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CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS

BORIS DUBROVIN, DI YANG, DON ZAGIER

To the memory of the extraordinary mathematician and man Vladimir Igorevich Arnold, with admiration

In 1891 Hurwitz [30] studied the number Hg,d of genus g ≥ 0 and degree d ≥ 1 coverings of the
Riemann sphere with 2g + 2d− 2 fixed branch points and in particular found a closed formula for Hg,d

for any fixed d. These Hurwitz numbers are now very famous and have been studied from many different
points of view (matrix models, Gromov–Witten invariants, topological recursion, classical/quantum
integrable systems, ...). In this paper we study their combinatorial properties, and compare them with
some other enumerative problems.

Introduce the following generating series of Hg,d

H = H(x, y) =
∑
g≥0

∑
d≥1

hg,d x
2g+2d−2 yd, hg,d :=

Hg,d

(2g + 2d− 2)!
. (1)

In the first part of the paper (Section 1), which is completely elementary, we will deduce from a
recursion relation obtained by R. Pandharipande in [43] a much simpler one, which can be written
compactly in terms of the generating series (1) in the following form

H(3) −H(2) = 2H(2)
∞∑
`=1

x2`

(2`)!
H(2`+1), H(n) :=

(
y
∂

∂y

)n
H =

∑
g≥0

∑
d≥1

dnhg,d x
2g+2d−2 yd , (2)

and use it to give simpler derivations of some known and new properties of Hg,d. In particular:

P1 For any fixed d ≥ 1, the function Hg,d is a linear combination of finitely many exponentials

m2g+2d−2, 1 ≤ m ≤
(
d
2

)
with coefficients in 2d!−2Z. For example, for d = 6

6!2

2
Hg,6 = 15w − 36 · 10w + 25 · 9w − 225 · 7w + 700 · 6w − 720 · 5w

+ 7200 · 4w − 15200 · 3w − 34200 · 2w + 163575 ,

where w = 2g + 10. (This example was already given by Hurwitz). In particular, we have the
asymptotic formula

Hg,d ∼
2

d!2

(
d

2

)2g+2d−2

as g →∞ . (3)

The exponential polynomials H∗,d can be computed recursively in time polynomial in d.
P2 For any fixed g ≥ 0, the function d!hg,d belongs to the rank 2 module over Q[d] generated by

the two integer-valued functions

d 7→ 2 dd−3 and d 7→ (d− 1)!
d−1∑
r=0

dr

r!

and hg,d itself is a linear combination of h0,d and h1,d with polynomial coefficients, e.g.

h2,d = 7d4(d−1)
4320 h0,d − 5d2

72 h1,d ,

h3,d = − d4(d−1)(99845d2−454d+24)
1045094400 h0,d + d2(128625d3+546700d2−980d+48)

174182400 h1,d .
(4)

1



2 BORIS DUBROVIN, DI YANG, DON ZAGIER

Moreover, the series H(n)
g (z) =

∑
d≥1 hg,d d

nzd is a polynomial with rational coefficients in

H(3)
0 (z) for all g and n satisfying the stability condition 2g−2+n > 0, and there is a polynomial

time (in g and n) recursive algorithm to compute these polynomials.
P3 The asymptotic behavior of Hg,d for g ≥ 0 fixed is given by

Hg,d ∼
cg
√
π/2

(24
√

2)g Γ(5g−1
2 )

(4

e

)d
d2d−5+9g/2 as d→∞ (5)

or equivalently

hg,d ∼
cg
√

2

(96
√

2)g Γ(5g−1
2 )

d(5g−7)/2 ed as d→∞, (6)

where the numbers

c0 = −1, c1 = 2, c2 = 98, c3 = 19600, c4 = 8824802, c5 = 7061762400, · · ·

are given by the recursion

cg = 50 (g − 1)2 cg−1 +
1

2

g−2∑
h=2

ch cg−h (g ≥ 3) (7)

or equivalently by the statement that the generating series U = U(X) =
∑

g≥0 cgX
1
2
− 5g

2 satisfies
the Painlevé I equation

d2U

dX2
+

1

16
U2 − 1

16
X = 0. (8)

We indicate briefly which of these results were known and what is new. The first statement of P1 is
due to Hurwitz, as already mentioned, and the asymptotic formula (3) follows immediately, but the
last statement is new. (Hurwitz’s formulas for H∗,d involve summations over all permutations or all
partitions of d and therefore contain an exponentially growing number of terms.) The first statement
in P2 seems not to be in the literature. The second statement, that every hg,∗ is a linear combination
of h0,∗ and h1,∗ with polynomial coefficients is implicit in the work of Goulden, Jackson and Vakil [28].
However, the explicit computations were done there only up to genus 3 (Examples 4.1–4.3), and actual
formulas for higher genera would be almost impossible to obtain by their approach, which is based on
difficult computations of Hodge integrals, whereas with our polynomial-time algorithm given here one
can easily compute up to much larger values of the genus. The formula for h3,d given in [28] expresses
it as a linear combination with polynomial coefficients of h1,d and h2,d (one sees from (4) that this is
possible, since the coefficient of h0,d in h3,d is divisible by the coefficient of h0,d in h2,d) and a remark
given by the authors in this context (“This is to be expected to persist for g ≥ 2,” p. 578) seems to
suggest that more generally hg,d is a combination with coefficients in Q[d] of hg−1,d and hg−2,d for any g,
but in fact this fails already for g = 4. (Of course hg,d is always a combination of hg−1,d and hg−2,d with
coefficients in Q(d), but in general the coefficients will have denominators.) Finally, a result equivalent
to P3 was proved by Caporaso et al. [6] as a consequence of the Ekedahl–Lando–Shapiro–Vainshtein
formula [21] along with Itzykson–Zuber’s result [32] on the asymptotics of certain Gromov–Witten
invariants of a point, whereas we give a direct proof using just the recursion.

We also remark that to obtain the results of P2 we study two simple spaces of sequences of rational
numbers (the “Lambert space” and “extended Lambert space”) that contain the sequences d 7→ d!hg,d
with g fixed and many other interesting counting functions. Related spaces have appeared in the
literature many times, most notably in [46], but our way of studying these spaces and several of the
specific results that we prove about them are new.

The second part of this paper (Section 2), describes a different method of computing Hg,d for fixed g
based on the Dubrovin–Zhang (DZ) approach [18]. It was shown by Pandharipande [43] that Hg,d

are special Gromov–Witten (GW) invariants of the complex projective line P1. In [9, 18, 11], the
first-named author and Y. Zhang developed a powerful method of computing GW invariants of any
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smooth projective variety with semisimple quantum cohomology. The quantum cohomology of P1 is
semisimple. Indeed, the small quantum cohomology of P1 at the origin is already semisimple:

1 ? 1 = 1, 1 ? ω = ω ? 1 = ω, ω ? ω = 1 (9)

where 1 ∈ H0(P1;Q), ω ∈ H2(P1;Q) is the Poincaré dual of a point, and ? denotes the quantum
product. Hence one can apply the DZ approach to the computation of Hg,d. We mention that, according
to [9, 18], the multiplication table (9) together with the Poincaré paring on H∗(P1;Q) contain complete
information on all GW invariants of P1.

In the third part of this paper (Section 3), we investigate three more models in enumerative geometry
that share similar properties with Hurwitz’s counting problem. The first one is the enumeration of
ordinary graphs. The second one is the enumeration of ribbon graphs (aka Grothendieck’s dessins
d’enfants) [3, 29, 36]. Although closed formulas for the enumeration of ribbon graphs with one and
two vertices had been obtained in [29] and [38], respectively, it is only recently that two efficient
algorithms for the ribbon graph enumeration (one is efficient for large genus, the other is efficient
for large number of vertices) have been developed by two of the authors [16, 17]. The algorithm
in [17] observes an interesting relationship between Hodge integrals and matrix integrals called the
Hodge–GUE correspondence. The validity of this algorithm has been proved very recently in [14]. The
third one is the study of intersection numbers (of the so-called ψ-classes) over the Deligne–Mumford
moduli space Mg,n of stable algebraic curves of genus g with n distinct marked points along with
nonlinear Hodge classes of the most general type [39, 23, 13]. The comparisons between these three
models and Hurwitz’s problem with g ≥ 2 are summarized in the following list:

order of the most singular term characterization of the top coefficient
Ordinary graphs 3g − 3 Riccati equation
Ribbon graphs 4g − 4 not known
Hodge integrals 5g − 5 Painlevé I equation

Hurwitz numbers 5g − 5 Painlevé I equation

Here, for Hurwitz’s problem, g is the genus of the upper Riemann surface of a covering; for Hodge
integrals, g is the genus of the stable curves that form the moduli space; for an ordinary graph, g is
the number of loops of the graph; for a ribbon graph, g is defined as the smallest genus of a Riemann
surface into which the ribbon graph can be embedded, while the words “most singular term” and “the
top coefficient” refer to the asymptotic growth of the elements of the sequence in question for fixed g.

1. Elementary theory of Hurwitz numbers

In this section we derive the main combinatorial properties of the Hurwitz numbers from a completely
elementary point of view, not involving any geometric considerations. Our main tool is a quadratic
recursion that we give in Section 1.1. The discussions of the Hurwitz numbers for fixed d or fixed g are
given in §1.2 and §1.3, respectively, while §1.4 and §1.5 discuss the Lambert space and the asymptotic
properties of the Hurwitz numbers.

