|
N“‘ (CTP)

SISSA Master in High Performance Computing

MASTER IN HIGH PERFORMANCE
COMPUTING

Large-Scale Implementation of
the Density Matrix
Renormalization Group
Algorithm

Supervisors:
Marcello DALMONTE,
Ivan GIROTTO

Candidate:
James VANCE

3" EDITION
20162017

Abstract

The density matrix renormalization group (DRMG) algorithm, a numerical tech-
nique that has been successfully used for investigating the low energy properties of
one-dimensional (1D) strongly correlated quantum systems, has recently emerged as
an effective tool for studying two-dimensional (2D) systems as well. At the core of
DMRG is a general decimation procedure that allows the systematic truncation of the
Hilbert space leaving only the most relevant basis states. However, studying 2D sys-
tems requires more degrees of freedom and greater computational resources. To ad-
dress this computational roadblock, we develop a massively parallel implementation of
the DMRG algorithm that targets a large number of basis states. It relies on parallel
linear algebra libraries that distribute the generation and diagonalization of large sparse
matrices, as these remain to be the most time-consuming steps in DMRG. We tailor
our developed code for efficient performance on two sections of CINECA Marconi, a
class Tier-0 supercomputing infrastructure, and evaluate its performance and scalabil-
ity on up to thousands of processors. From the performance analysis we identify some

limitations in scalability and suggest possible ways to rectify them.

il

Acknowledgments

I would like to express my deepest gratitude to my supervisors, Marcello Dalmonte
and Ivan Girotto, for their expertise, guidance, and support from the initial stages up to
the writing of this thesis. I would also like to thank Marlon Brenes Navarro for sharing
his knowledge on PETSc and SLEPc, and Noel Lamsen for the helpful discussions on
the DMRG algorithm.

I would like to acknowledge the ICTP Programme for Training and Research in
Italian Laboratories (TRIL) for funding my participation in the MHPC programme.
I would also like to thank CINECA and ICTP for providing access to a world-class

supercomputing infrastructure.

il

Contents

Abstract
Acknowledgments
1 Introduction

2 Background
2.1 Strongly Correlated Quantum Systems
2.2 The DMRG Algorithm
2.2.1 Infinite-Size Algorithm
2.2.2 Application to the Heisenberg Spin Chain
2.2.3 Quantum Numbers and Symmetries

2.3 Libraries for Massively Parallel Linear Algebra

3 Implementation
3.1 BasicImplementation

3.1.1 Workflow

v

CONTENTS

3.1.3 Ground State Solution 16

3.1.4 Construction of the Reduced Density Matrices 17

3.1.5 Construction of the Transformation Matrices 19

3.1.6 Basis Truncation 19

3.2 Quantum Number Conservation 20
3.2.1 Tracking of Magnetization Sectors 20

3.2.2 Solving for the Ground State in a Target Sector 22

3.2.3 Kronecker Product with Index Slicing 23

3.2.4 Block Diagonal Reduced Density Matrices 26

4 Results and Performance 29
4.1 Computational Tools 29
4.1.1 System Architecture 29

4.1.2 Software Dependencies and Configuration 30

4.2 Convergence of Ground State Energy Per Site 31
4.3 Performance Analysis oo 32
4.3.1 Comparison Between Implementations 32

432 Strong Scalability oo oo 34

4.3.3 Scaling of Computational Resources with Problem Size 42

4.4 DISCUSSION vt i e e e e e e e e e 43

5 Conclusions and Future Work 45
5.1 Conclusions L 45
52 FutureWork L 46
Bibliography 47

CHAPTER 1

Introduction

The study of two-dimensional many-body quantum systems is crucial for the under-
standing of fundamental and technology-relevant problems such as high-temperature

superconductivity [1], frustrated magnetism [2, 3], and topological phases of matter

[4].

From the physics side, the study of two-dimensional (2D) systems is challenging -
quantum fluctuations are too strong to reliably apply mean field methods that work in
three-dimensional systems. Also, the advanced theoretical machinery which works in
one-dimensional (1D) systems does not work here. Thus, the study of 2D systems often

calls for computational approaches [2].

The density matrix renormalization group (DMRG), a method that was originally
formulated for solving the ground state properties of 1D quantum spin systems [5], has
recently been proven effective for 2D systems as well [6-8]. It has especially shown to
be very useful in problems that are intractable with traditional methods such as exact
diagonalization (due to large number of basis states) [9], and quantum Monte Carlo

(due to the negative sign problem) [10].

DMRG is a well-understood, numerically stable and widely-applicable algorithm.
The accuracy of its results can be systematically quantified by changing two control
parameters - the number of states m and number of sweeps N [11]. However, even
for 1D systems, DMRG can become computationally heavy. In this study, we will
implement DMRG calculations for distributed memory architectures and enable the
developed code to perform efficiently on a Tier-0 world class HPC infrastructure such
as CINECA Marconi. Ultimately, our goal is to perform parallel large-scale DMRG on
1D and 2D frustrated magnets. Solving this HPC problem will give further insight into
unprecedented regimes of physical problems.

CHAPTER 2

Background

2.1 Strongly Correlated Quantum Systems

The many-body problem is one of the grand challenges in quantum many-body
systems. This is due to the large number of degrees of freedom needed to represent
a quantum state. Oftentimes, this number grows exponentially with the size N of the
system in consideration [12]. Physical systems can be effectively simplified into single-
particle models when many-particle interactions are treated perturbatively. However,
this simplification breaks down in the case of strongly-correlated systems in which the

interactions among constituents of the system are non-trivial.

In recent years, several methods have been developed to study strongly-correlated
quantum systems. A common theme among these methods is that they are most effec-
tive in finding the ground state energy wavefunction of the system from which one can
calculate observables. These standard methods include exact diagonalization, quantum

Monte Carlo, and the density matrix renormalization group algorithm.

Within exact diagonalization (ED), the Hamiltonian of a quantum system is repre-
sented by a sparse matrix whose eigenvectors and eigenvalues may be obtained using
several direct and iterative methods such as Krylov subspace techniques. However,
even with many simplifying assumptions and symmetries, ED still suffers from expo-
nential growth of the required number of basis states. Consequently, the computational
resources needed to calculate even a portion of its eigenspectrum also grows exponen-

tially with the system size [13].

Quantum Monte Carlo (QMC) algorithms use importance sampling to solve higher-

order integrals in the calculation of expectation values, and thus are able to bypass this

CHAPTER 2. BACKGROUND

increased complexity. Although the number of possible configurations still scale expo-
nentially with the number of particles, with QMC, the computational effort now scales
as a polynomial in N [14]. QMC methods have been used successfully for bosonic
systems. However, these methods often fail in fermionic and frustrated spin systems
due to the so called ‘sign problem’, that invalidates importance sampling, resulting in

exponential increase in time to solution with the system size [10].

Addressing the limitations of ED and QMC is the Density Matrix Renormalization
Group (DMRG) algorithm, which has recently emerged as a numerically precise and
highly reliable method for studying many-body quantum systems [5]. Its efficient dec-
imation procedure allows for the study of large systems intractable by ED, and it does

not suffer from the frustrated spin or fermionic sign problem found in QMC [15].

2.2 The DMRG Algorithm

The Density Matrix Renormalization Group (DMRG) algorithm is a variational
method used to study the ground state properties of low-dimensional many-body quan-
tum systems such as spin lattices or molecular orbitals. The kernel of this method is
to obtain a truncated wavefunction in a reduced Hilbert space whose basis is chosen
to minimize the loss of information. This is achieved by decomposing the lattice into
smaller sub-blocks and iteratively increasing the size of each block while performing a
truncation of the operator bases at each step. With DMRG, the error resulting from trun-
cation can be measured and controlled, and large systems can be treated very accurately

to obtain ground state energies and gaps [11].

The method was conceptualized in 1992 by Steven White as an improvement to
the block decimation procedure in Wilson’s Numerical Renormalization Group (NRG)
[5, 16]. Since then, DRMG has evolved and has been applied to different problems in
domains outside of condensed matter including nuclear physics [17, 18] and quantum
chemistry [19, 20].

In the following section we illustrate the traditional DMRG algorithm following
the original paper [5] and subsequent detailed reviews and tutorials [11, 15, 21]. For
simplicity we will be using spins in our description. However, the same procedure is

immediately applicable to fermions and bosons.

CHAPTER 2. BACKGROUND

(@ e @ - o/e - @ O

(b) ’. ® .}—O O—{. NP .‘
© ’. @ - .}—O Q—{. @ .‘

@ @ @ - @ ole o - o 0

S1 S2 SL SL+1 SR+1 SR 52 S1

Figure 2.1: Block growing scheme in the infinite-size DMRG algorithm:
Starting with the blocks of length L (R) and basis size Dy, (Dg) formed in the
previous step (a), we grow each block by adding one site at their interface
(b). We construct the superblock Hamiltonian and diagonalize it to obtain
the ground state (c). We calculate the reduced density matrix for each block
and use its m largest eigenvectors to rotate the operators to a truncated basis
for the next step (d). [15]

2.2.1 Infinite-Size Algorithm

The starting point of the algorithm is to have two blocks of spin sites, referred to as
the left and right blocks, or the system and environment blocks. The traditional DMRG
algorithm then proceeds in two distinct phases: the infinite-size algorithm and the finite-
size algorithm. The infinite-size DMRG (iDMRG) algorithm serves as the warm-up
stage for the full DMRG algorithm since the resulting block and site operators may be
stored to perform the finite-size algorithm. Its implementation also provides a template

for the finite-size algorithm as the same steps will be performed in this procedure.

The algorithm, illustrated in Figure 2.1, starts with the left (L) and right (R) blocks
each containing one site with local dimension d. These blocks are denoted by B(1,d)
where the arguments indicate the length and dimension of the block, respectively. We
construct all the operator matrices, O, required to represent the interaction between
sites. For simplicity in our illustration of the algorithm, we consider systems with

nearest-neighbor interactions in which the Hamiltonian usually takes the form

H= ZZ (anSn,iTn,i—i-l + ann,i) (21)

1 n

where a, and b, are coupling constants, and S, ;, T,; and V,,; are operators acting on

CHAPTER 2. BACKGROUND

the i site, and n serves as index for the various terms of the Hamiltonian. [21]

From a block of length L, the resulting enlarged block with L+ 1 sites has a Hamil-

tonian matrix of the form
H . =H ®1,+1, ®H, +Hj 50 (2.2)

and correspondingly, for the right block with R sites enlarged to R+ 1 the Hamiltonian

is given by
Hor = 1. @ Hg + Ho @ 1 + Horsr (2.3)

where @ is the Kronecker product, the circle symbol o denote the added site, the last
terms indicate the interaction between the block and the added sites, and 1 is the identity

matrix corresponding to the block or site subspace denoted as its index.

