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(Received 3 May 1989; accepted for publication 4 October 1989) 

The geometric framework for N = 2 superconformal field theories are described by studying 
SUSY2 curoes-a nickname for N = 2 super Riemann surfaces. It is proved that "single" SUSY2 
curves are actually split supermanifolds, and their local model is a Serre self-dual locally free 
sheaf of rank two over a smooth algebraic curve. Superconformal structures on these sheaves 
are then examined by setting up deformation theory as a first step in studying moduli 
problems. 

I. INTRODUCTION 

Supersymmetric extensions of algebraic curves have 
been recently studied in the physical and mathematical liter­
ature (see, e.g., Refs. 1 and 2). Among the physical motiva­
tions, a complete understanding of N = 1 susy curves and 
their moduli spaces is needed in superstring theory in order 
to give meaning to computations in the Polyakov approach: 
Besides, they provide the natural arena for higher genus su­
perconformal field theories. 

From the mathematical point of view, superalgebraic 
curves are the simplest candidates for testing "new direc­
tions in geometry" in the spirit advocated by Manin.3 Al­
though studying "two supersymmetries" may seem the most 
obvious step beyond N = 1, it is already a nontrivial matter, 
as noticed in some works.4,5 In fact, for N> lone is lead to 
consider locally free sheaves of rank greater than 1 on alge­
braic curves, a topic that is not completely under control as 
compared to the complete understanding of invertible 
sheaves. Luckily enough, for N = 2, the superconformal 
structure to be imposed on such objects will bypass most of 
the subtleties related to moduli of vector bundles over vari­
able curves: On the contrary, for N;;;.3, these enter the stage 
in a substantial way. Thus SUSY2 curves are in a way the last 
"easy going" supersymmetric extension of algebraic curves, 
a fact that deserves special attention. 

From the physical point of view, there is some "stringy" 
interest in the study of N = 2 superconformal models; for 
instance, a recent work6 has pointed out that space-time 
N = I supersymmetry requires N = 2 world-sheet super­
symmetry. It is also widely believed that viewing N = I su­
permoduli spaces as embedded in N = 2 supermoduli spaces 
could be a keen standpoint for investigating the peculiarities 
of the former (provided that one has a good control of the 
latter). 

The plan of this work is as follows. In Sec. II we investi­
gate the geometry of SUSY2 curves in connection with the 
theory of rank two locally free sheaves over an algebraic 
curve. Some nice features due to the existence of a supercon­
formal structure, such as the splitness of "isolated" SUSY2 
curves, are proved. We also show that isolated SUSY2 curves 
are the same thing as the datum of a Serre self-dual vector 
bundle on a curve and we classify such bundles completely. 
In Sec. III we set up a deformation theory and construct the 
local model for N = 2 supermoduli spaces. Finally, Sec. IV is 
devoted to a detailed discussion of the global structure of the 
reduced moduli spaces of untwisted SUSY2 curves. 

II. SUSY 2 CURVES 

This paper deals with SUSY2 curves from the point of 
view of the theory of Kostant-Leites supermanifolds. In this 
framework, N supersymmetry is encoded in a Z2-graded ex­
tension .sf x of the structure sheaf of a (complex) manifold 
such that .sf x is locally isomorphic to the total wedge prod­
uct of a rank N locally free analytic sheaf f6' [hereinafter 
called the characteristic sheaf of the supermanifold (X, 
.sf x)] over X (for a full definition, see, e.g., Ref. 2). 

