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Abstract

A conjectural relationship between the GUE partition function with even couplings and certain
special cubic Hodge integrals over the moduli spaces of stable algebraic curves is under considera-
tion.
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1 Introduction

1.1 Cubic Hodge partition function

Let ﬂ%k denote the Deligne-Mumford moduli space of stable curves of genus g with k distinct marked
points. Denote by £; the i** tautological line bundle over Mg i, and Ey ;. the rank g Hodge bundle.



Let ¢ := c1(L;),i=1,...,k,and let \; := ¢;(Eg 1), i = 0,...,g. Recall that the Hodge integrals over
Mg i, aka the intersection numbers of 1)- and A-classes, are integrals of the form

i ik Ay - . .
. wll"‘wkk')‘ll"'Agga 117"')21477.717"‘7]920'
Mgk

Note that the dimension-degree matching implies that the above integrals vanish unless

3g—=3+k={(ir+ia+ - +ir)+ (1 +2j2+ 373+ +gJg)-
The particular case of cubic Hodge integrals of the form

L aon@amer v, tetelog (1.11)

Mg,k p q r

was intensively studied after the formulation of the celebrated R. Gopakumar—M. Marino—C. Vafa con-
jecture [20, 27] regarding the Chern—Simons/string duality. Here we denote

g
Ag(2) = Z A 2
i=0
the Chern polynomial of E; ;. A remarkable expression for the cubic Hodge integrals of the form

Ag(p)Ag(q)Ay(r)
/ngk (1 —z1tpr) .. (L= zp i)’ k=0

conjectured in [27] was proven in [24, 29]; for more about cubic Hodge integrals see in the subsequent
papers [25, 26, 33, 9].

In the present paper we will deal with the specific case of Hodge integrals (1.1.1) with a pair of
equal parameters among p, g, r; without loss of generality! one can assume that p = ¢ = —1, r = 1/2.
So, the special cubic Hodge integrals of the form

/MM A1) A1)y (5 ) v oo (112)

will be considered. Denote

H(t;e)22629_2z% 3 ttk/ Ay(=1) Ag(=1) A, @) B (L13)

g>0 E>0 " i1yein>0 Mgk

the generating function of these integrals. Here and below t = (to,?1,...) are independent variables,
¢ is a parameter. The exponential e’ =: Z is called the cubic Hodge partition function while H(t;¢)
is the cubic Hodge free energy. It can be written in the form of genus expansion

2g—2
H(tie) =D 92 H,(t) (1.1.4)
g9=>0
'Indeed, the general situation under consideration is p = ¢ = —2s, r = s, s # 0. Similarly as (1.1.3)—(1.1.4), one can

define Hg4(t; s), g > 0; see also [9]. Then Hq(t; s) does not depend on s, and for g > 1, the dependence in s for Hy(t; s)
can be obtained through a rescaling of v := 8?0Ho(t). Hence, the “one-parameter family” is essentially a single “point”.
Our choice s = 1/2, however, is the simplest/best choice, which avoids a rescaling of v in the comparison between the
Hodge integrals and matrix integrals.



where H4(t) is called the genus g part of the cubic Hodge free energy, g > 0. Clearly Ho(t) coincides
with the Witten—Kontsevich generating function of genus zero intersection numbers of 1-classes

1 i i 1 t; t;
=D t“”'t"k/Mo,kwllmw’“k:kzxk:(k:—l)(k—m > i

.. X i - 11 Uk
k>0 d1,...,9,>0 i1+ +ip=k—3
(1.1.5)

We note that an efficient algorithm for computing #H,4(t), g > 1 was recently proposed in [9].

1.2 GUE partition function with even couplings

Let H(N) denote the space of N x N Hermitean matrices. Denote

N
dM =[] dMy; | [ dReM;; dimM;;

i=1 i<j

the standard unitary invariant volume element on H(N). The most studied Hermitean random matrix
model is governed by the following GUE partition function with even couplings

(QW)_N/ —Ltrv(M;s)
Zn(s;€) = e e SIdM. 1.2.1
Here, V(M; s) is an even polynomial of M
) Lo 2j
V(M;s) = 5 M? ;st 7 (1.2.2)

or, more generally, a power series, by s = (s1,52,53,...) we denote the collection of coefficients? of
V (M), and by Vol(N) the volume of the quotient of the unitary group over the maximal torus [U(1)]"
N(N-—1)

Vol(N) = Vol (U(N)/ [U(l)]N) - m G(N +1) H nl. (1.2.3)

The integral will be considered as a formal saddle point expansion with respect to the small parameter
€. Introduce the ’t Hooft coupling parameter z by

z:= Ne.