1.1. A quadratic recursion for the Hurwitz numbers. It was conjectured by Pandharipande [43]
and later proved by Okounkov [40] that the generating series H defined in (1) satisfies the following
differential-functional equation

D2H(x, y) = y eH(x, y ex)−2H(x, y)+H(x, y e−x) , D := y
∂

∂y
. (10)

Expanding H(x, y e±x) by Taylor’s theorem and comparing the coefficients of both sides, one can
rewrite (10) equivalently as a recursion for the numbers hg,d = Hg,d/(2g + 2d− 2)! (page 64 of [43]):

hg,d =
1

d2

∞∑
`=0

2`

`!

∑
d1,...,d`≥1∑
di=d−1

∑
g1,...,g`≥0
k1,...,k`≥1∑
(gi+ki−1)=g

∏̀
i=1

d2ki

(2ki)!
hgi,di . (11)
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Our first observation is that both (10) and (11) can be replaced by much simpler quadratic equations.

Proposition 1. The generating series H satisfies the differential-functional equation

D3H(x, y)−D2H(x, y) = D2H(x, y)
(
DH(x, y ex)− 2DH(x, y) +DH(x, y e−x)

)
. (12)

Equivalently, the numbers hg,d = Hg,d/(2g + 2d− 2)! are given recursively by

hg,d =
2

d2(d− 1)

∑
d1,d2≥1
d1+d2=d

∑
g1,g2≥0, `≥1
g1+g2+`=g+1

d2`+1
1 d2

2

(2`)!
hg1,d1hg2,d2 . (13)

Proof. Equation (12) follows from (10) by applying D to both sides, and (13) from (12).

The quadratic recursion (13) is useful not only for theoretical considerations, as we will see in the
rest of this section, but also for numerical purposes, since the number of terms on the right grows only
polynomially (like O(g2d) ) rather than exponentially in the arguments g and d.

1.2. Hurwitz numbers for fixed degree. Our first application of Proposition 1 is to study the
numbers hg,d for fixed d by giving a recursive formula for the generating functions

Cd(x) :=
∑
g≥0

hg,d x
2g−2+2d (d ≥ 1) .

This also gives a convenient algorithm for computing the Hurwitz numbers, since the recursion for Cd
involves only O(d) terms, so that we can easily calculate up to fairly large values of d.

To state the recursion we will use a sequence of polynomials Pk = Pk(s), with initial values

P1 = s, P2 = s2 + 4s, P3 = s3 + 6s2 + 9s, P4 = s4 + 8s3 + 20s2 + 16s, . . . ,

that can be defined either by Pk(s) = 2Tk
(
s+2

2

)
− 2 (Tk = Chebyshev polynomial of the first kind) or

else recursively by Pk+1 = (s+ 2)Pk − Pk−1 + 2s, or else in closed form as
∑k

i=1

((
k+i
2i

)
+
(
k+i−1

2i

))
si.

(The equivalence of these three definitions is elementary.) Then we have:

Theorem 1. The generating series Cd(x) ∈ Q[[x]] is given for each d ≥ 1 by

Cd(x) =
1

d
γd
(
4 sinh2(x/2)

)
, (14)

where γd(s) is a polynomial of degree
(
d
2

)
in s defined inductively by

γd(s) =
1

d2 − d

d−1∑
k=1

(d− k)Pk(s) γk(s) γd−k(s) (d ≥ 2) (15)

together with the initial condition γ1(s) = 1, the first values being

γ1(s) = 1, γ2(s) =
s

2! 1!
, γ3(s) =

s3 + 6s2

3! 2!
, γ4(s) =

s6 + 12s5 + 54s4 + 96s3

4! 3!
, . . . .

Proof. Since H =
∑

dCd(x) yd, we have

DH(x, y ex)− 2DH(x, y) +DH(x, y e−x) =
∑
d≥1

dCd(x)
(
edx − 2 + e−dx

)
yd . (16)

Using (16) and comparing coefficients of yd of the both sides of (12) we find

(d3 − d2)Cd(x) =

d−1∑
k=1

k (d− k)2
(
ekx − 2 + e−kx

)
Ck(x)Cd−k(x) . (17)

After changing variables from x to s = 4 sinh2(x/2) (and also multiplying Cd by d to simplify the
recursion slightly), this takes the form (15) with Pk(s) defined by Pk(x − 2 + x−1) = xk − 2 + x−k,
which is equivalent to each of the definitions of Pk given just before the theorem.
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Remark. Although equation (12) in Proposition 1 follows easily from Pandharipande’s equation, it
changes considerably the form of the recursion for Hg,d, and significantly reduces the time complexity.
This is actually an unexpected phenomenon, essentially due to the nonlinearity of Pandharipande’s
original equation (10). To the best of our knowledge, the algorithm described in Theorem 1 is a first
one in the literature with the polynomial time complexity for computing Hg,d. See in Sections 1.5
and 1.3 for more discussions as well as applications.

The following corollary is a more precise version of the statement P1 of the introduction.

Corollary (Hurwitz 1891). The numbers Hg,d for fixed d have the form

Hg,d =
2

d!2

∑
1≤m≤(d2)

bd,mm
2g+2d−2 (18)

where bd,m are integers with b
d, (d2)

= 1 and bd,m = 0 for
(
d−1

2

)
< m <

(
d
2

)
.

Proof. From Proposition 1 or from the recursion (17) we see that Cd(x) is a Laurent polynomial in
ex and is even in x. This implies a formula of the form (18) with bd,m ∈ Q. The further properties

(integrality and values for m >
(
d−1

2

)
) are also easily deduced from (17).

We end this subsection by discussing another approach to calculating the numbers Hg,d and proving
the corollary above that was discovered by Hurwitz himself in a second paper [31] in 1901. Let H∗k,d be

the weighted (by inverse number of automorphisms) number of (not necessarily connected) coverings
of P1 of degree d with k simple ramification points, and introduce the corresponding generating series

ZH = ZH(x, y) :=
∑
k, d≥0

H∗k,d
k!

xkyd =:
∑
d≥0

C∗d(x) yd. (19)

Note that the connected coverings in this setting have genus given by k = 2g+ 2d− 2, so by a standard
argument we know that ZH is related to the generating series (1) by

ZH(x, y) = eH(x,y). (20)

Hurwitz showed that d!H∗k,d is the number of homomorphisms from π1(S2 r {P1, . . . , Pk}) to Sd for
which the image of the generator at each puncture is a transposition, i.e., to the number of ordered
k-tuples of transpositions in Sd with product 1. The famous Frobenius formula then gives

H∗k,d =
1

d!2

∑
π

(dimπ)2 ν(π)k ,

where the sum is over all irreducible representations π of Sd and ν(π) is the value (scalar, by
Schur’s lemma) of the central element

∑
i<j [(ij)] in Z[Sd] on π. (See also [41, 12].) Hence C∗d(x) =

1
d!2
∑

π(dimπ)2 eν(π)x , which already has the desired property of being a Laurent polynomial in ex

(and also even in x, as of course it must be from its definition, because ν(π∨) = −ν(π) for all π) and
hence gives a direct proof of the formula (14) for some polynomial γd(s). Hurwitz [31] found explicit
expressions for dimπ and ν(π) in terms of partitions and gave the following beautiful closed formula
for C∗d(x)

C∗d(x) =
∑

0≤n1<n2<···<nd
n1+···+nd = d(d+1)/2

(∏
i<j(ni − nj)∏

i ni!

)2

e( 1
2

∑d
i=1 n

2
i−

1
12
d(d+5)(2d−1))x , (21)
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as well as the initial values

2!2

2
C∗2 (x) = coshx,

3!2

2
C∗3 (x) = cosh(3x) + 2,

4!2

2
C∗4 (x) = cosh(6x) + 9 cosh(2x) + 2,

5!2

2
C∗5 (x) = cosh(10x) + 16 cosh(5x) + 25 cosh(2x) + 18 .

We now observe that ZH, like H itself, satisfies a quadratic differential-functional equation. Indeed,
equation (20) and Pandharipande’s equation (10) imply

ZH(x, y)D2ZH(x, y) − DZH(x, y)2 = y ZH(x, y ex)ZH(x, y e−x). (22)

Substituting (19) and comparing coefficients of powers of y we arrive at

Theorem 2. The functions C∗d(x), d ≥ 1 are given recursively by

d2C∗d(x) =
∑

d1,d2≥1
d1+d2=d

(d1 − d2)2C∗d1(x)C∗d2(x) +
∑

d1,d2≥0
d1+d2=d−1

e(d1−d2)xC∗d1(x)C∗d2(x), d ≥ 1 (23)

together with the initial data C∗0 (x) = 1.

Note that (21) has a number of terms growing more than polynomially in d (specifically, like the
number of partitions of d), whereas (23) lets one compute C∗d ∈ Q[coshx] for all d ≤ D in O(D2) steps.
It would be very nice if one could use Hurwitz’s explicit formula (21) to give a purely elementary proof
of the quadratic recursion (23), and hence also of Pandharipande’s original recursion (10).

1.3. Hurwitz numbers for fixed genus. In the previous subsection we studied the structure of the
generating function of the Hurwitz numbers Hg,d for fixed d. We now turn to the complementary case
when g is fixed, i.e., we want to describe the generating function

Hg = Hg(z) :=
∞∑
d=1

hg,d z
d (24)

for every g ≥ 0, and in particular to prove the statements given in P2 of the introduction.
We set z = x2y and consider x as fixed, so that the operator D defined in (10) can also be written

as z d
dz . From the definitions (1) and (24) we have

H =
∑
g≥0

Hg(x2y)x2g−2 =
∑
g≥0

Hg(z)x2g−2 , H(n) := DnH =
∑
g≥0

H(n)
g (z)x2g−2 (n ≥ 0).

