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Abstract: It has been recently pointed out that the unavoidable tuning among supersym-
metric parameters required to raise the Higgs boson mass beyond its experimental limit
opens up new avenues for dealing with the so called µ-Bµ problem of gauge mediation. In
fact, it allows for accommodating, with no further parameter tuning, large values of Bµ

and of the other Higgs-sector soft masses, as predicted in models where both µ and Bµ

are generated at one-loop order. This class of models, called Lopsided Gauge Mediation,
offers an interesting alternative to conventional gauge mediation and is characterized by
a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar
mass, and moderately light sleptons. We discuss general parametric relations involving the
fine-tuning of the model and various observables such as the chargino mass and the value
of tanβ. We build an explicit model and we study the constraints coming from LEP and
Tevatron. We show that in spite of new interactions between the Higgs and the messenger
superfields, the theory can remain perturbative up to very large scales, thus retaining gauge
coupling unification.
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1 Introduction

One of the most appealing features of gauge mediation [1–9] is the calculability of the soft
terms. However, this predictive power is deficient unless one defines the mechanism that
generates the µ and Bµ terms. This mechanism is problematic in gauge mediation because,
on fairly general grounds, one obtains the relation [10]

Bµ = µΛ , (1.1)

where Λ is the effective scale of supersymmetry breaking. Since gauge mediation predicts
Λ ∼ (16π2/g2)msoft, where msoft is the characteristic size of soft masses and g is a gauge
coupling constant, eq. (1.1) leads to a one-loop mismatch between Bµ and µ2. Many authors
have addressed this problem of gauge mediation by proposing solutions that circumvent
eq. (1.1); see e.g. refs. [7, 8, 10–18].

The problematic relation in eq. (1.1) follows from the fact that both µ and Bµ originate
at the same order in perturbation theory upon integrating out the messengers. For instance,
in the simplest case where the messenger threshold is controlled by a spurion superfield
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X = M(1+Λθ2), by dimensional analysis the generic finite 1-loop correction to the Kähler
potential has the form

c

�
d4θ HuHdF (X/X†) , (1.2)

giving rise to µ ∝ Bµ ∝ F �. Here c is typically a one-loop factor, but eq. (1.1) stems
from eq. (1.2), independently of the value of c. This indeed shows that the µ-Bµ problem,
defined by eq. (1.1), holds in a more general context than just gauge mediation and it
potentially exists in any theory in which there is a separation of scales between Λ and
msoft. Such a separation is often needed in order to address the flavor problem and it is
present in theories with anomaly mediation [19, 20] or gaugino mediation [21, 22].1 The
relation eq. (1.1) becomes satisfactory only when Λ is of the order of the soft masses (as
in gravity mediation [23]). Thus, on rather general grounds, it seems that supersymmetric
model building is facing a clash between natural solutions to the flavor problem and to the
µ-Bµ problem.

Since the experimental searches for charginos constrain µ > 100 GeV, the relation
Bµ ∼ (4πµ)2/g2 implies an anomalously large value of Bµ. This large value of Bµ either
destabilizes the Higgs potential along the D-flat direction or requires a considerable pa-
rameter tuning in order to adjust the Higgs vacuum expectation value. As eliminating any
source of tuning in the Higgs sector is the very reason why low-energy supersymmetry was
originally introduced, the µ-Bµ problem of gauge mediation cannot be ignored.

The situation about fine tuning in supersymmetry has changed significantly in the last
decade. The unsuccessful searches for supersymmetric particles and, especially, for a light
Higgs boson have constrained the models to such a degree that tunings at the level of a few
percent seem almost inescapable. The problem is particularly acute in models such as gauge
mediation, where the soft terms are tightly determined by the theory and cannot satisfy
some special, but propitious, relations capable of partly alleviating the tuning problem. If
gauge mediation is realized in nature, it must endure some accidental tuning.

The latter consideration prompts us to revisit the viability of eq. (1.1). Our study
is directly motivated by the analysis in ref. [17], on which we shall elaborate. The main
observation is that, once one implements the tuning necessary to evade the Higgs-mass
limit from LEP, eq. (1.1) does not necessarily imply any further tunings in the theory. In
certain cases that will be studied in this paper, a single tuning is sufficient to take care of
both the Higgs mass and the anomalously large Bµ. This class of models will be called
here lopsided gauge mediation.

An important difference of our study with respect to the analysis of ref. [17] is that
we shall insist on calculability (weak coupling) and perturbative unification. In particular
we shall work out an explicit model overcoming a quantitative problem of the minimal
example of ref. [10]. It is interesting that the assumption of calculability renders lopsided
gauge mediation viable only in the presence of a separation between mZ and the sparticle
masses. In particular it becomes viable in the presence of the well known tuning that is

1In those models F (X/X†) in eq. (1.2) is replaced by a generic function of X and X†, but the conclusion

are similar. In the simplest gaugino mediated models the small parameter c is proportional to the inverse

of the volume of the compact extra dimension through which supersymmetry breaking is mediated.
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necessary to lift the Higgs mass above the LEP bound. In this respect, we must stress
that lopsided gauge mediation is not “natural”: a fine tuning is actually present. However,
this tuning simply amounts to what is required in order to lift the Higgs mass beyond its
present experimental limit. It corresponds to the inevitable tuning present in any model
of gauge mediation.

In spite of the necessary tuning, one cannot regard lopsided gauge mediation inferior to
the ordinary gauge mediation scheme, in which µ and Bµ of the order of the weak scale are
put in by hand or generated by new interactions at some intermediate scale. Lopsided gauge
mediation is equally good (or equally bad) since the degree of fine tuning is identical. There
is however an important difference with respect to the ordinary scheme of gauge mediation,
since the phenomenology is totally distinct. Lopsided gauge mediation is characterized by
a very small µ, leading to light higgsinos, by a pseudoscalar-Higgs mass mA in the range of
several TeV and a moderate to large value of tan β. The phenomenology of lopsided gauge
mediation, discussed in this paper, is worth serious scrutiny by the LHC experimental
collaborations, since it represents just another side of gauge mediation, equally likely from
the theoretical point of view, but much less explored.

2 Characterizing lopsided gauge mediation

The condition for electroweak symmetry breaking in supersymmetry, in the presence of an
unavoidable hierarchy between mZ and msoft, can be expressed as a requirement of near
criticality: in the phase diagram spanned by the model parameters, the soft terms have to
lie very close to the line separating the broken and unbroken phases of SU(2)×U(1) [24].
Indicating byM2

H
the Higgs mass matrix at vanishing background field value, the condition

of near criticality is just detM2
H
� 0. For sufficiently low messenger scale one has

M
2
H =

�
m2

Hu
− δm2

Hu
+ |µ|2 Bµ

Bµ m2
Hd

+ |µ|2

�
(2.1)

where m2
Hu,d

are the usual Higgs soft masses evaluated at the messenger scale and δm2
Hu

is the radiative correction proportional to the stop square mass

δm2
Hu
�

3αt

π
m2

t̃
log

M

m
t̃

. (2.2)

The condition of criticality then becomes
�
m2

Hu
− δm2

Hu
+ |µ|2

��
m2

Hd
+ |µ|2

�
� B2

µ . (2.3)

The stop induced correction δm2
Hu

is large compared to M2
Z

because the stop mass has
to be close to 1TeV to lift the Higgs boson mass above the LEP limit. The largeness of
this term is at the origin of the usual fine tuning problem of supersymmetry. As evident
from eq. (2.3), there are two extreme ways of implementing the tuning required by near
criticality: the negative radiative correction can be compensated either by a large µ2 or by
a large m2

Hu
. The first option corresponds to ordinary gauge mediation; the second one to

lopsided gauge mediation. Let us consider the two cases.