Reexpanding the free energy Fn(s;e) := log Zn(s;€) in powers of e and replacing the Barnes G-
function by its asymptotic expansion [1, 31, 19]

NZ 1 3 5 Bo,
log G(N + 1) ~ <2—12> log N — ZN +{(-1) + —log (2m) +Z4g( NZ2 N — .
yields3
F(z,s;€) := Fn(si€)|n=z — —loge = 2629 2Fy(x,s) (1.2.4)

g>0

2The notation here is slightly different from that of [8, 10] where the coefficient of M was denoted by s2;.
3Tt is often called 1/N-expansion as e = O(1/N).



Here, By, k > 0 denote the Bernoulli numbers defined through

The GUE free energy F(x,s;€) can be represented [22, 23, 2] in the form
2

T 3 1 _ By
.F . — 1 _ v _ 1 / _1 29—2 g9
(x,s5€) 22 ( ogx 2> T3 lose +¢'(-1)+ gE>2 € Ig(g — 1)2%2

+ Z 2972 Z Z ag(it, ... ig) Siy ... 55, a2 297 k=l (1.2.5)

920 E>041,...,05>1
) . 1
oline- ) = 2 st (126)
T y

where the last summation is taken over all connected oriented ribbon graphs I' of genus g with k
unlabelled vertices of valencies 2i1, ..., 2i; and with labelled half-edges at every vertex, # SymT is
the order of the symmetry group of I', and |i| := i1 +- - -+, (see details in [22, 23, 2, 21, 28, 16, 17])*.

Our goal is to compare the expansions (1.1.3) and (1.2.5).

1.3 From cubic Hodge integrals to random matrices. Main Conjecture.

It was already observed by E. Witten [32] that the GUE partition function with an even polynomial
V(M) is tau-function of a particular solution to the Volterra (also called the discrete KdV) hierarchy.
Recall that the first equation of the hierarchy (the Volterra lattice equation) reads

Wy = Wy (wn—l—l - wn—l)
where
o Zn+1Zn71
T
the time derivative is with respect to the variable t = N s;. Other couplings s; are identified with
the time variables of higher flows of the hierarchy. On another side, the study [9] of integrable
systems associated with the Hodge integrals® suggested the following conjectural statement: the Hodge
partition function Zg = e” of the form (1.1.3) as function of independent parameters ¢; is also a tau-

function of the Volterra hierarchy. This observation provides a motivation for the main conjecture of
the present paper.

It will be convenient to change normalisation of the GUE couplings. Put

_ < 2k >
S = k Sk.

4The rational numbers ag(i1,...,ix) have also the following alternative expression
u 1
a’g(llv"'vlk):jlz[lZZj.gW (127)

where the summation is taken over connected oriented ribbon graphs G of genus g with unlabelled half-edges and
unlabelled vertices of valencies 2i1, ..., 2i.

5The first example of an integrable system associated with linear Hodge integrals was investigated by A.Buryak. In
this case the integrable system was proved to be Miura equivalent to the Intermediate Long Wave equation [4].



Conjecture 1.3.1 (Main Conjecture) The following formula holds true

2)629—2fg($,s)+6—2(§ Z kfl_fi; Sk18k2+21—|—k‘ k—xz ]g**+l‘>
9=

k1,ko>1 E>1

= cosh <6§x) 2629_2 29H,y (t(z,8)) | +C'(-1). (1.3.1)
g=0
where '
ti(w,s) = k'tls,—1+61+a-69, >0 (1.3.2)
k>1

Remark 1.3.2 Both sides of the conjectural identity (1.3.1) can be considered as living in the formal

PoOwer Series Ting
e 2C [62] [z —1,s1,s2,...]]

