P, the transformed operators are:

) (3.9)

This allows to z/Jﬂ kwk = \IIT D¢V and putting them to normal order will give an Hamiltonian bounded

gl
.

«

_ Pl —
\I'];_PE¢E_<

L B

from below and an extra term to the constant term of the free energy F, — F, — %ZA%‘;), where )\’(;2
Eo ’

denote the four positive eigenvalues of Fj. The ground-state energy is found to be

Z (nga Z)‘(J’_)) +V Z |Acrcr’ : (3.10)

The self-consistent equations for A, , and the shifted chemical potentials fi, can be now obtained
from the conditions:

(3.11)
a(Fc+ﬁana) _ O
Ofio -
Several solutions of the Equations (3.11]) are possible in general. In general one should check what
is the correct phase for every point (UC, Uy, U, f) /t that minimizes the energy. There are three types
of solutions:

e Normal: no superfluid pairing exist between any degree of freedom. That means A,z = 0 for
any pair («, 8).

e non-TFSL (NTFSL): intra-pair pairings occur but no inter-pairing takes place: |A., ¢, |2+\Afl s ?
0 and A.f = 0. In this case the two non-trivial Bogoliubov energies entering (Equation ([3.10))

read A](;’;’c) =&+ 1A e,|” and )\,(;;’f) = /& + 1A g gl

e TFSL: inter-pair pairings occur but no intra-pair takes place: |A, e, | +|Af, 1> = 0and Ay # 0.
In this case the two non-trivial Bogoliubov energies entering (Equation 1) read )\I(;;) =

\ /f% + |Acy|? with Ay = %TrAcf, being Ay the matrix of the inter-pair pairings.

The normal state solution is always possible. By solving numerically Equations one can see that
whenever in the presence of an attraction term between the species (U.; > 0) a solution with non-zero
pairing A, also exists. Furthermore, it is found that it exists always a solution with less energy than
the normal state. This result assures the presence of a superfluid state, also in presence of intra-pair
repulsion. Of course this is a mean field result, expected not to be correct for large intra-pair repulsion:
a strong-coupling analysis of such case is presented in Section

The obtained superfluid BCS solutions are always of the TFSL or NTFSL types, in other words no
solution with both [Ag, e, |*+]Af f,|% # 0 and A.s # 0 occurs. It is also observed that setting n. =
for all the three mentioned types of solutions, the shifted chemical potential fi. and fif turn out equal,
in spite of the intra-pair interactions U, and Uy, being different in general. In particular, they depend
only on n. and ny themselves. This means that, at least at the mean field level, these interactions do
not determine any effective unbalance between the ¢ and f species. This fact is expected to remain,
at least approximately, true in the presence of a trapping potential, since this potential acts, in local
density approximation, as a space-dependent correction to the chemical potentials ji. s at the center
of the trap |75], not to the shifted potentials fi. s. This appears particularly relevant since it is known
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(see [75] and references therein) that generally an unbalance in the normal state can spoil the possible
emergence of superfluid states, or at least to modify the critical interaction strength and the critical
temperature.

For the case n. = ny = n, it is true that 5,3,0 = §; and it is possible to recast the self-consistency

Equations (3.11]) in a BCS-like form:

= “fz A, =0, NTSFL (3.12)
’ cf 5 .
52+4\Acf|2
or
Cf ———. A.;=0, TSFL (3.13)
\/§2+4|Acf‘
and

£k
" vZ(*m) 1

For sake of brevity, in the last equation A, is meant to include both A.s and A., Ay, corresponding
to both the cases TFSL and NTFSL. Notice that Equations — reproduce exactly the stan-
dard BCS self-consistency equations, as one should expect: indeed the different numerical factors in
Equations - are due to the different definitions for U., Uy, U.s and for the corresponding
gap parameters used here.

3.3 The phase diagram

The phase diagram of the Hamiltonian as a function of the external parameters ¢, U, Uy and
U.s is then 1nvcst1gat0d by solving Equatlons Concretely, the results for the solutions
of Equation. are presented here for a cublc lattlce havmg 203 sites (checking that the phase
diagram is not affected by finite size effects), and compare the energies of the obtained solutions to
determine the mean field phase diagram. The limitations of the mean field findings are postponed for
later in the text.

3.3.1 Attractive U,, Uy

The results presented in the panel a) of Figure refer to the the half-filling case (n, = %, corre-
sponding to n, = ny = n = 1) and different values of the ratio U.y/t and U,/t, Us/t. In this case one
always find fi, = 0, as required by particle-hole symmetry (see e.g. [191]).

For each fixed value of U.¢/t > 0 (attractive regime) a colored curve is drawn, separating the TFSL
phase inside of it from the NTFSL phase outside. As the value of U,y /t is increased, higher values of
attractive intra-pair couplings U./¢t, Uy /t are required to break the TFSL phase in favor of the NTFSL
one. At variance the normal state is never favored over both the superfluid states, even when one of or
both the intra-pair interactions are repulsive and not small in comparison with the attractive ones. In
this case the mean field approach is expected not to be reliable and, asdiscussed in the next Section,
antiferromagnetic states can be favoured. instead

In the panel b) of Figure where the curves of the panel a) are rescaled by their values of Uy /t:
in this way they all meet in the point U, = Uy = U.y. For this point of the parameter space, all the
different Hamiltonians have a U (4) symmetry and the two phases TFSL and NTFSL can be mapped
onto each other. This signals a transition point between the two phases, in agreement with [187].

The black point in the second panel of Figure represents the case of the mixture composed by
7y and 13Yb, where natural interactions between these isotopes are also assumed. This mixture,
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Figure 3.1: a) Phase diagram at half filling for U.;/t = {1/2,1,2}. Inside the curves (at smaller
values of U,) the TFSL phase occurs, while outside one has the NTFSL phase. As U.s/t increases,
the zone of the TFSL phase becomes larger. b) Phase diagram in units of U., at half filling. The
point U, = Uy = U,y is a transition point between the phases TFSL and NTFSL, irrespectively of
the value for t. It is also depicted the point representing the natural interactions of the mixture
My Hh-173Yh . The corresponding estimates for this point are performed in Sec.

mentioned in the introduction , will be discussed in detail in Section For now it is only observed
that the point lies well inside the TFSL zone.

The phase diagram shown in Figure b) is not a consequence of the hypothesis of balanced
mixture. Indeed in Figurea) the same phase diagram is plotted for different fillings (but still equal
for the four o species), finding qualitative agreements with small quantitative differences.

Similarly, in Figure b) the case where the pairs ¢ and f have fillings differing by ten percent
is reported. Again it is clear that the imbalance in the populations does not produce significative
differences on the results. An imbalance in the number of particles is generally known able to spoil
the appearance of superfluid states . In the present case the reliability of the results is guaranteed
by the absence of other non-trivial solutions for the Equations (see for comparison, e.g., )
and by the direct comparison between the energies of the normal states and the one of the BCS-like
superfluid solutions.

3.3.2 Repulsive U, Uy

When U, Uy assume negative values, meaning a repulsive intra-pair interactions appear in the Hamil-
tonian of Equation , the formation of intra-pair pairs start to become suppressed. However the
normal state is never favored in the mean field approximation as shown in Figures [3.1}[3:2]

If it is reasonable that for small intra-pair repulsion the TFSL is favored, for large enough values of
Uc/t, Ug/t and U./U.s, Us /U,y this superfluid phase is expected to eventually disappear, replaced by
insulator phases with a magnetic-like order. The latter regime is qualitatively described in the strong
coupling limit U, /¢, Uy /t by spin Hamiltonians, similarly to the Heisenberg model for a two species
repulsive mixtures at half filling (see, e.g., [191]).

In the strong-coupling limit two cases are explicitly considered here:

1. Both intra-species interaction large: |U.|/t, |Us|/t > 1,
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Figure 3.2: a) Phase diagrams for U/t = 1 and for different fillings: n = 1 (blue), n = 1/2 (green)
and n = 1/4 (red). They appear qualitatively very similar indicating that the filling does not play
a fundamental role. b) Phase diagram in the presence of a small unbalance between the populations
ng —n. = 0.1 and Uy = ¢. The result is qualitatively very similar to the balanced cases (see also

Figures .

2. One intra-species interaction large and other small: |U.|/t < 1 and |Uf|/t > 1. The converse
case of U, large and Uy small is completely analogous due tot he symmetry of the Hamiltonian

(1))

Notice that in both cases the further condition |U./U.s|,|Us/Ucs| > 1 is implicitly assumed. In the
first case the strong coupling Hamiltonian reads (details of the derivation are in the Appendix [3.A)):

2 1 =~ = 1 = =
of _ 2 0.0+ F.F ) - g
Heff_ 4Z(|U|CZ CJ+|U|Fl FJ) EGS (3'15)
. c f
(4,4)
where C and F are effective spin variables for ¢ and f respectively defined by C;, = > c;.raﬁm/cw,
a,B€{r,g}
and 13Z = > c;rgﬁmfcw/ (7 denoting the Pauli matrices). The constant Engs is the ground-state
a,Be{u,d}
energy and is given by:
ZNt? 1 1
Edy=-NU; - “—— ( + ) (3.16)
@3 4 \|U  [Uyl

where N = 2V is the total number of atoms of each pair. The Hamiltonian in Equations
corresponds to two decoupled Heisenberg models. The case 2. is of interest for the Yb discussed in
the next Section, in the perspective of a possible experimental realization for the TFSL mechanism.
Here the ground-state energy is found in the limit U./t — 0 (see details in Appendix :

2
E&g =2ENS + AE=2ENS — N Ye | 2t , (3.17)
44Uy

where Eév 5? is the energy of a single ¢ component in the normal state. Indeed the energy in Equation
(3.17) is proper of a system of free fermions ¢ on a antiferromagnetic background describing the



CHAPTER 3. NON-ABELIAN SYMMETRY LOCKING FOR FERMIONIC MIXTURES 61

dynamics of the f fermions. The f fermions will be described by a spin Hamiltonian similar to
Equation .

The regions of the phase diagram where both the TFSL and NTFSL superfluid phases occur can
be bounded comparing their ground-state energies with the energies of the antiferromagnetic phases

in Equations (3.16) and (3.17).
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Figure 3.3: Phase diagram, containing the natural point for the Ytterbium mixture, for the cases
Ucs = 3t (red), Uey = 5t (green) and Uyy = 15t (blue). The oblique lines bounding the superfluid
phases are obtained by the strong coupling approach leading to Equations. and . The
transition from solid lines to dashed lines signals where this approach is not reliable any longer because
it does not hold that |U./t|,|Us/t| > 1.

Postponing the details for the case 2. to the Section [3.4] here the results of this calculation for the
case 1. are presented in Figure 3.3] There the oblique lines represent a set of points where, according
to the energy criterium mentioned above, the insulator states become favorable over the superfluid
phases. Notice that increasing the optical potential depth Vj results in a increase of the area of the
TFSL phase, compared with the insulator one.

The calculation leading to Equations. and are perturbative in t/U,, therefore the
comparison between the energies in the same equations and the ones for the superfluid states is reliable
only while ¢/U, < 1. For this reason a dashed line, instead of a solid one, is drawn in Figure where
the condition |t/U,| > 107! (a threshold conventionally chosen) starts to hold. For the dashed line,
therefore, the strong-coupling approach is no longer expected to be fully reliable. From the Figure one
can see that for U.s/t = 3 the transition line can never be located pertubatively, while for Uy /t = 15
the converse is true. As an intermediate example U/t = 5 exhibits both a zone where perturbation
theory can be assumed valid and other ones where it cannot.
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3.4 Experimental feasibility and limits

As briefly discussed in the beginning of the Chapter, a possible experimental realization of the system
described above involves a mixture of 171Yb and !"3Yb. The first isotope has a 1/2 hyperfine multiplet
while the second one has 5/2 hyperfine degeneracy. For the latter atomic species only two levels could
be selectively populated. The mixture obtained in this way exhibits natural interactions characterized
as follows: using conventionally the label ¢ for the hyperfine levels of '"'Yb and the label f for the
ones of 1™Yb, the scattering lengths are a, = —3ag, ay = 200ag and a.f = —578ag, where ag is the
Bohr radius (see e.g. [190,/192]). As in all the earth-alkaline atoms, the tunability of these interactions
is very difficult using the magnetic Feshbach resonance, because of the negligible magnetic moment of
such atoms. Moreover, in the recent literature this problem revealed challenging also using alternative
techniques, due to important atomic losses and without spoiling their characteristic U (N) invariance
(N denoting here the number of hyperfine levels of the considered atomic species). For details on this
subject see [194] and references therein. This problem can prevent the realization of certain phases and
the exploration of the full phase diagram. For the purposes of realization of a symmetry-locked phase
the relevant question is then if without tuning the interaction the TFSL superfluid phase is realized
or not.

For the considered earth-alkaline mixture loaded on a cubic lattice, the hopping parameters, in
principle different, are given by:

h2
S = [T (Vo (1) V0 () + 60 () Ve (1) B (1) (3.18)

The expressions for the interaction parameters U, Uy , Uy in the form of Uag for o # 8 € {r, g,u,d}
are, for the conventions used in this Chapter:

Y s 2 2
Mag

In Equations and , }{a,py (7) are the Wannier functions describing the localization on a
given lattice site 7 (these labels are suppressed in the following for sake of brevity), 7 is the distance
from a chosen site, and mqg = %. A simple variational estimate for the Wannier functions, which
results in an estimate for the parameters in Equations [3.18) and [3.19] is discussed in Appendix [3.C]

The tight binding regime for the Yb is achieved for an amplitude of the opical lattice potential
Vo 2 2 —3FpR, where Eg. = thg /2m is the recoil energy, ko is the wave vector of the laser producing
the optical lattice and m is chosen conventionally to be the mass of the '"'Yb isotope. The amplitude
Vo is considered up to ~ 15ER,, where the tunneling coeflicients are very small and tunneling dynamics
effectively suppressed. Assuming this interval for the ratio Vp/Egr, and Equations and
with their optimized Wannier wave functions, the regions on the diagram U./U.y, Uy/U.y associated
with the considered Yb mixture with natural interactions can be calculated.

In Figure [3.4] it is reported on the left panel the hopping coefficients for different rescaled depths
Vo =Vo /ERe. 11is seen in the left panel that, contemplating the small difference in mass between the
two isotopes, it always holds At/t < 107! so that the previous assumption ¢, = ¢ty = ¢ (however not
strictly required for the TFSL mechanism) is reasonable. On the right panel of the same figure it is
presented the variation of U, s/t, again as functions of f/o = Vo/ERc. In the same way, the region
in the diagram U, ¢/U.s associated with the Yb mixture can be also calculated. More details on the
calculation are given in Appendix

If one writes the intra-pair interactions in the form U, ;/U,y, it is observed that the dependence on
the amplitude Vj effectively drops out such that only the relative value of U.s/t changes significantly
and the obtained region resembles a single point. This is the reason why one can speak about just
a “natural point” in the diagrams of Figures and This point is given approximately by the
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Figure 3.4: Parameters of the Hamiltonian in Equation (3.1) as a function of the depth of the optical
lattice potential Vo = Vi/ERr.. Left panel: hopping parameters t./Er. and ty/Egr.. Right panel:
rescaled interaction parameters U f/t. and Ucy/t..

coordinates U./U.s ~ 0.01 and Uy/U,; ~ —0.34, also very close to the point estimated using the
approximation U, /Ucy ~ aq/acy valid in the continuous space limit.

Importantly the natural point falls well inside the TFSL regime, see Figures and In
particular, along the line U./t = 0 (case b in Section 7 where the point almost lies, an estimate
for the appearance of the antiferromagnetic regime can be done comparing the energies in Equations
and (3.17). As a result, the transition is located by the strong coupling approach at the values
Ue/Uey = =397 for U/t =3, Ue/Ucy = —4.9 for Uy /t = 5 and U, /Uy = —5.6 for Ugp/t = 15, in
all the three cases far from the natural point of the Yb (recall its location to be Uy /U.s ~ —0.34). In
this way, these findings indicate that the TFSL phase can be observed in the zero temperature limit
in experiments with Yb mixtures, assuming natural interactions and realistic values for the depth of
the lattice potential.

Despite of the zero-temperature results reported, the TFSL phase could be still unreachable in
the presence of a critical temperature (at fixed interactions), required for its emergence, smaller than
the ones currently realizable in the experiments. This point is particular important in the light of
the mentioned difficulty to tune the interactions in earth-alkaline atoms. In the following the critical
temperature shall be estimated for the Yb mixture, proceeding as for the two-component attractive
Hubbard model in , where the results are given as function of the total bandwidth. The relevant
case here corresponds to isotropic hoppings ¢ (t. = ¢ = ¢ in the notation of ) and to the half
filling case. Moreover fi. = fiy, as found in Section

For the cubic lattice considered the total bandwidth is D = 12¢. Considering, for instance, Vj =
5FR., one obtains 2U,; =~ 0.3D, which results in T.Kp/D =~ 0.05. Using these values and considering
a lattice spacing of a = 0.5 um, the critical temperature turns out 7, ~ 15 nK. In terms of the Fermi
temperature this amounts to obtain 7,./Tr & 0.1. This value is reasonably close to the ones achievable
in current experiments , suggesting that the critical temperature assuming the natural interaction
is reachable with current-day experiments and the TFSL phase could be achieved.

The lattice ratio T./TF = 0.1 can be compared with the typical one for experiments in the con-
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tinuous space, finding that apparently on the lattice T,./Tr is sensibly larger. Indeed a very simple
estimate can be done using the results [196] for a two-component mixture (as it is effectively the TFSL
phase). Considering a number of loaded atoms N ~ 10* and a system size £ ~ 10um, one obtains
T./Tr smaller than 0.01. This value is far from the presently achievable ones, differently from the
lattice case. Summing up, the present analysis suggests that, for the task to synthesize a TFSL phase
in Yb mixtures, the use of a (cubic) lattice can be advantageous.

