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Understanding the pathophysiological changes triggered by an acute spinal cord injury is
a primary goal to prevent and treat chronic disability with a mechanism-based approach.
After the primary phase of rapid cell death at the injury site, secondary damage occurs
via autodestruction of unscathed tissue through complex cell-death mechanisms that
comprise caspase-dependent and caspase-independent pathways. To devise novel neu-
roprotective strategies to restore locomotion, it is, therefore, necessary to focus on the
death mechanisms of neurons and glia within spinal locomotor networks. To this end, the
availability of in vitro preparations of the rodent spinal cord capable of expressing locomotor-
like oscillatory patterns recorded electrophysiologically from motoneuron pools offers the
novel opportunity to correlate locomotor network function with molecular and histological
changes long after an acute experimental lesion. Distinct forms of damage to the in vitro
spinal cord, namely excitotoxic stimulation or severe metabolic perturbation (with oxidative
stress, hypoxia/aglycemia), can be applied with differential outcome in terms of cell types
and functional loss. In either case, cell death is a delayed phenomenon developing over
several hours. Neurons are more vulnerable to excitotoxicity and more resistant to meta-
bolic perturbation, while the opposite holds true for glia. Neurons mainly die because of
hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) with subsequent DNA damage
and mitochondrial energy collapse. Conversely, glial cells die predominantly by apoptosis.
It is likely that early neuroprotection against acute spinal injury may require tailor-made
drugs targeted to specific cell-death processes of certain cell types within the locomotor
circuitry. Furthermore, comparison of network size and function before and after graded
injury provides an estimate of the minimal network membership to express the locomotor
program.

Keywords: motoneuron, isolated spinal cord, fictive locomotion, synaptic transmission, spinal cord injury,

organotypic cultures, apoptosis, parthanatos

INTRODUCTION
THE SCALE OF THE PROBLEM AND DAMAGE QUANTIFICATION
Spinal cord injury (SCI) usually produces lifelong, devastating
consequences and represents one of the most significant cause of
mortality and disability worldwide (Rossignol et al., 2007; van den
Berg et al., 2010). The mortality from acute SCI is between 48 and
79%, either at the time of the accident or on arrival at the hospital
(Sekhon and Fehlings, 2001). The annual incidence of the sur-
vivors after traumatic SCI is of 15–40 cases per million population
throughout the world, with an even higher incidence in devel-
oped countries (up to 53,4 per million; Sekhon and Fehlings, 2001;
Rowland et al., 2008). Recent clinical data indicate that, in addi-
tion to typical traumatic causes of SCI (motor vehicle accidents,
work accidents, community violence, recreational activities, war),
there is growing etiopathogenetic importance for non-traumatic
injuries (McKinley et al., 1999; van den Berg et al., 2010). The
exact number of the non-traumatic SCI is difficult to determine

because of their highly varied etiology, that implies different clini-
cal settings for treatment. Non-traumatic lesions account for about
30–50% of spinal cord disorders and constitute a major risk fac-
tor for medical complications during rehabilitation (Nair et al.,
2005). The most frequent causes of non-traumatic SCI are verte-
bral stenosis (54%; McKinley et al., 1999) and spine tumors (26%;
Nair et al., 2005), while other causes are vascular, inflammatory,
infective, degenerative, genetic, and metabolic diseases. Incidence
and demographics of traumatic and non-traumatic SCI are very
different: while traumatic SCI mostly occurs in young males (trau-
matic SCI is four times more common in men than in women),
gender distribution is more equal in non-traumatic SCIs that are
more often observed in the elderly (Sekhon and Fehlings, 2001). It
is noteworthy that most animal models for experimental SCI are
oriented to study SCI of traumatic origin.

No matter of its origin, the SCI can be complete, or more often
incomplete when a degree of sensory–motor function below the
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level of spinal cord trauma remains (Dzidic and Moslavac, 1997).
Non-traumatic SCIs are usually incomplete (McKinley et al., 1999;
van den Berg et al., 2010). Understanding the pathological evolu-
tion and the potential recovery is complicated by the frequent
assignment of patients with complete or incomplete deficits to
the same treatment group, and that few animal studies examined
the same pattern of injury encountered in man (Amar, 2007).
The complex mechanisms regarding the pathology of incomplete
lesions remain poorly understood because local ischemia with
associated metabolic dysfunction is technically difficult to repro-
duce in animal models without compromising other tissues and
organs and with the confounding influence of general anesthetics.

LESION AMPLIFICATION THROUGH SECONDARY DAMAGE: AN
AVALANCHE EFFECT
If the mantra for stroke treatment is “time is brain” (Hill and
Hachinski, 1998), it is most likely that “time is spinal cord” for
acute SCI as well. Thus, great effort has been made to under-
stand the pathophysiological changes underlying SCI in the hope
of developing neuroprotective strategies and preventing disabil-
ity. Despite its heterogeneous causes, SCI evolves into secondary
damage affecting apparently spared areas, magnifying the disabil-
ity and amplifying neurodegeneration (Rossignol et al., 2007). The
challenge is to clarify why and when such a damage occurs.

The early stage of secondary injury is thought to start with exci-
totoxic damage due to massive release of glutamate together with
a pathological cascade comprising nitric oxide, free oxygen radi-
cals, and metabolic dysfunction due to ischemia/hypoxia, energy
store collapse, acidosis, and edema triggered by loss of vascular
tone autoregulation (Dumont et al., 2001; Norenberg et al., 2004;
Amar, 2007). The secondary injury starts minutes after primary
insult and can lasts up to weeks after injury. Extracellular gluta-
mate levels are known to increase transiently within the first 3 h
after SCI, with a likely second wave of glutamate release 2–3 days
after injury (Park et al., 2004), probably due to delayed myelin
destruction that compromises nearby axon integrity.

The events of the secondary injury phase can be divided into
early and delayed stages (Rowland et al., 2008). The early phase
comprises vasogenic and cytotoxic edema, necrosis, excitotoxi-
city, early demyelination, and systemic events like hypotension
(2–48 h). Later, macrophage infiltration and initiation of glial scar
occur. Within 2 weeks/6 months, glial scarring continues together
with intraspinal cyst formation. Even later, profound pathological
changes affect spinal networks through Wallerian degeneration,
demyelination, aberrant plasticity with circuit rewiring leading to
dysfunction like chronic pain and spasticity (Rowland et al., 2008).

The molecular cell-death pathways of SCI (and their effectors)
remain largely elusive (Park et al., 2004). This condition makes
it difficult to identify the best time window for satisfactory treat-
ment of acute SCI with the aim of limiting (or even preventing)
secondary damage. Nonetheless, the consensus is that the time to
introduce effective neuroprotective strategies after SCI is short,
probably restricted to the first hours after injury (Fehlings et al.,
2001), in analogy with a similar situation for the brain (Hill and
Hachinski, 1998). Studies of brain and spinal injuries support the
theory that the central nervous system (CNS) responds to lesion
in an archetypal fashion, regardless of the insult, and that similar

pathological pathways and cell-death mechanisms may operate in
the brain and spinal cord (Amar, 2007).

PROTECTION OF LOCOMOTOR NETWORKS NEEDS UNDERSTANDING
NETWORK TOPOGRAPHY
Since paralysis (or paresis) is a hallmark of SCI, it is of particular
interest to direct neuroprotective strategies to the circuits respon-
sible for locomotion which is driven by intrinsic spinal networks,
collectively called central pattern generator (CPG; Grillner et al.,
1998; Heckmann et al., 2005; Kiehn, 2006; Boulenguez and Vinay,
2009). In vitro preparations of the spinal cord readily generate
electrically oscillatory cycles (recorded from ventral roots) which
possess all the hallmarks of locomotor patterns. Nonetheless, the
absence of limbs makes necessary to refer to this pattern as fic-
tive locomotion. Although the full membership of the locomotor
CPG remains unclear, mouse genetics have provided substantial
advances in the classification of propriospinal neurons involved in
locomotion (Kiehn, 2006; Brownstone and Wilson, 2008; Grillner
and Jessell, 2009; Ziskind-Conhaim et al., 2010).

Targeted neuroprotection might produce successful functional
outcome as long as the minimal number of neurons (or other
cells) essential for locomotor patterns would survive. In addition,
any investigation to repair or rebuild locomotor networks needs
reliable estimates of the minimal cell membership capable of pro-
ducing the locomotor pattern. Otherwise, it would be like trying to
rebuild a house damaged by a natural disaster without first calcu-
lating how many bricks and how much mortar should be ordered
and how much of these materials must be actually employed to
support the structure. It is essential to do a “quantitative survey”
of undamaged and damaged spinal locomotor networks to supply
precise information about the cells to which any neuroprotective
strategy should be aimed.