Ezpanding both sides of (1.3.1) near s = 0, x = 1 one obtains a series of interesting identities
relating counting numbers of ribbons graphs and Hodge integrals, as simple consequences of the Main
Conjecture. The simplest of them wvalid for any g > 2 reads

)00 NI
p Y OO L aenaea(5) T
pey M. e() i1
— 1 J / 2g E2g,2g/ BQg'
~ e -2 2% D (30) P (133)

Here, Y denotes the set of partitions; for p € Y, £(u) denotes the length of u, m;(u) denotes the
multiplicity of i in p, m(p)! := T2, mi(n)!. And Ej, are the Euler numbers, defined via

coshz - k'

To the best of our knowledge such identities even the simplest one (1.3.3) never appeared in the
literature. We would like to mention that another interesting consequence of the Main Conjecture is
recently obtained in [12].

1.4 Computational aspects of the Main Conjecture: how do we verify it?

We will check validity of the Main Conjecture for small genera. Begin with ¢ = 0. Let us start with
Ho(t). Instead of the explicit expansion (1.1.5) we use the following well known representation

3 pititl

v
Ho = — _— 1.4.1
7 Z m+27L Z Ti+j+1)il5! (1.4.1)
120 1,7>0
where v = v(t) =ty + ... is the unique series solution to the equation
v
v= E tlﬁ (1.4.2)
>0



Here we recall that -
827'[0 1 til tlk
=2 EZE > Sk (1.4.3)
k=1 " i1+-tipg=k—1

is a particular solution to the Riemann—Hopf hierarchy

ov vF Qv

—_— = E=0,1,2,....
ot, k! 0ty’ T

For the genus zero GUE free energy Fy = Fy(z,s) one has a similar representation. Like above,
introduce

0> F
u(z,8) = ;g,s) (1.4.4)
and put
w(z,s) = e ®s), (1.4.5)
Proposition 1.4.1 The function w = w(x,s) is the unique series solution to the equation
w:w—i—ZkEkwk Sp 1= 2k Sk, w(zr,s)=x+.... (1.4.6)
9 k: ) )
E>1
The genus zero GUE free energy Fo with even couplings has the following expression
2 2
w _ k kiks _ _ x
Fo= kT gkl whthe 4 = logw.  (1.4.7
0 : a:w—i—Zsk(ww k—l—l Z k1+k:2 Sy W +2 ogw. ( )
k>1 k1,k2>1
The proof of this proposition will be given in Sect. 2.
Clearly w also satisfies the Riemann—Hopf hierarchy in a different normalization
ow ow
= kuw” k> 1.
&S’k 8:6 ’ B
The solution can be written explicitly in the form essentially equivalent to (1.4.3)
|
wzzﬁ‘ Z wt(i1) ... wt(in) 5, - .. 5,
n=1 i1++in=n—1
where we put 59 = x and denote
1, i=0
wt(i) =
1, otherwise.
It is now straightforward to verify that the substitution (1.3.2) yields
" C@8) — y(z,s), e v(t(z,s)) =u(z,s) (1.4.8)



and

1 ky k k 1
Ho (t(z,5)) = Fo (2,5) — 3 > - 1+2k Sky Sky T D S > 5 - it (1.4.9)
kiko>1 L2 k>1 k>1

See in Sect. 3 for the details of this computation.
In order to proceed to higher genera we will use the method that goes back to the paper [6] by

R. Dijkgraaf and E. Witten. The idea of this method is to express the positive genus free energy terms
via the genus zero. Let us first explain this method for the Hodge free energy.

Theorem 1.4.2 ([9]) There exist functions Hy(v,v1,v2,...,035-2), g > 1 of independent variables
v, V1, V2, ... such that
Ju(t) 0397 2y(t)

Hy(t) = Hy (v(t), B0 " o ) g>1. (1.4.10)
Here v(t) is given by eq. (1.4.3). Moreover, for any g > 2 the function Hy is a polynomial in the

variables va, ..., v3g_2 with coefficients in Q [1)1, vl_l] (independent of v).

Explicitly,
1 1
H = —— —1 1.4.11
1(v,v1) = —gpv + 5 loguy ( )
Tv v? v v v3 11032 Tvsv

Ha(v1,02,03,04) = o L 542 2 572 (1.4.12)

T 2560 11520 | 115207 32005 | 36007 | 384002 192007

etc. The algorithm for computing the functions H, can be found in [9]. They were used in the
construction of the associated integrable hierarchy via the quasi-triviality transformation approach
[13].

Let us now proceed to the higher genus terms for the random matrix free energy (recall that only
even couplings are allowed).

