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1 Introduction

Understanding the space of consistent conformal field theories (CFTs) is of great impor-

tance since this would provide insight into a classification of the possible phases of quantum

field theories. One can hope that this hard problem becomes more manageable if one intro-

duces additional symmetries, such as supersymmetry or conformal symmetry, to restrict

the class of possible theories. In two spacetime dimensions there is a further simplification

since the conformal group is infinite-dimensional. Despite this favorable circumstance, the

classification of two-dimensional superconformal field theories (SCFTs) is far from com-

plete. Therefore it is important to understand the space of consistent two-dimensional

SCFTs and to sharpen our tools to study such theories. The goal of this work is to provide

evidence for the existence of a novel class of 2d SCFTs with N = (0, 2) supersymmetry

which arise from the twisted compactification of 4d SCFTs on a Riemann surface, and to

employ a variety of techniques to understand their physics.

Two-dimensional CFTs are also very interesting for a different reason. Gravity in

three-dimensional asymptotically AdS space is one of the simplest toy models for quantum

gravity — see for example [1]. Thus constructing and classifying possible AdS3 solutions of

string theory, and understanding their holographic duals, is of great importance to uncover

the structure of quantum gravity in three dimensions. Besides, gravitational theories in

AdS3 also provide good laboratories to test and explore the AdS/CFT correspondence in

detail — in fact such a setup was the precursor of holography [2]. These two alternative

vantage points provide further motivation for the work presented here.

Our goal is to study four-dimensional superconformal field theories (SCFTs) with

N = 1 supersymmetry compactified on a Riemann surface with a partial topological twist.

The main tools we use are anomalies, c-extremization, and holography. The basic idea

is simple and dates back to the work of Witten [3]. On a general curved manifold su-

persymmetry is generically broken because there are no covariantly-constant spinors. If

however the supersymmetric QFT at hand has a continuous R-symmetry, one can turn

on a background field for it which cancels the spin connection on the curved manifold.

This procedure of preserving supersymmetry on curved spaces is called the “topological

twist.” We will be interested in studying 4d N = 1 theories on R2 × Σg where Σg is a

smooth Riemann surface of genus g. Since the 4d theory has a U(1)R R-symmetry and the

structure group of Σg is SO(2), we can generically preserve N = (0, 2) supersymmetry on

R2 and thus, at energies below the scale set by the size of the Riemann surface, we have

a 2d supersymmetric field theory. These 2d theories are the main subject of our work. In

particular, we will argue that generically they will be superconformal and, by using the

anomalies of the 4d theory, we will be able to calculate the anomalies of its 2d “offsprings.”

An interesting generalization is possible if the 4d theory has continuous flavor symmetries.

Then supersymmetry is preserved even when one turns on background magnetic flux on the

Riemann surface for these symmetries. In this way from a single 4d SCFT one can obtain

a multi-parameter family of candidate 2d theories labeled by the genus of the Riemann

surface and the choice of background magnetic flavor fluxes. Since the magnetic flux on a

compact Riemann surface must be appropriately quantized, this leads to a discrete family
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of theories. While anomalies provide a powerful calculational tool, they are not always

well-suited to answering dynamical questions, thus in general it is hard to rigorously argue

that the 2d SCFTs in question actually exist. One possible approach to remedy this sit-

uation is to employ holography and construct explicit AdS3 vacua which are holographic

duals to the SCFTs of interest. This is often possible if the parent 4d theory has itself a

holographic dual description as we demonstrate explicitly.

These general ideas were made very concrete in [4–8] where they were applied to the

case of 4d N = 4 SYM theory.1 Here we argue that the setup is much more general and pro-

vide evidence for this claim by analyzing in detail the Y p,q family of superconformal quiver

gauge theories [11]. Using the knowledge of the ’t Hooft anomalies for these theories, we

calculate the central charges of the 2d theories obtained from them upon twisted compact-

ification on R2×Σg. An important role in this analysis is played by c-extremization [7, 8],

which is a tool that allows us to unambiguously determine the superconformal R-symmetry

in two dimensions and thus the correct conformal anomalies. The reason we choose this

class of theories is that they have explicit AdS5 holographic duals, constructed in [12].

This provides us with the reasonable expectation that the 2d SCFTs will also have weakly-

coupled duals in type IIB supergravity. This expectation indeed bears fruit and we are

able to construct new explicit warped AdS3×wM7 solutions of IIB supergravity which are

dual to the 2d SCFTs of interest.

A novel phenomenon that arises from the study of this class of field theories is that

the R-symmetry generically mixes along the RG flow not only with usual mesonic flavor

symmetries, but also with the baryonic flavor symmetry available in all Y p,q quivers. This

is rather surprising from the supergravity perspective because, unlike mesonic symmetries,

the baryonic symmetry does not arise from isometries of the metric, but rather from the

RR 4-form potential on a topological three-cycle.

Finally, we should point out that the AdS3 solutions we construct can be thought of

as the near-horizon limit of BPS black strings in five dimensions. The entropy density

of these black strings is related to the central charge of the dual 2d CFT and thus our

successful match of the supergravity and field theory central charges can also be viewed as

a microscopic counting of the degrees of freedom of the black strings.

The ideas and techniques discussed in this paper are similar to the ones employed by

Maldacena-Núñez in [6] as well as in the more recent literature [7, 8, 13–15], see also [16, 17]

for relevant recent work. The supersymmetric AdS3 solutions of IIB supergravity we find

have only 5-form flux turned on. These backgrounds fall under the classification of [18] and

indeed some of our solutions have been studied previously in [19–25].2 More recently, AdS3

solutions arising from string and M-theory have also been analyzed in [26–31] (see also [32]

for related work). On the field theory side there have been interesting constructions of

2d N = (0, 2) SCFTs and dualities between them by employing compactifications of a

higher-dimensional SCFT in [33–38].

We begin our exploration in the next section with a brief review of the Y p,q quiver

gauge theories and we then proceed to compactify these theories on a Riemann surface and

1See also [9] and [10] for related work on four-dimensional N = 1 and N = 2 theories, respectively.
2Many of our solutions are actually “T-dual” to M-theory solutions in [20].
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study the system at low energies. We also discuss a universal feature of RG flows connecting

4d N = 1 and 2d N = (0, 2) SCFTs. As an illustration of this general result, in section 2.4

we consider the 4d N = 1 SCFTs arising from D3-branes at del Pezzo singularities. In

section 3 we switch gears and discuss the construction of explicit AdS3 solutions of IIB

supergravity, which are holographic duals to the 2d SCFTs of interest. We conclude in

section 4 with a short summary and a number of directions for future work. In the various

appendices we present technical details which pertain to the construction and analysis of

the supergravity solutions discussed in section 3.

2 Field theory

2.1 Y p,q quivers

Let us first summarize some of the salient features of the Y p,q family of four-dimensional

N = 1 superconformal field theories. We will follow the notation and conventions of [11] and

take the coprime integers p, q to satisfy p > 0 and 0 ≤ q ≤ p. The theories are quiver gauge

theories, with 2p nodes each representing an SU(N) gauge group. The matter fields are in

chiral multiplets and transform in bifundamental representations of pairs of gauge groups,

as dictated by the quiver diagram. The theories have an SU(2)1 ×U(1)2 ×U(1)B ×U(1)R
continuous global symmetry, where SU(2)1 ×U(1)2 is a mesonic flavor symmetry (and we

denote the Cartan of SU(2)1 with U(1)1), U(1)B is a baryonic symmetry and U(1)R is the

superconformal R-symmetry. The matter fields can be organized into four groups, dubbed

{Y, Z, Uα, V α} with α = 1, 2, according to their charges under the global symmetry as we

summarize in the following table:

Fields multiplicity U(1)1 U(1)2 U(1)R U(1)B

Y p+ q 0 −1 RY p− q
Z p− q 0 1 RZ p+ q

U1 p 1 0 RU −p
U2 p −1 0 RU −p
V 1 q 1 1 RV q

V 2 q −1 1 RV q

λ 2p 0 0 1 0

(2.1)

By λ we denoted the gaugini in vector multiplets, transforming in the adjoint representation

of the gauge groups. The R-charges of the matter chiral multiplets are

RY =
(2p− q)w + 2pq − w2

3q2
, RU =

4p2 − 2pw

3q2
,

RZ =
(2p+ q)w − 2pq − w2

3q2
, RV =

3q − 2p+ w

3q
,

(2.2)

where we have defined

w ≡
√

4p2 − 3q2 . (2.3)
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One should keep in mind that the fermions in chiral multiplets have R-charge 1 less than

that of the multiplet. When w ∈ Z, the central charges of the 4d theory are rational.

The conformal anomaly coefficients, or central charges, a and c of the Y p,q theories,

can be computed using the well-known relation [39] between conformal and R-symmetry

’t Hooft anomalies in N = 1 SCFTs:

a =
9

32
Tr(R3)− 3

32
Tr(R) , c =

9

32
Tr(R3)− 5

32
Tr(R) . (2.4)

Using the charges in (2.1) and (2.2), one finds

a(Y p,q) +
3p

8
= c(Y p,q) +

p

4
=

3p2(3q2 − 2p2 + pw)

4q2(2p+ w)
N2 . (2.5)

This is obtained3 by noticing that the bifundamentals have implicit multiplicity N2, while

the gaugini have multiplicity N2 − 1. At leading order in N , the two central charges

are equal because for this class of quiver gauge theories and at that order, the linear

R-symmetry ’t Hooft anomaly vanishes: TrR = O(1).

There are some cases of special interest. The theory Y p,0 is a Zp orbifold of the

Klebanov-Witten (KW) theory [40] and has central charges

a(Y p,0) ' c(Y p,0) ' 27p

64
N2 , (2.6)

at leading order in N . The theory Y p,p is a Zp orbifold of the N = 2 quiver theory which

itself is obtained by a Z2 orbifold of N = 4 SYM. The central charges for this theory are

a(Y p,p) ' c(Y p,p) ' p

2
N2 ' 2p aN=4 , (2.7)

where in the last equality we have emphasized the relation to the central charge of N = 4

SYM at leading order.

It is worth collecting here the explicit expressions for the linear and cubic ’t Hooft

anomalies for the quiver gauge theories of interest. After a straightforward algebraic cal-

culation one finds that the 20 independent cubic ’t Hooft anomalies are:

k111 = k222 = k122 = k12B = k12R = k1BB = k1BR = k1RR = k2RR = kBBB = kBRR = 0

k112 = 2qN2 , k11B = 2(q2 − p2)N2 , k11R =
2

3q2

(
pw2+(q2−2p2)w − 2pq2

)
N2

k2BB = 2p2qN2 , k2BR =
2p2

3q
(w − 2p)N2 , k22R =

2

3q2
(2p2 + pq + q2)(w − 2p)N2

k22B = 2p2N2 , kBBR = −2p2

3
(p+ w)N2 , kRRR =

8p2

9q4
(w3 + 9pq2 − 8p3)N2 − 2p .

(2.8)

3If some chiral multiplet is in the adjoint rather than in the bifundamental representation, the implicit

multiplicity is N2 − 1 and the O(1) terms are different. This only happens for Y 1,1 ∼= C2/Z2 × C. One

obtains a(Y 1,1) = 1
2
N2 − 5

12
and c(Y 1,1) = 1

2
N2 − 1

3
.
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The linear ’t Hooft anomalies are

k1 = k2 = kB = 0 , kR = −2p . (2.9)

The identity 9kJRR = kJ , valid for any flavor (non-R) symmetry J in a 4d N = 1 SCFT

is clearly obeyed [41]. As pointed out in [11], baryonic symmetries are such that kBBB =

kB = 0. For general flavor symmetries this is not necessary, although for the Y p,q theories

we also have k111 = k222 = k1 = k2 = 0.

2.2 2d central charges

In this section we consider compactifications of generic four-dimensional N = 1 field the-

ories on compact (i.e. with no punctures) Riemann surfaces Σg of genus g, performing a

partial topological twist so as to preserve N = (0, 2) supersymmetry in two dimensions.

Under the assumption that the theories flow to interacting SCFTs (which could be tested

holographically, for instance), we would like to compute their central charges. To do this,

we exploit the fact that in two-dimensional N = (0, 2) SCFTs the R-symmetry can be

identified by a c-extremization principle [7, 8], and then the central charges are related to

its ’t Hooft anomalies. We begin by providing explicit examples in the case of Y p,q quivers

and then discuss an approach for generic four-dimensional N = 1 field theories.

The calculation proceeds as in [8]. To perform the partial topological twist, we turn

on a background gauge field along the generator

T = b1T1 + b2T2 +BTB +
κ

2
TR , (2.10)

where T1,2, TB are the generators of U(1)1,2 and U(1)B, respectively, while TR is the

generator of the U(1)R superconformal R-symmetry. We have defined κ as the normalized

curvature of the Riemann surface: κ = 1 for g = 0, κ = 0 for g = 1, and κ = −1 for g > 1.

When the flavor flux b1 is nonzero, the SU(2)1 flavor symmetry of the system is broken to

U(1)1. For b1 = 0 the SU(2)1 symmetry is intact.

An important point is that the background flux (2.10) must be properly and carefully

quantized. We turn on an external flux

F = T dvolΣg , (2.11)

where the volume form is normalized
∫
dvolΣg = 2πηΣ and ηΣ = 2|g− 1| for g 6= 1, ηΣ = 1

for g = 1. Then for every gauge-invariant operator O, the effective number n of flux units

felt by the associated particles and defined by

1

2π

∫
Σg

F · O = ηΣ T · O ≡ nO , (2.12)

should be an integer: n ∈ Z. This is the standard Dirac quantization condition. Since we

have fixed the origin of the flavor flux around the 4d superconformal R-symmetry, which

in the case of Y p,q quivers typically assigns irrational charges, one generically needs an

irrational flavor flux to balance it. In particular, zero flavor flux is generically not allowed

– 6 –
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unless the superconformal R-charges are rational. When a twist by the pure superconformal

R-symmetry is in fact possible, we refer to it as the “universal twist,” for reasons that will

become clear below.

Next, we define the trial 2d R-symmetry to be a general linear combination of the 4d

R-symmetry and the Abelian flavor symmetries, i.e.

Ttr = ε1T1 + ε2T2 + εBTB + TR , (2.13)

where the real parameters εi’s are unfixed at the moment and we construct the trial

central charge

ctr
r = −3ηΣ

∑
σ

mσtσ(q
(σ)
R )2 . (2.14)

The sum above is over the 4d fermionic fields labelled by σ, mσ is their multiplicity,

q
(σ)
R is the charge under the trial R-symmetry in (2.13), and tσ is the charge under the

background gauge field in (2.10). Here we have used the relation ctr
r = 3kRR (see [7, 8]

for details) and that the net number of right-moving minus left-moving 2d chiral massless

fermions is computed by the index theorem:

n(σ)
r − n

(σ)
` = −tσηΣ . (2.15)

For the case of Y p,q quivers, the various parameters are summarized in the following table:

Fields mσ tσ q
(σ)
R

Y (p+ q)N2 κ
2 (RY − 1)− b2 +B(p− q) RY − 1− ε2 + εB(p− q)

Z (p− q)N2 κ
2 (RZ − 1) + b2 +B(p− q) RZ − 1 + ε2 + εB(p− q)

U1 pN2 κ
2 (RU − 1) + b1 −Bp RU − 1 + ε1 − εBp

U2 pN2 κ
2 (RU − 1)− b1 −Bp RU − 1− ε1 − εBp

V 1 qN2 κ
2 (RV − 1) + b2 + b1 +Bq RV − 1 + ε2 + ε1 + εBq

V 2 qN2 κ
2 (RV − 1) + b2 − b1 +Bq RV − 1 + ε2 − ε1 + εBq

λ 2p(N2 − 1) κ
2 1

(2.16)

We recall that for Y 1,1 the multiplicities are different, see footnote 3.