The present review will focus on the molecular mechanisms
involved in the death of cells comprising and controlling spinal
locomotor networks after acute experimental injury. To this end,
two in vitro animal SCI models have been used, namely the neona-
tal rat spinal cord preparation and rat organotypic slices (Taccola
et al., 2008, 2010; Mazzone et al., 2010). These models allow test-
ing novel experimental paradigms to mimic the consequences of
strong or weak lesions (including those of non-traumatic origin
or non-complete) taking as end point the functional activity of
locomotor networks in relation to surviving cells, and investigat-
ing the processes that led to cell loss. By combining new data
about cell-death mechanisms and neuronal networks involved in
the control of locomotion during or shortly after acute SCI, it
might be possible to provide proof-of-principle that neuroprotec-
tion is feasible and to design new therapeutic strategies to be tested
on animal models in vivo with the ultimate goal to combat the
consequences of SCI at the earliest possible stage. Furthermore,
detailed analysis of surviving cells might help to delineate the
minimal requirements (“network membership”) essential for the
locomotor program. This information might be useful in future if a
decision between rebuilding and replacing should ever be taken. Of
course, the long-term functional outcome after SCI depends not
only on the secondary lesion extent, but also on altered neuronal
excitability due to upregulation of the persistent sodium current
(Li and Bennett, 2003;ElBasiouny et al., 2010) that is important
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to control locomotor patterns (Tazerart et al., 2007; Zhong et al.,
2007; Ziskind-Conhaim et al., 2008), and to the changes in synap-
tic inhibition caused by derailed chloride transport (Boulenguez
et al., 2010). Both phenomena may contribute to the onset of spas-
ticity. Furthermore, changes in extracellular Mg2+ are important
to determine the functional outcome of the locomotor network
(Margaryan et al., 2009), a subject often neglected by previous
studies.

IN VITRO SPINAL CORD MODELS TO STUDY CELL-DEATH
MECHANISMS AFTER SCI
In addition to in vivo animal models of SCI (Onifer et al., 2007),
in vitro models (cell cultures, organotypic cultures, and isolated
spinal cord preparations) can supply useful data because they
simplify the complexity of in vivo SCI pathophysiology, and can
point to the identification of specific injury processes without
interference by general anesthesia or blood pressure changes.

Primary cultures from spinal cord tissue (Seybold and Abra-
hams, 2004; Taylor et al., 2007) have been used in a wide range of
experimental conditions, especially to reproduce in vitro excitotox-
icity (Vandenberghe et al., 1998; Van Den et al., 2000) and ischemia
(Kaushal and Schlichter, 2008). Nonetheless, these models suffer
from the intrinsic disadvantage of unknown influences caused by
the complex culturing media (Silani et al., 2000). Moreover, it is
also difficult to precisely control the cell microenvironment, espe-
cially important for axon growth and regeneration (Abu-Rub et al.,
2010). Likewise, acute slices of the spinal cord can be used for func-
tional studies even though they have limited viability in vitro, and
may pose barriers to drug diffusion (Lossi et al., 2009). In all these
cases it is impossible to ascertain if there had been any specific
damage to locomotor networks.

NEONATAL RAT SPINAL CORD PREPARATION
A novel model of in vitro SCI to investigate the rapid evolution
of early secondary damage takes, as outcome, the operation of
locomotor networks in relation to cell survival in the isolated
spinal cord of the neonatal rat (Taccola et al., 2008). Despite the
intrinsic limitation of this preparation (absence of immune sys-
tem responses, lack of vascular supply, neonatal age), this model
has the advantage of correlating the functional outcome of injury
(with >24 h monitoring of locomotor-like activity, termed fictive
locomotion) to the number, type, and topography of damaged or
dead cells. Thus, it becomes feasible to unveil damage mechanisms
because it does not introduce an “artificial neuroprotection” by
general anesthesia at the time of injury, yet it retains cellular con-
nections, networks, and activities, including fictive locomotion.
The use of a neonatal preparation can also shed light on the issue
of child spinal injury (Vitale et al., 2006;Achildi et al., 2007) charac-
terized by high mortality and prevalence of cervical location (Cirak
et al., 2004). The in vitro spinal cord model can be employed to
produce (and compare) distinct forms of pharmacological spinal
damage, namely strong excitotoxic stimulation presumed to arise
from a trauma-like condition, or severe metabolic perturbation.
These pathological events are believed to occur during the sec-
ondary phase of SCI (Park et al., 2004). Furthermore, the model
can be applied to flexible protocols that comprise non-traumatic
SCI, or incomplete SCI (Taccola et al., 2008, 2010; Kuzhandaivel

et al., 2010a,b). One important conclusion arising from these stud-
ies is the diversity of cell-death pathways involved in neuronal
and glial damage after SCI, as discussed in Sections “Apoptosis is
Responsible for Glial Cell Death after Hypoxic/Ischemic Pertur-
bation” and “Neuronal Cell Death after Excitotoxic Insult is Due
to Parthanatos.”

ORGANOTYPIC CELL CULTURE AS RELIABLE IN VITRO MODEL TO
STUDY CELL DEATH
Organotypic cultures are an important tool to study developmen-
tal as well as chronic changes in network structure and function.
This technique originally established by Gahwiler (1981) for brain
culture slices, currently utilizes different tissue sources (embry-
onic, juvenile, or adult) (Spenger et al., 1991; Stoppini et al., 1991;
Streit et al., 1991; Noraberg, 2004; Livera et al., 2006; Lossi et al.,
2009). These studies have shown a clear correlation between in vivo
and in vitro development (Livera et al., 2006). The common char-
acteristic and the main advantage of the organotypic system is
the maintenance of the basic cytoarchitecture of the in vivo tissue,
retaining, for example, synaptic connectivity while supplying ready
experimental access to structure and function. Spinal cord organ-
otypic cultures are a good example of this approach (Spenger et al.,
1991; Streit et al., 1991) as they maintain the dorsal–ventral orien-
tation of spinal segments and fundamental properties of network
dynamics related to distinct spinal regions in a bidemensional
plane (see Figure 1A). Furthermore, they allow long-term studies
in which plastic changes in network properties can be explored in
relation to changes in the local environment (Sibilla and Ballerini,
2009), far in excess of the standard survival time of the rodent iso-
lated spinal cord. Thus, organotypic cultures of the spinal cord are
useful to investigate experimental neuronal lesions (Krassioukov
et al., 2002; Guzman-Lenis et al., 2009; Mazzone et al., 2010), even
though these cultures cannot generate locomotor-like patterns,
and cannot readily relate molecular changes to complex network
function.

EXCITOTOXICITY AND METABOLIC PERTURBATION DAMAGE
SPINAL LOCOMOTOR NETWORKS THROUGH DIFFERENT
CELL-DEATH PATHWAYS
DISTINCT CELL-DEATH PATHWAYS EMERGE AFTER EXPERIMENTAL SCI
Understanding the complexity of cell-death mechanisms after SCI
and their correct classification may be extremely important for
therapeutic implications (Galluzzi et al., 2007). Cell death repre-
sents a highly heterogeneous process that can follow the activa-
tion of diverse, sometimes overlapping, and not fully understood
biochemical cascades, manifesting with different morphological
features (Kroemer et al., 2009). The traditional classification of
cell death in apoptosis (programmed cell death dependent on cas-
pase activation) and necrosis (non-programmed cell death) is now
obsolete because necrosis can actually be programmed, apopto-
sis can occur even without caspase activation, and new types of
cell-death processes have been reported (Galluzzi et al., 2007). In
this review, the term apoptosis refers to a process with specific
cell morphology characterized by round shape, cytoplasmic and
nuclear condensation (pyknosis), DNA fragmentation, with mini-
mal modifications of organelles, and preservation of plasma mem-
brane until the final stage of destruction by phagocytes (Kerr et al.,
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FIGURE 1 | Neuronal damage induced by kainate on spinal cord

organotypic cultures is a PARP-1 dependent process. (A) View of
representative organotypic slice in which ventral, central, and dorsal regions,
outlined with a dotted line, can be identified for cell counting. (B) Plots
showing the percent of cells with pyknosis (left; filled squares) or percent of
neurons (NeuN-positive cells; right; filled diamonds), in the central region of
the slice, after 1 h application of various kainate (KA) concentrations. Data
were collected after 24 h kainate washout from at least three different
experiments, n = 4–12; **P < 0.01, ***P < 0.001 vs control (0 mM KA).