Theorem 1.4.3 There exist functions Fy(v,v1,...,v39-2), g > 1 of independent variables v, vy, v,
...such that Duz,s) 92z )
w(x,s 9~ *u(x, s
Fg(ﬂ?,S) :Fg (U(SU,S), ax 7...,a$392> 5 g Z 1. (1413)
Here o
F
u(z,s) = 8035;7’8) = logw(z,s).

Recall that the function w(x,s) is determined from eq.(1.4.6).

Explicitly
1
Fi(v,mn) = Elogvl + const (1.4.14)
with const=¢’(—1),
) v? (N U3 v3 v3 Tvzvg

(1.4.15)

F = —T2n - B
2(v1,v2,v3,va) = — o5 = 5oen + oog v2 480w 50 v} 960 v 48003

7



etc. For any g > 2 the function Fjy is a polynomial in the variables va, ..., v34_2 with coefficients in
@ [Ula Ul_l] .
Using the fact that 0y, = 0, (see Section 3.2 below) along with the standard expansion

€0y 1 reN2 o,

we recast the Main Conjecture for ¢ > 1 into a sequence of the following relationships between the
functions Fy; and H,,

Fy =2H, + % + const (1.4.16)
and, for g > 2
2g—2 g 3m—2
V2g—2 D H1 2 g 2(g7m)
Fy(vr,.-- v3g-2) = 55 Gt e T(2g - 2 +Z g — ) Hp(v1,. .., 03m_2) (1.4.17)

=2

where the operator Dy is defined by

Do—’Ul ot § k1
k>1

For example,

1 1
ZD*H .
T
Egs. (1.4.16), (1.4.18) can be easily verified (see below). In order to verify validity of egs. (1.4.17) for
any g > 2 we write a conjectural explicit expression for the functions Fy(v1,...,v34—2) responsible for
the genus g random matrix free energies. This will be done in the next subsection.

FQ(Ul, V2, V3, U4) = 4H2(U1, Ug,vg,v4) + V2. (1.4.18)

1.5 An explicit expression for [

We first recall some notations. Y will denote the set of all partitions. For any partition A € Y denote
by £(A) the length of A, by A1, A2, ..., Ayn) the non-zero components, [A| = A1 + - - + A\y(5) the weight,
and by m;(A) the multiplicity of i in A. Put m(A)! := [[;5; mi(A)!. The set of all partitions of weight
k will be denoted by Yj. For an arbitrary sequence of variables v1,va, ..., denote vy = vy, - - EOVNE

Conjecture 1.5.1 For any g > 2, the genus g GUE free energy Fy has the following expression

g 3m—2
V292 1 29—2 1 2 ’
Fy(vi,...,v3g9-2) = 229 (29)! + 5295 (2g = 2)!D0 (—161) + —logm Z:Q (2g — 2m)!

3Im—3 (_1)k2+k3

<)‘k1)‘k2/\k37-ﬁ+1>g 2g—2m Up+1
N O
1

= k1+ko+kaz=k PEY3m 3k m(p)'
0<kq,ko,ky<m ’ mees

(1.5.1)



where for a partition p = (u1,...,pue), 4+ 1 denotes the partition (u1 + 1,..., 1 + 1), QP* is the
so-called Q)-matrix defined by

pPL L(p E
12 Ehk],...,“((MeﬁAe(p 1

)
Uq(:piuq =u

In this formula we have used the notation

<)\k1/\k2)\k37—u>g = /M )\kl)\kQ)\kSQ/)Ifl Ce wé’/l’ Vv = (Vl, Ce ,Vg) €Y.

g,¢

Details about @-matrix can be found in [11]. Conj.1.5.1 indicates that the the special cubic Hodge
integrals (1.1.2) naturally appear in the expressions for the higher genus terms of GUE free energy.

Organization of the paper In Sect.2 we review the approach of [13, 8] to the GUE free energy,
and prove Prop.1.4.1 and Thm. 1.4.3. In Sect.3 we verify Conj.1.3.1 and Conj. 1.5.1 up to the genus
2 approximation, and give explicit formulae of F, for g = 3,4, 5.

Acknowledgements We wish to thank Si-Qi Liu and Youjin Zhang for helpful discussions. We also
thank the anonymous referee for several valuable constructive comments that helped us to improve
the presentation of the results of the paper.