Applying to this our quadratic differential equation (12) and comparing coefficients of x2g−2 on both
sides, we obtain the differential-recursive equation

H(3)
g − H(2)

g =
∑

g1, g2≥0, `≥1
g1+g2+`=g+1

2

(2`)!
H(2)
g1 H

(2`+1)
g2 (25)

for the functions Hg, from which all of the desired properties will follow. Notice that this equation is
autonomous, i.e., it does not contain the independent variable z. This will be crucial for us since it
means that we can freely replace z by any equivalent variable (i.e., one given by an invertible power
series in z) and write D with respect to the new variable without changing (25).

We first consider (25) for small values of g. For g = 0 it becomes H(3)
0 −H

(2)
0 = H(2)

0 H
(3)
0 , which

integrated once gives H(2)
0 −H

(1)
0 = 1

2

(
H(2)

0

)2
. (Notice that there is no constant of integration since all
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of our power series have constant term 0 and D is invertible on such power series.) So if we set

T = H(2)
0 (z) = z + z2 +

3

2
z3 +

8

3
z4 + · · · , (26)

then H(1)
0 = T − 1

2T
2 and hence D(T − 1

2T
2) = T or

1

z

dz

dT
=

1− T
T

, which integrates immediately to

z = Te−T . (27)

Equation (27) expresses z as a power series in T and hence conversely determines T as a power series
in z. This is the so-called Lambert function, whose well-known expansion is given by

T =

∞∑
d=1

dd−1

d!
zd . (28)

Together with the identification T = H(2)
0 (z) this gives the genus 0 Hurwitz numbers as h0,d = dd−3/d! .

To write the generating function H0 itself, rather than its second derivative, as a function of T , we
note that the relation D(T ) = T/(1− T ) implies the basic formula

D := z
d

dz
=

T

1− T
d

dT
(29)

for the differential operator D in terms of T , and using this we can integrate or differentiate any
expression in T as many times as we want, obtaining in particular

H0 = T − 3

4
T 2 +

1

6
T 3 , H(1)

0 = T − 1

2
T 2 , H(2)

0 = T ,

H(3)
0 =

T

1− T
, H(4)

0 =
T

(1− T )3
, H(5)

0 =
T + 2T 2

(1− T )5
, · · · .

(30)

We next consider g = 1. For this case (25) becomes

H(3)
1 − H(2)

1 =
1

12
H(2)

0 H
(5)
0 + H(2)

0 H
(3)
1 + H(2)

1 H
(3)
0 = D

( 1

24

T + T 2

(1− T )3
+ T H(2)

1

)
,

where for the second equality we have used (29) and the values in (30). Integrating once gives(
T

d

dT
− 1

)
H(1)

1 =
[
(1− T )D − 1

]
H(1)

1 =
1

24

T + T 2

(1− T )3
, (31)

which is easily integrated twice more to give

H(1)
1 =

1

24

T 2

(1− T )2
, H1 = − T + log(1− T )

24
. (32)

Continuing in this way, we can find each power series Hg(z) in terms of T , the next two cases being

H2 =
T 2 + 6T 3

1440 (1− T )5
, H3 =

9T 2 + 548T 3 + 3482T 4 + 3816T 5 + 720T 6

725760 (1− T )10
. (33)

But it is not obvious that the integration process always works and that each higher Hg is a polynomial
in 1/(1− T ). This is part of the content of the following theorem.

Theorem 3. Let z and T be variables related by (27). Then the generating series Hg for all g ≥ 0 as
power series in either z or T are uniquely determined by the recursive differential equation (25), where

H(n)
g := DnHg with D as in (29). They are always elementary functions of T , with H(n)

g ∈ Q[1/(1−T )]
for all g, n ≥ 0 satisfying the stability condition 2g + n− 2 > 0. Explicitly, Hg is given by (30), (32)
and (33) for g ≤ 3 and by an expression of the form

Hg =

5g−5∑
i=2g−2

κg,i
(1− T )i

(34)
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for all g ≥ 2, with top and bottom coefficients given by

κg,2g−2 =
B2g

2g (2g − 2)
, κg,5g−5 =

24−g cg
(5g − 3) (5g − 5)

, (35)

where Bn denotes the nth Bernoulli number and the cg are the numbers defined by (7) or (8).

Proof. The recursive differential equation (25) is third-order in Hg, so we have to integrate three times.

Symmetrizing (25) and noting that A(2)B(2m+1) +A(2m+1)B(2) for any two functions A and B is the

derivative of A(2)B(2m) −A(3)B(2m−1) + · · · + A(2m)B(2), we can integrate (25) once to get

H(2)
g −H(1)

g =
∑

g1,g2≥0, n1,n2≥2
2g1+2g2+n1+n2=2g+4

(−1)n1

(n1 + n2 − 2)!
H(n1)
g1 H

(n2)
g2 . (36)

(As before, there is no constant of integration because all of our power series have constant term 0.)
Separating out the terms involving Hg, we can rewrite this as(

T
d

dT
− 1

)
H(1)
g =

∑
0≤g1,g2≤g−1, n1,n2≥2
2g1+2g2+n1+n2=2g+4

(−1)n1

(n1 + n2 − 2)!
H(n1)
g1 H

(n2)
g2 , (37)

just as we did for the special case g = 1. To see that Hg is a polynomial in (1−T )−1, we must show that
the right-hand side of (37), which by induction on g is such a polynomial, is in the image of the operator(
T d
dT − 1

)
D from Q[(1− T )−1] to itself. This operator sends (1− T )−n to n(n+ 2)T (1− T )−n−3, so

its image is T (1− T )−3Q[(1− T )−1], i.e. the set of polynomials in (1− T )−1 that vanish at T = 0 and
are O(T−2) as T → ∞. The right-hand side of (37), which we abbreviate to Rg, obviously has the

first property, since every series H(n)
g has zero constant term. For the second, we note that the first of

equations (35), together with the special cases (30) and (32), implies that

H(n)
g ∼ (2g − 1)B2g

(2g)!

(2g + n− 3)!

T 2g+n−2
as T →∞ (38)

for all (g, n) satisfying 2g + n ≥ 4. Applying this formula inductively to each factor H(ni)
gi in (37)

(since gi < g), we find that every summand in Rg is O(T−2g) unless one of (g1, n1) or (g2, n2) is equal
to (0, 2) or (0, 3). (They cannot both be, since g > 1.) In these special cases (38) must be replaced

by H(2)
0 = T , H(3)

0 = −1 + O(T−1), and a short calculation then gives

Rg = 4g(2g − 2)!

g−1∑
g1=0

(2g1 − 1)B2g1

(2g1)!(2g − 2g1 + 2)!
T−2g+1 + O(T−2g) = − B2g

T 2g−1
+ O(T−2g)

as T →∞, where the second equality is a consequence of the standard recursion for Bernoulli numbers.
This shows that Rg = O(T−2) as required, completing the proof that (37) can be integrated twice more
to give Hg ∈ Q[(1− T )−1], and also gives the desired asymptotics of Hg(T ) as T →∞, completing the
proof of the first of equations (35) by induction. For the second one we proceed analogously, noting
first that the second of equations (35), together with the special cases (30) and (32), gives

H(n)
g ∼ cg

24g

2n−2
(5g−1

2

)
n−2

(1− T )5g−5+2n
as T → 1

for all g ≥ 0 and n ≥ 2 except (g, n) = (0, 2). (Here (x)m = x(x + 1) · · · (x + m − 1) is the mth
Pochhammer symbol.) Since (5g1 − 5 + 2n1) + (5g2 − 5 + 2n2) ≥ 5g − 2 in (37), with equality only
if n1 = n2 = 2, we find from this that Rg ∼ C(1 − T )−5g+2 as T → 1 where C is the sum of the
contributions to (37) from (g1, g2, n1, n2) of the form (g1, g − g1, 2, 2), (g − 1, 0, 4, 2) or (0, g − 1, 2, 4),
and is then equal to 24−gcg by a short calculation using the recursion (7), completing the proof by
induction of also the second of equations (35).
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Remark. Equations equivalent to (25) were known [28] for g ≤ 1, but to the best of our knowledge
this short and elegant equation is new for general g. We expect that equation (25) or (36) have
geometric meanings for any g. This would suggest a new and geometric proof of the Toda conjecture
for the GW invariants of P1 in the stationary sector. Another essential statement of Theorem 3,

namely the fact that H(n)
g is a polynomial in 1/(1 − T ) whenever 2g + n − 2 > 0, and that Hg for

g ≥ 2 has the form (34), are not new results, but were already proved by Goulden, Jackson and
Vakil [28] using the celebrated Ekedahl–Lando–Shapiro–Vainshtein (ELSV) formula [21] giving a
correspondence between Hurwitz numbers and linear Hodge integrals. Our object in this section was
to give an elementary proof using only the Pandharipande recursion for the Hurwitz numbers (or the
easier quadratic recursion that it implies), and also to give explicit formulas for the top and bottom
coefficients. In fact the formula for the top coefficient was also known, since it was already observed by
Caporaso–Griguolo–Mariño–Pasquetti–Seminara [6] that this coefficient can be written in terms of a
certain Hodge integral that had in fact already been computed by Itzykson–Zuber [32]. We explain in
a few words how this works. The ELSV formula is

hg,d =
1

d!

∫
Mg,d

1− λ1 + λ2 − · · ·+ (−1)gλg∏d
p=1(1− ψp)

=
1

d!

∑
0≤k≤g

k1,...,kd≥0
k+

∑
ki=3g−3+d

(−1)k
∫
Mg,d

λk ψ
k1
1 · · ·ψ

kd
d , (39)

where Mg,d denotes the Deligne–Mumford moduli space of stable algebraic curves of genus g with d

distinct marked points, ψp the first Chern class of the p-th tautological line bundle on Mg,d, and λk
the k-th Chern class of the Hodge bundle of Mg,d. From this Goulden et al. deduced the formula

Hg(z) =
∑
n≥0

1

n!