At this point we invoke the principle of c-extremization, stating that the 2d super-

conformal R-symmetry is the one extremizing the trial central charge (2.14), whose value

at the extremum is the actual right-moving central charge cr of the 2d SCFT. With the

ingredients given above, these can be calculated for any Y p,q quiver, Riemann surface, and

background fluxes. In full generality the result is lengthy, so in the following subsections we

discuss some cases of particular interest. When carrying out the extremization procedure,

one must often treat the cases κ = 0 (g = 1) and κ 6= 0 (g 6= 1) separately, as we do below.

2.2.1 Y p,0 on Σg 6=1

We begin with the special case q = 0. For p = 1 this corresponds to the KW theory, while

for general values of p we have a Zp orbifold of it that preserves N = 1 supersymmetry.

– 7 –
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Assuming κ 6= 0 (and thus κ2 = 1) the trial central charge is extremized at

ε1 =
2b1κ

(
16b22 − (4Bp− κ)2

)
1− 8(b21 + b22 + 2B2p2) + 32Bpκ(b21 − b22)

,

ε2 =
2b2κ

(
16b21 − (4Bp+ κ)2

)
1− 8(b21 + b22 + 2B2p2) + 32Bpκ(b21 − b22)

,

εB =
2
(
2(b21 − b22)−Bpκ(1 + 8b21 + 8b22 − 16B2p2)

)
p
(
1− 8(b21 + b22 + 2B2p2) + 32Bpκ(b21 − b22)

) .
(2.17)

We note, rather surprisingly, that even when the background baryonic flux B vanishes, we

have εB 6= 0 and thus the two-dimensional superconformal R-symmetry is mixed with the

baryonic symmetry. Only when the flavor fluxes b1,2 are also set to zero there is no mixing

and the 2d and 4d R-symmetries coincide. This is a generic feature of all the examples we

will discuss below.

Evaluating the trial central charge at the extremum we find

cr = −3pκηΣ

[
3− 16(b21 + b22 + 2B2p2)− 256

(
b21b

2
2 +B4p4 −B2p2(b21 + b22)

)
4
(
1− 8(b21 + b22 + 2B2p2) + 32Bpκ(b21 − b22)

) N2 − 1

]
.

(2.18)

An interesting case is obtained by setting the mesonic flavor fluxes to zero, i.e. b1 = b2 = 0:

cr = −3pκηΣ

[
1

4
(3 + 16B2p2)N2 − 1

]
for b1 = b2 = 0 . (2.19)

This can be positive only for κ = −1. Another useful specialization is obtained by

setting B = 0:

cr = −3pκηΣ

[
3− 16(b21 + b22 + 16b21b

2
2)

4
(
1− 8(b21 + b22)

) N2 − 1

]
for B = 0 . (2.20)

Interestingly, both for κ = 1 and κ = −1 there are regions in the (b1, b2)-plane where cr is

positive. Finally, we note that setting B = b1 = b2 = 0 (i.e. when the twist is purely along

the superconformal R-symmetry in the UV) which requires κ = −1, one has

cr = (g− 1)

[
32

3
a(Y p,0)− 2p

]
for b1 = b2 = B = 0 , (2.21)

where a(Y p,0) is the 4d central charge of the Y p,0 theory given in (2.6). We will see that

the leading order of this simple relation between the 2d central charge and the 4d anomaly

coefficient a, is a universal feature that holds for a large class of theories justifying the

name “universal twist”.

Before moving to other examples, let us analyze the Y p,0 theory on a Riemann surface

with κ = −1 in more detail, since this is one of the examples that we will revisit holograph-

ically in section 3. Specifically, we set b1 = b2 = 0, but admit a nonzero baryonic flux B.

The R-charges of the fields (Y,Z, U) are (1
2 ,

1
2 ,

1
2) and the baryonic charges are (p, p,−p),

– 8 –
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respectively. It is easy to see that the quantization condition (2.12) for the background

R-flux (2.10) imposes

pNB =
1

4(g− 1)
nB , (2.22)

where nB is an even (odd) integer if N(g − 1) is even (odd).4 Using this, equation (2.19)

can be written as

cr =
32

3
(g− 1) a(Y p,0) +

3p n2
B

2(g− 1)
− 2p(g− 1) , (2.23)

with a(Y p,0) given in (2.6). We will reproduce this result holographically to leading order

in N in section 3.

2.2.2 Y p,0 on T 2

Setting κ = 0 and in the presence of generic background fluxes one finds

ε1 =
b1(b22 −B2p2)

Bp(b21 − b22)
, ε2 =

b2(b21 −B2p2)

Bp(b21 − b22)
, εB =

2B2p2 − (b21 + b22)

2p(b21 − b22)
, (2.24)

which leads to the central charge

cr = 6ηΣ
(b21 −B2p2)(b22 −B2p2)

B(b21 − b22)
N2 . (2.25)

When B = 0 (or b1 = b2 = 0) the trial central charge is linear in the parameters ε1,2 (or

εB) and one cannot apply c-extremization directly. When B 6= 0 but one of the fluxes b1,2
vanishes, one finds

ε1 = 0 , ε2 =
Bp

b2
, εB =

1− 2B2p2

2pb22
, cr = 6ηΣ

Bp2(b22 −B2p2)

b22
N2 for b1 = 0 ,

ε1 = −Bp
b1

, ε2 = 0 , εB =
−1 + 2B2p2

2pb21
, cr = 6ηΣ

Bp2(−b21 +B2p2)

b21
N2 for b2 = 0 .

(2.26)

The case b1 = 0 is special because the SU(2)1 factor in the flavor symmetry is restored,

and the analysis of section 3 will focus on this case. As one can check from the expressions

above, there are always regions in the (b2, B)-parameter space where the central charge is

positive, for κ = 0,±1. This is illustrated in figure 1, where we have limited the analysis

to leading order in N for simplicity.

4To see this, consider for instance a baryonic operator made out of N fields Y , with gauge indices

appropriately contracted. The total baryonic charge is pN and the R-charge is N/2. Thus, the quantization

condition (2.12) in this background imposes 2(g− 1)N(pB − 1/4) = n, where n ∈ Z. Equivalently, we may

write this as pNB = 1
4(g−1)

nB , where we defined nB ≡ (2n+N(g− 1)). We note that nB is an even (odd)

integer if N(g− 1) is even (odd).
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Special twists. Finally, let us comment on the boundaries of the colored regions in

figure 1. At generic points on these boundaries the central charge either diverges or becomes

zero and such points are therefore excluded. Exceptions to this rule may appear at points

where two such contours intersect. To obtain the value of the central charge at such points,

and determine whether such a twist leads to a candidate unitary CFT in the IR, one should

insert the value of the fluxes into the trial central charge (2.14) first, and then extremize

it. Carrying this out for κ = 0 and κ = 1 one finds that all the boundaries in figure 1 are

completely excluded, to leading order in N . For κ = −1 the situation is more interesting

and one finds that there are three special points that lead to a finite and positive central

charge in the IR, namely the points A = (1/2, 1/4), B = (−1/2, 1/4) and C = (0,−1/4).

Let us discuss these special twists for κ = −1 in more detail. The trial central charges at

large N read:

A : ctr =
3

2
pN2(g− 1)(4− (−1 + 2ε2 + 2pεB)2) ,

B : ctr =
3

2
pN2(g− 1)(4− (1 + 2ε2 − 2pεB)2) , (2.27)

C : ctr =
3

2
pN2(g− 1)(−4ε21 + (1− 2pεB)(3 + 2pεB)) .

We note that for each twist ctr does not depend on certain mixing parameters εi. For

the A and B twists it does not depend on ε1 and depends only a particular combination

of ε2 and εB while for the C twist it is independent of ε2. This implies that there are

no mixed anomalies between the corresponding flavor symmetry and the R-symmetry and

thus mixing with it is irrelevant. Thus the corresponding flavor symmetry does not act at

low energies and simply decouples.

Extremizing the trial central charges (2.27) one finds that the central charges in the

IR coincide and are given by

cr(A) = cr(B) = cr(C) = 6p(g− 1)N2 . (2.28)

It would be interesting to study these twists, and the putative CTFs they lead to, in more

detail.

2.2.3 Y p,p on Σg 6=1

Another special case of interest is q = p. For p = 1 one has a quiver with two nodes with

N = 2 supersymmetry which is a Z2 orbifold of N = 4 SYM [42]. In this case the chiral

field Y is in the adjoint. For all other values of p we have a Zp orbifold of this N = 2

theory which preserves only N = 1 supersymmetry.

Assuming κ 6= 0, the trial central charge (2.14) is extremized for

ε1 = − 2b1κ(6b2 + κ)

1− 12(b21 + b22 +B2p2 + b2Bp)
,

ε2 =
12b22 − 2b2κ− 8(b21 + b22 +B2p2 + b2Bp)

1− 12(b21 + b22 +B2p2 + b2Bp)
,

εB =
4(b21 + b22 +B2p2 + b2Bp)− (12b22 + 12b2Bp+ 2Bpκ)

p
(
1− 12(b21 + b22 +B2p2 + b2Bp)

) ,

(2.29)
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Figure 1. In blue, the regions in the (b2, pB)-plane where the central charge for Y p,0 with b1 = 0

is positive. The cases κ = {1, 0,−1} are presented from left to right and the horizontal and vertical

axes represent b2 and pB respectively.

and the right-moving central charge reads

cr = 3pκηΣ

[
72(1− 3κb2)(b21 +B2p2 + b2Bp)− 8(1− 9b22)

9
(
1− 12(b21 + b22 +B2p2 + b2Bp)

) N2 + 1

]
. (2.30)

For b1 = b2 = 0 this simplifies to

cr = −3pκηΣ

[
8(1− 9B2p2)

9(1− 12B2p2)
N2 − 1

]
. (2.31)

On the other hand for B = 0 one finds

cr = −3pκηΣ

[
8
(
1− 9(b21 + b22) + 27κb21b2

)
9
(
1− 12(b21 + b22)

) N2 − 1

]
. (2.32)

2.2.4 Y p,p on T 2

Setting κ = 0 one finds

ε1 =
b1b2

b21+b22+B2p2+b2Bp
, ε2 =

2

3
− b2
b1
ε1 , εB =

−b21+2b22−B2p2+2b2Bp

3p(b21+b22+B2p2+b2Bp)
, (2.33)

which leads to the central charge

cr = 6ηΣ
b2p(b

2
1 +B2p2 + b2Bp)

b21 + b22 +B2p2 + b2Bp
N2 . (2.34)

If B = b1 = 0 the c-extremization procedure seems to be applicable but one finds cr = 0

and thus does not lead to a candidate unitary CFT. When B = b2 = 0 or b1 = b2 = 0,

the trial central charge is linear in the parameters εi so one cannot apply c-extremization

directly. We will thus take at least two of the background fluxes to be non-trivial. We

summarize some of the results for the Y p,p quivers with b1 = 0 in figure 2.
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Figure 2. In blue, the regions in the (b2, pB)-plane where the central charge for Y p,p with b1 = 0

is positive. The cases κ = {1, 0,−1} are presented from left to right.

Special twists. As in the Y p,0 case discussed above, generic points on the boundaries of

the colored regions in figure 2 are excluded as they lead to either a vanishing or diverging

central charge. The only exceptions are found for κ = −1, at the intersection points between

the ellipse and the straight lines, namely A′ = (−1
3 ,

1
6), B′ = (1

6 ,−
1
3) and C ′ = (1

6 ,
1
6). The

trial central charges at large N read:

A′ : ctr =
2

3
pN2(g− 1)(8− 6ε2 − 9ε22) ,

B′ : ctr =
2

3
pN2(g− 1)(−9ε21 + (2− 3pεB)(4 + 3pεB)) , (2.35)

C ′ : ctr =
2

3
pN2(g− 1)(−9ε21 + (4− 3ε2 − 3pεB)(2 + 3ε2 + 3pεB)) .

As seen from these expressions, and discussed below equation (2.27), the three twists lead to

certain flavor symmetries decoupling in the IR (this is manifested by the mixing parameter

εi not appearing in the trial central charge). The corresponding central charges of the

candidate CFTs in the IR read again:

cr(A
′) = cr(B

′) = cr(C
′) = 6p(g− 1)N2 . (2.36)

It is curious to note that these values are the same as the ones presented in (2.28). It will

be interesting to investigate further whether there is a relation between these classes of

two-dimensional CFTs.

Finally, we comment that one might have naively expected that the central charges

in (2.30) withB = 0 can be compared to the ones derived in [8], since the theories considered

here arise as the IR fixed points of Z2 × Zp orbifolds of N = 4 SYM further placed on

a Riemann surface, while the theories in [8] came from pure N = 4 SYM on a Riemann

surface. However this is not the case and the central charges in (2.30) differ from the ones

in [8]. This suggests that the RG flow from four to two dimensions does not commute

with the orbifold action. From the field theory point of view, one of the reasons is the role

played by the U(1)B symmetry which is absent in N = 4 SYM (and therefore in the setup

of [8]), but clearly plays a crucial role in the present construction since it mixes along the

RG flow with the U(1)R symmetry.
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2.2.5 Y p,q on T 2

Let us now take κ = 0 and keep p and q general. For general values of the flavor and

baryonic fluxes the central charges are lengthy and we will refrain from presenting them

here. When we set b1 = 0 we get an enhanced SU(2) flavor symmetry and this will be the

case of interest in the supergravity analysis. Let us focus on this choice of background flux.

The trial central charge (2.14) is extremized for

ε1 = 0 , ε2 =
p+ w

3q
− 3pb22

3q(b22 + b2Bq +B2q2)
, εB =

4p− 2w

3q2
− pB2

b22 + b2Bq +B2q2
.

(2.37)

The right-moving central charge is particularly simple:

cr = 6p2B

[
1− B2p2

b22 + b2Bq +B2q2

]
N2 . (2.38)

If in addition we set b2 = 0 the result is

cr = −6Bp2(p2 − q2)

q2
N2 , (2.39)

which is positive only for B < 0. This result looks very similar to the central charges found

in supergravity in section 4.1 of [22]. Indeed after the redefinition p = qDGK, q = pDGK+qDGK

and BN2 = NDGKMDGK, the central charge in (2.39) becomes

cr =
6pDGKq

2
DGK(pDGK + 2qDGK)

(pDGK + qDGK)2
NDGKMDGK , (2.40)

which is identical to equation (4.18) in [22].5

2.2.6 Y p,q on Σg 6=1

Finally, we discuss the generic case of Y p,q on a Riemann surface with κ 6= 0. For general

values of p and q and general background fluxes it is straightforward to apply the general

c-extremization procedure as outlined above, but the results are too unwieldy to present

explicitly. Therefore we will restrict ourselves to a few special values of the background

fluxes while keeping p and q general.