2 GUE free energy with even valencies

2.1 Calculating the GUE free energy from Frobenius manifold of P! topological
o-model

It is known that the GUE partition function Zy (with even and odd couplings) is the tau-function of
a particular solution to the Toda lattice hierarchy (see e.g. Proposition A.2.3 in [10], where one can
also find a detailed proof). Using this fact, one of the authors in [8] developed an efficient algorithm
of calculating of GUE free energy, which is an application of the general approach of [13, 7] for the
particular example of the two-dimensional Frobenius manifold with potential

1
e 2 u'
F 2uv +e

(Warning: only in this section, the notation v is different from that of the Introduction.)

More precisely, let FP' denote the following generating series of Gromov—Witten invariants of P!

Fo= S eEr,
920
. R
P
DI ED DD DL S / o Vi (B0 i () O R
k>0 a1,e,05=1p1,....0p>0 BEH(PL;7) (]k]P)7B



Here, ¢1 := 1 € HY(PL;C), ¢ € H*(P'; C) is the Poincaré dual of a point normalized by
¢2 = 17
Pl

M, (P, B) denotes the moduli space of stable maps of curves of genus g, degree 3 with k marked
points to the target P!, evijenote the i-th evaluation map and ; the first Chern class of the i-th
tautological line bundle on /\/ngg(IP’l, B). It has been observed in [8] that

F=F"

to=a,tj=1,1,5,=0,t3_=(2p)!sp—dp,1,t35,=0

where F is the GUE free energy with even valencies (see (1.2.5)). Hence one can apply the general
approach in [13] for computing F, for which we will now give a brief reminder referring the reader to
[13, 14, 8] for more details.

Introduce two analytic functions 61 (u, v; z), 02(u, v; z) as follows

oo
1 2m
01(u,v; 2) = —2¢e*” Z <—2u + cm) em“fnﬁ =: Zﬁlyp(u,v) 2P (2.1.1)
m=0 ) p>0
1 ZQm
Oo(u,v;2) = 2z~ Z em"+sz -1] = Z b2 p(u,v) 2P. (2.1.2)
m>0 p>0

Here ¢, = Y 10y % denotes the m-th harmonic number.

Note that, as in the Introduction, we will only consider the GUE partition function with even
couplings. The corresponding (genus zero) Euler-Lagrange equation [7, 13, 14] (see the Proposition
6.1 in [7] or see the eq. (3.6.78) in [13]) reads

k 2k—2m
m v —
k>1 m=1
k—1 p2k—1-2m
— 2k)! m =0 2.1.4
“+§< )skmzow 2k — 1 — 2m)lm!? (2.14)

where w = e* (as in the Introduction). Note that we are only interested in the unique series solution
(v(z,s),w(x,s)) of (2.1.3),(2.1.4) such that v(z,0) = 0, w(x,0) = z. It is then easy to see from
eq. (2.1.4) that

v=uv(z,s) =0.

And eq. (2.1.3) becomes
em)! _
ml2

T —w+ E Smmuw™

m>1

(2.1.5)

Define a family of analytic functions Qg ,.5,4(u,v) by the following generating formula

3" Qappaty’ = 1 [89a(2) 905 (y) L 90a(2) 905(y) 0 f=12  (216)

- 6a+5,3 )
o z+y| Ov ou ou v

10



The genus zero GUE free energy Fy(z,s) then has the following expression

1
Fo = 3 > @P)N20)! spsq Qazp-1220-1 + 2 ) (20)! 5q Q02291 — T Q21
D,q>2 g1

1 1
+§<1 — 231)2 92,1;271 + 2(281 - 1) (2q)' Sq 9271;272(1_1 + 5332 9170;170. (217)
q22

The higher genus terms in the 1/N expansion of the GUE free energy can be determined recursively
from the loop equation [13, 8] for a sequence of functions

Fg = Fg(uvv7u1>vl, s 7U3g727u3g72)7 g=>1

This equation has the following form
Z OAF (v—=A\ 28A]: 1
vy D ou, D
r>0 r r
OAF [v— A OAF (1
‘ <)(H (7). o250 (75), 0
;; k-1 8’UT \/5 r—k+1 8u7" \/5 r—k+1
- A v—A
:D 46 + 1)— 2 |: Af,’Uk-,’Ul) </U> < >
( Z VD )i \ VD )4