Tn

(1− T )2g−2+n

∑
0≤k≤g

k1,...,kn≥2
k+

∑
ki=3g−3+n

(−1)k
∫
Mg,n

λk ψ
k1
1 · · ·ψ

kn
n (40)

for the generating series Hg. Since the first sum obviously terminates at n = 3g − 3 (because now each
ki is at least 2), this clearly has the form (34), with top coefficient given by

κg,5g−5 =
1

(3g − 3)!

∫
Mg,3g−3

ψ2
1 · · ·ψ2

3g−3 ,

an intersection number that was studied in [32] and shown to have a generating function satisfying
a Painlevé differential equation. Similarly, if we look at the asymptotics of (40) for T →∞ instead
of T → 1, and compare with (35), we deduce as a corollary the following Hodge integral formula which
seems to be new:

Corollary. For all g ≥ 2, we have

3g−3∑
n=0

(−1)n

n!

∑
0≤k≤g

k1,...,kn≥2
k+

∑
ki=3g−3+n

(−1)k
∫
Mg,n

λk ψ
k1
1 · · ·ψ

kn
n =

B2g

2g(2g − 2)
.

1.4. Lambert Space. Consider the vector space QN of all sequences (f(1), f(2), . . . ) of rational
numbers, equipped with the convolution ring structure

(f ∗g)(d) =
d−1∑
e=1

(
d

e

)
f(e) g(d− e) (f, g ∈ QN, d ∈ N) (41)

and with the automorphism D defined by (Df)(d) = d f(d), which is a derivation with respect to ∗.
The ring (QN, ∗) is isomorphic to the ring zQ[[z]] of formal power series without constant term in an
indeterminate z via the exponential generating series:

QN 3 f 7→ f = f(z) =
∑
d≥1

f(d)
zd

d!
∈ zQ[[z]] . (42)
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Under this isomorphism D corresponds to the derivation z d
dz used before. The space QN contains the

subspace A = (ZN)⊗Q of sequences with bounded denominator, which is closed under multiplication
and under the action of D, but not under that of D−1. Of course both QN and A are modules of
infinite rank over Q[D]. We will be interested in a particular subspace Λ ⊂ A that we will call the
“Lambert space” and that is a free Q[D]-module of rank 2. We can define it somewhat artificially by

Λ = Q[D]α ⊕ Q[D]β , (43)

where α, β ∈ QN are the sequences defined by

α − α∗α−1 = α−1 , β − β∗α−1 = α (or β∗α−1 = α∗α) , (44)

where αn and βn for n ∈ Z denote Dnα and Dnβ, respectively, so that Λ has the Q-basis (αn, βn)n≥0.
We can solve the equations (44) recursively to compute the first values:

d 1 2 3 4 5 6 7 8 . . .
α−1(d) 1 2 9 64 625 7776 117649 2097152 . . .
β−1(d) 1 3 17 142 1569 21576 355081 6805296 . . .

(here we have tabulated α−1 and β−1 instead of α and β because they are already integer-valued).
These functions can be given in closed form as

α−1(d) =
α(d)

d
= dd−1 , β−1(d) =

β(d)

d
= (d− 1)!

d−1∑
r=0

dr

r!
(d ≥ 1). (45)

In particular, αn belongs to A for all n ∈ Z, whereas βn belongs to A only for n ≥ −1. (The number
β−2(p) has denominator p for every prime number p.) We define the extended Lambert space Λ+ by

Λ+ =

∞⊕
n=−∞

Qαn ⊕
∞⊕

n=−1

Qβn ⊂ A

and define two further subspaces of Λ+ by

Λ1 =

−1⊕
n=−∞

Qαn , Λ2 =

∞⊕
n=−∞

Qαn ⊕
∞⊕
n=0

Qβn ,

so that Λ2 has codimension 1 in Λ+ and each of Λ, Λ+, and Λ2 is a Q[D]-module.

Proposition 2. Each of the spaces Λ, Λ1 and Λ2 is a ring with respect to the multiplication (41).

Proof. Set T = α−1 ∈ zQ[[z]], where α−1 is defined by (42). Then the first of equations (44) says
that (1− T )D(T ) = T or 1

z dz = 1−T
T dT , which integrates immediately to (27). Thus the series α−1 is

given by (28), the Lambert power series (whence the name “Lambert space”) and α(d) is given by the
first formula in (45). Similarly, the second or third of equations (44) give (1− T )β = T/(1− T ) and
Tβ = T 2/(1− T )2, respectively, so β = T/(1− T )2. (One can derive from this generating function the
second formula in (45), but this formula will not be used and we omit the proof.) It follows immediately
that αn and βn for n ≥ 0 are polynomials in T

1−T of degree 2n+ 1 and 2n+ 2, respectively, and that
α−n for n > 0 is a polynomial in T of degree T , the first values being

n 0 1 2 3 4

αn
T

1−T
T

(1−T )3
T+2T 2

(1−T )5
T+8T 2+6T 3

(1−T )7
T+22T 2+58T 3+24T 4

(1−T )9

βn
T

(1−T )2
T+T 2

(1−T )4
T+5T 2+2T 3

(1−T )6
T+15T 2+26T 3+6T 4

(1−T )8
T+37T 2+168T 3+154T 4+24T 5

(1−T )10

α−n T T − 1
2T

2 T − 3
4T

2 + 1
6T

3 T − 7
8T

2 + 11
36T

3 − 1
24T

4

In particular, the spaces Λ (resp. Λ1 or Λ2) correspond under the isomorphism QN ∼= zQ[[z]] ∼= TQ[[T ]]
to the spaces of polynomials in T

1−T (resp. polynomials or Laurent polynomials in 1− T ) that vanish
at T = 0, so each of them is closed under multiplication.
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Remark 1. Despite the easy nature of this proof, the assertion of the proposition corresponds to
convolution identities for αn and βn that are not at all obvious, like

d−1∑
e=1

(
d

e

)(e
d

)e−3 (
1− e

d

)d−e−2
=

5d3 + 21d2 + 94d+ 12

12
∈ Q[d] .

Remark 2. The fact that elements of Λ belong to the space A of sequences with bounded denominator
implies an integrality statement for the Hurwitz numbers (and similarly also for the enumerative
functions of graphs and other sequences studied in Section 3). Specifically, the number hg,d, which
from its definition as Hg,d/(2d+ 2g − 2)! could have a denominator as large as (2d+ 2g − 2)!, in fact
has denominator at most Ng d!, for some integer Ng depending only on g. On the other hand, we do
not know the combinatorial meaning of the divisibility of an element of Λ by a power of (1 − T )−1

(like the divisibility of Hg by (1− T )−2g+2), let alone the meaning of the bottom coefficient.

We end this subsection with a few remarks on the asymptotics of sequences in the Lambert space.
The two basic sequences α and β have asymptotic growth given by

α(d) ed

d!
=

1√
2πd

(
1 − 1

12d
+

1

288d2
+ · · ·

)
,

β(d) ed

d!
=

1

2
− 1√

2πd

(1

3
+

1

540d
− 25

6048d2
+ · · ·

)
,

and the asymptotic growth of αn(d) and βn(d) for any n ∈ Z is obtained by multiplying these by dn,

so that we can give the asymptotics of any element f ∈ Λ to arbitrary order in d−1/2. We can also
see the same thing analytically using the isomorphism (42), by considering the behavior of f(z) as
z → e−1. From the proposition and its proof we know that f(z) is a polynomial in 1/(1− T ), so as
ε = 1 − T tends to 0 (from above) we have f(z) ∼ Cε−D for some positive integer D and non-zero
rational number C. (These numbers D and C are what we called the “order of the most singular
term” and the “top coefficient” in the discussion at the end of the introduction.) But from (27) we

get 1 − ez = 1 − (1 − ε)eε = 1
2ε

2 + O(ε3), so f(z) ∼ 2−D/2C(1 − ez)−D/2 as z tends to e−1 from

below, and from this and the binomial theorem one gets the asymptotics f(d)
d! ∼

2−D/2C
Γ(1+D/2) d

D/2−1ed or

f(d) ∼ 2−D/2C
√

2π
Γ(1+D/2) dd+(D−1)/2, as well as an expansion to higher orders if one wishes.

1.5. Asymptotics of the Hurwitz numbers. We end Section 1 with a discussion of the asymptotic
behavior of the numbers Hg,d (or hg,d) for large values of g and d.

The large g asymptotics for Hg,d with fixed d ≥ 2 follow immediately from the corollary to Theorem 1
(Hurwitz’s theorem) and are given by (3). Notice that this asymptotic formula is extremely precise,

since the error term is of the order of
(
d−1

2

)2g
and is hence exponentially smaller than the main term

for g large. A related comment is that the generating function Cd(x) for x ∈ R>0 fixed is also given to
high accuracy by the leading term approximation

Cd(x) ≈ 1

d!2
exp
((d

2

)
x
)

(d→∞) . (46)

This is true, although not quite obvious, even for x small, e.g. for x = 0.1 the ratio of the left- and
right-hand sides of (46) differs from 1 by about 5× 10−18 for d = 500 and 6× 10−82 for d = 2000. In
particular, the generating series H(x, y) defined in (1) is rapidly divergent for any positive values of
x and y, so that it can only be considered as a formal power series.