Initially, we perform the addition of sites in a numerically exact manner until the
blocks grow to %(n,DL(R)) where the number of states Dy g) = d" needed to exactly
represent the block is just below or equal to our desired maximum number of basis
states m. After reaching this threshold, the blocks are further enlarged but a truncation
procedure is performed at each successive iteration that ensures that we keep a max-
imum number of states to describe the enlarged block. Taking the interactions of the

identical enlarged blocks B (n + 1,dDy, R)), we form the superblock Hamiltonian
Hyoor = Hpo ® 1og + 110 @ Hog + Hocsor- (2.4)

where the last term denotes the interaction between the connecting sites of the two
blocks. [11, 21]

We solve the ground state of the superblock Hamiltonian corresponding to the eigen-

value problem posed by the time-independent Schrodinger equation

H;oor |WGs) = Ecs |Wes) (2.5)

using iterative diagonalization techniques such as Lanczos or Davidson algorithms. The

ground state vector takes the form

lves) =Y v D) ®|r) (2.6)
Lr

CHAPTER 2. BACKGROUND

expressed in terms of the basis vectors of the left and right enlarged blocks. From the
ground state eigenvector, we calculate the reduced density matrices of each block by

tracing out the other block

pro = Tror |Was) (Was| (2.7)
por = Trro |[Was) (Wes| (2.8)

We take the full eigenvalue decomposition of each block’s density matrix and use this

to express the reduced density matrices as
PLo = Zwa |06) o o] 2.9)
(04

Taking the vectors with m largest weights @y, we construct a rotation matrix Ur, of
dimension dDy x m where D; = m if a previous truncation has been performed. We use
this to rotate the operator matrices Oy, of dimension dDy, acting on the enlarged block

to
OLO = (ULO)TOLOULO (210)

The transformed operator matrix now has dimension min(m,dDy). We also perform the
corresponding steps on the enlarged right block oR. After setting L <— Lo and R <— oR as
the starting blocks, the block enlargement and basis truncation steps are repeated. The
density matrix truncation is applied on both blocks at each successive iteration until a

suitable system size or tolerance in the error of the energy is reached. [11, 15]

2.2.2 Application to the Heisenberg Spin Chain

The Heisenberg model is one of the simplest but non-trivial models studied with
DMRG. Given a one-dimensional spin-1/2 chain of length N as illustrated in Figure 2.2,
the Heisenberg Hamiltonian is defined as

N—1
H= JiSiSiv1 (2.11)
i=1
where J; is a coupling constant, and S = (S*,S”,S?) are the spin operators represented

as Pauli matrices for spin-1/2 chains. Introducing the raising and lowering operators

CHAPTER 2. BACKGROUND

S1 52 §3 SN-2 SN-1 SN

Figure 2.2: One-dimensional spin chain with open boundary conditions
and nearest-neighbor interaction.

S* = §*+iS” allows us to rewrite the Hamiltonian into the more convenient form
N-1 J
H=) <JZS§S§+1 +3 [SjSMJrS,.SgJ) (2.12)
i=1

where J and J; are coupling constants and the index i runs over interactions be-
tween nearest-neighbor sites. For spin-1/2 systems with J = J, = 1, the Bethe
ansatz was used to exactly solve for the ground state energy which was found to be
Ey=1/4—1In(2) ~ 0.4431471805599. Several DMRG studies have also explored the
low-energy properties of the Heisenberg model in different geometries and higher di-
mensions such as two-dimensional ladders [8] and the Kagome lattice [22]. For our
implementation, we will be using the spin-1/2 one-dimensional Heisenberg model as
test Hamiltonian due to its simplicity and the presence of an exact solution for compar-

ison.

A single site of a spin-1/2 chain is described by a state with the basis vectors |1)
and |]) forming a local dimension of d = 2. To explicitly construct (2.12), we use the

following matrix representations of the single-site spin operators

0
8. = , ST = . Sg = (2.13)
0 —1/2 0 0 1 0

which are derived from the Pauli matrices. With respect to the entire N-spin chain, an

operator acting on the /" site is explicitly represented by

i—1 N
Sy = (@ 1o> 28fe| &Q 1. (2.14)
j=1

J=i+1

where ¢ = {z,+,—} and 1 is the d X d identity matrix. If this acts on the last site of
the left (right) block of length L (R), we simply denote it as SZ(R)’ and on the last site
of the enlarged block of length L+ 1 (R+1) as Szo (oR)

explicitly construct the Hamiltonian (2.12) and the spin operators at each site.

. With this expression, we can

CHAPTER 2. BACKGROUND

Alternatively, we can also construct the Hamiltonian iteratively using (2.2) and
(2.12). We begin with the case of two spins and construct its Hamiltonian explicitly

as
J
H2=JZS§®S§+5 [ST®S; +S; ®ST]. (2.15)

Then we can iteratively enlarge the block by adding another site to each block so that the
Hamiltonian of a left (right) enlarged block containing L+ 1(R + 1) sites is expressed

by the recursion

J

Ho =H,®1,+J,8; ® S+ > S} ®S, +S; @S] (2.16)
— 4 Z { + - - +

HoR—lo®HR+JZSO®SR+2 [ST®Sg +S; ®@S§] - (2.17)

where S7 = S? , and S}, = S? ; are the operators of the last sites added to the left and
right blocks with (possibly truncated) basis dimensions Dy, and Dg, respectively. Using
(2.4) we can now construct the superblock Hamiltonian as

HLooR - HLo & 1oR + 1Lo ® HoR
(2.18)

J _ _
+J:S;, @S g + 5 S}, ®Sr+S., ©8%]

with a total length L 4+ R+ 2 and a basis size of d*D;Dg. [11]

2.2.3 Quantum Numbers and Symmetries

For many systems studied with DMRG, the Hamiltonian conserves some quantum
numbers such that it commutes with the corresponding operator. These symmetries may
be exploited to decrease the Hilbert space dimension which reduces memory consump-
tion and computation time. Here, we discuss the most frequently used symmetry, the
U (1) symmetry, in which total magnetization and/or total particle number are conserved
quantum numbers. In the context of the Heisenberg model, U (1) symmetry conserves
the total magnetization Si,; = f]: 1 Sj- allowing us to express the operators in terms of

smaller blocks corresponding to a set of quantum numbers. [15]

In our particular spin-1/2 model, Sjt are the eigenvalues of the S* operator (2.13)
at site j which are simply {+%, —%} Thus, for a block of N sites, the possible quan-
tum numbers are {%], %’ —1,..., —%’} If we label the block and site states of the sub-
systems with their magnetizations and and preserve the total magnetization S, of the

CHAPTER 2. BACKGROUND

superblock, we get
Stot = S1 +Sc1 +Scr+Sk (2.19)

where 6-(®) denote the added sites to the left and right blocks respectively. Thus, we
can target a particular magnetization sector for the ground state solution (2.5), usually at
St = 0, or study spin gaps by solving the ground state at different target magnetizations.
The reduced density matrices (2.8) also acquire a block-diagonal structure which allows

us to perform its spectral decomposition (2.9) on each of these diagonal blocks. [15]

2.3 Libraries for Massively Parallel Linear Algebra

While simple DMRG applications require only moderate resources, going towards
higher dimensions is computationally challenging since it requires keeping a large num-
ber of states. This results in large matrices and computationally intensive operations.
Thus there is a need for a parallel implementation that uses scalable linear algebra li-
braries for the management of data and communication, and the implementation of the

various solvers.

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of
data structures and routines for the scalable parallel solution of scientific applications
originally designed for solving partial differential equations. It uses Message Passing
Interface for distributed memory parallelism. It includes an implementation of parallel
matrices and vectors together with basic operations on these objects, and several linear
system solvers. [23] One of the packages that extends upon PETSc is the Scalable Li-
brary for Eigenvalue Problem Computations (SLEPc) which is used for the eigenvalue
decomposition of large sparse matrices on parallel distributed-memory architectures.
Together, these two packages provide the framework in which we implement our scal-
able DMRG calculations. [24] In this section we will explain the general features of

these packages and what makes them suitable for our DMRG calculations.

PETSc implements a class of sparse matrices called MATAIJ which stores the ele-
ments based in a compressed sparse row (CSR) format. In the CSR format the non-zero
elements of each row are represented as a list of integer column indices and floating-
point values. Distributed memory storage of this matrix is achieved by assigning own-
ership of an almost uniform number of rows to each MPI process. Correspondingly,

vectors are also stored in a distributed manner following the layout of the matrix which

CHAPTER 2. BACKGROUND

acts on it.

For ubiquitous matrix-vector product operations, overlap between communication
and computation is achieved by separately storing a diagonal block of matrix elements
that act on the local portion of the vector, and an off-diagonal block of matrix elements
that act on the non-local elements of the vector that are gathered to complete the op-
eration [25]. Thus, when constructing a matrix operator, knowing how much memory
to preallocate for the diagonal and off-diagonal blocks is essential for improved per-
formance. PETSc also has a MATSHELL matrix-type with a customizable interface that

allows for a matrix-free approach especially for matrix-vector products. [23]

On the other hand, SLEPc contains eigensolvers that are most efficient for finding
a small number eigenvalues of large sparse matrices based on several iterative algo-
rithms. It already includes the usual methods that are used for Hamiltonian matrices
such as Lanczos, Arnoldi and Krylov-Schur algorithms. Additionally, it also provides
functionality for the partial SVD of rectangular matrices, solutions to generalized non-
Hermition and non-linear eigenvalue problems, and some interface to serial LAPACK

routines. [24]

The combination of PETSc and SLEPc provides the basic functionalities needed for
a large-scale DMRG calculation, including parallel sparse eigensolvers and basic linear
algebra operations. They also enable scalability by using distributed-memory paral-
lelism. Although the DMRG workflow is inherently serial, the generation of and oper-
ation on large sparse operator matrices can greatly benefit from the speedup brought
about by this parallelism. In fact, a previous thesis has demonstrated a massively-
parallel implementation for the time-evolution of disordered quantum systems using

Krylov subspace techniques inherently provided by these libraries [26, 27].

10

CHAPTER 3

Implementation

In this chapter, we present our implementation of the infinite-size DMRG algo-
rithm as detailed in the previous chapter. In Section 3.1 we describe the most basic but
widely-applicable implementation that does not take symmetries into account but rather
solves the entire Hamiltonian. We present an optimized version of this implementation
in Section 3.2 by targeting a specific magnetization sector of the Hamiltonian which
dramatically decreases the overall computational cost. For concreteness, we shall use
the one-dimensional spin-1/2 Heisenberg chain with local dimension d = 2 as explicit
model for our construction while keeping the notation as general as possible so that the

same procedure can also be applied to other systems.

