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Behaviour of the reference measure on RCD spaces under charts

Nicola Gigli∗ and Enrico Pasqualetto†

April 10, 2017

Abstract

Mondino and Naber recently proved that finite dimensional RCD spaces are rectifiable.
Here we show that the push-forward of the reference measure under the charts built

by them is absolutely continuous with respect to the Lebesgue measure. This result, read
in conjunction with another recent work of us, has relevant implications on the structure
of tangent spaces to RCD spaces.

A key tool that we use is a recent paper by De Philippis-Rindler about the structure
of measures on the Euclidean space.
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1 Introduction

This paper is about the structure of charts in finite dimensional spaces with Ricci curvature
bounded from below, RCD spaces in short. Our starting point is a result by Mondino-Naber
[15], which can be roughly stated as:

Let (X, d,m) be a RCD∗(K,N) space and ε > 0. Then m-a.e. X can be partitioned
into a countable number of Borel subsets (Ui), each (1 + ε)-biLipschitz to some
subset of Rni , where ni ≤ N for every i.

We shall provide the rigorous statement in Theorem 3.2.
In [15], the behaviour of the reference measure m under the coordinate charts is not

studied. However, both for theoretical purposes (RCD spaces are metric measure spaces, after
all) and for practical ones (see the discussion below) it would be interesting to know the
relation between m, the charts and the Lebesgue measure. This is the scope of this note, our
main result being, again informally:
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Let (X, d,m) be a RCD∗(K,N) space, ε > 0 sufficiently small and (Ui, ϕi) the
partition given by Mondino-Naber’s theorem and the associated coordinate charts.
Then

(ϕi)∗(m|Ui)� Lni ∀i. (1.1)

See Theorem 3.5 for the precise statement and notice that our result is equivalent to the fact
that the restriction of m to Ui is absolutely continuous w.r.t. the ni-dimensional Hausdorff
measure.

We remark that in the case of Ricci-limit spaces (=mGH limits of Riemannian manifolds
with uniform bound from below on the Ricci curvature and from above on the dimension), the
analogous of our result was already known from the work of Cheeger-Colding [6]. However,
the technique used in [6] is not applicable to our setting, the problem being that in [6] the
spaces considered are limits of manifolds equipped with the volume measure, a fact leading
to some cancellations which are not present in the weighted case. Specifically, the key Lemma
1.14 in [6] does not hold on weighted Riemannian manifolds, and a fortiori does not hold on
RCD spaces.

Our argument, instead, uses as key tool the following recent result by De Philippis-Rindler
[8]:

Theorem 1.1. Let T1 =
−→
T1‖T1‖, . . . , Td =

−→
Td‖Td‖ be one dimensional normal currents in Rd

and µ a Radon measure on Rd. Assume that:

i) µ� ‖Ti‖ for i = 1, . . . , d,

ii) for µ-a.e. x the vectors
−→
T1(x), . . . ,

−→
Td(x) are linearly independent.

Then µ is absolutely continuous w.r.t. the Lebesgue measure on Rd.

We remark that such statement is only one of the several consequences of the main,
beautiful, result in [8].

Our proof combines Theorem 1.1, the construction by Mondino-Naber and the Laplacian
comparison estimates obtained by the first author in [10] along the following lines:

i) The typical chart ϕ in Mondino-Naber paper has coordinates which are distance func-
tions from well chosen points, say x1, . . . , xn, and is (1 + ε)-biLipschitz on a set which
we shall call U

ii) Assuming ε sufficiently small, it is not hard to see that the vector fields vi := ∇d(·, xi)
are independent on U

iii) The fact that the distance function has measure-valued Laplacian, grants that the vi’s
have measure valued divergence

iv) The differential of ϕ sends the vi’s to vector fields ui on Rn and with some algebraic
manipulations one can see that div(uiϕ∗m) is still a measure

v) The fact that ϕ|U is biLipschitz gives that the ui’s are independent on ϕ(U) (stated
as such, this is not really correct - the precise formulation requires a cut off and an
approximation procedure, see the proof of Theorem 3.5)
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vi) Since vector fields with measure valued divergence are particular cases of 1-dimensional
currents, the conclusion comes from Theorem 1.1 applied to the currents uiϕ∗m and the
measure ϕ∗(m|U ).

There are a few things that need to be explained/defined in this line of thought: this work
will be carried out in Section 2, while Section 3 contains the statement and proof of our main
result.

One feature of our argument, which is basically a consequence of Theorem 1.1, is that we
can prove (1.1) for the charts whose coordinates are distance functions, whereas in [6] their
harmonic approximation was used: the only structural property we need is that the Laplacian
of the coordinates is a measure.

Let us briefly describe a main consequence of our result. In [9], following some ideas of
Weaver [18], it has been proposed an abstract definition of tangent ‘bundle’ to a metric mea-
sure space based on the properties of Sobolev functions. For smooth Riemannian manifolds,
this general notion can trivially be identified with the classical concept of tangent space and
thus also with the more geometric concept of pointed-measured-Gromov-Hausdorff limit of
rescaled spaces. On the other hand, for general ‘irregular’ spaces the approach in [9] has little
to do with tangent spaces arising as pmGH-limits.

One is therefore lead to look for sufficient regularity conditions on the general metric
measure space that ensure the equivalence of these two notions. This has been the scope
of our companion paper [12]: there we proved that if a space can be covered with (1 + ε)-
biLipschitz charts satisfying (1.1), then indeed such equivalence is in place. As discussed in
[12], the main example of application of our result is the one of RCD∗(K,N) spaces, where the
(1 + ε)-biLipschitz charts are given by Mondino-Naber and the absolute continuity property
(1.1) by this manuscript. This is relevant because it opens up the possibility of studying
the ‘concrete and geometric’ notion of tangent space as pmGH-limit via the ‘abstract and
analytic’ one proposed in [9].