In the opposite direction for g fixed and d large, the discussion at the end of §1.4 together with
the formula given in (35) for the “top coefficient” of the element d 7→ d!hg,d of the Lambert space
immediately imply the asymptotic statements (5) and (6). It is perhaps worth mentioning that one can
also proceed in a somewhat different order, using the differential recursion (25) inductively to derive
the formula

Hg(z) ∼
2−5(g−1)/224−gcg
(5g − 1)(5g − 3)

(1− ez)−5(g−1)/2 for z → e−1
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with cg satisfying (7) for the asymptotics of each function Hg(z) as z tends to e−1 from below and
deducing the asymptotic formula for its Taylor coefficients from this. We suppress the details, since
they are a little lengthy and basically just reproduce the arguments used in the proof of Theorem 3.
Note that each individual term of the expansion H(x, y) as

∑
gHg(x2y)x2g−2 converges for |x2y| < 1/e,

but that the whole series does not converge for any positive values of x and y, as already mentioned
above. We can also see why this should be so from the “fixed g” asymptotics with g large. The numbers
cg defined by (7) or (8) grow more than exponentially, like

cg ∼
√

3/5

π

(5
√

2

e
g
)2g (1

g
+

1

6g2
+

1

72g3
− 14459

810000g4
+ · · ·

)
as g → ∞. (To see that this should be true up to a constant independent of g, one notes that the
recursion (7) has a formal solution C · 50g(g− 1)!2Pg for a unique power series Pg = 1− 49

3g3
+ · · · . The

rigorous proof that this formal solution gives the correct asymptotics of cg, and the determination of

the constant C =

√
3/5

2π2 , are given in various places in the literature [34, 33, 25, 45].) The renormalized

values occurring in (6) decay more than exponentially, like (e/720g)g/2, but this is not enough to
ensure convergence of the double series since together with (6) (assuming that this estimate holds
uniformly when g and d are both large, which we do not know) this would say that the (g, d) term of

H looks roughly like (ed5x4/720g)g/2(ex2y)d and hence grows more than exponentially rapidly in the

range when d goes to infinity more rapidly than g1/5. It remains an interesting open question to find a
uniform bound for hg,d or for Hg,d in terms of elementary functions.

Remark. Another interesting question about enumerations of Hurwitz covers of a torus has been
systematically studied in [8], where the Lambert ring should be replaced by the ring of quasi-modular
forms. We hope to continue the study of Hurwitz covers of a Riemann surface of higher genus in future.

2. Computing Hg,d from the P1 Frobenius manifold

In this section we describe a completely different approach, and a completely different proof of the
formula (34), using the Gromov–Witten (GW) invariants of P1. Unlike the preceding section, this one
is not elementary and we will assume familiarity with the theory of Frobenius manifolds.

The GW invariants of P1 are encoded by the generating series (“free energy”)

FP1
=
∑
g≥0

FP1

g ε2g−2 ,

where the genus g part FP1

g is given by

FP1

g =
∑
n, d≥0

1

n!

∑
p1,...,pn≥0

1≤α1,...,αn≤2

tα1
p1 . . . t

αn
pn

∫
[Mg,n(P1,d)]

virt
ev∗1(φα1) · · · ev∗n(φαn)ψp11 · · ·ψ

pn
n .

Here t1p, t
2
p (p ≥ 0) are indeterminates, φ1 = 1 and φ2 = ω are the standard basis of H∗(P1) (with

ω normalized by
∫
P1 ω = 1), Mg,n(P1, d) is the moduli space of stable maps of degree d of curves of

genus g with n marked points to the target P1, evi denotes the i-th evaluation map and ψi the first
Chern class of the i-th tautological line bundle on Mg,n(P1, d). It was proved by Pandharipande [43]
that the Hurwitz numbers Hg,d coincide with the following special GW invariants of P1

Hg,d =

∫
[Mg,n(P1,d)]

virt
ev∗1(ω) · · · ev∗n(ω) · ψ1 · · ·ψn ,

where n is defined as 2g + 2d− 2 (the integral vanishes for other values of n), so FP1

g is related to the
generating series Hg of Section 1 by

t2g−2Hg(t2) = FP1

g

∣∣
t21 = t, tαp = 0 otherwise

, (47)
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where the variable t2 corresponds to the variable z = x2y of §1.3 and the full generating series FP1

coincides with our H(x, y) under the substitution t =
√
z, ε = x/

√
z = 1/y.

We now apply the DZ approach to calculating these special GW invariants. Even though only the
specialization tαp = δp1δα2t of the variables tαp is used in (47), we have to work with the 2-variable

specialization with a second non-zero variable t10 = s, and will only restrict to s = 0 at the end. The
potential of the P1 Frobenius manifold is given by

F =
u v2

2
+ eu ,

where u, v are the flat coordinates (∂v gives the unit vector field), which in turn will be expressed
as power series in t and s. This is the so-called topological solution (u, v), obtained by solving the
following genus zero Euler–Lagrange equation (see details in [9, 18]):

∂Φ

∂u
=

∂Φ

∂v
= 0 , where Φ = s u + t

∂F

∂u
− u v = s u + t

(v2

2
+ eu

)
− u v .

This has a unique solution u(s, t), v(s, t) ∈ C[[s, t]] satisfying u(s, 0) = 0, v(s, 0) = s, given by

u = s t+ T , v = s + T/t with T defined by t2 est = T e−T . (48)

The first several terms of the expansions of u, v near s = 0, t = 0 read

u = s t + t2 + s t3 +
s+ 2

2
t4 +

s3 + 12s

6
t5 +

s4 + 48s2 + 36

24
t6 + · · · ,

v = s + t + s t2 +
s2 + 2

2
t3 +

s3 + 12s

6
t4 +

s4 + 48s2 + 36

24
t5 + · · · .

Let us now compute FP1

g . Begin with g = 0. By [9, 19], we have

FP1

0 =
s2

2
Ω1,0;1,0 − sΩ1,0;1,1 + s tΩ1,0;2,1 +

1

2
Ω1,1;1,1 − tΩ1,1;2,1 +

t2

2
Ω2,1;2,1 ,

where Ωα,p;β,q are the genus 0 two-point functions. Substituting the known explicit expressions

Ω1,1;1,1 = (2− 2u+ u2) eu + u v2, Ω1,1;2,1 = u v eu +
v3

3
, Ω2,1;2,1 =

e2u

2
+ v2 eu

into this formula and specializing to s = 0, we find

FP1

0

∣∣
s=0

=
2T 3 − 9T 2 + 12T

12 t2
,

which in view of (47) agrees with our previous formula (30) (with Te−T = t2 = z).

We next consider g = 1. The generating function FP1

g in this case has the form

FP1

1 =
1

24
log
(
v2
s − w u2

s

)
− u

24
.

Substituting the solution (48) into this formula and using (47) we obtain

H1(z) =
1

24
log

1

1− T
− T

24
,

again in agreement with our previous formula (32).
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The expression for the genus two part of the free energy is more involved [18, 11]:

5760FP1

2 =

−w
2

∆4

[
512u3

svsv
3
ss + 384wu3

svss(u
2
s + 2uss)(u

2
svs + 2ussvs − 2usvss)− 64w2u4

s(u
2
s + 2uss)

3
]

− w

∆3

[
256usvsv

3
ss + 12wus

(
28u4

svsvss + 116u2
sussvsvss + 64u2

ssvsvss + 28usvsusssvss − 69u3
sv

2
ss

−128usussv
2
ss + 14u3

svsvsss + 28usvsussvsss − 28u2
svssvsss

)
−w2u2

s(u
2
s + 2uss)(121u4

s + 538u2
suss + 256u2

ss + 168ususss)
]

+
w

∆2

[
−2
(
42u3

svsvss + 126usussvsvss + 42usssvsvss − 95u2
sv

2
ss − 96ussv

2
ss + 30u2

svsvsss

+42ussvsvsss − 126usvssvsss + 20usvsvssss) + w
(
72u6

s + 479u4
suss + 626u2

su
2
ss + 64u3

ss

+224u3
susss + 252usussusss + 40u2

sussss
)]

+
1

∆

[
22v2

ss − 24vsvsss + w
(
17u4

s + 102u2
suss +56u2

ss + 68ususss + 20ussss
)]

+ 7uss , (49)

where ∆ = v2
s − w u2

s . Using the expressions (48) for u, v we find that ∆|s=0 = 1
1−T , so we obtain

H2(z) =
1

1440

T 2(1 + 6T )

(1− T )5
,

in agreement with the first formula in (33).
To proceed to higher genera, one can solve, recursively in g, the loop equation [18, 19]. Noting that

v(0, t) =
T

t
, u(0, t) = T , vs(0, t) =

1

1− T
, us(0, t) =

t

1− T
,

∂`v

∂s`
(0, t) = t`−1D`(T ) ,

∂`u

∂s`
(0, z)(0, z) = t`D`(T ) (` ≥ 2),

we find by the (3g− 3)-Lemma [18] that the function Hg has the form (34) for all values of g (Goulden–
Jackson–Vakil theorem). As the above solution for g = 2 makes clear, it would not be easy to calculate
Hg explicitly this way for large values of g. On the other hand, it should be emphasized that the

formulas FP1

g obtained by this approach, such as the formula (49) for the case g = 2, would hold
without any modification for the general GW invariants (i.e., without the specialization to tαp = 0 for
(p, α) 6= (1, 2)), with only the form of Φ changing. It is worth noting that the DZ loop equation for

solving FP1

g is quadratic, and also universal in all semisimple homogeneous cohomological field theories,
with the same form in all cases and the dependence on the Frobenius manifold arising only through its
Euler vector field and periods.

3. Connection to various models in enumerative geometry

In this section we will look in detail at three other problems whose solutions belong to the Lambert
space defined in §1.4: the enumerations of ordinary graphs and of ribbon graphs, and the computation
of certain Hodge integrals that include the Hurwitz numbers as a special case. The discussion of the
first case is elementary and self-contained, but the discussion of the two other cases assumes some
familiarity with moduli space theory.

