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The modified Korteveg–de Vries equation on the line is considered. The
initial function is a discontinuous and piece-wise constant step function, i.e.
q(x, 0) = cr for x ≥ 0 and q(x, 0) = cl for x < 0, where cl, cr are real
numbers which satisfy cl > cr > 0. The goal of this paper is to study the
asymptotic behavior of the solution of the initial-value problem as t → ∞.
Using the steepest descent method we deform the original oscillatory matrix
Riemann–Hilbert problem to explicitly solvable model forms and show that
the solution of the initial-value problem has different asymptotic behavior
in different regions of the xt plane. In the regions x < −6c2

l t + 12c2
rt and

x > 4c2
l t + 2c2

rt the main term of asymptotics of the solution is equal to
cl and cr, respectively. In the region (−6c2

l + 12c2
r)t < x < (4c2

l + 2c2
r)t

the asymptotics of the solution takes the form of a modulated hyper-elliptic
wave generated by an algebraic curve of genus 2.
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1. Introduction

The inverse scattering transform method (IST) [1–3] used for initial-value
problems for nonlinear integrable equations is proved to be very successful. It
allows to obtain a large number of very interesting results in various areas of
mathematics and physics. The IST method was further developed by P. Deift and
X. Zhou [4–6]. They proposed to use the steepest descent method for solving the
oscillatory matrix Riemann–Hilbert problems. This method appeared to give
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a nice possibility to study asymptotic behavior of the solutions of initial-value
problems as well as many other problems of the theory of completely integrable
nonlinear equations (sf. [7–26]), random matrix models, orthogonal polynomials
and integrable statistical mechanics [27–29] without a priori assumptions.

The initial value problems for nonlinear integrable equations with step-like
initial functions have a very long history. More about these problems can be
found in [2, 30–46], and also in the references therein. Most results were obtained
for the initial-value problems associated with self-adjoint Lax operators. First the
step-like problems with non self-adjoint Lax operators were considered by Bikbaev
[40, 41] and later by Novokshenov [43]. In their papers, the main attention was
paid to the studying of the complex Whitham deformations, which allowed them
to describe the long-time asymptotic behavior of the solution. However, for the
present time, asymptotic formulas as well as their justifications seem to be not
sufficiently clear and rigorous. Most recently an implementation of the rigorous
RH scheme to the focusing nonlinear Schrödinger equation with non self-adjoint
Lax operator was presented in [47–49].

In the short note [40], the initial-value problem

qt + 6q2qx + qxxx = 0 (1.1)

q(x, 0) = q0(x) →
{

cr, x → +∞,

cl, x → −∞ (1.2)

was considered. In [40], the solution of the problem is described by a modulated
two-gap solution of the mKdV equation that corresponds to the long-time dy-
namics of the compression wave when −6c2

l t + 12c2
rt < x < 4c2

l t + 2c2
rt that has

not been proved up to now. The goal of this paper is to justify this statement
in a transparent form by using a suitable matrix Riemann–Hilbert problem and
corresponding steepest descent method. The central point of the paper is to
describe in an explicit form the so-called g-function mechanism which allows to
deform the original oscillatory matrix Riemann–Hilbert problem to the solvable
model forms. We emphasize that our formula for a hyper-elliptic wave is written
in an explicit form via theta functions.

2. Jost Solutions of Lax Equations

To study the initial value problem (1.1)–(1.2) we use the Lax representation of
the mKdV equation [2, 3] in the form of the over-determined system of differential
equations

Φx + ikσ3Φ = Q(x, t)Φ, (2.1)

Φt + 4ik3σ3Φ = Q̂(x, t, k)Φ, (2.2)
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where Φ = Φ(x, t, k) is a 2× 2 matrix-valued function,

σ3 :=
(

1 0
0 −1

)
, Q(x, t) :=

(
0 q(x, t)

−q(x, t) 0

)
,

Q̂(x, t, k)

= 4k2Q(x, t, k)− 2ik(Q2(x, t, k) + Qx(x, t, k))σ3 + 2Q3(x, t, k)−Qxx(x, t, k),

and k ∈ C. Equations (2.1) and (2.2) are compatible if and only if the func-
tion q(x, t) satisfies the mKdV equation (1.1). To apply the inverse scattering
transform to the problem (1.1)–(1.2) we have to define the matrix valued Jost
solutions of the Lax equations. We define them as the solutions of the compatible
equations (2.1) and (2.2) satisfying the asymptotic conditions

Φr(x, t, k) = Er(x, t, k) + o (1) , x → +∞, Im k = 0, (2.3)

Φl(x, t, k) = El(x, t, k) + o (1) , x → −∞, Im k = 0. (2.4)

Here El(x, t, k), Er(x, t, k) are the solutions of the linear differential equations

Ex + ikσ3E = QcE,

Et + 4ik3σ3E = Q̂c(k)E,

where c = cl and c = cr, respectively, and the constant matrix coefficients Qc

and Q̂c(k) are as follows:

Qc :=
(

0 c
−c 0

)
, Q̂c(k) = 4k2Qc − 2ikQ2

cσ3 + 2Q3
c .

We choose the solutions El(x, t, k), Er(x, t, k) in the form

El,r(x, t, k) =
1
2




κl,r(k) +
1

κl,r(k)
κl,r(k)− 1

κl,r(k)

κl,r(k)− 1
κl,r(k)

κl,r(k) +
1

κl,r(k)




e−ixXl,r(k)σ3−itΩl,r(k)σ3 ,

where

Xl,r(k) =
√

k2 + c2
l,r , Ωl,r(k) = 2(2k2 − c2

l,r)Xl,r(k) , κl,r(k) = 4

√
k − icl,r

k + icl,r
.