Finally we remark that other two independent recent papers ([7] and [14]) cover results
overlapping with ours; let us briefly describe those and the relations with ours. In [8] it
has been observed how combining the main results of [8] and [1] it is possible to deduce
a converse of Rademacher theorem, namely that if µ is a measure on Rd such that every
Lipschitz function is differentiable µ-a.e., then necessarily µ � Ld. In [7], it has then been
noticed how this latter result together with the characterization of measures on Lipschitz
differentiability spaces obtained by Bate in [4], implies the validity of Cheeger’s conjecture on
Lipschitz differentiability spaces, namely the analogous of our main theorem with ‘Mondino-
Naber charts on RCD spaces’ replaced by ‘charts in a Lipschitz differentiability space’. In [14],
among other things, this line of thought has been pushed to obtain our very same theorem
on RCD spaces: the added observation is that Cheeger’s results in [5] ensure that RCD spaces
equipped with the Mondino-Naber charts are Lipschitz differentiability spaces.

Despite this overlapping, we believe that our approach has some independent interest:
as discussed above, working with the added regularity of RCD spaces allows us to quickly
conclude from Theorem 1.1, without the need of using also the deep results in [5], [4] and [1].

Acknowledgment
This research has been supported by the MIUR SIR-grant ‘Nonsmooth Differential Geometry’
(RBSI147UG4).
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2 Technical tools

2.1 Some properties of the differential of a map between metric measure
spaces

To keep the presentation short, we assume the reader familiar with the language of L∞-
modules developed in [9]. We shall only recall, without proof, those definitions and properties
we need.

Let (X, dX ,mX), (Y, dY ,mY ) be two metric measure spaces and ϕ : X → Y a map of
bounded compression, i.e. so that ϕ∗mX ≤ CmY for some C > 0.

Given an L2(Y )-normed moduleM , the pullback ϕ∗M , which is an L2(X)-normed module,
and the pullback map ϕ∗ : M → ϕ∗M , which is linear and continuous, are characterised up
to unique isomorphism by the fact that

|ϕ∗v| = |v| ◦ ϕ, mX − a.e. ∀v ∈M,

{ϕ∗v : v ∈M} generates the whole ϕ∗M.

Notice that if M = L2(Y ), then ϕ∗M = L2(X) with ϕ∗f = f ◦ ϕ.
Given an L2(Y )-normed module M and its dual M∗, there is a unique continuous L∞(X)-

bilinear map from ϕ∗M × ϕ∗M∗ to L1(X) such that

ϕ∗L(ϕ∗v) = L(v) ◦ ϕ ∀v ∈M, L ∈M∗. (2.1)

Such duality pairing provides an isometric embedding of ϕ∗M∗ into the dual of ϕ∗M , but in
general such embedding is not surjective. A sufficient condition for surjectivity is that M∗ is
separable (this has to do with the Radon-Nikodym property of M∗).

In the special case in which M = L2(T ∗Y ) is the cotangent module of Y , we shall denote
the pullback map by ω 7→ [ϕ∗ω], to distinguish it by the pullback of 1-forms whose definition
we recall in a moment.

Now we assume that not only ϕ : X → Y is of bounded compression, but also that it is
Lipschitz. Maps of this kind are called of bounded deformation.

Recall that given a map ϕ : X → Y of bounded deformation, the map from W 1,2(Y ) to
W 1,2(X) sending f to f ◦ ϕ is linear and continuous, and that it holds

|d(f ◦ ϕ)| ≤ Lip(ϕ)|df | ◦ ϕ mX − a.e..

It can then be seen that there is a unique linear and continuous map ϕ∗ : L2(T ∗Y ) →
L2(T ∗X), called pullback of 1-forms, such that

ϕ∗df = d(f ◦ ϕ) ∀f ∈W 1,2(Y ),

ϕ∗(gω) = g ◦ ϕϕ∗ω ∀ω ∈ L2(T ∗Y ), g ∈ L∞(Y ),
(2.2)

and that it also satisfies

|ϕ∗ω| ≤ Lip(ϕ)|ω| ◦ ϕ mX − a.e.. (2.3)

Recall that in this setting the tangent module is defined as the dual of the cotangent
one; still, to keep consistency with the notation used in the smooth case, the duality pairing
between v ∈ L2(TX) and ω ∈ L2(T ∗X) is denoted by ω(v).

The differential dϕ of ϕ is then defined as follows.
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Definition 2.1 (The differential of a map of bounded deformation). Let ϕ : X → Y be of
bounded deformation and assume that L2(TY ) is separable. The differential dϕ : L2(TX)→
ϕ∗(L2(TY )) is the only linear and continuous map such that

[ϕ∗ω](dϕ(v)) = ϕ∗ω(v) ∀ω ∈ L2(T ∗Y ), v ∈ L2(TX). (2.4)

The separability assumption on L2(TY ) is needed because (2.4) only defines an element
of the dual of ϕ∗L2(T ∗Y ) which a priory might be larger than ϕ∗L2(TY ) (recall the duality
pairing (2.1)).

It turns out that dϕ is also L∞(X)-linear and satisfies

|dϕ(v)| ≤ Lip(ϕ)|v| mX − a.e. ∀v ∈ L2(TX). (2.5)

Much like in the classical smooth setting, part of the necessity of calling into play the
pullback module is due to the fact that ϕ might be not injective, so that one cannot hope
to define dϕ(v)(y) ∈ TyY as dϕϕ−1(y)(v(ϕ−1(y))), because ϕ−1(y) can contain more than one
point.

A way to assign to each vector field on X a vector field on Y via the differential of ϕ
is to, roughly said, take the average of dϕϕ−1(y)(v(ϕ−1(y))) among all the preimages of y.
Rigorously, this is achieved by introducing a left inverse Prϕ : ϕ∗M →M of the pullback map
ϕ∗ : M → ϕ∗M , as we discuss now.

We shall assume from now on that ϕ∗mX = mY . For f ∈ L1 + L∞(X) we put

Prϕ(f) :=
dϕ∗(f

+mX)

dmY
− dϕ∗(f

−mX)

dmY
,

so that Prϕ : L1 + L∞(X) → L0(Y ) is a linear operator, where L0(Y ) denotes the space of
(equivalence classes w.r.t. mY -a.e. equality of) Borel real-valued functions on Y . Observe that

Prϕ(c) = c mY − a.e. for every c ∈ R,
Prϕ(f) ≤ Prϕ(g) mY − a.e. for every f, g ∈ L1 + L∞(X) with f ≤ g mX − a.e..