– 3 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
2

(i) In ordinary gauge mediation, one takes µ2 � δm2
Hu

and m2
Hu,d

� µ2. Electroweak
breaking is achieved at the price of a tuning involving a large value of µ. In this case,
from the condition of criticality we find

Bµ

µ2
�

�
1−

δm2
Hu

µ2

�1/2

< 1 . (2.4)

This result is clearly incompatible with eq. (1.1) which requires Bµ/µ2 ∼ 16π2. Or-
dinary gauge mediation suffers from a µ-Bµ problems and requires a special solution.

(ii) In lopsided gauge mediation, we choose m2
Hu
� δm2

Hu
and µ2 � m2

Hu,d
. The condition

of criticality now becomes

Bµ

µ2
�

�
1−

δm2
Hu

m2
Hu

�1/2
mHu

mHd

µ2
. (2.5)

This result is not incompatible with eq. (1.1), because Bµ/µ2 can be as large as 16π2,
as long as m2

Hd
is sufficiently large. Note that the largeness of m2

Hd
in the mass

matrix (2.1) does not necessarily imply a further tuning for the theory, if m2
Hu

m2
Hd
∝

B2
µ. We will show in the next section that the simplest model of lopsided gauge

mediation automatically predicts this relation of proportionality. The issue about
fine tuning will be addressed in section 5.

3 A Higgs sector coupled to the messengers

In order to set the stage and fix the notation let us recall the basics of minimal gauge
mediation. The masses and splittings of the messengers (Φ, Φ) are all controlled by a
spurion superfield X = M(1 + ΛGθ2) via the superpotential

W = XΦΦ . (3.1)

The dynamics that gives rise to X �= 0 arises in an unspecified “secluded sector”, which con-
tains also the supersymmetry breaking dynamics. On general grounds one should interpret
X as the expectation value

X = M + k�XNL� (3.2)

where XNL = F (θ +χ/
√

2F )2 is the canonical Goldstino superfield [25], while k effectively
describes the coupling of the messengers to the supersymmetry breaking dynamics. By
naive dimensional analysis (NDA) one expects k <

∼ 4π, though in several realistic models
one has k � 1. At the scale M the soft masses are given by

Ma = nGΛG

αa

4π
, m̃2

I = 2nGΛ2
G

3�

a=1

C(I)
a

�
αa

4π

�2

, (3.3)

where C(I) are the quadratic Casimirs of the representation I of the SM gauge group.
Here nG is defined as an effective messenger number which is, for instance, equal to 1 if

– 4 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
2

the messenger are a 5 ⊕ 5 of SU(5) or to 3 in the case they belong to a 10 ⊕ 10. The
minimal scenario is easily generalized by promoting M and k to matrices under the unique
constraint of SU(3)×SU(2)×U(1) gauge invariance. Indeed in that way one covers a chunk
of the full 6-dimensional parameter space of general gauge mediation [26–29].

At this level µ and Bµ are vanishing while the masses mHu
and mHd

are equal at the
scale M . A possible way to generate µ and Bµ is adding direct couplings of the Higgs
doublets to two pairs of messenger fields

W = λuHuDS + λdHdD̄S̄ + XDDD̄ + XSSS̄ . (3.4)

The simplest choice for the messenger fields is taking D and D̄ to be SU(2) doublets with
hypercharge ±1 (being part of a complete GUT representation, such as the fundamental of
SU(5)), while S and S̄ are weak and hypercharge (as well as GUT) singlets. In this case it is
more economical to identify S and S̄ with a single chiral superfield. In eq. (3.4) XD and XS

are spurions with both scalar and F components which are conveniently parametrized as

XD,S = MD,S(1 + ΛD,S θ2) . (3.5)

Notice that all phases in eqs. (3.4) and (3.5) can be eliminated by field redefinitions up
to the relative phases between the various supersymmetry-breaking masses ΛG,D,S (these
parameters have indeed the same quantum numbers under all spurionic global symmetries).
The remaining phases explicitly break CP and dangerously contributes to edms. We shall
thus assume that the secluded sector respects CP, so that ΛD and ΛS can also be chosen
real. After integrating out the messengers at one-loop, the low-energy Kähler potential is
renormalized in a calculable fashion [30] and the soft parameters of the Higgs sector are
easily calculated (see appendix A for details)

m2
Hu,d

=
λ2

u,d

16π2
Λ2

D P (x, y) (3.6)

µ =
λuλd

16π2
ΛD Q(x, y) (3.7)

Bµ =
λuλd

16π2
Λ2

D R(x, y) (3.8)

Au,d =
λ2

u,d

16π2
ΛD S(x, y) . (3.9)

Here we have set x = MS/MD, y = ΛS/ΛD and defined the functions

P (x, y) =
x2(1− y)2

(x2 − 1)3
�
2(1− x2) + (1 + x2) log x2

�
(3.10)

Q(x, y) =
x

(x2 − 1)2
�
(x2

− 1)(1− y) + (y − x2) log x2
�

(3.11)

R(x, y) =
x

(x2 − 1)3
�
(1− x4)(1− y)2 +

�
2x2(1 + y2)− y(1 + x2)2

�
log x2

�
(3.12)

S(x, y) =
1

(x2 − 1)2
�
(x2

− 1)(1− x2y)− x2(1− y) log x2
�
. (3.13)
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The function P is positive and thus the square masses m2
Hu,d

are also positive. However,
P vanishes for y = 1 (ΛD = ΛS). This is an instance of the known result that one-loop
soft masses vanish in the presence of just one spurion XD ∝ XS [31]. Notice also that,
by the argument on the elimination of unphysical phases, it follows that the sign of y is
physical while the sign of x is not. Consistently with that, one has that the rephasing
invariant combination AµB∗

µ ∝ QRS is a function of x2 and y. Also worth noticing is that
all the four functions in eqs. (3.10)–(3.13) are smaller than one in absolute value, with P

being somewhat smaller than the others. An important feature is that R and P satisfy
|R(x, y)| ≥ 2P (x, y) for any x and y. This relation is problematic because at the messenger
scale (where δm2

Hu
= 0) we find that, for small µ,

detM2
H � m2

Hu
m2

Hd
−B2

µ ∝ P 2(x, y)−R2(x, y) . (3.14)

Since R2 is always bigger than P 2, one has detM2
H

< 0 so that electroweak symmetry is
broken at the large scale M , leading to a spectrum with far too light sparticles.

It is clear that it must be possible to overcome the above difficulty by a slight com-
plication of the model. This is because Bµ ∝ R possesses U(1)R charge, so that one could
conceive of contributions with opposite signs due to the presence of several spurions. Indeed
it is enough to consider two gauge singlets S and S̄, but with a superpotential featuring
additional mass terms with respect to eq. (3.4)

W = λuHuDS + λdHdD̄S̄ + XDDD̄ +
XS

2
�
aSS2 + a

S̄
S̄2 + 2a

SS̄
SS̄

�
. (3.15)

The generation of a non-vanishing contribution to both µ and Bµ is related to the a
SS̄

coefficient. If a
SS̄

= 0 the Z2 symmetry under which Hu → −Hu and S → −S forbids µ and
Bµ. After diagonalizing the mass term in eq. (3.15) and rescaling XS , the superpotential
becomes

W = λuHuD(cθS + sθS̄) + λdHdD̄(−sθS + cθS̄) + XDDD̄ +
XS

2
�
S2 + ξS̄2

�
, (3.16)

where sθ ≡ sin θ, cθ ≡ cos θ and

tan 2θ =
2a

SS̄

a
S̄
− aS

, ξ =
a

S̄
− aS tan2 θ

aS − a
S̄

tan2 θ
. (3.17)

Again we have assumed CP invariance and chosen all parameters real. The boundary con-
ditions for the soft parameters in the Higgs sector are the sum of the S and S̄ contributions

m2
Hu

=
|λu|

2

16π2
Λ2

D

�
c2
θ
P (x, y) + s2

θ
P (ξx, y)

�
≡ au

1
|λu|

2

16π2
Λ2

D (3.18)

m2
Hd

=
|λd|

2

16π2
Λ2

D

�
s2
θ
P (x, y) + c2

θ
P (ξx, y)

�
≡ ad

1
|λd|

2

16π2
Λ2

D (3.19)

µ =
λuλd

16π2
ΛD sθcθ [−Q(x, y) + Q(ξx, y)] ≡ a2

λuλd

16π2
ΛD (3.20)

Bµ =
λuλd

16π2
Λ2

D sθcθ [−R(x, y) + R(ξx, y)] ≡ a3
λuλd

16π2
Λ2

D (3.21)

Au =
|λu|

2

16π2
ΛD

�
c2
θ
S(x, y) + s2

θ
S(ξx, y)

�
(3.22)

Ad =
|λd|

2

16π2
ΛD

�
s2
θ
S(x, y) + c2

θ
S(ξx, y)

�
. (3.23)
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Hu Hd D D S S D� D� X
R 1 1 0 0 1 1 2 2 2

PQ 1 1 −1 −1 0 0 1 1 2

Table 1. R and PQ charge assignments for the superpotential in eq. (3.24).