3.1. Enumeration of graphs. In this subsection we discuss the enumeration of graphs. Denote by
Gg,d the number of connected graphs with d vertices and g independent loops (i.e. first Betti number g),
where graphs are allowed to have multiple (non-oriented) edges and by “number” we mean the weighted
number in which each graph Γ is counted with multiplicity 1/|Aut(Γ)|, the reciprocal of its number of
symmetries. For instance, G1,2 = 3

4 because there are two graphs with two vertices and one loop, a
“tadpole” with a symmetry group of order 2 (reflect the loop) and a 2-gon with symmetry group of
order 4 (interchange the two vertices or the two edges), and Gg,1 = 1/2gg! for all g because the only



CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS 15

1-vertex graph with g loops is a bouquet of g circles that can be arbitrarily re-oriented or permuted. In
this subsection we describe the numbers Gg,d when either d or g is fixed, finding in both cases results
exactly analogous to those for the numbers hg,d. Most or all of these results are certainly known (see
e.g. [46]), but we give a presentation that is as close as possible to the one for the Hurwitz case.

We begin with a discussion of the case of fixed d.

Theorem 4. For each d ≥ 1, the generating series

Bd(x) =
∑
g≥0

Gg,d x
g+d−1

of graphs with d vertices is a polynomial of degree d2 in ex/2 of the form

Bd(x) =
1

d!

∑
d≤m≤d2

m≡d (mod 2)

cd,m e
mx/2 , (50)

where the coefficients cd,m are integers with cd,d2 = 1, cd,m = 0 for d2 − 2d + 2 < m < d2, and

cd,d = (−1)d−1(d− 1)!. These polynomials are determined completely either by the linear recursion

Bd(x) =
ed

2x/2

d!
− 1

d

d−1∑
k=1

d− k
k!

ek
2x/2Bd−k(x) (51)

or by the quadratic recursion

Bd(x) =
1

d2 − d

d−1∑
k=1

k (d− k) (ekx − 1)Bk(x)Bd−k(x) (d ≥ 2) (52)

or by the quadratic differential recursion(
2
d

dx
− d2

)
Bd(x) =

d−1∑
k=1

k (d− k)Bk(x)Bd−k(x) . (53)

Corollary. The numbers Gg,d for fixed d have the form

Gg,d =
1

d! (d+ g − 1)!

∑
1≤m≤d2

m≡d (mod 2)

cd,m (m/2)g+d−1

with cd,m as above, the first values being given by

d 2ww! d!Gg,d , where w = g + d− 1
1 1
2 4w − 2w

3 9w − 3 · 5w + 2 · 3w
4 16w − 4 · 10w − 3 · 8w + 12 · 6w − 6 · 4w
5 25w − 5 · 17w − 10 · 13w + 20 · 11w + 30 · 9w − 60 · 7w + 24 · 5w

Proof. The proof follows the same idea as the second approach to Theorem 1 in §1.2, via disconnected
Hurwitz numbers. For k, d ≥ 0 let Nk,d denote the number of graphs (not necessarily connected) with
d vertices and k edges, where “number” has the same meaning as for Gg,d above, and let

ZG = ZG(x, y) =
∑

Γ

xe(Γ)yv(Γ)

|Aut(Γ)|
=

∑
k, d≥0

Nk,d x
k yd (54)

(where e(Γ) and v(Γ) denote the number of edges and number of vertices of a graph G) be the
corresponding generating series, called the partition function of graph counting. By the usual principle
that the generating series for all objects of a given type is the exponential of the generating series for
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the connected ones, together with the observation that a connected graph with d vertices and g loops
has Euler number 1− g and hence has g + d− 1 edges, we have

ZG = ZG(x, y) = eG(x,y) , (55)

where

G(x, y) =
∑

Γ connected

xe(Γ)yv(Γ)

|Aut(Γ)|
=

∑
g≥0, d≥1

Gg,d x
g+d−1 yd =

∞∑
d=1

Bd(x) yd (56)

is the two-variable generating series for connected graphs. On the other hand, it is easy to see that
Nk,d = d2k/2kk! d! , since there are 2kk! d! ways to number and orient the edges and number the vertices

(after which there are no longer any automorphism) and then d2k ways to map the 2k numbered
endpoints of the edges to the d numbered vertices. This gives the closed formula

ZG(x, y) =
∑
d≥0

yd

d!
ed

2x/2 . (57)

for the partition function ZG . Formulas (55)–(57) already imply that the coefficients Bd(x) of G(x, y)

belong to Q[ex/2] and have the form given in (50). Formula (57) also implies the differential equations

DZG(x, y) = y ex/2 ZG(x, yex) , D2ZG(x, y) = 2
∂ZG(x, y)

∂x
(58)

for ZG , where D = y ∂
∂y , and these and (55) give the differential equations

D(ZG) = D(G)ZG , (59)

(D2 −D)G(x, y) = DG(x, y)
(
DG(x, yex)−DG(x, y)

)
, (60)

(DG)2 + D2G = 2
∂G
∂x

(61)

for G, which in turn are equivalent to the three recursions (51)– (53).

We now turn to the opposite case, when g is fixed.

Theorem 5. The generating series

Gg(z) =
∞∑
d=1

Gg,d z
d (62)

belongs to the extended Lambert space for all g. It is given for g ≤ 2 by

G0(z) = T − T 2

2
, G1(z) =

1

2
log

1

1− T
, G2(z) =

3T + 2T 2

24 (1− T )3
(63)

(where z = T e−T as usual) and in general by an expression of the form

Gg =

3g−3∑
i=g−1

λg,i
(1− T )i

(64)

for all g ≥ 2, with top and bottom coefficients given by

λg,g−1 =
Bg

g (g − 1)
, λg,3g−3 = bg−1 , (65)

where Bn denotes the nth Bernoulli number and the numbers br are defined by the generating series

∞∑
r=1

br x
r = log

( ∞∑
m=0

(6m)!

(3m)! (2m)!

( x

288

)m)
(66)

=
5

24
x +

5

16
x2 +

1105

1152
x3 +

565

128
x4 +

82825

3072
x5 + · · · .
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Proof. We will outline three proofs. We first give a “pure thought” proof of the statements that Gg is
given by (63) for g ≤ 1 and is a polynomial in 1/(1− T ) of degree 3g − 3 and leading coefficient bg−1

for all g ≥ 2. We then sketch two other proofs of these statements, and also of the formula for the
“bottom” coefficient in (65), based on the closed formula (57) for eG .

Consider first the case g = 0. The number G0,d counts trees (connected and simply connected
graphs) on d vertices. The number dG0,d counts rooted trees (trees with one marked vertex, the “root”),
because there are d ways to choose the root of a given tree and the factors 1/|Aut(Γ)| in the definitions
of G0,d and G1,d ensure that everything works correctly. Denote by T (z) = DG0(z) =

∑
d≥1 dG0,dz

d

the generating series of rooted trees. Then the generating series of rooted trees in which the root has
valency k is clearly zT (z)k/k!, with the factor z corresponding to the root and the factor T (z)k/k!
to the fact that the complement of the root is the union of k rooted trees (the root being the other
end of one of the edges going to the original root). Since the root of every tree has some valency, we

get T (z) =
∑∞

k=0 zT (z)k/k! = zeT (z), and hence T (z) is indeed equal to the series defined by (27).
This proves the case g = 0 of (63), and the Lagrange inversion formula (28) gives the explicit formula
d!G0,d = dd−2, which is Cayley’s famous result for the number of trees on d given vertices.

Next consider g = 1. A graph with Betti number 1 has a unique cycle (with no backtracking). If
this cycle contains k vertices, then the graph is the union of the cycle and k rooted trees, the roots
being the vertices on the cycle, so the contribution to G1(z) coming from all such graphs is T (z)k/2k,
with the factor 2k corresponding to the automorphisms of the cycle (rotations and reflection). This
gives G1(z) =

∑∞
k=1 T (z)k/2k and hence proves (63) for g = 1.

Now suppose that g ≥ 2. There is a map from the set Grg of graphs with g loops to the set Gr≥3
g

of graphs with g and having only vertices of valency ≥ 3: if a graph has a 1-valent vertices, we remove
this vertex and the corresponding edge and keep doing this until there are no 1-valent vertices left, and
if the graph then has any 2-valent vertices, we remove them and fuse the corresponding two edges into
a single new one. This map is clearly surjective, with the graphs that map to a given (≥ 3)-valent
graph Γ being given by attaching a rooted tree to any vertex of Γ, which gets identified with the root
of the tree, and any number n ≥ 0 of rooted trees to any edge of Γ, where the roots become new
internal points on that edge. Thus the contribution to the generating function Gg(z) of each vertex
of Γ is T (z), and the contribution of each edge is

∑∞
n=0 T (z)n = 1/(1− T (z)), giving the identity

Gg
(
Te−T

)
=

∑
Γ∈Gr≥3

g

1

|Aut(Γ)|
T v(Γ)

(1− T )e(Γ)
=

∞∑
n=1

G(≥3)
g,n

Tn

(1− T )g+n−1
, (67)

where G
(≥3)
g,n is the weighted number of connected (≥ 3)-valent graphs with n vertices and g loops.