For b1 = b2 = 0 the expression for the central charge is relatively complicated and

takes the form

cr = −3ηΣκ

[
16

9
a(Y p,q)

+
4p2q2B2[w2(2p3−p2w+3q2w)−36κBq2(p2−q2)(pw+w2+6q2B2(q2−pw−2p2))]

3(2p2+pw−q2)(2pw−w2+6κBq2(p−w)− 12B2q4)2
N2

+
48p2q4B4(p+ w)[2p4 − p(p2 + q2)w + (p2 − 4q2)w2 + pw3]

3(2p2 + pw − q2)(2pw − w2 + 6κBq2(p− w)− 12B2q4)2
N2 − p

3

]
. (2.41)

5It is clear from the analysis of [22] that there is an allowed range for the parameters in which pDGK ≤ 0,

qDGK > 0 and qDGK ≥ |pDGK|. This is the range compatible with the values of the parameters p and q in

Y p,q, i.e. with p > 0 and p ≥ q ≥ 0.
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If instead we set b1 = B = 0 we find

cr = −3ηΣκ

[
16

9
a(Y p,q) +

8b22p
2w

w(2p+ w)− 4b22(2p+ w)2
N2 − p

3

]
. (2.42)

Finally, we note that by setting the remaining flux b2 = 0 (which requires κ = −1) one

finds to leading order in N again the relation

cr =
32

3
(g− 1) a(Y p,q) +O(1) . (2.43)

As we explain in the next section, this relation holds not only for Y p,q quivers at large N ,

but quite generally for a large class of 4d N = 1 SCFTs on Riemann surfaces, twisted by

the four-dimensional superconformal R-symmetry (when this is possible).

2.3 A universal RG flow across dimensions

Here we would like to show that when a four-dimensional N = 1 SCFT is placed on a

Riemann surface with a partial topological twist, there is a universal relation between the

conformal anomalies in two and four-dimensions. Our result is valid under the assumption

that the 2d theory in the IR is indeed a SCFT with normalizable vacuum, and that there

are no accidental IR symmetries. Whether this is true or not is a dynamical question

which we will not be able to address in general. However if the four-dimensional the-

ory has a gravitational dual we will establish the existence of the two-dimensional SCFT

holographically.

Suppose that we have a 4d N = 1 supersymmetric theory (not necessarily conformal)

with global symmetry U(1)R × U(1)F × GF where U(1)R is an R-symmetry, U(1)F is a

flavor symmetry, and GF is some additional non-Abelian global symmetry.6 The ’t Hooft

anomalies of this theory are encoded in the following 6-form anomaly polynomial:

I6 =
kRRR

6
c1(FR)3 +

kFFF
6

c1(FF )3 +
kRRF

2
c1(FR)2c1(FF ) +

kRFF
2

c1(FR) c1(FF )2

− kR
24
c1(FR) p1(T4)− kF

24
c1(FF ) p1(T4) . (2.44)

Here kABC and kA are the cubic and linear ’t Hooft anomalies, c1(F) is the Chern class of

the bundle with curvature F , p1(T4) is the Pontryagin class of the four-manifold on which

the theory is placed, and the powers of all characteristic classes are with respect to the

wedge product. When the theory has a Lagrangian description, one can easily compute the

anomalies as kABC = Tr(ABC) and kA = Tr(A) where the trace is over all chiral fermions

in the theory.7

In a similar fashion one can encode the anomalies of a 2d theory with N = (0, 2)

supersymmetry in the 4-form anomaly polynomial8

I4 =
kRR

2
c1(FR)2 +

kFF
2
c1(FF )2 + kRF c1(FR) c1(FF )− k

24
p1(T2) , (2.45)

6The results below generalize easily to the case where there is more than one Abelian factor in the flavor

group. We refrain from discussing the general case to avoid clutter in the formulae.
7One should represent all fermions with right-moving chiral fields. Otherwise, the correct formulae

should be kABC = Tr γ5ABC and kA = Tr γ5A, where γ5 is the 4d chirality matrix.
8For simplicity we again assume that the 2d theory has only a single Abelian factor in the flavor group.
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where all the Chern and Pontryagin classes are the ones in 2d. The coefficients kAB are

the quadratic ’t Hooft anomalies, while k is the gravitational anomaly. In a theory with

Lagrangian description they are given by the formula kAB = Tr γ3AB and k = Tr γ3, where

the trace is over all complex chiral fermions in the theory and γ3 is the 2d chirality matrix

(positive on right-movers).

If the theories are actually superconformal and R is the superconformal R-symmetry,

the relations between conformal and ’t Hooft anomalies in 4d and 2d take the following form:

a =
9

32
kRRR −

3

32
kR , c =

9

32
kRRR −

5

32
kR , cr = 3kRR , cr − cl = k . (2.46)

Here cl,r are the 2d left- and right-moving central charges. Superconformal symmetry also

enforces 9kRRF = kF in 4d [41] and kRF = 0 in 2d [7].

We place the 4d theory on a compact Riemann surface and implement a partial topolog-

ical twist which preserves N = (0, 2) supersymmetry in the remaining two dimensions. At

the level of R-symmetry and flavor symmetry line bundles, this topological twist amounts

to the following replacement:

F (4D)
R → F (2D)

R − κ

2
tg , F (4D)

F → F (2D)
F + εF (2D)

R + b tg . (2.47)

Here tg is the Chern class of the tangent bundle to the Riemann surface normalized in

such a way that
∫

Σg
tg = ηΣ. The R-symmetry background is fixed by supersymmetry.

The parameter b, instead, represents the freedom to turn on a background magnetic flux

through the Riemann surface for the U(1)F symmetry — such a parameter should be prop-

erly quantized as in (2.12). We are interested in flows that lead to 2d fixed points. We

have introduced the parameter ε because by F (2D)
R we now mean the 2d superconformal

R-symmetry, which in general is a mix between some R-symmetry derived from four di-

mensions and the Abelian flavor symmetries. As in section 2.2, the value of ε at the 2d

fixed point is fixed by c-extremization.

To calculate the anomalies of the IR 2d SCFT, we plug the background (2.47) into the

6-form (2.44), integrate the result over Σg (notice that t2g = 0) and then read off the I4

anomaly polynomial of the 2d theory. Extremizing the trial value of kRR(ε) with respect

to ε we find

ε = −κ kRRF − 2b kRFF
κ kRFF − 2b kFFF

, (2.48)

and the right-moving central charge is

cr =
3ηΣ

2

[
−κ kRRR +

(κ kRRF − 2b kRFF )2 + 2b kRRF (κ kRFF − 2b kFFF )

κ kRFF − 2b kFFF

]
. (2.49)

The values of the other 2d anomalies are

kFF =
ηΣ

2

(
2b kFFF − κ kRFF

)
, cr − cl =

ηΣ

2

(
2b kF − κ kR

)
, kRF = 0 . (2.50)

The relation kRF = 0 precisely corresponds to the fact that we have extremized cr.

– 15 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
0

Consider now the case of a 4d SCFT with kF = 0, and perform the partial topological

twist using the exact 4d superconformal R-symmetry, i.e. R is the 4d superconformal R-

symmetry and take b = 0 (in cases where the R-symmetry flux on Σg is properly quantized).

Since 9kRRF = kF = 0, from (2.48) it follows that ε = 0. This means that the IR 2d

superconformal R-symmetry coincides with the UV 4d one, and no mixing with U(1)F
occurs along the RG flow. For such an RG flow across dimensions, which is unitary only

for κ = −1, we obtain a universal relation(
cr
cl

)
=

16

3
(g− 1)

(
5 −3

2 0

)(
a

c

)
. (2.51)

This result is reminiscent of the universal RG flow between four-dimensional N = 2 and

N = 1 SCFTs discussed in [43]. In our case, the RG flow is between four-dimensional

N = 1 SCFTs and two-dimensional N = (0, 2) SCFTs.

We note that for cr to be positive, the four-dimensional theory should satisfy

3

5
<
a

c
, (2.52)

or kRRR > 0. This lower bound is compatible with the Hofman-Maldacena (HM) [44]

window 1
2 ≤

a
c ≤

3
2 for N = 1 SCFTs, but it places a restriction on the class of theories

for which this RG flow can lead to unitary 2d SCFTs with a normalizable vacuum in the

IR. On the other hand, the upper bound of the HM window implies that the 2d SCFTs at

hand obey the bound cr/cl ≤ 9/4. We emphasize that these inequalities hold only for the

universal twist of four-dimensional theories with kF = 0.

Finally, we note that for theories with a = c (i.e. with kR = 0), one has cr = cl and

cr =
32

3
(g− 1) a . (2.53)

Notice that if kF ' 0 or kR ' 0 only at leading order in N , the statements above are still

true at leading order. Since the Y p,q quivers have kF ' kR ' 0, the result in (2.53) is

an explanation of the universal result observed at large N in many of the examples seen

above, as in (2.19). For CFTs with weakly coupled supergravity duals we have a ' c and

thus the universal relation in (2.53) holds. In section 3.2 and appendix B we indeed show

how this comes about on the supergravity side.

Since the Y p,q quiver gauge theories generically have two Abelian flavor symmetries

for generic p, q (one mesonic and one baryonic), the formula (2.49) is not applicable. Of

course, the approach taken above is valid and one can repeat the analysis in the case of

several Abelian flavor symmetries, but we do not provide the results here. The case of

Y 1,0 with purely baryonic flux b = B is an exception; in this case the full flavor symmetry

is enhanced to SU(2)1 × SU(2)2 × U(1)B and there can be no mixing of the R-symmetry

with any flavor symmetry other than the baryonic one. In this case using the values for

the anomaly coefficients k∗∗∗, one can verify that (2.49) reproduces (2.19).

Some interesting examples of N = 1 SCFTs with holographic duals for which we

have kR 6= 0 are discussed in [13, 14, 45]. For these theories one should use the general

formula in (2.51).
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2.4 D3-branes at del Pezzo singularities

To illustrate the utility of our general result in (2.51) let us consider the N = 1 SCFT

describing the low-energy dynamics of D3-branes at the tip of Calabi-Yau three-folds which

are complex cones over del Pezzo singularities, dPk, k = 0, 1, . . . , 8. These theories were

originally introduced in [46] and admit a dual holographic description. For k = 3, . . . , 8

the theories do not have any flavor symmetry, have rational R-charges and thus should

provide an ideal testing ground for our universal formula. In the case of dP0
∼= P2, the

theory has SU(3) flavor symmetry which however cannot mix with the R-symmetry. We

can also add P1 × P1 to the list, which has SU(2)2 flavor symmetry not mixable with the

R-symmetry. Finally, we can also consider D3-branes in flat spacetime — of which the P2

case is a Z3 orbifold — giving N = 4 SYM at low energies. The cases of dP1
∼= Y 2,1 and

dP2, instead, are different because they have an Abelian flavor symmetry that can mix

with the R-symmetry, and in fact the 4d R-charges are irrational: these theories cannot

be placed on a Riemann surface in the “universal way” (although they can if we allow for

flavor fluxes).

The conformal anomalies for the quiver gauge theories arising from the dPk=3,...,8 sin-

gularities were computed for example in [47]. At leading order in N — or formally for

gauge group U(N) — they are given by

adPk = cdPk =
27

4(9− k)
N2 . (2.54)

The conformal anomalies of N = 4 SYM are

aN=4 = cN=4 =
1

4
N2 . (2.55)

The case of dP0
∼= P2 gives a Z3 orbifold of N = 4 SYM with conformal anomalies

aP2 = cP2 =
3

4
N2 . (2.56)

Finally, the line bundle over P1 × P1 gives the Klebanov-Witten theory:

aKW = cKW =
27

64
N2 . (2.57)

From the universal formula (2.53) we find the central charges of the two-dimensional

SCFTs that arise from the compactification of the 4d SCFTs on a Riemann surface with

U(1)R twist:

c
(2d)
N=4 =

8(g− 1)

3
N2 , c

(2d)
KW =

9(g− 1)

2
N2 , c

(2d)
dPk

=
72(g− 1)

(9− k)
N2 . (2.58)

These field theory results nicely reproduce a dual supergravity calculation presented in [20]

as we now show.
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In section 6.1 of [20] the authors found a class of AdS3 solutions of type IIB super-

gravity based on the six del Pezzo surfaces dPk=3,...,8, on P2 and on P1 × P1. The internal

seven-dimensional manifold is topologically a Sasaki-Einstein 5d manifold fibered over a

closed Riemann surface of genus g > 1. The Sasaki-Einstein manifold is in turn a U(1)

bundle over the four-dimensional Kähler-Einstein base. One can think of these solutions

as arising from the backreaction of D3-branes transverse to the 5-manifold which wrap the

Riemann surface. The central charges of the N = (0, 2) SCFTs dual to these solutions

were computed in [20]:

csugra =
36M |χ|
m2h2l

n2 . (2.59)

Here χ = 2 − 2g is the Euler number of the Riemann surface, l = gcd
{
m, |χ|

}
,

h = gcd
{
M
m , |χ|

}
. The numbers (M,m) are as follows: for CP2 we have (M,m) = (9, 3), for

P1×P1 we have (M,m) = (8, 2), and for dPk with k = 3, . . . , 8 we have (M,m) = (9−k, 1).

Finally, the number n is expressed in terms of N through

N = − M

mh
n . (2.60)

The integer N is the quantized 5-form flux through the five-cycle transverse to the Riemann

surface wrapped by the D3-branes, and should then be identified with the rank of the gauge

group in the dual field theory. We can rewrite the supergravity central charge as

csugra =
72|g− 1|
Ml

N2 . (2.61)

Using the values of M and l given above, we find perfect agreement with the field theory

result in (2.58). For dP3...8 and P1×P1 we have immediate matching. For the circle bundle

over P2 that gives S5, i.e. for N = 4 SYM, one notices that the adjoints have R-charge
2
3 and so there are gauge-invariant mesonic operators of fractional R-charge: the twist is

only possible on surfaces whose g− 1 is a multiple of 3, then l = 3 and the central charges

match. Alternatively, for the line bundle over P2 which leads to C3/Z3, the field theory

has bi-fundamentals of R-charge 2
3 but the gauge-invariant mesons have integer R-charge

2, and the twist is possible for any genus; then l = 1 and the central charges match.

This agreement between field theory and gravitational calculations provides strong

evidence that the supergravity solutions found in section 6.2 of [20] are dual to the 2d

N = (0, 2) SCFTs which arise from a twisted compactification on Σg of the 4d N = 1

dPk SCFTs.9 In fact, we will show in the next section that this matching holds for twisted

compactifications on Σg of a general class of 4d N = 1 SCFTs with gravity duals, whenever

twisting by the pure 4d superconformal R-symmetry is possible. We will also provide new

examples of gravity duals to field theories twisted by baryonic flux and match their central

charges. A generalization to include flavor flux is also possible, and although we provide the

local backgrounds explicitly, we leave a global analysis of these solutions and a matching

of their central charge for future work.

9We were informed by Jerome Gauntlett that he has arrived at the same conclusion by an independent

field theory calculation of the two-dimensional central charges.
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3 Supergravity solutions

We are interested in constructing type IIB supergravity solutions of the warped-product

form AdS3 ×wM7 preserving N = (0, 2) supersymmetry. The concrete four-dimensional

N = 1 SCFTs discussed above arise from D-branes at the tip of conical Calabi-Yau man-

ifolds. This suggests that the only non-vanishing flux in the supergravity solutions of

interest is the self-dual 5-form. Thus, we search for solutions of the form

ds2
10 = L2

(
e2λds2

AdS3
+ ds2

M7

)
,

gsF(5) = L4 (1 + ∗10) dvolAdS3 ∧ F(2) ,
(3.1)

where F(2) is a 2-form onM7. The most general solution with these properties was analyzed

in [18, 24], where it was shown that the internal manifoldM7 must locally be a U(1) bundle

over a six-dimensional Kähler manifold, whose Kähler potential satisfies a fourth-order

nonlinear partial differential equation. Explicit solutions were further studied in [21, 22].