From eq. (3.21) it is clear that we can now avoid the relation that lead to a negative
detM2

H
. Indeed, the Bµ term can be made arbitrarily small either by approaching the Z2

symmetric limit (θ → 0), or by taking ξ → 1, such that the electroweak critical condition
in eq. (2.3) can be satisfied. In these limits also µ will be suppressed.

3.1 Naturally vanishing Bµ

The remark leading to the last model is that Bµ, unlike diagonal masses, transforms under
U(1)R phase rotations. Then its overall relative size must basically be a free parameter,
given sufficient freedom to pick a model. Taking the same argument to its extreme we
could indeed conceive a model in which U(1)PQ is broken in the sector that couples H1

and H2 to the messengers, while U(1)R is not. Of course in order to generate gaugino
masses U(1)R must be broken by other messengers which for some reason do not couple to
the Higgses. An example of a Higgs-messenger sector with the desired features is offered
by a variation of the models above with the simple addition of an extra pair D�, D

� of
doublets, with the identification of S and S̄, and with superpotential

W = λuHuDS + λdHdD̄S + XDD̄ + MSS2 + MD(DD̄� + D�D̄) (3.24)

with X ≡ �XNL� = Fθ2. The above superpotential is the most general one compatible
with the R and PQ-charges in table 1. The expectation value of X breaks PQ. On the
other hand, since X has R-charge 2, F is R-neutral. R-symmetry is thus exact in the above
lagrangian. On the other hand the expectation value of X breaks PQ, and one can easily
verify (see appendix A) that at one-loop the renormalization of the Kahler potential gives
rise to non-vanishing µ ∼ F/M , m2

Hu
and m2

Hd
, while Bµ = 0. The model contains an

axion, which could be interpreted as the benign invisible axion if the scale of supersymmetry
breaking is sufficiently high. Alternatively, the would-be axion could eliminated from the
low-energy spectrum if PQ is only an approximate symmetry of the Higgs-messenger sector,
as in the case of the R symmetry.

It remains an issue of model building to come up with a fundamental theory where
U(1)R emerges as an accidental symmetry of the Higgs-messenger sector, while it is bro-
ken elsewhere. It does not seem implausible that it could happen, although we have not
investigated specific implementations. Notice also that our mechanism, differs from the
simple addition of µH1H2 in the superpotential, which also breaks U(1)PQ and preserves
U(1)R, in that the origin of µ is here tied to supersymmetry breaking. This seems more
satisfactory as it makes µ ∼ msoft more plausible. On the other hand, in our case one
necessarily has 1-loop contributions to m2

Hu
and m2

Hd
. Indeed in order to preserve U(1)R

the messenger masses in eq. (3.24) must be controlled by multiple spurions X,MS , MD
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with different global quantum numbers. Then one cannot rely on the usual theorem insur-
ing the vanishing of 1-loop masses in the presence of a single spurion field controlling the
whole spectrum and its mass splittings. The role of U(1)R in protecting Bµ was already
emphasized in ref. [18]. However, following that remark, in the models of that paper µ

originates from the superpotential rather than from the Kähler potential, and is thus not
directly related to supersymmetry breaking.

The necessary appearance of m2
Hu

and m2
Hd

at 1-loop makes the above model a special
case of lopsided gauge-mediation: all the relations discussed in the previous section (such
as µ2 � m2

Hu
< m2

Hd
) hold true, but with the additional property that Bµ vanishes at the

messenger scale. Similarly to the model discussed in ref. [32], Bµ is generated dominantly
via RG running, leading to a naturally large value of tanβ over a surprisingly large span
of messenger masses.

4 The maximal µ

We can use eq. (2.3) to get an approximate analytical understanding of how the electroweak
breaking condition is satisfied. Dropping µ2, which is legitimate for perturbative values of
the λ couplings, we can solve for λu

λ2
u

16π2
�

1
au

1(1− a2
Bµ

)

�
3αtm2

t̃

πΛ2
D

log
M

m
t̃

−
∆m2(GM)

Hu

Λ2
D

−
∆m2(FI)

Hu

Λ2
D

�
, (4.1)

where we defined a2
Bµ

= a2
3/au

1ad

1. Here ∆m2(GM)
Hu

, and ∆m2(FI)
Hu

are weak-size contributions
coming respectively from the standard gauge mediated part, see eq. (3.3), and the hyper-
charge Fayet-Iliopoulos contribution (see below) to m2

Hu
. Eq. (4.1) turns out to be quite

reliable, typically in the O(20%) range, if aBµ
�= 1. For the semianalytic discussion of this

session we shall however drop the second and third term within brackets in eq. (4.1) since
they are subdominant. Note that under the reasonable assumption that ΛG ∼ ΛD, one has
m2

t̃
/Λ2

D
∼ (g3/4π)4. Thus, as long as aBµ

is not too close to 1, lopsided gauge mediation
requires the one-loop expansion parameter (λu/4π)2 to be roughly (g3/4π)4, that is two
loops in QCD.

Once λu is fixed, a lower bound on λd is obtained from the experimental lower bound
on the chargino mass, which can be approximately written as µ � mZ . The limit can be
expressed in terms of a dimensionless parameter η = m2

Z
/m2

t̃
whose smallness quantifies

the tuning of the supersymmetric model. Using (4.1) and (3.20) we obtain

λ2
d

16π2
�

�
au

1(1− a2
Bµ

) π

3a2
2 αt log M

m
t̃

�
η . (4.2)

In our model the numerical pre-factor in front of η can vary extensively throughout the
parameter space. However, parametrically (and treating αt log M

m
t̃

= O(1)), eq. (4.2) cor-
responds to λd � 4πη1/2. Thus, the very existence of the tuning (i.e. the smallness of η) is
the key element that allows for the existence of perturbative values of λd. The smaller is
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η, the wider is the range of λd compatible with the experimental bound on µ and with a
perturbative extrapolation of the theory up to high energies.

The sizable λd required by eq. (4.2) translates into a large value for m2
Hd

, which we
recall arises already at 1-loop order unlike the sfermions masses. This is a trademark of
lopsided gauge mediation and can have significant impact on the running of the soft masses
through the induced hypercharge Fayet-Iliopoulos term (FI). This contribution is given by2

∆m2(FI)

f̃
� −

3Y
f̃
α1S

10π
log

M

mHd

, (4.3)

where

S = Tr
�
Y

f̃
m2

f̃

�
= −m2

Hd
+ m2

Hu
+ Tr

�
m2

Q −m2
L − 2m2

U + m2
D + m2

E

�
. (4.4)

Such effects are large in lopsided gauge mediation and can easily reverse the ordering of
sparticles masses predicted by ordinary gauge mediation. For instance, we find that, for
the first and second generation squark masses,m2

uR
< m2

dR
, a feature of the spectrum that

is nevertheless hard to study at the LHC.
A much more easily observable effect occurs among sleptons. Indeed the left-handed

sleptons get a large and negative contribution to their square masses

∆m2(FI)
L

= −
3α1

20π
m2

Hd
log

M

mHd

, (4.5)

as opposed to the positive shift to the right-handed sleptons. The request of positive
slepton square masses sets an upper bound on the value of λd from eq. (3.19)

λ2
d

16π2
� 5α2

2 nGΛ2
G

8πα1 ad

1 Λ2
D

log M

mH
d

. (4.6)

This can be combined with the value of λu obtained from the criticality of electroweak
breaking, eq. (4.1), to get an upper bound for the value of µ

µ2 �
15a2

µ αt α2
2 nGΛ2

G
m2

t̃

8π2(1− a2
Bµ

)α1 Λ2
D

, (4.7)

where a2
µ = a2

2/au

1ad

1. From eq. (4.7) we observe that the ratio µmax/M1 is independent of
ΛG (for fixed ΛG/ΛD), and only mildly dependent on both nG and log M . The dependence
on these latter parameters comes mainly from extra logarithms in m2

t̃
. For instance the

positive gluino contribution to m2
t̃

spoils the naive scaling with nG which is explicit in
eq. (4.7): bigger values of nG results in bigger values of µmax/M1. We show these effects
in figure 1, for specific choices of the parameters.