On the other hand if such a graph Γ has ni vertices of valency i, then n and k = e(Γ) = n + g − 1
are given by n = n3 + n4 + · · · and 2k = 3n3 + 4n4 + · · · , respectively, so n3 + 2n4 + · · · = 2g − 2
and in particular n ≤ 2g − 2. This shows that Gg(z) for g ≥ 2 is a polynomial of degree 3g − 3
in 1/(1− T ) with top coefficient equal to the number of connected trivalent graphs with first Betti
number g. But this number is clearly equal to bg−1 with br given by (66), since the weighted number
of not-necessarily-connected trivalent graphs with d vertices and k edges is clearly non-zero only if

d = 2m and k = 3m for some m and is then equal to (6m)!
288m(3m)! (2m)! . (Start with a set of 3m labelled

and oriented edges and 2m labelled Y -shaped vertices; then there are (6m)! ways to identify the 6m
half-edges of the two sets and we must divide by the 23m(3m)! ways to renumber and re-orient the
edges and the 3!2m(2m)! ways to renumber and relabel the vertices.) This concludes the proof of
Theorem 5, except for the statement about the lowest-order term in (64).

Note the similarity of (67) to (40), with a power series in z becoming a polynomial in (1− T )−1 by
the same mechanism in both cases: in the ELSV case, the original sum (39) permitted all values ki ≥ 0
and was infinite, while the new sum (40) has ki ≥ 2 and hence is finite because

∑
(i− 1)ki = 3g− 3− k

is fixed, while in the graph case the original generating function Gg(z) includes all valencies r ≥ 1 but
the sum in (67) has valencies r ≥ 3 and hence is bounded because

∑
(r − 2)nr = 2g − 2. In both cases
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the reduction is achieved using the so-called string and dilaton equations [32, 28, 46, 44, 13, 15] that
arise in these models.

We now briefly indicate the two alternative proofs mentioned above of the statement that the
function d 7→ d!Gg,d belongs to the (extended) Lambert space g ≥ 0. The first is exactly similar to
the proof of the corresponding statement for the Hurwitz numbers given in §1.3. We substitute the
expansion

G(x, y) =
∞∑
g=0

Gg(xy)xg−1

into the recursive functional equation (60) for G to get the recursive differential equation

G(2)
g − G(1)

g =
∑

g1,g2≥0, `≥1
g1+g2+`=g+1

1

`!
G(1)
g1 G

(`+1)
g2 (68)

for the generating series Gg, and then argue exactly as in the proof of Theorem 3 to get all of the
assertions of Theorem 5, including the statement about the “bottom” coefficients that was not included
in our first proof. We omit the details. About the bottom coefficients we remark only that it is
surprising that the formula is so similar to the one in the Hurwitz case (except for the doubling of the
index). About the top coefficients, it follows from (68) that the second of equations (65) holds with br
defined inductively by

b̃1 = 1, b̃r = 6 r b̃r−1 + 5
∑

r1+r2=r−1

b̃r1 b̃r2 for r ≥ 2, (69)

where b̃r = 6r
5 4rbr (which is an integer by virtue of this recursion). This in fact coincides with the

generating function definition (66) of the br, because by logarithmically differentiating (66) and using

the linear differential equation satisfied by the hypergeometric function
∑ (6m)!

(2m)!(3m)! t
m one obtains the

Riccati equation

dV

dX
− 1

2
V 2 +

1

2
X = 0 ,

for the generating function V = −X1/2 + 1
2X
−1 + 3

∑
r≥1 rbrX

−1−3r/2, and this in turn is equivalent

to the recursion (69). We also mention that, as well as their combinatorial interpretation in terms of
counting trivalent graphs, the numbers br occur in the Faber–Zagier formulas [22] for the first relation
in the tautological subring of the cohomology ring (or Chow ring) of the moduli spaces of curves; see
also for example [2, 44, 5] for some related questions where the numbers br appear.

Finally, we can prove Theorem 5 directly from (55) and (57) by an argument using Gaussian integrals,
and we sketch this method briefly also since it is simple and works in many situations. Substituting

the identity en
2x/2 = 1√

2πx

∫∞
−∞ exp(nu− u2/2x) du into (57), we get

ZG(x, z/x) =
1√
2πx

∫ ∞
−∞

exp
(zeu − u2/2

x

)
du .

We consider the expansion of this for x small by the method of stationary phase. The argument of the
exponential takes on its maximum when its derivative (zeu − u)/x vanishes, so at u = T , where T is



CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS 19

defined by (27). Expanding around this point, we find

ZG(x, z/x) =
1√
2πx

∫ ∞
−∞

exp
(zeT+v − (T + v)2/2

x

)
dv

=
1√
2πx

exp
(T − T 2/2

x

) ∫ ∞
−∞

exp
(
−1− T

2x
v2 +

∞∑
r=3

T

r!x
vr
)
dv

= exp
(T − T 2/2

x
+

1

2
log

1

1− T

)
× 1√

2π

∫ ∞
−∞

e−w
2/2

(
1 +

Tw3

6(1− T )3/2

√
x

+

(
T 2w6

72(1− T )3
+

Tw4

24(1− T )2

)
x + · · ·

)
dw

= exp

(
T − T 2/2

x
+

1

2
log

1

1− T
+

(
5T 2

24(1− T )3
+

T

8(1− T )2

)
x + · · ·

)
,

where in the last two lines we have substituted v =
(

x
1−T

)1/2
w and used that 1

2π

∫∞
−∞ e

−w2/2wndw

equals (n−1)!! for n even and 0 for n odd. This shows that logZG(x, z/x) has the form
∑

g≥0 Gg(z)xg−1

with G0, G1 and G2 as in (63) and, by expanding further, that the general coefficient Gg(x) is always a
polynomial in 1/(1−T ). One also sees that this polynomial has degree 3g−3 and top coefficient bg−1 as
defined by (66), since the highest power of 1/(1− T ) for a given power of x comes from exponentiating
the first term Tv3/6x of the argument of the exponential function.

The following corollary follows immediately by Theorem 5 and by the general remarks made in §1.4
about the asymptotics of sequences belonging to the Lambert space.

Corollary. The asymptotic growth of the numbers Gg,d for fixed g ≥ 0 is given by

Gg,d ∼
5 b̃g−1

2(7g−3)/2 Γ(3g−1
2 )

d(3g−5)/2 ed (d→∞) , (70)

where b̃r = 6r
5 4rbr are the integers defined by (69) for r ≥ 1 and b̃−1 = − 1

10 , b̃0 = 1
5 .

Before ending this subsection, we mention that the interesting relationship between enumeration
of graphs and Hurwitz numbers discussed here should be revealed in other, more subtle ways. For
example, Cayley’s famous formula can be proved by counting the multiplicity of the quasi-homogeneous
Lyashko–Looijenga mapping assigning to a polynomial of degree d with d− 1 critical values. For this
interesting direction, we omit the details but only refer to Arnold’s paper [1] and the references therein.
We hope to return to this question in the future.

3.2. Ribbon graphs. We now turn to our second model, related to the counting of ribbon graphs
with even valencies. Here the corresponding generating function F— called the “GUE (Gaussian
unitary ensemble) free energy of even couplings” because of its alternative method of calculation using
matrix integrals — and its genus g parts Fg are defined by

F = F(X, s; ε) =
X2

2ε2

(
logX − 3

2

)
− 1

12
logX + ζ ′(−1) +

∑
g≥2

ε2g−2 B2g

4g(g − 1)X2g−2

+
∑
g≥0

ε2g−2
∑
n≥0

∑
j1,...,jn≥1

(∑
Γ

1

# Aut(Γ)

)
sj1 . . . sjn X

2−2g−(n−|j|),

=:
∞∑
g=0

ε2g−2Fg(X, s) , (71)

where the internal sum is taken over all connected oriented ribbon graphs of genus g with labelled
half-edges and with unlabelled vertices of valencies 2j1, . . . , 2jn, Aut(Γ) denotes the symmetry group
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of Γ, and |j| := j1 + · · · + jn. Actually, the full GUE free energy computes the numbers of ribbon
graphs with arbitrary valencies, but here we can treat only the case when all valencies are even. Also,
we will actually consider a specialization of (71), which seems to be new. The possibility of effective
computation of the new model is due to the recently discovered Hodge–GUE correspondence [17, 14].

It will be convenient to renormalize the couplings by setting s̄k =
(

2k
k

)
sk. We define w = w(X, s) as

the unique series solution in s to the following equation

w = X +
∑
k≥1

k s̄k w
k, w(X, s) = X + · · · . (72)

The following theorem was recently obtained in [17].

Theorem ([17]) The genus zero part of GUE free energy with even couplings has the expression

F0 =
w2

4
−X w +

∑
k≥1

s̄k

(
X wk − k

k + 1
wk+1

)
+

1

2

∑
k1,k2≥1

k1k2

k1 + k2
s̄k1 s̄k2w

k1+k2 +
X2

2
logw . (73)

For g ≥ 1, there exist functions Fg(z0, z1, . . . , z3g−2), g ≥ 1 of independent variables z0, z1, z2, . . . ,
z3g−2 such that

Fg(X, s) = Fg

(
u(X, s),

∂u(X, s)

∂X
, . . . ,

∂3g−2u(X, s)

∂X3g−2

)
, g ≥ 1 . (74)

Here

u(X, s) :=
∂2F0(X, s)

∂X2
= logw(X, s) .