—S(AF vk, w) (v—\/ﬁ)\> k+1 <\/15)z+1 FHAS ) <\/15> k+1 <\/15>l+1}

OAF 4e*(v—Nug —Tvy  OAF4(v—XNvy —Tu |, ,
& Z [ o > e - ("ot (2.1.8)

where AF = 37, S €9F, D= (v—-A)?—4e", T = (v— N2 +4e*, S(f,a,b) = g;gb—i—%%, and
fr stands for 6’“( f). Solution AF of (2.1.8) exists and is unique up to an additive constant. F is
a polynomial in ug, v, ..., u3g—2,v34—2. For g > 2, Fy; is a rational function of wi,vi. Then [13] the

genus g term in the expansion (1.2.4), in the particular case of even couplings only, reads

ou(z,s) 03972 (x, s)
.Fg(.f,S)ZFg (U(.’IJ,S),’U:O’&T,Ulz()’...,axgg_Q,’Ugg_Q:O s 921

It should be noted that the reason that one can take v; = 0 is due to a careful analysis of the rational
dependence of vi,u; in Fy, where the Corollary 3.10.22 from [13] would be helpful.

This procedure will be used in the next subsection.
2.2 Proof of Prop.1.4.1, Thm. 1.4.3

Proof of Prop.1.4.1. Noting that

2m

— m z
02(u,0,2) = z 1(210 (m')2_1)’
m>0 ’
sz Z2m—1
0ub2(u,0,2) = 3 w"™ e Oubel:07) 2 mu (m!)?
m>0 m>0

11



and using (2.1.6) we have

2m 1 2'm 1 2m
v Zmzo w™ (fnl 2 Zm>0 mw™ ( Iz Zmzo muw™ ( Tz Zm>0 w™ (%’ﬂu)
> Qopagy? = by . (2:2.1)
P,4=>0 y
It follows that if p + ¢ is odd then Qs ).2 , vanishes; otherwise, we have
wiEt L
D2 p2g 5 p, q are both even; (2.2.2)
(1+250) [(5)° (%)}
ptlg+l, Eoi+
22 p, q are both odd. (2.2.3)

Dap2g = 2 N2’
wee ()] ()]

Indeed, in the case that p, ¢ are both even, by comparing the coefficients of zPy? of both sides of (2.2.1)
we obtain that

qg_p )
0 I g g t2i+1
2p2,g = W 2

e & g
T T L2 (- o0 (1 0
BRCCESENY 1 1
R ERERE | (TR T T P ER e

2
2 2
(1+ 59 (5 [(3)]
Here 1/(—1)! := 0. In a similar way, for the case that p, ¢ are both odd, one derives (2.2.3).
Substituting the expressions (2.2.2)—-(2.2.3) in (2.1.7) we obtain

(k1 + 1) (kg 4 1) whithet2

1 1
Fo = —z%u + = Z (2]€1 + 2)!(2k2 + 2)!Sk1+18k2+1

2 2,0 (k1 + k2 4+ 2) [(k1 4+ D)2 [(k2 + 1)1?
k+1 2 (k 4 1) k+2
w w w
+z Y k+2Dlsp1——5 —axw+ (1 —4s1)— — > (2k + 2)!sgs1 5
,;0 (k+1)!2 4 ; (k+2)[(k+ 1
Equation (1.4.6) is already proved in (2.1.5). The proposition is proved. O
Proof of Theorem 1.4.3. For g = 1,2, taking v = v; = v = --- = 0 in the general expressions of

Fy(u,v,u1,v1,...,u39-2,034—2) [13, 14] one obtains (1.4.14) and (1.4.15). For any g > 1, the existence
of Fy(u,u1,...,usg—2) such that

or 77 Ox39—2

Folz,8) = Fy <u(m,s), Ou(w;s) WW)

is a direct result of [13, 14] when taking v = vy = vy = --- = 0 in Fy(u, v, u1,v1,...,U3g—2,V3g—2). O
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3 Verification of the Main Conjecture for low genera

3.1 Genus 0

Recall that the genus zero cubic Hodge free energy can be expressed as

where #; = t; — 6;.1, t = (to,t1,12,-..), €2;;; are polynomials in v given by
Viti+l
i (V) (i47+1)dl4!

and v(t) is the unique series solution to the following Euler-Lagrange equation of the one-dimensional
Frobenius manifold ,
/UZ

>0

(Warning: the above v is the flat coordinate of the one-dimensional Frobenius manifold; avoid confusing
with v in Section 2 where (u,v) are flat coordinates of the two-dimensional Frobenius manifold of P!
topological o-model.)