(2.5)
The branches of the roots are fixed by the conditions Xl,r(1) > 0, κl,r(∞) = 1.
Then the functions Xl,r(k) and κl,r(k) are analytic in C\[ic,−ic], where c = cl

or c = cr, respectively.
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Solutions (2.3), (2.4) can be represented in the forms

Φl(x, t, k) = El(x, t, k) +

x∫

−∞
Kl(x, y, t)El(y, t, k)dy, Im k = 0, (2.6)

Φr(x, t, k) = Er(x, t, k) +

∞∫

x

Kr(x, y, t)Er(y, t, k)dy, Im k = 0, (2.7)

where the kernels Kl,r(x, y, t) are sufficiently smooth and decrease to zero rapidly
as x + y → ±∞. Omitting the details of the proof of these representations, we
formulate below the properties of the solutions.

The matrices Φl(x, t, k) and Φr(x, t, k), defined by (2.6), (2.7) and their columns
Φlj(x, t, k) and Φrj(x, t, k), j = 1, 2, have the following properties:

1) determinants are equal to the identity matrix:
detΦl,r(x, t, k) = 1;

2) analyticity:
Φr1(x, t, k) is analytic in k ∈ Dr− := C− \ [0,−icr],
Φr2(x, t, k) is analytic in k ∈ Dr+ := C+ \ [0, icr],
Φl1(x, t, k) is analytic in k ∈ Dl+ := C+ \ [0, icl],
Φl2(x, t, k) is analytic in k ∈ Dl− := C− \ [−icl, 0];

3) continuity:
Φr1(x, t, k) is continuous for k ∈ Dr− ∪ (−icr, icr)− ∪ (−icr, icr)+,
Φr2(x, t, k) is continuous for k ∈ Dr+ ∪ (−icr, icr)− ∪ (−icr, icr)+,
Φl1(x, t, k) is continuous for k ∈ Dl+ ∪ (−icl, icl)− ∪ (−icl, icl)+,
Φl2(x, t, k) is continuous for k ∈ Dl− ∪ (−icl, icl)− ∪ (−icl, icl)+,
where (−icl,r, icl,r)− and (−icl,r, icl,r)+ are the left- and the right-hand sides
of the interval (−icl,r, icl,r);

4) symmetries:

Φ22(x, t, k) = Φ11(x, t, k), Φ22(x, t,−k) = Φ11(x, t, k),
Φ12(x, t, k) = −Φ21(x, t, k), Φ12(x, t,−k) = −Φ21(x, t, k),
Φjl(x, t,−k) = Φjl(x, t, k), j, l = 1, 2,

where Φ(x, t, k) denotes Φl(x, t, k) or Φr(x, t, k);

5) large k asymptotics:

Φr1(x, t, k)e+ikx+4ik3t

Φl2(x, t, k)e−ikx−4ik3t

}
= 1 + O

(
1
k

)
, k →∞, Im k ≤ 0,
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Φl1(x, t, k)e+ikx+4ik3t

Φr2(x, t, k)e−ikx−4ik3t

}
= 1 + O

(
1
k

)
, k →∞, Im k ≥ 0;

6) jump:

Φ−(x, t, k) = Φ+(x, t, k)
(

0 i
i 0

)
, k ∈ (ic,−ic),

where Φ(x, t, k) and c denote Φl(x, t, k) and cl or Φr(x, t, k) and cr, respec-
tively, and Φ±(x, t, k) are the non-tangential boundary values of matrix
Φ(x, t, k) from the left (−) and from the right (+) of the downward-oriented
interval (−ic, ic).

The matrices Φl(x, t, k) and Φr(x, t, k) are solutions of equations (2.1) and
(2.2). Hence they are linear dependent, i.e.,there exists the independent of x, t
matrix

T (k) = Φ−1
r (x, t, k)Φl(x, t, k), k ∈ R, (2.8)

which is defined for those k for which ImXr(k) = 0. Some elements of this matrix
have an extended domain of definition. Indeed, using (2.8), we can find

T11(k) = det(Φl1, Φr2),
T21(k) = det(Φr1,Φl1),
T12(k) = det(Φl2, Φr2),
T22(k) = det(Φr1,Φl2).

Then the above properties of the solutions Φr(x, t, k) and Φl(x, t, k) imply:

• T11(k) is analytic in k ∈ C+\[0, icl] and has a continuous extension to
(0, icl)−

⋃
(0, icl)+;

• T22(k) is analytic in k ∈ C−\[0, icl] and has a continuous extension to
(−icl, 0)−

⋃
(−icl, 0)+;

• T21(k) is continuous in k ∈ (−∞, 0)
⋃

(0,−icl)−
⋃

(−icl, 0)+
⋃

(0, +∞);

• T12(k) is continuous in k ∈ (−∞, 0)
⋃

(0, icl)−
⋃

(icl, 0)+
⋃

(0, +∞),

where, as before, the signs − and + denote the left- and the right-hand sides of
the intervals;

• T22(k) = T11(k), T22(−k) = T11(k),

• T12(k) = −T21(k), T12(−k) = −T21(k),

• Tjk(−k) = Tjk(k), j, k = 1, 2.
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Denote
a(k) = T11(k),

b(k) = T21(k).

Define the reflection coefficient

r(k) =
b(k)
a(k)

.