3.5 Conclusions

In this Chapter it is addressed the possibility to realize unconventional non-Abelian superfluid states
using multicomponent fermionic mixture. This is done by investigating the emergence of a non-Abelian
two-flavor locking (TFSL) superfluid phase in ultracold Fermi mixtures with four components and
unequal interactions. It is shown that such states could be studied in current day experiments with
71Yb-1"3Yb mixtures. This problem can be addressed using mean field and strong coupling analysis.
The phase diagram was explored for such mixture loaded in a cubic lattice, finding for which ranges
of the interactions and of the lattice width the system exhibits a TFSL phase.

These ranges are found to have an extended overlap with the ones realizable in current experiments.
In particular, as detailed above, the proposed set-up and phase are found to be realistic and realizable
using a mixture of '"'Yb and '"3Yb. The phase diagram has been studied and the point associated
to the natural (not tuned) interactions between these atomic species determined. It was shown to be
within the TFSL phase. The fact that no tuning is necessary is central for a possible experiment aiming
to realize the TFSL phase, especially due to the known difficulty to tune interactions in earth-alkaline
atomic gases without spoiling their peculiar U (N) invariance. The critical temperature required for
the appearance of the TFSL superfluid has been found comparable with the ones currently achievable.

Finally, it is also crucial to note that the relative large intra-pair repulsion do not destroy the
superfluid states. A different scenario is expected to take place when non-local repulsive interactions
are present, whose effects can be considered an interesting subject of future work.



Appendix Chapter

3.A c and f strongly coupled limit

In this Appendix the details concerning the perturbative calculation for the strongly coupled limit in
the presence of repulsive intra-pair interactions are presented. This process leads to Equation
in the main text. It is assumed that the system is at half filling.

The described physical situation corresponds to consider the Hamiltonian Hy + H; where

Hy = QZ (|Uc|nirnig + |Uf\niunid) - 2|Ucf|2nicnif, (3.20)
i ¢, f
Hy=—t > e, (3.21)
(i,9),0

and perform perturbation theory in the parameters e.,e; < 1 with e. = t/|Uc|, ey = t/|Uy|. It is
assumed €. = €7 = €. The ground-states of Hy, with energies E = —2V|U.;| = —N|U.y|, are the states
where no single site is doubly occupied by intra-pairing atoms, provided that |Ue ¢| > 3/2|U.y|. Let G
be the projector on this space and P=1-G.

The lowest order correction to E comes at the second order, from the virtual process consisting
in the interchange of location of two particles at nearest-neighbor distance. The calculation simplifies
noting that PH, = H; and that H; |¢) is an eigenvector of Hy for |¢)with ¢ being one of its (degenerate)
ground-states. The related second order effective Hamiltonian then is found to be

t? 1 = = J zNt? [ 1 1

Herp=— O-C'—s—F»-F)—(—i—) 3.22

o 4%<UC| ") T\ 522

where C and F are effective spin variables for ¢ and f respectively defined by qu = > C;[UFUU/C,‘U/

a,Be{r,g}
and F, = > CIUFM/CW (7 denoting the Pauli matrices) as already presented in the main text.
a,Be{u,d}

The corresponding ground-state energy correction is AE = — ZIXtQ (‘Ulv‘ + ﬁ), being z the adjacency

number for every site. In this way the ground-state energy at the second order perturbation theory in
77— becomes

e f
ZNt? < 1 1 >
E=—-N|Ug| — — +—. 3.23
Verl= =\ " 1oy (32

This formula is Equation (3.16]) of the main text.

65
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3.B Strongly coupled f and weakly coupled c

In this case the system is described by the Hamiltonian Hy + H; + Hs where:

HO = 2|Uf|zﬁzuﬁzd — 2‘Ucf| Z ﬁzcﬁzf —t Z CICCjC
7 .

e, f (i,5),¢

Hy=—t 3 clef (3.24)
(i) f

H2 = —QUCZH”TLW
(2

U]

The perturbative parameters are ¢; = ”}‘7 and e = . The ground-state of Hy can be derived

in this limit assuming a basis of localized f degrees of freedom. Using such a basis, one can get an
effective Hamiltonian for the ¢ degrees of freedom corresponding to non-interacting fermions in a one
body potential, which in turn depending on the f configuration.

If |Ug| > t and |Uys| > |Uecsl, the dynamics is dominated by the localization of the f atoms and
therefore the ground-state does not host any doubly occupied site. In that case, in the ground state
of Hy, a single f particle is in each site. Therefore the one-body potential felt by the ¢ particles
is site independent: —2|U.s|f;c. The effect of this potential is to induce a shift on the chemical
potential dp. = —2|Uc¢|. Up to the first order of perturbation, the ground-state energy then results
on Fop. =2 > - Instead the first order in €; vanishes because it is related with forbidden double

k:ez<0
occupancies okf sites by particles of the same species. At the second order in €; and €5, an effective
Hamiltonian can be derived:
1 A

1 1 N
(Eo - ffo) (Eo - ffo) (EO - ﬁo) Pl €
(3.25)

with G and P = 1 — G defines as in Appendix 1) The term o €1€5 vanishes for the same reason
for which the linear term in €; does. The remaining effective terms are then proportional to e, €5 and
€2. These terms commute with each other, so one can focus on them individually. After some algebra
one can write the energy correction up to the second order for the ground-state energy:

f[eff:G 6%1—}1 PHy + erey | Hy PH; +h.c. +e§f[2

g 2 2
AE=N <U4 - % Uy - %E@)) (3.26)

where £ is a dimensionless positive quantity:

~ 1 5,—5 g
E(Q) - 1+k2,¢1+32 3.97
V3 . _Z €%, +€E2 —Eq T Eg ( )
kl,kz c FS
Q1,32 € Fs

with Fg labeling the set of points of the Fermi sea and &), = e /2t. Equation (3.26)) is used to arrive
to Equation (3.17)) of the main text, where U, = 0 and the calculation of () is not required.
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3.C Determination of the model parameters

In the present Appendix the parameters of Hamiltonian [3] are estimated by a variational approach.
This is obtained from the expressions

tija = — | &7 (35-V6ia (7) - Voja (7) + dia () Vexs () 650 (7))
(3.28)

Unp = — 2905 [ 337 6, (7)|? |65 (F) |2

Tﬂaﬂ
3
where Ve (7) = Vo 3 sin? (kor;) is the external potential creating the lattice (kg = %’r, a being the
j=1
lattice spacing), aqp correspond to the scattering lengths between the o and § species, and mqp are
their reduced masses. Moreover the ¢, (7) refer to the Wannier functions centered on the lattice sites.
A simple estimate of these functions can be obtained by variational approach. In particular we consider

the following ansatz:
|72

o (M) = Cae 72, (3.29)

where C, = (ﬁaa)_s/ ®. The values of the coefficients o, are fixed by minimizing the energy per
lattice site. This energy can be found as the expectation value of the Hamiltonian (?7?) acting on the
multi-particles fermionic state ¥, (71, ...,7) (V being the number of lattice sites, at half filling equal
to the number of ¢ or f atoms) constructed by the Wannier functions. In the mean field approximation
it reads:

\%
h? 2mh2a,
e = /H T | g [Vl 4 Vear [Wal* 4+ 37 =20 [0 0 (3.30)
i=1 @ @ B>a @

Using the (approximate) orthogonality of the Wannier functions at different lattice sites one obtains:

3 2 2
€= /d3rz Moy — |V¢W| + 10 Veat |Gair|* + Y nang QB o | |57 ] (3.31)
" B>
47rh2aaﬁ
Map
Wannier functions, centered on the lattice sites labeled by 7, depend on the space vector 7 spanning
all the lattice. Using the ansatz in Equation (3 one finds

N{a,s} being the average number of particles of {a, 3} per site and gas = Moreover the

3 3 o—Hio? Jap
E/N = Z naﬁﬁ + naT (1 0 ) Znanﬁ 3/2 (332)
a @ B>a 273/2 (Ug + Ug)

aai = 0 and expressing the parameters in Equation (3.32)) as adimensional quantities 7, =

koo, f/a = ELO% and Gag = koaag, With Ef = ;L kg , the result is a set of coupled equations:
1 } i L.
— = Ve %+ 4 ng <1 + m“) Qb — o, (3.33)
oL mg ~92 ~2 /
B#u VT (62 + 65

Solving this set in {0, }, the Hubbard coefficients are finally obtained by substituting the solutions on:
2 _ a2
toa =~ [gﬁwia (6— (=) ) +%(3- ekﬁvi)} e 2,

_ ﬁzaag 1
Uap = VTmag (a§+a§)3/2'

(3.34)
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For the case of the Yb mixture the interactions are the same for the species 7, g and u, d, resulting

in two equations (for . and &y):

1 7 =~ &2 clcc c dnflcfée
GG (1 - lef) va(e2+62)"F ’
(3.35)
1 75— 07 4 Midss ( mf) dnclesdy
= =V s 1 ——— s =0
3 fO'f@ + 271_5‘4; + + me \/;(53""5?)5/2

The solutions are presented in Figure @ of the main text for the symmetric case n, =ny =n = 1.



Chapter 4

Long range models from local gauge
theories

This Chapter is based on a recent work presented in [17]. The models described up to now, as targets
of quantum simulations, are formulated in terms of local fields and interactions. This seems to be a key
property of fundamental theories of Nature. Non-local theories, relevant to many physical problems,
are expected to provide an effective description, in a certain limit, of a fundamental theory which
is in fact local. Examples of this are the Coulomb force between electrons that provide an effective
description of Quantum Electrodynamics [197] or the Newton gravity which is an effective description
of General Relativity [198], both in a non-relativistic limit. In particular, in this limit, the speed of
light is well approximated by infinite and therefore interactions seem to propagate instantaneously.
Thanks to advances on control and manipulation of AMO systems kike trapped ions, Rydberg atoms,
quantum gases and polar molecules [199H202], implementation of a series of long-range (LR) models
was made possible [203-214]. Recent highlights in this directions include the physical realization of
Ising and XY quantum spin chains with tunable LR interactions with ions in a Penning trap [203],
neutral atoms in a cavity [211}/213}214], trapped ions [208-210], and Rydberg atoms [204]. Typically,
the LR interactions achieved, decay algebraically with the distance r. The precise exponent can be
experimentally tuned [208-210]. In fact precisely the possibility of controlling LR interactions was the
key feature on the experimental implementation of the Schwinger model [15] (as discussed on Section
2.2.4)).

By other side also theoretical development as advanced on the properties of quantum LR systems
[215H237). As examples in [151},|238H244] it was studied the effect of non-local interactions on the
dynamics of excitations and on [245H249] the equilibrium properties and phase diagram.

The above mention LR interactions, on the form of power-laws, are typically written as:

1

V(T) o m

(4.1)

where r is the distance between the particles or spins, d is the physical space dimension, and ¢ is the
decay exponent. One can distinguish two main regimes:

e 0 < 0: interaction decays slowly with the distance. Internal energy of the system typically
diverges in the thermodynamic limit calling for a redefinition of the interaction strength [250].

e ¢ > 0: interaction decays quickly with the distance. The system is additive and thermodynamics
is well defined.

Furthermore, if o is large enough, the system turns to be effectively short range (SR). Accordingly
a critical value o* can be defined such that for ¢ > ¢* the critical behavior of the model becomes

69
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the same as its SR counterpart. In the opposite direction, if the interaction remains significant over
large distances, the system is well described by mean field. This occurs for 20 < d. In the region
bounded by these two regimes, d/2 < ¢ < ¢*, LR interactions are relevant and the determination
of the value of ¢* is a subject of continued theoretical research [2454249|]. Another way of looking
at this is thinking of the variation of o as a variation on the effective dimensionality. Note that
varying o only affects the interaction term [I.I] while varying the dimensionality affects other parts of
the Hamiltonian, namely, the kinetic term. In light of this, at least effectively, there should be for
each o an effective dimensionality des that makes the LR system equivalent to a SR living in deg.
Such scenario allows the application of well established results for local many-body systems, such as
the Mermin-Wagner-Hohenberg theorem [19,]20] and Lieb-Robinson bounds [21] on the propagation
of quantum correlations, to non-local models. This picture is mostly intuitive and it constitutes a
challenge to be casted into a rigorous theoretical formalism. One of the main reasons for this is the
complexity of such mapping directly at the operator (i.e., Hamiltonian) level.

In this Section a new approach is proposed to the problem. The general framework consists on
casting a LR interacting system in d dimensions, through an exact mapping, in a local theory were
the initial degrees of freedom remain in “lower” dimension d but are now coupled locally to gauge
fields in “higher” dimension D > d. The fact that the particles that are interacting initially through
a LR interaction remain there, in the local theory, facilitates the mapping while the extra dimensions
where the gauge fields live can mediate different types of interactions effectively providing a knob to
tune the inter-particle potential. Since the initial theory is fully local in D spatial dimensions, the
mapping allows one to exploit the full predictive power of general results for local field theories to
the non-local one in D dimensions. Other motivation is the possibility to create tunable interactions
with cold atoms, and in particular 1/r interactions [251]. Despite the fact that, for trapped ions,
interactions of Ising-type can be made to decay algebraically with the distance r» with an adjustable
exponent (usually in the range < 3), so far no experiments have been performed for a Bose or Fermi
gas with an effective 1/r interaction also in lower dimension. The extra dimension can provide a path
towards new proposals in this direction. Finally, this kind of formalism may be useful in the context of
quantum simulations of gauge theories. First, dimensional mismatch models provide an intermediate
step between increasingly more difficult gauge theories. For example, it is reasonable to expect that
the implementation of 1 + 1 fermions coupled to 2 + 1 gauge fields will be easier than implementing
of full QED in 2 + 1 dimensions, but still more challenging than the Schwinger model or pure gauge
in 2+ 1. Finally the fact that the fermions are in lower dimensionality still allow non-perturbative
analytical computations, which can serve as benchmark to experimental implementations, as it will be
shown on Chapter 5] Due to the reduced degrees of freedom, also numerical computations will be less
expensive when compared to the full gauge theory in higher dimensionality.

In Section as an example, the case of d = 1 (for fermions/spins in lower dimensionality) is
discussed and it is shown how the Coulomb interaction is mapped to the U (1) Abelian gauge theory
within the formalism. The approach consists on taking the Lagrangian formalism which will be the
preferred paradigm until Section [£.4] where canonical quantization is discussed.

The paper is organized as follows: In Section the general formalism is established. This cor-
responds to the construction of the effective fermionic theory in the lower dimensionality (d + 1) and
its respective relation with the gauge theory, in the same dimension, with a modified gauge kinetic
term. In Section [£:2] the special case D = 2 and d = 1 is considered, where, in particular, bosonization
is used. It is also contemplated the possibility of having several fermionic flavors and gauge fields
in such a way that, integrating all of the gauge fields and bosonizing all the fermionic flavors it is
possible to construct a general bosonic kinetic term, on the Lagrangian. of the form ¢ f (—82) ¢. Here
¢ is the bosonic field and f is a function which can be seen as an expansion in half-integer exponents
(in powers of a with 2ac € Z). When f is the identity function one has the standard kinetic term
for a bosonic field. There is freedom on engineering the coefficients of these expansions by modifying
the coupling of the initial theory. By following the same process, bosonizing all fermionic flavors but
one, it is also possible to construct a similar kind of interaction between fermions j,V (—83) Ju again
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with V' admitting a series expansion on integer and half-integer powers of the Laplacian and j, (the
fermionic current). In Section an overview on how these kind of models can naturally fit in the
class of proposals of experimental realization of quantum simulations of gauge theories available on
the literature is provided. Section [£.4] deals with canonical quantization and respective construction
of Hamiltonians for the models obtained by dimensional reduction. In particular it is illustrated how
to obtain non-relativistic fermions interacting via an 1/r potential. In Section an outlook of the
applicability of this formalism and further directions is provided.In Appendices more technical points
of the calculations are treated more explicitly.

4.1 Dimensional reduction

The situation where gauge fields are in higher dimension mediating interactions between particles
confined in a lower dimensionality is directly related to graphene experiments [252]. In that case the
system is two-dimensional, but the electromagnetic field acting on it is not confined to the plane,
living instead in three dimensions. Setting the notation, the electrons are confined in a 2D (i.e., 2+ 1)
plane while interacting with the electromagnetic field that lives in the full 3D space (i.e., 3+ 1). The
formalism of Pseudo QED was introduced in [253] and provides a way, keeping the dynamics of the
gauge fields, to deal with the problem in hand. The kinetic part of the fermions confined on the plane
(z,y,z = 0)propagate accordingly with the usual kinetic term of the two-dimensional space. In turn
the electromagnetic kinetic term is the usual one for three-dimensional space. The two fields are then
coupled through the standard minimal coupling with the additional requirement that no fermionic
current exists or flows outside z = 0. In standard QED, where fermions visit the full 3 + 1 space, the
4-current of the fermions has the form j = 1&7#1/1. These fermions are then coupled to the gauge fields
through a term ~ A,,j%". Here, however, this coupling cannot be taken directly. Due to the dimensional
mismatch, the components of the current of the 2 4+ 1 fermions (j§) runs through a = 0,...,2 while
the components of the gauge field take values u =0, ...,3. This is overcome by dealing with 4-current
J4 and imposing that there are no fermion current nor any flow towards the extra dimension:

js (1,2,y) 0 (2) if p=0,1,2

" _
ja (1,2,y) = { 0 otherwise &

where j§ = a1 is the 3-current of the fermions in 2 4+ 1 dimensions. By integrating out the gauge
field and applying the above condition the resulting Lagrangian consists on an effective 2 4 1
dimensional Lagrangian containing a LR interaction [253H259]. This LR term is fundamentally different
from the LR interaction obtained when the fermions are not confined in lower dimensionality (2 + 1)
and is at the basis of several peculiar properties of Pseudo QED, such as the dynamical generation
of a mass term [256,1258]. The dynamical chiral symmetry breaking in reduced QED theories was
studied as well in [260], and the procedure of dimensional reduction was applied to the edge modes of
two-dimensional topological insulators [261].

