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The group H of the internal symmetries of the axisymmetric field equations in general 
relativity is known to be isomorphic to SO(2,1), which is the double covering of the 
conformal group of the hyperbolic complex plane JY. The Ernst potential S can then be 
geometrically understood as a map S : R J/SO(2)_JY. The fact that the hyperbolic plane 
is split into two connected components is used to introduce an algebraic invariant nEZ + 

for every axisymmetric solution. It is shown that under reasonable hypotheses this 
invariant is related to the number of S 1 curves where the manifold is intrinsically 
singular. 

INTRODUCTION 

The axisymmetric field equations in general relativity 
contain a large amount of symmetries, which have been ex­
tensively discussed by several authors.l The main line of re­
search in this field has been directed during the last few years 
towards the study of the infinite parameter group K, which 
combines both the coordinate group G and the internal sym­
metry group H.2 Nevertheless, there are still some interest­
ing results which can be derived from the study of the group 
H alone, as shown in the following. 

The starting point of the present approach is to note 
that the most natural geometric interpretation of the Ernst 
equation is achieved considering the Ernst potential S as a 
map from R J /SO(2) to the complex plane with the Poincare 
metric. Because of the isomorphism H =SO(2, 1) and of the 
fact that SO(2, 1) is a double covering of the conformal group 
of the hyperbolic plane, one can interpret the internal sym­
metries of the Ernst equation as isometries of the hyperbolic 
plane itself. This amounts to translating into elementary 
complex geometry the approach by Eris and Nutku. 1 

The map S is then studied, and it is shown that one can 
introduce an algebraic invariant, which classifies the asymp­
totically flat solutions according to their causal structure. 

Finally the particular case in which S depends on a sin­
gle real function is geometrically interpreted as the geodesic 
problem of the hyperbolic plane. 

GEOMETRIC MEANING OF THE ERNST 
EQUATION 

The axisymmetric stationary line element in canonical 
cylindrical coordinates reads' 

ds = Fl[e 2Y(dz2 + dp 2) + p 2d¢J 2] - fed! - OJd¢J)\ (1) 

where/, OJ, r depend on p, z only. In this form the field 
equations for r decouple, and the relevent problem reduces 
to two coupled equations for /, OJ, which by means of the 
substitution 

tf-l 
f= Is + 112 

(2) 

s-f 
VOJ = ¢J XV ls + 112 (3) 

.A 

(where ¢J is the azimuthal versor pf R 3, and V is the three-
dimensional operator) can be transformed into the Ernst 
equation for the complex potential t 5 

(5f - l)V2s = if VS·Vs· 
Equation (4) can be derived from the Lagrangian 

density 

(4) 

(5) 

From Eq. (5) it is apparent that the bilinear operator g( , ) 
coincides with the Poincare metric for the complex hyper­
bolic plane JY and the Ernst potential can be considered as 
the map 

s: R J /SO(2)-JY, (6) 

which in view of the field equation (4) must be extremal. 

It is now obvious that the internal symmetries of the 
problem coincide with the isometries of the hyperbolic 
plane. These include a continous group (i.e., the conformal 
group 1f)6 

s-eiX t - ~, O.;;;;X < 217", pp < 1, (7) 
I-it 

and the following discrete transformations: 

s--s, 
s-f, 
t- lIs, 

(8) 

(9) 

(10) 

Equations (8) and (9) are reflections of JY, while Eq. (10) 
arises from the fact that the unit disk tf < 1 is an isometric 
copy of the domain sf> 1 under inversion. This explains the 
origin of the discrete symmetries discovered by Ernst while 
discussing his equation. 7 

The conformal group (7) coincides with the form of the 
group H given by Kinnersley. S Note that the isotropy sub­
group of 1f at the origin (p = 0) is given by S-e iXS and 
generates NUT transformations of the manifold. 9 

From the point of view of elementary group theory, the 
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present interpretation of the Ernst equation amounts to us­
ing the well-known isomorphism H ~SO(2, 1), and to noting 
that SO(2, 1) is a double covering of the conformal group C(J • 

Incidentally one can emphasize that the Lagrangian (5) 
presents some formal analogies with the one given by W 0010 

for the (J nonlinear model. In that case, however, the gauge 
group is SO(3), which is compact, and therefore the confor­
mal factor is the spherical one [i.e., <if + 1)'] instead of the 
hyperbolic one appearing in Eq. (5). Moreover, the base 
space for the (J nonlinear problem is R ' instead of R 3/S0(2) 
as in the present case. 

TOPOLOGIC AND ALGEBRAIC INVARIANTS 

Although one could impose boundary conditions on S 
in order to compactify its domain, the hyperbolic plane is not 
compact, and therefore it seems irrelevant to investigate the 
homotopy classes of the map 5. 

There is, however, an interesting invariant, which is re­
lated to the algebraic structure of the map S. These, in fact, 
can be classified according to the number of jumps between 
the two connected components into which the complex 
plane is split by the Poincare metric, i.e., according to the 
number n of rotational bisurfaces in R 3 where sf = 1. This 
number is independent of the coordinates chosen in 
R 3/S0(2), although it is not invariant with respect to the 
general group of transformations of the metric (3). Note in 
fact that the surfaces identified by the equations sf = 1 may 
contain coordinate singularities, the elimination of which 
will require transformations involving the asymptotically 
timelike coordinate t. 