It has the property
r(−k) = r(k).

The columns of the matrices Φl and Φr satisfy the following jump conditions:

7)
(Φl1)−(x, t, k)

a−(k)
− (Φl1)+(x, t, k)

a+(k)
= f1(k)Φr2(x, t, k), k ∈ (icr, icl);

8)
(Φl2)−(x, t, k)

a−(k)
− (Φl2)+(x, t, k)

a+(k)
= f2(k)Φr1(x, t, k), k ∈ (−icr,−icl),

where

f1(k) =
i

a−(k)a+(k)
, k ∈ (0, icl), f2(k) = −f1(k), k ∈ (−icl, 0).

3. The Basic Riemann–Hilbert Problem

The scattering relation (2.8) between the matrix-valued functions Φl(x, t, k)
and Φr(x, t, k) and jump conditions 6, 7, 8 can be rewritten in terms of the
Riemann–Hilbert problem. To do this, define the matrix-valued function

M(ξ, t, k) =





(
Φl1(x, t, k)

a(k)
eitθ(k,ξ), Φr2(x, t, k)e−itθ(k,ξ)

)
, k ∈ C+\[0, icl],

(
Φr1(x, t, k)eitθ(k,ξ),

Φl2(x, t, k)

a(k)
e−itθ(k,ξ)

)
, k ∈ C−\[−icl, 0],

(3.1)
where x = 12ξt and θ(k, ξ) = 4k3 + 12kξ (ξ = x/12t). Below we restrict our
consideration to the simplest shock problem where the initial function is discon-
tinuous and piece-wise constant (pure step function):

q0(x) =

{
cr, x ≥ 0,

cl, x < 0.
(3.2)
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Then

a(k) =
1
2

(
κ(k) +

1
κ(k)

)
, b(k) =

1
2

(
κ(k)− 1

κ(k)

)
, r(k) =

κ2(k)− 1
κ2(k) + 1

(3.3)

are analytic in k ∈ C\ ([−icl,−icr] ∪ [icl, icr]), since the function κ(k) :=
κl(k)
κr(k)

(see (2.5)) is analytic in this domain. The transition coefficient a−1(k) is bounded
in k ∈ C+\[icl, icr] because the function a(k) equals zero nowhere, and hence the
set of eigenvalues of the linear problem (2.1) is empty. We have that f1(k) ≡
f2(k), and so we define f(k) := f1(k) = f2(k). We also have

f(k) = r−(k)− r+(k), k ∈ (−icl,−icr) ∪ (icr, icl). (3.4)

k
r

ic

r
ic-

l
ic-

l
ic

Fig. 1. Oriented contour Σ.

Let us define the oriented contour Σ = R ∪ (icl,−icl) as in Fig. 1. Then the
matrix (3.1) solves the next Riemann–Hilbert problem:

• the matrix-valued function M(ξ, t, k) is analytic in the domain C \ Σ;

• M(ξ, t, k) is bounded in the neighborhood of the branching points icl, icr,
−icl, −icr and at the origin (k = 0);

• M−(ξ, t, k) = M+(ξ, t, k)J(ξ, t, k), k ∈ Σ \ {0},
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where

J(ξ, t, k) =
(

1 r(k)e−2itθ(k,ξ)

−r(k)e2itθ(k,ξ) 1 + |r(k)|2
)

, k ∈ R\{0}, (3.5)

=
(

1 0
f(k)e2itθ(k,ξ) 1

)
, k ∈ (icr, icl), (3.6)

=
(

1 f(k)e−2itθ(k,ξ)

0 1

)
, k ∈ (−icr,−icl), (3.7)

=
(

ir(k) ie−2itθ(k,ξ)

f(k)e2itθ(k,ξ) −ir(k)

)
, k ∈ (0, icr), (3.8)

=
( −ir(k) f(k)e−2itθ(k,ξ)

ie2itθ(k,ξ) ir(k)

)
, k ∈ (0,−icr); (3.9)

• M(ξ, t, k) = I + O(k−1), k →∞,

where r(k) = −r(k̄) = −r(−k) is given in (3.3), and f(k) in (3.4).
If the initial function is arbitrary step-like, then a(k) may have zeroes in

the domain of analyticity. In this case the matrix M(ξ, t, k) is meromorphic and
residue relations between the columns of the matrix M(ξ, t, k) must be added.

In what follows we suppose that the solution q(x, t) of the shock problem
(1.1)–(1.2) with the pure step initial function (3.2) does exist. The above Rie-
mann–Hilbert problem gives q(x, t) in the form

q(x, t) = 2i lim
k→∞

k[M(x/12t, t, k)]12, (3.10)

where [M(x/12t, t, k)]12 is the appropriate entry of the matrix M(x/12t, t, k).

4. Long-Time Asymptotic Analysis
of the Riemann–Hilbert Problem

The jump matrices J(ξ, t, k) in (3.5)–(3.9) depend on exp{±2itθ(k, ξ)}. The
phase function θ(k, ξ) and the signature table of its imaginary part play a very
important role. For a vanishing initial function the phase function θ(k, ξ) allows
to use successfully the steepest descent method for oscillatory RH problem [5]
when the conjugation contour Σ coincides with the real axis R. For a non-
vanishing initial function, the phase function θ(k, ξ) does not allow to carry out
the asymptotic analysis of the RH problem because the contour Σ contains the
segment [icl,−icl] which imposes extra (bad) properties of the phase function
(indeed, e2itθ(k,ξ) grows exponentially). Therefore, we have to change the phase
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function θ(k, ξ) with a new one. In what follows we will use the phase function
g(k, ξ) which takes different forms in different regions.