In the following this scenario shall be approached in a general scenario for general U(1) gauge fields
live in D + 1 dimensions and fermions in d + 1 with D > d. In Figure a schematic representation
of the example of D = 2 and d = 1 is presented. The case D = d is the trivial in the sense that it
corresponds to QEDd. It is however useful to keep in mind that the known results for this case should
be recovered whenever D = d is taken. The line of thought described above can be inverted and shall

be adopted later in the chapter. Instead of determining which long range interaction is obtained from
a given gauge field one can:

1. Determine what is the gauge field living in higher dimensions giving rise to a target LR interaction
(which can be implemented via the dimensional mismatch)

2. Explore what kind of LR interactions can be realized.
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Figure 4.1: Schematic representation of a dimensional mismatch situation where the fermions live in
1+ 1 dimensions while the gauge fields in 2 + 1. Fermions are confined on the line but photons can
explore the full plane.

In light of the previous discussion, the general scenario that one may consider is given by:

e Ny fermionic flavors {¢},_ w, living in d + 1 dimensions

o N, gauge fields {AZ each one living in Dy 4+ 1 dimensions (where Dy, > d, Vb)

}b:0,...,Ng
e Both fields (minimally) coupled through a coupling parameter e, (generalized electric charge)

The case of d =1, Dy, = 2,Vb allows a certain degrees of control over both interactions and dispersion
relations as it will be discussed in 42

Dimensional reduction: single gauge field Taking the ingredients described above, for a single

gauge field, one has a matter Lagrangian living in d + 1 dimensions Eﬁjl, a gauge kinetic term leaving

in D + 1 dimensions 1 F 2, and a coupling between the theories j}, A, where j}, , will be confined

to d + 1 dimensions. Furthermore a gauge fixing term, Lgr. In Euclidean time the fill Lagrangian is
given by:

d+1 eit A 1 2

L=LYT — iejpi1 A + ZF’W

The term Lgp will correspond to the Faddeev-Popov Lagrangian [262] given by Lop = 2—15 (GMAH)Q,

where different choices of £ correspond to different gauges. Here the Feynman gauge where £ = 1,

+ Lgr. (4.3)

resulting in a propagator G, = %(925,“,. The D + 1-current should respect the condition:
.M M —
" oy _ § Jap1 (@0, 2d) 0 (2aq1) . 0 (ap) i p=0,....d
Ip41 (%) { 0 otherwise (4.4)

In order to formulate the theory exclusively in lower dimensionality d + 1 one can integrate the gauge
fields in the path integral:

Z= / DDype S £ar 4" e / DAe J[iedb o Aut §FR+Lar]aP Tz (4.5)

By completing the square and performing the Gaussian integrals the result will be fermion-fermion

current of the form: )

e , 1 )
b= [ | 5] b ams (4.6)
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Here 0?2 is the Laplacian in D + 1 dimensions and [1 / 82]zz, are the matrix elements at space-time
points z, 2’ of its inverse. This constitutes a long range potential that will be denoted by Gp (z — 2/)
exhibiting explicitly the dependence on the dimension where the gauge fields lived E Explicitly it is
given by:
dD+1k‘ eik-(z—z')
Gp(z—2) = / 4.7
p( ) PR (4.7)

The nature of these interactions is encoded in the higher dimension D + 1 and it is not dependent on
the dimensionality where the fermions live, which did not enter yet, as made explicit by the expression
above. The resulting interacting part of the Lagrangian is ten written as:

62 d+1_./ 1 - (L /
Lo = [ EHE Co G (o0 = (mo—atyeva—aly HE) (08)

Zd+1, - 2p+1 =0

As an alternative, this term can be written in operator form as well. This consists in taking the
Laplacian in D + 1 dimensions 6(2D b1y = Zf:ol 82 (before denoted simply by 8(2D +1)) and integrate
out the extra dimensions keeping the Laplacian for the lower dimensions d 4+ 1, that remain not
integrated 3(2d+1) = ZdH 0?. Precisely

=0 "p*
N dP—a 1
G =G (_32 ) = / . 4.9
Pod = HDod \ T8+ CmP =R — .. =0 TR+ .tk (4.9)
The interacting Lagrangian [£.8] can be equally written as:
e? A _
Lint = —jyGp—ajl (4.10)

2

The two forms of presenting the non-local term emphasize two different aspects. When writing, as
in the first case, the interaction in terms of a space-time function Gp (z), it is emphasized that the
current-current interaction does not depend on the lower dimension and only on the upper dimension
where the gauge field propagates. In turn, when writing, as above,e in terms of a modified dispersion
relation, the formal structure of the function Gp_ 4 (X), which will have as argument the Laplacian,
only depends on how many dimensions are integrated out. Of course the two approaches are equivalent.
In fact, while the function Gp_4(X) only depends on the difference between the dimensions, the

operator Gp_qg = Gp_a —8(2 A1) ) obtained by taking as argument the lower dimensional Laplacian,

does not. From now the Laplacian without label is assumed to be the one on lower dimensionality:
0% = 8(2 d+1)” The interplay of the two equivalent ways of looking at the theory are equally useful. The
later, which is the operator form, becomes useful if one wishes to restore the minimal coupling to a
gauge field, now entirely in lower dimensionality. Explicit expressions for both for Gp (z) and Gp_d
are given for the most relevant cases where D = 1,2,3 and D —d = 0,1,2 in Appendix [{.C]

The goal now is to transfer the non-local interaction into the the kinetic part of a modified gauge
fields living in d + 1 dimensions. This consists in identifying a theory of the form:

- 1, -
Lq= Ly —iejly AL+ 1FuMpaF (4.11)

which will reproduce the interaction term (or equivalently when integrated as in It is
worth emphasizing that this Lagrangian is fundamentally different from [£:3] Apart from the gauge

Integrating degrees of freedom and obtaining LR terms (and possible multi-body interactions) is ubiquitous in
renormalization group treatments of models, where typically one takes a model and integrate over a sub-class of the
original degrees of freedom (see, for example, [263]). The difference with the models considered here is that one performs
a dimensional reduction after making the integration of gauge degrees of freedom.
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fixing term that shall be discussed next, the key difference is the fact that here both fields, matter and
gauge A, are in the same dimensionality, contrary to The fact that produces effectively the
same theory is encoded in the modified kinetic term for the gauge fields F#,,M D—akF . The operator
M D—sq is to be fixed such that this condition is fulfilled. Furthermore, this modified theory is also
gauge invariant. For C‘Ii\jl the Dirac Lagrangian and 1 the fermionic field the gauge transformations
are given by A,, — A, + é@ua and 1 — e . In order to perform the integration of the gauge fields,
a gauge fixing must take place. This can be done with the usual gauge fixing term Lop = i (8HA#)2
but it is not the most useful choice. The fundamental reason is that F#,,]\;[ D—akF ., is non-local and
such Lgp is purely local. For example, in the Feynman gauge £ = 1, the propagator for the gauge
fields becomes diagonal G, = [—82] ! 0 for usual QED. If a similar diagonal propagator is to be
obtained, then £gF must be non-local as well. For more details see Appendix [£-A] The bottom line is
that analogous choice can be made such that the modified propagator is diagonal and takes the form

. —1
Gu = [—82M51d} duv. By comparing with 4.10|it is clear that the relation

Mp_yq = (—aZGDﬁd)fl (4.12)

should hold establishing the relation between the theory with dimensional mismatch and the gauge
theory in lower dimensions. This analysis holds for any E?\jl provided that has a linear coupling to
the gauge fields as in j 14, This is not the case, for example, for non-relativistic which may involve
a other considerations. In a certain limit this analysis is also valid for the non-relativistic case and it
shall be discussed in more detail in Section .4

4.2 Exploring dispersion relations from 2 — 1 dimensional re-
duction

In this Section the case to be considered corresponds to a single spatial relation for the lower dimension
and two spatial dimensions for the higher dimension. This consists on taking d = 1 and D = 2. This
is the simplest case where dimensional reduction takes place. There are two main reasons to consider
this:

e For the fermions in lower dimensionality there is the possibility of using bosonization which
considerably simplifies the treatment.

e When dealing with LR interactions the dimensionality is not crucial. At least not as much as in
presence of SR interactions since varying the type and the range of the LR interactions one is
effectively changing the dimensionality of the system. For example, in the 1D LR Ising model,
changing ¢ from 0 to 1 (see Equation one is effectively changing the dimensionality from 4
(which is the upper critical dimension of the SR Ising model) to 1. Therefore controlling the LR
interactions one is (at least, in the renormalization group sense) controlling the dimensionality of
the system. Furthermore, due to the form of the operator Go_y1 and the possibility of mapping
the resulting theory through bosonization (only available when d = 1), the class of LR models
that can be addressed is larger once extra flavors are introduced and integrate, as will be shown
next.

The simplest case is the case of one flavor and a single gauge field. Before moving to the specific case
of 2 — 1 the treatment is kept general for D — 1. In this The matter Lagrangian kept general in
the previous section is taken to be the Thirring Lagrangian (proposed by Thirring [264] see also, for
example, [265]). It corresponds to Dirac fermions with a current-current local interaction:
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- . - 2 1 ~
L=—y (7uau + le'YuAu) P+ g (7/)’7;17#) + ZFHVMD—)IFMV (4-13)

Here the goal is to bosonize the Lagrangian. The massless Thirring model can be mapped to the free
boson [266] (see also [141[265]) so, if the gauge field was absent one finds the bosonized Lagrangian:

1

Loos =5 (1+2) (9u0)” (4.14)

Here this Lagrangian will be obtained as a particular case when the matter-gauge coupling, e, is set
to zero. By performing an Hubbard-Stratonovich transformation to replace the four fermion coupling
by introducing a vector field B,,, which is taken here to be such that

9 (7 2 . - e’
5 (w’ﬂtw) — —ZeB# (dﬂ’;ﬂb) + %BH (415)

When the square is completed on the right hand side one gets: % (Bu — 7;%1;%”&)2 + 4 (@Vuw)Q and
the integration of B,, produces just an overall multiplicative factor that can be dropped. The matter-
gauge coupling was introduced for convenience. Upon the integration of the gauge field it only enters
in this multiplicative constant and therefore there is freedom on choosing this parameter. This specific
choice allows the Lagrangian to be written as:

_ ) e? 1 ~
L=— (’Yuau +eyy, (Au + Bu)) Y+ @Bi + EFHVMD—HFMV (4.16)

Given this structure it useful to replace the field B, by another field C,, = A, + B,, condensing the
interaction of the fermions with a single field. Then C), and A,, become interacting:

- . e? 1 ~
L ==Y (VO +ieyuCp) ¥ + 2 (Cu— AW+ ZFWMD—AFW (4.17)

Because one is working effectivelly in d = 1, the fields A,,,C,, have only two components which can be
parameterized by two scalar fields corresponding to:

A, = 0ux — g0y, Cu=0uX —icudu¢ (4.18)

where €, is the totally anti-symmetric tensor with €9y = 1. One of the x fields can be eliminated
by a gauge transformation. Within this parameterizations gauge transformations take the form: y —
X+ 20,0, X' — X' + L0, and ¢ — e and « ca be chosen to eliminate x’. The Lagrangian takes
then the form:

2

L=~ O+ nusudd) Y 5 (000" = @up)” = (0u)’ + 20,9/ 0up) = 5 (0°) Ny (0%)

(4.19)
The field x is decoupled from the rest of the fields and, since the final goal it is to integrate the keep
only the fermionic degrees of freedom, it can be dropped. The fermions are only coupled to ¢’. Upon
performing a change of variables corresponding to a chiral transformation ¢ = eie‘/’/%w’ where vg =
Y071 (Euclidean  matrices), the extra term that comes due to the derivative: ¥’ (iey,0,0vs) ¢ =
—egﬂyi’%ampw cancels the coupling to ¢’. In this process it should be recalled that the chiral
anomaly has to be taken into account. Its origin consists on the fact that the path integral measure,

DD, does not transform trivially under this change of variables. This gives an extra term (see for

1
2

21t was used that, for Euclidean gamma matrices, YuYs = i€uryv Which can be seen by direct computation and using
{’\/Mv ’YV} = 0
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example [265] or [14]) —% (8M<p’)2. With this ¢’ appears in the Lagrangian as a free massless Dirac
field and can be bosonized and described in terms of a free scalar ¢’

1 o e /1 1 o €2 2 1 .
Loos = 5 000" = S (= + = ) 0u)” = o ((049) = 2046 0u0) = 5 (0%) Mp (%) (4.20
o =3 @0 = 5 (54 5) @) = 52 (000" = 20,0,0) = 5 (0%9) o (%) (120
The chiral transformation was useful in order to identify the correct way to bosonize the Lagrangian.
Now one can restore the bosonized field ¢ of the initial fermionic field. From bosonization formulas [14]
the transformation v/ = e~%¥ V1) is equivalent to ¢’ = ¢ — ﬁgp’ . Plugging this transformation on

Lpos will give

1 5 €2 2 e €2 2 1 N
Loos = 5 000"~ 3 (008~ =08/ u0 5 (000)" — 2040/ 0up) =5 (0%¢) N1 (%) (4.21)

and integrating ¢’ out:

1 e 1 .
Loos =5 (14 2) (9u0)® - 2000 = 5 (0°¢) Nlp_ (9%) (4.22)
The fact that this theory is related to a dimensional mismatch theory was completely irrelevant, as the
kinetic term of the field ¢ was just an spectator. Furthermore all the dependence on the parameter
g is condensed on the ¥ kinetic term, just like standard bosonization of the Thirring model. A more
detailed discussion of this in the context of the Schwinger-Thirring model will be given in Chapter
Finally, integrating the remaining ¢ field leads to:

1 -
Loos = 5 (1 2) (0.0)° + - 0015%,0 (4.23)

In order to help visualization (mainly when more gauge fields and matter fields are considered) a
schematic diagrammatic representation is introduced. In Figure [f.2] different fields of the theory are
represented and connected, if they are coupled to each other, by straight lines. Straight lines connecting
fermionic flavors (including self coupling) correspond to current-current interaction, lines connecting
fermions to vector fields represent the standard minimal coupling and, finally, bosons are connected
by as many straight lines as there are derivatives present in their coupling. In the case of the vector
fields, as many bars as the original dimension where the field lived originally, are placed on top of the
field. This means that if the kinetic term is FWMD—>1FW there will be D bars on top of the respective
vector field. The diagrams do not specify the actual value of the coupling since their main purpose is
visualization of the structure of the theory. The initial and final theories and are plotted
in Figure In Appendix [f.B] the diagrammatic representation is also used to depict the intermediate
mappings that allow the passage from the initial to the final theory. This is done systematically for
all the theories represented in the main text.

The Lagrangian [£.23] has no interaction terms and corresponds solely to a quadratic Lagrangian
with an exhotic kinetic term. In fact, for the familiar case of the Schwinger model, that in this language
corresponds to g = 0 and My = 1, the gauge fields give rise to a bosonic mass. In the following
Section the goal consists in trying to develop more general dispersion relation between bosons since,
in the case just described, there is effectivelly only one parameter to play with which determines the
relative strength between the usual Laplacian 0% and the extra term M E)Lr

4.2.1 Controlling the kinetic term of bosonic theories

The Lagrangians .13 and [{.22] can be easily generalized to arbitrary number of flavors Ny. This
is done by introducing a flavor index ¥ — 1, , ¢ — ¢g. and consequently ¢ — ¢, where ¢, is the
bosonic field resulting from bosonizing 1,. One can also allow a different matter-gauge coupling for the
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Figure 4.2: Schematic representation of the initial and final theory corresponding to a Pseudo
Schwinger-Thirring model with the gauge field living original in D + 1 dimensions. The initial the-
ory, Equation , is represented in a) having a self interacting fermion (through a current-current
interaction) coupled minimally to a gauge field which originates from an higher dimensional theory
(represented by multiple lines on top of A,,). In b) the resulting theory after bosonization is represented
where the fermionic degrees of freedom are encoded on ¢ and the gauge fields in .

a

Y Ay iy 21— @ —

Figure 4.3: Schematic representation of the Pseudo Schwinger-Thirring model with two flavors and
the gauge field living originalyl in D + 1 dimensions. The initial theory, Equation [4.13] is represented
in a), while in b) it is represented resulting after bosonization.

different flavors e — e, and different Thirring couplings ¢ — g,. The bosonization procedure follows
an analogue path: introduce Ny auxiliary fields By, and define a set of new variables C} = A, + Bj;. All
the rest is analogous to what was described before. Interactions between different flavors are obtained
once the gauge field is integrated out:

eaeb

1 g 2,
L= 5 (1 + f) (au¢a) ¢a D_)1¢b (424)
where the sum over flavors is implicit. In Figure the case of two flavors is represented diagramat-
ically. The Lagrangian is still quadratic but has couplings between different bosons. These couplings
can be used to manipulate the dispersion relation of one (or more) bosonic fields. This is well illustrated
by the two flavors case where a,b = 1,2 in [£.23] Integration of ¢, results in:

2,2
efes ~ 1 1

D—1 es Vir—
T ) o+ AL

1 2
=301 (1+ %) (<0%) + Larpt,, - 241] ¢1 (4.25)

s

Now explicit expression for D = 2 (therefore M, 1) will be used . From Equation one can
N -1 ~
see that Ga_y1 = [2V/—0? and so My, = v/—02/2 from Eq. For large distances (small
momentum) this is the dominant term of the denominator since it is linear on |k|. The relevant scales
for the validity of this limit can be controlled via g and es. Expanding the denominator on a power
series one gets

L Qﬁlz [ ( ) ZW} (4.26)

(1+2)(-0?) + ?M;_ﬁ

By substituting back into the Lagrangian a power series expansion in v/—d? is obtained. The result is
an infinite sum of integer and half integer powers of the Laplacian:

=2 [Zm ] o, (4.27)

where the label of ¢; was dropped. The first terms of these expansion are oy = 0, 01 = 1+ £ +
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Figure 4.4: Diagrammatic representation of the scheme used with N, flavors and Ny — 1 gauge fields
leaving in 2 4+ 1 dimensions. After bosonization and integration of all gauge fields and all but one
fermionic field (1), one can obtain a Lagrangian consisting of an expansion in integers and half
integer powers of —9? with some control over the coefficients.