Here, rather than searching for explicit solutions for the six-dimensional base, motivated by

the field theory analysis we assume thatM7 is a five-dimensional fibration over a Riemann

surface with SU(2)×U(1)×U(1) isometry and derive a set of BPS and Bianchi equations

for this Ansatz. Of course, the final solution can be written in the form derived in [18, 24],

as we have checked.

When only the metric and 5-form flux are turned on (i.e. without any non-trivial axio-

dilaton or 3-form flux), the supersymmetry variations of the spin- 1
2 fermions in type IIB

supergravity vanish identically and the gravitino variation is given by10

δψµ = ∂µε+
1

4
ωµabΓ

abε+
i

192
Fµν1ν2ν3ν4Γν1ν2ν3ν4ε = 0 , (3.2)

where ε is a complex ten-dimensional spinor satisfying the chirality condition

Γ12345678910ε = ε.11 The self-dual 5-form F(5) = (1 + ∗10)G(5) must satisfy the Bianchi

identity dF(5) = 0, and we will make a choice for G(5) such that

dG(5) = d ∗10 G(5) = 0 . (3.3)

In principle, solutions to (3.2) and (3.3) are not necessarily solutions to the equations of

motion. In our setup, however, we have checked that solving (3.2) and (3.3) for the Ansatz

in (3.1) leads to solutions to the equations of motion.

Once we have constructed a globally well-defined supergravity solution of the

form (3.1), the central charge of the dual CFT is given by the Brown-Henneaux formula [2]

csugra =
3L

2G
(3)
N

, (3.4)

where G
(3)
N is the 3d Newton constant (see appendix B for conventions and explicit

formulas).

10We follow the conventions of [48].
11In our notation, we denote the time direction by x1, rather than the more conventional x0.
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The Ansatz. The field theory setup suggests that we should be looking for solutions in

which M7 is a five-dimensional fibration over a Riemann surface Σg:

M5
//M7

��
Σg

In addition we requireM5 — and therefore alsoM7 — to have SU(2)×U(1)×U(1) isom-

etry, corresponding to the flavor and R-symmetry of the dual field theory. We denote the

coordinates of AdS3 by {t, z, r}, the coordinates of Σg by {x1, x2}, and the remaining coor-

dinates by {y, θ, φ, β, ψ}. The most general Ansatz compatible with these requirements is12

ds2
10 = f1(y)2ds2

AdS3
+ f2(y)2ds2

Σg
+ f3(y)2ds2

S2 + f4(y)2dy2 + f5(y)2Dβ2

+ f6(y)2
(
Dψ + f7(y)Dβ

)2
,

G(5) = dvolAdS3 ∧
[
G1(y) dvolΣg +G2(y) dvolS2 +G3(y) dy ∧Dβ

+G4(y) dy ∧
(
Dψ + f7(y)Dβ

)]
,

(3.5)

where

ds2
AdS3

=
−dt2 + dz2 + dr2

r2
, ds2

Σg
= e2h(x1,x2)

(
dx2

1 + dx2
2

)
, ds2

S2 = dθ2 + sin2 θdφ2 ,

Dβ = dβ+c cos θ dφ+a2Ag(x1, x2) , Dψ = dψ + b cos θ dφ+a3Ag(x1, x2) , dAg = dvolΣg

and dvolX is the volume form on X (see appendix A for details). The real parameters

{b, c, a2, a3} are for the moment free but will be constrained by the BPS equations. We

choose 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π so that ds2
S2 is the metric on the round S2. The ranges of

the other coordinates will be determined by requiring that the metric is globally compact

and smooth and they depend on the details of the particular solutions. We will discuss this

in more detail for some concrete examples below. The parameters a2 and a3 specify the

fibration of the five-manifold over Σg and thus we expect them to be related to the flavor

flux b2 and the R-symmetry flux fixed to κ/2 by supersymmetry (2.10). Since we impose

an SU(2) isometry, our solutions will capture supergravity duals of the field theory setup

in section 2 with vanishing flavor flux b1 in (2.10).

In principle, a term of the form G5(y)Dβ ∧Dψ in the flux is allowed, but it is easy to

show that G5 = 0 follows from δψ5 = 0 (see appendix A). The function h(x1, x2) encodes

the constant curvature metric on the genus g Riemann surface and is given by

h(x1, x2) =


− log

1+x21+x22
2 for g = 0

1
2 log 2π for g = 1

− log x2 for g > 1 .

(3.6)

12Here we omit the overall scale factors of L and gs from (3.1). These must be reinstated when computing

the central charge.

– 20 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
0

We define the normalized curvature κ = 1 for g = 0, κ = 0 for g = 1, and κ = −1 for g > 1.

The symmetries of the problem suggest that we impose the following projectors on ε:

Γ12ε = −ε , Γ45ε = iε , Γ67ε = iε , Γ89ε = iε . (3.7)

As shown in appendix A, the BPS equations impose f6(y) = α2f1(y), with α2 a non-

vanishing constant. The function f4(y) in (3.5) can be freely adjusted by choosing an

appropriate coordinate y. It is convenient to make a choice such that

f5(y) =
1

f2
1 (y)f4(y)

. (3.8)

To simplify the BPS equations for the remaining functions f1, f2, f3, f4, f7 it is instructive

to rewrite them in terms of the functions P1,P2,P3,Q,P7, defined by:

f2
1 (y) =

√
P2(y)P3(y)

P1(y)
, f2

2 (y) =

√
P2(y)P1(y)

P3(y)
, f2

3 (y) =

√
P3(y)P1(y)

P2(y)
,

f2
4 (y) =

√
P1(y)P2(y)P3(y)

Q(y)
, f7(y) =

P7(y)

P2(y)P3(y)
. (3.9)

This form of the Ansatz combined with reality and positivity of the metric requires that

sign
(
P1(y)P2(y)P3(y)

)
= + , signQ(y) = + . (3.10)

The range of y will be restricted by the zeros of the function Q(y), between which Q(y) > 0.

We shall assume that y takes values in the finite range [y1, y2] between two such zeros and

that in this range13

P1(y) > 0 , P2(y) > 0 , P3(y) > 0 , y ∈ [y1, y2] . (3.11)

In what follows we will often omit the argument y in all the functions.

3.1 General solution

As shown in appendix A, the BPS equations imply that the functions P2,3 are linear in y:

P2 = a2 y + C2 , P3 = −c y + C3 , (3.12)

where C2,3 are two integration constants. The functions P1,7 are fixed in terms of P2,3

and Q by

P1 =
α2 (a3P3 − bP2 + P ′7)

2
, P7 =

4α1P2P3 −Q′

4α2
, (3.13)

where α1 is another integration constant14 and prime denotes derivative with respect to y.

For consistency of the BPS equations one must impose the constraints

c α1 + b α2 = −1

2
, a2 α1 + a3 α2 =

κ

2
. (3.14)

13Another option is that two of the three functions P1,2,3 are negative and the remaining one is positive.

However, by simple redefinitions one can choose them all to be positive. For instance, if P1,3 < 0 and

P2 > 0, one may redefine (P1,P3,P7)→ (−P1,−P3,−P7), which leaves the Ansatz invariant.
14As discussed in appendix A.2 it is always possible to set α1 = 0 by a coordinate transformation.
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Similarly, the 5-form flux in the Ansatz (3.5) is determined by:

G1 =
8P1P2 − 2κP2P3 + a2Q′

4P1
, G2 =

8P1P3 − 2P2P3 − cQ′

4P1
,

G3 =
2P2P3(P2 + κP3) + (cP2 − a2 P3)Q′

4P1P2P3
, G4 = −α2

(
P2P3

P1

)′
.

(3.15)

Thus, the metric and the 5-form are completely determined in terms of the integration

constants and the single (yet unknown) function Q. The final constraint is the Bianchi

identity (3.3), which implies a fourth-order ODE for the function Q. Remarkably this ODE

can be integrated twice into the following second-order ODE:

Q′2 − 2Q
(
Q′′ − 2(P2 + κP3)

)
+ P2P3

(
−4y2κ+ δ1 + δ2y

)
= 0 , (3.16)

where δ1,2 are new integration constants. Thus, the supergravity backgrounds we are after

are completely characterized by solutions to (3.16). Although we have not found the most

general solution to this equation, it is easy to see that the most general polynomial solution

is at most a cubic:

Q = q3 y
3 + q2 y

2 + q1 y + q0 . (3.17)

In this case the functions P1,P7 in (3.13) become linear and quadratic in y, respectively.

Specifically, we have

P1 = C1y + C0 , P2 = a2 y + C2 , P3 = −c y + C3 , P7 =
4α1P2P3 −Q′

4α2
, (3.18)

where C0 ≡ 1
4(C2 + C3κ− q2) and C1 ≡ 1

4(a2 − cκ− 3q3).

The solutions seem to depend on the parameters {α1, α2, a2, a3, b, c, κ, qi, C2, C3, δ1, δ2}.
However, these are not all independent. The parameters α1,2 can be set to a convenient

value by a choice of coordinates (see appendix A.2), and we consider a3, b fixed in terms

of other parameters by (3.14). Finally, plugging the expressions for Q,P2,P3 into the

Bianchi identity (3.16) leads to a number of nonlinear constraints among the remaining

parameters {a2, c, κ, qi, C2, C3, δ1, δ2}, with many different branches of solutions, depending

on the values of a2, c, κ. All the explicit supergravity solutions that we discuss below and

in appendix A.1 arise from different solutions to these constraints.

For the purpose of comparison with the field theory analysis of section 2, we are

interested in solutions describing Y p,q manifolds fibered over the Riemann surface. Of

course, our general Ansatz captures not only those solutions, but all solutions with (at

least) the same isometry, including for instance AdS3 × S3 × T 4. In this section we will

focus on the solutions relevant to the field theory analysis. Before we do this however it is

important to understand whetherM7 can have any conical singularities prior to specifying

any particular solution.
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3.1.1 Absence of conical singularities

One may worry that at zeros of the function Q the metric might be singular. It is easy to

see, however, that such potential singularities are at most conical, and in fact can always

be removed by an appropriate choice of coordinate periodicity. This follows from the form

of the Ansatz and the BPS equations and thus holds for any solution in this class. We first

make a linear change of variables β = w1β̃+w2ψ̃ and ψ = w3β̃+w4ψ̃ in (3.5), where w1,2,3,4

are real constants, and study the metric in the (y, β̃) subspace. As shown in appendix A.2:

ds2
2 =

√
P
Q

[
dy2 + w2 α2

2Q2

w2
2P1Q+ α2

2(w4P2P3 + w2P7)2

(
dβ̃ + . . .

)2]
, (3.19)

where we defined P ≡ P1P2P3 and w2 ≡ (w1w4 − w2w3)2. Near a zero of Q at y = yi we

expand Q(y) ≈ Q′(yi)(y − yi) and, defining the new radial variable

r2 = 2|y − yi| , (3.20)

we have

ds2
2 ≈

2
√
P(yi)

|Q′(yi)|

[
dr2 +

w2

4

Q′(yi)2(
w4P2(yi)P3(yi) + w2P7(yi)

)2 r2
(
dβ̃ + . . .

)2]
. (3.21)

To avoid conical singularities one has to ensure that the coefficient of r2(dβ̃ + . . .)2 is the

same at all zeros yi of Q, and choose the periodicity of β̃ accordingly. The functional

identity relating P7 to Q′ in (3.13) ensures that this is indeed the case; choosing

w4 = −α1 , w2 = α2 , (3.22)

and using (3.13), the 2d metric near a zero of Q becomes

ds2
2 ≈

2
√
P(yi)

|Q′(yi)|

[
dr2 + 4(α1w1 + α2w3)2r2(dβ̃ + . . .)2

]
. (3.23)

All conical singularities are avoided by fixing the periodicity of β̃ to be 2π and choosing,

say, w3 such that

α1w1 + α2w3 = ±1

2
. (3.24)

3.2 Y p,q on Σg>1 with universal twist

As we have seen on the field theory side, when the flavor flux b2 vanishes, i.e. for a twist

performed using the UV superconformal R-symmetry, the RG flow is special and universal.

It is natural to expect that b2 = 0 is mapped to a2 = 0 in our supergravity Ansatz. Indeed

in this case the supergravity solutions considerably simplify as we now show. After setting

a2 = 0 there are still various branches of solutions depending on the values of c and κ.
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Assuming κ 6= 0 and c 6= 0, one such solution is (see appendix A):

ds2
10 = ds2

AdS3
+

3

4
ds2

Σg>1
+

3|1− cy|
8

(dθ2 + sin2 θ dφ2)

+
9

8

|1− cy|
(2cy3 − 3y2 + a)

dy2 +
1

8

(2cy3 − 3y2 + a)

|1− cy|
(dβ + c cos θ dφ)2

+
1

4

(
dψ − cos θ dφ+ y (dβ + c cos θ dφ)− dx1

x2

)2

,

G(5) = dvolAdS3 ∧
(

2dvolΣg>1 +
|1− cy|

4
dvolS2 +

1

4
dy ∧ (dβ + c cos θ dφ)

)
,

(3.25)

where a is the only remaining integration constant. This solution exists only for κ = −1

(i.e. g > 1). The internal metric is precisely the metric on Y p,q written in canonical form

as in [12], fibered over Σg>1 in such a way that the fibration is non-trivial only along the

Reeb vector ∂ψ. This is a consequence of setting a2 = 0. As in the case of the standard

Y p,q, since we have assumed15 c 6= 0 it can be rescaled to 1 and 0 < a < 1. In fact, this

metric looks like those found in section 6.1 of [20], namely

ds2
10 = ds2

AdS3
+

3

4
ds2

Σg>1
+

9

4
d̃s

2

SE5
, (3.26)

with d̃s
2

SE5
a five-dimensional Sasaki-Einstein manifold fibered over Σg>1. In the case at

hand, SE5 = Y p,q. Using the general formulas for the supergravity central charge presented

in appendix B, the volume of the Y p,q manifolds computed in [12], and the AdS5/CFT4

relation asugra
4D = π3N2

4Vol(SE5) , the central charge of the two-dimensional CFT dual to the AdS3

solution in (3.26) can be written as

csugra =
32

3
(g− 1) asugra

4D . (3.27)

This is in perfect agreement with the universal field theory result (2.53) obtained by c-

extremization. This is strong evidence that the background in (3.25) describes the IR fixed

point of 4d Y p,q SCFTs with AdS5 gravity duals, placed on R2 × Σg>1 with a partial-

topological twist along the UV superconformal R-symmetry. In fact, in this case there

exists a consistent truncation of type IIB supergravity to five-dimensional minimal super-

gravity [49].16 Within the five-dimensional theory it is possible to construct the entire

RG flow connecting the AdS5 and AdS3 backgrounds at hand analytically [6, 15, 52]. We

believe that these supergravity and field theory results amount to very strong evidence for

the proposed duality.

3.3 Y p,0 on Σg>1 with baryonic flux

As seen on the field theory side, in the case of Y p,q quivers an interesting generalization

of the universal twist arises by turning on background baryonic and mesonic flavor fluxes.

Here we identify the gravity dual to Y p,0 with purely baryonic flux B (i.e., a2 = 0) discussed

in section 2.2.1.
15It is in fact possible to set c = 0 in this solution, corresponding to Y p,0 fibered over Σg>1. However, in

this case there is a more general solution which we discuss in section 3.3.
16Five-dimensional minimal gauged supergravity arises also from a consistent truncation of more general

type IIB [50] and M-theory [51] compactifications. Our universal flow should therefore also exist in these

constructions.
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Setting a2 = c = 0 in (3.16) and solving for the remaining parameters one finds that

only κ = −1 is allowed. After some coordinate redefinitions and an overall rescaling, the

metric and 5-form read

ds2
10 = ds2

AdS3
+
v2 + v + 1

4v
ds2

Σg>1
+
v2 + v + 1

4(v + 1)

(
dθ2 + sin2 θ dφ2 +

1

v

(
dw2 + sin2w dν2

))
+

1

4

(
dψ − cos θ dφ− cosw dν − dx1

x2

)2

,

G(5) = dvolAdS3 ∧
(

(v + 1)2

2v
dvolΣg +

1

2(v + 1)

(
v2 dvolS2

θφ
+

1

v
dvolS2

wν

))
, (3.28)

where v > 0 is a parameter controlling the relative size of Σg and the two S2’s in the metric.