A. Construction of the phase function

1. Regions ξ < −c2
l

2
+ c2

r and ξ >
c2
l

3
+

c2
r

6
. The asymptotic analysis used

for studying the asymptotic behavior in these regions is similar to those given
in [23, 25, 26]. Therefore we only mention that the suitable phase functions are
given by the formulas

g(k, ξ) = 12ξXcl
(k) + 2(2k2 − c2

l )Xcl
(k), ξ >

c2
l

3
+

c2
r

6
,

g(k, ξ) = 12ξXcr(k) + 2(2k2 − c2
r)Xcr(k), ξ < −c2

l

2
+ c2

r ,

where Xc(k) =
√

k2 + c2 is holomorphic outside the segment [ic,−ic]. We obtain
the following

Theorem 4.1. For t → ∞ and x > (4c2
l + 2c2

r)t the solution of the problem
(1.1)–(1.2) with the initial pure step function (3.2) takes the form

q(x, t) = cr + O(e−Ct),

where C > 0 is some positive constant.

Theorem 4.2. For t →∞ and x < (−6c2
l +12c2

r)t the solution of the problem
(1.1)–(1.2) with the initial pure step function (3.2) takes the form

q(x, t) = cl + O(t−1/2).

In what follows we will deal only with the

2. Region −c2
l

2
+ c2

r < ξ <
c2
l

3
+

c2
r

6

(
(−6c2

l +12c2
r)t < x < (4c2

l +2c2
r)t

)
. In this

region we use the function g(k, ξ) with the following properties:
(1) g(k, ξ) is analytic in the domain k ∈ C\[icl,−icl];
(2) ∃ lim

k→∞
(g(k, ξ)− θ(k, ξ)) = g0(ξ) ∈ C;

(3) the set {k : Im g(k, ξ) = 0} divides the complex plane into four connected
open sets and contains necessarily the set R ∪ [icl, id] ∪ [icr,−icr] ∪ [−id,−icl],
where d = d(ξ) ∈ [icl, icr] is some function of ξ.

We look for such a function in the form

g(k, ξ) =

k∫

icl

12k(k2 + µ2)(k2 + d2)dk

w(k, ξ)
, w(k, ξ) =

√
(k2 + c2

l )(k
2 + d2)(k2 + c2

r) ,
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where function w(k, ξ) is positive on the positive part of the real axis and analytic
in k ∈ C\ ([icl, id] ∪ [icr,−icr] ∪ [−id,−icl]). Here unknown numbers d and µ
have to be determined as the functions of ξ. The integration contour is chosen to
have no intersection with the segment [icl,−icl]. It is easy to see that g(k, ξ) ∈ R
if k lies on the left- or right-hand side of the segment [icl, id]. To satisfy the
requirement g(k, ξ) ∈ R, if k lies on the left- or right-hand side of [icr,−icr] ∪
[−id,−icl], we have to choose such numbers µ and d that

∫ id

icr

dg(k, ξ) = 0 and
∫ −icr

−id
dg(k, ξ) = 0. Due to the symmetry of dg(k, ξ) under the change of variable

k 7→ −k, we can see that the last two requirements are equivalent to each other
and can be written as follows:

d∫

cr

y(y2 − µ2)
√

d2 − y2dy√
(c2

l − y2)(y2 − c2
r)

= 0. (4.1)

This formula defines µ = µ(d) as a strictly increasing function on the segment
[cr, cl], and

µ(cr) = cr , µ(cl) =

√
c2
l + 2c2

r

3
. (4.2)

Indeed, by expressing µ in d through formula (4.1) and then by taking the
first derivative of µ2(d), we find

(
µ2

)′
d

= d

d∫

cr

ρ(y)h1(y)dy

d∫

cr

ρ(y)h2(y)dy −
d∫

cr

ρ(y)h1(y)h2(y)dy

d∫

cr

ρ(y)dy




d∫

cr

h1(y)h2(y)ρ(y)dy




2 ,

where we denote

ρ(y) =
y√

(c2
l − y2)(d2 − y2)(y2 − c2

r)
,

h1(y) = y2,

h2(y) = d2 − y2 .

Let us note that all the three functions ρ(.), h1(.), h2(.) are positive on the
segment [cr, d], moreover, h1(.) is increasing on the segment and h2(.) is decreasing
on the segment. Therefore we can use
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Lemma 4.1. Let ρ(.), h1(.), h2(.) be positive functions on the segment
[a, b] ⊂ R such that the integrals of their combinations ρ(y), ρ(y)h1(y), ρ(y)h2(y),
ρ(y)h1(y)h2(y) are convergent in proper or improper sense. Let also assume that
h1 is the increasing function on the segment, and h2 is decreasing function. Then

d∫

cr

ρ(y)h1(y)dy

d∫

cr

ρ(y)h2(y)dy −
d∫

cr

ρ(y)h1(y)h2(y)dy

d∫

cr

ρ(y)dy ≥ 0.