Recall that susy 1 curves are Ill-dimensional super­
curves that come equipped with a distinguished distribution 
fP in the tangent sheaf, spanned by the supersymmetry gen­
erator. In the same way the structure sheaf .sf c of a SUSY2 
curve is quite special since it should embody the idea of the 
superconformal structure. In the physical literature this is 
realized in terms of coordinate transformations.4,5 Here we 
give a definition that naturally extends that of susy 1 

curves.7,s 
Definition 1: A family of susy 2 curves (C, .sf c ) parame­

trized by the complex superspace (S, .sf s )-a SUSY2 
curve over S-is the datum of (i) a sheaf homomorphism 
1T# : 1T-

1 .sf s .... .sf c of relative dimension 112 over a proper 

surjective flat map C:S and (ii) a Ol2-dimensionallocally 

free distribution fP tr in the relative tangent sheaf Y tr such 
that the commutator mod fPtr' 

{,}~ :fP tr ® fP tr .... YtrlfP tr' 

is a symmetric nondegenerate bilinear map of sheaves of .sf c 
modules. 

In the following, a SUSY2 curve over the trivial super­
space {*} will be called a single SUSY2 curve. The connection 
between Definition 1 and the usual coordinate approach, as 
given, e.g., in Ref. 9, is a simple generalization of the N = 1 
case (see Refs. 7-10). Indeed, one can easily prove that there 
exist generators y' for fP tr and a I az for Y trl fP tr such that 

{Di Dl} _~ij a 
, !/r- oz' 

A simple computation then shows that Di = a I ali 
+ Oi (alaz). 

Besides matching with physical applications, Definition 
1 allows an immediate characterization of single susy 2 
curves. 

Proposition 1: Let (C, .sf c) be a single SUSY2 curve with 
reduced canonical sheaf liJ. Then there exists a rank two 10-
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cally free sheaf 'C such that (i) ,p/ c c::! A 'C, i.e., ,p/ c is split; 
and (ii) 'C c::! 'C. ® tV, i.e., 'C is Serre self-dual. 

Proot Let (Ua , Za' (j a) be a canonical atlas with tran­
sition functions 

Za = f aP (zp) + gaPE ij () i(}i, 

(}a i = [maP 1j ()/. 
The existence of the distribution ~ 11' is then equivalent to 
the superconformal condition 

. k· () k 
D'pza = () aD'p a 

(sum over repeated latin indiceS), which gives 

EijgaP +{jijf~p = [tmapmaP]ij' 

wheref~ = afaP/azp. Looking at the symmetric and anti­
symmetric parts of this equation we have (i) gaP = 0, so that 
,p/ c splits to A'C, where 'C is locally generated by the (j a's; 
and (ii) tmaP maP = l·f~, where maP are the transition 
functions of 'C. Thus maP = tm;;pl f~, i.e., 'C c::! 'C. ® tV .• 

We want to remark at this point on the power of super­
conformal structures. Indeed, a generic supercurve of di­
mension 112 is by no means split, as opposed to the trivial 111 
case. Nevertheless, SUSY2 curves are split, a peculiarity that 
does not survive to higher supersymmetric extensions. 

According to the physical literature, a SUSY2 curve is 
called twisted whenever the 0(2) symmetry of the (anti) 
commutation relations for the local supersymmetry genera­
tors D ~ cannot be reduced to an SO(2) symmetry.4 This is 
related to the vanishing of a class in H 2 (C, Z2) obtained by 
taking the determinant of the transition functions for the 
locally free sheaf 'C. Namely, since any rank two locally free 
sheaf can be represented as the extension of an invertible 
sheaf .Y I by another .Y 2 fitting the exact sequence 
O-+.Y 2-+ 'C -+.Y 1-+0, we have det 'C = .Y I ® .Y 2' How­
ever, Serre self-duality implies det 'C = tV ®ff2, where ff2 
is a point of order two on the Jacobian of C. Then a SUSY2 
curve is untwisted whenever ff2 is trivial. 

From the holomorphic point of view, Serre self-dual 
rank two locally free sheaves are quite simple objects. 

Lemma 1: The characteristic sheaf 'C of untwisted SUSY2 
curves decomposes as the direct sum 'C = .Y I Ell .Y 2' with 
.Y I ®.Y 2c::!tV. 