3.1 Basic Implementation

We first discuss the basic implementation which follows the traditional formulation
in Section 2.2.1 where quantum numbers and symmetries are not considered. This
approach is more computationally intensive but its implementation is simpler and it is

applicable to a wider range of physical problems.

3.1.1 Workflow

Our implementation starts with the construction of the d-by-d operators H,, S and
St for the single site. The operator S; and its representation relative to a block can
be obtained from the Hermitian conjugate S, = (S;fN)T whenever needed. With these

matrices, we form the left and right blocks containing one site each and perform the

11

CHAPTER 3. IMPLEMENTATION

steps of the DMRG iteration. Based on the details provided in Section 2.2.1, we divide
a single iteration of the DMRG algorithm into several distinct phases which we have

implemented as functions in a C++ class called iDMRG.

* BuildBlockLeft and BuildBlockRight involve the addition of a site to the left and
right blocks to form the enlarged blocks Lo and oR, respectively. These steps
involve the calculation of the enlarged block Hamiltonians H;, (Hog) given in
(2.2)-(2.3), and the construction of the operators Sj_ and Sio (Sig and SjR) for
the newly added sites using (2.14). Using (2.14), the operators Sj_ and SZFO
(S¢p and S1) for the newly added sites are also constructed relative to their
respective blocks. These steps result in the creation of several matrices of size
dDp gy X dDyg). 28]

* BuildSuperblock constructs the superblock Hamiltonian H; ..z following equa-
tion (2.4) which results in a large sparse matrix of size d*D;Dg x d*D;Dg in the
MATAIJ format.

* SolveGroundState obtains the ground state solution of the superblock Hamilto-
nian by solving the eigenvalue problem posed in (2.5).

* BuildReducedDMs constructs the reduced density matrices pr, and por from the
ground state eigenvector following (2.8). This results in smaller matrices with
maximum size dDyg) X Dy g)-

* GetRotationMatrices is where we solve for the full spectrum of the reduced den-
sity matrices using SLEPc’s Singular Value Decomposition (SVD) class which
has an interface to dense LAPACK routines. It also constructs the rotation matrix
UL using the singular vectors of the reduced density matrices.

* TruncateOperators performs the rotation of the block Hamiltonian and site oper-

ators using (2.10).

3.1.2 Kronecker Product of Distributed Sparse Matrices

The key operation in the construction of matrix operators for the enlarged blocks
and the superblock Hamiltonian is the Kronecker product. Given two matrices A and
B of dimension (My,N,) and (Mg, Np), respectively, the Kronecker product C=A®B
of dimension (MsMp,N4Np) has elements given by

Cys5 =Aij Brs (3.1)

12

CHAPTER 3. IMPLEMENTATION

Algorithm 1 Local Row and Column Ownership of Global Matrices

Input: Global matrix size Mgjoba;, MPI communicator rank np;,x and size nprocs
Output: Row ownership range [istart, fend)
function SPLITOWNERSHIPRANGE(Mgiobal> Mranks Pprocs)
loffset <— (M global mod nprocs)
Miocal < Mglobal /Mprocs > Number of locally-owned rows/columns
if 1k < ioffset then > Distribute remainder to first few processes
loffset €~ Mrank
Miocal <— Miocal 1 1
end if
Istart < M, global/ Mprocs * Prank loffset
lend < Istart T Miocal
return iseart, lend
end function

where y=1i-Mp-+kand 6 = j-Np+ 1. Looking at (2.2)-(2.4), we can see that the ma-
trices that will be constructed often involve a linear combination of Kronecker products

of the form
C=) a,A,®B, (3.2)
n

where n is an index over terms and g, 18 a coefficient. As of version 3.7.6, PETSc does
not yet support this operation for general sparse matrices so we have written our own
custom implementation with the simplifying assumption that the sets of matrices {A,}

and {B, } will have uniform dimensions among themselves.

There are several constraints to our implementation. First, the matrix operators are
stored in a compressed sparse row (CSR) format which is more efficient for access-
ing and writing elements contiguously in row-major order than in column-major order.
Second, row ownership is distributed among all MPI processes in the communicator
so that some rows of A, and B,, must be sent to the correct processes where they are
needed to construct the local rows of resultant matrix C. Finally, preallocation for the
non-zeros of the matrix must be done to improve efficiency during matrix construction
so the resulting number of non-zeros of C must be known before construction. Taking
these into account, we divide our implementation of the Kronecker product into three

stages: submatrix collection, preallocation, and matrix construction.

In submatrix collection, we determine and communicate the entire rows of A,, and
B,, needed to construct the local rows of C for each MPI process. We begin by calcu-

lating the dimensions of C and determining the row ownership range of the resultant

13

CHAPTER 3. IMPLEMENTATION

Algorithm 2 Kronecker Product: Submatrix Collection

Input:
MPI matrices {A, }* | of size (Ma,N4) and {B,,}*._, of size (Mp,Np)
MPI communicator rank 7,k and size nprocs
Output:
Sequential matrices {An,sub}ﬁl: , and {B,Lsul-,}j)l"':1 containing non-local rows
procedure KRONGETSUBMATRICES
Mc +— My - Mp > Global number of rows of C
Nc < Ny -Np > Global number of columns of C
IC start, IC,end = SPLITOWNERSHIPRANGE(M(, Nyank, Mprocs)

for ic € [iC,starhiC,end) do

IS4 < insert(ic/Mp) > Index set of required rows of A
ISp < insert(ic mod Mp) > Index set of required rows of B
end for

forne{1...M} do
A, sub < MatGetSubmatrices of all rows of A,, listed in ISy
B, sub < MatGetSubmatrices of all rows of B, listed in ISp
end for
end procedure

matrix that conforms to PETSc’s default layout. This is achieved by using the function
SPLITOWNERSHIPRANGE shown in Algorithm 1 which outputs the range of row in-
dices [ic start; ic,end) Delonging to the current process. In Algorithm 2 we describe the
remaining procedure which involves determining the indices of the rows of A, and B,
needed by a particular MPI process. These rows are then collected into submatrices
by using PETSc’s MatGetSubmatrices function [23]. Additionally, a mapping object
is created that takes the non-local row index and maps it to the local row index in the

sequential submatrix.

A compressed sparse row matrix A may be logically thought of as an array of rows
and that each row Alis] is a list of tuples (coly, valg) representing the column indices
and values of only the non-zero elements in each row. Knowing how many non-zeros
there will be in the matrix, and preallocating the corresponding amount of memory is
crucial for attaining good performance as it avoids the repeated reallocation of memory
for the non-zero rows during matrix construction. During prealloaction, we determine
the required storage for each row of the resultant MPI or global sparse matrix follow-
ing PETSc’s MATMPIAIJ format which is assembled into two sequential blocks in the
MATSEQAIJ format: the diagonal block and the off-diagonal block. An element that
has a column index in the range [jc sart; jc,end) calculated from Algorithm 1 belongs

to the diagonal block. Otherwise, the element belongs to the off-diagonal block. The

14

CHAPTER 3. IMPLEMENTATION

Algorithm 3 Kronecker Product: Preallocation

Input: Sets of sequential submatrices {A sub };"’:1 and {B%wb}y: |
Output: Arrays DNNZ[] and ONNZ]| containing the number of non-zeros in the diag-
onal and off-diagonal blocks, respectively
procedure KRONPREALLOCATION
jC,start»jC,end <= SPLITOWNERSHIPRANGE(Nc, Npank, nprocs)
for ic € [iC7start7iC,end) do
DNNZ[ic] < 0, ONNZ[ic]| < 0
forge {1...0} do
for (coly,valy) € Ay sublic/Mp] do
for (colp,valg) € B, qup[ic mod Mp| do
col¢c < coly - Ng +colp
if jc stare < colc < jc,end then
DNNZ[i¢]| - DNNZ[ic] + 1
else
ONNZ[ic] + ONNZlic| + 1
end if
end for
end for
end for
end for
end procedure

number of elements in these blocks for each row are calculated and stored in arrays
DNNz and ONNZ for the diagonal and off-diagonal blocks, respectively, as illustrated
in Algorithm 3. These arrays are then fed into the MatMPIAIJSetPreallocation and
MatSegAIJSetPreallocation functions of PETSc. [23, 29]

Finally, we use the column indices and values of the sequential submatrices to con-
struct the local rows of C in the procedure KRONMATRIXCONSTRUCTION as illus-
trated in Algorithm 4. Here, we loop through the rows of A, and B,,, and follow the
definition of the Kronecker product in (3.1). Additionally, we loop through the terms of
the linear combination in (3.2). The insertion of values to the matrix is achieved using

the MatSetValues function provided by PETSc.

Together, these procedures allow us to explicitly construct the matrix representation
of the block operators and the superblock Hamiltonian during the BuildBlockLef't,
BuildBlockRight and BuildSuperblock stages of the workflow, and distribute them

among different MPI processes.

15

CHAPTER 3. IMPLEMENTATION

Algorithm 4 Kronecker Product: Matrix Construction

Input: Coefficients {a,} of the linear combination of ®
Sequential submatrices {A,LSLH)}Q/I:1 and {B,Lsub}fy:1 containing non-local rows
Output: Resultant MPI matrix C (3.2)
procedure KRONMATRIXCONSTRUCTION
for rowc € [iC,stana iC,end) do
oWy < ic / Mp
rowg < ic mod Mg
forge {1...0} do
for (coly,valy) € A, qup[row4] do
for (colp, valg) € B, gup[rowp] do
colc < coly - Ng+colg
vale < a,, - valy - valp
C[rowc] « insert ((colc, valc))
end for
end for
end for
end for
end procedure

3.1.3 Ground State Solution

After building the superblock Hamiltonian, the next step is finding the ground
state solution. This is represented by the time-independent Schrodinger equation
H|y) = E|y) for which we solve for the eigenpair corresponding to the lowest eigen-
value. Since the Hamiltonian matrix for the system is sparse and very large, and only
an extremal part of the eigenspectrum is needed, a full eigendecomposition of the ma-
trix is impractical. Instead, iterative diagonalization techniques are often used which
include the Lanczos and Davidson algorithms. These and many other techniques are
implemented in SLEPc and have been tested for scalability up to thousands of cores.
[24]

In particular, the Krylov-Schur algorithm, which is based on Krylov subspace meth-
ods, has shown good performance results for both Hermitian and non-Hermitian eigen-
problems making it SLEPc’s default eigensolver. In our case in which the Hamiltonian
matrix is Hermitian, the Krylov-Schur algorithm is equivalent to a thick-restart Lanczos

method which maintains an upper bound in the number of Lanczos vectors. [30, 31]

Once the Hamiltonian matrix has been constructed following the previous section,
using SLEPc’s Eigenvalue Problem Solver (EPS) object to find the ground state is very
straightforward. This step is implemented in the SolveGroundState section of our

16

CHAPTER 3. IMPLEMENTATION

Listing 3.1 Code snippet for calling the eigensolver

EPS eps;

EPSCreate (PETSC_COMM_WORLD, &eps);

EPSSetOperators(eps, superblock_H_, NULL);
EPSSetProblemType(eps, EPS_HEP); // Hermitian
EPSSetWhichEigenpairs(eps, EPS_SMALLEST_REAL); // Ground state
6 EPSSetFromOptions(eps); // Specify options at run time

7 EPSSolve(eps);

hn B~ W N =

workflow. The main portion of the calling sequence is shown in Listing 3.1.