We will prove this lemma in the Appendix.
Now we want to satisfy the requirement (2) lim

k→∞
(g(k, ξ)− θ(k, ξ)) ∈ C, which

is fulfilled if dg(k, ξ)−dθ(k, ξ) = O(k−2)dk, as k →∞, is fulfilled. Since dθ(k, ξ) =
12(k2 + ξ)dk and dg(k, ξ) =

[
12k2 − 6(c2

l + c2
r − d2 − 2µ2) + O(k−2)

]
dk as k →

∞, we need

ξ +
c2
l + c2

r

2
= µ2 +

d2

2
. (4.3)

Equations (4.2) yield that µ2(d) +
d2

2
− c2

l + c2
r

2
varies over the segment

[
−c2

l

2
+ c2

r,
c2
l

3
+

c2
r

6

]
when d varies over the segment [cr, cl]. So, from (4.3) we

get that for any ξ ∈
[
−c2

l

2
+ c2

r,
c2
l

3
+

c2
r

6

]
there exists a single d = d(ξ) ∈ [cr, cl]

such that (4.1) and (4.3) are fulfilled. Equality (4.3) implies that d = d(ξ) is
a continuous function. Thus, the function g(k, ξ) is completely defined and it has
the property
(2a) lim

k→∞
(g(k, ξ)− θ(k, ξ)) = 0

which follows from the existence of the limit and the relations below:

g(k, ξ)− θ(k, ξ) ∈ iR , k ∈ (icl,+i∞) ;

g(k, ξ)− θ(k, ξ) ∈ R , k ∈ R .

Besides,
(4) g−(k, ξ) + g+(k, ξ) = 0 , k ∈ (icl, id) ∪ (icr,−icr) ∪ (−id,−icl);
(5) g−(k, ξ)− g+(k, ξ) = Bg(ξ) , k ∈ (id, icr) ∪ (−icr,−id) , where

Bg(ξ) = 2

icl∫

id

dg+(k, ξ) = 2

−icl∫

−id

dg+(k, ξ) > 0. (4.4)

The signature table of the imaginary part of the function g(k, ξ) is given in Fig. 2.
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Fig. 2. The signature table of Im g(k, ξ).

3. Changing of the phase function. As the phase function θ(k, ξ) is not
suitable now, the Riemann–Hilbert problem for the matrix M(ξ, t, k) has to be
considered with a new phase function g(k, ξ). Let us define the new matrix-
function

M (1)(ξ, t, k) = M(ξ, t, k)G(1)(ξ, t, k),

where G(1)(ξ, t, k) = eit(g(k,ξ)−θ(k,ξ))σ3 . Then the function M (1)(ξ, t, k) solves the
RH problem

M
(1)
− (ξ, t, k) = M

(1)
+ (ξ, t, k)J (1)(ξ, t, k), k ∈ Σ1 := Σ, M (1)(ξ, t, k) → I, k →∞,

where

J (1)(ξ, t, k) =
(

1 r(k)e−2itg(k,ξ)

−r(k)e2itg(k,ξ) 1 + |r(k)|2
)

, k ∈ R\{0}, (4.5)

=
(

eit(g−(k,ξ)−g+(k,ξ)) 0
f(k)eit(g−(k,ξ)+g+(k,ξ)) e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (icr, icl), (4.6)
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=
(

eit(g−(k,ξ)−g+(k,ξ)) f(k)e−it(g−(k,ξ)+g+(k,ξ))

0 e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (−icr,−icl), (4.7)

=
(

ir(k)eit(g−(k,ξ)−g+(k,ξ)) ie−it(g−(k,ξ)+g+(k,ξ))

f(k)eit(g−(k,ξ)+g+(k,ξ)) − r(k)e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (0, icr), (4.8)

=
( −ir(k)eit(g−(k,ξ)−g+(k,ξ)) f(k)e−it(g−(k,ξ)+g+(k,ξ))

ieit(g−(k,ξ)+g+(k,ξ)) ir(k)e−it(g−(k,ξ)−g+(k,ξ))

)
, k ∈ (0,−icr). (4.9)

4. Transferring of the jump contour from the real line. Define a decom-
position of the k-complex plane into domains Ωj , j = 1, 2, 3, 4 as shown in Fig. 3.

l
ic

l
ic-

r
ic-

r
ic

id

id-

1
L

1
L

2
L

2
L

Fig. 3. The contour Σ2.

Here the contour L1 lies in the part of the complex plane, where Img(k, ξ) > 0, and
L2 lies in the part of the complex plane, where Img(k, ξ) < 0. The transformation
below transfers the jump contour from the real line

M (2)(ξ, t, k) = M (1)(ξ, t, k)G(2)(ξ, t, k),

where

G(2)(ξ, t, k) =
(

1 0
−r(k)e2itg(k,ξ) 1

)
, k ∈ Ω1 , (4.10)

=
(

1 −r(k)e−2itg(k,ξ)

0 1

)
, k ∈ Ω2 , (4.11)

= I, k ∈ (Ω1 ∪ Ω2)
C . (4.12)
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G(2) — transformation leads to the RH-problem

M
(2)
− (ξ, t, k) = M

(2)
+ (ξ, t, k)J (2)(ξ, t, k) , k ∈ Σ2, M (2)(ξ, t, k) → I , k →∞ ,

where
J (2)(ξ, t, k) =

(
G

(2)
+

)−1
J (1)(ξ, t, k)G(2)

− (ξ, t, k).

Taking into account the definition of G(2) (4.10)–(4.12), J (1) (4.5)–(4.9) and the
property a2(k)− b2(k) = 1, we get

J (2)(ξ, t, k) = J (1)(ξ, t, k), k ∈ (icl, id) ∪ (−id,−icl),

= eit(g−(k,ξ)−g+(k,ξ))σ3 = eitBg(ξ)σ3 , k ∈ (icr, id) ∪ (−id,−icr),

=
(

0 i
i 0

)
eit(g−(k,ξ)+g+(k,ξ))σ3 =

(
0 i
i 0

)
, k ∈ (−icr, icr),

= G(2)(ξ, t, k), k ∈ L1,

=
(
G(2)

)−1
(ξ, t, k), k ∈ L2.