The value of µ can be further bounded from above requiring λd to stay perturbative
up to the GUT scale. The evolution of λd is fully fixed only when the content of the

2In the formula we neglect the finite threshold corrections at the scale mHd . These will add to the

logarithm a term O(1), which is negligible when M is large enough.
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Figure 1. µmax/M1 for a specific choices of parameters: x = 1.2, ξx = 4.5, θ = 0.8 (left panel)
and x = 0.7, ξx = 6.7, θ = 0.7 (right panel). In both cases y � 1 is assumed. On the red dashed
branch of the curves the coupling λd gets non perturbative at some point between M and MGUT.

messenger sector coupled to the Higgs fields is specified. In the the simplest case in which
the messengers D = (1,2)−1, S = (1,1)0, are part of a fundamental and a singlet of SU(5)
respectively, the RG equation for λd is

dλ2
d

dt
=

λ2
d

8π2

�
4λ2

d
−

3
5
g2
1 − 3g2

2

�
, (4.8)

with t = log Q. The significance of this perturbativity bound is shown in figure 1: on the
red dashed part of the lines λd hits the value 4π somewhere between M and MGUT. As
the messenger scale is lowered, we expect a smaller value of µ because of the larger energy
range between M and MGUT in which the running coupling must remain perturbative.3

These general considerations imply an upper limit on µ/M1. The bound from pertur-
bativity is generally stronger than the one imposed by the experimental limit on slepton
masses, and this is particularly true if ΛD/ΛG is not much bigger than one, see eq. (4.7).
The precise limit is ultimately related to the structure of the loop functions in eq. (3.10)–
(3.13). In the model of section 3 we find, quite generically, µ < M1. This is confirmed
by the scatter plot for the ratio µ/M1 shown in the left panel of figure 2 together with
the region excluded by the perturbative requirement. All the points showed provide a
viable spectrum, free of tachyons. We restricted the scanning of the parameter space to

3The perturbativity bound on λd we discuss here requires qualifications. The point is that, in our

description of the models, the dynamics that breaks supersymmetry is not specified but simply parametrized

effectively in terms of the spurions XD, XS . Somewhere below the GUT scale this effective description will

have to be replaced by some physical interacting fields. This will in principle affect the RG evolution of

our couplings, and of λd in particular. However for the simple case in which the X spurions originate from

non-renormalizable operators suppressed by a scale larger than MGUT, there is clearly no effect on the RG

evolution of λu,d. In this set up, assuming that the original scale of supersymmetry breaking is <
∼ 1010 GeV

to suppress gravity mediated terms, one finds that hidden sector chiral operators of dimension d ≤ 3 could

give rise to the X spurions. The other possibility is that the X spurions originate from d = 1 chiral fields.

In that case the presence of additional Yukawa interactions involving the messengers generally slows down

the upward evolution of λd and in principle relaxes our bound. On the other hand we do not expect that

this effect can become dramatic without those other couplings also becoming large. We thus think that our

upper bound on λd has a broad validity.

– 10 –
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Figure 2. Scatter plot showing the values of µ/M1 attainable in the model described by eq. (3.16).
The points are chosen randomly among those with 0.2 ≤ x ≤ 4, 4 ≤ ξx ≤ 10, 0.5 ≤ θ ≤ 1. This
picks the most favorable region for the ratio µ/M1 as discussed in the text. Furthermore y � 1
is assumed, and ΛD/ΛG varies between 0.1 and 10. The red shaded regions are those excluded by
the perturbative requirement on λd for a given choice of the cutoff scale of the theory: MGUT or
109 GeV.

the most favorable region (see the caption in figure 2). Due to the cancellation in the
boundary values of µ and Bµ, see eqs. (3.20)–(3.21), bigger values for µ/M1 are obtained
requiring a value of ξ sufficiently far from 1. Furthermore θ ∼ π/4 is favored to avoid extra
suppression in µ.

The smallness of µ, together with the mass relations imposed by gauge mediation,
give significant constraints to the spectrum. Typically the higgsinos, the bino and the
left-handed sleptons have masses close to mZ , while the other superpartners are much
heavier.

The value of tanβ is is determined by eqs. (3.18)–(3.21). Under the assumption of a
hierarchy between λu and λd, using sin 2β = 2Bµ/(2|µ|2 + m2

Hu
+ m2

Hd
), we obtain

tanβ �
ad

1λd

a3λu

. (4.9)

The coupling λu is fixed by the electroweak breaking condition as in eq. (4.1), while the
coupling λd is bounded both from above (slepton masses and perturbativity) and below
(minimum value of µ). These constraints translate into a range for tanβ:

2
3

�
1−aBµ

aµaBµ

�2 π4 Λ2
D

η

α2
t
α2

3 nGΛ2
G

log2 M

m
t̃

� tan2 β � 5
4

�
1−aBµ

aBµ

�2 π2α2
2

αtα1α2
3 log M

m
t̃

log M

mH
d

(4.10)

where we have used the upper bound coming from the FI term. For a fixed value of
η = m2

Z
/m2

t̃
= 1% we plot the bands for the allowed values of tanβ in figure 3, for the

same parameter choices of figure 1. The upper bound, obtained by requiring positive square
masses for the slepton doublets, is independent of ΛD/ΛG. The lower bound, on the other

– 11 –
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Figure 3. Allowed values of tan β for a ratio η = m2
Z/m2

t̃
= 1� as a function of ΛD/ΛG for same

choices of parameters as in figure 1. On the red (dark) shaded regions the coupling λd gets non
perturbative at some point between M and MGUT.
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Figure 4. Scatter plot showing the µ/M1-tanβ correlation. The domain of the scatter-plot is the
same as in figure 2. On the left we require perturbativity up to Λ = MGUT while on the right the
cutoff is at Λ = 109 GeV.

hand, scales as ΛD/ΛG and both limits are approximately inversely proportional to log M .
We stress that since in lopsided gauge mediation tanβ is simply controlled by the ratio of
two Yukawas λd and λu, its moderately large value is natural, as it does not require any
additional tuning or cancellation among different contributions.

Since the dependence of both µ and tanβ on the UV parameters x, y, ξ, and θ, turns
out to be quite involved, we perform a scanning of such parameter space and calculate,
for each point, the value of µ/M1 and tanβ. The results are shown in figure 4. The
anticorrelation between tan β and µ follows simply from the fact that their product depends
on a combination of the variables which is bounded on the domain of the scatter plot. As
observed in the right panel of figure 4, relaxing the perturbativity bound on λd, that is
imposing a cutoff lower than MGUT, populates the region at larger values of tanβ and µ/M1.
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Figure 5. Value of √η as defined in the text for M = 109 GeV and various choices of tan β, nG.