Proot In a superconformal gauge the transition func­
tions,uaP (zp )i j of'C satisfy tmaP . maP = f~p·l and hence 
can be given the form 

with a~ + b ~p = f~p. A simple computation shows that 
there is a one-cochain Aa with values in the sheaf of GL (2, 
C)-valued holomorphic functions that diagonalizes maP' 
showing that actually, 'C =.Y I Ell .Y 2' Imposing the Serre 
self-duality condition in this gauge gives 

.Y I Ell .Y 2 C::!.Y 11 ® tV Ell .Y 2- I ® tV. 

This completes the proof since .Y I Ell .Y 2 c::!.Y; EIl.Y i if and 
only if either .Y I "'" .Y; or .Y I"'" .Y i· • 

Proposition 2: Any twisted Serre self-dual locally free 
sheaf 'C of rank two on Cis holomorphically isomorphic to 
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the direct sum of two different () characteristics, i.e., 

'C = .!L'1 Ell .!L' 2' with .!L': = tV. 
Proot Recall that a rank two locally free sheaf 'C is 

called semistable if for any invertible subsheaf .Y C 'C, 

cl(.Y)<cl(det 'C)/2: 

it is stable ifthe above inequality holds in the strict sense. A 
classical result of the theory oflocally free sheaves over alge­
braic curves II states that a stable locally free sheaf cannot be 
decomposable (i.e., it cannot be isomorphic to the direct 
sum of two invertible subsheaves). 

We first prove that a twisted semistable Serre self-dual 
locally free sheaf is strictly semistable, i.e., it admits only 
degree g - 1 invertible subsheaves. Notice that if 'C is un­
twisted, by Lemma 1 it is not stable. If'C is twisted, there is a 
point JI of order 4 on the Jacobian of C such that 'C ® JI is 
untwisted in the sense that det ( 'C ® JI) = tV. Since 'C ® JI 
is stable if and only if 'C is stable, we are again in the above 
situation. 

Second, an unstable Serre self-dual locally free sheaf is 
strictly semistable as well. In fact, suppose that 'C is given as 
0-+.!L'I ..... 'C-+.Y2-+O, with c l (.Y I »g-1. Serre dualiz­
ing, we obtain 0 -+.!L' i -+ 'C -+ .Y ( -+ O. Then, supposing 
CI(.Y I) >g - I,Lemma 15 of Ref. 12showsthat.YI"",.Yi 
and hence as det 'C = .Y I ® .Y 2 = tV we obtain a contradic­
tion with the assumption of the twisting of 'C . 

We have only to discuss the case O-+.Y 1-+ 'C -+.Y 2-+0, 
withCI (.Y i) = g - 1, .Y I ® .Y 2 =/=tV. If 'C is not decompos­
able, again Lemma 15 of Ref. 12 tells us that there would be a 
unique invertible subsheaf .Y C 'C of degree g - 1, contra­
dicting the assumption that .Y 11:.Y i. Finally, given 
'C "",.Y I Ell .Y 2 the Serre self-duality condition implies that 
.Y:"",tV. • 

In summary, we have that superconformal structures 
force the characteristic sheaf 'C to be, in the twisted case, the 
direct sum of two nonisomorphic square roots of the canoni­
cal bundle. The untwisted case has a richer structure since 
here 'C decomposes as .Y Ell tV ® .Y -I, .Y EPic C. As point­
ed out in Ref. 13, this fact has interesting consequences both 
from the mathematical and physical standpoints. We simply 
notice that to ensure semistability of the sheaf 'C also in the 
untwisted sector, one has to be restricted to the case 
deg .Y = g - 1. Here a convenient and physically rea­
sonable parametrization of 'C is 'C 
=.Y ®ff Ell tV ® (.Y ®ff)-I, withff E Pico(C) and.Y a 

() characteristic on C. 
Actually, this is not the whole story since for SUSY2 

curves the above analysis is somewhat blind. Indeed, we 
have to work in a finer category than the holomorphic one 
because two SUSY2 curves may very well be holomorphically 
equivalent, but by no means superconformally equivalent. 
This finer classification is entirely an outspring of physics 
and we wish to uncover it in full detail by studying deforma­
tion theory of SUSY2 curves . 