5. Next transformation. The function f(k) has the analytic continuation

f̂(k) :=
1

a(k)b(k)
from the intervals (icl, icr)∪(−icr,−icl). Thus we can factorize

the jump matrix J (2)(ξ, t, k) on the intervals (icl, id) ∪ (−id,−icl) as follows:

J (2)(ξ, t, k)

= F−σ3
+ (k, ξ)


1

F 2
+(k, ξ)e−2itg+(k,ξ)

f̂+(k)
0 1




(
0 i
i 0

)

×

1

−F 2−(k, ξ)e−2itg−(k,ξ)

f̂−(k)
0 1


F σ3− (k, ξ) , k ∈ (icl, id), (4.13)

= F−σ3
+ (k, ξ)




1 0
e2itg+(k,ξ)

F 2
+(k, ξ)f̂+(k)

1




(
0 i
i 0

)

×




1 0
−e2itg−(k,ξ)

F 2−(k, ξ)f̂−(k)
1


F σ3− (k, ξ) , k ∈ (−icl,−id). (4.14)
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Direct calculations show that the above is possible if:
• F (k, ξ) is analytic outside the segment [icl,−icl];
• F (k, ξ) does not vanish in the complex plane with the cut along [icl,−icl];
• F (k, ξ) satisfies the jump relations

F+(k, ξ)F−(k, ξ) =





−if(k), k ∈ (icl, id),
i

f(k)
, k ∈ (−id,−icl),

1 , k ∈ (icr,−icr),

F+(k, ξ) = F−(k, ξ)ei∆(ξ) , k ∈ (id, icr) ∪ (−icr,−id),

where ∆(ξ) is some function of ξ, which has to be determined;
• F (k, ξ) is bounded at the infinity;
• F (k, ξ)a(k) is bounded in a small neighborhood of the point icl;
• F (k, ξ)a−1(k) is bounded in a small neighborhood of the point −icl;
• F (k, ξ) is bounded in small neighborhoods of the points ±id, ±icr, 0.

To solve this conjugation problem we use the function

w(k) =
√

(k2 + c2
l )(k

2 + d2)(k2 + c2
r).

Let us note that
−if(k) =

1
a−(k)a+(k)

> 0.

The jump relations on F can be rewritten in the form:

[
log F (k, ξ)

w(k, ξ)

]

+

−
[
log F (k, ξ)

w(k, ξ)

]

−
=
− log (a−(k)a+(k))

w+(k, ξ)
, k ∈ (icl, id) ,

[
log F (k, ξ)

w(k, ξ)

]

+

−
[
log F (k, ξ)

w(k, ξ)

]

−
=

log (a−(k)a+(k))
w+(k, ξ)

, k ∈ (−id,−icl) ,

[
log F (k, ξ)

w(k, ξ)

]

+

−
[
log F (k, ξ)

w(k, ξ)

]

−
=

i∆(ξ)
w(k, ξ)

, k ∈ (id, icr) ∪ (−icr,−id).

The function

F (k, ξ) =exp





w(k)
2πi

id∫

icl

− log (a+(s)a−(s)ds)
(s− k)w+(s)



 exp





w(k)
2πi

−icl∫

−id

log (a+(s)a−(s)ds)
(s− k)w+(s)





× exp





i∆(ξ)w(k)
2πi

icr∫

id

ds

(s− k)w(s)



 exp





i∆(ξ)w(k)
2πi

−id∫

−icr

ds

(s− k)w(s)
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satisfies the first, the second and the third properties. To make F (k, ξ) bounded
at the infinity we have to expand F (k, ξ) in series when k → ∞. Since for the
integer n

id∫

icl

−sn log (a+(s)a−(s)) ds

w+(s)
= (−1)n+1

−icl∫

−id

sn log (a+(s)a−(s)) ds

w+(s)
,

icr∫

id

snds

w(s)
= (−1)n+1

−id∫

−icr

snds

w(s)
,

then the behavior of log F (k, ξ) at the infinity is described by the asymptotic
formula

log F (k, ξ) = 2k


 1

2πi

id∫

icl

s log (a+(s)a−(s)) ds

w+(s, ξ)
− −i∆(ξ)

2πi

icr∫

id

sds

w(s, ξ)


 + o(1).

So, we put

∆(ξ) = −i

id∫

icl

s log (a+(s)a−(s)ds)
w+(s, ξ)




icr∫

id

sds

w(s, ξ)



−1

. (4.15)

It is easy to check that ∆(ξ) ∈ R. Thus the function F (k, ξ) satisfies all the
requirements.

Using factorizations (4.13) and (4.14) and the transformation

M (3)(ξ, t, k) = M (2)(ξ, t, k)G(3)(ξ, t, k) ,

where

G(3)(ξ, t, k) = F−σ3(k, ξ)


1

F 2(k, ξ)e−2itg(k,ξ)

f̂(k)
0 1


 , k ∈ Ω5 ∪ Ω7 ,

= F−σ3(k, ξ)




1 0
e2itg(k,ξ)

F 2(k, ξ)f̂(k)
1


 , k ∈ Ω6 ∪ Ω8 ,

= F−σ3 , k /∈ (Ω5 ∪ Ω6 ∪ Ω7 ∪ Ω8) ,

we obtain the RH problem

M
(3)
− (ξ, t, k) = M

(3)
+ (ξ, t, k)J (3)(ξ, t, k), k ∈ Σ3, M (3)(ξ, t, k) → I , k →∞.
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l
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l
ic-

r
ic-

r
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id

id-

1
L

1
L

2
L

2
L

8
L

6
L

5
L

7
L

Fig. 4. The contour Σ3.