(2.6)

We claim that for any convex function u : R→ R it holds that

u◦Prϕ(f) ≤ Prϕ(u◦f) mY −a.e. for all f ∈ L1 +L∞(X) with u◦f ∈ L1 +L∞(X). (2.7)

To prove it, note that for any affine map v : R → R the equality v ◦ Prϕ(f) = Prϕ(v ◦ f)
is satisfied mY -a.e., by linearity of Prϕ and by the first property in (2.6). This fact together
with the convexity of u grants that u ◦ Prϕ(f) = ess sup {Prϕ(v ◦ f) : v affine, v ≤ u}, which
in turn gives u ◦ Prϕ(f) ≤ Prϕ(u ◦ f) mY -a.e. by the second property in (2.6), proving (2.7).

Given any p ∈ [1,∞), we thus deduce by choosing u := | · |p in (2.7) that

|Prϕ(f)|p ≤ Prϕ(|f |p) mY − a.e. for every f ∈ Lp + L∞(X).

In particular, Prϕ continuously maps Lp(X) to Lp(Y ) for any p ∈ [1,∞] (the case p = ∞
being trivial from the definition).

In the case of general modules, the map Prϕ : ϕ∗M →M can be characterized as the only
linear and continuous map such that

Prϕ(fϕ∗v) = Prϕ(f)v, ∀f ∈ L∞(X), v ∈M, (2.8)
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and it can be verified that the bound

|Prϕ(V )| ≤ Prϕ(|V |), mY − a.e. ∀V ∈ ϕ∗M

holds. Notice that, analogously to (2.8), it also holds

gPrϕ(V ) = Prϕ(g ◦ ϕV ), ∀g ∈ L∞(Y ), V ∈ ϕ∗M. (2.9)

Indeed, for given g both sides of this identity are linear and continuous in V and agree on
those V ’s of the form fϕ∗v for f ∈ L∞(X), v ∈M .

Beside inequality (2.7), all these definitions and properties can be found in [9]. Now we
turn to the main result of this section: we are interested in studying the map v 7→ Prϕ(dϕ(v))
under the assumption that for some Borel E ⊂ X the restriction of ϕ to E is invertible and
with Lipschitz inverse.

We shall use the following notation: for a given L∞-module M and Borel set E we shall
denote by M |E the set of those v ∈M which are concentrated on E, i.e. such that χEcv = 0.

We recall that v1, . . . , vn ∈M are said independent on E provided for any f1, . . . , fn ∈ L∞
we have

χE
∑
i

fivi = 0 ⇒ χEfi = 0 ∀i.

In the course of the proof we shall use the identity

ω(Prϕ(V )) = Prϕ([ϕ∗ω](V )) ∀ω ∈ L2(T ∗Y ), V ∈ ϕ∗L2(TY ), (2.10)

which can be easily proved by noticing that for given ω ∈ L2(T ∗Y ) the two sides define
linear continuous maps from ϕ∗L2(TY ) to L1(Y ) which agree on V ’s of the form fϕ∗v for
f ∈ L∞(X) and v ∈ L2(TY ).

Proposition 2.2. Let ϕ : X → Y be of bounded deformation, with ϕ∗mX = mY and assume
that for some Borel set E ⊂ X we have that ϕ|E is injective with (ϕ|E)−1 Lipschitz. Assume

also that Lipschitz functions on X are dense in W 1,2(X).
Then the map

L2(TX)|E 3 v 7→ Prϕ(dϕ(v)) ∈ L2(TY )

is injective.
In particular if v1, . . . , vn ∈ L2(TX) are independent on E, then the vectors

Prϕ(dϕ(χEv1)), . . . ,Prϕ(dϕ(χEvn)) ∈ L2(TY ) are independent on {Prϕ(χE) > 0} ⊂ Y .

proof By inner regularity of mX we can, and will, assume that E is compact. The assumption
that Lipschitz functions on X are dense in W 1,2(X) grants that {df : f ∈ LIP ∩W 1,2(X)}
is dense in {df : f ∈ W 1,2(X)} w.r.t. the L2(T ∗X) topology. Recalling that L2(T ∗X) is
generated by the differentials of functions in W 1,2(X) we therefore deduce that

V :=
{
χE

n∑
i=1

hidfi : n ∈ N, fi ∈ LIP ∩W 1,2(X), hi ∈ L∞(X)
}

is dense in L2(T ∗X)|E .

(2.11)
Now let f ∈ LIP ∩ W 1,2(X), consider the Lipschitz function f ◦ (ϕ|E)−1 defined on ϕ(E)

and extend it to a Lipschitz function g on Y with bounded support. Then g ∈ W 1,2(Y )
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and g ◦ ϕ = f on E. This identity and the locality of the differential (see [9]) imply that
χEdf = χEd(g ◦ ϕ) so that taking into account the first in (2.2) we have

χEdf = χEd(g ◦ ϕ) = χE ϕ
∗dg ∈ χE(Imϕ∗).

Since the second in (2.2) and the assumption about the invertibility of ϕ|E ensure that
χE(Imϕ∗) is closed under L∞(Y )-linear combinations, we deduce that V ⊂ χE(Imϕ∗), which
together with (2.11) implies

χE(Imϕ∗) is dense in L2(T ∗X)|E . (2.12)

Next, we claim that

f ∈ L1(X)|E and Prϕ(f) = 0 ⇒ f = 0. (2.13)

This can be seen by letting g ∈ L1(Y ) be defined as sign(f ◦ ϕ|E
−1) on ϕ(E) and 0 outside.

Then it holds

0 =

∫
gPrϕ(f) dmY =

∫
gdϕ∗(fmX) =

∫
g ◦ ϕf dmX =

∫
|f |dmX .