z—z (1+ 22) and for higher terms
2
e? 2m
an/Qﬁl[ <1+ﬂ)€%} ,n>1 (4.28)

There are now a series of infinite coefficients which allow some tunability through four parameters:
e1, €2, g1 and go. There are two main constrains on controlling this expansion. Evidently the four
parameters can control at most four of the infinite number o,, /5 (note however that if the expansion
is controlled likely only a finite number of coefficients need to be controlled). By other side the sign
of each 0,5 is fixed. For n even the coefficient is even (except for n = 2) and for n odd it is positive
coefficients. There is a direct way to go around the first constraint. The freedom of choice of the
absolute value of the coefficients are increased by adding third fermionic flavor 13 with a Thirring
interaction and a new gauge field AZ which is only coupled to flavors 1 and 3. Following the same
procedure of bosonization and integration of the degrees of freedom for the third flavor, as was done

for the second flavor, one gets a similar expression with new coefficients 027‘3’ = 21/22) + T(L /2) In
superscript it was denoted between from which kind of interactions the coefficient was obtained. In
(12)

this way o, /2 corresponds to the coefficients determined previously by putting in evidence that it was
the result from an interaction between flavors 1 and 2 (mediated by a gauge field). Analogously the
new contribution is denoted by the indices (13). The procedure can be followed with an arbitrary
number of flavors obtaining an effective coefficient of the form

Ny
Oujz =Y 00 (4.20)
where 07(11/2 =-2 { (14 %) 2“} for n > 2. The coefficient 0y, is always zero. By considering

more and more number of flavors obeying this structure, one is able to control the coefficients o, /o
to an arbitrary order with some constraints. The general structure of such theories with Ny flavors is
illustrated in Figure

4.2.2 Controlling interaction term of fermionic theories

The integration of the gauge fields naturally leads to non local interactions in the fermionic action. In
order to obtain the half integer powers expansion in it was crucial to integrate fermionic degrees
of freedom as well overcoming the paradigmatic extra quadratic term of the form %M\Z BLIQ’L In this
Section the same principle is applied but since the goal is to deal with fermionic theories, all but one
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degrees of freedom are integrated. Therefore all but one fermionic degree of freedom are bosonized. In
order to avoid unnecessary complications the Thirring terms are disregarded, but they pose no extra
difficulty as it was shown in the previous section. Considering two flavors ¢ and v’ and bosonizing
the last one leads to:

e/

- 1 1 N
L= —@b%ﬁ;ﬂb + ejuguuatﬁp - ﬁ¢/ (_62) ®+ by (au¢/)2 - 550 (_82) Mp_1 (_82) ®. (4~30)

Integrating the degrees of freedom of ¢’ (in the form of ¢') results in:

- . e2 1 ~
L =—Yy,0,0 + ejuc 0y — 2 ¥ (—32) p =59 (—82) Mooy (—62) ©. (4.31)
The final form of the LR fermionic theory is obtained by integrating out the gauge field. After having
bosonized and integrated ' it is useful to re-introduce A, = —ic,, 0, ¢. The resulting effective theory
is given by:

1
+ My (—02)

As for the bosonic case, now an expansion for large distances is taken. The denominator is of the
form 1+ (277/ 6’2) V=02 so, for large distances, it is no longer the square root that is dominant but

_ 1 . )
L= _w'ﬁtauw + 562]u o2 Ju- (4.32)

the constant term instead. The expansion will take up the form j, (—82) 2 Ju- As previously argued
there is a certain freedom of choice on the coefficients of this expansion. This is again achieved by
considering more gauge fields, as in Figure [£.4] where Thirring terms can be included or not. The final
result has the form:

_ 1., 2|
L= —9mdub + 56 [Zm (~o%) ] i (4.33)
n=1
with the coefficients A given by

N.f n
s 2
Anj2 = Z? <—€2) (4.34)

i=2 % i

assuming g, = 0 for every flavor (absence of the Thirring term).

4.3 Overview over experimental implementations

In Chapter [2| the simulation of dynamical gauge fields was addressed and they contemplated dimen-
sionalities from 1 to 3. In general, either pure gauge theories are contemplated (no fermions) or they
theories where fermions and gauge have matching dimensions. The extension to include a possible
mismatch is straightforward. In fact all the relevant terms are already present in Hamiltonian for the
existing proposals. All that is needed is to suppress fermion hoppings in the relevant direction(s). A
representation of the lattice version constituting the target theory for d = 1 and D = 2 is provided on
Figure

To make the discussion more concrete two examples are taken: one where the energy punishment
approach (particularly [139]) and other where microscopic symmetries (particularly [150]) are used to
generate the gauge symmetry. Both approaches were discussed in Section 2.2 In this context reducing
the dimension that are spanned by the fermions consists on replacing the periodic lattice potential by
a confining one in the dimensions to be fixed. Such change poses no threats to the implementation of
gauge symmetries.

More in detail, in the first scheme, gauge invariance is achieved by an energy punishment on
states that violate gauge symmetry. The relevant terms, arising on perturbation theory, are correlated
hoppings of bosons and fermions, corresponding to matter-gauge coupling, and pure bosonic terms,
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Figure 4.5: Pictorial representation of the target lattice theory for experimental implementation ex-
hibiting dimensional mismatch. The fermions can only hop along the sites of a single line, here
represented in red. The links are dynamical across the full plane having, in particular, plaquette terms
as well, being coupled with the fermions on the line.

corresponding to the pure gauge contribution for the Hamiltonian. If there are no fermions in a given
part of the system no correlated hopping would be obtained but the pure gauge terms would still be
present.

In the second case the gauge symmetry arises from internal symmetries of the system (and plaquette
terms in perturbation theory of gauge invariant quantities). The principle, however, is exactly the
same. Due to conservation of total hyperfine angular momentum only certain scattering processes are
selected. Again the absence of fermions will retain only the processes corresponding exactly to the
kind of theories explored here. Furthermore, the absence of fermions in certain dimensions, reduces
unwanted terms involving fermions on those same dimensions, that even though gauge invariant,
are not a target of the implementation (like for example nearest neighbor density-density fermionic
interaction). Finally, another technique which is applicable to both schemes is to render fermionic
tunneling off-resonant in the transverse directions.

4.4 Long-range effective Hamiltonians

Deriving Hamiltonians from the effective theories described in the previous sections is, in general,
highly non-trivial. The reason for this lies on the non-locality in time of the Lagrangian. Due to the
presence of arbitrarily high powers of time derivatives, as it is clear from Equations and the
Euler-Lagrange equations are modified. The Hamiltonian formulation of such theories can be achieved
within the Ostrogradsky’s construction , where an extra momentum variable arises from each
extra time derivative. The canonical quantization of theories with non-local kinetic terms, like Pseudo
QED, was addressed in [268-270].

Here, however, the goal is to perform canonical quantization of fermionic theories having non-
locality in the interaction term. It has been shown that, under certain circumstances, and in a pertur-
bative setting, it is possible to use the free equations of motion in order to eliminate the non-locality
in time . Specifically, such procedure is possible when the non-local terms are governed by a
small coupling parameter. A fundamental observation that allows such perturbative expansion is that
there exists a field transformation that is equivalent to the application of the free equations of motion
(and consistently disregarding higher orders of the coupling). In practice one can use equations of
motion to replace time derivatives by spatial ones. The fact that the non-locality is obtained from the
integration of degrees of freedom of a renormalizable theory plays a fundamental role . If a theory
is initially well defined, as it is assumed for a given local theory that is taken at the stating point of the
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process, the same should be true for the effective theory resulting from integration of certain degrees
of freedom. In that case any apparent unphysical effect, like breaking of unitarity, should eventually
cancel in the computation of physical observables. In light of this if, in a perturbative setting, there are
no unphysical effects at first order due to non-locality, one expects that such unphysical effects will also
cancel out at higher orders and perturbative expansion is well defined. Consequently, systematically
disregarding the higher powers of the coupling parameter should be consistent and the approximation
well defined if the truncated theory is also well defined. This procedure is followed here in first order
perturbation theory.

In previous Sections the imaginary (Euclidean) time formulation was suiting emphasizing the con-
nection to statistical mechanics. In this Section, in order to construct a quantum Hamiltonian, real
time is adopted.

The discussion will contemplate non-relativistic fermions. The case of Dirac fermions raises different
kind of questions not to be addressed here. In particular, for the case of massless Dirac fermions, the
free equations of motion imply (i = 0 (being O the D’Alembertian O = n*9,,0,)). By other side the
non-local interaction will take the form (ify,ﬂ/J) O (O) (T/_)’Yu¢)~ By applying the equations of motion,
at first order on the coupling, a term of O (0) will arise. As it can be seen from this may lead to
divergences at this order. Therefore, and according to the previous discussion, perturbation theory is
not well defined for this case. If gauge and matter have different propagation velocities — a case not
considered here — the approach will work but again, at a critical point, the divergence reappears [273].
The inclusion of other fermionic flavors and gauge fields may cure this problem (see Equation {4.32]).
Here the discussion will be kept for the case of a single fermionic flavor and gauge field. It is then
useful to consider non-relativistic fermions where this problem is absent and, furthermore, in the limit
of large mass, the infinite sum of temporal derivatives can be truncated. In the following the process
is illustrated by computing the Hamiltonian for the lowest order.

The Lagrangian for non-relativistic fermion coupled to a gauge field is then given by:

2
1
L=t (i@o —eAy + ;—m (0; + z'eAZ-)2 + ,u) Y — ZFWFW (4.35)

As referred before, non-relativistic fermions do not have exactly the structure contemplated in previous

sections. In Equation there is an extra interacting term proportional to e2A2¢ 7). This term

would give rise to higher order terms on the coupling constant and, since our treatment is perturbative

on e, those will be discarded. With this approximation the Lagrangian reduces to the familiar form

considered before (Equation. The current is given by jo = ¥4 and j; = i%@ﬂ/ﬂ@/}. The procedure

of variable substitution can be done by considering the current-current interaction in position space:
Lint < j* (t,2) Ot =tz —2a")j, (2.

A Taylor series expansion is performed on the second current in order to write those current terms
evaluated at the time ¢ (and not ¢'):

. N )
oy = S g ).

n=0

Now the equations of motion can be employed to replace time derivatives. In particular from (i@o + (h2 / 2m) 0? — ,u) Y=
0 one can make the replacement (up to e? order):

n n h2 1 h2 2n—1
Ajo— > ( p ) <—z’2mv2 + iu) Pl (z’sz2 — w) 0 (4.36)
=0

with analogous expressions for the other components of the current j,. With this substitution the
interaction becomes local in time and non-local on space coupling fields at z and z’ by the function:

/dt’(’) t—t,o—a)(t—-t)" (4.37)
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In other words the theory becomes local in time at the cost of having (generally complicated and
non-local) spatial interactions. It is observed that, in general, since O (t,z) is an even function on
time, the terms with n odd will give zero. Now this will be specialized for the particular case of D = 3.
In this notation O (¢t — ¢,z — ) are the matrix elements of the operator G5_,1 (—82), in its real time
form, presented in Appendix [{.C] Furthermore, for illustrative purposes, the Hamiltonian density is
computed for zero chemical potential and large mass limit. Each power of the Laplacian V? in m
will give rise to a prefactor (h2 / 2m) and therefore, at lowest order in the large mass limit, all terms
but n = 0 can be disregarded. Furthermore, as j; is proportional to (h2 / Qm), also these terms are of
higher order so they are dropped. The only interaction left is:

e?

Con = =i (t.0) | [ 40O~ ) o (.07 (4.35)
For the case of gauge fields in 3 dimensions the effective interaction [dt’O (t —t',x — ') is:
_e [
87T (271')2
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In the limit of large cut-off A the effective Lagrangian becomes:

2

at’ log (1 4+ ) e*i(tft/)qur(a:f:z’)ql

— 3
hmb (4.39)
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This generates an effective Hamiltonian of fermions interacting with a repulsive 1/ potential which
is the Coulomb potential expected on this limit. Namely the limit of large massive non-relativistic
fermions weakly coupled to a three-dimensional gauge field is given by:

1
mw* (t, ") (t,2) (4.41)

The inclusion of the next leading order on the mass will give rise to two new kind of terms: one
given by the other current component j; (¢, ) j1 (¢,2') / |x — 2’| and the other being a density-density
interaction coming from Equation .37 with n = 2. The later will scale as the inverse square of the
cut-off and therefore, in the large cut-off limit, it can be dropped.The other term coming from j;
interactions can be interpreted, in lattice language, as a correlated hopping between two fermions
at a distance |z — 2’| and corresponds to a magnetic term. This also allows a better understanding
of the initial approximation: for large masses the particles are slow enough that in lowest order the
interaction is simply a density-density interaction.

h2 2
H= /d:v [—Qmw (t,x) 0 (L, x) +§—7T/d$/w (t,z) ¢ (t,x)

4.5 QOutlook

The models with dimensional mismatch have four more straightforward applications:

1. Direct application to physical systems where the dimensional mismatch is a fundamental property
(like, for example, graphene).

2. Exploration of results of local theories on non-local models: on providing a consistent map
between local and non-local theories an interplay between them may serve the application of
both theoretical results ( providing immediate access to insights on the dynamics of the latter)
and numerical techniques.
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3. Realization of LR interacting models: in certain settings, like in cold atomic systems, local
interactions are readily available but LR interactions not. The extra dimension allows extra
freedom on obtaining LR interactions from local terms. Furthermore it is possible as well, in
theory, to go beyond the tunable power law exponent achieved in other settings like trapped ions.

4. Providing intermediate step towards quantum simulations of gauge theories: exclusion of fermions
from an higher dimension naturally allows simpler implementations than the case of fermions
exploiting all dimensionality but an harder target than the pure gauge system. This is true both
at a theoretical and an experimental level.

The point one has been explored in the literature [256}257,259[261]. Regarding the second and third
point, it was possible to obtain an expansion on half integer powers of the Laplacian —3% (both on
bosonic quadratic terms and fermionic interactions) by suitably introducing several fermionic flavors
and gauge fields. The coefficients of these expansions display some freedom of choice by changing
the parameters of the initial local theory. They are, however, still bounded by certain conditions.
An interesting question is what kind of non-locality can be obtained by a local theory as the ones
considered here. In fact, completely general expansions on the Laplacian are likely non achievable
from this mechanism, since it is expected that they would break break unitarity. In fact it was showed

in [254] that the only unitary theories with the pure gauge term modified to be ~ FMVWFMU

in 2+ 1 dimensions are for « = 0 and @ = 1/2 . By choosing a different « one could obtain a
different expansion from [£:33] but this would violate unitary while [£:33] does not. It would be of
particular interest to investigate if the conditions obtained on the coefficients o are a consequence of
the mechanism considered (i.e., a local theory in d + 1 dimensions with minimal coupling between
matter and gauge fields) and/or if they constitute a physical condition provided by unitarity.

Regarding particularly the second point, these results can be applicable to a series of long-range
interacting problems, where a mapping to a local higher dimensional field theory would allow the
application of generic results for local field theories. This includes the characterization of topological
order (for example towards the extension of the 10-fold classification to LR hopping free fermion
theories [227]), the spreading of quantum information, and the study of localization mechanisms in
the presence of LR hopping in one-dimensional systems [274]. From a different perspective, this
approach can potentially be applicable to fracton models, as the latter, in some specific cases, can be
understood as physical systems where gauge and matter degrees of freedom effectively live in different
dimensionality [275].

For the third point, this procedure showed a way of implementing directly a 1/r potential on one
dimensional fermions (and also other interactions by changing the dimensionality of the gauge fields).
While such hypothetical implementation would be very complicated from the experimental point of
view (as discussed in previous sections, the implementation of dynamical gauge fields in 3 dimensions is
highly non-trivial) the approach discussed suggests that gauge invariance does not play a fundamental
role. In fact, after the gauge was fixed the kinetic term of the gauge field has some resemblance with
the kinetic term of the scalar boson. The fundamental role seems to be played by the Laplacian in

D + 1 dimensions: 8(2D +1)" It is tempting then to replace the gauge field by a simple scalar (still in

higher dimensions) with a kinetic term (8H¢)2 /2 and coupled to the fermions by j,¢. Such coupling
is manifestly not Lorentz invariant however that is something that is not important if the goal is to
implement the theory in a cold atomic system, for example. In order to understand the consequences
of such theory and an hypothetical experimental implementation further investigation is necessary.
It seems however a much more realizable theory from the experimental point of view. Above all, no
gauge invariance need to be implemented. Within this philosophy, other type of interactions beyond
1/r and density-density s may be equally achievable from this method in the near future.

Finally, regarding the fourth point, in general existing proposals admit a straightforward generaliza-
tion for the realization of artificial gauge theories with dimensional mismatch. Not only that is the case
bu they also suppress unwanted terms competing with other desired ones like plaquette interactions.
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Beyond the apparent simpler theoretical formulation and experimental implementation of dynamical
gauge fields interacting with matter, it provides an interesting toy model to benchmark numerical and
(future) experimental results. As it will be shown in the next Chapter the extension of the gauge
fields, of the Schwinger model, to higher dimensions still retains some of the simplicity characterized
by one dimensional fermions. As a consequence analytical non-perturbative calculations can also be
performed providing a comparison platform in a setting more complicated than the Schwinger model
where, in particular, the gauge fields do not even have true dynamics.

This procedure can be further generalized by considering additional couplings to Higgs fields,
interaction between gauge fields or other gauge symmetries besides U (1). The integration of bosonic or
general gauge fields may also enlarge the space of LR models obtained after the dimensional reduction.
Finally, it would be interesting to investigate if one can obtain fermionic interaction expansions like
[:33]in higher dimensions.