We now specialize the s̄k to

s̄k =
s

k · k!
(k ≥ 1) , (75)

where s is a parameter. (At the end of the argument we will further specialize to X = s− 1. One can
also consider the more general specialization X = s+ a, where a is an arbitrary nonzero parameter, in
which case Fg has two singularities in the complex z-plane. This case will be treated in a subsequent
publication.) Substituting (75) into equation (72) gives the equation

w = X + s (ew − 1)

for the power series w = w(X, s). We can rewrite this as w = X − es/e + T
(
seX−s

)
, where T (z)

is the Lambert series (28). It follows immediately that the function u(X, s) = logw(X, s) and its
X-derivatives specialize under s = ez, X = s− 1 to

u(ez − 1, ez) = log(T − 1),
∂mu

∂Xm
(ez − 1, ez) =

Qm(T )

(1− T )2m
(m ≥ 1), (76)

where z = Te−T as usual and where Qm(T ) is a polynomial of degree m−1 in T with integer coefficients,
with Q1 = −1. Then we have

F = F(ε, z) := F(X, s; ε)|s̄k= e z
k·k! , X=e z−1

=
(ez − 1)2

2ε2

(
log(ez − 1)− 3

2

)
− 1

12
log(ez − 1) + ζ ′(−1) +

∑
g≥2

ε2g−2 B2g

4g(g − 1)(ez − 1)2g−2

+
∑

Γ

ε2g(Γ)−2 (ez)|V (Γ)|

# Sym Γ
(ez − 1)|F (Γ)|

|V (Γ)|∏
i=1

1
vali(Γ)

2 ·
(vali(Γ)

2

)
!

(77)

=:
∑
g≥0

ε2g−2Fg(z). (78)
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Here the last summation in (77) is taken over all connected oriented ribbon graphs Γ with la-
belled half-edges and unlabelled vertices of even valencies, V (Γ) denotes the set of vertices of Γ,
val1(Γ), . . . , val|V (Γ)|(Γ) the valencies, E(Γ) the set of edges, F (Γ) the set of faces, and g(Γ) the genus.

Theorem 6. For g = 0, 1, 2, 3, Fg(z) have the following explicit expressions

F0(z) =
T 2

4
− T

2
− 3

4
+

1

2
log(T − 1)−

(
Γ(0, 2− 2T ) + γ + iπ + log 2

) T 2

2
e2−2T

+
(

Γ(0, 1− T ) + 1 + γ + iπ
)
T e1−T ,

F1(z) =
1

12
log(−1) + ζ ′(−1) +

1

12
log

1

(1− T )2
,

F2(z) = −8T 3 + 43T 2 + 26T + 12

2880 (1− T )4
,

F3(z) =
32T 6 + 7392T 5 + 19953T 4 + 3668T 3 − 538T 2 + 1868T + 720

725760 (1− T )8

where γ denotes Euler’s constant, Γ(0, x) denotes the incomplete Gamma function, and z = Te−T .
Moreover, ∀ g ≥ 2, Fg(z) belongs to the Lambert space, more precisely,

Fg(z) =

4g−4∑
i=g−1

µg,i
(1− T )i

(79)

where µg,i are rational numbers satisfying
∑4g−4

i=g−1 µg,i =
B2g

2g(2g−2) .

Proof. The validity of (79) is ensured by equations (74) and (76) together with the vanishing of
∂Fg
∂z0

for g ≥ 2 and homogeneity statements for Fg that can be proved by using the Hodge–GUE

correspondence [17, 14]. To obtain the explicit expressions of F2 and F3, one can use the formulas of
F2, F3 in [17] with the specialization (76). So far, we do not know formulas for the top and the bottom
coefficients µg,4g−4 and µg,g−1 for general values of g.

3.3. Hodge integrals. In this final section we consider the evaluation of certain integrals over moduli
spaces of curves that turn out to give a huge class of further sequences belonging to the Lambert space,
and generalizing the original Hurwitz numbers studied in Section 1.

Let Mg,n denote the Deligne–Mumford moduli space of stable algebraic curves of genus g with n

distinct marked points. Denote by Li the ith tautological line bundle on Mg,n, by E the rank g Hodge
bundle, and by ψi the first Chern class c1(Li), i = 1, . . . , n. We define the Hodge free energy as the
generating series

HHodge = HHodge(t; x; ε) =
∑
g≥0

HHodge
g (t; x) ε2g−2

of genus g parts defined by

HHodge
g (t; x) =

∑
n≥0

∑
i1,...,in≥0

ti1 · · · tin
n!

∫
Mg,n

exp

(∑
j≥0

x2j−1 ch2j−1(E)

)
ψi11 · · ·ψ

in
n .

Here t0, t1, t2, . . . are indeterminates (“coupling constants”), x1, x3, . . . are parameters, t = (t0, t1, . . . ),
and x = (x1, x3, . . . ). According to Mumford [39], the even components of the Chern character of E
vanish. Hence HHodge gives the generating series of Hodge integrals of the most general type.

We now define v = v(t0, t1, t2, . . . ) as the unique power series solution to∑
i≥0

ti
i!
vi = v . (80)
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By the Lagrange inversion formula, v has the following explicit expansion

v =
∑
k≥1

1

k

∑
p1+···+pk=k−1

tp1
p1!
· · · tpk

pk!
.

We also set vm = ∂mt0 v for all m ≥ 0. The following theorem for HHodge
g was proved in [13].

Theorem ([13, 15]) We have

HHodge
0 (t; x) =

v3

6
−
∑
i≥0

ti
vi+2

i!(i+ 2)
+

1

2

∑
i,j≥0

titj
vi+j+1

(i+ j + 1)i!j!
,

HHodge
1 (t; x) =

1

24
log v1 +

x1

24
v .

For g ≥ 2, there exist algorithmically computable functions HHodge
g (z1, . . . , z3g−3;x1, x3, . . . , x2g−1),

rational in z1 and polynomial in all the other variables, such that

HHodge
g (t; x) = HHodge

g (v1, . . . , v3g−3;x1, x3, . . . , x2g−1) . (81)

Moreover, the functions HHodge
g satisfy the homogeneity conditions

3g−3∑
m=1

mzm
∂HHodge

g

∂zm
= (2g − 2)HHodge

g , (82)

3g−3∑
m=2

(m− 1) zm
∂HHodge

g

∂zm
+

g∑
j=1

(2j − 1)xj
∂HHodge

g

∂xj
= (3g − 3)HHodge

g . (83)

We will be interested in the specialization of HHodge
g when all variables ti have the same value z, in

which case we write simply z for t. For this value of t we have

HHodge(z; x; ε) =
∑
g,n≥0

cg,n(x) ε2g−2 zn, HHodge
g (z; x) =

∑
n≥0

cg,n(x) zn

with

cg,n(x) :=
1

n!

∑
i1,...,in≥0

∫
Mg,n

exp
(∑
j≥0

x2j−1 ch2j−1(E)
)
ψi11 · · ·ψ

in
n .

To compute HHodge
g (z; x), we first make the smaller specialization when ti = t1 for i ≥ 1 but t0 is

still an independent variable, and will then specialize to t0 = t1 = z at the end. (Compare Section 2,
where we kept only two variables s and t of the infinitely many variables tαp and specialized to s = 0 at
the end.) Then equation (80) simplifies to

t0 + t1 (ev − 1) = v .

This means that if we set t1e
t0−t1 = Te−T , then v = v(t0, t1, t1, . . . ) is given by v = t0 − t1 + T . It

follows easily that vm(z) = vm(z, z, . . . ) is given by

vm(z) = DmT (z) + δm,1 = αm−1 + δm,1 (m ≥ 0) , (84)

where D = z d
dz as usual and αm−1 is defined in Section 1.4. This means a very simple explicit formula

for vm(z) : the coefficient of zd in vm(z) is dd+m−1 for all d ≥ 1 .
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Theorem 7. The power series HHodge
g (z; x) + δg,0(z + z2/4) belongs to the extended Lambert space for

every g ≥ 0 and every x = (x1, . . . , x2g−1). These power series are given explicitly for g = 0, 1, 2 by

HHodge
0 (z; x) +

z2

4
+ z =

T 3

6
− 3T 2

4
+ T, (85)

HHodge
1 (z; x) =

1

24
log

1

1− T
+
T

24
x1, (86)

HHodge
2 (z; x) =

2x3
1 − 42x2

1 + 78x1 − x3 − 24

34560 (T − 1)2
+
−7x2

1 + 38x1 − 31

5760 (T − 1)3

+
5x1 − 11

1152 (T − 1)4
− 7

1440 (T − 1)5
. (87)

In general, for g ≥ 2, HHodge
g (z; x) has the form

HHodge
g (z; x) =

5g−5∑
i=2g−2

`g,i(x)

(1− T )i
, g ≥ 2 (88)

where `g(x) are polynomials in x1, x3, . . . , x2g−1. Moreover, `g,5g−5(x) is independent of x and is equal
to 24−gcg/((5g − 3)(5g − 5)), where cg is defined by (7) or (8).

Proof. The formulas (85)–(87) can be obtained from the algorithm developed in [13] with the particular
vm given by (84). The formula (88) follows from (81), (84) and the homogeneity conditions (82), (83).
The fact that `g,5g−5 does not depend on x is due to the dimension-degree matching.

We note that the first statement of Theorem 7 is a particular case of the Theorem 1 in [46], but no
algorithm is given there to compute the Hodge integrals.

Noting that

1− λ1 + λ2 − · · ·+ (−1)gλg = exp

(
−
∑
j≥1

(2j − 2)! ch2j−1

)
we have from the ELSV formula (39) that

Hg(z) :=
∑
d≥0

hg,d z
d = HHodge

g (z;−0! , −2! , −4! , . . . , −(2g − 2)!) .

Thus the generating series Hg(z; x) generalizes the power series Hg(z) of Section 1, and Theorem 7
generalizes Theorem 3. (For instance, for g = 2 we verify easily that under x1 = −1, x3 = −2, the
formula (87) becomes (33).) Combining the two theorems, we obtain

Corollary. For any fixed g ≥ 0, and any fixed value x = (x1, . . . , x2g−1), the function HHodge
g (z; x) is

analytic around z = 0, and has the dominant singularity at z = e−1. As n→∞
cg,n(x) ∼ hg,n.
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Mathematics 107, 253–291.
[34] Kapaev, A. A. (2004). Quasi-linear Stokes phenomenon for the Painlevé first equation. Journal of Physics A:
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