The injectivity claim now follows noticing that for v ∈ L2(TX)|E we have

Prϕ(dϕ(v)) = 0 ⇔ ω
(
Prϕ(dϕ(v))

)
= 0 ∀ω ∈ L2(T ∗Y )

(by (2.10)) ⇔ Prϕ
(
[ϕ∗ω](dϕ(v))

)
= 0 ∀ω ∈ L2(T ∗Y )

(by (2.13) and v ∈ L2(TX)|E) ⇔ [ϕ∗ω](dϕ(v)) = 0 ∀ω ∈ L2(T ∗Y )

(by (2.4)) ⇔ ϕ∗ω(v) = 0 ∀ω ∈ L2(T ∗Y )

(by (2.12) and v ∈ L2(TX)|E) ⇔ v = 0.

For the last claim simply observe that for fi ∈ L∞(Y ) we have∑
i

fiPrϕ(dϕ(χEvi))
(2.9)
=
∑
i

Prϕ(fi ◦ ϕdϕ(χEvi)) = Prϕ
(

dϕ
(
χE
∑
i

fi ◦ ϕvi
))

and therefore∑
i

fiPrϕ(dϕ(χEvi)) = 0

⇔ χE
∑
i

fi ◦ ϕvi = 0 by the injectivity just proved

⇔ fi ◦ ϕ = 0 mX |E − a.e. ∀i by the independence of (vi) on E

⇔ fi = 0 ϕ∗(mX |E)− a.e. ∀i

⇔ fi = 0 mY − a.e. on {Prϕ(χE) > 0} ∀i,
which is the thesis. �

Remark 2.3. Given inequality (2.5) and taking into account the weighting given by the
operator Prϕ, one might expect that under the assumptions of the previous proposition, not
only the stated injectivity holds, but actually that the quantitative bound

|Prϕ(dϕ(v))| ≤ Lip
(
(ϕ|E)−1

)
Prϕ(χE) ◦ ϕ |v|

holds. Yet, this is not clear: the problem is that we don’t know whether (ϕ|E)−1 can be
extended to a map of bounded deformation. �
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2.2 Measure valued divergence

Here we discuss the notion of measure valued divergence, mimicking the one of measure valued
Laplacian given in [10]. For an earlier approach to this sort of definition see [11]. The definition
and results presented are valid on arbitrary metric measure spaces (X, d,m) so that (X, d)
is proper (although this can in fact be relaxed) and m a non-negative Radon measure. In
particular, the measure valued divergence is always a linear operator (unlike the Laplacian,
whose linearity requires the infinitesimal Hilbertianity assumption).

Definition 2.4 (Measure valued divergence). Let Ω ⊂ X be open and v ∈ L2(TX). We say
that v has measure valued divergence in Ω, and write v ∈ D(divm,Ω) if there exists a Radon
measure µ on Ω such that ∫

df(v) dm = −
∫
f dµ

for every Lipschitz function f with support compact and contained in Ω. In this case the
measure µ, which is clearly unique, will be denoted divm|Ω(v).

In the case Ω = X we shall simply write D(divm) and divm(v).

We have the following two simple basic calculus rules for the divergence, both being
consequences of the Leibniz rule for the differential.

Proposition 2.5 (Leibniz rule). Let v ∈ D(divm,Ω) and g : X → R Lipschitz and bounded.
Then gv ∈ D(divm,Ω) and

divm|Ω(gv) = gdivm|Ω(v) + dg(v)m|Ω.
proof Observe that for f : X → R Lipschitz with support compact and contained in Ω it
holds

−
∫
f d
(
gdivm|Ω(v) + dg(v)m|Ω

)
=

∫
d(fg)(v)− fdg(v) dm =

∫
df(gv) dm,

which is the thesis. �

Proposition 2.6 (Locality). Let Ω1,Ω2 ⊂ X open and v ∈ D(divm,Ω1)∩D(divm,Ω1). Then(
divm|Ω1

(v)
)
|Ω1∩Ω2

=
(
divm|Ω2

(v)
)
|Ω1∩Ω2

, (2.14)

v ∈ D(divm,Ω1 ∪ Ω2) and it holds(
divm|Ω1∪Ω2

(v)
)
|Ωi = divm|Ωi(v) i = 1, 2. (2.15)

proof To prove (2.14) it is sufficient to consider Lipschitz functions with support in Ω1 ∩Ω2,
which are dense in Cc(Ω1 ∩ Ω2), in the definition of divm|Ω1

(v),divm|Ω2
(v). For (2.15) let

f : X → R be Lipschitz with support compact and contained in Ω := Ω1 ∪ Ω2 and χ1, χ2 :
X → [0, 1] a Lipschitz partition of the unit of the space supp(f) subordinate to the cover
{Ω1,Ω2}. Then letting µ be the measure defined by (2.15) we have that

−
∫
f dµ = −

∫
fχ1 ddivm|Ω1

(v)−
∫
fχ2 ddivm|Ω2

(v)

=

∫ (
d(fχ1) + d(fχ2)

)
(v) dm =

∫
df(v) dm,

having used the fact that d(χ1 + χ2) = d1 = 0. �
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Finally, we point out how the measure valued divergence is transformed under maps of
bounded deformation:

Proposition 2.7. Let ϕ : X → Y be proper (=preimage of compact is compact) and of
bounded deformation and such that mY = ϕ∗mX . Then for any v ∈ L2(TX) and f ∈W 1,2(Y )
we have ∫

df(Prϕ(dϕ(v))) dmY =

∫
d(f ◦ ϕ)(v) dmX .

In particular, if v ∈ D(divmX ), then Prϕ(dϕ(v)) ∈ D(divmY ) and

divmY

(
Prϕ(dϕ(v))

)
= ϕ∗

(
divmX (v)

)
.

proof Pick f : Y → R Lipschitz with compact support. Recalling (2.10) and the definition of
dϕ(v) we have

df(Prϕ(dϕ(v))) = Prϕ([ϕ∗df ](dϕ(v))) = Prϕ(d(f ◦ ϕ)(v)).