Let us consider the following substitution of time variables

ti:Zki+1§k_1+5i,1+$-(5i,07 v > 0.
k>1

Note that with this substitution the cubic Hodge free energies will be considered to be expanded at
x =1. We have t; = Y ok>1 Etls, —1+z- di,0, and so

7{0:725% (t))

i,5>0
— ;i’jzo glkjﬂskl—uméi,o l;lkﬂ+1sk2—1+x 5,0 (Z;;t:;w
1 +7+1
T2 ;%%NW 57 5k 3 1 ]i il Z;Okgl’“’“ Sk H]J:Jr)z"
1 1
+x JZ>01612>1]€1 Sk 04,0 Z+;:_JJ;)Z']' +;1§0(H’1§:‘ﬁ1)2'3'
+7+1 2 i+7+1
- ;0 m+2;oéoajom (3.1.1)

13



We simplify it term by term:

Z+j+1 I2
pititl
x Z ) ey z (e — 1),
| l
50 (i4+7+1)4!
z+]+1 €+1£| 1 vf+1 2@ 1 )
v
— _— = = — _—_— = — — ]_
. z+]+ Ui—i—l
x kit Sky 05,0 U— kH_l = Sk (ekv — 1)7
ZZ RGRE ZZ I
S S M s e = ke 0 b e = 3 s (0 - 1)
k1 11 ’
4,50 k1 >1 (i+j+1)il ;! E>1 >0 ) k>1 1+
2 Z S KR 5 5, Lll =2 Y kikaSu Sn Y ; Hi (k1 + k2)*
1,520 kq,ka>1 (i +j+1)d kl,k2>1 >0 (€+1)!
k1 k
Z A 1+2k Sky Sky (e(k1+k2)v - 1) :
kl,k2>1 1

Let w = €. We have

kiky < k1+ko ko
1) -
Z kl—{—k Sky Sk (W %1—}—]681{

k1,ka>1 k>1
1, 5 x?
—i—Z(w —1)—z(w—-1)+ ?logw.

On the other hand, recall from Prop. 1.4.1 that the genus zero GUE free energy with even couplings
has the form

2

_w = k k k+1 kle _ k+k 2
fo_4_mw+;8k<w—k+1 ) k;>1k1+k5k15k2 v g S logw.

Here w is the power series solution to

w:x+z krgkwk.
k>1

Recall that w = e%; so

Namely,
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It follows that
u(x,s) = v(t(x,s)). (3.1.2)

We conclude that

1 kik 1
’Ho(t(x,s)) - ]:O(l‘,s) = ) Z 2 1_'_2 Sky Sky T Z S — T Z Sk — 1 + . (3.1.3)
kika>1 L E>1

This finishes the proof of the genus zero part of the Main Conjecture.

3.2 Genus 1,2

Note that the substitution (1.3.2)
(to,tl,tQ,. . ) — (x,§1,§2,...)

satisfies that

0 0
—_— = — 2.1
ox (97507 (3 )
0 i1 0
— = L > 1. 2.2
05y, Z g ot;’ k=2 (3 )
>0
In particular, we have

ov ov(t(z,s))  Ou(z,s)

- t — —

oty (:5) oz oz

The last equality is due to (3.1.2).
Recall, from the algorithm of [9], that the genus 1 special cubic Hodge free energy is given by

log U1 — 1

H .
(o) = o7 16°

So
v 1
2H; (vsv1) + i ((-1) = 1o logv+ ¢'(=1).
This proves the genus 1 part of the Main Conjecture.
The genus 2 term of the special cubic Hodge free energy is given by

7 vo v% Uy V3 vg’ 11 v% T U3V
H - - = .
2(01 02,03, 04) = 52660~ 11520 T 115207 32005 | 36007 | 334007 192007

So

1 1 5 1 |vs v ) 2
AHy + —~D2Hy + —vy, = AH _ = (B (2
2% g Po it g v 2(v1, V2, V3, 04) = oyv2 + g [vl <v1>]

_oove o o e v vg o vE Tugy
© 480 2880 288v7 480wy  90v{  960v?  480v3

= F5(vi,v2,v3,04).

This proves the genus 2 part of the Main Conjecture.
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3.3 Genus 3,4

Using the Main Conjecture along with the algorithm of [9], we obtain the following two statements.