The jump matrix J (3)(ξ, t, k) =
(
G

(3)
+

)−1
J (2)(ξ, t, k)G(3)(ξ, t, k) is

J (3)(ξ, t, k) =
(

1 0
−r(k)F−2(k, ξ)e2itg(k,ξ) 1

)
, k ∈ L1 ,

=
(

1 r(k)F 2(k, ξ)e−2itg(k,ξ)

0 1

)
, k ∈ L2 ,

J (3)(ξ, t, k) =


1

F 2(k, ξ)e−2itg(k,ξ)

f̂(k)
0 1


 , k ∈ L7 ,

=


1

−F 2(k, ξ)e−2itg(k,ξ)

f̂(k)
0 1


 , k ∈ L5 ,

J (3)(ξ, t, k) =




1 0
e2itg(k,ξ)

F 2(k, ξ)f̂(k)
1


 , k ∈ L8 ,

=




1 0
−e2itg(k,ξ)

F 2(k, ξ)f̂(k)
1


 , k ∈ L6 ,
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J (3)(ξ, t, k) = e(itBg(ξ)+i∆(ξ))σ3 , k ∈ (id, icr) ∪ (−icr,−id) ,

=
(

0 i
i 0

)
, k ∈ (icl, id) ∪ (icr,−icr) ∪ (−id,−icl).

6. Model problem. Now we consider a model problem M
(mod)
− (ξ, t, k) =

M
(mod)
+ (ξ, t, k)J (mod)(ξ, t, k), M (mod)(ξ, t, k) → I as k →∞, where

J (mod)(ξ, t, k) =





(
eitBg(ξ)+i∆(ξ) 0

0 e−itBg(ξ)−i∆(ξ)

)
, k ∈ (id, icr) ∪ (−icr,−id) ,

(
0 i

i 0

)
, k ∈ (icl, id) ∪ (icr,−icr) ∪ (−id,−icl).

(4.16)
To solve the model problem (4.16), we introduce the Riemann surface X, which
is given by

w2(k) = (k2 + c2
l )(k

2 + d2)(k2 + c2
r).

We will use a realization of this algebraic curve as the two-sheet Riemann surface.
The upper and lower sheets of the surface are two complex planes merged along
the cuts [icl, id], [icr,−icr] and [−id,−icl]. On the upper sheet of this surface
w(1) > 0. The basis {a1, b1, a2, b2} of cycles of this Riemann surface is as follows.
The a1-cycle starts from the right-hand side of the cut [icl, id] on the upper sheet,
goes to the right-hand side of the cut [icr,−icr], proceeds to the lower sheet and
then returns to the starting point. The b1-cycle is a closed counter clock-wise
oriented simple loop around the cut [icl, id]. The a2-cycle starts from the right-
hand side of the cut [id,−id], [icr,−icr] on the upper sheet, goes to the right-hand
side of the cut [−id,−icl], proceeds to the lower sheet and then returns to the
starting point. The b2-cycle is a closed counter clock-wise oriented simple loop
around the segment [icl,−icr]. The basis

dω =
(

dω1

dω2

)

of the normalized holomorphic differentials on X has the form

dω1 = πi
kdk

w(k)




∫

a1

kdk

w(k)



−1

+ πi
dk

w(k)




∫

a1

dk

w(k)



−1

,
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dω2 = πi
kdk

w(k)




∫

a1

kdk

w(k)



−1

− πi
dk

w(k)




∫

a1

dk

w(k)



−1

.

Then

∫

aj

dωl = 2πiδjl, B = B(ξ) =





Bjl =

∫

bj

dωl





 =

(
B1 B2

B2 B1

)
,

where
B1 :=

∫

b1

dω1 , B2 :=
∫

b1

dω2 , and B1 < B2 < 0 ,

and theta function

Θ(z) = Θ(z|B(ξ)) =
∑

m∈Z2

exp
{

1
2

(B(ξ)m, m) + (z, m)
}

, z ∈ C2,

has the property

Θ(z + 2πin + B(ξ)l) = Θ(z) exp
{
−1

2
(B(ξ)l, l)− (z, l)

}
, n ∈ Z2, l ∈ Z2.

Now we introduce the Abel map on X

A : X → C2/
(
2πiZ2 + B(ξ)Z2

)
, A(P ) =

P∫

icl

dω (4.17)

and the functions ϕ(k, ξ), ψ(k, ξ) : {the first sheet of the X} → C

ϕj(k, ξ) =
Θ(A(k)−A(Dj)−K − (itBg(ξ) + i∆(ξ)) (1, 1)T )

Θ(A(k)−A(Dj)−K)
,

ψj(k, ξ) =
Θ(−A(k)−A(Dj)−K − (itBg(ξ) + i∆(ξ)) (1, 1)T )

Θ(−A(k)−A(Dj)−K)
,

j = 1, 2.