Appendix Chapter

4.A Non-local gauge fixing

The Faddeev-Popov method [262] (see also [10]) isolates the spurious degrees of freedom by introducing

in the path integral
1= /Da5 (G (AY)) % (4.42)
!

where A% = A, + 10,a for the interest case discussed in the main text of U (1) gauge fields. The
gauge fixing that was used in the first integration of the model, having dimensional mismatch (see
, corresponds to take G (A%*) = 0,4, —w and proceed with an integration over w weighted by
e~"/2¢ Different choices of & contemplate different gauge choices. The convenience of the Feynman
gauge, £ = 1, lies in the fact that the off-diagonal terms of the propagator cancel.

When a theory with the modified kinetic term with M # 1 (see Equation , the cancellation
of the off-diagonal terms require a gauge fixing depending on M. By formally choosing G (A%) =

(M *1) 1/2 0, A, —w and integrating over w with the Gaussian weighting function the gauge quadratic
term becomes:

%AH <—826W + <1 - 2) a“ay> A, (4.43)

from which the propagator can be derived:

1 1\ o*o” | ~_
o [a o (1 ) s) (_82)2] oo o

Alternatively one can consider the same gauge fixing function as before, G (A%) = 0,4, — w, chang-
ing the weighting factor to e M “'w/2€ Both of the approaches are related by a simple variable

transformation. In the main text the choice £ = 1 is consistently taken.

4.B General procedure and diagrammatics

In this Appendix the general bosonization procedure used on these theories, with d = 1 and D = 2,
accompanied by diagrammatic illustrations is presented. Even though the diagrams do not replace the
calculations they become useful to understand the structure of the procedure. The general strategy
consists on four steps:

1. Eliminate quartic fermion interaction terms by an Hubbard-Stratonovich transformation. The
adopted notation, here is Bl‘jb for the fictitious field or By, in the case a = b. The cases a #
b contemplates possible current-current interactions between different fermionic flavors. It is
worth noting that for that case, having coupling between different flavors, a decoupling can
be achieved by replacing the fermionic interacting term between flavors a and b as follows:
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gandids = —ieBy? (i +30) + 55,
convenience as discussed in the main text. The integration of Bﬁb generates not only the correct
coupling between different flavors but also self flavor couplings. For this reason it is necessary, in
general, to introduce another field By, in order to compensate this, even when self flavor coupling

is absent in the original fermionic Lagrangian.

(sz)2. The scale e can be chosen arbitrarily according to

Diagrammatically: Eliminate any line connecting fermionic flavors (possibly self coupled) and
substitute by a vector field connecting the two flavors a and b. In case of self coupling there is
only a line connecting the vector field to the fermion.

2. This point is divided in 3 main parts:

(a) Take the vector fields and parameterize them by two bosonic fields: Af, = 9, xa — i€, 0, ¥a
and B/‘jb = O0uXlp — 1€ 0uply,. Note that the indices without bars run through the different
flavors and with bars through the gauge fields: a,b € {1,..., Ny} and a € {1, ..., Ng}.

(b) Do a chiral transformation eliminating the remaining couplings between fermions and bosons.
—iy e (XptrsP5)—ied  (Xab+VsPab)

This is given by ¥, = e ? b w Here vs = iv9y1. Due

to the chiral anomaly the Lagrangian acquires some extra terms in the form of £ —

L— i <Zeal_78u505 + ijea,usaab> .
a \ b
(¢) Map the free fermionic theory to the free boson theory 1/ — ¢/. Then the bosonic

field is transformed back in order to correspond to the bosonized field of ¢: ¢!, = ¢, —
2

#Z <Zeab8u<pb + > ed,ap | - This transformation cancels the term originated by the
a b b

chiral anomaly. It also creates a coupling between the bosonic fields ¢, and the degrees of
freedom associated with the vector fields. As in the case of Section [4.2.2] one can retain,
without bosonizing, the desired fermionic flavors.

Diagrammatically: Replace fermionic variables 1, by bosonic flavors ¢,, and the vector field
variables by a respective bosonic field. All coupling lines become double, signaling that all
interactions have the form 9,,¢0,,¢.D

3. Integrate the desired fields.

Diagrammatically: Each bosonic variable has the standard kinetic term, with exception to the
one with bars on top (that originates from the original gauge field in higher dimensions). When
one field is integrated out it is erased from the diagram and it establishes couplings between
fields that where connected to it in the previous diagram. Furthermore, it changes the kinetic
term of all the fields that were linked to it. Care is needed at this point since if the integrated
field is one that originates from a fictitious vector field, it just renormalizes the original kinetic
term. For example in Equation the integration of the fictitious field just renormalized the
pre-factor of the kinetic term 1 — 1+ g/m.

This process is illustrated for the two specific cases used in the calculations of the main text. An extra
explicative example is considered contemplating a current-current coupling between fermions. This
serves to illustrate how the diagrams can be used to quickly get the structure of the theory without
performing any calculation.

3To be more precise the transformations generated proportional to g in the exponent are chiral transformations
while the phases (proportional to the identity) are gauge transformations.
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Figure 4.7: Schematic integration of fields in the presence of a gauge field originating from 2 + 1
dimensions interacting with two fermionic flavors.

4.B.1 One flavor, gauge field originating from 2 + 1

This process is plotted in Figure [4.6] The numbers on top of the arrows indicate the steps described
above. In the final diagram, where there is only ¢ and ¢, one can read immediately that the theory
has the structure:

A 1 ~
£ = 2L (040) + X080, — 50°0NTp 1%, (4.45)

The actual values of A\; and Ao are not obtained from the diagrams and one has to do the actual
computation obtaining, as in Section A1 =1+ g/m and Ay = —e/+/m, which is Equation of
the main text.

4.B.2 Two flavors, gauge field originating from 2 + 1

In Figure [£.7] the detailed process of integration of Figure [£.3] concerning Section of the main text
is presented.

4.B.3 Two flavors, coupled to each other, gauge field originating from 2+ 1

The diagrammatic process of considering an initial current-current coupling between the fermions is
presented in Figure [4.8]
The resulting theory will have the form:

A A 1 N
L= ?1 (@@1)2 + ?2 (8M¢2)2 - 582@MD418290 + X\20,010, 02 + X 0,010, + A 0,200, (4.46)

This new interaction, concerning the inclusion of a current-current interaction between different fermionic
flavors, will not change the general expansions [£.27] or [£:33] but instead will give an extra freedom on
choosing the coefficients.
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Figure 4.8: Schematic integration of fields in the presence of a gauge field originating from 2 + 1
dimensions interacting with two fermionic flavors which are self coupled and coupled to each other.

4.C Non-local quantities for D ranging from 1 to 3

The explicit computation for the function [£.7] can be made explicitly for the most relevant cases
(D =1,2,3). Changing to hyperspherical coordinates, the integrals can be reduced to:

+o0o ap

v : - —2 _ik|z| cos
Gp(2) = Qé’&/dk/dQsm(@)D 1D —2¢iklz] cost (4.47)
o o

where ap = 7 for D = 2,3 and oy = 27 for D = 1. For the case of D = 1 an IR cut-off ¢q is
introduced. The results specialized for each case are given by:

e D=1: ) )
61 () = 5 v+ 3 Tou (=)
T 2

(v is the Euler’s constant and gg the IR cut-off);

o D=2 ]
@0 =

e D=3 1
G3(z) = ——.
3(2) 471'|z|2

Analogously one can compute the functional form of the various operators originated from dimensional
integration[£.9] As explained on the main text, the functional form only depends on the dimensionality
difference D —d while the Laplacian should be the one of the lower dimensionality d+ 1. Here the cases
of D —d =2 (having in mind D =3 and d =1) and D —d =1 (corresponding to D =2 and d =1 or
D = 3 and d = 2) are computed. For comparison the trivial case D —d = 0 is also presented. The case
of D —d =1 corresponds to Pseudo QED which is already reported in literature [253]. For D —d = 2
the integral is divergent and an UV cut-off A is introduced. This cut-off is with respect to the extra
dimensions that are being integrated out. In this way this system can be considered, physically, as a
continuous system in d 4+ 1 dimensions with a finite lattice spacing in the remaining two:
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e D—d=2:
1 A2 — 92

~9%) = —1 =7
(where A is the UV cut-off);
e D—d=1:

N | =
|
Q
D!

Gp_a (—0%) =

Csa (-07) = —55

(trivial case where no extra dimensions are integrated). D
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Chapter 5

Robustness of confinement for 1+ 1
fermions

The case of d = 1, which played an important role in the previous Chapter, gives a certain structure
that allows more detailed investigation of properties of these models, like confinement [18]. The study
of confinement properties in gauge theories is a long-lasting subject of research, with applications in
a variety of physical systems ranging from effective gauge theories emerging in strongly correlated
systems [276] to Quantum Chromodynamics (QCD) [277]. In the later only bound states of colorless
composite quarks are observed (being it mesons: quart anti-quark pair or baryons: three quark bound
states). Historically, an important role in the understanding of confinement was played by solvable
theories in 141 dimensions, and a paradigmatic example was provided by the Schwinger model [13]. As
discussed before, it corresponds to QED in 1+1 dimensions and it is a well studied field theory [14,265],
where relativistic fermions are coupled to a U (1) gauge field. Exhibiting confinement of fermions, chiral
symmetry breaking and a topological theta vacuum [107], it can be seen as a toy model for QCD [14].

The Schwinger model and its multi-flavor generalization can be mapped, by bosonization [27§],
to massive sine-Gordon models. The mass of the sine-Gordon model is proportional to the fermion
charge, but the frequency j fixed to v4r [279,280] (and [281] and references therein). The case of
massless Schwinger model, which are mapped to massive bosons, was just a particular case of the
previous section. On the other side, if the charge is vanishes and an interaction term between fermions
is introduced, then the result is a massless sine-Gordon model with variable frequency [266]. This is
the Thirring model [264]: in the massless limit its correlation functions are known [282,283]. In the
massive case it is solvable by Bethe ansatz [284].

The purpose of this Chapter is to explore the confinement properties of 1+ 1 Dirac fermions in the
presence of a U (1) gauge symmetry. More concretely one aims to investigate the robustness of the
this phase and the role played by the dimensionality of the fermions. First the problem is addressed
regarding interactions, namely, Thirring interactions. This question becomes particularly relevant in
the context of quantum simulations of gauge theories. In the naive continuum limit of the staggered
lattice formulation of the Schwinger model, the Thirring term can be represented as a nearest neighbor
density-density interaction. First, such terms may not be completely suppressed in the implementation
of the model. Furthermore they are directly obtained as a by product of existing proposals [139] as it
was discussed in Section [2.2.1] In this context, the robustness of the phase under such perturbations
become relevant. There is a further interesting ingredient, the so-called topological #-term, that can
be added to the model. This corresponds to the introduction of a background electrical field that was
mentioned and set to zero on Section For this case it is known that deconfinement is possible
for § = +m, while the system retains the confining character for any other angle in between [280].
This raises the question of the influence of the Thirring term for non-zero background fields and the
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robustness of these phases in particular. In order to properly address the role of the dimensionality of
the fermions on confinement, the cases where the gauge fields are defined in D = 2,3 dimensions are
studied as well. This question is especially relevant since the confinement property of the Schwinger
model could be intuitively explained by the fact that, classically, the energy between two point particles
grows linearly with the distance (for a gauge field in 1 4+ 1 dimensions). When naively applied, this
argument would lead to conclude that there should deconfinement when the gauge fields are not
subjected to stay in one dimension. This is directly put into test by placing the the gauge fields in
higher dimensions (2+1 and 3+ 1) while the fermions remain in 14 1. Such question can be addressed
with the formalism of Pseudo-QED, and similar models, that were addressed in the previous Chapter.

An usual way to whether there is confinement or not is to compute the string tension o between
two charges. This quantity is defined as follows. Let T be the energy associated with the introduction
of two external charges on the system at a distance L. By external charges it is meant that they have
no dynamic and are fixed on their given position. In general this energy reads, for large distances:

T=0L+... (5.1)

where the dots indicate subleading terms. The coefficient o, determining the factor of proportionality
between energy and distance of external particles, is the string tension. When o > 0 the system
exhibits confinement. When o < 0 there is a deconfined phase. When o goes to zero and |T'| is not
diverging (which is possible, for example, through a logarithm) the ratio will T\yitn/Twithout Will be
considered. By Tyitnh (Twithout) it is considered the energy with (without) the presence of fermionic
fields. In other words, Twithout 1S computed in the pure gauge scenario. If this ratio is vanishing,
there is a screened phase. In the other cases one cannot conclude about confinement, deconfinement
or screening just by looking at the energy T and should look at the behavior (and poles) of correlation
functions [265].

This way of characterizing confinement properties covers the cases that are going to be considered
in this Chapter. It is well known that the massless Schwinger model is in the screened phase, while
the massive is in the confined one [14]. It will be shown that, for massless fermions, the screening
phase survives when the four-point local interaction term is turned on (Schwinger-Thirring model).
The confined phase remains present as well when a small mass is introduced. In both cases (massless
and massive) the string tension does not depend on the Thirring interaction coefficient g, provided
that ¢ > —n and the same propagates when considering a non-zero #-term. When the gauge fields
are allowed to live in higher dimensions (2+ 1 or 3+ 1), giving rise to the Pseudo-Schwinger-Thirring
model, the massless (massive) model remains screened/confined. In particular, it will be shown that,
in leading order on the mass, the string tension for gauge fields in 1 + 1 and 2 + 1 dimensions is the
same.

This Chapter is mainly divided into two main parts: in the first Section the confinement
properties of the Schwinger-Thirring model is addressed while in Section the case of dimensional
mismatch is analyzed.

5.1 Schwinger-Thirring model on the lattice and the contin-
uum

This Section starts by analyzing how, in the naive continuum limit, the nearest neighbor density-
density interaction scales to the Thirring term. The Kogut-Susskind Hamiltonian in one dimension,
corresponding to Equation [[.98] with such interaction term takes the form:

; 2
{2 ; n ae
H = _% 2 (CIL@ZOHC"J"l - hC) +m En (—1) CILCH + 7 E (Ln — LO)2 + % En NgNg1 (52)

n
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where the background field was inserted explicitly through Lo and it is related to 6 by Ly = 6/2m.
The prefactor of the last term can be seen by taking the naive continuum limit. Terms of the form
1Oy in the extra interaction are of higher order on a and do not appear in the continuum limit.

5.1.1 Robustness under Thirring interactions

As announced, the problem of confinement in this generalized model can be addressed through bosoniza-
tion. The general procedure adopted here follows closely [285] and can also be seen as a particular
case of Chapter [4] with an extra ingredient corresponding to the #-term. The continuum Lagrangian
in Euclidean time is given by [14]:

el

L=—)@+icA+m)p+2 (muw) +ip2 e FH (5.3)

4 # 0 Ar
As mentioned above, when g = 0 this model is known to exhibit (partial) deconfinement for § = £7.
In turn when e = 0 the resulting theory corresponds to the Thirring model which can be mapped
perturbatively to a Sine-Gordon model. Such theory makes sense only for g > —m. In the following it
is shown that both statements remain valid when both parameters are finite. In particular the Thirring
term does not play any role on confined/deconfined phases of the model.
The quartic fermionic interaction can be recasted in a fictitious field through an Hubbard-Stratonovich
transformation as in Chapter This amounts to make the replacement in the Lagrangian § (&VMQM 2

—ieB,J, + Sg BZ A similar redefinition of the vector fields takes place as well where, through a change

of variable, A, is replaced by C,, = A4, + Bﬂ This results in a Lagrangian of the form:

2
=~ (B iel+ m) ¥+ TFP + TP - SR + i e (O - FY) + B, (54
where the indices ¢, b indicate the respectively if it is the field strength of C or B fields. A gauge
transformation acts on the fields 1 and C},. In turn the B, field does not transform under gauge
transformation. Summing up the procedure done before which applies here as well: gauge freedom
enables one to pick the Lorentz gauge where 0"C,, = 0 and therefore parameterize the field as C}, =
—1g,,0”¢ . There is no gauge freedom to play in what regards B, so it must be parameterized with
a gradient part too: B, = 0,X' — i€,,0,¢". It turns out that the field x’ decouples from the rest
of the fields and therefore can be left out for this analysis. This is true irrespectively of the gauge
used for C,,. Then one performs a chiral transformation ¢ = e**?¥sq)' that will cancel the coupling
to C,. There is now another ingredient that is the finite mass of the fermion fields. This massive
term is mapped to — (1&1/} cos 2ep + i1hys1) sin 2e<p) [14,1265]. The Lagrangian on v’ is decoupled
form the rest of the system and can be mapped to to bosonic action i 5 (0.9 ) — [4CcOS (\/Egb’ + 230)
where = meexp (v) / (271'3/ 2). Translating the ¢’ through ¢’ = ¢ — <p the full Lagrangian is then
quadratic on ¢ and ¢’ and it can be integrated out. The full Lagranglan after this procedure (but
before integration) is given by:

1
— iﬁuqﬁ@u@ — pcos (\/47T¢) - = (82cp) (9% ') + 0%/ 0%
LS 2
o0 o2 , (5.5)
el 62 _ 82 AN 6 /
+ 5 (%0 =0 25 (On#)
As announced the x’ is decoupled and we drop it. The 6-term of ¢ is recasted in the cosine by
transforming ¢ — ¢ + 6/+/4w (there is still a 6-term in the field ¢’) . The integration over ¢ brings a

l\D\H

1
=3 (0u0)’

Hn Chapterthe field that was chosen to be replaced by C}, was B, while here it was A;,. Both choices are equivalent
for the purpose of bosonizing and integrating out vector fields.
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2
term of the form —% (%19 + 824,0’) . The fact that the coupling between ¢ and ¢’ had just a 1 in front,

makes the terms (82@’ )2 cancel out. This cancellation is fundamental for the simplicity of the final

result. Were the coupling between the bosonic fields be a little different and this would not happen.