(C) Plot of the number of cells, in the central region, showing pyknosis at
various times points after kainate washout (0 h) at the concentration of
0.1 mM (gray diamonds) or 1 mM (filled squares). Data points before 0 time
refer to pyknosis in control values (21 ± 23 cells). Note emergence of
pyknosis at 4 h which is significantly (P = 0.0005) larger after 1 mM kainate.
Average data are from three experiments, each one of them run in duplicate.
(D) Histograms showing fold increase (with respect to control) in the number
of PAR positive nuclei at various times after washing out kainate (0.1 mM).
The data are from three experiments (n = 6); *P < 0.05, **P < 0.01 vs control.

1972; Kroemer et al., 2009). Activation of caspase, Apoptotic pro-
tease activating factor 1 (APAF-1), and of mitochondrial proteins
termed the Bcl-2, are frequent, yet not essential markers for apop-
tosis (Yuan et al., 2003). For the purpose of this review, apoptosis
will be identified only when shown to be caspase-dependent.

Extensive generation of poly-ADP-ribose (PAR) by hyperac-
tivation of the PARP-1 enzyme has recently been proposed as
a novel programmed cell death, termed “parthanatos” (Andrabi
et al., 2006, 2008). It is thought that, in the attempt to repair
strong DNA damage, PARP-1 catalyzes conversion of NAD+ to
PAR polymers with loss of intracellular ATP and consequent
energy depletion (Berger, 1985; Zhang et al., 1995). This mech-
anism may overload the energy handling process of mitochondria
(Virag et al., 1998) and release the apoptosis inducing factor (AIF),
a protein which enters into the nucleus to initiate lethal nuclear
condensation (Yu et al., 2002). Additionally, PAR directly stimu-
lates mitochondrial release of AIF to enhance the whole destructive
process (Andrabi et al., 2006). It is noteworthy that the term AIF
was first used when the cell-death process in which it was dis-
covered was called caspase-independent apoptosis (Susin et al.,
1999; Joza et al., 2009). Only later, it became clear that AIF was
an intracellular effector of PARP-1 hyperactivity and a mediator
of parthanatos (Yu et al., 2002; Joza et al., 2009). The traditional
usage of the term AIF should not, therefore, imply that classical
apoptosis is produced by this factor.

Necrosis is a process of cell death lacking the features of
apoptosis or autophagy, the latter characterized by lack of

chromatin condensation and by massive vacuolization of the
cytoplasm. Characteristic morphological aspects of necrosis are
cytoplasmic swelling, rupture of plasma membrane, swelling
of cytoplasmic organelles, and moderate chromatin conden-
sation (Galluzzi et al., 2007). Necrosis has been traditionally
implicated as an early mechanism of cell death after injury
(Golstein and Kroemer, 2007).

In in vivo and in vitro models of SCI, heterogenous cell-
death mechanisms have been reported for the loss of spinal cells
(Table A1 in Appendix). Because of the problems related to the
exact terminology and classification of different cell-death path-
ways (Kroemer et al., 2009), it is difficult to compare results from
different SCI studies and draw general conclusions. For example,
not infrequently TUNEL staining (detecting DNA fragmentation)
is taken as synonymous of apoptosis, even though DNA fragmen-
tation can be a caspase-independent phenomenon (Belmokhtar
et al., 2001; Zhang and Bhavnani, 2006) or cells can undergo
apoptotic death without significant DNA degradation (Widlak
and Garrard, 2009). Thus, results from different studies listed in
Table A1 in Appendix, rely on the identification of the cell-death
mechanism provided by the authors, as well as the assay to detect it.

Perusal of the older literature indicates that, after SCI, early
cell death is predominantly by necrosis, followed by a continuum
of necrotic and apoptotic mechanisms (Liu et al., 1997; Baptiste
and Fehlings, 2006). Later, different cell-death pathways have been
proposed to mediate excitotoxicity, including caspase-dependent
(Beattie et al., 2000; Yu et al., 2009) and caspase-independent
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pathways (Mandir et al., 2000; Yuan et al., 2003; Cho and Toledo-
Pereyra, 2008), or sharing characteristics of both apoptosis and
necrosis (Tan et al., 1998).

Parthanatos has recently been considered important for spinal
cord neuronal cell-death in vitro (Scott et al., 2004) and in vivo
(Genovese and Cuzzocrea, 2008; Wu et al., 2009) conditions. Fur-
thermore, cell-death mechanisms involving calpain (Ray et al.,
2003) or autophagy (Kanno et al., 2009) have been proposed to
cause cell death after SCI (Table A1 in Appendix).

The time-scale through which cell death occurs is important.
Even though axons and neurofilaments degrade as early as 15 min
after experimental SCI (Park et al., 2004), axonal degeneration is
a delayed process as loss of residual axonal tracts can continue
for weeks (Wallerian degeneration), together with slow decline
in impulse propagation of such fibers (Arvanian et al., 2009).
Programmed cell death of white matter glial cells (observed with
TUNEL staining) occurs in periodic waves with maximal intensity
in the white matter tracts 1 week after injury (Shuman et al., 1997;
Springer et al., 1999; Park et al., 2004). In contrast to oligodendro-
cyte cell loss, astrocytes survive and even proliferate after SCI by a
process termed “reactive astrogliosis” (Park et al., 2004). In adult
rats after traumatic SCI (Liu et al., 1997), TUNEL-positive glial
cells appear between 4 h and 14 days after injury, with maximum
presence within the lesion area at 24 h. Neuronal degeneration
is faster as TUNEL-positive neurons are seen 4–24 h after injury,
with a peak at 8 h. Motoneurons are particularly vulnerable to
calcium-dependent glutamate excitotoxicity, because they lack cer-
tain calcium binding proteins, such as calbindinin-D(28k) and
parvalbumin (Dekkers et al., 2004), and remain unprotected from
the consequences of calcium overload. In the rabbit spinal cord
most motoneurons survive for 2 days after ischemia, and then dis-
appear via apoptosis (Hayashi et al., 1998) and autophagy (Baba
et al., 2009) as result of co-activation of cell survival and cell-death
pathways (Sakurai et al., 2003).

DIFFERENT EXPERIMENTAL PARADIGMS TO MIMIC EXCITOTOXICITY
AND METABOLIC PERTURBATION
To clarify if excitotoxicity per se is sufficient to damage spinal net-
works responsible for locomotion and what is the contribution
of metabolic perturbations to spinal cord damage, distinct proto-
cols (based on the transient application of toxic solutions) have
been developed. In fact, if one wishes to mimic clinical settings,
it is necessary to consider that, after acute SCI, prompt hospi-
tal admission/treatment in intensive care involves correction of
metabolic deficits, administration of neuroprotective agents, cir-
culation support, and relief of any compressive lesion. In the best
circumstances, this approach implies a delay of about 1 h after the
primary injury (Rowland et al., 2008). Hence, recent experimen-
tal protocols were based on 1 h administration of a toxic solution
with follow-up under optimal metabolic conditions in vitro for the
subsequent 24 h. In this way, morphological and biochemical data
can be correlated with the electrophysiological activity of spinal
locomotor networks.

The protocol for excitotoxicity relies on kainate (Taccola et al.,
2008), a potent glutamate receptor agonist which is not subjected
to metabolic tissue destruction, and is not a substrate for gluta-
mate transporters (Coyle, 1987). The cellular effects of kainate

are mediated by a complex family of receptors, of which at least
six forms are currently known to be expressed by the CNS at pre
and postsynaptic level (Traynelis et al., 2010). In view of its strong
depolarizing action on neurons, kainate produces excitotoxicity
in a large range of animal models (Ben-Ari and Cossart, 2000)
also indirectly since it releases glutamate (and other neurotrans-
mitters) in addition to its direct excitatory effect. Thus, kainate
strongly and persistently depolarizes rat spinal neurons in vitro
(Taccola et al., 2008), and elicits a robust release of endogenous
glutamate as measured with electrochemical detection (Mazzone
and Nistri, 2011a), making it a suitable tool for evoking a sustained
excitotoxic insult.

Another protocol is based on a type of dysmetabolic lesion
evoked by a toxic solution (termed pathological medium; PM)
that comprises many deleterious substances and conditions (NO,
H2O2, low Mg2+, acidosis, aglycemia, hypoxia, edema) resembling
the ones occurring shortly after acute SCI (Taccola et al., 2008).