(4.18)
Here D1 = P1 + P2 is the divisor consisting of two points on the lower sheet,

P1 = i

√
clcrd

cl + cr − d
and P2 = −i

√
clcrd

cl + cr − d
,

D2 = τD1 lies on the upper sheet, and A(D1) = −A(D2). The vector K is the
Riemann constant of the surface X, Bg(ξ) and ∆(ξ) are defined in (4.4) and
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(4.15). The integration contour in (4.17) is taken from the upper sheet and it
does not intersect the interval (−icl, icl). The functions (4.18) have the following
properties:

ϕj+(k, ξ) = ψj−(k, ξ),

ψj+(k, ξ) = ϕj−(k, ξ),
k ∈ (icl, id) ∪ (icr,−icr) ∪ (−id,−icl).

ϕj−(k, ξ) = ϕj+(k, ξ)eitBg(ξ)+i∆(ξ),

ψj−(k, ξ) = ψj+(k, ξ)e−itBg(ξ)−i∆(ξ),

k ∈ (id, icr) ∪ (−icr,−id).

Define a function

γ(k) = γ(k, ξ) = 4

√
k − icl

k − id
4

√
k − icr

k + icr

4

√
k + id

k + icl
,

which is analytic outside the union of segments [icl, id] ∪ [icr,−icr] ∪ [−id,−icl]
and satisfies the jump conditions

γ−(k, ξ) = iγ+(k, ξ), k ∈ [icl, id] ∪ [icr,−icr] ∪ [−id,−icl].

Then the solution of the model problem (4.16) can be written as follows:

M (mod)(ξ, t, k) =




M
(mod)
11 (ξ, t, k) M

(mod)
12 (ξ, t, k)

M
(mod)
21 (ξ, t, k) M

(mod)
22 (ξ, t, k)


 ,

M
(mod)
11 (ξ, t, k) =

1
2

(
γ(k, ξ) +

1
γ(k, ξ)

)
ϕ1(k, ξ)
ϕ1(∞, ξ)

,

M
(mod)
12 (ξ, t, k) =

1
2

(
γ(k, ξ)− 1

γ(k, ξ)

)
ψ1(k, ξ)
ϕ1(∞, ξ)

,

M
(mod)
21 (ξ, t, k) =

1
2

(
γ(k, ξ)− 1

γ(k, ξ)

)
ϕ2(k, ξ)
ψ2(∞, ξ)

,

M
(mod)
22 (ξ, t, k) =

1
2

(
γ(k, ξ) +

1
γ(k, ξ)

)
ψ2(k, ξ)
ψ2(∞, ξ)

.

Then, by the formula (3.10),

qmod(x, t) := lim
k→∞

2ik
(
M (mod)

( x

12t
, t, k

)
− I

)
21

=(cl − d(ξ) + cr)
Θ(A(∞) + A(D1)−K − (itBg(ξ) + i∆(ξ))(1, 1)T )

Θ(A(∞) + A(D1)−K)

× Θ(−A(∞) + A(D1)−K)
Θ(−A(∞) + A(D1)−K − (itBg(ξ) + i∆(ξ))(1, 1)T )

.

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 1 57



V. Kotlyarov and A. Minakov

Theorem 4.3. Let t →∞. Then in the region (12c2
r−6c2

l )t < x < (4c2
l +2c2

r)t
the solution of the problem (1.1)–(1.2) with initial pure step function takes the
form of a modulated hyper-elliptic wave

q(x, t) = (cl − d(ξ) + cr)
Θ(A(∞) + A(D1)−K − (itBg(ξ) + i∆(ξ))(1, 1)T )

Θ(A(∞) + A(D1)−K)

× Θ(−A(∞) + A(D1)−K)
Θ(−A(∞) + A(D1)−K − (itBg(ξ) + i∆(ξ))(1, 1)T )

+ O(t−1/2).

5. Appendix

Lemma. Let ρ(.), h1(.), h2(.) be positive functions on the segment [a, b] ⊂ R
such that the integrals of their products ρ, ρ(y)h1(y), ρ(y)h2(y), ρ(y)h1(y)h2(y)
are convergent in proper or improper sense. Let also h1 be an increasing function
on the segment, and h2 be a decreasing function. Then

d∫

cr

ρ(y)h1(y)dy

d∫

cr

ρ(y)h2(y)dy −
d∫

cr

ρ(y)h1(y)h2(y)dy

d∫

cr

ρ(y)dy ≥ 0.

P r o o f. If all integrals are proper, then we can approximate them by
partial sums. By substituting them into the input inequality instead of integrals,
we obtain the inequality

1
N2

N∑

n=1

ρ(yn)h1(yn)
N∑

m=1

ρ(ym)h2(ym)− 1
N2

N∑

n=1

ρ(yn)h1(yn)h2(yn)
N∑

m=1

ρ(ym) ≥ 0.

Let us multiply both sides on N2 and multiply the expressions in parenthesis
∑
n, m

ρ(yn)h1(yn)ρ(ym)h2(ym)−
∑
n, m

ρ(yn)ρ(ym)h1(yn)h2(yn) ≥ 0.

We can see that the terms of series, when n = m, disappear. Thus we obtain
∑
n<m

ρ(yn)ρ(ym) (h1(yn)h2(ym) + h1(ym)h2(yn))

−
∑
n<m

ρ(yn)ρ(ym) (h1(yn)h2(yn) + h1(ym)h2(ym)) ≥ 0.

Then the above is equivalent to
∑
n<m

ρ(yn)ρ(ym) (h1(yn)− h1(ym)) (h2(ym)− h2(yn)) ≥ 0,

which is evidently true.

58 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 1



Step-Initial Function to the mKdV Equation

If the integrals are improper, then we can approximate them by proper ones
for which the lemma is proven.
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