As we show below, the parameter v also controls the baryonic flux in the dual field theory.

Taking the standard periodicities for the S2 coordinates θ, w ∈ [0, π] and φ, ν ∈ [0, 2π),

the geometry of M7 is a U(1) bundle over Σg × S2 × S2. Letting ψ ∼= ψ + 2π`ψ, the first

Chern classes are 2(1− g)/`ψ, 2/`ψ, and 2/`ψ, respectively. Thus, quantization imposes

ψ ∼= ψ +
4π

m
, (3.29)

with m an integer. In the case of maximal length, m = 1, this describes a fibration of the

conifold Y 1,0 ∼= T 1,1 corresponding to the well-studied Klebanov-Witten (KW) theory [40].

Higher values of m describe a Zm orbifold of this theory along ψ, but it is well-known that

only m = 2 (which corresponds to a fibration of F0) preserves supersymmetry. To obtain

Y p,0 we proceed as follows. We start with the conifold (m = 1) which is subjected to the

following identifications:

(φ, ν, ψ) ∼= (φ+ 2π, ν, ψ + 2π) ∼= (φ, ν + 2π, ψ + 2π) ∼= (φ, ν, ψ + 4π) , (3.30)

and perform a Zp orbifold along ν:(
φ, ν, ψ

) ∼= (
φ, ν +

4π

p
, ψ
)
. (3.31)

This orbifold does preserve supersymmetry: one can check in the original conifold geometry

— the CY3 given by the cone over T 1,1 — that the Killing spinor is invariant under ∂ν , as

is the holomorphic (3, 0)-form Ω. Notice that for p = 2 this is the same as a Z2 orbifold

along ψ, but not for higher values of p.

Using the formulas provided in appendix B we find that the central charge correspond-

ing to (3.28) is given by

csugra = 6p(g− 1)
v2 + v + 1

(1 + v)2
N2 . (3.32)

We claim that (3.28) describes the IR fixed point of the Y p,0 field theory placed on Σg>1

with baryonic flux, considered in section 2.2.1. The parameter v, as we shall show below,

is related to the baryonic flux B in the field theory. To make contact with the field

theory result (2.23) for the central charge, we need to discuss the topology of M7 in more

detail. The 2-forms dvolΣ, dvolθφ and dvolwν are closed and potentially in cohomology.
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However because of the existence of deψ, one linear combination vanishes in cohomology.

Correspondingly, there are three 5-cycles one can construct in the geometry: 1) the Y p,0

fiber of M7 at a fixed point on Σg; 2) fibrations of S3 (coming from Y p,0 ∼= S3 × S2) over

Σg, and two representatives of S3 are at fixed (θ, φ) or fixed (w, ν). By integrating ∗G5 on

those 5-cycles we obtain, respectively:

N = 4π3Λ
v2 + v + 1

v
, N1 =

g− 1

v + 1
N , N2 = (g− 1)

v

v + 1
N , (3.33)

where Λ ≡ 1
(2πls)4

L4

p gs
. Notice that

N1 +N2 = (g− 1)N , nB ≡ N2 −N1 = (g− 1)
v − 1

v + 1
N . (3.34)

The first relation is precisely the relation in homology, and dimH5(M7,R) = 2. We

interpret N as the number of D3-branes, while nB is proportional to the baryonic flux. We

note that nB is an even (odd) integer if N(g − 1) is even (odd). We also note that under

the replacement v → 1/v (which exchanges the two S2’s in (3.28)), one has N → N while

nB → −nB. The solution with v = 1, and hence nB = 0, corresponds to the universal

twist. Solutions with non-trivial baryonic flux have other values of v, fixed by

v =
(g− 1)N + nB
(g− 1)N − nB

. (3.35)

Finally, using (3.35) in (3.32) gives

csugra =
32

3
(g− 1) a(Y p,0) +

3p n2
B

2(g− 1)
, (3.36)

which matches precisely the field theory result (2.23) at large N . This provides strong

evidence that (3.28) is the gravity dual describing the IR limit of Y p,0 quiver gauge theories

placed on Σg>1, twisted by the superconformal R-symmetry and baryonic flux.

3.4 Y p,q on T 2 with baryonic flux

Another interesting solution is found in the case c 6= 0 (which we rescale to 1 here). For

simplicity we discuss only the case κ = 0 and, as in the previous subsection, we set the

mesonic flavor flux a2 to zero. Setting c = 1 and a2 = 0 in (3.16), solving the constraints

among the remaining parameters and performing some coordinate redefinitions, we find:

ds2
10 =

b√
ỹ
ds2

AdS3
+

√
ỹ

b
ds2
T 2 +

1

4b
√
ỹ
ds2
S2 +

b

4ỹ5/2
(
b2 − (1− ỹ)2

)dỹ2 (3.37)

+
b2−(1−ỹ)2

4b
√
ỹ(b2−1+2ỹ)

(dβ̃+cos θ dφ)2+
b2−1+2ỹ

4b
√
ỹ

(
dψ̃− ỹ

b2−1+2ỹ
(dβ̃+cos θ dφ)

)2

.

The 5-form is given in the appendix — see (A.93) and discussion below it. This solution

was found previously in [22] (section 4.1), where its central charge was computed and shown

to depend on four integers pDGK, qDGK,MDGK, NDGK and is given by

csugra =
6pDGKq

2
DGK(pDGK + 2qDGK)

(pDGK + qDGK)2
MDGKNDGK . (3.38)
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By making the identifications p = qDGK, q = pDGK + qDGK and BN2 = MDGKNDGK, the

central charge matches exactly our field theory result (2.39). This is strong evidence

that (3.37) is the gravity dual to the IR limit of Y p,q quiver gauge theories on T 2, twisted

by the superconformal R-symmetry and baryonic flux.

3.5 Solutions with flavor flux

Finally, we briefly comment on turning on the mesonic flavor flux, which is controlled by

the parameter a2. There are several branches of solutions to the Bianchi identity, which we

give in detail in appendix A.4. Here we give only the local form of the solution, leaving a

careful analysis of global properties and computation of the central charge for future work.

Assuming g > 1 and c 6= 0, the metric is given by

ds2
10 =

√
y(3 + 4a2y)

3(1− a)a2
2 − 4C1y

ds2
AdS3

+

√
(3 + 4a2y)

(
3(1− a)a2

2 − 4C1y
)

16y
ds2

Σg>1
(3.39)

+

√
y
(
3(1− a)a2

2 − 4C1y
)

3 + 4a2y
ds2
S2 +

√
y(3 + 4a2y)

(
3(1− a)a2

2 − 4C1y
)

4Q
dy2

+
4Q
√
y
(
3(1−a)a2

2−4C1y
)

y2(3+4a2y)3/2
Dβ2+

1

4

√
y(3+4a2y)

3(1−a)a2
2 − 4C1y

(
Dψ+

2Q′

y(3+4a2y)
Dβ

)2

,

where Dβ = dβ + cos θ dφ+ a2Ag, Dψ = dψ − cos θ dφ−Ag,

Q =
3(1− a)

(
7 + a2

2 + 8C1 − 4a2(1 + C1)
)

16(a2 − 1)2
+

3a2(1− a)(a2 − 4C1 − 5)

4(a2 − 1)
y

+
3

4

(
1− 4(a− 1)a2

2

)
y2 +

1

3
(1 + a2 − 4C1)y3 , (3.40)

where C1 = −1
4

(
1 + a2 + 2

√
1− a2 + a2

2

)
; here the parameter a is the only remaining

integration constant after solving the BPS equations and the Bianchi identity and a2 6= 1

controls the flavor flux. The 5-form flux, which we do not write here, is determined by the

formulas in appendix A.4.4. In the special case a2 = 0 the solution coincides with (3.25)

with c = 1 (up to a simple change of coordinates). The case a2 = 1 is a special branch (see

appendix A.4). For g = 1 there are two other branches of solutions, given in appendix A.4.3.

4 Discussion

In this paper we have argued for the existence of a vast landscape of two-dimensional

conformal field theories with N = (0, 2) supersymmetry. These theories arise through

twisted compactifications of four-dimensional N = 1 SCFTs on a smooth Riemann surface.

If the four-dimensional theory has a weakly-coupled supergravity dual, we can construct

the holographic RG flows which in many cases lead to the supergravity duals to the two-

dimensional IR fixed points. We have illustrated in detail how these general ideas work for

the case of Y p,q quiver gauge theories that arise from D3-branes probing toric Calabi-Yau

singularities. We have also argued that there is a universal RG flow across dimensions

connecting 4d N = 1 and 2d N = (0, 2) SCFTs. This flow bears a resemblance to the

universal flow between 4d N = 2 and N = 1 SCFTs discussed in [43].
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Our supergravity solutions for the general Y p,q theories suggest that the two-

dimensional SCFTs have, in general, large conformal manifolds. Some of the exactly

marginal deformations are easy to identify. For g > 1 there are the 3g − 3 complex

structure deformations of the Riemann surface17 (in the case g = 1 there is one complex

structure deformation). Besides, one can turn on a flat connection for the SU(2) flavor

symmetry group that does not receive magnetic flux. As discussed in [45], the SU(2) flavor

group leads to 3g− 3 independent complex moduli (one for g = 1). There might be other

marginal deformations, for instance coming from flat connections for the remaining U(1)

mesonic and U(1)B baryonic flavor symmetry depending on the flux turned on, as well as

other less manifest moduli. For g = 0 there are no complex structure deformations nor

flat connections, and it is plausible that the corresponding two-dimensional SCFTs are iso-

lated. This is surely an issue that deserves further study. Let us also remark that, although

we have not studied supergravity solutions in which the SU(2) flavor symmetry is broken,

the field theory analysis in section 2 suggests that there are two-dimensional SCFTs with

only U(1)1 × U(1)2 flavor and U(1)B baryonic symmetry for any g in some range of the

parameters {p, q, b1, b2, B}.
An interesting finding of our study is that the R-symmetry mixes along the flow not

only with mesonic flavor symmetries, but also with the baryonic symmetry. Thus, the

R-symmetry of the 2d CFTs is realized by an isometry of the background combined with a

gauge transformation of the RR potential. It would be interesting to study whether there

is a geometric construction to determine the precise combination of isometries and RR

transformations corresponding to the dual superconformal R-symmetry.

It is certainly desirable to have a more direct understanding of the 2d SCFTs uncovered

by our construction. One way of thinking about these two-dimensional systems is to start

from the four-dimensional theory on R2 × Σg with a partial topological twist on Σg and

write down the BPS equations following from the Lagrangian of the theory. Then the

two-dimensional theory at low energies will be a nonlinear sigma model on the moduli

space of solutions to these BPS equations. A similar analysis has been performed for

four-dimensional N = 2 SCFTs in [4, 10]. The difficulty in this approach stems from

the fact that the BPS equations for these four-dimensional theories are some appropriate

generalizations of the Hitchin equations on Σg and the moduli space of solutions is not

known. An alternative approach would be to find a suitable two-dimensional gauged linear

sigma model which in the IR describes the SCFTs of interest. It would be interesting to

explore also whether there is a connection with the recent work in [37, 54, 55].

The current work as well as the construction in [8] leads to the natural question of

whether one can establish a useful correspondence between 2d CFTs and some 2d TQFT

on the compactification Riemann surface. This correspondence should be in the spirit

of similar proposals that relate four- and three-dimensional SCFTs with two and three-

dimensional TQFTs, respectively [56–58]. In the same spirit it is natural to extend our

construction to Riemann surfaces with punctures.

17We conjecture that similarly to the analysis in [53] the Kähler moduli of the Riemann surface correspond

to irrelevant deformations.
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It would also be interesting to compute the T 2 × S2 partition function [59] for our

theories and see whether we can match the result with the supergravity calculation.

The field theory analysis should be accessible through the techniques developed recently

in [38, 59, 60].

The manifolds we constructed provide infinite-dimensional families of explicit 7d met-

rics of the type studied in [18, 24]. These manifolds seem to provide a natural general-

ization to Sasaki-Einstein geometry and it would be very interesting to understand their

geometry further.

We have restricted our supergravity analysis to AdS3 solutions with SU(2)×U(1)×U(1)

isometry. It should be possible to relax this assumption and look for solutions with lower

amount of symmetry. While this will be technically complicated since the BPS equations

will reduce to PDEs, rather than ODEs, our field theory analysis suggests that these PDEs

should have interesting solutions. Among them should be the solutions dual to Y p,q theories

on Σg with non-zero b1 and b2 flavor flux. In addition it is natural to expect that there

is a generalization of our analysis to the Lp,q,r quiver gauge theories which posses only

U(1)×U(1)×U(1) global symmetry [61–63].

The field theory calculation of the central charges of the two-dimensional SCFTs per-

formed in section 2 is exact while the supergravity results are valid only to leading order in

the rank of the gauge group, N . It will certainly be very interesting to understand how the

1/N2 corrections to the central charge arise on the supergravity side. This should amount

to understanding higher-curvature corrections to our type IIB supergravity backgrounds

along the lines of [64].

It would be nice to extend our analysis and find similar AdS2 solutions of eleven-

dimensional supergravity. These should fall in the classification of [65] (see also [66]) and be

dual to M2-branes at the tip of a conical singularity, wrapping a compact Riemann surface.

These solutions can be viewed as M2-brane black holes and the microscopic understanding

of their entropy will be facilitated by the techniques recently developed in [59, 67].
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A BPS equations and Bianchi identities

Assuming that only the metric and 5-form flux are turned on, the type IIB gravitino

variations read18

δψµ = ∂µε+
1

4
ωµabΓ

abε+
i

192
Fµν1ν2ν3ν4Γν1ν2ν3ν4ε = 0 . (A.1)

In our notation, we denote the ten dimensional coordinates by xµ, with µ = 1, . . . , 10, and

the signature is (−,+, · · · ,+). The ten-dimensional spinor ε satisfies the chirality condition

Γ12345678910ε = ε . (A.2)

The supersymmetry variation of the spin-1/2 fermion in type IIB supergravity vanishes

identically when there are no non-trivial dilaton-axion and 3-form fluxes turned on. In

addition there is the Bianchi identity for the self-dual 5-form flux F(5) = (1 + ∗10)G(5):

dF(5) = 0 ⇒ dG(5) = d ∗10 G(5) = 0 . (A.3)

The symmetries of the problem suggest that we impose the following projectors on the

spinor ε:

Γ12ε = −ε , Γ45ε = iε , Γ67ε = iε , Γ89ε = iε , (A.4)

which together with the ten-dimensional chirality condition implies

Γ310ε = −iε . (A.5)

The most general metric Ansatz compatible with our expectations is

ds2
10 = f1(y)2ds2

AdS3
+ f2(y)2ds2

Σg
+ f3(y)2ds2

S2 + f4(y)2dy2 + f5(y)2 (Dβ)2 (A.6)

+ f6(y)2 (Dψ + f7(y)Dβ)2 ,

G(5) = e1∧e2∧e3∧
[
g1(y)e4∧e5+g2(y)e6∧e7+g3(y)e8∧e9 + g4(y)e8∧e10 + g5(y)e9∧e10

]
where

ds2
AdS3

=
−dt2 + dz2 + dr2

r2
, ds2

Σg
= e2h(x1,x2)

(
dx2

1 + dx2
2

)
, ds2

S2 = dθ2 + sin2 θdφ2 ,

Dβ = dβ+c cos θdφ+a2Ag(x1, x2) , Dψ = dψ+b cos θdφ+a3Ag(x1, x2) , dAg = dvolΣg ,

and we defined the vielbein

e1 =
f1

r
dt , e2 =

f1

r
dz , e3 =

f1

r
dr e4 = f2 e

hdx1 , e5 = f2 e
hdx2 , (A.7)

e6 = f3 dθ , e7 = f3 sin θ dφ , e8 = f4 dy , e9 = f5Dβ , e10 = f6 (Dψ + f7Dβ) .