Integrating w.r.t. mY = ϕ∗mX and using the trivial identity
∫
Prϕ(g) dmY =

∫
g dmX valid

for any g ∈ L1(X) we deduce∫
df(Prϕ(dϕ(v))) dϕ∗mX =

∫
d(f◦ϕ)(v) dmX = −

∫
f◦ϕddivmX (v) = −

∫
f dϕ∗divmX (v),

which, by the arbitrariness of f , is the thesis. �

2.3 About (co)vector fields on weighted Rd

Let us consider the Euclidean space Rd equipped with a non-negative Radon measure µ. Here
we have at least two ways of speaking about, say, L2(µ) vector fields: one is simply to consider
the space L2(Rd,Rd;µ) of L2(µ)-maps from Rd to itself, the other is via the abstract notion
of tangent module, which we shall denote as L2

µ(TRd).
Such two spaces are in general different, as can be seen by considering the case of µ being a

Dirac delta: in this case L2(Rd,Rd;µ) has dimension d while L2
µ(TRd) reduces to the 0 space.

Aim of this section is to show that L2
µ(TRd) always canonically and isometrically embeds in

L2(Rd,Rd;µ). This is useful because once we have such ‘concrete’ representations of vector
fields in L2

µ(TRd), we will be able to canonically associate 1-currents to them. As we shall see
at the end of the section, the fact that this current is normal is essentially equivalent to the
fact that the original vector field had measure valued divergence in the sense of Definition
2.4.

A word on notation: to distinguish between the classically defined differential and the
one coming from the theory of modules, we shall denote the former by df , while keeping df
for the latter. More generally, elements of L2(Rd,Rd;µ) or L2(Rd, (Rd)∗;µ) will typically be
underlined, while those of L2

µ(TRd), L2
µ(T ∗Rd) will be not.

Consider the set V ⊂ L2(Rd, (Rd)∗;µ) defined by

V :=
{ n∑
i=1

χAidfi : n ∈ N, (Ai) disjoint Borel subsets of Rd, fi ∈ C1
c (Rd)

}
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and define P : V → L2
µ(T ∗Rd) by

P
( n∑
i=1

χAidfi

)
:=

n∑
i=1

χAidfi.

We have the following simple result:

Proposition 2.8. The map P is well defined and uniquely extends to a linear continuous
map, still denoted by P , from L2(Rd, (Rd)∗;µ) to L2

µ(T ∗Rd). Such extension is a L∞-module
morphism and satisfies

|P (ω)| ≤ |ω|, µ− a.e. ∀ω ∈ L2(Rd, (Rd)∗;µ). (2.16)

proof The trivial inequality

|df | ≤ |df | = lip(f) µ− a.e.,

valid for every f ∈ C1
c (Rd) (see e.g. [2]) grants that P is well defined and that the bound (2.16)

for ω ∈ V holds. Such bound also ensures that P is continuous and since, as is obvious, V is a
dense vector subspace of L2(Rd, (Rd)∗;µ), we get existence and uniqueness of the continuous
extension, which is also clearly linear. The fact that such extension is a L∞-modules morphism
can be checked by first noticing that by definition P behaves properly w.r.t. multiplication
by simple functions and then arguing by approximation. �

By duality we can then define a map ι : L2
µ(TRd)→ L2(Rd,Rd;µ) ∼ L2(Rd, (Rd)∗;µ)∗ by:

ω(ι(v)) := P (ω)(v), ∀v ∈ L2
µ(TRd), ω ∈ L2(Rd, (Rd)∗;µ).

Then the bound (2.16) directly gives

|ι(v)| ≤ |v|, µ− a.e. ∀v ∈ L2
µ(TRd). (2.17)

We want to prove that equality holds here, i.e. that ι is actually an isometric embedding. We
shall obtain this by proving that P is a quotient map, more specifically that it is surjective
and such that

|ω| = min
ω∈P−1(ω)

|ω|, µ− a.e. ∀ω ∈ L2
µ(T ∗Rd). (2.18)

We shall need the following lemma about the structure of Sobolev spaces over weighted Rd:

Lemma 2.9. Let f ∈ W 1,2(Rd, dEucl, µ). Then there exists a sequence (fn) ⊂ C1
c (Rd) con-

verging to f in L2(µ) such that |dfn| → |df | in L2(µ).

proof It is known from [2] that for any f ∈ W 1,2(Rd, dEucl, µ) and every sequence (fn) of
Lipschitz and compactly supported functions on Rd converging to f in L2(µ) we have

lim
n→∞

∫
|dfn|2 dµ ≥

∫
|df |2 dµ

and that there exists such a sequence (fn) such that lipa(fn) converge to |df | in L2(µ). Here
lipa(g) is the asymptotic Lipschitz constant defined as

lipa(g)(x) := lim
y,z→x

|g(y)− g(z)|
|y − z|

= lim
r↓0

Lip(g|Br(x)
) = inf

r>0
Lip(g|Br(x)

).

10



Since clearly |df | ≤ lipa(f) µ-a.e. for every f Lipschitz with compact support, by a di-
agonalization argument to conclude it is sufficient to show that given such f we can find
(fn) ⊂ C1

c (Rd) uniformly Lipschitz, with uniformly bounded supports, converging to f in
L2(µ) and such that

lim
n
|dfn|(x) ≤ lipaf(x), ∀x ∈ Rd. (2.19)

To this aim we simply define fn := f ∗ ρn ∈ C1
c (Rd), where (ρn) is a standard family of

mollifiers such that supp(ρn) ⊂ B1/n(0). It is trivial that (fn) converges to f in L2(µ), that
the family is equiLipschitz (the global Lipschitz constant being bounded by that of f) and
that for 1

n < r it holds

|dfn|(x) ≤ Lip(f |Br(x)
), ∀x ∈ Rd.