This is due to the fact that one of the gauge fields is actually a fictitious field derived from a Thirring

interaction which, in the end. The next step consists on integrating the field ¢’. For it we also have a

6 term with the opposite sign which induces a new transformation on ¢ — ¢ — 0/v/4m opposite to the

one made above. However at this point the ¢ field acquired a mass, so as expected the dependence
62

2
on 6 is not erased but instead is explicit in the term £ (¢ — /v/4x)". This transformation is useful

to perform the integration on ¢’ which appears in the form % (0,9 N %auﬁamp’ . Tts integration

brings the Thirring contribution to the bosonic action 5= (8,ﬂ9)2. Finally, the usual mass term is

re-stored by the transformation ¥ — ¥ + 6/v/4m and the Lagrangian reads:

L= % (1 n %) (0,9)° + ;192 ~ pucos (\/Eﬂ + 9) (5.6)

which corresponds precisely to all the ingredients of both the Thirring and Schwinger added together.
In other words no mixing between the g and e couplings occur. It is worth noting that the above
Lagrangian corresponds exactly to the Lagrangian obtained from [5.3] if the mapping obtained from
bosonization of the free massless Dirac fermion is applied and the gauge fields integrated out. Specif-
ically this amounts to replace the pure fermionic action by the respective Sine-Gordon model and
replace the current by 1])7,,1/} = ﬁew&,ﬁ both on the coupling to A, and in the Thirring term contri-

bution. After translating the bosonic field ¥ by #/v/47 and integrating the gauge field the Lagrangian
is obtained. The more intricate procedure described above guarantees that the procedure is correct
and one is not abusing of the mapping of the free Dirac fermion.

It follows from the bosonized Lagrangian that, as in the Thirring model, only for ¢ > —7 one can
make sense of this model. The existence of a threshold for a minimum of g is expected from the lattice
theory. For ¢ —& —oo the dominant term on the Hamiltonian is a nearest neighbor strong repulsion
which will induce a phase separation in the system. For that limit the field theory, or, in other words,
the continuum limit, cannot be taken. Regarding the screening and confinement of the model, the
simplest case corresponds to the massless theory where = 0. The propagator for the the bosonic
theory is given by

1

Aﬁ(p): (1+Q)p2+ﬁ

(5.7)

This result can be used to compute the two point function, for instance, of the the scalar Y1) and
pseudoscalar ©¥yg1y. This calculation is performed bellow as well as a perturbative calculation of the
string tension for the massive case.

5.1.1.1 Particle spectrum for the massless case

As in the case of the Schwinger model |265] the divergences of the correlation functions 1p and Py
are of the form (1 + %) p? = —n%e?/m for n = 1 and no charged fermions appear. The case n = 1 is
the only simple pole and comes from the pseudoscalar two point function.

The connection between the four fermion functions and the propagator can be made along the
lines described in [265] with the presence of the Thirring term. From the bosonization procedure that
was followed /1)’  cos (\/Egb’) and 1'vg1)  isin (\/éﬁqﬁ’) where the 1 and ¢’ are the fermionic
and bosonic intermediate fields used in the calculation. In terms of initial fermionic and final bosonic
variables the relation is given by 1) cos 2e — ithyg1) sin 2ep o cos (\/éﬁﬁ — 2e<p) and 1)y51) cos 2e@ —
i) sin 2ep o isin (\/Eﬂ — 26@). From this one can reconstruct 1) o cos (\/Eﬁ) and Yyg1h o
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sin (\/4m9). Therrefore the relations between the initial fermionic and final bosonic fields is the same
as for the free theory which means:

(4 () ¥ (2) ¥ (0) ¥ (0)) = () cosh (47 A ())
(¥ (@) 159 (2) ¥ (0) 751 (0)) = (¥ys¥0) sinh (47 A (x))

the singularities can be computed by expanding the cosh and the sinh in power series and analyze the
singularities term by term.Consider the term of order n which corresponds to cosh if even or sinh if
odd. The Fourier transform of [5.7] is plugged in, exponentiated and then new Fourier transformed is
taken, corresponding to compute the Fourier transform of [5.8]in terms of the momentum p. The result
is given by:

(5.8)

(27T)2...(27T)2 (1+%)q%+é“. (1+%)qg+%5(p—p1—.--—pn) (5.9)

T

/ Pq &g, 1 1

The integration of one of the variables, say p,,, can be performed using the Dirac delta. After the n—1
integrations of the zeroth component of p; can be carried out putting them on-shell. This results in:

/ d(Q1)1 o d(Qn—l)n_l 1 (5 10)
2 2 :

27T\/2E1 27T\/2En_1 (1+%) (p—q1 —...—qn_l) +? Gie1.....n_1on—shell

The abbreviation F; = —q? —m?2 was used. Let Q = ¢; + ...+ g,_1and consider the denominator

of the form A(p— Q)2 + m?2. The momenta part can be written as (p — Q)2 — p3 — 2poQo + Q>
where it was used implicitly that one can eliminate the dependence on the spacial component of p
by a suitable translation of the spatial variable of integration. The poles obey then v Apy = vVAQo +
VQ? —m?2. Because the particles ¢; are on-shell, the maximum value of the total for momenta is
AQ? = —(n — 1)2 m? corresponding to the situation where all the n — 1 particles are at rest in a given
frame and therefore Q1 = 0. For this case one finds a pole at A\pZ = —n?m?. By increasing the total
momentum of @) one finds a branch cut along the axis starting precisely at —n?m? which correspond
to multiparticle states. This is true for any n > 1. For the special case n = 1 one has an isolated pole
at Apz = —m? and therefore the theory does not contain further states.

5.1.1.2 String tension for the perturbative massive case

The massive case is addressed pertubatively. The same kind of process followed above to derive the
bosonic Lagrangian can be repeated, now for a system with the presence of two external charges. As
the external charges are placed at a finite distance L, terms with an external current of the form
J&'=6(x—L/2) =6 (xz+ L/2) and J{** = 0 should be added to the Lagrangian. The Thirring term

will produce no extra contribution for the string tension as (Jﬁ"t)2 contains no element involving the
two different charges together (its purely local) and, therefore, will give an L independent contribution
for the final energy. The effect of the external charge enters only in the coupling with external fields
—iQJZXtAM being () the absolute value of the external charges placed on the system. After the
variable transformation this coupling is transformed into —iQJ** (Cy, — B,). As in [279] the effect
of the external charges is easily seen if one writes Jﬁ’“ = €,,0,K. This term takes then the form
QK (0% — 9%¢'). The function K is mostly constant being 1 for || < L and 0 for |z| > L. The
function is plotted on Figure[5.1] This extra term has the form of the 6 term with the difference that K
is actually space dependent so when one does transformations ¥ — 9 —/7TQD/e there is a kinetic term
contributinat the points |z| = L. Again such contribution is independent of L and it is unimportant
to compute the string tension. Since one is dealing with non-locality, this conditions is not always
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Figure 5.1: Representation of the function K (x). Contributions to the energy involving derivatives on
K (x) only contribute near the points x = +L/2 and will not depend on L.

assured and shall be dealt with care for higher dimensions. Since when K = 0 the contribution for the
energy from both systems is the same, the difference of energy corresponds to take simply K = 1 and
multiply the energy density by L.

In lowest order in perturbation theory in the mass, the energy corresponds simply to the expectation
value of the cosine term which yields:

oo (v (0 72) st -

This is the known result for the Schwinger model. Furthermore only for § = +7 the partial deconfining
is found as in [280]. If the external charge @ is a multiple integer of e the string tension is actually zero
which means it can be totally screened. For any 6 # +7 there are allays values of @ which encounter
a finite positive string tension signaling confinement. In turn for # = &7 no external charge produces
a positive string tension.

5.1.2 Order of magnitude of the lattice parameters

The goal of this section is to provide an estimate of the values of the different parameters in a possible
implementation. To this end the particular proposal [139] discussed in Section is taken. This
model makes use of one species of fermions and two species of bosons and builds the quantum links
using the Schwinger representation. Summing up, for completeness: fermions are hopping between all
lattice sites, odd links are associated with one species of bosons and even links with other. Each boson
is only allowed to hop between its designated link. This situation was illustrated in Figure [2.1]

The cold atomic parameters are t, (hopping parameters) and h,, (one body potentials). The index
a € {F, 1,2} labeling the fermions or one of the two boson species. To establish the map of parameters
between these parameters and the lattice Hamiltonian [5.2| one should re-store the A and ¢ in the
Hamiltonian which corresponds to add Ac to all terms except the mass term which gets a ¢2. The
parameters of the Hamiltonian are asﬂ the electric charge e and the Thirring term g. The kinetic
term is characterized by tptr/U, the pure bosonic term by t% /U and the nearest neighbor density-
density term by t2./U. The virtual processes that give rise to these terms in perturbation theory are

2This not the lattice spacing of the cold atomic lattice but rather the discretization parameter of the continuum
model. For this reason a label s was added to avoid confusion. By suitably varying the cold atomic parameters one can
probe different lattice spacing of the discretized field theory as.
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Figure 5.2: Value of different Hamiltonian parameters as the amplitude Vj of the external potential
is varied. The energies are measured in units of Er = h%a~2/2m. These parameters correspond to
the Thirring, matter-gauge coupling and the pure gauge terms and are illustrated through the virtual
process in perturbation theory from where they originate.

depicted in Figure [5.2] along with their estimated value. More details following. The connection with
the parameters of the Hamiltonian is given by 29 = —tr/tg, e?a? = tp/2tr which means that not
all lattice parameters can be varied independently.

One difficulty for this implementation concerns the requirement that the interaction between the
different atomic species respect Ui; = Usx = U and 2U13 = 2U p = 2Usr = U where U,p is the
on-site interaction parameter between species a and §. The problem may be even more difficult to
solve since the proposal requires that the bosons sit in asymmetric minima. This asymmetry will
create a different structure to the wave function which ultimately lead to a interaction that is site

dependent U;rﬁ/ ~ where the relative and absolute minima are represented, respectively, by the labels

+/—. By other side the existence of two different parameters U +/=, which are minima dependent,
is not crucial. Effective gauge invariance is obtained in perturbation theory for U large so as long as
both U/~ remain larger than the other parameters since it is this condition which sets G, 1) = 0.
Since the goal of this section is to provide an estimate of the order of magnitude of the parameters
that one may have access to, this complication is circumvented by disregarding the asymmetry, which
can be made small. More details about this point can be found in Appendix

Even without the complication of the asymmetric minima, one still has to match the different
interactions between atomic species. Again, the system is robust under small enough deviations from
the matching condition above. Possible deviations can be casted in UG2 — UG2 4+ U 3" AU,sn2n?
where AU,p is the deviation of the interaction between species a and 3 to the desired value. The
fundamental requirement to obtain a gauge invariant theory is still valid as long as AU,g/U < 1.

For this calculation a mixture of 52Cr of spin 2 will be used. This particular choice is related
to the fact, as explained below, that their scattering lengths generate approximately the required
interaction strength between the bosons of the proposal. Other atomic species may require further
tuning but, as long as the order of magnitude is the same, the range of achievable parameters should
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be retained. The scattering length between pairs with total angular momentum equal to zero is
apo =~ 30 — 50 and for pairs with total angular momentum equal to four is aps ~ 58 £+ 6 both in units
of the Bohr radius ag [286]. If one considers a reference value apy = 30a¢ and apy = 60ag, this will
generate the required relations between Uy1, Uss and Upo. For the fermionic species it is assumed that
a tuning of the interaction is possible in such a way that the remaining conditions are obeyed. For this
present calculation it is assumed also that a1p = asp = 60ag. This does not solve the requirement
2U 1 = 2Usr = U as aj1o = 60ag solves 2U15 = U due to the presence of bosonic-bosonic interactions
which have no fermionic-fermionic counterpart (see the difference between the two equations in [5.54)).
However, as long as S is not very large it is not expected that the effect is significative. In here the
calculations will be done for S = 1 and this assumption proves to be enough. In order to increase S
one should be careful in adjusting a1 and asp accordingly.

The Wannier functions are assumed Gaussian with a standard deviation o! which depend also
in the direction ¢ and are fixed variationally by minimizing the Gross-Pitaevskii energy. The system
is effectively one dimensional but the wave functions spreads in the two other spatial dimensions.
This will influence the value obtained for the parameter U,s since smaller spreadings lead to stronger
interactions. The standard deviation with respect to the two perpendicular directions is kept at a fixed
value o , assumed here to be the same for all the species (fermions and bosons). The potential felt by
the particles is characterized by an amplitude Vj,, which controls the height of the barrier, the off-set
VoaAa, which controls the difference of energy between minima, and a lattice spacing a.

In order to get a sense of the parameters it is assumed S =1, Vop = Vop = Vp and Ap = A = A.
For the atomic lattice spacing one considers a ~ 1/2um. As detailed in Appendix in order to
remain in the perturbative regime for the range of potentials Vp, ~ (3 — 10) Er where the reference
energy Epr is given by Er = h?a=2/2m, it is chosen 0, = 0.2a and A = 1073. This guarantees that
to/U remains < 107! and, therefore, perturbative. Other choices are possible but this is enough for
an illustrative calculation. For this values one finds that the relation 2U;p = 2Usp = U is obeyed
within an error of 2% in this interval. By other side this allows to vary, in theory, the ratio tr/tp
from 1 (close to Vy ~ 10ER) to several orders of magnitude higher as tp approaches zero (occurring
for Vo ~ 3.5Eg). Within this scenario it is always true that ¢ty > ¢tp due to the higher number of
bosons on the system. This can be easily understood considering the S = 1 case in which, in average,
there is a boson per well. In more detail, consider a double well where each well is labeled by A
and B. In an “average configuration” there is one fermion and a boson on A and only a boson on
B. If the fermion hops from A to B, the final configuration will host the same energy as the initial
configuration. In turn if the boson on B jumps to A the final configuration has an higher energy due
to the fact that all the atoms repeal each other. This will result in a smaller hopping for the bosons
which is screened out as the amplitude V| is increased and starts to dominate the hopping process.
Therefore the range of parameters one has access correspond to —g > 1/2 and e?a? < 1/2 bounded by
the condition —1/4g = e?a?. The typical energy of the processes of the effective cold atomic system is
of the order totg/U, VA ~1073Ep.

The three terms t,t5/U remain close to each other satisfying the hierarchy t%./U 2> tptp/U 2 t% /U
as it is clear from the previous discussion and from Figure 5.2 The magnitude of the mass parameter
is less constrained and can be changed through A.

5.2 Screening and confinement with gauge fields in D + 1 di-
mensions

As mentioned before, naively one would expect to find deconfinement at least for D = 3. There one
would expect to find features of normal QED with the particularity of “electrons” being restricted
to one spatial dimension. In this Section it is shown that the situation is more subtle. The general
formalism of the previous Chapter will be applied. The starting point is the Lagrangian for
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the case d = 1 and Dirac fermions:
_ o 1
L= _¢7;Lau¢ - ZBJB_HAM + ZFI%V + Lar- (5.12)

The calculation of the effect of external charges on the system can be done as for the Schwinger-
Thirring case. This amounts to the introduce of an extra contribution —iQA,jk, where @ is the
absolute value of the two opposite external charges. This external current can be written in the form
J'ext = €0y K and can be eliminated via chiral transformation. The variable change correspond to
1 = ' QK159 where, again, one should have into account the existence of the chiral anomaly. The
resulting bosonic theory is given by:

Q2

eqQ
Nz 2

M K+

1 2
L= 5(25 (—82 + eWMDL1> ¢ — pcos (\/ZE¢> + KMpl, K (5.13)

When comparing to [£:23] there are three differences:

e There is no Thirring coupling (g = 0): it was set to zero as it was shown not to play a role.

e There is an extra interacting term: It corresponds to u cos (\/ 47T(b) and includes the possibility
of massive fermions. In the previous Chapter only massless fermions were addressed (for which

p=0)
e There is an extra term linear on the field an other that is field independent: It corresponds to

;—Q;QSM*lK + %ZKMAK and is due to the effect of the external charges. Setting the value of
the external charges to zero, @ = 0, eliminates these terms.

With a field transformation ¢’ = ¢+ f/—%K Myt m, the coupling between K and the Bosonic
field is translated to the cosine. Since the lower dimension is always d = 1 and there is no risk of

ambiguity, from now on, Mp_,; will be simply denoted by Mp. The resulting Lagrangian reads:
1 2
L= §¢2 (—82 + €M51> ¢ — |1 CoS (\/47r¢5—|— QOép> +Q*Kp (5.14)
7

where Mp and ap can be seen as operators acting on the field and Kp is a simple space-time function.
With some algebra one can write

Gp
1+ %GD
The unperturbed theory, i.e. the theory with no external charges, can be easily recovered by setting
Q=0.

Despite the non-locality, the above Lagrangian is still translational invariant in time (in space as
well if @ = 0). Time translation invariance gives rise to the conservation of energy. The total energy
can be computed through the energy-momentum tensor. This will be, in general, a very complicated
object. Nonetheless it still allows the computation of difference of energies since the more complicated
terms cancel out (for the massive case one should go to first order in perturbation theory as well). In
Appendix the construction of the energy-momentum tensor for theories with higher derivatives is
reviewed. The energy is given by the integral in space of T component of the energy-momentum
tensor (Equation . When quantized the fields are promoted to operators and 7% is taken in
normal order (denoted by : :). The total energy is then given by E = < [dz: T (z) > The difference
of energy as a result of introducing external charges can be written as:

AE = </d:¢ (TS (z) — T () ;> (5.16)

where Tgo (z) denotes the energy-momentum tensor due to the introduction of external charges ac-
cording to First the massless case is analyzed followed by the small mass limit.