The function h(x1, x2) is defined in (3.6). We denote the volume forms by

dvolAdS3 =
1

r3
dt∧dz∧dr , dvolΣg = e2h(x1,x2)dx1∧dx2 , dvolS2 = sin θ dθ∧dφ . (A.8)

18We follow the conventions of [48].

– 30 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
0

In our normalization

vol(Σg) =

∫
Σg

dvolΣg =

{
4π|g− 1|, g 6= 1

2π, g = 1 .
(A.9)

Now we can use the gravitino variation in (A.1) along with the projectors in (A.2), (A.4)

to derive a set of differential equations for the unknown functions fi, gi appearing in the

Ansatz (A.6). Before writing out all the equations we show that g5 = 0. This follows from

the δψ5 component of the gravitino variation19

δψ5 =
x2

f2
∂x2ε+

1

8

[
4
f ′2
f2f4

− 2a2
f5

f2
2

− g4 − ig5

]
Γ49ε

− i
8

[
2
f6(a3 + a2f7)

f2
2

+ g1 − g2 − g3

]
Γ34ε = 0 . (A.10)

For the spinor of interest we should have ∂x2ε=0.20 Then the equation δψ5 =0 is of the form

iAΓ34ε+ (B + iC)Γ49ε =
[
−iA+ (B + iC)Γ39

]
ε = 0 , (A.11)

with {A,B,C} real and C = −g5/8. This equation implies A2−B2 +C2 = BC = 0, which

in turn implies C = 0 and thus g5 = 0 in order to have nontrivial solutions. From now on

we set g5 = 0 in the remaining equations. The explicit form of all gravitino variations is:

δψ1 =
r

f1
∂tε+

1

8

[
4

f1
− (g1 + g2 + g3)

]
Γ13ε− 1

8

[
4f ′1
f1f4

+ g4

]
Γ18ε , (A.12)

δψ2 =
r

f1
∂zε−

1

8

[
4

f1
− (g1 + g2 + g3)

]
Γ13ε+

1

8

[
4f ′1
f1f4

+ g4

]
Γ18ε , (A.13)

δψ3 =
r

f1
∂rε+

1

8
(g1 + g2 + g3)ε+

1

8

[
4f ′1
f1f4

+ g4

]
Γ38ε , (A.14)

δψ4 =
1

2f2eh
[2∂x1 − 2A1a2∂β − 2A1a3∂ψ + i∂x2h] ε+

1

8

[
−4

f ′2
f2f4

+ 2a2
f5

f2
2

+ g4

]
Γ59ε

+
1

8

[
2f6(a3 + a2f7)

f2
2

+ g1 − g2 − g3

]
Γ510ε , (A.15)

δψ5 =
1

2f2eh
[2∂x2 − 2A2a2∂β − 2A2a3∂ψ − i∂x1h] ε+

1

8

[
4
f ′2
f2f4

− 2a2
f5

f2
2

− g4

]
Γ49ε

− i

8

[
2
f6(a3 + a2f7)

f2
2

+ g1 − g2 − g3

]
Γ34ε , (A.16)

δψ6 =
1

f3
∂θε+

1

8

[
−4

f ′3
f3f4

−2c
f5

f2
3

+g4

]
Γ79ε+

1

8

[
−2

f6(cf7+b)

f2
3

−g1+g2−g3

]
Γ710ε, (A.17)

δψ7 =
1

f3 sin θ

[
∂φ + cos θ

(
−b∂ψ − c∂β − i

2

)]
ε+

1

8

[
4
f ′3
f3f4

+ 2c
f5

f2
3

− g4

]
Γ69ε

+
1

8

[
2
f6(cf7 + b)

f2
3

+ g1 − g2 + g3

]
Γ610ε , (A.18)

19One can also argue that g5 = 0 using the equations of motion.
20Here we assume that the metric on the Riemann surface is the constant curvature one and thus the

spinors do not depend on the coordinates on the Riemann surface. This assumptions could in principle be

relaxed but the general analysis is more involved. The results of [53] however suggest that the constant

curvature metric is capturing all interesting physics.
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δψ8 =

[
1

f4
∂yε+ 1

8g4ε

]
+

1

8

[
2
f6f
′
7

f4f5
− g1 − g2 + g3

]
Γ910ε , (A.19)

δψ9 =
1

f5

[
∂β − f7∂ψ − i

2

f ′5
f4
− i

4f
2
5

(
a2

f2
2

− c

f2
3

)
+ i

8f5g4

]
ε

− 1

8

[
2
f6f
′
7

f4f5
− g1 − g2 + g3

]
Γ810ε , (A.20)

δψ10 =

[
1

f6
∂ψ − i

4f6

(
(a3 + a2f7)

f2
2

− (cf7 + b)

f2
3

)
− i

8

(
2
f6f
′
7

f4f5
+ g1 + g2 + g3

)]
ε

− 1

8

[
4
f ′6
f4f6

+ g4

]
Γ810ε . (A.21)

The gravitino variations are of the form (A + B Γc1c2) ε = 0 for some real A and

B, c1 6= c2. If ε and Γc1c2ε are independent spinors (i.e. Γc1c2 is none of the projectors

appearing in A.4), then A = B = 0. Equipped with this fact we are ready to analyze the

gravitino variations in detail.

We first focus on the terms proportional to gamma matrices in δψµ; this leads to a

total of eight independent equations:

4− f1(g1 + g2 + g3) = 0 , (A.22)

−g1 + g2 + g3 −
2f6(a2f7 + a3)

f2
2

= 0 , (A.23)

g1 − g2 + g3 +
2f6(cf7 + b)

f2
3

= 0 , (A.24)

g4 +
4f ′1
f1f4

= 0 , (A.25)

g4 +
4f ′6
f4f6

= 0 , (A.26)

−2f6f
′
7

f4f5
+ g1 + g2 − g3 = 0 , (A.27)

−2a2f5

f2
2

+
4f ′2
f2f4

− g4 = 0 , (A.28)

2cf5

f2
3

+
4f ′3
f3f4

− g4 = 0 . (A.29)

From (A.22)–(A.26) we can algebraically solve for the functions gi:

g1 =
2

f1
− f6(a3 + a2f7)

f2
2

,

g2 =
2

f1
+
f6(b+ cf7)

f2
3

,

g3 = f6

(
a2f7 + a3

f2
2

− b+ cf7

f2
3

)
, (A.30)

g4 = − 4f ′6
f4f6

= − 4f ′1
f4f1

,
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and we also find

f6 = α2 f1 , (A.31)

with α2 a constant. From now on we consider the functions gi determined in terms of the

fi by (A.30). The remaining equations (A.27)–(A.29) read

2

f1
+ α2f1

(
−a3 − a2f7

f2
2

+
b+ cf7

f2
3

− f ′7
f4f5

)
= 0 , (A.32)

2f ′1
f1f4

+
2f ′2
f2f4

− a2f5

f2
2

= 0 , (A.33)

2f ′1
f1f4

+
2f ′3
f3f4

+
cf5

f2
3

= 0 . (A.34)

Now we turn to the equations arising from terms proportional to the identity in δψµ.

There are ten such equations in total. From (A.12), (A.13), (A.14), (A.16), part of (A.18),

and (A.19) one immediately concludes that

∂tε = ∂zε = ∂θε = ∂φε = 0 . (A.35)

In addition, we assume that ∂x1ε = ∂x2ε = 0. Then

ε =

(
f1(y)

r

)1/2

ε̃(β, ψ) , (A.36)

where ε̃(β, ψ) is a spinor that will be fixed shortly. In addition, we have the equations

(i∂x2h− 2a2A1∂β − 2a3A1 ∂ψ) ε = 0 , (A.37)

(−i∂x1h− 2a2A2∂β − 2a3A2 ∂ψ) ε = 0 , (A.38)

[−i− 2c∂β − 2b∂ψ] ε = 0 , (A.39)[
2

(
a2

f2
2

− c

f2
3

)
f5 − g4 +

4f ′5
f4f5

+
8i(∂β − f7∂ψ)

f5

]
ε = 0 , (A.40)[

4

f1
+

8i∂ψ
f6
− 2f6

(
−a3 − a2f7

f2
2

+
b+ cf7

f2
3

− f ′7
f4f5

)]
ε = 0 . (A.41)

Combining (A.32) and (A.41) implies ∂ψε = iα2 ε and from (A.39) we have

ε = ei(α1β+α2ψ)

(
f1(y)

r

)1/2

ε0 , (A.42)

where ε0 is a constant spinor obeying the projection conditions (A.2), (A.4) and

c α1 + b α2 = −1

2
. (A.43)
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Thus, we are left with the set of BPS equations

2f ′1
f1f4

+
2f ′2
f2f4

− a2f5

f2
2

= 0 , (A.44)

2f ′1
f1f4

+
2f ′3
f3f4

+
cf5

f2
3

= 0 , (A.45)

2

f1
+ α2f1

(
−a3 − a2f7

f2
2

+
b+ cf7

f2
3

− f ′7
f4f5

)
= 0 , (A.46)[

2

(
a2

f2
2

− c

f2
3

)
f5 − g4 +

4f ′5
f4f5

− 8(α1 − f7α2)

f5

]
ε = 0 , (A.47)

(i∂x2h− 2iA1(α1a2 + a3α2)) ε = 0 , (A.48)

(−i∂x1h− 2iA2(α1a2 + a3α2)) ε = 0 . (A.49)

It is convenient to choose the coordinate y such that

f2
1 f4f5 = D , (A.50)

where D is a constant. With this coordinate choice (A.44) and (A.45) simplify to

(f2
1 f

2
2 )′ = a2D , (f2

1 f
2
3 )′ = −cD . (A.51)

Let us analyze equations (A.48), (A.49). Taking the derivative of these equations

one has

2(a2α1 + a3α2)dAg = −(∂2
x1 + ∂2

x2)h dx1 ∧ dx2 . (A.52)

For g 6= 1 (i.e. κ 6= 0) the background R-symmetry flux is set to dA = dvolΣg = e2hdx1∧dx2

in order to preserve supersymmetry. From (3.6), (A.52) implies the consistency condition

a2 α1 + a3 α2 =
κ

2
. (A.53)

Thus equations (A.48), (A.49) imply

Ag 6=1 = κ (∂x2h dx
1 − ∂x1h dx2) , (A.54)

which is compatible with dAg = dvolΣg. Of course, the connection is defined up to gauge

transformations Ag → Ag + dλ. In the case g = 1, we can choose a gauge in which:

Ag=1 =
1

2π
x1dx2 . (A.55)

Up to this point the only assumptions we have made are the Ansatz (A.6), the projec-

tors (A.4) and that the spinor ε is independent of {x1, x2}.

Bianchi. In addition to the BPS equations there are a total of four Bianchi identities

from (A.3) which read:

∂y(g1f
3
1 f

2
2 )− a2g3f

3
1 f4f5 − g4f

3
1 f4f6(a2f7 + a3) = 0 , (A.56)

∂y(g2f
3
1 f

2
3 ) + cg3f

3
1 f4f5 + g4f

3
1 f4f6(cf7 + b) = 0 , (A.57)

∂y(f
2
2 f

2
3 g3f6) + f4f5f6(cg2f

2
2 − a2g1f

2
3 ) = 0 , (A.58)

∂y(g3f
2
2 f

2
3 f6f7)− ∂y(g4f

2
2 f

2
3 f5) + f4f5f6(a3g1f

2
3 − bg2f

2
2 ) = 0 . (A.59)

Here we have used dAg = dvolΣg to simplify the equations.
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A.1 General solution

To solve the BPS equations and Bianchi it is convenient to trade the functions f1,f2,f3,f4,f7

by the functions P1,P2,P3,Q,P7, defined by:

f2
1 (y) =

√
P2(y)P3(y)

P1(y)
, f2

2 (y) =

√
P2(y)P1(y)

P3(y)
, f2

3 (y) =

√
P3(y)P1(y)

P2(y)
,

f2
4 (y) = D2

√
P1(y)P2(y)P3(y)

Q(y)
, f7(y) =

P7(y)

P2(y)P3(y)
. (A.60)

Recall that f5, f6 are given by (A.50), (A.31), respectively. This form of the Ansatz

requires that

sign(P1(y)P2(y)P3(y)) = + , Q(y) > 0 . (A.61)

We assume that the range of interest for y ∈ [y1, y2] is finite and that in this range

P2(y), P3(y) > 0 , y ∈ [y1, y2] , (A.62)

which also implies that P1(y) > 0 in this range. From now on we omit the argument in

the functions P,Q. From (A.51) it follows that

P2 = a2Dy + C2 , P3 = −cD y + C3 . (A.63)

The remaining BPS equations are (A.46) and (A.47), which using (A.60) can be used to

write P1,7 in terms of the known functions P2,3 and the (yet undermined) function Q as:

P1 =
α2 (a3DP3 − bDP2 + P ′7)

2D
, P7 =

4Dα1P2P3 −Q′

4Dα2
. (A.64)

Thus, given a functionQ all local solutions to the BPS equations are given by (A.60), (A.63),

(A.64) and are characterized by the parameters {a2, a3, b, c, C2, C3, D, α1, α2, κ}, subject to

the constraints (A.43), (A.53). Not all these parameters are physical, e.g, by a rescal-

ing of y one can set D = 1, and other parameters may also be absorbed by coordinate

transformations. We will analyze this in more detail below.

The only equations that remain to be solved are the Bianchi identities (A.56)–(A.59).

The first three of these equations are automatically satisfied, assuming the BPS equations.

Thus, the only remaining equation is (A.59), which using the BPS equations can be written

as a fourth order differential equation for the function Q and has the form

Bianchi = B2 × B4 = 0 , (A.65)

with B2 = Q′′ − 2D2(P2 + κP3) and B4 depends on up to fourth order derivatives of Q.

There are two branches: B2 = 0 and B4 = 0. The former leads to

Q =
D3

3
y3(a2 − cκ) +D2y2(C2 + C3κ) + γ2y + γ1 , (A.66)

where γ1,2 are constants. However, using this solution in (A.64) implies P1 = 0 which is

clearly singular. Thus, the solutions of interest arise from the branch B4 = 0. This is a
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fourth order differential equation for Q, which is rather complicated. However, it has the

remarkable property that it can be integrated twice into the second order equation:21

1

P2P3

(
Q′2 − 2Q(Q′′ − 2D2(P2 + κP3))

)
− 4D4y2κ+ δ1 + δ2y = 0 , (A.67)

where δ1,2 are integration constants.22 Thus, general solutions to the BPS equations and

Bianchi are characterized completely by solutions to this differential equation. Although

we have not found the most general solution to (A.67), it is straightforward to show that

the most general polynomial solution can be at most cubic, i.e.