5 Higgs mass and fine-tuning

Consistency with experimental data requires the Higgs boson mass to lie above the LEP
bound mh > 115 GeV. This is a well-known source of tuning for supersymmetric theories
in general and for those employing gauge mediation in particular. As explained in the
introduction, lopsided gauge mediation makes no exception to this. What it does, however,
is to hide behind this unavoidable tuning the one needed to accommodate the large Bµ

typically found in models where all the soft terms are calculable. In section 3 we presented
the possibly simplest implementation of lopsided gauge mediation and we observed its main
phenomenological features: a large mHd

and light higgsinos and sleptons.
LEP constrains the higgsino mass term to be bigger than about 100 GeV. Although

this is never an issue in ordinary gauge mediation, it can become the most important source
of tuning in the setup we are describing, as we already pointed out below eq. (4.2). As
shown in the previous section, the ratio µ/M1 is fixed once and for all when the parameters
appearing in eq. (3.15) are chosen. ΛG is then fixing the overall normalization of the
spectrum. To a very good approximation4 the mass of the lightest Higgs boson depends
only on tanβ and m

t̃
, the latter being fixed by ΛG, nG, M , as in ordinary gauge mediation.

Once the ratio µ/M1 is fixed there is thus a maximal value of η = m2
Z
/m2

t̃
such that the

experimental bounds on µ and mh are simultaneously satisfied.
In figure 5 we display the behaviour of this maximal √η as a function of µ/M1 for

definite values of nG and tanβ. When µ/M1 approaches 1, η becomes independent of µ:
we are in the ordinary situation in which η is fixed by the bound on the Higgs mass. Moving
towards smaller values of µ/M1 we reach a point where the LEP bound on µ determines
η, and the curve starts to fall as (µ/M1).

The goal of lopsided gauge mediation is fully reached only if the lower bound on µ

does not introduce additional fine-tuning with respect to the one required to lift the Higgs
4A-term contributions to the stop masses, coming from the new couplings of the higgses to the messen-

gers, are always irrelevant.
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boson mass above the LEP experimental limit. This happens for models living on the flat
(or nearly flat) part of the curves in figure 5.

Figure 4 shows that, for a large fraction of the points, the ratio µ/M1 is not particularly
large, especially for larger tanβ. The request that the tuning is dominated by the Higgs
mass constraint severely restricts the allowed points. Another way to describe the situation
can be extracted from eq. (4.2). Fixing η to the value required by the Higgs mass is
not always sufficient to guarantee that the lower bound on λd is smaller than the upper
bound from perturbativity. A further increase in tuning (obtained by decreasing η) is then
required.

Figure 5 shows that, at small values of tan β, lopsided gauge mediation requires no fur-
ther tuning than ordinary gauge mediation. In this case, however, the overall degree of fine
tuning is rather severe. For large values of tanβ, the overall tuning decreases, although lop-
sided gauge mediation can make the situation slightly worse. However, it should be noted
that the effect is rather modest. For instance, the value of η at µ/M1 ≈ 0.3 and tanβ = 10
does not significantly differ from the plateau at larger values of µ/M1. Moreover it should
be remarked that, while a moderate value of tanβ generically requires an extra tuning of
order 1/ tanβ in the case where all soft terms are comparable, in lopsided gauge mediation
the structural hierarchies between µ, the sfermion masses, and m2

A
automatically imply a

sizeable tanβ without additional tuning. This shows that lopsided gauge mediation can
give spectra with tunings comparable to the ordinary case, although its phenomenological
features are quite distinct.

6 Other consequences of a heavy pseudoscalar

The special spectrum we are dealing with — a very heavy Hd (several TeV) together with
light higgsinos and left-handed sleptons (around 100 GeV) — is expected to imprint a
peculiar pattern of deviations in the running of gauge couplings with respect to a more
typical supersymmetric spectrum. The relevant equations needed to compute the new
threshold effects are given in appendix B.

Let us consider, for concreteness, only two thresholds between mZ and MGUT, besides
the messenger scale: mA, where the Hd doublet is integrated out, and mSUSY < mA, where
all other superpartners except the bino, the higgsinos and the left-handed sleptons live.
These latter particles are assumed to sit at mZ . Figure 6 shows the contours for the rela-
tive variation of the prediction for α3(mZ) with respect to the experimental measurement
α3(mZ) = 0.1184× (1± 0.006) [33]. Note that a heavy pseudoscalar gives a negative con-
tribution to α3(mZ) which tends to spoil unification. On the other hand an improvement
is obtained by splitting the higgsinos and the left-handed sleptons with respect to the rest
of the supersymmetric spectrum.

Another possible effect of a large mA is on the value of the light Higgs boson mass.
The effect is analogous, but smaller, to the one obtained by integrating out the two stops
and can be treated in the same way, using the renormalization group improved effective
potential [34]. Notice that it is consistent to single out this effect among others which are
numerically of the same order, as it represent the leading contribution to mh proportional

– 14 –
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Figure 6. Prediction of α3(mZ) including the mA threshold as explained in the text. In green
(yellow) the 1σ (2σ) allowed range for δα3/α3, where |δα3/α3|exp = 0.006.

to mA. It is convenient to redefine the two doublets Hu,d in terms of two fields

�H∗
d

= cos βh− sin βH , (6.1)

Hu = sinβh + cos βH ,

where tanβ = vu/vd, so that only h gets a vacuum expectation value. H is identified with
the heavy Higgs doublet and is integrated out at the scale mA. Here supersymmetry fixes
the boundary condition for the Higgs boson quartic

V (h) = −m2
|h|2 + λ|h|4 , λ(mA) =

g2 + g�2

8
cos2 2β . (6.2)

We then assume all the other superpartners to be degenerate at the scale mSUSY < mA.
Since H is not present in the effective theory the quartic coupling at the scale mSUSY is
not fixed to its supersymmetric form but has an extra contribution

λ(mSUSY) = λ(mA) + δλ (6.3)

where δλ is of the order (g2/4π)2 log mA/mSUSY. We can thus calculate the RG improved
effective potential at the scale MZ using the new boundary condition in eq. (6.3) at the
scale mSUSY, running it down to the weak scale using the SM RGE equations. After this
we obtain the Higgs boson mass as m2

h
= 4v2λ. For all the values of tanβ and mA which

are relevant for our model this contribution to mh turns out to be always smaller than
1 GeV and thus negligible. In figure 7 we show the value of the Higgs mass at the weak
scale assuming all the superpartners to be degenerate at a scale mSUSY.
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Figure 7. Higgs boson mass at the weak scale for tan β = 1 (dashed), tan β = 10 (full), assuming
all the superpartners to degenerate at the scale mSUSY.

7 Collider phenomenology

In gauge mediation the lightest supersymmetric particle (LSP) is always the gravitino.
However, in contrast with the ordinary case, in lopsided gauge mediation the two typical
possibilities for the next-to-lightest supersymmetric particle (NLSP) are the higgsino, more
or less mixed with the bino depending on the ratio µ/M1, or a sneutrino5 whose lightness
is the result of the FI term induced by the large mHd

value.
The identity of the NLSP depends on the parameters choice. In the majority of the

parameter space we find a higgsino NLSP, as a result of the small µ of lopsided gauge
mediation. Indeed to have a sneutrino lighter than the Higgsino one has to pick a choice of
parameters λd, nG,ΛD very close to the extreme values allowed by the experimental limits
on the sleptons. We also notice that typically this corresponds to a value of λd that does
not remain perturbative up the GUT scale, thus a sneutrino NLSP might be suggestive of
some other new physics happening well below the GUT scale.

The generic spectrum of lopsided gauge mediation have squarks heavier than 1.5 TeV
and gluinos typically heavier than 2 TeV, which results in only a few fb of cross-section for
the production of colored states at the LHC with 14 TeV of center of mass energy (LHC14)
and negligible cross-section at the LHC with 7 TeV (LHC7). Thus, the production of
electroweak sparticles in the cascade of the colored ones is not very abundant. On the other
hand, the generic lightness of the higgsinos and the sleptons, can give sizable rates for the
direct production in Drell-Yan processes mediated by electroweak bosons, independently
of the mass of the colored states.