Letting first n→∞ and then r ↓ 0 we get (2.19) and the conclusion. �

Thanks to this approximation result, we obtain the following:

Proposition 2.10. The map P : L2(Rd, (Rd)∗;µ) → L2
µ(T ∗Rd) is surjective and satisfies

(2.18) and the map ι : L2
µ(TRd) → L2(Rd,Rd;µ) is an L∞-module morphism preserving the

pointwise norm, i.e.
|ι(v)| = |v|, µ− a.e. ∀v ∈ L2

µ(TRd). (2.20)

In particular, if v1, . . . , vn ∈ L2
µ(TRd) are independent on E ⊂ Rd, then

ι(v1)(x), . . . , ι(vn)(x) ∈ Rd are independent for µ-a.e. x ∈ E.

proof We start showing that for f ∈W 1,2(Rd, dEucl, µ) we have that df belongs to the range
of P . To this aim, let (fn) ⊂ C1

c (Rd) be as in Lemma 2.9 and notice that such lemma grants
that (dfn) is a bounded sequence in L2(Rd, (Rd)∗;µ). Being such space reflexive, up to pass
to a non-relabeled subsequence we can assume that dfn ⇀ ω for some ω ∈ L2(Rd, (Rd)∗;µ).

Being P linear and continuous we know that dfn = P (dfn) ⇀ P (ω) in L2
µ(T ∗Rd) and this

fact together with the closure of the differential (see [9]) grants that df = P (ω), thus giving
the claim.

Lemma 2.9 grants that |dfn| → |df | in L2(µ) and it is easy to check that this grants
|ω| ≤ |df | µ-a.e., so that we have

|df | = |P (ω)| ≤ |ω| ≤ |df |, µ− a.e., (2.21)

which forces the equalities and thus shows that (2.18) holds for ω := df .
Since P is a L∞-module morphism, we deduce that any ω of the form

∑n
i=1

χAidfi is in
the image of P and that for such ω’s the identity (2.18) holds. To conclude for the first part
of the statement, pick ω ∈ L2

µ(T ∗Rd) and a sequence (ωn) ⊂ L2
µ(T ∗Rd) of finite L∞-linear

combinations of differentials that L2
µ(T ∗Rd)-converges to ω. By what we just proved there are

ωn ∈ P−1(ωn) realizing the equality in (2.18). In particular, (ωn) is a bounded sequence in
L2(Rd, (Rd)∗;µ) and thus up to pass to a subsequence it weakly converges to some ω. It is
clear that P (ω) = ω and, arguing as before, that |ω| = |ω| µ-a.e..

We turn to the second part of the statement. The fact that ι is a L∞-module morphism is
obvious by definition. Now pick v ∈ L2

µ(TRd), ε > 0 and find ω ∈ L2
µ(T ∗Rd) with ‖|ω|‖L2(µ) =

1 and
∫
ω(v) dµ ≥ ‖v‖L2(µ)− ε. Then use what previously proved to find ω ∈ L2(Rd, (Rd)∗;µ)

with |ω| = |ω| µ-a.e. (in particular, ‖|ω|‖L2(µ) = 1) and P (ω) = ω. We have

‖ι(v)‖L2(µ) ≥
∫
ω(ι(v)) dµ =

∫
P (ω)(v) dµ =

∫
ω(v) dµ ≥ ‖v‖L2(µ) − ε,

11



which by the arbitrariness of ε and the inequality (2.17) is sufficient to conclude.
The last claim is now obvious. �

Remark 2.11. In the proof of Theorem 2.10 we did not use the fact the distance on Rd was
the Euclidean one: the same conclusion holds by endowing it with the distance coming from
any norm. �

Now that we embedded L2
µ(TRd) into L2(Rd,Rd;µ) we can further proceed by associating

to each vector field v ∈ L2
µ(TRd) the current I(v) whose action on the smooth, compactly

supported one form ω is

〈I(v), ω〉 :=

∫
ω(ι(v)) dµ =

∫
P (ω)(v) dµ.

It is clear that I(v) has locally finite mass and that, since ι preserves the pointwise norm, the
mass measure ‖I(v)‖ is given by |v|µ.

By definition, the boundary of I(v) acts on f ∈ C∞c (Rd) as

〈∂I(v), f〉 := 〈I(v), df〉 =

∫
df(ι(v)) dµ =

∫
df(v) dµ.

By looking at the third expression in this chain of equalities we see that ∂I(v) has locally
finite mass (=is a Radon measure) if and only if the distributional divergence of ι(v)µ is a
Radon measure and in this case such measure coincides with −∂I(v). Looking at the fourth
and last term, instead, and comparing it with Definition 2.4 we see the following:

Corollary 2.12. Let v ∈ L2
µ(TRd) be with compact support. Then I(v) is a normal current

if and only if v ∈ D(divµ) and in this case

∂I(v) = −divµ(v).

3 Statement and proof of the main result

Let us start collecting the known results we shall use. The first is a simple statement concerning
the minimal weak upper gradient of the distance function. Here and in the following, given
x ∈ X we shall denote by dx the function y 7→ d(x, y).

Proposition 3.1. Let (X, d,m) be a RCD∗(K,N) space, N < ∞. Then for every x ∈ X we
have

|d dx| = 1, m− a.e.. (3.1)

proof Recall that RCD∗(K,N) is doubling and supporting a 1-2 weak Poincaré inequality
([17],[16]), that the local Lipschitz constant of dx is identically 1 (because the space is geodesic)
and conclude applying Cheeger’s results in [5].

An alternative argument which does not use the results in [5] but relies instead on the
additional regularity of both the space and the function considered goes as follows. The
function 1

2d
2
x is c-concave and thus a Kantorovich potential from any chosen measure µ0 and

some measure µ1 depending on µ0. Picking µ0 ≤ Cm for some C > 0 and with bounded
support, by the results in [13] we know that the only geodesic (µt) from µ0 to µ1 is such that
µt ≤ C ′m for any t ∈ [0, 1

2 ]. Thus we can apply the metric Brenier theorem (see Theorem

12



10.3 in [3]) to deduce that |dd2x
2 | coincides m-a.e. with the upper slope of d2x

2 . Since (X, d,m)
is doubling, the upper slope coincides m-a.e. with the lower one (see Proposition 2.7 in [3])
and being (X, d) geodesic, the latter is easily seen to be identically dx by direct computation.