1
ap = 2€FDK, ’CD = éauKFDGHK, FD = (515)
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5.2.1 Massless fermions

For this case 4 = 0 and it is much simpler to analyze since the effect of external charges is isolated
on the term Q2K p, completely decoupled from the fields (Equation |5.14). As mentioned before the
energy-momentum tensor will be a complicated object (both in absence or presence of external charge).
However both Tg) () have a very similar structure Tg) (). The only difference is an additional space-
time function which is independent of the fields. In other words, the first term of the tensor in [5.6]]
is unaffected by the external charges while the second, which is basically the Lagrangian, suffers just
from a “translation” of the Lagrangian with no operator content (Q?Kp in [5.14)). Therefore, for the
massless case, one obtains AE,,—o = Q? [dzKp (t = 0,z). In Kp of Equation each 9, K encodes
two Dirac deltas corresponding to two different external charges as described above. Therefore, in
this expression, there are included interactions between the charges, corresponding to pick the Dirac
deltas at different points, and “self-interactions”, corresponding to pick the same Dirac delta in both
K’s. The later ones are independent of L and therefore do not account for actual interaction between
different charges. As a result they are neglected in what follows. By performing the implicit integrals
on the definition of Kp, making use of the Dirac deltas and the fact that d,K is independent of time,
the energy can be written as:

dk
ABn—o = Q? / Q—;FD (ko = 0, k1) exp (ik1 L) (5.17)

where F'p (ko, k1) are the fourier components of Fip. In order to determine the effect of external charges
for each case, one now should specify Fp and perform the integrals for all the cases D = 1,2, 3.

5.2.1.1 Massless D =1
This case corresponds to have Gy = 1/ — 8% and Fy (0,k) = 1/ (¢?/7 + k?). The integral results in:

AFE;,—¢ = \/1?2 exp (3;) (5.18)

If this calculation was to be reproduced without the presence of the fermion field (or turning off the
coupling e = 0), the resulting energy would be a linear growth with the distance. Here one has
an exponential decay instead, resulting on pair production which screens the charges. This shows
explicitly the charge screening known for the massless Schwinger model.

5.2.1.2 Massless D = 2
The function F; is given by F; (0,k) =1/ (€?/m + 2|k[). Again the integral can be made explicitly:

Q*[nm . (€L e2L\ .. [€’L . (€’L\ .. (€L
AFEp—s=—|= — ) = — | Ci| — | — — | Si| — 5.19
D=2 = or 127 ar ) ) 7 2 ) T 2r )7 o (5.19)
+oo
The functions Ci (cosine integral) and Si (sine integral) are respectively given by Ci = — [ dt cost/t
—x
and Si = [dtsint/t. In the limit of L — oo the cosine integral goes to zero and the sine integral
0
converges to /2. As a result also here the energy goes to zero as the distance increases despite the
pure gauge theory exhibiting a logarithm increase of the energy with the distance.
5.2.1.3 Massless D =3

For the three dimensional case, as was explained in Chapter |4 one introduces an UV cut-off A in order
to regularize the integral over the extra dimensions (where the gauge field lives). The resulting function
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F will be dependent on this cut-off: F (0, k) = log (1 v (A/k)Q) / (47r + < log (1 n (A/k)Q)). Now
the integral requires more care. Within a change of variables it can be written as:

Q72 T dq log (14 ¢72)

hascd A 5.20
drL 2 14 (e2/4m)log (1 4+ ¢—2) cos (5:20)
0

All distance dependence is now isolated in the prefactor 1/L. The remaining was absorbed into the
cut-off A = LA. In this expression the screening due to pair creation is evident: if one sets e = 0 the
integral gives simply A~! (in the large cut-off limit) and all that will remain is the expected Coulomb
energy: Q?/4mL. When e acquires a finite value one couples the gauge fields to the fermion fields and
pair production starts. This is made explicit in the integral since it adds an extra positive term in
the denominator (which will lower the absolute value of the integrand). It will now be proven that,
for any finite charge e, total screening occurs and actually AEp_3 = 0 in the large cut-off limit. The

integral can be broken into smaller pieces: f0+°° =X,/ 22;1(7;(1)/ A Let the non-oscillatory part be

denoted by f (q) =log (1+¢~2) /(1 + (e?/4m)log (1 + ¢~2)). Since this function is well behaved for
every point except ¢ = 0 almost all of these integrals vanish in the large cut-off limit. This can be seen
by integrating by parts which brings powers of A to the denominator. At lowest order, if the functions
f has finite derivatives, it goes like A=3. The only part that remains is the case n = 0 which can be
majorized by using the fact that f is strictly decreasing in the interval of integration:

27 /A
A / Z—if(q) cos Ag < 2 (ig —f (i{)) (5.21)
0

To build the inequality, the value of the function f is replaced by its maximum on the interval (4 /e?)
whenever the cosine is positive and by its minimum whenever the cosine is negative. Since the function
is continuous one can make f (27T/A) as close as desired to 47/e? by increasing A and, therefore, the
bound goes to zero. Since the integral is strictly positive, this proves that the energy goes to zero.
One can finally write:

QL _
AEp_y = ¢=0 (5.22)
0 e#0

As the coupling between the gauge fields and the fermions is turned on, the fermionic fields react
to the presence of external charges initiating pair production. Remarkably they are able to screen
completely the external charges. This shows, in particular, that when the gauge field is in 3 + 1
dimensions the fermions become more effective at screening external charges than at 2 + 1 or even
1+ 1. For the later case the energy decreases exponentially with the distance while here it is zero for
any distance.

5.2.2 Massive case

The massive case is naturally more complicated since this is now an interacting theory. Without
external charges this interaction is still local and all the non-locality is on the kinetic term. When the
external charges are introduced the non-locality is carried over to the interaction through ap. This
means that the insertion of external charges will modify both terms of [5.61] This situation is now
addressed in more detail starting with the system with no external charges. In first order perturbation
theory on the mass of the fermionic theory, the ground-state will have the structure: |Qg) = [0) +p |1).
The state |0) is the vacuum of the massless theory which is a theory that, however non-local, is still
quadratic. The normal ordering is taken with respect to this state. When going to the system with
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external charges, even though the quadratic term is modified, the change is of order u so the ground
state of such theory will be, in lowest order in perturbation theory, given by |Qq) = |0) + 1 |1’) where
|0) is the same vacuum state of the massless theory and the correction in first order was modified |1’)
due to the presence of external charges. The normal ordering is then taken with respect to the same
state in both theories. The effect on the energy-momentum tensor is now analyzed. With no
external charges one has

T ) = Ty — pcos (\/4@) (5.23)
where all the all the terms independent of . were condensed on Ty . In the presence of external charges

this is modified to -~
TY — Ty + uTy — picos (\/47r¢ n QaD> +Q%Kp (5.24)

where yTD is the order p term obtained from the first part of Explicitly one can write:

T, — fi ; 0 cos (\/ZEQSJrQaD)a

—1)* 0
(=1)" 8, ... 0, TG i e 0, 800 (5.25)

The presence of this term is due to the fact that the non-locality was carried over to the interacting part,
proportional to u, by the presence of external charges. As a result one has in first order perturbation
theory:

AE,, = AE,—o + 1 (0] /dm : (TO + cos (\/Eqb) — cos (\/E(b + Qap>) :10) (5.26)

Due to the normal ordering, the only term surviving the Taylor expansion of the first cosine is 1. All
the others average to zero in the ground state. The same kind of argument holds for cos (\/E(b + Qap

where only cos (Qap) survives. Finally note that T, has always at least one ¢ as it is clear from
and therefore it averages to zero in the ground state when subjected to normal ordering. The result is

then:
+oo

AE,, =AE,—+pu / dx (1 — cos (Qap)) (5.27)

—0oQ

From the above expression one expects to find a finite string tension when Qap is "mostly" non-
multiple of 27 between —L/2 and L/2 and "mostly" multiple of 27 outside this interval. This, as it will
be shown explicitly below, is what happens for the derived ap in all the different dimensions. From
the definition of ap and following the same path used for Kp when deriving one can write::

“+oo
ap (0,2) = 8¢ / dk Fp (ko = 0, k) sin (kL/2) cos (k) (5.28)
2m k
0

Again, as in the massless case, one has to go through the different dimensions in order to compute the
increment to the energy due to the addition of external charges. From this point on, it shall be simply
denoted ap (z) = ap (0, ).

5.2.2.1 Massive D =1

This corresponds to the Schwinger model. The outcome for this case is well known and serves as an
illustrative example for the method followed here. Equation becomes:

+oo
B dk sin (kL/2) cos (kz)
041(113)—86/27r k(lﬂz—i——)

e
T

IR

(5.29)
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The integral can be calculated explicitly giving:

ap (x) = z [Sign(L—Qa:) (1 cosh( (L )) +Sinh(2eﬂ \L—Qx\))
+sign (L + 2x) (1 — cosh ( f(L + 2;1;)) + sinh ( ef|L " 21:0)} (5.30)

2v/m
It turns out that, in order to compute the string tension, it is enough to understand the behavior in
the limits |z| < L/2 and |z| > L/2, as it will be shown bellow. By inspecting directly the function

one finds: ) ] /
i o< L2
o (@) = { 0 if [z > L/2 (5-31)

PN

This is enough to compute the string tension from Equation even without computing the remaining

complicated integral exactly. The integral in broken in three parts (Where it is used the fact that the
+o0 L/2 xo L/2+I(]
integrand is symmetric over z — —z): [ = f +2 [ 42 f . The value of xq is fixed such
0 L/2 xo L/2+w0

that guarantees the condition exp <f% (L/2 — wo)> < 1. Within this limit one can compute the first
and the third integral using the asymptotic expressions of equations obtaining:

L/24x¢
AE, =AFE,—+ (1 — cos (27262)) (L —2x0) + / dx (1 — cos (Qu (x))) (5.32)
L/2—x¢

One can see that it grows linearly on L. Note that because o can be chosen independent of L, for
large enough L, that term actually does not grow with L. In particular the remaining integral just
reflects the contribution in the vicinity of the charges which does not depend on their distance (if the
distance is large enough). Furthermore, the remaining integral is bounded by values independent of L.
Explicitly, substituting the cosine by —1 one has an upper bound of 4z and substituting the cosine
by 1 one has a lower bound of 0. It is therefore clear that the linear behavior in L is exclusive of the
first term and one can finally write:

AE, =AE—0+u <1 — oS (M>) L+... (5.33)
e

where the dots indicate some bounded dependence on L. By this it is meant that it depends on L but
is bounded by values which do not. The string tension reads explicitly:

v (1 (22) -

This is a well known result [279] which was obtained here by a careful analysis of the energy. The
same procedure shall followed for higher dimensions.

5.2.2.2 Massive D =2

For this case one has:

+oo
B dk sin (kL/2) cos (kL)
as () = 46{ o kot %> (5.35)
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which again can be computed explicitly. For conciseness the abbreviation X* = L + 2z is adopted.
For x € [-L/2,L/2] one has:

az () Zg <7r — T cos <€2X_> — T cos <€2X+> - Ci (62X+> sin (62X+)
e 2 47 2 47 47 47
—Ci <62X_> sin (eQX_) + Si (62X+) Cos (62X+> + Si (eQX_> cos <€2X_>)
47 4 47 47 47 47

(5.36)

and when |z| > L/2:
as () ! cos X cos X7 + 7sin c
=—|x -7 T —_—
2 e 47 47 2w
(Xt | [e2XTt (e2X— e2 X~ [e2XT e2 X+
—2Cl< yp )sm( i >+2SI( yp )cos( yp )+2Sl( yp )cos( i ))

(5.37)

Now the same procedure of the D = 1 case is followed, studying the limits of |z| < L/2 and |z| > L/2.
The result obtained is actually the same here. For || < L/2 this is seen by noting that inside the cosine
and sine integral one can replace X* by L and take the large L limit. In this way the cosine integral
is replaced by zero and the sine integral by 7/2. For the|z| > L/2, X* are replaced by +2x inside
the cosine and sine integrals and the larger argument is taken again (note also that Si(—y) = —Si (y)).
Then one finds the same kind of result of [5.31] and all that was said about the 1 + 1 case translates
directly for 2 4+ 1. In particular the string tension is the same at this order in perturbation theory on

the mass:
2
oy = [ (1 — cos ( WQ)) =0 (5.38)
e

Even though confinement in itself may not be a surprise for the case where the gauge fields live in 2+ 1
dimensions, it is interesting to note that the the resulting string tension, at this order in perturbation
theory on the mass, is independent of the gauge fields being present in 1 + 1 or 2 + 1 dimensions.

5.2.2.3 Massive D =3

Finally the case where the gauge fields live on 3 + 1 dimensions is considered. Equation [5.28] for s
reads:

Hoo dk. log <A2]:;k2) sin (kL/2) cos (kx)

2e
=— | — 5.39
Ckg(x) T \{27{. k(1+%10g(1\2k—2k2)) ( )

This integral is more complicated than the one obtained for D = 1,2. However it is possible to
follow the similar kind of analysis that was done in the massless case of D = 3. In the numerator
one can write 2sin (kL/2) cos (kz) = sin (k (L/2 4+ x)) +sin (k (L/2 — x)), breaking the integral in two
contributions. Then perform a substitution ¢ = k/A and reabsorb again a factor on the cut-off:
A = A|L/2 + z|choosing + depending on the argument of the sine in the piece considered. Note that,
as one is interested in the limit where x is far away from L /2, this re-scaling is well defined and sending
A — +o00 still makes sense. The integral will read:

+oo

as (z) = (sign (L/2 + z) + sign (L/2 — z)) ; /

@ log (1 + q72) sin ([\q)
2mq(1+ % log (1 +¢~2))

(5.40)
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Each of these “sign” terms comes respectively from sin (k (L/2 + z)) and sin (k (L/2 — z)). One imme-
diately sees that if the signs of L/2+x are different, as they are in |z| > L/2, a3 is zero. For the other
case of |x| < L/2 the integral bears similarities to and part of the approach can be translated.
f27r(njr1)/A
2mn/A
them converge to zero as the limit of large cut-off is taken due to the rapid oscillation of the sine (or
cosine for the case[5.20). Then the only remaining part is:

Namely one can divide the integral in small pieces fOJr * = >on and observe that most of

27'r/1~\ ~
s () = 2e / dq log (1+¢2)sin (Aqg)
sV 2mq(1+ % log (1+¢72))

- |z < L2 (5.41)
0

In this last piece was also zero as long as e was finite. Now this is no longer true due to the 1/q
factor which picks a large contribution near ¢ = 0. To see this explicitly one takes the leading order

of log (1 + q_z) / (1 + % log (1 + q_2)> for small ¢ which is simply 4@%2 (assuming that the charge e
is finite). Then the result comes independent of the cut-off A:

27 /A -
4 sin (A 4Si (2
as (z) = - / dg () _ 4si( ™) el < L2 (5.42)
e q e
0
Summing up these results:
4Si(2m) .
=2 if |z| < L/2
= e 4
a3 (2) { 0 if Jo| > L/2 (5:43)

which again corresponds to the expected behavior for a confined phase. The string tension is given by:

ra =i (1 cos (2202 (5.44)

e

which is finite in general. It is interesting to note that even though o1 = o9y they are still different
from o3 at this order. Furthermore, in the two previous cases, if the external charge ) was a multiple
integer of e the string tension would vanish. Here it is no longer the case. The string tension remains
finite when @ is a multiple integer of e. The factor of 27 is replaced by 4Si (27) ~ 5.67 < 2.

5.3 Conclusions

It was observed on this Chapter that the screened and confined phases of the Schwinger model are much
more robust than one might guess. In the case of the Schwinger-Thirring model with a topological
f-term one sees that the general results obtained when the models are taken separately still hold.
Namely that the theory only makes sense when the Thirring coupling is ¢ > —7 (as in the Thirring
model) and most importantly that the system only deconfined for § = £7 (as in the Schwinger model).
Through an Hubbard-Stratonovich transformation one observes that this model can be regarded as a
fermionic field interacting with a massless gauge field which in turn interacts with a “massive gauge
field”. It is possible that general interactions of this form may break confinement. However the kind
of terms obtained from a Thirring interaction are very particular and drive cancellations which would
not appear under a general coupling between the gauge fields. The Thirring parameter does not allow
to vary interaction between the bosonic fields but only the mass of one of them. This results show
that with respect to confinement a possible nearest neighbor density-density interaction plays no role
and therefore the phase is stable. This result can be intuitivelly understood by the fact that that the
Thirring interaction is purely local and it is not able to fight the dominant interaction driven by the
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gauge. It is important to remark that the external charges introduced coupled to the gauge field but
a coupled to the dynamical fermions was excluded. In a more general scenario, as it was considered
external charges with a charge @), which in fact corresponds to the coupling with the gauge fields, one
can also attribute to this external charges a coupling to fermions, say gext- This would correspond to
consider an extra contribution for the Lagrangian of the form gext j,LJI‘j"t. This can change the picture
of confinement and is a subject of future research.

Also under the assumption of higher dimensionality for the gauge fields, while the fermions remain
in 1 + 1 dimensions, shows robustness. In the massless case, as for the Schwinger model, there is a
strong screening when static charges are introduced on the system. In the Schwinger case the linear
growth of the energy with the distance, in the pure gauge theory, is replaced by an exponential decay.
In the case of a 2+ 1 dimensional gauge field the logarithm is replaced by oscillatory functions (which
goes to zero as power laws). Finally in 3 + 1 the 1/L decay is replaced by zero: external charges
are completely screened. When a small mass is considered a linear growth of the energy with the
distance is observed and therefore a finite string tension is obtained for the gauge fields living in 141,
2+ 1 or 3+ 1 dimensions. Furthermore, at this order in perturbation theory, the string tension is the
same for the first two cases and smaller for the later one: o1 = g9 > o3. This result is non intuitive
since the confinement in the Schwinger model is usually attributed to the fact that the Gauss law in
1+ 1 dimensions impose a constant electric field (rather than 1/72 of the 3+ 1 system). These results
suggest that this feature is not necessary to obtain confinement and instead it is the dimensionality of
the space-time available for the fermion fields that is dictating confinement in this case. In order to test
better this hypothesis it would be interesting to study how far can one extend the space-time allowed
for the fermion fields before leaving the confined phase (for gauge fields in 341 dimensions for example).
Since it is known that when the fermion fields span the full 3+ 1 dimensions the theory is deconfining
(corresponding to regular QED), this picture should break down at some point. Furthermore, with the
advent of quantum simulation of gauge theories, one can hope that an experiment with tunable fermion
dimensionality could probe directly interesting phenomena like such transition. These calculations also
suggest that these models can provide interesting analytical predictions to be confronted with numerics
and experiments.