After its production any supersymmetric state decays promptly until the NLSP state

5The slepton doublet is splitted by the SU(2) D-terms of 10–20GeV. Aτ terms are never relevant enough

to invert the mass hierarchy between τ̃ and ν̃τ , so that the NLSP is always the sneutrino. The three sneutrino

flavors can be considered degenerate for all practical purposes.
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is reached. The NLSP decay length is then determined by

L ≈ 10−2 cm
�

100 GeV
mNLSP

�5� √
F

100 TeV

�4

, (7.1)

where F is the scale appearing in the goldstino superfield XNL (which can be larger than
the mass splitting among the messenger fields). The lower bound on the Higgs boson
mass requires ΛG = kF/M > 10 TeV. The absence of tachyonic messengers,

√
kF < M or

equivalently ΛG < M , thus implies a lower bound of roughly 10 TeV on
√

F if k = O(1).6

In this range and with mNLSP ≈ 100 GeV, values of
√

F smaller than 100 TeV give rise
to prompt NLSP decays, while when

√
F is larger than a few times 103 TeV the NLSP

decay takes place most of the time outside the detector. For intermediate values of the
supersymmetry breaking scale the decay occurs via a displaced vertex.

7.1 Higgsino NLSP spectrum

The typical spectrum with a higgsino NLSP is characterized by a triplet of states at the
bottom of the spectrum, the two neutral and the charged higgsinos, a neutral bino-like
state parametrically heavier than the higgsinos and a yet heavier wino-like triplet. The
slepton doublets are lighter than the singlets and are typically lighter than the bino-like
state. The typical spectrum in the less tuned region of the model looks as follows:

m
χ

0
1

� mχ± � m
χ

0
2

< m
χ

0
3
, mν̃ � m

l̃L
< m

χ
0
3
, m

χ
0
4
� 2m

χ
0
3

(7.2)

m
χ

0
1
� µ � 150 GeV, m

χ
0
3

> 400 GeV, mq̃ � 1.5 TeV, mg̃ � 2 TeV. (7.3)

Disregarding the signals from the production of electroweak states in the cascades of col-
ored objects, the characteristic signals arise from the Drell-Yan production of charginos,
neutralinos and sleptons and their decay to final states with many leptons:

• charged and neutral sleptons promptly decaying in final states with one lepton and
one chargino or neutralino:

�̃± → �±χ0
1,2 , χ±ν , ν̃ → χ0

1,2ν , χ±�∓ ; (7.4)

• light chargino and neutralino states, either directly produced or coming from the
decay of the sleptons, decaying, through off-shell vector bosons or sleptons, in leptonic
final states with a χ0

1:

χ0
2 → �±

i
�∓
i
χ0

1 , χ0
2 → νν̄χ0

1 , χ± → �±νχ0
1 . (7.5)

6k = 1 will be assumed in the following.
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Altogether the resulting lepton-rich final states are:

pp or pp̄ → �̃±ν̃ → 3� 2χ0
1 ν or 2ν , 5� 2χ0

1ν , (7.6)

pp or pp̄ → �̃±�̃∓ → 6� 2χ0
1 , 4� 2χ0

1 2ν , (7.7)

pp or pp̄ → ν̃ν̃ → 4� 2χ0
1 2ν , (7.8)

pp or pp̄ → χ±χ0
2 → 3� 2χ0

1 ν , (7.9)

pp or pp̄ → χ±χ∓ → 2� 2χ0
1 2ν , (7.10)

pp or pp̄ → χ0
2χ

0
1 → 2� 2χ0

1 . (7.11)

We neglected the χ0
2χ

0
2 channel which has a negligible production cross section for a

higgsino-like χ0
2. Focusing on events with at least three leptons, at the LHC7 we ex-

pect at most O(10 fb) of cross section, for sleptons and higgsino masses not excluded by
LEP. Therefore the observability of such signals seems challenging in the 2011–2012 run of
the LHC.

The decay products of χ0
2 can be used to determine the higgsino-like nature of both

χ0
2 and χ0

1, as the invariant mass distribution of the di-lepton system from the decay of
the χ0

2 is sensitive to the composition of the two neutralinos. This is due to CP invariance
which requires different intrinsic parities for the χ0

2χ
0
1 pair in case they are higgsino-like or

gaugino-like [39–43]. This allows, in principle, for testing the prediction of lopsided gauge
mediation of a light higgsino-like neutralino. However, we have to remark that, differently
from the case studied in refs. [39–43], lopsided gauge mediation does not benefit from a
copious source of moderately boosted χ0

2 from the decay chains of the colored sparticles,
and therefore the leptons relevant for this analysis have pT ∼ m

χ
0
2
−m

χ
0
1
∼ 10 GeV which

makes them detectable but rather soft. A quantitative assessment of the potential of the
LHC to measure the details of the invariant mass distribution of such soft leptons would
be needed before concluding that the higgsino nature of the light neutralinos of lopsided
gauge mediation can be tested at the LHC.

A marked difference between lopsided gauge mediation and ordinary gauge mediation is
the presence of doublet sleptons which are lighter than the singlet ones. The light sneutrino
can in principle be discovered through the processes in eqs. (7.6) or (7.8). Moreover, a
crucial feature for distinguishing the left-handed sleptons from the right-handed ones, is
the relevance of charged currents in the interactions. These leads to off-shell W s as in the
following processes:

χ0
3,4 → �∓

i
�̃±
i
→ �∓

i
χ±νl → �∓

i
W±∗χ0

1ν� , (7.12)

ν̃ → �±χ∓1 → �±χ0
1W

∓∗, (7.13)

which are flavor universal sources of charged leptons. The processes eq. (7.12) and (7.13)
lead to both opposite-sign same-flavour (OSSF) and opposite-sign opposite-flavor (OSOF)
final states. The invariant mass distribution of these OS di-leptons displays features which
are characteristic of their production process. Backgrounds are expected not only from
SM processes but also from other supersymmetric production mechanisms, which yield
featureless OS and SS di-lepton invariant mass distribution with similar shapes. Therefore,
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to isolate eq. (7.12) and (7.13) one can subtract the OSSF and SSSF di-lepton invariant
mass distribution (or equivalently the OSOF and SSOF), so that the contribution of the
backgrounds is expected to cancel. This leaves a distribution whose features, e.g. end-
points, are connected to the mass differences in the chain. Similar reasoning can be applied
to discover a sneutrino NLSP, as discussed in the following section.

All signatures discussed so far do not rely on the fate of χ0
1, the NLSP. In the following

we shall examine the three different cases of a collider-stable NLSP, a meta-stable NLSP,
and a promptly decaying NLSP. Along with the discussion of the signatures we shall present
the current limits from searches at the TeVatron.

In the first case, typical of high-scale models of supersymmetry breaking, the χ0
1 is

a massive invisible particle. The signals in eqs. (7.6)–(7.11) result in this case in multi-
leptons and missing transverse energy. The TeVatron experiments D0 [49] and CDF [50, 51]
searched for new physics in the tri-lepton channel from the process in eq. (7.9). The searches
optimize the cuts for a typical mSUGRA spectrum and put a bound at around 100 fb for
the source of tri-lepton events. This bound is comparable with the cross-section of the
process eq. (7.9) in lopsided gauge mediation for µ � 100 GeV. We believe, however, that
this kind of search is not effective in our case because the events selected in these analyses
must have at least one lepton with pT � 15 GeV. While this requirement is typically
fulfilled by the mSUGRA signal, this is not the case for lopsided gauge mediation as the
degeneracy of χ0

2, χ
0
1, χ

± limits the hardness of the leptons from the process in eq. (7.9).7

The process in eq. (7.6) is in principle a source of tri-lepton events likely to pass the
selection cuts employed in the searches at D0 [49] and CDF [50, 51]. The production cross-
section for such process is however significantly lower than the bound attainable even with
the final TeVatron’s integrated luminosity, around 10 fb−1.