III. DEFORMATIONS OF SUSYz CURVES 

The first step in studying moduli space of algebraic ob­
jects is to find their local structure, as given by the base 
spaces of versal deformations. 
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Definition 2: A deformation of a susy 2 curve C over a 
pointed superspace (B, {.}) is a family ~:B of SUSY2 
curves together with an isomorphism 1/1 of C with the "cen­
tral fiber" 1T- I ({.}) fitting the commutative diagram 

C '-+ ~ 

1 I1T' 
{.} '-+ B 

As usual, the starting point for setting up a deformation the­
ory is to identify the sheaf of infinitesimal automorphisms of 
the object to be deformed. In our case this is the subsheaf T": 
of the relative tangent sheaf whose elements are germs of 
vector fields along the fibers which preserve Pfl : 

T~: = {X ET". I [D, X]E Pfl V DE Pfl}. 

In perfect analogy with the case of N = I susy curves we find 
the following lemma. 

Lemma 2: There is an isomorphism T'; "'" (T". ) red 

® .If c as sheaves of 1T-
I (.If B ) modules. 

Proof The condition for X to belong to T'; reads as 
[d, X] E Pfl, where Di are generators of Pfl . Introducing the 
canonical coordinates (z, ff), so that Di = a laff + ff (a I 
az), and setting X = a·a laz + bi ' Di, one has 

[Di,X] =Dia~- (-I)IXlbkl>ki~+Dibk·Dk. 
az az 

Therefore, X E T;: if and only if bi = ( - I) laiD ia and the 
isomorphism is given by a·a laz--a(a laz) 
+ (_ 1)laIDia·D i. • 

Thanks to this lemma we have, for g" semistable, the 
following proposition. 

Proposition 3: Versal deformations ofsusY2 curves exist. 
The dimension of the base of such deformations is 
3g - 3 + g - al4g - 4, with a = 0, I in the untwisted and 
twisted cases, respectively. 

Proof From the Kodaira-Spencer deformation theory, 
we know that possible obstructions lie in the second coho­
mology group of the sheaf of infinitesimal automorphisms 
T';. By Lemma 2 one obtains 

T'; = w- I e II(w- 1 ® g") e det g" ® W-I, 

where the above sum is the direct sum of sheaves of {J c 
modules. (The parity change operator II has, strictly speak­
ing, no effective meaning in this context; we just use it as a 
parity bookkeeper.) Then H2 (T';) = {O}, showing the ex­
istence of versal deformations. The second part of Proposi­
tion 3 follows from Serre self-duality of g" and Proposi­
tion 2. Indeed, dim H I (w- I e det g" ® w- I ) 
= dimHI(w- 1 eJ1/), where J1/ = det g" ®w- I = {J for 
untwisted SUSY2 curves, while it is a point of order 2 in the 
Jacobian of C in the twisted case. As for the odd dimension, 
notice that dim H I(W- I ® (.2" le.2" 2» = dim H I (.2" I-I) 
+dimH I(.2"2- 1

). • 

Remark: As for the computation of the odd dimension q 
of the would-be moduli space of SUSY2 curves in the general 
untwisted case, one can argue as follows. Since 
g" "'" .2" e w ® .2" -I, H I (C, g") is invariant under the Kum­
mer map .2" ~ ® .2" -I. Hence one can be restricted to dis­
cussing the case deg .2" =.d>g - I only. By the Riemann-
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Roch theorem one has (i) if g - 1 <d < 2g - 2, then 
q = 4g - 4; (ii) if2g - 2<d<3g - 3 and .2" is generic, then 
q = 4g - 4; (iii) if3g - 3 <d<4g - 4and.2" isgeneric, then 
q = d + g - 1; and (iv) if 4g - 4 < d, then q = d + g - 1. 
Notice that in cases (ii) and (iii) the odd dimension of 
"moduli space" jumps on analytic submanifolds of the re­
duced space, a fact that renders its structure quite subtle in 
the framework of Kostant-Leites supermanifold theory. 