Appendix Chapter

5.A Details on parameter estimates

Here further details are provided on how to obtain an estimate of the parameters of the model. This
can be done referring to the Wannier functions of the atomic species, their scattering lengths and the
lattice potential through the relations (according to the discussion of Section [1.2):

h2
S == [ ATV () Ve (1) G () Vet () B (1) (5.45)
Uns = g [ A7, (9 00 (7 (5.46)

where t% ., are the hopping parameter of species a between 7 and 7 and U, g the interaction between

27rh2aag
Mag

where ang is the scattering length between species o and S and mag the reduced masses. In the

species a and § and is assumed site independent (no dependence on 7 ). Furthermore gop =

3 )2 2
following it is assumed that the Wannier functions ¢’s to be Gaussians: ¢q (7) = Co [J e~ (rs=r3) /2%
j=1

(which is the ground state of the harmonic potential). They are characterized by the o,; which here
admit the possibility of being anisotropic and are fixed by requiring energy minimization. For the
present case the structure of the function in the dimensions y and z is fixed through a parameter o,
while the value of the longitudinal component, which will be called simply ¢, can be fixed variationally.
The relevant potential required can be written as:

V)=V [Sin (kx)? + Asin (2kz + a)2] . (5.47)

To perform the estimates it is easier to work with a potential of the polynomial form. Such potential
can be constructed by expanding the expression above in powers of kz . In here such expansion
is constructed by hand so one works directly with the relevant parameters like the offset between he
minima A and the lattice spacing a, instead of parameters like k& and «. To design a quartic polynomial
potential that has two minima, one at x = —a/2 and other at x = a/2, and an offset A, it is required
that the first derivative is of the form (Vy/a?) (2z/a + 1) (x — 20) (2z/a — 1) where zy corresponds
to the position of the maxima between the two minima. By integrating one obtains the form of the
potential and an extra parameter c as a constant of integration. This parameter is fixed by requiring
that the absolute minima, that is chosen arbitrarily to be the one at x = —a/2, corresponds to zero
energy. Furthermore zy can be written in terms of A: zy = 3Aa/2. The potential that is considered
for, say, the boson species 1 is then:
zt 228 x? 3x Ap 1

o B + A+ 22— (5.48)

V1 (z) = Vio 9242 " 2 2 16

a3
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while for the boson species 2 is Vpa (z) = Vg1 (—x). For the fermions the potential has the same

structure. It is worth to note, however, that the fact that the bosons only feel a double well potential

is required by the proposal. In contrast the fermions cannot be confined in a double well. For this

reason the polynomial double well potential approximation for the fermions is not as good as an

approximation as it is for the bosons. Nonetheless, as one is interested on the strong coupling regime

of the model this constitutes a reasonable approximation for the estimate of the parameters.
zt 223 2 3z Ay 1 }

= — — —Ar——+ —A — 4+ —
Vr (x) = Vg {a‘* f a + a rt +

5 (5.49)

The parameters Vg, po control the height of the barrier between the minima. Using this potential the
parameters will read:

s B2a? (1 a\* 1/ a)\? 2 W oa\ 4 0o\ 2 1 o2,
= () o () Jeir - e (32} () f oA, + S e wr (5
o I (4 <aa) 2<0a> “ 4 (3(a) (a) * +4)e (5:50)

11
Unp = 228 (5.51)

2o \/02 + 03
For this proposal it is required that U = Uy; = Usg and Uys = Uyp = Usp = 2U. The fine-tuning
of this condition is not absolutely crucial as discussed in the main text. With the parameters o
and o fixed, one has to rely on the on the control of the scattering length in order to fulfill this
condition. Within this variational approach, one computes the average energy per site and requires
that o minimizes it. The problem of the different shape of the minima, also referred in the main text,
can be addressed precisely as follows. The total energy is given by:

- 2 2 2 g 2 2
e = [ @Y g (Ve P+ oVt [ba P+ Y onans %82 loar Pl (552)
o B>a
The total energy in a site is different depending on which minima one is talking about due to the term
Vet |Pai |2. Denoting the minima at © = +a/2 as + the result is:

R2a21 ([ a\> 3Vo [/0a\* _1F3A4 (002
Ve () DT () T ()
Z %:”" M 2<0a) +2a:"a 1 < o) T3 a

+ Z NaNg Jap
a,B>a Am3/207 | [0d + 07

Where it was already included that the approximation that the spreading in the perpendicular direc-
tions are the same for all species and characterized by ;. Assuming that all masses are the same
the only parameters that depend from species to species are the densities n,,the offsets A, and the
amplitudes Vjy,. The asymmetry of the minima is present whenever A, # 0. Therefore the prob-
lem of the asymmetry of the different Wannier function on different minima is not present as long
as one disregard the A’s in this calculation, which is the route taken here The estimate should not
vary very much on this parameter, and, furthermore, this parameters should not be too large (taken
~ 1073 in the main text). The densities for fermions are ngp = 1 while for the other two species
of bosons n; 2 = S. With this one has a total of two parameters to fix, a op and op giving two
coupled equations: de/dor = 0 and Je/dap = 0. The reference energy is denoted by Er = h%a=2/2m
with an assumed equal mass for all the species m and the dimensionless parameters: Voo = Vou /ER,
Fa = 0q/a and the scattering lengths dos = anp/a . Regarding the scattering lengths one is working
on the assumption that: a1p = asp = @12 = 2agcaty and @11 = G232 = agcart The dimensionless quantity
is then dscatt = ascats/a. The two equations are then:

(5.53)
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-_3 ~ ~9 1 4S(arrp+azr)or
_ 3 $) 4 2 arT@ar)or
Op OFOF (O'F + 3) + ﬁ5i(0%+0123)3/2
(5.54)
~—3 _ arr =~ ~9 1 45 (ar1p+azr)oB (@11+aze+ai2)S | _
o> —3Vopap (6% + 5) + VoL | (o2402)? + V2o, =0

Due to the presence of the last term on the last equation the assumption a1p = aop = 2agcatt does
not solve the requirement of the Hamiltonian parameters of the proposal. For S small, however, the
result is approximately valid so these values are taken as reference for the scattering between bosons
and fermions.

The first check concerns the inspection of what values of the parameters validate the perturbative
approximation. This amounts to guarantee that ¢,/U and Vpo A, remain perturbative (in here it is
considered that they should be ~ 0.1 or smaller). For illustrative purposes one fixes S = 1, Vop =
VoB = Vo and Ar = Ag = A. The dispersion of the wave function to the extra dimensions should not
be very large in order to enhance the interactions. Direct analysis of the above equations yield that,
in order to guarantee that the perturbative regime is valid throughout the interval Vi ~ 3 — 10, then
one should have 6, ~ 0.2 and A < 1073, If one takes &, to be two or three times higher than this,
larger potential amplitudes are required. Alternatively, larger scattering lengths can also be used to
compensate. By other side there is some freedom on choosing the values of A in order to remain in the
perturbative regime. However this choice should respect the fact that the two minima should still be
present at & = +a/2 which is translated into |A| < 1/3. Finally the analogous of the mass parameter
of the target model will scale as VoA and the choice was taken such that the energy scale of this term
matches the order of magnitude of the other terms on the Hamiltonian t,ts/U ~ VyA, which proves
to be A <1073 as referred in the main text.

5.B Equations of motion and energy-momentum tensor for
theories with higher derivatives

Here the problem of classical field theory with higher derivatives is addressed. The well know Euler
Lagrange equation are derived by extremization of the action. The inclusion of higher derivatives on
the Lagrangian lead to a reformulation of the equations. In fact by calculating explicitly 5 = 0,
integrating by parts whenever necessary one obtains:

N
> (1" 0y, ...a#nm =0 (5.55)

n=0
where N is the highest number of derivatives appearing on a term of the Lagrangian. For N = 1 the

usual Euler-Lagrange equations are recovered. Consider now a general translation z# — a# +&#. The
total change of the Lagrangian is

oL

which results in oar
(Sﬁ = mayaﬂl e 8un¢6 . (557)
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The derivatives that are acting on ¢ can be written as acting on W with a minus sign plus
w1 Gpun
a total derivative term. Explicitly this is:
oL oL
—— 0,0, ...0 =0 ——— 0y, -0y, Oy
9O 0y 0) O O ® =0 (a(am 0, 9) e O ¢>
or (5.58)
— Oy =0y -- -0y, 00
00y - Op ) Hn
By continuing this process with every 0, acting on ¢ one obtains:
oL
8(8,1,1 ~--8;Am,¢) avaxu s almd’
L i-1 n
=2 (D70, (aﬁl O g gy O ...aﬂna,,gb) + (1) O - Oy 5255y 98
(5.59)

The special case of n = 0 just gives g—g&,a Summing over all n, the sum of the last terms of the above
equation is identified with the equations of of motion [5.55 and therefore they are put to zero. What
remains is the sum of total derivatives. This is equated to the variation of the Lagrangian which is
given by: dL = "9, L. By rearranging the dummy variables one obtains:

N n
i oL 5 y
S U 0 (O By O 000 ) & = 0 LI =0 (.00)
Mot n

n=1i=1

This allows the identification of the energy-momentum tensor. This is just the conserved current that
follows from Noether’s theorem for the special case of space-time translations.

N n
i ac v v
TH = ZZ (=1)" 0, "'a’“a(a Oppivy -+ 0y, 0V — L (5.61)

Hit1
n=0i=0 kO -+ O )



Conclusions

Due to the complexity of certain physical problems, in particular of strongly correlated many-body
systems, quantum simulations have been the subject of intense research in the last two decades. The
obtained progress and developments in this research field are of particularly importance in view of
the fact that classical computation is fundamentally limited in solving certain quantum mechanical
problems.

One of the holy grails of quantum simulations is Quantum Chromodynamics (QCD) and at this
stage can only be a long-time goal. Regarding lattice QCD simulations, there are, for example,
fundamental limitations in the Monte Carlo method for finite baryon density due to complex actions
problems. Before being able to deal with such a complicated problem one should try first to build
simpler examples containing fundamental pieces of a more complex implementation and that, in many
cases, are capable of reproduce qualitatively the results expected for QCD. In this regard, the Schwinger
model is a paradigmatic example of this principle: it has a simple gauge group (U (1)), a simple
structure (it is a 1 + 1 model which simplifies considerably gauge dynamics for example) and still
exhibits QCD-like phenomena like fermion confinement and chiral symmetry breaking. Despite that,
the implementation of a lattice version of it is still a great challenge for current experiments with
the first implementation made just last year for a small system size. The situation will hopefully
improve in the future with both theoretical and experimental developments. From a theoretical point
of view it is fundamental to have suitable formulations of the theory that are adequate to experimental
implementation. Quantum link models are an example of such situation where the infinite Hilbert
space per lattice link is replaced by a finite one.

In this spirit, in Section [2.3] it is proposed that half of the gauge symmetries typically required
for the implementation of the Schwinger model could be dropped without affecting the results of the
quantum simulation. In fact, with some careful analysis, one sees that half of the number of generators,
i.e. half of the symmetries, typically required in a lattice version of the model will disappear in the
naive continuum limit. The statement goes beyond the simple naive quantum limit argument. In fact,
the Schwinger model in the continuum limit does not have these extra symmetries therefore, if the
usual Kogut-Susskind Hamiltonian adopted for the Schwinger model is to reproduce the continuum
results in the limit of small lattice spacing, these symmetries must disappear. Other versions of this
statement are expected to be found for other group symmetries and in higher dimensionality. In this
regard it is not only useful, resource wise, to drop this symmetry. In fact, in the spirit of universality,
it is desirable that the theory is regularized having the symmetries, and only those symmetries, that
one wishes to find in the continuum model. Introducing more symmetries than desired may bias the
system towards a slower convergence to the desired continuum limit, or worst, prevent it from reaching
the desired theory on this limit. These are general remarks. A careful analysis must be done case-by-
case as it is also known, in the spirit of improved actions, that adding terms that go to zero in the
continuum limit may help remove lattice artifacts. This subject is currently under investigation. It is
shown, however, that such alternative formulations can provide new solutions to quantum simulations
that are not just a result of taking previous proposals and eliminate the dynamics of half of the links.
Such scenario may considerably help their experimental realization.

In Chapters it was considered several aspects of the simulations of field and gauge theories,
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in particular with phenomena ispired by QCD. In Chapter [3] it was studied a simple model having
common features with color-flavor locking, which is a remarkable phenomenon in QCD. This is an area
that Monte Carlo simulations cannot reach due to severe sign problems. The phase expected to find
in this limit is the so called Color-Flavor-Locking (CFL) phase, where the SU (3) color symmetry and
the SU (3) flavor symmetries get locked together in a smaller symmetry group. Having in mind an
ultracold atom setting capable of capturing the essence of the symmetry-locking mechanism, a model
of a four fermion mixture was considered. In this model, the locking of symmetries is between two
SU (2) symmetries. Furthermore, they are global symmetries, while in QCD only the flavor symmetry
is global. Nonetheless the fundamental principle of symmetry locking is present. In fact, by exploring
the phase diagram of the model, it is found a vast region of the parameter space where the ground
state corresponds to a locked phase, to which is refered to as Two Flavors Symmetry Locked (TFSL)
phase. In this phase the system is characterized by an order parameter that breaks partially the total
SU (2) x SU (2) symmetry to a single SU (2) but which is composed by a suitable combination of
the two initially independent symmetries. While alkaline-earth atoms are ideal to simulate this kind
of systems due to the fact that their interactions do not depend on the hyperfine quantum number,
the difficulty to tune interactions in earth-alkaline atomic gases without spoiling their peculiar U (N)
invariance is well known. Notably it is found that, taking the example of an Ytterbium mixture of
71Yh and 173YDb, such system naturally exhibits interactions that fall into the TFSL phase. Since the
critical temperature for the appearance of this phase is of the same order of the temperatures studied
in current-day experiments, the TSFL phase as a consequence is expected to be achievable in realistic
ultracold setups.

As argued above, the path towards QCD and other complicated theories, is envisioned in a step-
by-step basis, where one is able to, in each step, add further ingredients that ultimately would lead
to the final goal. This would not exclude the certainty of finding interesting physics in between and,
in particular, phenomena that are characteristic of only these “intermediate” steps. Theories with
dimensional mismatch, which find applications in systems like graphene, can potentially be part of
this path. In these kind of theories described in Chapter [4] the gauge fields live in an higher dimension
(D + 1) than the fermion fields (d + 1). A natural step, after implementing the Schwinger model,
would consist on keeping the fermions in d = 1 but let the gauge fields be present in D = 2. This is a
non-trivial step as one needs to implement plaquette term for the dynamics of gauge fields. However
the matter-gauge correlated hopping is restricted to one dimension and experimental implementations
are expected to be simpler than Quantum Electrodynamics (QED) in 2+ 1 dimensions. Irrespective of
that, these models naturally provide a playground where effective non-local theories can be constructed
by integration of the gauge fields. Using bosonization and several gauge fields in higher dimensionality
one can construct, with some generality, different fermionic interaction terms on the Lagrangian, as well
as bosonic kinetic terms. Such mappings provide a consistent way of establishing a relation between
local theories and non-local ones, with particularly emphasis on long-range (LR) interactions. These
mappings can be useful by providing insights into the physics of certain LR interacting systems by using
well established results of local field theories like Lieb-Robinson bounds. Such formalism is difficult to
establish at the Hamiltonian level but are easier to be carried out at the Lagrangian level. It is shown
that, under certain condition, an Hamiltonian can be reconstructed from the effective Lagrangian giving
a comprehensive path between an initial a) Hamiltonian - b) Lagrangian - ¢) Effective Lagrangian -
d) Effective Hamiltonian. In a) one has some local Hamiltonian describing a theory that is then
formulated in term of a path integral in b). By integrating some degrees of freedom one obtains a
non-local effective Lagrangian c) which, under certain circumstances, admit a canonical quantization
building an effective Hamiltonian d). Not only this mapping is interesting from the point of view
of using results of local theories, but can also serve the implementation of LR interacting theories.
In settings, like in ultracold atomic system, local interactions are naturally available while LR ones
are not. In this way, this also provides a path towards implementation of tunable LR interactions
between fermions or spin systems. From this point of view gauge invariance does not seem like a
crucial ingredient of these proposals and one can envision future schemes, much more experimentally
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feasible since no gauge symmetry is required, that still could implement the desired LR interactions
(like 1/r Coulomb interaction).

The study of properties of dimensional mismatch with a gauge symmetry has then clear applications.
If by one side analytical and numerical results are important for comparison with experiments, also
the models itself can host interesting phenomena. An example of this is given in Chapter [5| where the
confinement properties of these models with d = 1 and D = 2,3 are investigated. The confinement
on the Schwinger model is intuitively explained by the fact that the lower dimensional gauge fields
generate linear potential between static charges. The results of this Chapter show that the situation
is more subtle than that, as expanding the gauge fields to higher dimensions does not deconfine
the system. This raises questions about the nature of confinenement, at least for one dimensional
fermions, since this seems to be the key ingredient for this to happen. An interesting question consists
into understanding how much can one increase the size of the system in the perpendicular dimensions
before spoiling confinement. These results also highlight another advantage of the implementation of
dimensional mismatch models in the context of quantum simulations of gauge theories: they provide
very non-trivial model (with plaquette terms involved) where analytical non-perturbative computations
are possible. This kind of situation is ideal to benchmark future quantum simulators.

The field of quantum simulations of gauge theories is still in an initial stage. In the future both
experimental and theoretical developments are expected in order to achieve the long time goal of
simulating QCD and other complicated theories. From the theoretical side, one should be able to find
suitable toy models, characterize them (as much as one can) and identify mechanisms and suitable
mappings between target and controllable degrees of freedom. If the final reward looks very appealing,
one is also promised to find and learn a lot of interesting physics along the way.



CHAPTER 5. ROBUSTNESS OF CONFINEMENT FOR 1+ 1 FERMIONS 113

Publications
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