Parameters such as which algorithm to use, the kind and number of eigenpairs to
solve for, and the tolerance can be specified as run-time parameters [32]. For our pur-
pose, we use the Krylov-Schur algorithm and we specified lowest real eigenvalues with
relative tolerance set at 10712,

3.1.4 Construction of the Reduced Density Matrices

When the eigensolver has reached the desired tolerance, the ground state eigenvec-

tor may now be extracted from the EPS object. This vector takes the form
Wes) =Y vl ®|r) (3.3)
Lr

where indices / and r run over the bases of the enlarged blocks Lo and oR, respectively,
and it has a global length of d>D;Dp. Its corresponding reduced density matrix takes

the form

Proor = [Wes) (Wosl = Y, wiwp |0 (| @|r) (F] G4

!
Ll r

To get the reduced density matrix for the left (right) block, we trace out the right (left)
block subsystem

Pro =Tror |Was) (Wos| =) (Z llfz,rll’;?,) 1) (V'] (3.5)

L \'r

Por =TrLo |Was) (Wos| =Y <Z ‘lfz,rllfzfr')) (r']. (3.6)
[

rr

17

CHAPTER 3. IMPLEMENTATION

where the inner summations resemble matrix multiplication [33]. This means that we
can reshape the vector |Wgs) in row-major order into a matrix P of size dDy X dDg re-

flecting the Kronecker product structure. Then, the reduced density matrices are simply

pro = PP’ (3.7
Por = PT¥ (3.8)

where T is the conjugate transpose.

We note that the ground state vector is in a parallel layout following the row-
wise distribution of the superblock Hamiltonian. Thus, to construct (3.7) and (3.8),
whether in parallel or in serial, the reshaped ground state vector has to be redundantly
present in the participating processors. This is not a problem since it takes up much
less memory compared to the superblock Hamiltonian and it can be achieved by us-
ing the VecScatter functionality in PETSc. This routine is implemented in the proce-
dure BuildReducedDensityMatrices detailed in Algorithm 5, with run-time options

to construct the matrices in serial on process O or in parallel.

Algorithm 5 Construction of the reduced density matrices

Input: Global ground state vector Ygs of length dDy, X dDg
Run-time boolean option on whether to produce global output GLOBAL
Output: Reduced density matrices pro (dDy X dDr) and pog (dDg X dDg)
procedure BUILDREDUCEDDENSITYMATRICES
v <« full local copy of ygs using VecScatter
Prepare dDj, x dDp local matrix W
fori € [0,dDr) do
for j € [0,dDg) do
Wi, j| < yli-dDgr+ j] > Copy values in row-major order
end for
end for
if GLOBAL then
IC start, IC,end <= SPLITOWNERSHIPRANGE(dDy, Rrank, Mprocs)
PrLo [I'OWS c [iC,start . iC,end)] — lP[I‘OWS € [iC,start . iC,end)] gt
IC start; iC,end <~ SPLITOWNERSHIPRANGE(dDR, Nrank, Mprocs)
Por[TOWS € [icstart - - - IC.end)] < (¥T)[rows € licstart - - - iC.end)] - ¥
else
Pro — PPT
pOR — lPhP
end if
end procedure

18

CHAPTER 3. IMPLEMENTATION

3.1.5 Construction of the Transformation Matrices

Having constructed the reduced density matrices, we proceed with obtaining their
spectral decompositions which we will use to transform the spin and block operators
for the next iteration. This requires the full spectral decomposition of relatively small
dense matrices. Since the reduced density matrices are Hermitian and positive semi-
definite, this is also equivalent to either an eigenvalue decomposition or singular value
decomposition which are already implemented in SLEPc as an interface to dense LA-
PACK routines as well as its own iterative sparse solvers. The eigenpairs should then be
sorted in descending order of the eigenvalue, either internally in the SLEPc routine or
after the eigenpairs have been solved. This straightforward procedure is illustrated in
Algorithm 6 and it is performed on the density matrices of both the left and right blocks.

Algorithm 6 Construction of the rotation matrices

Input:
Reduced density matrix p of size dD x dD
m number of states to keep
Output: Rotation matrix U, truncation error &
procedure GETROTATIONMATRICES
{(wi,vi) }9P, < eigenvalues and eigenvectors of p
Sort {(w;,v;)}2, in descending order of w
Er 1 =Y w
U<+ [vi,va,. o,V
end procedure

3.1.6 Basis Truncation

The last step in the iteration is the rotation of enlarged block and site operators to the
new basis. This is implemented in TruncateOperators named as such since the new
basis is either of the same size or smaller than the original basis. The new operators
are using O = UTOU for all operators O in both the left and right blocks. This is
implemented using the MatMatMatMult function in PETSc which does the triple matrix
multiplication in parallel. In addition, there is also a function called MatPTAP which
avoids building the explicit conjugate transpose but which is only applicable to the case

of real scalars.

19

CHAPTER 3. IMPLEMENTATION

3.2 Quantum Number Conservation

Many of the computationally intensive operations in DMRG can be optimized by
taking conserved quantum numbers into account. However, the basic implementation
that we have described in the previous section does not require the explicit tracking of
the basis that constitutes the blocks’ Hilbert spaces. This means that taking conserved
quantum numbers into account requires modifying the procedures discussed in our ba-
sic implementation to explicitly track the basis states and divide the full Hilbert space
into sectors of similar quantum numbers. In this section, we detail how we implement
U(1) symmetry as discussed in Section 2.2.2, which in the context of the Heisenberg
model refers to the conservation of total magnetization Si,,. The general structure of this
implementation is adapted from the Simple-DMRG program written in Python [34].

3.2.1 Tracking of Magnetization Sectors

One of the first changes that introduced to our previous implementation is the track-
ing of the magnetization sectors in the blocks’” Hilbert spaces. The magnetization val-
ues, which are eigenvalues of the S* operator, are represented as an ordered tuple with
entries that correspond to each state in our chosen matrix representation. For a block of
one site containing one spin-1/2, the magnetization quantum numbers corresponding

to the matrix representations in (2.13) form the ordered list

1 1
S=l+=,—= 3.9
i {+2, 2] (3.9)
This means that the Hilbert space contains two magnetization sectors containing one

state each.

These conserved quantum numbers are also additive among the constituent sites of
a block. Each time an enlarged block is produced, this list is expanded following an
outer sum structure corresponding to the Kronecker product as shown in Algorithm 7.
For example, when another site is added to (3.9), the enlarged block’s magnetization

list becomes
Sé = [+1,0,0,—1] (3.10)

which now contains three magnetization sectors, with $¢ = +1 containing one state

20

CHAPTER 3. IMPLEMENTATION

each, and §* = 0 containing two states. This additional step is performed during the
BuildBlockLeft and BuildBlockRight procedures. The magnetization sectors list is

implemented in our code as a C++ standard vector for easy resizability.

On the other hand, we also need to track the magnetization sectors themselves by
creating a map from a value of the magnetization to the corresponding set of indices
of basis states that belong to that sector. We implement this as a C++ standard map
that takes in a scalar value for the magnetization and a standard vector containing the
indices of that sector. The subroutine, illustrated in Algorithm 8, will be useful later on
when determining which sectors to pair up in constructing the superblock Hamiltonian

with a target magnetization.

Algorithm 7 Performs the outer sum of quantum numbers between two blocks

Input: Quantum number lists S5 (size Ny) and S} (size Np)
Output: Quantum number list S5 5 of the combined block
procedure OUTERSUMFLATTEN
for i € [0,N,) do
for j € [0,Np) do
S5gli- N+ j] < S31i)- S5
end for
end for
end procedure

Algorithm 8 Creating the map from quantum number to sector indices

Input: Magnetization list ¢ with N entries
Output: Mapping object SECTORINDICES
procedure INDEXMAP
Prepare SECTORINDICES: float — vector of integers
fori e [0O,N) do
Append i to SECTORINDICES[S*[i]]
end for
end procedure

21

CHAPTER 3. IMPLEMENTATION

3.2.2 Solving for the Ground State in a Target Sector

When solving for a specific state, one can often find it in a specific quantum number
sector. For example, the ground state in a spin-1/2 Heisenberg chain is the ground state
in the magnetization sector Si,; = 0, while the first excited state is the ground state in

Wt = +1. Also, the most time-consuming and memory intensive steps in the DMRG
algorithm are the construction and diagonalization of the superblock Hamiltonian due
to the large size of the matrix which has a lot of basis states. Thus, tracking the sectors
of each state allows us to use only those states that belong to our target sector when

constructing the Hamiltonian, thereby reducing the computational cost involved.

We can use the INDEXMAP procedure in Algorithm 8 to group together the states
that belong to a specific sector. Then, we can select which sectors from the left and
right blocks are to be paired together and determine the Kronecker product indices
which belong to the target sector. This additional step as shown in Algorithm 9 is
performed at the beginning of the BuildSuperBlock procedure. The index list V will
be used to select which states belong to the target sector in the superblock Hamiltonian.

A mapping M; is also created to track the sectors of the resulting ground state vector.

Algorithm 9 Selection of states in the target sector

Input: Magnetization lists S and Sy,
Target magnetization sector St
Output: List of indices V of states belonging to the superblock’s target sector,
Map M; of left block’s sector indices in the superblock
procedure SELECTSECTORSTATES
My, < INDEXMAP(SY)
Mp < INDEXMAP(S%)
for (s.,Vr) € My do > sz, 1s an S° value and V;, are sector indices
SR < Sfot — 5L
Vg < Mg [SR]
foricV; do
for j € Vg do
Append (i-Np+j)toV
Append length(V') to M] [sz]
end for
end for
end for
end procedure

22

CHAPTER 3. IMPLEMENTATION

3.2.3 Kronecker Product with Index Slicing

In constructing the superblock Hamiltonian with a restricted basis, we have to mod-
ify the Kronecker product routine itself. First of all, a new input list V' is introduced
containing the basis indices produced in Algorithm 9. We use these indices to per-
form array slicing on both the rows and columns of the full Kronecker product matrix.
However, to reduce memory and communication, we avoid building the full matrix it-
self. Taking the CSR storage format of our matrices into account, we perform the array
slicing on the rows first since this can be done much more easily. This procedure is
demonstrated in Algorithm 10 as a modification to Algorithm 2 by looping through the

indices in V when performing the submatrix collection.