By distinct or combined application of such protocols, different
patterns of cell death and different changes in locomotor net-
work activities emerge (Taccola et al., 2008, 2010; Kuzhandaivel
et al., 2010a,2010b). Interestingly, there is a very narrow range of
kainate concentrations (1–10 μM) through which locomotor net-
work activity is still possible (albeit slower). Kainate (50 μM) is
already sufficient to induce an irreversible loss of fictive locomo-
tion even if spinal reflexes persist (Mazzone et al., 2010). These
data confirm, with an in vitro model, that reflex amplitude is a
poor predictor of locomotor function in line with clinical experi-
ence (Dietz et al., 1997; Hubli et al., 2010). The extent of neuronal
damage by kainate is poorly related to this drug concentration
as indicated by the occurrence of pyknosis and neuronal loss
following a wide range (1–1000 μM) of kainate concentrations
(Figure 1B). In fact, the main difference produced by changing
doses is the speed of neuronal loss (Figure 1C; Mazzone et al.,
2010): this observation may be important because it suggests that
any attempt to arrest damage should start as early as possible and
has a better outcome if the damage is treated when it is still lim-
ited. This notion is further supported by the demonstration that
kainate toxicity does not imply nearly global neuronal loss since
the number of surviving neurons is usually larger that the number
of dead ones (Taccola et al., 2008; Mazzone et al., 2010). Fur-
thermore, 24 h after kainate application, surviving networks are
metabolically competent (Mazzone et al., 2010), and functionally
active as they generate disinhibited bursting (although no fictive
locomotion; Taccola et al., 2008).

APOPTOSIS IS RESPONSIBLE FOR GLIAL CELL DEATH AFTER
HYPOXIC/ISCHEMIC PERTURBATION
Apoptosis is a physiological process of cell elimination during nor-
mal development of the gray and white matter of the spinal cord
(De Louw et al., 2002). After SCI, early neuronal cell death by
apoptosis at the injury site is infrequent (Shuman et al., 1997;
Emery et al., 1998; Li et al., 1999; Springer et al., 1999), because
this process is mainly responsible for the delayed death of the
oligodendrocytes locally (Li et al., 1999) and remotely (Li et al.,
1999; Springer et al., 1999). It is interesting that also in other
models of neurodegeneration, like in Alzheimer’s disease, status
epilepticus, or brain ischemia, apoptotic neuronal death is rare, as
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apoptosis mainly involves glial cells (microglia, oligodendroglia,
and astrocytes; Jellinger and Stadelmann, 2000; Shibata et al., 2000;
Narkilahti et al., 2003).

In the neonatal rat spinal cord in vitro, pyknosis appears in
neurons and, especially, in glia during first 24 h after hypoxic-
dysmetabolic perturbation (Figure 2). This readily observable
change in nuclear morphology is the result of chromatin con-
densation and can be either nucleolytic (with DNA fragmentation
typical of apoptosis) or anucleolytic (without DNA fragmentation;
see Burgoyne, 1999). As shown in Figure 2A, pyknosis is strongly
found in the ventro-lateral white matter reaching a peak after 4–8 h
from washout of PM application with low occurrence in other
areas. Pyknosis is preceded by DNA fragmentation shown, already
2 h later, as positivity to phospho-histone H2A.X (Figure 2B;
Widlak and Garrard, 2009; Kuzhandaivel et al., 2010a) and DNA
laddering (Figure 2C; Loo and Rillema, 1998). Caspase-3 medi-
ated apoptosis is largely detected during the following 24 h to reach
a peak of approximately 60% pyknotic cells in the ventro-lateral
white matter (Figure 2D). From a functional point of view, despite
strong lesion of white matter elements, locomotor networks retain
their activity even if the cycle period of locomotor patterns is
clearly slower (Taccola et al., 2008). Activation of locomotor

networks by dorsal afferent stimuli becomes, however, impossible
(Taccola et al., 2008): thus, in this condition, despite the retained
intrinsic ability to generate locomotor patterns, the continuous
sensory feedback required to support locomotion (Barbeau et al.,
1999) is lost. After PM treatment, morphological changes charac-
teristic of necrotic death (gain in cell volume, organelle swelling,
and disorganized dismantling of intracellular contents; Galluzzi
et al., 2007) have not been routinely observed.

NEURONAL CELL DEATH AFTER EXCITOTOXIC INSULT IS DUE
TO PARTHANATOS
In addition to the strong vulnerability of motoneurons (Mazzone
et al., 2010), Figure 3A shows that the largest cell death after kainate
is observed in the dorsal gray matter (which contains the high-
est density of kainate receptors; Tolle et al., 1993), leaving the
white matter mostly intact. This phenomenon is accompanied by
PARP-1 overexpression that peaks 8 h after washout of kainate
(Figure 3B) and release of AIF (Figure 3B).

The involvement of the PARP-1-dependent cell death after SCI
was thought to be triggered by overproduction of nitric oxide
and reactive oxygen species (Scott et al., 2004; Genovese et al.,
2005; Wu et al., 2007; Genovese and Cuzzocrea, 2008). A similar

FIGURE 2 | Hypoxic-dysmetabolic insult induces apoptosis in spinal cord

in vitro. (A) Histograms plot percent of pyknosis (with respect to global
number of DAPI positive cells) at various time points after washout (0 h) of
PM. For each time point n = 3 spinal cords. Inset shows the schematic
representation of the areas sampled for the cell count based on DAPI staining.
(B) Histograms demonstrating percent occurrence (with respect to global
DAPI stained cells) of γH2AX positive cells (n = 3) at different time points after
1 h of PM application. (C) Agarose gel electrophoresis of DNA samples from

control spinal cords (freshly dissected, lane 2), from sham spinal cords (kept
in vitro for 24 h in Krebs solution, lane 3), or PM treated spinal cords (1 h PM
treatment followed by 24 h recovery in Krebs solution, lane 4). Note DNA
laddering (due to internucleosomal DNA fragmentation) in the PM treated
sample only (n = 3 for each sample). Lane 1 shows DNA ladder marker (50 bp
steps). (D) Histograms indicate number of active caspase-3 positive cells in
the white matter of the PM treated spinal cords (average of six slices from
two spinal cords) at different time points after 1 h of PM application.
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FIGURE 3 | Kainate mediated excitotoxicity evokes PARP-1 dependent

cell death (Parthanatos) in spinal cord in vitro. (A) Histograms plot
percent occurrence of pyknosis detected at various time points after
washout (0 h) of kainate (1 mM; 1 h application; KA). Inset shows the
schematic representation of the areas sampled for the cell count based on
DAPI staining. For each time point n = 3 spinal cords. (B) Example of
Western immunoblotting of spinal cord samples obtained from sham (upper
panels) or kainate treated (lower panels) preparations, and tested with
PARP-1 or AIF specific antibody. In kainate treated spinal cords there is
increased PARP-1 immunoreactivity, with early appearance immediately
after kainate treatment (0 h) and rising up to 24 h after. AIF
immunoreactivity appears in the nuclear fraction 2 h after kainate
treatment. Nuclear loading assessed with TBP. (C) Histograms plot percent
of pyknosis occurrence detected in different spinal cord regions 24 h after
kainate treatment alone or followed by treatment with PARP-1 inhibitor PHE
(three different concentrations). PHE significantly reduces (**P < 0.01;
***P < 0.001) the number of pyknotic cells in a dose-dependent manner in
all four spinal cord regions. Pyknosis is normalized with respect to the total
number of DAPI sensitive cells. For each time point n = 3 spinal cords.

phenomenon has been proposed to occur after ischemic and trau-
matic brain injury (Eliasson et al., 1997; Endres et al., 1997;
Meli et al., 2003; David et al., 2009), including perinatal brain
injury (Hagberg et al., 2004). Although the morphology of neu-
ronal pyknosis after kainate is similar to the one detected in the
white matter after PM, all tests for apoptosis have been nega-
tive (TUNEL, phospho-histone H2A.X staining, DNA laddering,
and caspase-3; Kuzhandaivel et al., 2010b). Conversely, extensive
PAR immunoreactivity has been found in gray matter neurons
after kainate induced excitotoxicity to mediate translocation of
mitochondrial AIF to the nucleus and cell death (Figures 1D,3B;
Kuzhandaivel et al., 2010b). This effect becomes already apparent
immediately after kainate washout with AIF nuclear translocation
2 h later, and correlates with the time- and dose-dependent onset
of pyknosis (Mazzone et al., 2010).

Conversely, in PM treated preparations, modest PARP-1 acti-
vation (without extensive PAR generation) occurs as this enzyme
is cleaved by active caspase-3 (Kuzhandaivel et al., 2010b). The
apparent resistance of glial cells to kainate induced excitotoxicity
has been already reported, for example, for the mature myelin basic
protein-expressing oligodendrocytes (Rosenberg et al., 2003).