Q =

3∑
i=0

qi y
i . (A.68)

Plugging (A.68) into (A.67) leads to a system of five algebraic equations, which determine

the four coefficients qi plus one constraint among the remaining parameters. The generic

solution can be written in the iterative form23

q3 = −2

3

(
−a2 + cκ±

√
a2

2 + a2κc+ c2κ2

)
,

q2 = C2 + κC3 +
−4a2C2 + a2cδ2 + 4C3cκ

2

4(a2 − cκ− q3)
,

q1 =
a2cδ1 + δ2(cC2 − a2C3) + 4C2C3κ− 4(C2 + κC3)q2

4a2 − 4cκ− 6q3
, (A.69)

q0 = − C2C3δ1 + q2
1

4(C2 + C3κ− q2)
,

together with the constraint

a2c(a2+cκ)δ1 + (a2
2C3−C2c

2κ)δ2 + 4κ
(
2C2C3(a2+κc) + cC2

2 + a2κC
2
3

)
16(a2 + cκ)2

(
a2

2 + a2cκ+ c2κ2
) = 0 . (A.70)

Since the denominator in (A.70) vanishes for the special values a2 = −κc or a2 = 0 = c or

a2 = 0 = κ, these cases must be analyzed separately.

We note that when Q is a cubic polynomial, the function P1 given in (A.64) becomes

linear:

P1 =
1

4
(C2 + C3κ− q2) +

1

4
(a2 − cκ− 3q3)y , (A.71)

and P7 becomes a quadratic function of y.

Finally, we give the expression for the 5-form G(5). Using (A.30) and the expression

for P7 in (A.64) and the relations (A.43), (A.53), we find:

G(5) = dvolAdS3∧[G1(y)dvolΣg+G2(y)dvolS2+G3(y)dy∧Dβ+G4(y)dy∧(Dψ+f7(y)Dβ)]

(A.72)

21We note that the differential equation below has the form Q(y)′2−2Q(y)Q(y)′′+2Q(y)F (y)+G(y) = 0.

Defining q(y) = Q(y)1/2, it becomes q(y)′′ − G(y)

4q(y)3
− F (y)

2q(y)
= 0.

22It is worth pointing out that a similar differential equation controls a class of supersymmetric AdS3

solutions of eleven-dimensional supergravity studied in [20].
23We have used a rescaling of the y coordinate to set D = 1 for convenience.
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where

G1(y)=
1

4DP1
(8DP1P2−2DκP2P3+a2Q′) , G2(y)=

1

4DP1
(8DP1P3−2DP2P3 − cQ′) ,

G3(y)=
2DP2P3(P2+κP3)+(cP2 − a2P3)Q′

4P1P2P3
, G4(y)=−α2

(
P2P3

P1

)′
. (A.73)

This completes our analysis of the local solutions to the BPS equations and Bianchi iden-

tities. It is worth emphasizing that despite the fact that our backgrounds preserve only 4

out of the 32 supercharges of eleven-dimensional supergravity we have managed to solve

the BPS equations in full detail analytically.

A.2 Linear transformations on (β, ψ)

Let us focus on the two-dimensional part of the metric (A.6) corresponding to the

(β, ψ) plain:

ds2
2 = f5(y)2 (dβ + c cos θdφ+ a2Ag)

2

+ f6(y)2

(
dψ + b cos θdφ+ f7(y)

(
dβ + c cos θdφ+

a2

x2
dx1

)
+ a3Ag

)2

, (A.74)

and perform the linear transformation

(dβ, dψ)> =W (d̃β, d̃ψ)> , W ≡

(
w1 w2

w3 w4

)
. (A.75)

The Killing vectors transform as (∂β , ∂ψ) = (∂̃β , ∂̃ψ)W−1. It is easy to see that the metric

takes the same form as in (A.74), i.e.

d̃s
2
2 = f̃5(y)2

(
dβ̃ + c̃ cos θdφ+ ã2Ag

)2

+ f̃6(y)2

(
dψ̃ + b̃ cos θdφ+ f̃7(y)

(
dβ̃ + c̃ cos θdφ+

ã2

x2
dx1

)
+ ã3Ag

)2

, (A.76)

where the new parameters are given by

(ã2, ã3)> =W−1 (a2, a3)> , (c̃, b̃)> =W−1 (c, b)> , (A.77)

and the functions by

f̃2
5 = (detW)2 f2

5 f
2
6

w2
2f

2
5 + f2

6 (w4 + w2f7)2
,

f̃2
6 = w2

2f
2
5 + f2

6 (w4 + w2f7)2 ,

f̃7 =
w1w2f

2
5 + f2

6 (w3 + w1f7)(w4 + w2f7)

w2
2f

2
5 + f2

6 (w4 + w2f7)2
.

(A.78)

These expressions are useful in proving the absence of conical singularities, as shown in

section 3.1.1.
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Setting α1 = 0. Let us perform a linear coordinate transformation as above with

w1 = w4 = 1 , w2 = 0 , (A.79)

while keeping w3 arbitrary for now. One can see that

ã2 = a2 , c̃ = c , f̃2
5 = f2

5 , f̃2
6 = f2

6 . (A.80)

Moreover one has

ã3 = a3 − w3a2 , b̃ = b− w3c , f̃7 = f7 + w3 . (A.81)

Note that a3 and b appear in the differential BPS equations and Bianchi identity only

through the combinations

a3 + a2f7 = ã3 + ã2f̃7 , b+ cf7 = b̃+ c̃f̃7 . (A.82)

Thus the only effect of the arbitrary constant w3 on the system of differential equations is

in the expression

α1 − α2f7 = (α1 + α2w3)− α2f̃7 . (A.83)

The phase of the spinor is also modified:

α1β + α2ψ = (α1 + α2w3)β̃ + α2ψ̃ . (A.84)

Finally, the algebraic constraints from the BPS equations read

a3α2 + a2α1 = ã3α2 + ã2(α1 + α2w3) =
κ

2
, bα2 + cα1 = b̃α2 + c̃(α1 + α2w3) = −1

2
.

(A.85)

Since we assume α2 6= 0 (as we must, since f6 = α2f1) we can always choose the arbitrary

constant w3 = −α1/α2, thus eliminating the constant α1. We conclude from this analysis

that we can safely set α1 = 0 from the beginning, which is often convenient. Finally, by

a rescaling of the coordinate ψ it is possible to set α2 to any nonzero value. Note that in

this argument we have not made any assumptions on the solutions to the BPS equations

or the values of the parameters {a2,3, b, c}.

A.3 Solutions with no flavor flux: a2 = 0

Setting a2 = 0 leads to many simplifications. Nonetheless, the system is still quite rich and

there are four cases that must be analyzed separately: (i) κ 6= 0, c = 0; (ii) κ 6= 0, c 6= 0;

(iii) κ = 0, c = 0 and; (iv) κ = 0, c 6= 0.

A.3.1 Case (i): κ 6= 0, c = 0

One finds that only κ = −1 is allowed. After some coordinate redefinitions and an overall

rescaling of the metric, the solution reads

ds2
10 = ds2

AdS3
+
v2 + v + 1

4v
ds2

Σg>1
+
v2 + v + 1

4(v + 1)

(
dθ2 + sin2 θdφ2 +

1

v
(dw2 + sin2wdν2)

)
+

1

4

(
dψ − cos θdφ− coswdν − dx1

x2

)2

,

G(5) = dvolAdS3 ∧
(

(v + 1)2

2v
dvolΣg>1 +

1

2(v + 1)

(
v2 dvolS2

θφ +
1

v
dvolS2

wν

))
, (A.86)
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where v > 0 is a real parameter. This is the solution discussed in some detail in section 3.3.

For the special value v = 1 the metric of the solution can be written as

ds2
10 = ds2

AdS3
+

3

4
ds2

Σg>1
+

9

4
ds2
T 1,1 , (A.87)

where ds2
T 1,1 is the metric for the conifold with a Reeb vector fibered over Σg. This solution

is an example of the solutions discussed in section 6.1 of [20] for P1 × P1 as the Kähler-

Einstein base.

A.3.2 Case (ii): κ 6= 0, c 6= 0

There are two branches, corresponding to q3 6= 0 and q3 = 0.

Branch q3 6= 0: fibered Y p,q. In this branch, only κ = −1 is allowed. We set α1 = 0

and α2 = 1/2. After an appropriate coordinate redefinition and overall rescaling the

background takes the form:

ds2
10 = ds2

AdS3
+

3

4
ds2

Σg>1
+

3|1− cy|
8

(dθ2 + sin2 θdφ2)

+
9

8

|1− cy|
(2cy3 − 3y2 + a)

dy2 +
1

8

(2cy3 − 3y2 + a)

|1− cy|
(dβ + c cos θdφ)2

+
1

4

(
dψ − cos θdφ+ y (dβ + c cos θdφ)− dx1

x2

)2

, (A.88)

G(5) = dvolAdS3 ∧
(

2dvolΣg>1 +
|1− cy|

4
dvolS2 +

1

4
dy ∧ (dβ + c cos θdφ)

)
. (A.89)

This solution is again of the form presented in section 6.1 of [20], i.e.

ds2
10 = ds2

AdS3
+

3

4
ds2

Σg>1
+

9

4
ds2
Y p,q , (A.90)

where ds2
Y p,q is the local from of the metric on Y p,q (fibered over Σg>1), written in canonical

form [12]. We discuss this solution in section 3.2.

Branch q3 = 0: AdS3 × S3 × T 4. In this case, we find that only κ = 1 is allowed

and we denote this sphere by S̃2, with coordinates (θ̃, φ̃). After an appropriate change of

coordinates we find

ds2
10 = ds2

AdS3
+

1

4
ds2
S̃2 +

y

4
ds2
S2 +

y

4(a+y2)
dy2+

(a+ y2)

4y
(dβ+cos θdφ)2+

1

4
(dψ̃−cos θ̃dφ̃)2 ,

G(5) = dvolAdS3 ∧
(
y

2
dvolS2 − 1

2
dy ∧ (dβ + cos θdφ)

)
, (A.91)

where we defined ψ̃ = ψ+β. This solution corresponds to AdS3×S3×T 4 (with only 5-form

flux turned on), for any value of a. This is easy to see in the case a = 0; defining y = ρ2 the

terms ds2
S2 , dρ2 and the (Dβ)2 combine into the metric on T 4 while the Riemann surface

and the (Dψ)2 term combine into an S3, and the solution is AdS3 × S3 × T 4. One can

check that for generic a the four-dimensional metric has vanishing Riemann tensor and is
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therefore always T 4. Usually the AdS3 × S3 × T 4 background of type IIB supergravity

is associate with the D1-D5 system and thus it has only 3-form flux. Here we see the

same solution sourced only by 5-form flux. The two backgrounds should be related by two

T-duality transformations.

A.3.3 Case (iii): c = κ = 0

After appropriate coordinate redefinitions, we find

ds2
10 = ds2

AdS3
+

1

4
ds2

Σg=1
+

1

4
ds2
S2 +

dy2

4y
+
y

4
dβ2 +

1

4

(
dψ − cos θdφ− 1

2
dβ

)2

,

G(5) = dvolAdS3 ∧
(

1

2
dvolΣg=1 +

1

2
dy ∧ dβ

)
. (A.92)

Again, by the simple change of coordinates y = ρ2 one sees that the genus-one Riemann

surface combines with dρ2 and dβ2 into a T 4 and the S2 combines with the (Dψ)2 part to

give an S3. Thus, the solution is again AdS3 × S3 × T 4 with 5-form flux.

A.3.4 Case (iv): κ = 0, c 6= 0

After appropriate redefinitions and simple coordinate transformations24 the metric and

5-form flux read:

ds2
10 =

b√
ỹ
ds2

AdS3
+

√
ỹ

b
ds2

Σg=1
+

1

4b
√
ỹ
ds2
S2 +

b

4ỹ5/2(b2 − (1− ỹ)2)
dỹ2

+
(b2−(1−ỹ)2)

4
√
ỹb3

(dβ+cos θdφ)2+
b

4
√
ỹ

(
dψ−cos θdφ+

b2+ỹ−1

b2
(dβ+cos θdφ)

)2

,

G(5) = dvolAdS3 ∧
(

2dvolΣg=1 +
1

2
dvolS2 − ỹ − 1

2ỹ2
dỹ ∧ (dβ + cos θdφ) (A.93)

+
b2

2ỹ2
dỹ ∧

(
dψ − cos θdφ+

b2 + ỹ − 1

b2
(dβ + cos θdφ)

))
.

This coincides with the solution in section 4.1 of [22]. To see this one must make the linear

change of coordinates:

β = −β̃ + ψ̃ , ψ = β̃ . (A.94)

Using the formulae in appendix A.2 it is easy to see that the metric reads:

ds2
10 =

b√
ỹ
ds2

AdS3
+

√
ỹ

b
ds2

Σg=1
+

1

4b
√
ỹ
ds2
S2 +

b

4ỹ5/2(b2 − (1− ỹ)2)
dỹ2 (A.95)

+
(b2−(1−ỹ)2)

4b
√
ỹ(b2−1+2ỹ)

(dβ̃+cos θdφ)2+
b2−1+2ỹ

4b
√
ỹ

(
dψ̃− ỹ

b2−1+2ỹ
(dβ̃+cos θdφ)

)2

,

which coincides exactly with the solution found in [22], where its central charge was also

computed. We discuss this solution further in section 3.4.

24For the y coordinate the change of variables is of the form ỹ = γ/y+δ, with δ, γ some specific constants.
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A.4 Solutions with flavor flux: a2 6= 0

Here there are also a few special cases: 1) a2 = −κc 6= 0 and; 2) c = 0.

A.4.1 Case c = 0

When solving the Bianchi identity there are two branches: q3 = 0 and q3 6= 0. The latter,

however is inconsistent as it leads to P1/P2 < 0, in contradiction with the assumption that

all Pi > 0. The former branch leads to

ds2
10 = ds2

AdS3
+ y ds2

Σg
+

1

4
ds2
S2 +

y

κy2 + λ
dy2 +

κy2 + λ

y
(dβ +Ag)

2 +
1

4
(dψ − cos θdφ)2 ,

G(5) = dvolAdS3 ∧ (2y dvolΣg + 2dy ∧ (dβ +Ag)) . (A.96)

Here κ = {0,±1} and λ is a real parameter and y > 0. For κ = {1, 0,−1}, positivity of the

internal manifold requires for y2 > −λ, λ > 0, and y2 < λ, respectively. The connection Ag

is given in (A.54) for κ = ±1 and for κ = 0 in (A.55). The case κ = −1 is not topologically

allowed since the Riemann surface Σg shrinks to zero size at y = 0. One can see that the

cases κ = {1, 0} lead again to AdS3 × S3 × T 4 for any value of λ.

A.4.2 Case a2 = −κc 6= 0

There are two branches: branch A with q3 = −2
3cκ; and branch B with q3 = −2cκ.