Having the needed submatrices on each MPI process, we build an intermediate sub-
matrix which reflects the row-sliced superblock Hamiltonian. We preallocate the mem-
ory needed for the intermediate sequential submatrix as shown in Algorithm 11 which is
much simpler compared to the preallocation for the global matrix in Algorithm 3 since

local submatrices are not divided into diagonal and off-diagonal blocks.

The entries for each row are then explicitly constructed into an intermediate se-
quential matrix C’ in the same manner as in Algorithm 4. We can now perform the col-
umn slicing on each process’ sequential matrix C’ using PETSc’s MatGetSubmatrices
function. These matrices are then stitched together into a single global matrix using
MatCreateMPIMatConcatenateSegMat which handles everything including prealloca-
tion. We show the details of these steps in Algorithm 12. [23, 29]

23

CHAPTER 3. IMPLEMENTATION

Algorithm 10 Indexed Kronecker Product: Submatrix Collection

Input:
MPI matrices {AH}Q/IZ | of size (My,N4) and {Bn}ffz | of size (Mp,Np)
Indices V of the restricted basis
MPI communicator rank 7,k and size nprocs
Output: Sequential matrices {A, sub }*2; and {B,, sub }L | containing non-local rows
procedure KRONIDXGETSUBMATRICES
Mc < length(V) > Global number of rows of restricted C
Nc < N4 -Np > Global number of columns of full C
IC starts iC.end <~ SPLITOWNERSHIPRANGE(Mc, Rpank, Mprocs)

for ic € [iC,startaiC,end) do

IS4 < insert(V[ic]/Mp) > Index set of required rows of A
ISp < insert(V[ic] mod Mp) > Index set of required rows of B
end for

forne{1...M} do
A, sub < MatGetSubmatrices of all rows of A, listed in IS4
B, sub < MatGetSubmatrices of all rows of By, listed in ISp
end for
end procedure

Algorithm 11 Indexed Kronecker Product: Preallocation of Intermediate Matrix

Input: Sets of submatrices {A, b ", and {B,, s},
Output: Array NNZ[| containing the number of non-zeros in the sequential matrix
procedure KRONIDXPREALLOCATION
for ic € [iC,starUiC,end) do
NNZ[ic] < 0
forne{1...M} do
NNZp < length(Amsub [ic/MB])
NNZp « length(B,, sup[ic mod Mp])
NNZ[ic] <~ NNZ[ic] + NNZ4 - NNZp
end for
end for
end procedure

24

CHAPTER 3. IMPLEMENTATION

Algorithm 12 Indexed Kronecker Product: Matrix Construction

Input: Coefficients {a,} of the linear combination of ®
Sets of local submatrices {An,sub}ﬁ/[: | and {Bn./sub}ﬁi1 containing non-local rows
Output: Resultant matrix C
procedure KRONIDXMATRIXCONSTRUCTION
for rowc € [ic start, ic,end) dO
rowy <— V[ic]/MB
rowp < V[ic|] mod Mp
forne{1...M} do
for (coly,valy) € A, sup[row,] do
for (colp, valg) € B, gup[rowp] do
colc < coly - Ng +colp
valc < a,, - valy - valp

C/'[row¢] + insert ((colc, valc)) > Row-sliced seq. matrix
end for
end for

end for
end for
for jc €V do

IS¢ « insert(jc) > Index set for columns
end for

C” + MatGetSubmatrices of all columns of C’ listed in IS¢
C < MatCreateMPIMatConcatenateSegMat of C” in all processes
end procedure

25

CHAPTER 3. IMPLEMENTATION

3.2.4 Block Diagonal Reduced Density Matrices

The iterative diagonalization of the superblock Hamiltonian using SLEPc’s EPS
class proceeds in the same manner as in Listing 3.1. Additionally, we now have ex-
plicit information on the quantum number of each of the ground state vector’s indices
provided by M; in Algorithm 9. By fixing the total magnetization, the corresponding
reduced density matrices acquire a block-diagonal structure [15]. Thus, instead of diag-
onalizing a reduced density matrix of size dD x dD, we can instead work on its smaller
diagonal blocks. The construction of the block diagonal reduced density matrices are
shown in Algorithm 13. It uses the same intermediate matrix ¥ as in Algorithm 5 to

build each block diagonal but with a smaller dimension of N X Ng

The spectral decomposition can also be implemented on each diagonal block of
the reduced density matrices as shown in Algorithm 14 which involves significantly
more steps than Algorithm 6 but is more computationally efficient since it involves
the eigendecomposition of smaller matrices. The final truncation step of all operators
proceeds in the same manner as the basic implementation using O = UTOU for all
operators O in both the left and right blocks.

26

CHAPTER 3. IMPLEMENTATION

Algorithm 13 Construction of the block-diagonal reduced density matrices
Input:
Global ground state vector ygs,
Sector indices map of the superblock Hamiltonian M,
Sector indices maps of the left and right blocks My and Mg,
Target magnetization S,
Output:
§¢ sectors and reduced density matrices {(s7, ﬁgo)}qu , and {(s%, ﬁoqR)}?i i
procedure BUILDBLOCKDIAGONALREDUCEDDENSITYMATRICES
y < full local copy of ygs using VecScatter
q<+0 > Quantum number counter
for (SL,VL) S Vl/, do
SR < Stor — SL

N < length(M[sy)) > No. of states in the sector on the left block
Ng < length(Mg|sr]) > No. of states in the sector on the right block
if N; - Ngp = 0 then Continue

end if

Prepare Ny, x Ng local matrix W
for i€ [0,N.) do
for j € [0,Ng) do
Wi, j] < yli-Ng + Jj] > Copy values in row-major order
end for
end for
(57,52 (o0,)
(s, %) (sr, U1
q<—q+1
end for
end procedure

27

CHAPTER 3. IMPLEMENTATION

Algorithm 14 Construction of the rotation matrices

Input:
{(s9, ﬁq)}qQ:] sectors and diagonal blocks of a reduced density matrix p,
M sector indices map of the corresponding block,
m number of states to keep
Output:
Rotation matrix U,
truncation error &;
procedure GETBLOCKDIAGONALROTATIONMATRICES
Let {Dq}qQ:1 number of states in each diagonal block

D + Zqul D, total number of states of p
Prepare A = {(w?,v7)}2 | spectral decomposition of p
forgec{1,2,...,0} do
Ay {(W] vl l.D:ql spectral decomposition of sub-block p4
Append A4 to A

end for
Sort A in descending order of w and keep only the first m entries
Truncation error: & < 1 =Y, w;

Prepare U of dimension D X m
for (w!,v!) € A do
for j € M[s9] do
Uji = (v));
end for
end for
end procedure

28

CHAPTER 4

Results and Performance

In this chapter we evaluate the performance and scalability of our DMRG applica-
tion. In Section 4.1, we describe the target hardware architecture and the compilation of
software dependencies on which we run our numerical calculations. In Section 4.2 we
briefly look at how we evaluate the accuracy of our numerical results. Then, we present
the results of our performance measurements in Section 4.3, followed by the discussion

of these results in Section 4.4.

4.1 Computational Tools

4.1.1 System Architecture

The systems we targeted with our DMRG implementation are two partitions of
CINECA Marconi which is a class Tier-0 supercomputer that runs on the Intel Xeon
family of processors. Specifically, we perform our numerical experiments on the Mar-
coni Al partition which runs on Broadwell (BDW) processors, and on the Marconi A2
partition which runs on Knights Landing (KNL) or Xeon Phi processors. Details on the

relevant specifications of each partition are provided in Table 4.1.

From the table, several key differences between BDW and KNL are evident. KNL
nodes have a higher core count of slower processors, but with a higher peak performance
compared to BDW. The BDW nodes have more total memory than KNL, but the KNL
processors have an on-chip high-bandwidth memory of 16 GB offered by MCDRAM
on top of the regular DDR4. The production nodes on KNL use MCDRAM in cache

mode, in which they function as L3 cache that is invisible to the user, instead of acting

29

CHAPTER 4. RESULTS AND PERFORMANCE

Table 4.1: Details of the CINECA Marconi BDW and KNL partitions [35]

Marconi A1 (BDW) Marconi A2 (KNL)
Processors 2 x 18-core Intel Xeon E5-2697 68-core Intel Xeon Phi 7250 CPU
(Broadwell) at 2.3 GHz (Knights Landing) at 1.40 GHz
Cores 36 cores/node; 54,432 cores total | 68 cores/node; 244,800 cores total
Instruction Set AVX 2.0 AVX-512
Extensions
16 GB/node of MCDRAM and
RAM 128 GB/node 96 GB/node of DDR4
Max Memory
Bandwidth 76.8 GB/s 115.2 GB/s
Network Intel Omnipath, 100 Gb/s

as a separate physical address space. [35]

BDW processors work on the standard 64-bit instruction set with Advanced Vector
Extensions 2.0 (AVX2) extensions which enable 256-bit wide vectorizations. On the
other hand, KNL has added support for AVX-512, which expands the width of AVX2
vectorization to 512 bits. This means that, in general, binaries compiled for the BDW

processors are also compatible for KNL, but not vice versa.

4.1.2 Software Dependencies and Configuration

Our DMRG application was compiled with several software libraries tailored for
Intel processors to ensure maximum possible performance on our target computing sys-
tems. For performance tests on BDW and KNL, we used PETSc version 3.7.2 and SLEPc
version 3.7.3, which are provided as modules on Marconi, and which were built using
Intel MPI compiler and Intel Math Kernel Library (MKL) 2017 for linear algebra rou-
tines. It was configured with the default 64-bit real scalar values and 32-bit integers,

and with Fortran kernels enabled for array operations.

The DMRG application that we have written was compiled using Makefiles with
directives to include configuration files from the targeted build of PETSc and SLEPc.
The C++ files were compiled with the -std=c++11 flag indicating the standard, and the

-03 optimization flag.

30

CHAPTER 4. RESULTS AND PERFORMANCE

4.2 Convergence of Ground State Energy Per Site

10—[4
— DMRG &

—0.41 A

—0.42
1072 4

GSE /site, ef)

—0.43

Error of ¢l relative to ef

—0.44

0 100 200 300 400 10! 10?
Length of the Superblock, N Length of the Superblock, N

Figure 4.1: Left: Ground state energy per site eON (m) for different number
of sites N of the superblock obtained during a single infinite-size DMRG
run. Right: Corresponding error of €} (m) relative to the known value at the
thermodynamic limit e[7. Values were obtained with m = 512 kept states.