Electrophysiological studies indicate that, once the kainate
concentration reaches 50 μM, fictive locomotor patterns are irre-
versibly lost within a few minutes from the start of the drug
application (Taccola et al., 2008; Mazzone et al., 2010). Part of
this functional loss is likely to be due to strong inactivation of
voltage-gated conductances of network neurons due to the sus-
tained depolarization. Nonetheless, network depolarization as well
as endogenous glutamate release (Mazzone et al., 2010; Mazzone
and Nistri, 2011a) subside at the end of kainate application, indi-
cating that lack of locomotor patterns is not a merely functional
deficit, but a structural damage of the spinal circuitry.

When PM and kainate are combined together, large-scale cell
death in the gray and white matter appears with pyknosis as the
primary morphological characteristic of damaged cells (Taccola
et al., 2008). This combined application has been shown to be use-
ful to produce focal lesions of the isolated spinal cord by restricting
the administration of the toxic solution to a small number of seg-
ments with transverse barriers and testing its consequences on
apparently unscathed segments (Taccola et al., 2010).

Figure 4 summarizes the principal cell-death pathways
observed to mediate glial damage by PM (Figure 4A) or neu-
ronal damage by kainate (Figure 4B). Apoptosis is the main
process responsible for dysmetabolic lesion of glia via initial DNA
damage, histone phosphorylation, and sequential activation of
caspases, a phenomenon reinforced by further caspase-3 acti-
vation through damaged mitochondria and release of APAF-1
(Figure 4A). On the other hand, activation of glutamate receptors
by kainate (Figure 4B) triggers through multiple processes includ-
ing sustained elevation in intracellular free Ca2+, DNA damage
which leads to hyperactivation of PARP-1, PAR production and
mitochondrial damage with release of AIF and further nuclear
damage.

The difference in targeted cell type and cell-death pathways
between metabolic dysfunction and excitotoxicity suggests the
need of specific tools to combat the consequences of lesion arising
from distinct causes.
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FIGURE 4 | Schematic representation of apoptosis or parthanatos

cell-death pathways. (A) Schematic representation demonstrating intrinsic
and extrinsic pathways of apoptosis. The intrinsic pathway is initiated from
within the cell usually in response to cellular signals resulting from DNA
damage, hypoxia, or other types of severe cell stress. These signals stimulate
proapoptotic proteins (e.g., Bax) in the mitochondrial membrane leading to
mitochondrial membrane permeabilization, that allows translocation of
cytochrome c from the mitochondrial intermembrane space to the cytosol.
Cytochrome c binds the adaptor apoptotic protease activating factor-1
(APAF-1), forming a large multiprotein structure known as the apoptosome.
The initiator caspase 9 is recruited into the apoptosome and activates the
downstream effector caspases 3. The extrinsic pathway begins outside the
cell through the activation of specific proapoptotic receptors on the cell
surface by specific molecules known as proapoptotic ligands. Such a ligand
binding induces receptor clustering and recruitment of the adaptor protein

Fas-associated death domain and the initiator caspases 8 as procaspases,
facilitating their autocatalytic processing and release into the cytoplasm
where they activate the effector caspases 3, thereby converging on the
intrinsic pathway. One of these pathways (or both) may operate in
determining death of glial cells in the spinal cord subjected to PM application
(dysmetabolic insult). (B) Schematic representation showing the parthanatos
pathway mediated by PARP-1 hyperactivation. Following excitotoxicity
(kainate and glutamate receptor overactivity), intracellular increase in free
Ca2+ activates downstream cascades leading to peroxynitrite formation. This
readily induces DNA damage, thereby activating PARP-1 that initiates the
synthesis of PAR. PAR interacts with the mitochondrial membrane to change
its membrane potential, thus allowing AIF translocation to the nucleus, a
process leading cell death. An additional lethal mechanism may originate from
excessive PARP-1 activation to deplete the NAD pool and cause severe ATP
starvation and cell energy failure with the outcome of cell death.

PHARMACOLOGICAL NEUROPROTECTION OF NETWORK
DAMAGE
In vitro models of SCI can be suitable for preclinical exploration of
neuroprotective drug activity. In fact, in terms of locomotor pat-
terns and cell numbers, neuroprotection with glutamate antago-
nists such as 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and
d-aminophosphonovalerate (APV) is possible against PM even
when these antagonists are applied after PM washout (Margaryan
et al., 2010). On the other hand, such antagonist administration
is ineffective against excitotoxicity when started after washout of
kainate, and poorly efficient when co-applied, as only a minority
of preparations show locomotor patterns 1 day later (Margaryan
et al., 2010). These data raise a number of interesting issues: over-
activation of glutamate receptors by PM is relatively limited (in
accordance with biochemical and morphological data for glial
damage) and can be contrasted by glutamate antagonists even
applied late. Thus, any excitotoxicity arising from the effects of

PM is likely subthreshold for substantial neuronal loss and is man-
ifested as a moderate dysfunction of spinal networks consequent
to metabolic distress, from which recovery is indeed possible.

Full-blown excitotoxicity due to direct stimulation of glu-
tamate receptors can be poorly arrested by glutamate antago-
nists because of their slow pharmacokinetics in comparison with
the speed of kainate effects (Margaryan et al., 2010). Further-
more, delayed application of antagonists cannot reverse damage
which is apparently induced by downstream mechanisms like
parthanatos and proceeds independently from glutamate receptor
activation (Kuzhandaivel et al., 2010b; Mazzone et al., 2010).
This realization suggests studies of neuroprotection targeted to
cell-death processes downstream of glutamate receptors.

As a delayed pharmacological approach becomes desir-
able to combat excitotoxicity, PARP-1 inhibitors like 6,5-
(H )phenanthridinone (PHE) and 2-(dimethylamino)-N -(5,6-
dihydro-6-oxophenanthridin-2yl) acetamide (PJ-34; Abdelkarim
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et al., 2001) have been tested (Nasrabady et al., 2011a,b;
Mazzone and Nistri, 2011b). As shown in Figure 3C, PHE
exerts histological neuroprotection, but it cannot preserve loco-
motor network function (Kuzhandaivel et al., 2010b; Nasrabady
et al., 2011a). PJ-34 (60 μM) applied 30 min after the start
of kainate administration and maintained for 24 h can pre-
serve spinal network histology with return of locomotor pat-
terns only when the excitotoxic stimulus is moderate (Nasrabady
et al., 2011b). Delayed application of PJ-34 in coincidence with
kainate washout consistently fails to generate neuroprotection
(Mazzone and Nistri, 2011b).

The poor outcome observed with PARP-1 inhibitors sug-
gests that, in addition (or alongside) to PARP-1 hyperactivation,
other cell-death mechanisms (for instance PARP-2; Moroni, 2008;
Moroni et al., 2009) have been triggered to evoke excitotoxicity.
Full elucidation of these mechanisms will be important to devise
more effective treatments. It is, however, possible that, after the
initial excitotoxic stimulus, spinal networks are structurally pro-
tected, yet functionally inhibited because of an unknown form
of downregulation of their motor output which might wane only
after days, namely a temporal target currently untestable with these
preparations.

In the attempt to circumvent this difficulty, it becomes impor-
tant to establish the number of surviving neurons and glia neces-
sary to express locomotor activity, because this information can be
a predictor of locomotor function and a target to be achieved for
neuroprotection. Whilst this objective is difficult to reach in vivo
because of the yet-undefined description of locomotor networks, it

seems feasible to calculate the minimal membership of the network
to support locomotor pattern expression in vitro.

MINIMAL NETWORK MEMBERSHIP FOR LOCOMOTOR
FUNCTION
The divergence between histological and functional outcome
of the experimentally induced SCI, implies a narrow border-
line between neuronal numbers compatible or not with fictive
locomotion (Margaryan et al., 2009, 2010; Nistri et al., 2010).
Hence, comparison of the immunohistochemical data from sham
preparations with those experimentally damaged and/or other-
wise protected (in functional terms) by CNQX plus APV, can be
exploited to formulate a preliminary estimate of the minimal net-
work membership required for expressing locomotor patterns in
the rat lumbar spinal cord.