For instance, in the case of the Schwarzschild and Kerr 
solutions, for which Ss = X, 5k = px + iqy,(p' + q' = 1), re­
spectively, in prolate spheroidal coordinates, it turns out 
that n = 2. 

Note that as the condition sf = 1 is invariant under the 
action of the conformal group C(J, also the number n is invar­
iant under its action. This means, for instance, that the NUT 
generalization of a given field does not change the number n. 
The interior of the unit disk of the hyperbolic plane is related 
to the "ergosphere" regions of M, where! < 0, the unit circle 
itself (expect the point 5 = - 1) being the domain into 
which 5 maps the "ergosurface." At the point 5 = - 1,/ 
diverges, showing that 5 = - I is the image of the intrinsic 
singularities of M. 

A simple interpretation of the meaning ofthe number n 
can be obtained under few hypotheses on the map 5. Choose 
prolate spheroidal coordinates x,y or R 3/S0(2), and assume 
that 

(A) the gravitational field described by 5 is asymptoti­
cally flat. In particular, limx __ oo 151*1. 

(B) reflecting the space time with respect to the equato­
rial plane (i.e.y~ - y) the angular momentum of the gravi­
tational field changes sign, i.e., s~f. Therefore S is real on 
the equatorial plane (y = 0). 

(C) S is an odd function of x on the equatorial plane. II 
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Then the number m+ of solutions of the equation 5 = 1 
is equal to the number m_ of solutions of S = - 1. Obviously 
on the equatorial plane m. + m_ = n, and therefore 
m_ = n12. Since on the equatorial plane 5 is a function of x 
alone, there will be nl2 distinct values XI"" x ni2 ' where 
S = - 1. These points actually represent trajectories of the 
axisymmetric group, which topologically are S I curves (of 
which one can possibly degenerate to a point) along which 
f~oo and therefore the manifold is singular. 

Therefore one can conclude that under the hypotheses 
(A),(B),(C) the number of ring singularities of the space time 
described by 5 is exactly n12. 

"GEODESIC SOLUTIONS" 

In the special case when 5 = 5 (7) depends on one real 
function 7: R 3/S0(2)~R, the present approach yields a nice 
geometrical interpretation. Note first that S (7) is a curve in 
the hyperbolic plane. The Ernst equation reads 

(Sf_l)d
2s + 2f ds2 

= -(Sf-l)d5 \1'7 
d7' d7 d7 \17"\17 

(11) 

and coincides with the geodesic equation on the hyperbolic 
plane if \1'7 = 0, with 7 as affine parameter. 

If 7 is not harmonic, one can introduce a new function 
a(7), in terms of which Eq. (14) becomes 

(Sf - 1) d5 a" + fl.a" + 2f d5 2a" 
da da' da 

= _ (Sf - l)ds a' \1'7 . 
da \17"\17 

Choosing a such that 

a" \1'7 
a' \17>\17' 

one has 

(Sf - 1) d 25 + 2f d5 2 = 0, 
da' da 

(12) 

which is again the geodesic equation on the hyperbolic plane. 
From Eq. (12) one has that \1'a = 0, and hence a must be 
harmonic. Therefore, one can conclude that the geodesics of 
the hyperbolic plane depending on an affine parameter, 
which is a harmonic function defined on R 3/S0(2), corre­
spond one to one to the solution of the Ernst equation de­
pending on a single real function. These include the Weyl" 
and Papapetroull solutions. 

ISee W. Kinnersley, in General Relativity and Gravitation (Wiley, New 
York, 1975) and references quoted therein. 

'For the definition of these groups see Ref. 1 and more recently W. Kinners­
ley, 1. Math. Phys. 18,1529 (1977). 

3A. Eris and Y. Nutku, J. Math. Phys. 16, 1431 (\975). 
'A. Papapetrou, Ann. Phys. 12,309 (1953). 
sF.I. Ernst, Phys. Rev. D 7,2520 (1973). 
'See, for instance, I.M. Singer and I.A. Thorpe, Lecture Notes on Elemen­
tary Toplogy and Geometry (Springer-Verlag, New York, 1967). 

'F.J. Ernst, 1. Math. Phys. 15,1049 (1974). 
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'W. Kinnersley, J. Math. Phys. 14,651 (1973). 
'CO Reina and A. Treves, J. Math. Phys. 16,834 (1975). 
IOA.A. Belavin and A.M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz, 22, 503 
(1975) [JETPL Lett. 22, 245 (1976)]. See also G. Woo, J. Math. Phys. 18, 
1264 (1977), where the Lagrangian density for the a nonlinear model is 
given in complex stereographic coordinates. 
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"Although this condition could appear a bit "ad hoc," it is satisfied by the 
entire class of the Tomimatsu and Sato solutions [see A. Tomimatsu and 
H. Sato, Prog. Theor. Phys. 50, 95 (1973)]. 

12M. Weyl, Ann. Phys (Leipzig) 54,117 (1917). 
"For more details on these "geodesic" solutions, see V. Benza, S. Morisetti 
and C. Reina Nuovo Cimento (1979) (in press). 
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