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ABSTRACT 
Stationary disk accretion onto a black hole is studied for high accretion rates til ^ tiic = 

2r0L^/GM (Le is the Eddington luminosity) for which the dynamic eifect of radiation pressure is 
important. The rotation of the disk is not assumed to be Keplerian but is considered as an 
unknown in the Newtonian dynamic equation. The problem is reduced to a set of two differential 
equations which are solved numerically. It is found that stationary solutions without mass-outflow 
exist for til > tilc. The radiated luminosity, however, is always of the order of the Eddington 
luminosity. For increasing accretion rates, the kinetic energy swallowed by the hole and the size 
of the radiating region increase. 
Subject headings: black holes — stars: accretion — X-rays: sources 

I. INTRODUCTION 

Accretion of a black hole by matter endowed with angular momentum has been treated in connection with 
X-ray sources by Pringle and Rees (1972), and Shakura and Sunyaev (SS) (1973). Novikov and Thorne (1973) have 
considered general-relativistic corrections, Lightman (19746) has studied the time-dependent problem. For further 
references see Lamb (1974). 

It was noted by several authors (Salpeter 1972; Dilworth, Maraschi, and Reina 1973; Margon and Ostriker 1973) 
that the luminosity function of X-ray sources has a cutoff above 1038-1039 ergs s-1, which is of the same order of 
the Eddington luminosity LE = 1.2 x 1038 ergs s_1 of a 1 M0 star. This indicates that, in the brightest X-ray 
sources, radiation pressure plays an important role. 

When radiation pressure is important with respect to gravitation, the approximation adopted so far, that the 
rotation of the gas is Keplerian, needs to be reconsidered. In this paper we take the angular velocity as an unknown 
of the problem and show that in the inner region of the disk the Keplerian approximation becomes inadequate. 

The flow of gas through the disk is treated with a number of simplifying assumptions. Thermal pressure is 
neglected compared with radiation pressure. Radiative transfer is described as a diffusive process, dominated by 
Thomson scattering. The consistency of these approximations is discussed a posteriori. Angular momentum 
transfer is treated as in SS, assuming that the shear is proportional to the total energy density. Newtonian dynamics 
is used throughout. Although this is not adequate near the inner boundary, relativistic corrections should not alter 
the qualitative features of the results (Novikov and Thorne 1973). 

The resulting set of equations can be reduced to two coupled differential equations for the angular and radial 
velocities of the matter, which are solved numerically. 

The main result of the paper is that a steady solution exists for every value of the accretion rate til. However, 
for high values of til the luminosity radiated by the disk tends to an upper bound of the order of LE, being no 
longer proportional to the accretion rate. The reason is that, under these conditions, the kinetic energy of the gas 
at the inner boundary is greater than in the Keplerian case. This energy is then swallowed by the hole. 

II. EQUATIONS 

The relevant equations for our problem are: (1) mass conservation; (2) Euler equation; (3) hydrostatic equi- 
librium in the vertical direction; (4) conservation of angular momentum; (5) definition of tangential stress; (6) 
energy dissipation; (7) energy conservation; (8) photon diffusion. 

With respect to the set considered by SS, equations (2), (7), and (8) have been added. The analytic expression of 
the equations is : 
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where p is the density, vr is the inward velocity, a> is the angular velocity, € is the photon energy density, w is the 
shear stress, q is the power dissipated per unit volume, F is the radiative flux, c is the velocity of light, mp is the 
proton mass, oT is the Thomson cross section, and a is a constant describing the viscosity. 

The previous equations can be simplified by integrating over the vertical coordinate (see, e.g., Lightman 1974a). 
Introducing the new variables : 

and the scale height 

assuming that is independent of z and vz « vr = v, the equations become: 
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where til is the accretion rate and r0 is the radius at which the shear stress wr(P is null. This boundary condition 
allows one to obtain (4a) from integration of (4). In the case treated by SS, rQ corresponds to the radius of the last 
stable orbit, inside which the flow becomes essentially radial. Equation (7a) has been obtained from equations (2), 
(7), and (8), assuming q = Qlh. 

The system (l)-(7) can be reduced to two differential equations for a> and v which read 

dcu 
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Introducing nondimensional variables 

x = r/r0, A = v(GM¡r0)~
112 , B = ai(GM/r0
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the equations become 
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where B0 = B{\), Kic = 2r0LE/GM, and LE = 47TGMmpc/(jT is the Eddington luminosity. 
When the effects of radiation pressure are negligible, i.e., tä <k tifc = 10-8 MQ yr-1, one has v « œr and on 

the last stable orbit œ0 = œQk = (GM/r0
3)112. In this case the energy released by the infalling gas is GM^/2r0. 

III. SOLUTION OF THE EQUATIONS 

We have solved the system numerically starting from an asymptotic solution for large values of x. The dominant 
terms in the asymptotic solution are B oc x~1’5, A oc Hx~2 5, where H = 27a (Kí¡Kí^2. 

In order to expand the right-hand term of equation (2) to the relevant order (x~912), the asymptotic solution 
must be determined for B up to terms 0(x~5 b) and for A up to terms 0(x“6-5). 

The resulting expansions are 
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The standard finite-difference method has been used for constructing numerical solutions. For til > tilc, solutions 
are obtained which are insensitive to variations of the initial point and step of the integration. B0, which appears 

Fig. la Fig. lb 
Figs. \a, \b.—Angular velocity w, and radial velocity v, of the infalling gas, versus distance for different values of the accretion 

rate M. a)k = (GM/r0
3)1/2, vk = (GM/r0)

1/2, and Mc = 2r0LEjGM. The dotted line corresponds to the Keplerian angular velocity. 
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as an eigenvalue, is determined by an iterative process. For Kí < Ñ.c, numerical instabilities at large values of x 
prevent the construction of solutions by this crude method. The same happens for values of a < 1. 