The locomotor CPG related to the rodent hindlimbs is pri-
marily localized to the rostral lumbar segments L1–L3 (Cazalets
et al., 1992, 1995; Kjaerulff and Kiehn, 1996; Cowley and Schmidt,
1997; Kiehn et al., 2008), and comprises cells (on each side) in
the ventro-medial part of laminae VII, VIII, and IX, while dor-
sal horn regions appear to supply just modulatory inputs to the
CPG operation (Kiehn, 2006; Nistri et al., 2006; Taccola and Nistri,
2006). As exemplified in Figure 5A, in the neonatal rat spinal cord
the axial length of these segments is approximately 3 mm. Histo-
logical analysis requires, as a routine, circa 100 sections (30 μm
each) to be processed with NeuN (neuronal marker) or SMI-32
(motoneuronal marker) immunoreactivity (see right panels in
Figure 5A). Figure 5B shows an example of the ventro-medial

FIGURE 5 | Schematic representation of the locomotor networks in

rat neonatal spinal cord. (A) The main locomotor network for the rat
hindlimb is thought to be localized to spinal cord lumbar segments L1–L3.
In the neonatal animal, this region is about 3 mm long, from which
approximately 100 slices (each 30 μm thick) are obtained for experimental
purpose. Representative immuno-stainings with the neuronal marker
NeuN (green) and the motoneuronal marker SMI32 (red) are shown.

Scale bars = 100 μm. (B) The locomotor network zone is outlined in the
ventro-medial area of a 30 μm section from the upper lumbar region.
(C) Example of hemisected section comprising the location of locomotor
networks (laminae 7, 8, and 9 shown in red box of 350 × 350 μm)
used for counting of the number of neurons and motoneurons. DORS,
dorsal; CENT, central; VENT, ventral; dfu, dorsal funiculus; wm, white
matter.
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spinal gray matter area containing a fixed region of interest
(Figure 5C; 350 × 350 μm) for immunochemical determination
of neuronal numbers. Thus, on one side of a 30 μm section, there
are, on average, approximately 315 NeuN-positive neurons. Mul-
tiplying this value for the number of sections in three segments
will provide, for one side of the spinal cord, the value of ∼31,500
NeuN-positive cells, that becomes a total of 63,000 NeuN-positive
cells for both spinal sides. The number of motoneurons in the
same segments can be calculated as 3,600 bilaterally, starting from
18 SMI32 positive cells in one hemisection of 30 μm. These results
are consistent with previous measurements (3,500 motoneurons)
for the neonatal rat spinal cord obtained by Oppenheim (1986)
who did not find any postnatal fall in the number of such cells. It
is noteworthy that Tomlinson and Irving (1977) have reported
an average of 60,000 anterior horn cells in the whole human
lumbosacral spinal cord with no change from youth up to the
age of 60.

Applying the same analysis to the experiments with neuropro-
tection by CNQX and APV (Margaryan et al., 2010), it appears that
fictive locomotion could still be observed when 64% of NeuN-
positive cells are present and it is lost when the number falls to
45% in the ventro-medial area. Thus, the minimal membership
of ventral horn neurons necessary for fictive locomotion can be
estimated between 28,000 and 40,000 cells in the three segments.
As far as motoneurons are concerned, fictive locomotion is still
present when 88% motoneurons remain, and is absent with 68%.
Hence, the minimal number of motoneurons essential to express
fictive locomotion of the hindlimbs may be estimated between
2,370 and 3,050 in the three lumbar segments. Similar sugges-
tions on the membership size have been supplied by experiments
with changes in extracellular Mg2+ and its consequences on fic-
tive locomotion and ventral horn histology (Margaryan et al.,
2009). Conversely, experimental paradigms that induce extensive
white matter damage show that fictive locomotion can still be
expressed despite depressed reflex activity (Taccola et al., 2008;
Margaryan et al., 2009). Notwithstanding the approximate nature
of the current neuronal estimates, these numbers have a heuristic
value because they can supply a minimal target for future studies
aimed at rebuilding damaged networks or at constraining dam-
age. Once the network membership falls below such a threshold,
the surviving circuits (which are still metabolically viable; Maz-
zone et al., 2010) can produce disinhibited bursting (that is known
to be localized to the ventral horn quadrant; Bracci et al., 1996),

indicating that the basic connectivity necessary to express network
rhythmicity is still present.

It should be pointed out that these calculations cannot obvi-
ously reflect the rat physiological ability to walk, since the animal
functional activity as well as the electromyography of skeletal limb
muscles have not been measured. The present scheme suggests the
size of the locomotor network, but it does not address the precise
distribution of the locomotor CPG and the location of its intrin-
sic components like the neurons operating as the rhythm clock
or as pattern formation (McCrea and Rybak, 2008). Nevertheless,
these data indicate a cell number essential to express the locomo-
tor program: falling below the minimal membership cannot allow
generation of the locomotor patterns. Future studies are required
to clarify the role of various premotoneuron types identified on
the basis of their genetic markers (Kiehn, 2006; Grossmann et al.,
2010) in the network locomotor activity after lesion.

Studies of the locomotor network size in man are few and pri-
marily obtained from post-mortem examination (Kaelan et al.,
1988), since even functional magnetic resonance imaging has pro-
vided scant evidence for a clear link between spinal lesions and
disability (Stankiewicz et al., 2009). From human observations
it emerges that transynaptic degeneration of ventral horn neu-
rons does not occur following complete corticospinal tract lesions
(Kaelan et al., 1988), and that locomotor activity was present
shortly before death of patients who at necroscopy examination
had fewer than 30,000 ventral horn neurons against an aver-
age control of approximately 60,000 for the whole lumbosacral
enlargement (Tomlinson and Irving, 1977). Less certain is the
number of interneurons making up the CPG network: nonethe-
less, this value is likely to be even larger because in most vertebrate
species the ratio of interneurons to motoneurons is 5:1 (Walløe
et al., 2011). These estimates do not provide a conclusive size of
the human locomotor network, but they do indicate the daunting
size that any reconstructive and repairing attempt to re-establish
locomotion after SCI must meet.
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APPENDIX

Table A1 | Characteristics of cell damage of in vivo and in vitro models of spinal injury.

SCI model Proposed cell-death

pathway

Cells involved References

Weight drop method – rat Apoptosis NA Katoh et al. (1996)

Compression injury – rat Apoptosis Glial cells Li et al. (1996)

Weight drop method – rat and

monkey

Apoptosis and necrosis Neurons and oligodendrocytes Crowe et al. (1997)

Weight drop method – rat Apoptosis Microglia and oligodendrocytes Shuman et al. (1997)

Weight drop method – rat Apoptosis Neurons and glia Liu et al. (1997)

Weight drop method – rat Apoptosis Neurons Lou et al. (1998)

Human Apoptosis Oligodendrocytes and astrocytes Emery et al. (1998)

Weight drop method – rat Apoptosis Astrocytes, microglia, and neurons Yong et al. (1998)

Ischemia model –rabbit Apoptosis Motoneuron Hayashi et al. (1998)

NSC 34 spinal cord cell line PARP-1 dependent cell death Cookson et al. (1998)

Complete transection – rat Apoptosis Oligodendrocytes Abe et al. (1999)

Weight drop method– rat Apoptosis Oligodendrocytes Li et al. (1999)

Weight drop method – rat Apoptosis Neurons and oligodendrocytes Springer et al. (1999)

Weight drop method – rat Apoptosis NA Ray et al. (1999)

Transection – rat Apoptosis Glia Saito et al. (2000)

Modified weight drop method –

mice

Apoptosis Neurons and glia Li et al. (2000a)

Ischemia model –rat Apoptosis and necrosis Neurons Lang-Lazdunski et al. (2000)

Ischemia model –mouse Apoptosis Neurons Matsushita et al. (2000)

Complete transection – rat Apoptosis Neurons Li et al. (2000b)

Mechanical crush – rat Apoptosis Neurons and oligodendrocytes Lee et al. (2000)

Weight drop method – rat Apoptosis Not reported Satake et al. (2000)

Dorsal cordotomy – rat Apoptosis Oligodendrocytes Warden et al. (2001)

Extradural clip compression model –

rat

Apoptosis Oligodendrocytes Casha et al. (2001)

Weight drop method – rat Apoptosis Neurons and glial cells Keane et al. (2001)

Weight drop method – rat Apoptosis Neurons and glia Zurita et al. (2002)

Compression injury – rat Apoptosis and necrosis Neurons, microglia, and

oligodendrocytes

Koda et al. (2002)

Ischemia model –rat Necrosis Neurons Sakamoto et al. (2003)

Weight drop method – mouse Apoptosis Neurons and oligodendrocytes Takagi et al. (2003)

Mechanical crush – rat Apoptosis Neurons and oligodendrocytes Yune et al. (2003)

Weight drop method – rat Apoptosis Neurons Wingrave et al. (2003)

Transection – chick Apoptosis Oligodendrocytes McBride et al. (2003)

Subdural infusion of kainic acid Apoptosis Oligodendrocytes Nottingham and Springer (2003)