From a more computative point of view, one can consid­
er infinitesimal deformations, i.e., deformations over the su­
perspace S = ({.}; C (t, 1J)/(t2, t;», as being given by de­
forming the clutching functions of the central fiber. From 
Sec. II, we learn that these are of the form 

za =/ap(zp), 

{}~ = [map(zp)]J {}~, 

where the matrix ,uaP (zp) i j is of the form 

,uap(Zp)~=(gloap 0), 
g2aP 

with either 87 =/~Q or gl 'g2 =/~Q' 
afJ " afJ afJ " 

The most general deformation of such clutching func-
tions, le., those generated by a vector field in the whole Y"., 
over S is given by 

Za =/ap(zp) + t(bap(zp) + !Kap(Zp)Eij {}~ (}~) 

+ ;1JiafJ (zp)O~, 

{} ~ = [ma[3(zp)]J {}~ + t [/aP(zp) ]J {}~ + ;(tfaP(zp) 

+ ~yiapEjk {}~ (};). 

Imposing the superconformal condition shows that 
gaP (zp) = 0 (this fact can be also grasped by writing expli­
citly the superconformal vector fields which generate the 
deformations) and the only independent data are bap (zp), 
1/1~ (zp ), and [laP (zap)]J. The cocycle condition leads easi­
ly to the identification of {ba[3 (zp)·a laza} as a one-cocycle 
with values in the relative tangent sheaf w; I and {rP~ (zp)} 
as a one-cycle with values in g" •• 

As for the role of the matrix [laP (zp ) ]J, one can argue 
as follows. Since the even and odd infinitesimal deforma­
tions give decoupled equations, one can be limited to discuss­
ing a deformation of the form 

Za =/ap(zp) + tbap(zp), 

{}~ = [maP (zp) ]J'{l>i + t [m-I'lap(zp) ]U'{};' 
The superconformal condition translates into OaP 
+ 'OaP = (11/~p )(aba[3lazp )o1 for the matrix Oa[3 
=.m;;/·laP' Hence 

Oap =( Tap aap) 
- aap Tap 

and its only free part is the off diagonal 

o ap = ( _ a~p a~p ). 

This decomposition is obviously due to the fact that when 
deforming the underlying curve C according to ba[3' line 
bundles on C are deformed as well. The cocyle condition for 
Oa[3 gives 
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mafJOapmpy + mapmpyOpy = mayOay - haP m;.p mpy. 

Looking once again at the off-diagonal part of the above 
equation one has (multiplying on the left by m::r I) 

A simple algebra shows ~at Oapmpy = fpyldet mpy 'OaP, 
yielding (fpyldet mpy)OaP + Opy = Oay' Then consider­
ing local generators {~a} of w- I ® det g' one readily identi­
fies the collection {aap '~p} as a one-cocycle with values in 
w- I ® det g'. 

In summary, a complete infinitesimal deformation of a 
susy 2 curve consists of a deformation of the underlying alge­
braic curve and the couple of line bundles that define the 
"single" object plus the deformation specified by laP' Since 
the latter is completely qualified by an element in 
HI ( C,W -I ® det g') we find complete agreement with the 
results of Proposition 3. As a final remark, we notice that 
this latter space, which can also be thought of as the space of 
superconformally nonequivalent SUSY2 structures on a fixed 
curve, coincides with the space of hoI om orphic ally nonequi­
valent extensions of a 0 characteristic .!t'l by another one 
.!t' 2' 