—7
o o N-2
SE N=36
iz 107
8
g
-2 1079
o
e
E 10-10
%o
N
(o]
§ 1074
i}

25 26 27 28 29 210

Number of kept states, m

Figure 4.2: Convergence of e (m) for increasing number of kept states.
The error was calculated with respect to e} (mmax = 2048).

We test the accuracy of our DMRG implementation by tracking the ground state en-
ergy per site of the spin-1/2 Heisenberg chain obtained from the diagonalization of the
superblock Hamiltonian at each iteration. There are two ways to evaluate accuracy and
convergence. First, the ground state energy per site e{)V (m) for N sites and m kept states
should converge towards the known result at the thermodynamic limit e; = 0.4431...
although the calculated energy will always be a bit larger due to finite-size corrections
[36]. The convergence of the energy is shown in Figure 4.1. Second, the values of
el(;' (m) should also converge as the number of kept states increases. This is shown in
Figure 4.2 in which eé’ (m) converges towards the value obtained at the largest number

of kept states e} (mmax).

31

CHAPTER 4. RESULTS AND PERFORMANCE

4.3 Performance Analysis

In this section, we present results of the performance measurements of our DMRG
implementation. The numerical calculations were done on the Marconi A1 (BDW)
and A2 (KNL) clusters. Elapsed time and memory consumption were measured using
PETSc profiling tools from the root MPI process (rank 0) and scaled accordingly. All
DMRG simulations presented here involve growing a superblock chain of N = 36 sites
with various number of kept states after truncation. At each iteration, we calculate the
ground state which resides in the magnetization sector S, = 0. Elapsed times are shown
color-coded for each component step of our workflow (Section 3.1.1), while memory

consumption is shown for the objects with the most memory usage.

4.3.1 Comparison Between Implementations

We first compare the two DMRG implementations that we have detailed in the pre-
vious chapter: the basic implementation without symmetries, and the implementation
with U(1) symmetry or conservation of total magnetization S,,. We look at the re-
sulting improvement from the basic implementation which solves for the ground state
from among all magnetization sectors, to the second implementation which targets the

ground state in the i, = 0 sector.

250 4 I All §° sectors
Target S, =0
200
T
&
S 150
el
g 100 1
[
=
50 4
o | .
Matrix Vector Direct Solver

Figure 4.3: Comparison of memory usage among different PETSc objects
between the basic implementation without symmetries targeting all S5, sec-
tors and the implementation which targets the Si,; = 0 sector.

As shown in Figure 4.3, memory consumption is significantly reduced in the second
implementation. This is due to the fact that the S;,; = O sector is a smaller subset of all
possible states of the superblock. This results in a smaller Hamiltonian matrix which in

turn produces smaller vectors, and which is diagonalized with less memory usage.

32

CHAPTER 4. RESULTS AND PERFORMANCE

All §¢ sectors B TruncateOperators 700 4 All S sectors
7000 — I GetRotationMatrices
I BuildReducedDMs 600
6000 Bl SolveGroundState All §¢ sectors
@ | I BuildSuperBlock z 500 4
] 5000 BuildBlockRight 3
2 4000 1 BB BuildBlockLeft 4 400 §5,=0
é 3000 4 All §% sectors é 300 - - S =0
= -
2000 - 200 1 -
0- 0 -
4 (272) 8 (544) 4 (272) 8 (544)
Number of nodes (Number of processes) Number of nodes (Number of processes)

Figure 4.4: Comparison of elapsed time of simulations with m = 1024
kept states between the basic implementation without symmetries targeting
all 7, sectors and the implementation which targets the S, = 0 sector. Left:
All steps in the algorithm; Right: The same measurements showing all steps
except SolveGroundState.

From the plots in Figure 4.4, we can see that in both implementations the
most time-consuming steps are the construction of the large superblock Hamiltonian
(BuildSuperBlock), its iterative diagonalization (SolveGroundState), the eigendecom-
position of the reduced density matrices (GetRotationMatrices) and the rotation of the
operators to the truncated basis (TruncateOperators). In the implementation with a tar-
get magnetization, we can immediately see an order of magnitude improvement in the
time to solution. The largest improvement comes from SolveGroundState as it also

benefits from the smaller size of the Hamiltonian matrix.

Also, there is significant improvement in the elapsed time for the last three steps
which involve operations on smaller matrices. The BuildReducedDMs and GetRota-
tionMatrices steps are faster because of the block diagonal structure of the reduced
density matrices Py, (og) since tracking magnetization sectors allows us to work only on
several smaller diagonal blocks, instead of a full matrix. The TruncateOperators speeds
up the most since the transformation matrices Uz gy which were constructed dense in

the basic implementation become sparse and block diagonal in the second.

During the BuildSuperBlock step, in which the superblock Hamiltonian is con-
structed, array slicing for rows and columns corresponding to the target sector states
are done as separate steps to reduce memory consumption. This means that within
this step intermediate matrices have to be created and destroyed, and values have to be
accessed and copied between these matrices. Thus, although overall matrix memory
consumption is significantly reduced, in terms of elapsed time this step only slightly

improves in the second implementation.

33

CHAPTER 4. RESULTS AND PERFORMANCE

Since the the implementation with U(1) symmetries gives a very good advantage
in terms of solution time and memory consumption, it will be used in all numerical

simulations presented in the following sections.

4.3.2 Strong Scalability

In this section, we evaluate the strong scalability of our DMRG code; that is, we
quantify the improvement in the time to solution for a fixed problem size as the number
of computational resources such as processors and nodes are increased. We can measure
strong scalability using speedup and parallel efficiency. The speedup s, is defined as

the ratio

Sp .1

= .
where 1, is the elapsed time for p processing elements (nodes or cores), and #; is the
the best time with 1 processing element. Ideal speedup of s, = p occurs when addi-
tional resources produce a directly proportional improvement in performance. In some
instances #; is intractable to acquire directly, for example when the problem size doesn’t
fit on the memory of one node; instead, we use t; = gt, for some baseline number of
processing elements g. Parallel efficiency, on the other hand, is the ratio between the

obtained speedup and the ideal speedup, and it is given by

e, =+ =— 4.2)
"Tp by
with an ideal value of e, = 1. [37]

We first look at the case of a few processors and problem sizes with m = 512, 768
kept states whose memory requirements can fit on one node. Figure 4.5 shows the
elapsed time for different values of m and for the two sections of Marconi. We can
immediately see that runs performed on BDW are generally faster than those on KNL

when comparing among the same number of processes.

From these run times, we obtain the speedup and efficiency as shown in Figure 4.6.
Although the BDW cores are faster, results from KNL show better scalability. If we
also look at the parallel efficiency of the most time-consuming steps of the algorithm,
namely BuildSuperBlock and SolveGroundState, both algorithms show similar scaling

behavior since they are both memory-bound operations. Thus, the most probable reason

34

CHAPTER 4. RESULTS AND PERFORMANCE

Time elapsed (s)

Time elapsed (s)

BDW, m =512

4 8 16 32 64
Number of MPI processes

BDW, m = 768
T T
1500 4 B TruncateOperators
N GetRotationMatrices
1250 B BuildReducedDMs
B SolveGroundState
I BuildSuperBlock
1000 1 B BuildBlockRight
B BuildBlockLeft
750 A
500
250 A
04

4 8 16 32 64
Number of MPI processes

Figure 4.5: Elapsed time for DMRG runs with m = 512 (top) and m = 768
(bottom) kept states showing strong scaling behavior of the program on BDW

(left) and KNL (right).

35

Time elapsed (s)

Time elapsed (s)

KNL, m =512

4 8 16 32 64
Number of MPI processes
KNL, m =768
6000
5000
4000
3000
2000
1000
0 -
4 8 16 32 64

Number of MPI processes

CHAPTER 4. RESULTS AND PERFORMANCE

BDW

-&— m=512
== m=1768

ideal

30

Number of MPI processes

KNL

- m=>512
~W- m=768
ideal

30

10 20 40 50 60 10 20 40 50 60
Number of MPI processes Number of MPI processes
BDW KNL
1.0 1.0
0.8 4 0.8
oy oy
b5 5
9 061 S 067
5 | B
2 0.4 \ —4 | = 041
© f“v
o o
0.2 1 + m =768 Total 0.2 + m =768 Total
—@— m =768 BuildSuperBlock —@— m =768 BuildSuperBlock
== m =768 SolveGroundState == m =768 SolveGroundState
0.0 T T T T T T 0.0 T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60

Number of MPI processes

Figure 4.6: Strong scalability for DMRG runs on up to two nodes of BDW
(left) and a single node of KNL (right). Top: Speedup for two different val-
ues of the number of kept states m. Bottom: Parallel efficiency for m = 768,
also showing the most time consuming steps: the construction of the su-
perblock Hamiltonian (BuildSuperBlock) and its iterative diagonalization
(SolveGroundState).

36

CHAPTER 4. RESULTS AND PERFORMANCE

for better scalability on KNL processors than on BDW is that KNL nodes have higher
memory bandwidth which are able to handle more processors that are simultaneously
performing memory-bound operations. This is true for most sparse matrix operations
whose performance is almost always determined by memory bandwidth instead of the
speed of CPU.*

Next, we explore cases where the the number of kept states m results in memory
requirements that exceed a single node. In these cases, we consider the node as a single
processing element with several processors per node (ppn). Also, we compare two cases

for the number of processors used on each node:

* full-node case when we run the application using all available ppn; and

* half-node case when using only half the available ppn.

This comparison is motivated by two reasons. First, each processor in the half-node case
gets twice the memory bandwidth that they get in the full-node case. Since the parallel
efficiency of our application is highly limited by memory bandwidth, we expect that
reducing the number of processors per node should help prevent memory bandwidth
saturation and improve overall performance. Second, PETSc developers recommend
keeping a high number of unknowns per process so that computation time outweighs

the latency in communication.

Figure 4.7 shows the case of m = 1024 kept states starting at 2 nodes. We see a
similar proportion of the time elapsed for each section as in the previous cases with
smaller m. We also observe here that for the same number of nodes, simulations on
BDW are faster even though it has less processors than KNL. By using only half the
maximum ppn, the elapsed times may be higher for smaller number of nodes, but there
is a pay off at 8 and 16 nodes especially for KNL; in these cases, using less ppn is faster

than using all available processors.

The steps that act on the large Hamiltonian matrix, namely BuildSuperBlock and
SolveGroundState show good scaling behavior. However, the steps that act on smaller
matrices, namely BuildReducedDMs, GetRotationMatrices and TruncateOperators, do
not significantly scale at all since the processes performing the tasks are already too
many for the size of these matrices. The size discrepancy among our matrices results
from the fact that the superblock Hamiltonian matrix scales as m? while the size of the

reduced density matrices and the transformation matrices scale only linearly with m.