In the following we discuss results for a = 1 and 1 < < 25, the upper limit being imposed by computing 
time considerations. We think that this range of values is sufficiently representative to allow interesting conclusions. 

IV. RESULTS AND DISCUSSION 

In Figure 1 the angular and radial velocities are shown for Ñ¡Kíc = 1 and 25. For large values of r the numerical 
solutions tend to the Keplerian values. Approaching the black hole, the angular velocity is found to be significantly 
smaller than in the Keplerian approximation. For increasing accretion rates the deviations become larger and start 
from larger values of r. In the very vicinity of the hole the tendency is opposite. The angular velocity grows very 
rapidly, approaching the law œoc r~2, and for r r0 it becomes larger than the Keplerian value co0k = V(GM/r0

3). 
The eigenvalues for til ¡tilc = 2, 5, 25 are co0 = 1.2co0fc, 1.3ot>0/c, 1.35a>0fe, respectively. 

The physical reason underlying this behavior is that, since no energy is dissipated beyond the boundary r0, 
the pressure gradient is directed inward for r ~ r0, while for larger radii it is directed outward. 

The total energy radiated by the infalling gas is 

L = tifGM/r0 - i(tirœ0
2r0

2 + tifv2), 

where the term in brackets represents the kinetic energy at the last stable orbit, which is swallowed by the hole 
and therefore does not contribute to the luminosity. In the Keplerian approximation oj0 = a>0k9 v x 0, and there- 
fore the radiated energy is i(tifGM/r0). In the case considered here, since o>0 > a>0k and v ^ 0, the luminosity is 
smaller and does not depend linearly on the accretion rate. In Figure 2, L is given versus the accretion rate. The 
saturation effect is clearly visible. It seems that the curve is upper-bounded, but from the limited range of accretion 
rates for which the solution has been computed it is not possible to determine the value of the limiting luminosity. 

In Figure 3 the thickness h and the mean density p = S//* of the disk are given. For large values of x a larger 
thickness corresponds to a larger accretion rate in agreement with the asymptotic expressions (see SS). Near the 
hole the thickness decreases rapidly and, for fixed values of r, the disk is thicker for smaller values of the accretion 
rate. Note that h/r is always less than one; i.e., no region of spherization is found, as was suggested by SS. The 
energy radiated by the disk within a radius r, 

L(r) = Í ArrrQdr, 
*'r0 

is given in Figure 4. It is apparent that the region where most of the luminosity is produced increases with increasing 
accretion rate. 

On the basis of the numerical results we can discuss the consistency of our approximations. The disk is thick to 
Thomson scattering; and free-free opacity, calculated at the minimum blackbody temperature, is indeed negligible 
with respect to Thomson opacity, therefore justifying the approximations used in the treatment of the radiation 
transfer. 

We now consider the assumption that radiation pressure dominates with respect to kinetic pressure. It turns out 
that this is the case if T ^ 1010 K. In the case tif = 25 tifc this is always true, as in the optically thick regions, 
(TeSTff)

1/2 ^ 1, the blackbody temperature is less than 107 K and in the intermediate optically thin region, 
10 ^ r/r0 ^ 100, the free-free temperature is less than 109 K. In the case til = tilc the disk is almost everywhere 

Fig. 2.—Total luminosity radiated by the disk versus accretion rate, Le = lirGMmpcIo?, Mc = 2r0L^!GM 
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Figs. 3a, 36.—Half-thickness h and mean density p of the disk versus distance for different values of the accretion rate M 

Fig. 4.—Luminosity radiated by the disk within distance r for different values of the accretion rate M 
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optically thin in the region of interest; and if one calculates the free-free temperature, one gets values between 1010 

and 1012 K for 1.5 < r/r0 < 10. However, since Thomson scattering opacity is appreciable (res > 1), at such high 
temperatures energy losses by Compton scattering will be important, resulting in a substantial reduction of the 
temperature (by a factor 102-104) as discussed by SS. Therefore also in the case Jüf = tilc the solution is consistent 
with the assumption that the disk region under consideration is radiation pressure dominated. 

A final point is the discussion of the actual value of the inner radius of the disk r0, which in the numerical 
estimates has been assumed to be r0= 6GMjc2. This value, which corresponds to the last stable orbit of a test 
particle in a Schwarzschild field, is generally taken as the inner boundary of accretion disks around black holes (SS). 
In the present case the effect of radiation pressure, calculated in the Newtonian approximation, is that of increasing 
the angular momentum of the stable orbits near the inner boundary, and therefore the value of r0 could conceivably 
be altered. However, a boundary, where the shear stress wr(P ^ 0, should exist at r ^ IGM/c2, and the main results 
of our treatment depend only on the existence of such a boundary. In particular the dependence of the radiated 
luminosity L on the accretion rate ilí should not change essentially, even if r0 is a function of Tl^f. In fact, given a 
black boundary, radiation pressure would add to gravitation, allowing more kinetic energy to be swallowed by 
the hole than in the case where radiation pressure is neglected. This argument would remain valid even if relativistic 
corrections were taken into account. 

We are grateful to Professor M. Rees and Dr. A. Lightman for valuable comments. 
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