Weight drop method – mouse Apoptosis Neurons, oligodendrocytes, and

astrocytes

Yoshino et al. (2004)

Spinal cord neuronal culture-Peroxy

nitrate addition

PARP-1 dependent cell death Scott et al. (2004)

Weight impactor probe – rat Calpain mediated cell death Neurons Arataki et al. (2005)

Application of vascular clips – rat PARP-1 dependent cell death NA Genovese et al. (2005)

Weight drop method – rat Apoptosis Neurons and oligodendrocytes Knoblach et al. (2005)

Weight drop method – rat Apoptosis Neurons, astrocytes, microglia, and

oligodendrocytes

Colak et al. (2005)

Weight drop method – rat Apoptosis Neurons Wang et al. (2005)

Traction – rat Apoptosis Neurons Liu et al. (2005)

Weight drop method – rat Necrosis and apoptosis Gray matter and white matter,

motoneurons

Barut et al. (2005)

Complete transection – rat Apoptosis Neurons, astrocytes, and microglia Wu et al. (2007)

(Continued)
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Table A1 | Continued

SCI model Proposed cell-death

pathway

Cells involved References

Compression using vertical

impounder– rat

Apoptosis Neurons and astrocytes Davis et al. (2007)

Glutamate administration – rat Apoptosis Neurons and oligodendrocytes Xu et al. (2008)

Drop tower method – rat Apoptosis Neurons and glia Dang et al. (2008)

Dorsal hemisection injury – rat Granzyme mediated cell

death

Neurons Chaitanya et al. (2009)

Fejota clip compression model,

spinal cord cultures – mouse

Fas-mediated apoptosis Neurons, microglia, and

oligodendrocytes

Yu et al. (2009)

Weight drop method – rat Calpain dependent cell death Neurons Colak et al. (2009)

Hemitransection – mouse Autophagy Neurons, astrocytes, and

oligodendrocytes

Kanno et al. (2009)

Ischemia/reperfusi on injury MEK/ERK mediated apoptosis Neurons and glial cells Lu et al. (2010)

Weight drop method – rat Apoptosis Neurons Torres et al. (2010)

Isolated spinal cord, kainate

administration – rat

PARP-1 dependent cell death Neurons Kuzhandaivel et al. (2010b)

Isolated spinal cord, metabolic

perturbation – rat

Apoptosis Oligodendrocytes and astrocytes Kuzhandaivel et al. (2010a)

NA, not available.

Frontiers in Cellular Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 9 | 15

www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Kuzhandaivel et al. Cell death after spinal injury

REFERENCES
Abe, Y., Yamamoto, T., Sugiyama, Y.,

Watanabe, T., Saito, N., Kayama,
H., and Kumagai, T. (1999). Apop-
totic cells associated with Wal-
lerian degeneration after exper-
imental spinal cord injury: a
possible mechanism of oligoden-
droglial death. J. Neurotrauma 16,
945–952.

Arataki, S., Tomizawa, K., Moriwaki, A.,
Nishida, K., Matsushita, M., Ozaki,
T., Kunisada, T., Yoshida, A., Inoue,
H., and Matsui, H. (2005). Cal-
pain inhibitors prevent neuronal cell
death and ameliorate motor distur-
bances after compression-induced
spinal cord injury in rats. J. Neuro-
trauma 22, 398–406.

Barut, S., Unlu, Y. A., Karaoglan, A.,
Tuncdemir, M., Dagistanli, F. K.,
Ozturk, M., and Colak, A. (2005).
The neuroprotective effects of
z-DEVD.fmk, a caspase-3 inhibitor,
on traumatic spinal cord injury in
rats. Surg. Neurol. 64, 213–220.

Casha, S., Yu, W. R., and Fehlings, M.
G. (2001). Oligodendroglial apopto-
sis occurs along degenerating axons
and is associated with FAS and
p75 expression following spinal cord
injury in the rat. Neuroscience 103,
203–218.

Chaitanya, G. V., Kolli, M., and Babu, P.
P. (2009). Granzyme-b mediated cell
death in the spinal cord-injured rat
model. Neuropathology 29, 270–279.

Colak, A., Karaoglan, A., Barut, S.,
Kokturk, S., Akyildiz, A. I., and
Tasyurekli, M. (2005). Neuropro-
tection and functional recovery
after application of the caspase-
9 inhibitor z-LEHD-fmk in a
rat model of traumatic spinal
cord injury. J. Neurosurg. Spine 2,
327–334.

Colak, A., Kaya, M., Karaoglan, A., Sag-
manligil, A., Akdemir, O., Sahan,
E., and Celik, O. (2009). Calpain
inhibitor AK 295 inhibits calpain-
induced apoptosis and improves
neurologic function after traumatic
spinal cord injury in rats. Neurociru-
gia (Astur.) 20, 245–254.

Cookson, M. R., Ince, P. G., and Shaw, P.
J. (1998). Peroxynitrite and hydro-
gen peroxide induced cell death in
the NSC34 neuroblastoma x spinal
cord cell line: role of poly (ADP-
ribose) polymerase. J. Neurochem.
70, 501–508.

Crowe, M. J., Bresnahan, J. C., Shu-
man, S. L., Masters, J. N., and Beattie,
M. S. (1997). Apoptosis and delayed
degeneration after spinal cord injury
in rats and monkeys. Nat. Med. 3,
73–76.

Dang, A. B., Tay, B. K., Kim, H. T.,
Nauth, A., Alfonso-Jaume, M. A.,
and Lovett, D. H. (2008). Inhibition
of MMP2/MMP9 after spinal cord
trauma reduces apoptosis. Spine 33,
E576–E579.

Davis, A. R., Lotocki, G., Marcillo,
A. E., Dietrich, W. D., and Keane,
R. (2007). FasL, Fas, and death-
inducing signaling complex (DISC)
proteins recruited to membrane
rafts after spinal cord injury. J. Neu-
rotrauma 24, 823–883.

Kanno, H., Ozawa, H., Sekiguchi,A., and
Itoi, E. (2009). Spinal cord injury
induces upregulation of Beclin 1
and promotes autophagic cell death.
Neurobiol. Dis. 33, 143–148.

Katoh, K., Ikata, T., Katoh, S., Hamada,
Y., Nakauchi, K., Sano, T., and Niwa,
M. (1996). Induction and its spread
of apoptosis in rat spinal cord after
mechani trauma. Neurosci. Lett. 216,
9–12.

Keane, R. W., Kraydieh, S., Lotocki,
G., Bethea, J. R., Krajewski, S.,
Reed, J., and Dietrich, W. D. (2001).
Apoptotic and anti-apoptotic mech-
anisms followi spinal cord injury.
J. Neuropathol. Exp. Neurol. 60,
422–429.

Knoblach, S. M., Huang, X., Van-
Gelderen, J., Calva-Cerqueira, D.,
and Fad, A. I. (2005). Selective cas-
pase activation may contribute to
neurologi dysfunction after experi-
mental spinal cord trauma. J. Neu-
rosci. Res. 80, 369–380.

Koda, M., Murakami, M., Ino, H.,
Yoshinaga, K., Ikeda, O., Hashimoto,
Yamazaki, M., Nakayama, C., and
Moriya, H. (2002). Brain-derived
neurotrop factor suppresses delayed
apoptosis of oligodendrocytes after
spinal cord injury rats. J. Neuro-
trauma 19, 777–785.

Lang-Lazdunski, L., Heurteaux, C.,
Mignon, A., Mantz, J., Widmann,
C., Desmonts, J., and Lazdunski, M.
(2000). Ischemic spinal cord injury
induced by aortic cross-clamping:
prevention by riluzole. Eur. J. Car-
diothorac. Surg. 18, 174–181.

Lee, Y. B., Yune, T. Y., Baik, S. Y., Shin,
Y. H., Du, S., Rhim, H., Lee, E. B.,
Kim, Y. C., Shin, M. L., Markelo-
nis, G. J., and Oh, T. H. (2000).
Role of tumor necrosis factor-alpha
in neuronal and glial apoptosis after
spinal cord injury. Exp. Neurol. 166,
190–195.

Li, G. L., Brodin, G., Farooque, M., Funa,
K., Holtz, A., Wang, W. L., and Ols-
son,Y. (1996). Apoptosis and expres-
sion of Bcl-2 after compression
trauma to rat spinal cord. J. Neu-
ropathol. Exp. Neurol. 55, 280–289.

Li, M., Ona, V. O., Chen, M., Kaul,
M., Tenneti, L., Zhang, X., Stieg, P.
E., Lipton, S. A., and Friedlander,
R. M. (2000a). Functional role and
therapeutic implications of neuronal
caspase-1 and -3 in a mouse model
of traumatic spinal cord injury. Neu-
roscience 99, 333–342.