Conjecture 3.3.1 The genus 3 GUE free energy is given by

F3<U17...,'LL7)
 13uy u% uff n uy Ug Uus
120960 24192 725760  10368ui  5760ui  13440u
103u3 59u} n u} U3y 5u§ 13u3
60480u} = 8064uf  2688u? 12096  81uf  1890uf
51/2l _ u‘% _ Tugus _ 53usus 353U5u% U5UY
5376uf  9072u?  5760uj  20160uj  40320u}  840u}
89usuy B 8?>U4u§’ _ 211u4u§ n ULU 59u;),u%
40320u3  1890u8  40320uf = 2016u?  378u]
1993ugus  wsud  83udud  19usus  1Twdug  1273ugugus

1209600 576u3  896ub | 120960u;  2240ut | 403201
(3.3.1)

Conjecture 3.3.2 The genus 4 GUE free energy is given by

Fy(uq,...,uip)

1852u3 N 151uf  101uj  772uguj

1215uf? © 675ul®  12600uf  135u}!
9904uqu§ 1165u$ 2851uzul  14903u3u  70261uguj
6075ul0  1161216uS  3600u? 2160ul0 " 3225600u]
2573u4u3 ud 2243usul  195677udus  3197uguj
10800u8  7200u?  6480u? 230400u$  967680u}
12907ugus  10259uqui  22153usui  101503usuqui  1823uius

226800u$  1935360uf  414720ul 32400u 5670u$
415273 ususus3 9Tusu3 26879ugu us 49uzu3
829440uf 120960u7  2903040uS ' 7257600  138240u}
5137uqus  87Tudui  812729usugus  212267urui  305129ujus
©4354560ut  57600uS  2073600u]  29030400u! 103680
wdud  1379uiud  13138507udugud = 241Tusuqud  1Tugu3
460800  34560u$ 9676800u? 537600u}  138240u?
2143uzusu3  449usu’ 2323ugu3  2623uiul  443ugud

34560u8 145152003 3225600u6  967630u’  9676300u?
667urus  192983uju3  60941lugugus  171343uqusui | 22809uguy

537600u}  691200u] 1075200u] 1935360u’ 71680uf
174Tudug — Tudug 9221utus  1Tujuzus  78533u3ugus
806400u}  38400u? = 1935360u$ 3225600 691200u$
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18713U3’U,4UQ 15179U4U6u2 20639U3U7UQ 37u8uQ uUqU2
145152003 1935360u$ 4838400u$  302400uj 86400

11usus 923ugus 113u7uo 55u?1u2 419uszusus
362880u;  14515200u2  9676800ud  387072u?  1935360u’
1411ugusus Tugus 1751ugugus 12035U§U5u2 44201U3uiu2
©138240u5  138240u]  268800u}  96768ul  276480u]
1549u} 937u} 229u 19u? udug  949uzugus
115200u$ ~ 2903040u3 ~ 62208u8  46080ui 691200  55296u$
59ufug  T3usug 177 Tugur 143uz 3lusg u1o
10752u$  107520uf = 4838400uf = 14515200u;  9676800u? * 497664u]
u% ULU5 T3ug u? 19U%U4 137Tuguy
115200 138240 29030400 43545600 87091200 2073600,
239uszus 661u3 g 1Tugus 89usug 709udug

©1451520u2  5806080u?  138240u?  387072ud  3225600u3  3225600u’
1291ugu?  1001udus  197usug  163ugug  2069uqu;  2153ujuy
138240u7  138240u3  387072u}  967680u}  5806080u5  28800ul

(3.3.2)

We also computed the genus 5 free energy; it can be found in the Appendix to the preprint version
arXiv: 1606.03720 of the present paper.

For the particular examples of enumerating squares, hexagons, octagons on a genus g Riemann
surface (g = 3,4,5), one can use (3.3.1), (3.3.2), as well as the equation (A.0.1) of the arXiv preprint
version to obtain the combinatorial numbers. We checked that these numbers agree with those in [10].
This gives some evidences of validity of the Main Conjecture for g = 3,4, 5.

Remark 3.3.3 The genus 1,2, 3 terms of the GUE free energy with even couplings were also derived in
[15, 16, 30] for the particular case of only one nonzero coupling (i.e., in the framework of enumeration
of 2m-gons). To the best of our knowledge, explicit formulae for higher genus (g > 4) terms, even in
the case of the particular examples, were not available in the literature.
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