Thus we know that |dd2x
2 | = dx m-a.e. and the conclusion follows from the chain rule. �

Next, we recall the main result of Mondino-Naber in the form we shall use, in particular
making explicit some of the ingredients that we will need:

Theorem 3.2. Let (X, d,m) be a RCD∗(K,N) space. Then there are disjoint Borel sets
Ai ⊂ X, i = 1, . . . , n with n ≤ N covering m-a.e. X such that the following holds.

For every i = 1, . . . , n and ε > 0 there is a countable disjoint collection (U εi,j)j∈N of Borel
subsets of Ai covering m-a.e. Ai and, for every j ∈ N, points xεi,j,k with k = 1, . . . , i, such that

|〈∇dxεi,j,k ,∇dxεi,j,k′ 〉| ≤ ε m− a.e. on U εi,j , ∀k 6= k′ (3.2)

and so that the map ϕεi,j : X → Ri given by ϕεi,j(x) := (dxεi,j,1(x), . . . , dxεi,j,i(x)) satisfies

ϕεi,j |Uεi,j : U εi,j → ϕεi,j(U
ε
i,j) is (1 + ε)-biLipschitz. (3.3)

proof This statement has been proved in [15], however, since some of the claims that we
make only appear implicitly in the course of the various proofs, for completeness we point
out where such claims appear.

The fact that X can be covered by Borel charts (1 + ε)-biLipschitz to subsets of the
Euclidean space is the main result in [15]. The fact that the coordinates of the charts are
distance functions is part of the construction, see [15, Theorem 6.5] (more precisely, in [15]
the coordinates are distance functions plus well chosen constants, so that 0 is always in the
image, but this has no effect for our discussion).

Thus we are left to prove (3.2). Looking at the construction of the sets U εi,j in [15] we see
that they are contained in the set of x’s such that

sup
r′∈(0,r)

1

m(Br′(x))

∫
Br′ (x)

∑
1≤k≤k′≤i

∣∣∣d(dxε
i,j,k

+dxε
i,j,k′√

2
− dxε

i,j,k,k′

)∣∣∣2 dm ≤ ε1, (3.4)

where r, ε1 > 0 are bounded from above in terms of K,N, ε only and the points xεi,j,k,k′ are
built together with the xεi,j,k’s (in [15] xi,j,k, xi,j,k′ , xi,j,k,k′ are called pi, pj , pi+pj respectively).
We remark that the choice of r, ε1 affects the construction of the sets U εi,j and the points xεi,j,k,

and that in any case ε1 can be chosen to be smaller than
∣∣ ε√

2+1

∣∣2.

Notice that in [15] the distance in (3.4) is scaled by a factor r, whose only effect is
that r′ varies in (0, 1) rather than in (0, r). The validity of (3.4) comes from the definition
of maximal function, called Mk, given in [15, Equation/Definition (67)], the fact that the
sets called Ukε1,δ1 introduced in [15, Equation/Definition (70)] are contained, by definition, in

{Mk ≤ ε1} and the fact that the charts as given by [15, Theorem 6.5] are defined on the sets

Bd̃
δ1
∩ Ukε1,δ1 ⊂ Ukε1,δ1 . Notice also that in [15] the notion of weak upper gradient |Df | of a

function f is used, in place of the pointwise norm of the differential used in our writing of
(3.4), but the two objects coincide (see [9]).
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We come back to the proof of (3.2). Recall that, being m doubling (see [17]), Lebesgue
differentiation theorem holds. Hence from (3.4) and the discussion thereafter we see that up
to a properly choosing ε1, and thus U εi,j , x

ε
i,j,k, x

ε
i,j,k,k′ , we can assume that∣∣∣d(dxε

i,j,k
+dxε

i,j,k′√
2

− dxε
i,j,k,k′

)∣∣∣2 ≤ ∣∣ ε√
2+1

∣∣2 m− a.e. on U εi,j .

Thus to conclude it is sufficient to prove that for given x1, x2, y ∈ X we have∣∣∣d(dx1+dx2√
2
− dy

)∣∣∣ ≤ ε√
2+1

⇒ | 〈∇dx1 ,∇dx2〉 | ≤ ε.

This follows with minor algebraic manipulations from the identity (3.1):

| 〈∇dx1 ,∇dx2〉 | =
∣∣∣∣∣d(dx1+dx2√

2

)∣∣2 − |ddx1 |2+|ddx2 |
2

2

∣∣∣
=
∣∣∣∣∣d(dx1+dx2√

2

)∣∣2 − 1
∣∣∣

=
∣∣∣∣∣d(dx1+dx2√

2

)∣∣2 − |ddy|2∣∣∣
=
∣∣∣ 〈d

(dx1+dx2√
2

)
+ ddy , d

(dx1+dx2√
2

)
− ddy

〉 ∣∣∣
≤ (
√

2 + 1)
∣∣d(dx1+dx2√

2

)
− ddy

∣∣.
�

The last result we shall need is the Laplacian comparison estimate for the distance function
obtained in [10]. Such result holds in the sharp form, but we recall it in qualitative form,
sufficient for our purposes:

Theorem 3.3. Let (X, d,m) be a RCD∗(K,N) space and x ∈ X. Then the distributional
Laplacian of dx in X \ {x} is a measure, i.e. there exists a Radon measure µ on X such that
for every f : X → R Lipschitz with support bounded and contained in X \ {x} it holds∫

〈∇f,∇dx〉 dm = −
∫
f dµ. (3.5)

Read in terms of measure-valued divergence, the above theorem yields:

Corollary 3.4. Let (X, d,m) be a RCD∗(K,N) space, x ∈ X and ψ ∈ LIP(X) with support
compact and contained in X \{x}. Then the vector field ψ∇dx ∈ L2(TX) belongs to D(divm),
i.e. it has measure valued divergence on X in the sense of Definition 2.4.

proof Since |ψ∇dx| ≤ |ψ| it is clear that ψ∇dx ∈ L2(TX). Theorem 3.3 above, the very
definition of measure valued divergence given in 2.4 and the Leibniz rule given in Proposition
2.5 ensure that ψ∇dx ∈ D(divm, X \ {x}). On the other hand, by construction ψ∇dx is
0 on a neighbourhood of x and thus, trivially, has 0 measure valued divergence in such
neighbourhood. The conclusion comes from Proposition 2.6. �

We now have all the ingredients to prove our main result:

Theorem 3.5. With the same notations and assumptions of Theorem 3.2, we pick ε < 1
N .