IV. THE REDUCED MODULI SPACE OF UNTWISTED 
SUSY2CURVES 

We can now give a detailed description of the reduced 
moduli spaces of SUSY2 curves, which turns out to be com­
plete in the untwisted case. According to Proposition 2, ho­
lomorphic isomorphism classes oftwisted SUSY2 curves are in 
one-to-one correspondence with isomorphism classes of 
couples (C,.!t' 12)' where .!t'12 is an unordered couple of 
nonequivalent 0 characteristics. This sits inside the second 
symmetric power ~(2) o(the spin covering ~_~ of the 
moduli space (at some fixed genus), a space that has a nice 
mathematical status. 14 Besides, according to Lemma 1, the 
reduced moduli space of untwisted SUSY2 curves with a 

1 

~ ~ ~ 

semistable characteristic sheaf g' can be identified with the 
universal degreeg - 1 Picard variety Picg _ 1 -~ g over the 
moduli variety of genus g algebraic curves, modulo the 
Kummer map .!t' --cu ® .!t' - I. 

We next want to parametrize superconformal structures 
on a fixed curve C and a couple .!t'l Ell .!t' 2 of invertible 
sheaves fitting a Serre self-dual rank two locally free sheaf. 
The basic observation here is that the sheaf g' should be 
regarded not merely as a holomorphic sheaf because the su­
perconformal structure amounts to saying that it is the sheaf 
of sections of a vector bundle E with, as its structure group, 
the conformal group 

G= {mEGL(2,C)l tm'm =A 1}=GoU77'Go, 

where Go is the identity component and 

77 = (~ _~). 
The map ~:G-C* given by ~(m) = t m'm gives rise to the 
exact diagram of complex groups: 

1 

~ 

- SO(2) - Go 
'1' 

C* 1 -
~ ~ 

G 
'1' 

C* I . (1) -1 0(2) --
~ ~ ~ 

Z2 - Z2 - 1 

~ ~ 

1 1 

Notice that the first row is an exact sequence of central sub­
groups of the groups in the second row. This is vital at the 
level of exact sequences of sheaves of germs of group-valued 
functions associated to the above diagram. Indeed, 
pushing the induced cohomology sequences as far as possi­
ble, we obtain an exact diagram: 

1 H 1(C,Y(J2) - HI(C,~O) - H1(C,(J*) 

~ ~ 

- H 1(C,(J2) HI(C,~) - H1(C,(J*) 

~ ~ 

HI(C,Z2) HI(C,Z2) -
~ ~ 

1 I 

Here we used some results of non-Abelian sheaf coho­
mology and the following lemma. 

Lemma 3: The cohomology groups H * (C, (J *) and 
H * (C, Y tJ 2) coincide. 

Proof' The exact sheaf sequence 
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1 

where the map m is defined by 

m(f) = ( cos(21T'if) Sin(21T'if») 
_ sin(21T'if) cos(21T'if)' VfEr{ U,tJ), 
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fits together with the standard exponential sequence into the 
commutative diagram of sheaves (of Abelian groups) 

o -+ z -+ tJ 

lid ~id 

o -+ z -+ tJ 

where 

(
",+",-1)/2 

m*(",) = _ ('" _ ",-1)/2i 

'Vf/Jer( U,tJ*). 

exp 
-+ 

m 
-+ 

tJ* 

~m* 

-+ 

(3) 

This gives rise to a long commutative sequence of cohomo­
logy groups, proving Lemma 3. • 

Remark: Notice that the above sequence shows that the 
cohomology group H I ( C,Y fJ 2) is isomorphic to the group 
Pic C of invertible sheaves on C. 