Branch A. For this branch, we find that only κ = 1 is allowed and after appropriate

coordinate redefinitions

ds2
10 = y ds2

AdS3
+

3

8

(
ds2

Σg=0
+ ds2

S2

)
+

9y

4(4y3 − 9y2 + 6ay − a2)
dy2

+
4y3−9y2+6ay−a2

16y3
(dβ+cos θdφ−Ag)

2+y

(
dψ+

a−3y

4y2
(dβ+cos θdφ−Ag)

)2

,

G(5) = dvolAdS3 ∧
(
a

4
dvolΣg=0 +

a

4
dvolS2 +

(a− 3y)

2y
dy ∧ (dβ + cos θdφ−Ag)

− 2ydy ∧
(
dψ +

a− 3y

4y2
(dβ + cos θdφ−Ag)

))
. (A.97)

This matches the solution presented in [19], with KE4 = S2 × S2. We were not able to

identify a candidate dual field theory to this solution.
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Branch B. After appropriate coordinate redefinitions we find that in this branch the

metric reads:

ds2
10 =

√
y(y − 1)κ

a− y
ds2

AdS3
+

√
y(a− y)κ

y − 1
ds2

Σg 6=1
+

√
(y − 1)(a− y)κ

y
ds2
S2

+

√
y(y − 1)(a− y)κ

(2y − 1)(a− 2ay + y2)
dy2

+
(2y − 1)(a− 2ay + y2)

√
y(y − 1)(a− y)κ

y2(y − 1)2
(dβ + cos θdφ− κAg)

2

+
1

4

√
y(y − 1)κ

a− y

(
dψ′ +

2(a− 2ay + y2)

y(y − 1)
(dβ + cos θdφ− κAg)

)2

, (A.98)

where a is a real parameter and the flux reads:

G(5) = dvolAdS3 ∧
(
a− y2

a− y
dvolΣg 6=1 −

(a− 2y + y2)κ

a− y
dvolS2

+
(2y − 1)(a− 2ay + y2)κ

y(y − 1)(a− y)
dy ∧ (dβ + cos θdφ− κAg) (A.99)

+
(a− 2ay + y2)κ

2(a− y)2
dy ∧

(
dψ′ +

2(a− 2ay + y2)

y(y − 1)
(dβ + cos θdφ− κAg)

))
.

The connection Ag is given in (A.54). For the metric to be positive definite one needs25

κ = 1 :
(

0<y<a+
√
a(a−1), a≤0

)
or

(
a<y<1,

1

2
<a<1

)
or

(
1

2
< y < 1, a ≤ 1

2

)
κ = −1 :

(
1

2
< y < a,

1

2
< a ≤ 1

)
or

(
1

2
< y < a−

√
a(a− 1), a > 1

)
.

We note that for κ = 1 there are no real zeroes for the metric functions; thus the solutions

for κ = 1 are not compact and we must take κ = −1. In the case κ = −1 and a = 1 the

space is topologically AdS3 × Σg>1 × S5. This is easy to see; setting a = 1 the metric can

be written as

ds2
10 =

√
y
[
ds2

AdS3
+ ds2

Σg>1
+ ds2

5

]
, (A.100)

and with the change of variables sin2 µ = 1−y
y the five-dimensional metric reads

1

4
ds2

5 =
dµ2

(1 + sin2 µ)2
+

1

4
sin2 µ

(
ds2
S2 + cos2 µ (dβ + cos θdφ+Ag)

2
)

+
1

16

(
dψ′ − 2 sin2 µ (dβ + cos θdφ+Ag)

)2
. (A.101)

This metric looks like the metric on S5 written as a U(1) bundle over CP2. Due to the

denominator in the dµ2 term this is not the Einstein metric on S5. Since we have a2 6= 0 we

25For κ = −1 one also finds the possibilities (a +
√
a(a− 1) < y, a > 1) or (y > 1, a ≤ 1). However, we

exclude these since the warp factor is not bounded.

– 42 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
0

believe that this supergravity solution is dual to the Y p,p theory compactified on Σg with

some particular value of the background flavor flux b2 and possibly non-zero baryonic flux.

It will be of course interesting to understand better this supergravity background, compute

the supergravity value of the central charge and compare to the expressions in section 2.2.3.

A.4.3 Case κ = 0, c 6= 0

There are two branches:

Branch A: q3 = 0. In this branch the metric reads

ds2
10 =

√
y(b− a2y)

b− 1− a2y
ds2

AdS3
+

1

4

√
(b− a2y)(b− 1− a2y)

y
ds2
T 2 +

1

4

√
y(b− 1− a2y)

b− a2y
ds2
S2

+
dy2
√

(b− a2y)(b− 1− a2y)

4y3/2
+

√
y(b− 1− a2y)

4(b− a2y)3/2
Dβ2 (A.102)

+
1

4

√
y(b− a2y)

b− 1− a2y

(
Dψ +

1

b− a2y
Dβ

)2

,

where Dψ = dψ − cos θdφ,Dβ = dβ + cos θdφ+ a2A and the 5-form flux:

G(5) =
1

2
dvolAdS3 ∧

((
1 + b− a2y −

b− 1

b− 1− a2y

)
dvolT 2

−
(

1 +
a2y

(b− a2y)(b− 1− a2y)

)
dy ∧Dβ (A.103)

− 1

2

(
1− b− 1

b− 1− a2y

)
dy ∧ (Dψ +

1

b− a2y
Dβ)

)
.

Branch B: q3 6= 0. We find:

ds2 =

√
y(y − 1)

q0 − a2y
ds2

AdS3
+

3

4

√
(q0 − a2y)(y − 1)

y
ds2
T 2 +

3

4

√
y(q0 − a2y)

a2
2(y − 1)

ds2
S2

+
9dy2

√
y(y − 1)(q0 − a2y)

4w(y)
+
w(y)

√
y(y − 1)(q0 − a2y)

4a2
2y

2(y − 1)2
Dβ2 (A.104)

+
1

4

√
y(y − 1)

q0 − a2y

(
Dψ − w′(y)

6a2y(y − 1)
Dβ

)2

,

where q0 is a parameter and we assumed a2>0, Dψ=dψ−cos θdφ, Dβ=dβ+cos θdφ+a2A

and defined

w(y) = q0(2− 3y)2 + a2y
2(3− 4y) , (A.105)

and the flux is given by

G(5) = dvolAdS3 ∧
(
q0 + a2y(y − 2)

2(q0 − a2y)
dvolT 2 +

q0 − a2y
2

a2(q0 − a2y)
dvolS2

+
(q0 − 2q0y + a2y

2)

2(q0 − a2y)2

(
−1 +

w′(y)

6a2y(y − 1)

)
dy ∧Dβ (A.106)

+
(q0 − 2q0y + a2y

2)

2(q0 − a2y)2
dy ∧

(
Dψ − w′(y)

6a2y(y − 1)
Dβ

))
,
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which can also be written as

G(5) = dvolAdS3∧
(
q0 + a2y(y − 2)

2(q0 − a2y)
dvolT 2 +

q0 − a2y
2

a2(q0 − a2y)
dvolS2

+
(q0 − 2q0y + a2y

2)

2(q0 − a2y)2
dy ∧ (Dψ −Dβ)

)
. (A.107)

We leave the analysis of the global properties of the solutions in branches A and B above

for future work.

A.4.4 Case κ 6= 0, c 6= 0

Here we assume κ = −1 and c 6= 0, which we rescale to 1. As discussed in appendix A.2

it is always possible to set α1 = 0 and α2 = 1
2 by a coordinate transformation, which we

do. Since c 6= 0 we may shift y to set C3 = 0. The parameter C2 can be similarly rescaled

away, thus we can set C2 to any nonzero numerical value (we set C2 = 3
4). The Bianchi

identity leads to a number of constraints among the remaining parameters. Finally, the

solution is given by

P1 =
3

4
(a− 1)a2

2 + C1y , P2 =
3

4
+ a2y , P3 = −y , P7 = −1

2
Q′ , (A.108)

Q =
−3(a− 1)(7 + a2

2 + 8C1 − 4a2(1 + C1))

16(a2 − 1)2
− 3a2(a− 1)(a2 − 4C1 − 5)

4(a2 − 1)
y (A.109)

+
3

4

(
1− 4(a− 1)a2

2

)
y2 +

1

3
(1 + a2 − 4C1)y3 ,

with C1 = −1
4(1 + a2 + 2

√
1− a2 + a2

2). Explicitly, the metric reads

ds2
10 =

√
y(3+4a2y)

3(1−a)a2
2−4C1y

ds2
AdS3

+
1

4

√
(3+4a2y)(3(1−a)a2

2−4C1y)

y
ds2

Σg>1
(A.110)

+

√
y(3(1− a)a2

2 − 4C1y)

3 + 4a2y
ds2
S2 +

1

4

√
y(3 + 4a2y)(3(1− a)a2

2 − 4C1y)

Q
dy2

+
4Q
√
y(3(1−a)a2

2−4C1y)

y2(3+4a2y)3/2
Dβ2+

1

4

√
y(3+4a2y)

3(1−a)a2
2−4C1y

(
Dψ+

2Q′

y(3+4a2y)
Dβ

)2

,

where Dβ = dβ + cos θ+ a2Ag, Dψ = dψ− cos θ−Ag. The 5-form, which we do not write

explicitly here, is given by (A.72) and (A.73). Setting a2 = 0 and sending y → −3
8(y + 1)

and redefining the parameter a, the metric coincides with the solution with no flavor

flux (A.88), with c scaled to 1. It is also possible to take the limit a2 → 1. Taking this

limit and performing the change of variables y → 3/4(y − 1) and changing ψ → ψ − β the

metric coincides with (A.98) with κ = −1. Thus, this solution contains all previous cases.

Case a = 1. Let us consider the local form of the metric more carefully for a = 1. In

this case the cubic Q becomes

Q =
3

4y1
y2(y1 − y) , y1 ≡ −

9

8(1 + a2 +
√

1 + a2
2 − a2)

. (A.111)
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There is a negative root at y = y1 and a doubly-degenerate root at y = 0. It is convenient

to go to a basis (β̃, ψ̃) in which it is manifest that there are no conical singularities,

provided β̃ period 2π. As discussed in section 3.1.1 this is accomplished by a coordinate

transformation mixing (ψ, β). Setting α1 = 0, α2 = 1/2 and c = −b = 1 we may choose

w1 = −1, w2 = 1
2 , w3 = 1, w4 = 0, i.e.

β =
1

2
ψ̃ − β̃ , ψ = β̃ . (A.112)

It is also convenient to make the coordinate transformation

y =
2y1 sin2 µ

1 + sin2 µ
, µ ∈ [0, π/2] , (A.113)

in terms of which Q =
3y21 cot2 µ

(1+csc2 µ)3
, with zeros at µ = {0, π/2}. In these coordinates the

metric reads

ds2
10 = f2

1

[
ds2

AdS3
+ |C1|ds2

Σg>1
+ 32|C1y1|

3 ds2
5

]
, (A.114)

with

ds2
5 =

dµ2

(1+sin2 µ)2
+

1

4g(µ)
sin2 µ

(
ds2
S2 +

1

f(µ)
cos2 µ (dβ̃+cos θdφ+Ag)

2

)
(A.115)

+
3

8|C1|
f(µ)

16 g(µ)

(
dψ̃

2
+ (a2 − 1)Ag −

(
9 + 8y1

3

)
sin2 µ

f(µ)
(dβ̃ + cos θdφ+Ag)

)2

,

where we defined the functions

f(µ) ≡ 1 +

(
1 +

8y1

3

)
sin2 µ , g(µ) ≡ 1 +

(
1 +

8a2y1

3

)
sin2 µ , (A.116)

and the overall warp factor is given by f2
1 =

(
3g(µ)

4|C1|(1+sin2 µ)

)1/2
. We note that for the

special value a2 = 1 then y1 = −3
8 , C1 = −1 and g(µ) = f(µ) = 1 and the metric coincides

with (A.101) with ψ̃ = 2ψ′. Similalry to the metric in (A.101) the metric in (A.115) looks

like a squashed metric on S5 written as a U(1) bundle over CP2. We believe that this

background is dual to the Y p,p theory on Σg with general value of the flavor flux b2 which

is related to the value of the supergravity parameter a2. However we leave a global analysis

of this background and a supergravity calculation of the central charge for future work.

B General formulas for the central charge

Here we provide some useful normalizations and formulas for computing the gravitational

central charge for the class of solutions considered in the paper.

Consider a metric and flux of the form

ds2 = L2e2λds2
AdS3

+ L2ds2
M7

, gsF(5) = L4(1 + ∗10)G(5) . (B.1)

The quantization condition for F(5) is (here we follow the conventions of [19])

N(D) =
1

(2π`s)4

∫
D
F(5) , (B.2)
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where D is any five-cycle in M7 and N(D) is an integer. The type IIB supergravity

action is

SIIB =
1

16πG
(10)
N

∫
d10x

√
−g(10)R(10) + . . . , (B.3)

where the dots stand for other terms in the action that will not be important for our

discussion. The normalization we use (see for example appendix D in [68]) is such that

16πG
(10)
N = (2π)7g2

s`
8
s , (B.4)

where gs is the string coupling constant and `s is the string length. The central charge of

the dual CFT is given by the Brown-Henneaux formula [2]

csugra =
3L

2G
(3)
N

, (B.5)

where L is the same as in (B.1) and G
(3)
N is the 3d Newton constant which can be read off

from the 3d effective gravitational action

S3d =
1

16πG
(3)
N

∫
d3x

√
−g(3)R(3) + . . . . (B.6)

The goal now is to find G
(3)
N by reducing the type IIB action on the manifold M7. To do

this one has to plug the metric (B.1) in the type IIB action (B.3) which leads to26

1

16πG
(3)
N

=
L7

16πG
(10)
N

∫
d7x
√
gM7 e

λ , (B.7)

and therefore

csugra =
3L8

2G
(10)
N

∫
d7x
√
gM7 e

λ . (B.8)

Now we specialize these general expressions to the Ansatz in equation (3.5). Using (3.9)

we have ∫
d7x
√
gM7 e

λ =

∫
d7x
√
gΣg

√
gS2f1f

2
2 f

2
3 f4f5f6

= α2 (4π)2 (g− 1)∆β∆ψ

∫ y2

y1

dyP1(y) ,
(B.9)

where ∆β = 2π`β and ∆ψ = 2π`ψ denote the periods of the corresponding coordinate

and the integral over y is between two roots y1, y2 of Q, between which the function Q
is positive.

Now we look at the quantization condition for the 5-form F(5). In general there can be

several five-cycles in M7, one of them being the manifold M5, spanned by {θ, φ, y, β, ψ},
itself. The 5-form flux through M5 corresponds to the number N of D3-branes. The only

term that contributes to this integral is∫
M5

(
1 + ∗10G(5)

)
=

∫
M5

g1f
2
3 f4f5f6 dvolS2 ∧ dy ∧ dβ ∧ dψ . (B.10)

26Under a conformal transformation g̃ = e2λg,
√
g̃R̃ = e(D−2)λR

√
g+ . . ., where D is the dimension; this

leads to the factor eλ in the integrand.

– 46 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
0

Using (A.30), the expression for P7 in (A.64), and the relations (A.43), (A.53) we can write

g1f
2
3 f4f5f6 =

α2

4
∂y

(
2y − Q

′

P2

)
. (B.11)

Thus, ∫
M5

(
1 + ∗10G(5)

)
= πα2 ∆β∆ψ

(
2y − Q

′

P2

) ∣∣∣y2
y1
. (B.12)

Thus, the quantization condition reads

N =
1

(2π`s)4

L4

gs
πα2 ∆β∆ψ S(y1, y2) , S(y1, y2) ≡

(
2y − Q

′

P2

) ∣∣∣y2
y1
. (B.13)

Putting everything together, the central charge is given by:

csugra =
192(g− 1)N2

α2 `β`ψ

1

S(y1, y2)2

∫ y2

y1

dyP1(y) . (B.14)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [INSPIRE].

[2] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic

Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104

(1986) 207 [INSPIRE].

[3] E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].

[4] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4-D SYM to

2-D σ-models, Nucl. Phys. B 448 (1995) 166 [hep-th/9501096] [INSPIRE].

[5] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B

463 (1996) 420 [hep-th/9511222] [INSPIRE].
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