Then for every i, j we have
(ϕεi,j)∗(m|Uεi,j )� Li.
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proof
Set up By the inner regularity of m applied to the sets U εi,j \ {xεi,j,1, . . . , xεi,j,i} we can assume
that the U εi,j ’s are compact and that xεi,j,k /∈ U εi,j for every k = 1, . . . , i. Now fix i, j and, for
brevity, write ϕ,U, x1, . . . , xi in place of ϕεi,j , U

ε
i,j , x

ε
i,j,1, . . . , x

ε
i,j,i respectively.

Step 1: Normal currents Let (ψδ)δ>0 be a family of Lipschitz, compactly supported [0, 1]-
valued maps on X pointwise converging to χU as δ ↓ 0 and consider the vector fields

vδk := ψδ∇dxk ∈ L
2(TX), ∀k = 1, . . . , i.

By Corollary 3.4 we know that vδk ∈ D(divm).
Now observe that ϕ : X → Ri is a Lipschitz and proper map (i.e. the preimage of compact

sets is compact) and thus µ := ϕ∗m is a Radon measure on Ri and equipping Ri with such
measure we see that ϕ : X → Ri is of bounded deformation. By Proposition 2.7 the vector
fields

uδk := Prϕ(dϕ(vδk)) ∈ L2
µ(TRi)

all belong to D(divµ) and since by construction they have compact support we see from
Corollary 2.12 that the currents

I(uδk) =
−−−→
I(uδk)‖I(uδk)‖ =

ι(uδk)

|uδk|
(|uδk|µ), k = 1, . . . , i

are normal. We also notice that trivially

µ|{|uδk|>0}
� |uδk|µ = ‖I(uδk)‖, k = 1, . . . , i. (3.6)

Step 2: Independent vector fields We claim that

the vector fields ∇dx1 , . . . ,∇dxi ∈ L2
loc(TX) are independent on U (3.7)

and to prove this we shall use our choice of ε < 1
N .

Let f1, . . . , fi ∈ L∞(X) be such that
∑i

k=1 fk∇dxk = 0 m-a.e. on U and notice that

0 = 〈∇dxk ,
i∑

k′=1

fk′∇dxk′ 〉 = fk|ddxk |
2 +

∑
k′ 6=k

fk′〈∇dxk ,∇dxk′ 〉 m− a.e. on U.

From (3.1), (3.2) and the fact that ε < 1
N we obtain

|fk| = |fk||ddxk |
2 ≤

∑
k′ 6=k
|fk′ | |〈∇dxk ,∇dxk′ 〉| ≤

1

N

∑
k′ 6=k
|fk′ | m− a.e. on U.

Adding up in k = 1, . . . , i we deduce
∑

k |fk| ≤
i−1
N

∑
k |fk| m-a.e. on U , and since by Theorem

3.2 we know that i ≤ N , this forces
∑

k |fk| = 0 m-a.e. on U , which is the claim (3.7).
Now notice that Theorem 3.2 grants that ϕ : X → Ri is of bounded deformation (having

equipped Ri with the measure µ = ϕ∗m), partially invertible on U and such that (ϕ|U )−1 is

Lipschitz. It has been proved in [3] that in any infinitesimally Hilbertian space with measure
giving finite mass to bounded sets, thus in particular in our RCD∗(K,N) space (X, d,m), the
Lipschitz functions are dense in W 1,2(X) (this comes from the density in energy of Lipschitz
functions valid in any metric measure space - proved in [3] - and from the uniform convexity
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of W 1,2 in infinitesimally Hilbertian spaces). Therefore Proposition 2.2 grants that the vector
fields

u0
k := Prϕ(dϕ(χU∇dxk)) ∈ L2

µ(TRi) k = 1, . . . , i

are independent on {Prϕ(χU ) > 0}, which by Proposition 2.10 is the same as to say that

ι(u0
1)(x), . . . , ι(u0

i )(x) ∈ Ri are independent for µ-a.e. x such that Prϕ(χU )(x) > 0. (3.8)

Conclusion The fact that the family (ψδ) is equibounded in L∞(X) and pointwise converges
to χU easily implies that vδk → χU∇dxk in L2(TX) for every k = 1, . . . , i. By the continuity
of dϕ and Prϕ we deduce that for any k = 1, . . . , i we have uδk → u0

k in L2
µ(TRi) as δ ↓ 0 and

thus by Proposition 2.10 that ι(uδk)→ ι(u0
k) in L2(Ri,Ri;µ) as δ ↓ 0.

Let Aδ ⊂ Ri, δ ≥ 0 be the Borel sets defined, up to µ-negligible sets, as

Aδ :=
{
x ∈ Ri : ι(uδ1)(x), . . . , ι(uδi )(x) are independent

}
.

Since being an independent family is an open condition, the convergence just proved ensures
that for any δn ↓ 0 we have

µ
(
A0 \

⋃
n

Aδn
)

= 0. (3.9)

For δ > 0, we apply Theorem 1.1 to the currents I(uδk): since µ-a.e. on Aδ the vectors ι(uδk)
are all nonzero, we have µ|Aδ � µ|{|uδk|>0}

for every k = 1, . . . , i and thus (3.6) and Theorem

1.1 grant that
µ|Aδn � Li ∀n ∈ N

and thus from (3.9) we deduce
µ|A0

� Li.

On the other hand by (3.8) we know that, up to µ-negligible sets, we have A0 ⊃ {Prϕ(χU ) > 0}
which together with the above implies

Prϕ(χU )µ� Li.

As we have ϕ∗(m|U ) = Prϕ(χU )µ, the proof is achieved. �
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