Li, X., Oudega, M., Dancausse, H. A.,
and Levi, A. D. (2000b). The effect
of methylprednisolone on Caspase-3
activation after rat spinal cord tran-
section. Restor. Neurol. Neurosci. 17,
203–209.

Liu, L., Pei, F. X., Tang, K. L., Xu, J.
Z., and Li, Q. H. (2005). Expres-
sion and effect of Caspase-3 in
neurons after tractive spinal cord
injury in rats. Chin. J. Traumatol. 8,
220–224.

Lou, J., Lenke, L. G., Ludwig, F. J., and
O’Brien, M. F. (1998). Apoptosis as
a mechanism of neuronal cell death
following acute experimental spinal
cord injury. Spinal Cord 36,break
683–690.

Lu, K., Liang, C. L., Liliang, P. C., Yang,
C. H., Cho, C. L., Weng, H. C., Tsai,
Y. D., Wang, K. W., and Chen, H. J.
(2010). Inhibition of extracellular
signal-regulated kinases 1/2 pro-
vides neuroprotection in spinal cord
ischemia/reperfusion injury in rats:
relationship with the nuclear factor-
kappaB-regulated anti-apoptotic
mechanisms. J. Neurochem. 114,
237–246.

Matsushita, K., Wu, Y., Qiu, J., Lang-
Lazdunski, L., Hirt, L., Waeber,
C., Hyman, B. T., Yuan, J., and
Moskowitz, M. A. (2000). Fas recep-
tor and neuronal cell death after
spinal cord ischemia. J. Neurosci. 20,
6879–6887.

McBride, C. B., McPhail, L. T., Vander-
luit, J. L., Tetzlaff, W., and Steeves, J.
D. (2003). Caspase inhibition atten-
uates transection-induced oligoden-
drocyte apoptosis in the developing
chick spinal cord. Mol. Cell Neurosci.
23, 383–397.

Nottingham, S. A., and Springer, J. E.
(2003). Temporal and spatial distri-
bution of activated caspase-3 after
subdural kainic acid infusions in rat
spinal cord. J. Comp. Neurol. 464,
463–471.

Ray, S. K.,Wilford, G. G., Matzelle, D. C.,
Hogan,E. L., and Banik,N. L. (1999).
Calpeptin and methylprednisolone
inhibit apoptosis in rat spinal cord
injury. Ann. N. Y. Acad. Sci. 890,
261–269.

Saito, N., Yamamoto, T., Watanabe,
T., Abe, Y., and Kumagai, T.
(2000). Implications of p53 protein
expression in experimental spinal

cord injury. J. Neurotrauma 17,
173–182.

Sakamoto, T., Kawaguchi, M., Kurita,
N., Horiuchi, T., Kakimoto, M.,
Inoue, S., Furuya, H., Nakamura,
M., and Konishi, N. (2003). Long-
term assessment of hind limb motor
function and neuronal injury fol-
lowing spinal cord ischemia in
rats. J. Neurosurg. Anesthesiol. 15,
104–109.

Satake, K., Matsuyama, Y., Kamiya, M.,
Kawakami, H., Iwata, H., Adachi, K.,
and Kiuchi, K. (2000). Nitric oxide
via macrophage iNOS induces apop-
tosis following traumatic spinal cord
injury. Brain Res. Mol. Brain Res. 85,
114–122.

Takagi, T., Takayasu, M., Mizuno, M.,
Yoshimoto, M., and Yoshida, J.
(2003). Caspase activation in neu-
ronal and glial apoptosis follow-
ing spinal cord injury in mice.
Neurol. Med. Chir. (Tokyo) 43,
20–29.

Torres, B. B., Caldeira, F. M., Gomes, M.
G., Serakides, R., De Marco Viott,
A., Bertagnolli, A. C., Fukushima,
F. B., De Oliveira, K. M., Gomes,
M. V., and De Melo, E. G. (2010).
Effects of dantrolene on apoptosis
and immunohistochemical expres-
sion of NeuN in the spinal cord after
traumatic injury in rats. Int. J. Exp.
Pathol. 91, 530–536.

Wang, X. J., Kong, K. M., Qi, W.
L., Ye, W. L., and Song, P. S.
(2005). Interleukin-1 beta induc-
tion of neuron apoptosis depends
on p38 mitogen-activated protein
kinase activity after spinal cord
injury. Acta Pharmacol. Sin. 26,
934–942.

Warden, P., Bamber, N. I., Li, H., Espos-
ito, A., Ahmad, K. A., Hsu, C. Y.,
and Xu, X. M. (2001). Delayed glial
cell death following wallerian degen-
eration in white matter tracts after
spinal cord dorsal column cordo-
tomy in adult rats. Exp. Neurol. 168,
213–224.

Wingrave, J. M., Schaecher, K. E., Srib-
nick, E. A., Wilford, G. G., Ray,
S. K., Hazen-Martin, D. J., Hogan,
E. L., and Banik, N. L. (2003).
Early induction of secondary injury
factors causing activation of cal-
pain and mitochondria-mediated
neuronal apoptosis following spinal
cord injury in rats. J. Neurosci. Res.
73, 95–104.

Xu, G. Y., Liu, S., Hughes, M. G., and
McAdoo, D. J. (2008). Glutamate-
induced losses of oligodendrocytes
and neurons and activation of
caspase-3 in the rat spinal cord.
Neuroscience 153, 1034–1047.

Frontiers in Cellular Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 9 | 16

www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Kuzhandaivel et al. Cell death after spinal injury

Yong, C., Arnold, P. M., Zoubine, M. N.,
Citron, B. A., Watanabe, I., Berman,
N. E., and Festoff, B. W. (1998).
Apoptosis in cellular compartments
of rat spinal cord after severe con-
tusion injury. J. Neurotrauma 15,
459–472.

Yoshino, O., Matsuno, H., Nakamura,
H., Yudoh, K., Abe, Y., Sawai,
T., Uzuki, M., Yonehara, S., and
Kimura, T. (2004). The role of
Fas-mediated apoptosis after trau-
matic spinal cord injury. Spine 29,
1394–1404.

Yune, T. Y., Chang, M. J., Kim, S. J., Lee,
Y. B., Shin, S. W., Rhim, H., Kim,
Y. C., Shin, M. L., Oh, Y. J., Han,
C. T., Markelonis, G. J., and Oh, T.
H. (2003). Increased production of
tumor necrosis factor-alpha induces
apoptosis after traumatic spinal cord

injury in rats. J. Neurotrauma 20,
207–219.

Zurita, M., Vaquero, J., Oya, S., and
Morales, C. (2002). Effects of dex-
amethasone on apoptosis-related
cell death after spinal cord injury. J.
Neurosurg. 96, 83–89.

Frontiers in Cellular Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 9 | 17

www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Molecular mechanisms underlying cell death in spinal networks in relation to locomotor activity after acute injury in vitro
	INTRODUCTION
	THE SCALE OF THE PROBLEM AND DAMAGE QUANTIFICATION
	LESION AMPLIFICATION THROUGH SECONDARY DAMAGE: ANAVALANCHE EFFECT
	PROTECTION OF LOCOMOTOR NETWORKS NEEDS UNDERSTANDINGNETWORK TOPOGRAPHY

	IN VITRO SPINAL CORD MODELS TO STUDY CELL-DEATHMECHANISMS AFTER SCI
	NEONATAL RAT SPINAL CORD PREPARATION
	ORGANOTYPIC CELL CULTURE AS RELIABLE IN VITRO MODEL TOSTUDY CELL DEATH

	EXCITOTOXICITY AND METABOLIC PERTURBATION DAMAGESPINAL LOCOMOTOR NETWORKS THROUGH DIFFERENTCELL-DEATH PATHWAYS
	DISTINCT CELL-DEATH PATHWAYS EMERGE AFTER EXPERIMENTAL SCI
	DIFFERENT EXPERIMENTAL PARADIGMS TO MIMIC EXCITOTOXICITYAND METABOLIC PERTURBATION

	APOPTOSIS IS RESPONSIBLE FOR GLIAL CELL DEATH AFTERHYPOXIC/ISCHEMIC PERTURBATION
	NEURONAL CELL DEATH AFTER EXCITOTOXIC INSULT IS DUETO PARTHANATOS
	PHARMACOLOGICAL NEUROPROTECTION OF NETWORKDAMAGE
	MINIMAL NETWORK MEMBERSHIP FOR LOCOMOTORFUNCTION
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