A meta-stable neutralino can leave displaced vertex signatures, leading to striking
signals of low-scale supersymmetry breaking. While the leptonic signals described above
are still usable, the displaced vertex signature is an additional characteristic signal. In the
case of a higgsino NLSP, the relevant decay widths are

Γ(χ → γ �G) =
1
2
(sinβ + � cos β)2 cos2 θW sin2 θW

�
mZ

M1

�2� m5
χ

16πF 2

�
, (7.14)

Γ(χ → Z �G) =
1
4
(sinβ + � cos β)2

�
1−

m2
Z

m2
χ

�4� m5
χ

16πF 2

�
, (7.15)

Γ(χ → h �G) =
1
4
(sinβ − � cos β)2

�
1−

m2
h

m2
χ

�4� m5
χ

16πF 2

�
, (7.16)

where the � parameter is the sign of the rephasing invariant combination µM
λ̃
B∗

µ.
The minimal gauge mediation scenario motivated a lot of effort on the signal γγ + /ET ,

which is the dominant channel for a bino-like NLSP, i.e. for M1 � µ. In our case we expect
7The search [52] performed a similar analysis on the final states µ+µ−µ−, e+µ−µ− and µ+µ−e− using a

thresholds for pT as low as 5GeV and observed 1 event in 0.96 fb−1 of data with 0.4 expected. Also in this

case the limits are given only for a spectrum that comes from the mSUGRA model in which χ0
1 is several

tens of GeV lighter than the χ0
2 and the χ±1 . As such their results cannot be translated into a limit for

our case.
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the decays into Z and Higgs bosons to dominate over the photon channel. Displaced
vertices from the decay Z → e−e+ have been searched at the D0 experiment [47]. The
bounds strongly depend on the lifetime of the NLSP and the tightest bound from D0 is
around 1 pb for cτ � 0.2 m.8 In lopsided gauge mediation only electroweak particles are
accessible at the TeVatron, yielding a total cross-section for χ0

1 production at most of about
1 pb for µ � 100 GeV. Therefore only a very limited portion of the parameter space close
to the LEP experimental bounds on µ and cτ ∼ 0.2 m is excluded by this search.

Reference [36] considers the displaced decay of a neutralino taking place inside the
ATLAS detector. The studied signatures are χ0

1 → Z �G → (e+e−)(µ+µ−)(jj) + /ET . Neu-
tralino decays to final states containing a Higgs boson can be assimilated to those with
a hadronic Z decay. For LHC7, considering the electroweak production of a meta-stable
higgsino-like NLSP of mass 250 GeV, ref. [36] claims that for decay lengths going from
roughly 10−1 to 105 mm (corresponding to a range in

√
F from a few hundreds to a few

thousands TeV) at least a few signal events should be observable with 1 fb−1 of integrated
luminosity. Thus, in the most natural portion of the parameter space of lopsided gauge
mediation with 100 TeV �

√
F � 1000 TeV, we expect that a few signal events will be

produced in the 2011–2012 run of the LHC.
In the case of a promptly decaying χ0

1 there are further final state tracks originating
from the primary vertex. The interesting channels for lopsided gauge mediation are the
prompt decays χ0

1 → Z/H + G̃, where the gravitino escapes the detector. Ref. [35] used
the results of non-dedicated searches from TeVatron and estimated the limits on a pure
higgsino NLSP. The photonic decay χ0

1 → γ + G̃ does not put in our case any significant
bound. On the contrary ref. [35] finds that the CDF search [53] for a high-pT Z boson plus
missing transverse energy can exclude µ < 150 GeV for M1,2 � µ using the full integrated
luminosity of TeVatron data. If this result is confirmed by the experimental collaborations
a significant portion of the most natural part of the parameter space of lopsided gauge
mediation with

√
F � 100 TeV would be excluded.

7.2 Sneutrino NLSP spectrum

For particular choices of the parameters of lopsided gauge mediation the sneutrino can
be lighter than the higgsino, resulting in a sneutrino NLSP spectrum. In these cases
the spectrum will be very similar to the one in eq. (7.2) but with the inversion of the
higgsino and the sneutrino at the bottom. Although the sneutrino is typically heavier than
the higgsino at a generic point of the parameter space of lopsided gauge mediation, the
sneutrino NLSP spectrum deserves special study due to its distinctive features.

All supersymmetric particle production will eventually contribute to a pair of sneutri-
nos in the final state. These will decay, either promptly or not, in neutrinos and gravitinos,
acting always as sources of missing transverse energy. Once produced, the higgsino states

8D0 searched, in addition, for displaced production of resonant bb̄ pairs. Unfortunately the search [48]

considered only the displaced production of bb̄ pairs with invariant mass of a few tens of GeV originating

from the chain decay of a heavier resonance, e.g. s→ ηη → bb̄bb̄ . Their result is not applicable to our case

as the bb̄ invariant mass of interest for the lopsided gauge mediation case is around mZ or mh.
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decay dominantly to sleptons via two-body decays

χ0
1,2 → �∓�̃± , νν̃ , χ±1 → �±ν̃ , ν�̃± , (7.17)

and sub-dominantly via three-body decays

χ2 → χ0
1Z

∗ , χ±W∓,∗ , χ± → χ0
1W

±,∗ . (7.18)

The charged sleptons, produced either directly or from the decay of a higgsino, decay into
an off-shell W and a sneutrino

�̃ → ν̃W ∗. (7.19)

Altogether the production and decay of higgsinos and sleptons lead to multi-leptons sig-
nal as:

pp or pp̄ → χ0
2χ

0
1 → 4� + /ET (7.20)

pp or pp̄ → χ0
1,2χ

±
1 → 3� + /ET , (7.21)

pp or pp̄ → χ+
1 χ−1 → �−�+ + /ET , (7.22)

pp or pp̄ → �̃+�̃− → �−�+ + /ET . (7.23)

Comparing with the higgsino NLSP case we notice that these processes typically yield
signals with fewer charged leptons with respect to those in eqs. (7.6)–(7.11). Another
difference is the possibility to pair produce the NLSPs with a non-vanishing cross sectio
through the reaction

pp → ν̃ν̃ . (7.24)

This results in an invisible final state which can in principle be observed thanks to the
emission of QCD initial state radiation. The resulting cross section (few fb) certainly
requires large luminosity for an observation.9

The TeVatron searches [49–51] are sensitive to the signal in eq. (7.21). Differently from
the case of higgsino NLSP spectrum, the hardness of the leptons is controlled by the mass
difference between the higgsino and the sleptons which, being in principle a free parameter,
can be sufficiently large to yield hard leptons that pass the selection. Therefore we have
a bound of about 100 fb for the production cross-section of χ0

1,2χ
±
1 . This cross-section

corresponds however to a higgsino whose mass lies very close to the experimental limit
on the sleptons. This leads to soft leptons and thus invalidates the potential limit from
refs. [49–51].

The presence of a sneutrino NLSP leads to peculiar flavor and charge correlations in
the multi-lepton final states. These originates from the SU(2) charge of the NLSP and have
been studied in detail in refs. [44, 45]. The interesting phenomenon resides in the decay
chain

χ0
1,2 → �±�̃∓ → �±W∓∗ν̃ . (7.25)

9The production of sneutrino at TeVatron is less than O(20) fb, which is significantly less than the

sensitivity attainable with the search [54] using the final luminosity of about 10 fb−1.

– 21 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
2

When the the virtual W boson decays leptonically (7.25) results in a final state with (at
least) two leptons of opposite sign whose flavor is uncorrelated. This is in sharp contrast
with the ordinary situation where the lightest slepton is an SU(2) singlet and the chains of
eq. (7.25) are absent. In that case opposite sign lepton pairs are always of the same flavor,
as they arise from the decay of a heavier neutralino into the NLSP through an intermediate
slepton. For a sneutrino NLSP spectrum with colored particles at the TeV, the authors
of ref. [44, 45] consider the relevant backgrounds to multi-lepton events and show how it
is possible to reveal the presence of the process in eq. (7.25) looking at the differences
between the same-sign and the opposite-sign di-lepton invariant mass distributions. Their
subtraction reveal edges which are characteristic of the chain eq. (7.25). Unfortunately
the studies of ref. [44, 45] are not immediately applicable to our spectrum, as the colored
particles in our setup are well above the TeV. A dedicated study would thus be needed
to conclude that the discovery of the flavor and charge correlations typical of a sneutrino
NLSP are within the reach of the LHC.