The basic fact for our concern is the following lemma. 
Lemma 4: The action of HI (C,Y fJ 2) is transitive and 

free on the fiber of the bundle H I ( c, Y 0) -+ H I ( c, tJ *) over 
each class 'TEll I ( c, tJ * ). The same is true for the action of 
HI(C,YO) on the fiber of H I(C,Y)-+H I(C,Z2) over 
7'Ell I (C,Z2)' 

Proof: Since Y tJ 2 '-+ Yo and Yo '-+ Y are central and 
Abelian, we can apply a (simplified) argument ofnon-Abe­
lian sheaf cohomology (see, e.g., Lemma 2.4 of Ref. to) to 
obtain the proof. This runs as follows. Given an exact se­
quence of sheaves of groups 0 -+ &' -+ !!2 -+ f!lt -+ 0 in which &' 
is central and Abelian and f!lt is Abelian, one has the follow­
ing results. 

I I), 2;7}J 
(i) There is a connecting map H (f!lt)-+H (;:;r), so 

that the sequence 
I), 

HI (!!2) -+H I(f!lt) -+H2( &') 

is exact. 
(ii) Whenever 1EKer 8 1, HI (&') acts transitively on 

the fiber of H I ( !!2 ) over 7, with the kernel given by the image 

of H ° ( f!lt ) : H I ( !!2 ). In our case Lemma 4 follows from the 

factthatH 2 (C,Y tJ 2) "",H 2(C,fJ*) = {O}and theobserva­
tion that elements in HO(C,Z2) ((Ho(C,fJ*» are mapped 
into locally constant matrices by the connecting homomor­
phisms 80 and thus are clearly trivial cocycles. • 

Using Lemma 4, we can give the following description 
of the (reduced) moduli space of untwisted SUSY2 structures 
over a fixed curve C. 

Proposition 4: Nonequivalent untwisted SUSY2 structures 
on a fixed (smooth) algebraic curve C are parametrized by 
the fiber of H I(C,YfJ2) 10 HI(C,Yo) over 
[w]Ell I (C,fJ*). 

Proof: This proof follows at once by noticing that the 
mapH I( C,Y) -+H I(C,fJ*) in diagram (2) is surjective and 
the map H 1( C,fJ 2) -+H I (C,Y) is injective. The last asser­
tion follows by applying Lemma 4. • 

Remark: While in the general theory of supermanifolds 
the first infinitesimal neighborhood of M red is an "ordinary" 
vector bundle and thus its vertical automorphisms are auto­
morphisms of the supermanifold structure, when consider-
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ing supermanifolds with contact structure, which are the 
most relevant to physics (see, e.g., Ref. 2), extra structures 
must be taken into account. Thus the classification of N = 2 
superconformal structures over an algebraic curve C is quite 
different from the classification of rank two vector bundles 
over C, which corresponds, as is well known, to the classifi­
cation of all split supermanifolds of odd dimension 2 over C. 

v. CONCLUS.IONS AND OUTLOOK 

In this paper we have reconsidered some features of the 
geometry of N = 2 superconformal field theories in a proper 
geometric framework. We showed that most of the defini­
tions and properties of N = 1 super Riemann surfaces carry 
over, with obvious modifications, to the N = 2 case. In par­
ticular, we pointed out the relations of the theory of SUSY2 

curves with the theory of Serre self-dual rank two locally free 
sheaves over algebraic curves. 

This approach gives a full proof of the results that are 
usually obtained in the physical literature by studying de­
grees offreedom and "gauge invariance" of the N = 2 super­
symmetric action in two dimensions (see, e.g., Ref. 15). 
Namely, some pecularities of N> 1 supersymmetry, such as 
the existence of modular parameters for the U( 1) current 
mixing the gravitinos, have been given a sound geometrical 
picture. In addition, a complete description of the reduced 
moduli space of SUSY2 curves in the untwisted sector was 
given. 

A detailed study of the global aspects of N = 2 supermo­
duli spaces, together with a setup of the theory of supercon­
formal fields on SUSY2 curves along the lines of Refs. 16 and 
17, will be the subject of future work. 
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