Figure 4.8 shows the corresponding parallel efficiencies. In all cases, the BuildSu-

*See PETSC FAQ entry on Why do I get little speedup. .. ? [29]

37

http://www.mcs.anl.gov/petsc/documentation/faq.html#computers

CHAPTER 4. RESULTS AND PERFORMANCE

perBlock step shows good scaling in performance since communication is required only
at the beginning during submatrix collection and at the end of the step during the final
matrix assembly. However, the improvement in the performance of the SolveGround-
State step diminishes much earlier at 8 nodes; this is because increasing the number
of nodes increases the latency in communication of vector elements required during
the many sparse matrix-vector multiplications in the iterative diagonalization routines.
This is reflected by the similar scaling pattern between the full-node case in BDW and
the half-node case of KNL which have almost the same total number of processes per
node. In the half-node case, we observe improved parallel efficiency on both clusters
compared to the full-node case due to better utilization of the memory bandwidth and
increase in computation time versus communication. This is especially true for BDW

since it has a lesser core count per node.

We go higher and consider the simulations for m = 1536 kept states which manage to
fit starting at 4 nodes of BDW and 6 nodes of KNL. From the elapsed times and parallel
efficiencies shown in Figures 4.9 and 4.10, respectively, the same general observations
regarding scaling can also be made as in m = 1024. The BuildSuperBlock step continues
to scale well, as expected. However, the scaling problems in SolveGroundState are
now magnified; for the full-node cases, its time elapsed on both BDW and KNL stop
scaling after 12 nodes and worsens as more nodes are added. This is due to latency in
communication during the matrix-vector products which can be solved by going into
the half-node case. In the half-node case of BDW, however, we see scaling only up to
16 nodes and it worsens from there. On the other hand, we do not see this problem on
KNL which even shows a “super-scaling”effect in some points which can be attributed
to KNL’s higher memory bandwidth per processor and cache effects from MCDRAM.

We also consider m = 2048 kept states whose memory requirements fit on 12 nodes
of BDW and KNL. We now consider only the half-node case since it has shown superior
performance and scalability for larger number of nodes. Figure 4.11 shows that BDW
scales poorly and saturates after 24 nodes, while KNL continues to scale up to 32 nodes
and levels off at 40 nodes. In Figure 4.12 KNL even exhibits superscaling behavior
which may also be attributed to cache effects from MCDRAM.

38

CHAPTER 4. RESULTS AND PERFORMANCE

Time elapsed (s)

Time elapsed (s)

BDW, 36 procs/node, m = 1024 BDW, 18 procs/node, m = 1024
T T
700 700 A B TruncateOperators
I GetRotationMatrices
600 600 - B BuildReducedDMs
B SolveGroundState
= 3007 B BuildSuperBlock
Eel [BuildBlockRight
g 400 BN BuildBlockLeft
©
o 300 -
E
= 200
100 A
O .
2(72) 4 (144) 8 (288) 16 (576) 32 (1152) 2(36) 4(72) 8(144) 16 (288) 32 (576)
No. of nodes (No. of processes) No. of nodes (No. of processes)
KNL, 68 procs/node, m = 1024 KNL, 34 procs/node, m = 1024
1200 1200 f
1000 1000 4
@ 800
o
2
§ 600
[}
g
£ 4001
200 A
0 -
2(136) 4(272) 8 (544) 16 (1088) 32 (2176) 2(68) 4(136) 8 (272) 16 (544) 32 (1088)
No. of nodes (No. of processes) No. of nodes (No. of processes)

Figure 4.7: Elapsed time for DMRG runs with m = 1024 kept states on
multiple nodes of Marconi BDW (top) and KNL (bottom) for the full-node
case (left) and for the half-node case (right).

m=1024

o =
oo (=]
L
%y
< 4
Py
I
(=]

T 0.8
> \\ 1».___\ S I SN
2 N 1 g o === y
i R S~ P} - -
3 04 \\ O~ T .4] —@ 18 ppn, BDW \\
K SR - T~y ° -®- BuildSuperBlock SR>l =
a S N) \N £ -®- SolveGroundState \k
02 S¥= — - 0.2 -7+ 34 ppn, KNL ===
R __E —4- BuildSuperBlock
0.0 0.0 4 —# SolveGroundState
I I r
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Number of Nodes Number of Nodes

Figure 4.8: Parallel efficiency for DMRG runs with m = 1024 kept states
for the full-node case (left) and for the half-node case (right).

39

CHAPTER 4. RESULTS AND PERFORMANCE

Time elapsed (s)

Time elapsed (s)

BDW, 36 procs/node, m = 1536

1200

4 6 8 12 16 24 32
(144) (216) (288) (432) (576) (864) (1152)

No. of nodes (No. of processes)

KNL, 68 procs/node, m = 1536

2500

2000

6 8 12 16 24 32
(408) (544) (816) (1088) (1632) (2176)

No. of nodes (No. of processes)

BDW, 18 procs/node, m = 1536

=
-]
Q
a
o
O]
Q
E
'_
4 6 8 12 16 24 32
(72) (108) (144) (216) (288) (432) (576)
No. of nodes (No. of processes)
KNL, 34 procs/node, m = 1536
2500 - B TruncateOperators |
I GetRotationMatrices
B BuildReducedDMs
2000 " EEE SolveGroundState
E BN BuildSuperBlock
3 8 BuildBlockRight
g 15001 B BuildBlockleft ||
E L
g 1000
e

6
(204)

8 12 16

24 32

(272) (408) (544) (816) (1088)

No. of nodes (No. of

processes)

Figure 4.9: Elapsed time for DMRG runs with m = 1536 kept states on
multiple nodes of Marconi BDW (top) and KNL (bottom) for the full-node
case (left) and for the half-node case (right).

m=1536
1.2 —@— 36 ppn, BDW |
—— 68 ppn, KNL
1.0 ¢
z \"\
S 038 \{
o 0.6
o]
T 04
& No—__|
0.2
0.0

4 8 12 16 20 24 28 32
Number of Nodes

m=1536
1.2 —@— 18 ppn, BDW |
—4— 34 ppn, KNL
1.0
g 0.8 /
i= .
N
& 0.6 .
)
T 04 \\.
I \
0.2
0.0

12 16 20
Number of Nodes

24 28 32

Figure 4.10: Parallel efficiency for DMRG runs with m = 1536 kept states
for the full-node case (left) and for the half-node case (right).

40

CHAPTER 4. RESULTS AND PERFORMANCE

BDW, 18 procs/node, m = 2048

[
=
-
&
a
)
[}
[
E
'_
12 16 24 32 40 64
(216) (288) (432) (576) (720) (1152)
No. of nodes (No. of processes)
KNL, 34 procs/node, m = 2048
B TruncateOperators
4000 - I GetRotationMatrices |
B BuildReducedDMs
B SolveGroundState
@ 3000 A | W BuildSuperBlock .
3 [BuildBlockRight
a I BuildBlockLeft
©
T 2000 | | [
[}
E
'_
1000 A
0 -

12 16 24 2 40 64
(408) (544) (816) (1088) (1360) (2176)

No. of nodes (No. of processes)

Figure 4.11: Elapsed time for DMRG runs with and m = 2048 kept states
on multiple nodes of Marconi BDW (top) and KNL (bottom) running on half
of the available processors on each node.

m = 2048

e
3

N

e
=N

N

1N
N

Parallel Efficiency

hed
o

—@— 18 ppn, BDW
I —#— 34 ppn, KNL
. r .

T T T

e
=)
|

12 16 20 24 28 32 36 40
Number of Nodes

Figure 4.12: Parallel efficiency for DMRG runs with m = 2048 kept states
for the half-node case.

41

CHAPTER 4. RESULTS AND PERFORMANCE

4.3.3 Scaling of Computational Resources with Problem Size

From the previous section, we noted that for a given number of kept states m, there
is a particular number of nodes that the problem size can fit in memory. Thus, if we
want to target a higher value of m, we need to quantify the computational resources re-
quired for our DMRG simulation by extrapolating our available data. Figures 4.13-4.14
show the scaling for the elapsed time for each iteration and the memory consumption.
Both variables exhibit regular monomial-like behavior which are quantified by the good
linear fit on the log-transformed data. The trendline equations provide a way to predict
how many nodes would be needed and how much time should be requested for different

values of m especially when running the simulations through a job scheduler.

175
BN TruncateOperators — = log,(t/s) =2.751og,(m) —23.08, R? =0.997 ,_.
—~ 150 I GetRotationMatrices 71 PR
2 BB BuildReducedDMs s
; 125 | M SolveGroundState 6 ®
,g I BuildSuperBlock //
o | [BuildBlockRight @ 5 R
2 1007 s BuildBlockLeft = e
B 75 L 44 A
< -,
T 50 3 2]
£ P
= 254 ’
2 A (xd
0 - T T T T T
512 768 1024 1536 2048 9.0 9.5 10.0 10.5 11.0
Number of kept states, m log, (m)

Figure 4.13: Scaling behavior of elapsed time per iteration, ¢, for varying
number of kept states m on 16 nodes of Marconi BDW running at half node.

1000 " mmm Matrix 10 97— logy(mem/GB) = 2.57log, (m) — 18.42, R® = 0.999 9
W Direct Solver /,'
4} | W Vector 9+ 3
% 800 B Others ,‘
e) el
O 84 e
5 o0 Fl %
g 2 ~
o] = 71 -7
2 400 E o’
g 6 &
§ 200+ ot
= .
5 (X
0- T T T T T
512 768 1024 1536 2048 9.0 9.5 10.0 10.5 11.0
Number of kept states, m log, (m)

Figure 4.14: Scaling behavior of memory consumption per iteration, mem,
for varying number of kept states m.

42

CHAPTER 4. RESULTS AND PERFORMANCE

4.4 Discussion

We have shown from the performance results that our DMRG implementation gen-
erally exhibits good scaling behavior especially with the most time-consuming parts of
the algorithm which involve the large superblock Hamiltonian. The construction of the
Hamiltonian in the BuildSuperBlock step scales very well in all cases since communi-
cation among processes occur only at the beginning during submatrix collection and at
the end during the final matrix assembly. However, overall scalability is limited by the
SolveGroundState step which is the iterative diagonalization of the superblock Hamilto-

nian. We have identified three key factors that limit the scalability of SolveGroundState.

First, it is dependent on the performance of SLEPC’s eigensolver which in turn is
limited by the efficient parallel sparse matrix-vector multiplications (spMVM). This
means we need to keep the number of unknowns on each process high enough such
that the time for computation overcomes the time for the all-to-all communication of
vector elements [31]. The developers of PETSc suggest that each process should hold
a minimum of 10,000 unknowns or local rows of the matrix, and recommend at least
20,000 or more.” Taking the case of m = 1536 whose superblock matrix has an average
of 4.4 x 10° global rows, this translates to a range of around 220 to at most 440 pro-
cessors. For this reason, we see a deterioration in scalability at this point in Figure 4.9

which is more pronounced on BDW than on KNL.