8 Conclusions

In this paper we have expanded on the mechanism first proposed in ref. [17] and consid-
ered a new class of models of gauge-mediated supersymmetry breaking (dubbed lopsided
gauge mediation), where a single fine-tuning is sufficient both for evading the Higgs mass
experimental limit and for accomodating the large Bµ found in models where µ and Bµ

originate at the same loop order.
We used an explicit model to analyze the distinctive features of our generic setup:

small µ, large mHd
, light left-handed sleptons, and moderate to large tan β. We find, in

particular, that the perturbativity constraint on the higgs-messenger couplings puts rather
stringent upper bounds on the ratio µ/M1. Depending on the value of tan β, this may or
may not require an increase of the fine-tuning with respect to ordinary gauge mediation,
where the value of µ is automatically large compared to the experimental limit, being fixed
by eq. (2.4).

Although we have restricted ourselves to gauge-mediated supersymmetry breaking, the
same mechanism can be implemented in the case where the anomaly-mediated contribution
to the soft masses is dominant. In particular, one possibility is to extend the realization of
ref. [46] with the addition of two chiral singlets S, S̄. The superpotential couplings of the
higgses to the messengers can be chosen as in eq. (3.15), while the supersymmetry-breaking
mass terms for the singlets get generated by Kähler potential couplings to the conformal
compensator ϕ of the kind (ϕ†/ϕ)(cSS2 + c

S̄
S̄2 + 2c

SS̄
SS̄). In this way, a viable Higgs

sector with a large Hd soft mass can be achieved.
The phenomenology of lopsided gauge mediation presents crucial differences with re-

spect to ordinary gauge mediation. It is characterized by light higgsinos (close to their
experimental bounds), large pseudo-scalar Higgs mass (in the several TeV range) and light
left-handed sleptons. We have briefly discussed some possible signatures of this new class
of models deserving experimental search.
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A Effective Kähler

In this appendix we provide some details of the calculation of the parameters of the Higgs
sector in eqs. (3.6)–(3.9). The superpotential is described by eqs. (3.4)–(3.5). The mes-
sengers fields D, D̄, S, S̄ are integrated out at one loop giving rise to the effective Kähler
potential [30]

Keff = −
1

32π2
Tr

�
M

†
M log

M†M

Λ2

�
, (A.1)

where M is the field-dependent messenger mass matrix and Λ is some UV cutoff scale. We
then compute the eigenvalues of M†M and after some manipulations we arrive at

Keff = ZuH†
uHu + ZdH

†
d
Hd + (ZudHuHd + h.c.) , (A.2)

where we kept only the quadratic terms in the propagating fields and we have defined

Zu,d = −
|λu,d|

2

16π2

�
|XS |

2

|XS |
2 − |XD|

2
log

|XS |
2

Λ2
−

|XD|
2

|XS |
2 − |XD|

2
log

|XD|
2

Λ2

�
(A.3)

Zud = −
λuλd

16π2

X†
S
X†

D

|XS |
2 − |XD|

2
log

����
XS

XD

����
2

. (A.4)

To fix the sign conventions we will use the lagrangian

L = −m2
Hu
|Hu|

2
−m2

Hd
|Hd|

2
−

�

i

AiHi∂Hi
W −BµHuHd +

�
dθ2 µHuHd . (A.5)

The terms proportional to |Hu,d|
2 in the Kähler potential generate contributions to the

Higgs masses and the A-terms

m2
Hu,d

= −
∂

∂θ2

∂

∂θ̄2
logZu,d

����
θ2=θ̄2=0

(A.6)

Au,d =
∂

∂θ2
logZu,d

����
θ2=θ̄2=0

, (A.7)

while the mixed term HuHd generates µ and Bµ

µ =
∂

∂θ̄2
Zud

����
θ2=θ̄2=0

(A.8)

Bµ = −
∂

∂θ2

∂

∂θ̄2
Zud

����
θ2=θ̄2=0

. (A.9)

These expressions are easily evaluated and lead to the results given in the text in eqs. (3.6)–
(3.13).
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With the previous technique it is also straightforward to derive the effective Kähler
potential in the model with vanishing Bµ. With the same notation we used above

Zu,d = −
|λu,d|

2

16π2
|X|2

�
2M4

D
− 3M2

D
M2

S
+ M4

S
−M2

D
M2

S
log M2

D
/M2

S

2M2
D

(M2
D
−M2

S
)2

�
, (A.10)

Zud = −
λuλd

16π2
X†

�
MS(M2

S
−M2

D
+ M2

S
log M2

D
/M2

S
)

(M2
D
−M2

S
)2

�
. (A.11)

The structure of the potential imply the vanishing of both Bµ and the A-terms at one-loop.
The fact that m2

Hu
and m2

Hd
are generically non zero in a model where Bµ vanishes

due to an R-symmetry can be simply understood. In order for the R-symmetry to be exact
the charge of X has to be fixed to 2. This means that the Kähler potential can only be
a function of the invariant combination XX†. Furthermore since X has no scalar VEV,
no mass can vanish in the limit X → 0 and the Kähler potential is an analytic function
around that point. The most general form of Zu,d is thus

Zu,d = f(M,M †) + g(M, M †)XX†, (A.12)

and, unless g vanishes accidentaly, the soft masses are generated.

B Tree-level threshold corrections to unification

We supply here the necessary formulas to calculate the corrections to the low energy value
of the strong coupling constant due to tree-level thresholds.

The running gauge couplings at low scale can be written in terms of the unified coupling
αG, the grand scale MGUT and all the various thresholds

1
αi

=
1

αG

+
n−1�

i=1

b(i)

4π
log

M2
i

M2
i+1

(B.1)

where M1 = MGUT and Mn = MZ . The formula can be written as

1
αi

=
1

α�
G

+
b(i)
MSSM

4π
log

MGUT

µ2
+ Xi(µ) (B.2)

µ is an arbitrary scale and the Xi contains all thresholds that do not depend on MGUT.
Finally we absorbed in α�

G
a possible unified contribution to the running, for instance

coming from the presence, at some scale M , of messenger fields in a unified representation
of the gauge group. If this is the case the relation between αG and α�

G
is

1
α�

G

=
1

αG

+
nG

4π
log

M2
GUT

M2
; (B.3)

where nG is the Dynkin index of the representation of the messengers.
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With these definitions one obtains a prediction for α3 as a function of α1 and α2 at
low energy

log
M2

GUT

µ2
=

4π

b12

�
1

α1(MZ)
−

1
α2(MZ)

− [X1(µ)−X2(µ)]
�

(B.4)

1
α3(MZ)

−
1

α(0)
3 (MZ)

= −X1(µ)
b23

b21
−X2(µ)

b13

b12
+ X3(µ) (B.5)

where

bij = b(i)
MSSM − b(j)

MSSM (B.6)
1

α(0)
3

=
1

α1(MZ)
b23

b21
+

1
α2(MZ)

b13

b12
. (B.7)

For the specific setup described in the text we give the b functions in the three relevant
regions: µ > mA (region I) where the whole MSSM spectrum is propagating, mA > µ >

mSUSY (region II) where a combination of the two Higgs doublets has been integrated
out, mSUSY > µ > mZ (region III) where only the SM states together with higgsinos and
left-handed sleptons are left in the spectrum,

bI = (33/5, 1,−3) (B.8)

bII = (13/2, 5/6,−3) (B.9)

bIII = (24/5,−2,−7) . (B.10)
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