Second, different problem sizes, parametrized by the number of kept states m, re-
quire different minimum numbers of nodes making it difficult to directly compare their
scaling behaviors; however, we see a general trend that increasing the problem size

benefits overall scalability on the same set of number of nodes.

Third, the performance of spMVM is also limited by the memory bandwidth per
core. Thus we have seen that operating in the half-node case always improves overall
scaling and even results in faster time-to-solution for higher number of nodes. This is
clearly because in the half-node case, the memory bandwidth available to each process

is double that in the full-node case.

Thus, to achieve the best performance for a desired m, one has to look for the con-
figuration with (1) high enough total number of processes to push the limits of time for
computation versus communication, (2) enough number of nodes to fit the problem in

memory, and (3) a good minimum number of processes per node so that each process

TSee PETSC FAQ entry on Why is my parallel solver slower than my sequential solver. .. ? [29]

43

http://www.mcs.anl.gov/petsc/documentation/faq.html#slowerparallel

CHAPTER 4. RESULTS AND PERFORMANCE

still gets high memory bandwidth.

Moreover, the steps involving the block operators, the reduced density matrix p
and the transformation matrix U do not scale since the number of processes needed to
efficiently perform the steps for the large superblock Hamiltonian is already too many
for these small matrices. This may be addressed by implementing a different level of

parallelism for the smaller matrices.

In the results that we have presented, we have also made comparisons between the
BDW and KNL clusters on Marconi. Despite BDW performing faster, we see some con-
siderably good advantages on KNL brought about by the high-bandwidth MCDRAM
operating as a large L3 cache. Because of this, elapsed times on KNL do not increase so
much as in BDW when hitting the communication bottleneck described earlier. KNL
also consistently shows better parallel efficiency than BDW and even exhibits super-
scaling attributed to cache effects from MCDRAM.

44

CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have presented our massively parallel implementation of the den-
sity matrix renormalization group (DMRG) algorithm for studying the ground state
properties of strongly correlated systems. In writing the application, we have used the
PETSc library to systematically handle parallel linear algebra objects and operations,
and the SLEPc library for the efficient diagonalization of large sparse Hamiltonian ma-
trices, both parallelized in a distributed memory manner through Message Passing In-
terface (MPI). We have implemented our code for the one-dimensional spin-1/2 Heisen-

berg chain, a known model which we use to check for accuracy.

We measured the performance and scalability of our implementation on the Broad-
well (BDW) and Knights Landing (KNL) sections of Marconi, a class Tier-0 super-
computer. Our performance results demonstrate good scalability up to the order of one
thousand cores. We identified limitations in scalability such as communication bottle-
necks, fitting the problem size in memory, and saturation of the memory bandwidth.
We also made performance comparisons between BDW and KNL and we found that

the latter exhibits better parallel efficiency due to its high bandwidth memory.

We have performed the numerical simulations on cases with large number of kept
states m that are often intractable on single-node computational systems. This thesis
demonstrates the framework for implementing the full DMRG calculations for two-
dimensional systems that require large number of m which was made possible by treat-

ing the problem with an HPC approach.

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.2 Future Work

This implementation serves as the initial stage for an ongoing Italian SuperComput-
ing Resource Allocation Class C (ISCRA C) project which aims to study topological
phases in two-dimensional systems. The next step for this work is implementing the
full two-dimensional (2D) finite DMRG algorithm. This will involve the same steps
in the workflow presented in this thesis for infinite DMRG but with a greater memory
consumption since all operators have to be stored after after each iteration, and with

more interacting sites and more terms in the Hamiltonian.

Our current approach relies on creating the large superblock Hamiltonian matrix ex-
plictly in memory thus greatly limiting the number of states m that can be explored for a
given number of computational nodes. Alternatively, instead of creating the large sparse
matrix, we may also calculate the matrix vector product of the Hamiltonian which is
the only operation required by iterative solvers like Krylov-Schur. This matrix-free ap-
proach can be implemented in PETSc through the MATSHELL interface. However, this
will involve restructuring our Kronecker product implementation, and this may entail
greater cost in computing time since more operations are involved during the matrix

vector product.

Additionally, our tests on the two sections of Marconi has shown that KNL has
superior parallel efficiency than BDW due to the presence of MCDRAM. In our sim-
ulations, however, the MCDRAM operates in cache modes making it invisible to our
application. This advantage may further be exploited by using MCDRAM in flat mode
as an addressable lower-capacity piece of memory, and manually controlling the parti-
tioning of data between MCDRAM and DDR4 using the memkind library. [38]

46

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Patrick a. Lee, Naoto Nagaosa, and Xiao-Gang Wen. “Doping a Mott insulator:
Physics of high-temperature superconductivity”. In: Rev. Mod. Phys. 78.1 (2006),
pp. 17-85. 1SSN: 0034-6861. DOI: 10.1103/RevModPhys.78.17. URL: http:
//link.aps.org/doi/10.1103/RevModPhys.78.17.

C. Lacroix, P. Mendels, and F. Mila, eds. Introduction to Frustrated Magnetism.
Springer Series in Solid-State Sciences Vol. 164, 2010.

H C Jiang, Z Y Weng, and D N Sheng. “Density Matrix Renormalization Group
Numerical Study of the Kagome Antiferromagnet”. In: Physical Review Letters
101.11 (Sept. 2008), pp. 117203-4.

E Gibney and D Castelvecchi. Physics of 2D exotic matter wins Nobel. Vol. 538.
Nature, 2016.

Steven R White. “Density matrix formulation for quantum renormalization
groups”. In: Physical Review Letters 69.19 (1992), pp. 2863-2866.

Susumu Yamada, Masahiko Okumura, and Masahiko Machida. “Direct Exten-
sion of Density-Matrix Renormalization Group to Two-Dimensional Quantum
Lattice Systems: Studies of Parallel Algorithm, Accuracy, and Performance”. In:
Journal of the Physical Society of Japan 78.9 (Sept. 2009), pp. 094004-5.

E M Stoudenmire and Steven R White. “Studying Two-Dimensional Systems
with the Density Matrix Renormalization Group”. In: Annual Review of Con-
densed Matter Physics 3.1 (Mar. 2012), pp. 111-128.

F B Ramos and J C Xavier. “N-leg spin-S Heisenberg ladders: A density-
matrix renormalization group study”. In: Physical Review B 89.9 (Mar. 2014),
pp. 094424-7.

47

http://dx.doi.org/10.1103/RevModPhys.78.17
http://link.aps.org/doi/10.1103/RevModPhys.78.17
http://link.aps.org/doi/10.1103/RevModPhys.78.17

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Mischa Thesberg and Erik S Sgrensen. “An Exact Diagonalization Study of
the Anisotropic Triangular Lattice Heisenberg Model Using Twisted Bound-
ary Conditions”. In: arXiv.org 1 (June 2014), p. 115117. arXiv: 1406 . 4083v2
[cond-mat.str-el].

M Troyer and U J Wiese. “Computational complexity and fundamental limita-
tions to fermionic quantum Monte Carlo simulations”. In: Physical Review Let-
ters 95.12 (2005).

Adrian E Feiguin. “The Density Matrix Renormalization Group”. In: Strongly
Correlated Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, Apr. 2013,
pp. 31-65.

Richard P Feynman. “Simulating physics with computers”. In: Int. J. Theor.
Phys. 21.6-7 (1982), pp. 467-488.

H Fehske, R Schneider, and A Weisse. Computational many-particle physics.
Ed. by H Fehske, R Schneider, and A Weisse. Vol. 739. Lecture Notes in Physics.
Berlin: Springer, 2008.

Anders W Sandvik and Juhani Kurkijédrvi. “Quantum Monte Carlo simulation
method for spin systems”. In: Physical Review B (Condensed Matter) 43.7 (Mar.
1991), pp. 5950-5961.

U Schollwéck. “The density-matrix renormalization group”. In: Reviews of Mod-
ern Physics 77.1 (Jan. 2005), pp. 259-315.

Kenneth G Wilson. “The Renormalization Group: Critical Phenomena and the
Kondo Problem”. In: Rev. Mod. Phys. 47.4 (1975), pp. 773-840.

R J Furnstahl and K Hebeler. “New applications of renormalization group meth-
ods in nuclear physics”. In: Reports on Progress in Physics 76.12 (Nov. 2013),
pp- 126301-26.

O Legeza et al. “Advanced density matrix renormalization group method
for nuclear structure calculations”. In: Physical Review C 92.5 (Nov. 2015),
pp.- 051303-5.

Steven R White and Richard L Martin. “Ab initio quantum chemistry using
the density matrix renormalization group”. In: The Journal of Chemical Physics
110.9 (Mar. 1999), pp. 4127-4130.

Garnet Kin-Lic Chan and Sandeep Sharma. “The Density Matrix Renormaliza-
tion Group in Quantum Chemistry”. In: Annual Review of Physical Chemistry
62.1 (May 2011), pp. 465-481.

48

http://arxiv.org/abs/1406.4083v2
http://arxiv.org/abs/1406.4083v2

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Gabriele De Chiara et al. “Density Matrix Renormalization Group for Dum-
mies”. In: Journal of Computational and Theoretical Nanoscience 5.7 (July
2008), pp. 1277-1288.

S Yan, D A Huse, and S R White. “Spin-Liquid Ground State of the S = 1/2
Kagome Heisenberg Antiferromagnet”. In: Science 332.6034 (2011), pp. 1173—
1176.

Satish Balay et al. PETSc Users Manual. Tech. rep. ANL-95/11 - Revision 3.7.
Argonne National Laboratory, 2016.

Vicente Hernandez, Jose E. Roman, and Vicente Vidal. “SLEPc: A Scalable and
Flexible Toolkit for the Solution of Eigenvalue Problems”. In: ACM Trans. Math.
Software 31.3 (2005,), pp. 351-362. DOI: http://dx.doi.org/10.1145/
1089014.1089019.

Samuel Williams et al. “Optimization of sparse matrixvector multiplication
on emerging multicore platforms”. In: Parallel Computing 35.3 (Mar. 2009),
pp- 178-194.

Marlon E Brenes-Navarro. Parallel implementation of the Krylov subspace tech-
niques for unitary time evolution of disordered quantum strongly correlated sys-
tems. Ed. by Antonello Scardicchio, Ivan Girotto, and Vipin Varma. Scuola In-

ternazionale Superiore di Studi Avanzati, Dec. 2016.

Marlon Brenes et al. “Massively parallel implementation and approaches to sim-
ulate quantum dynamics using Krylov subspace techniques”. In: arXiv.org (Apr.
2017). arXiv: 1704.02770v1 [physics.comp-ph].

Adrian E Feiguin. “The Density Matrix Renormalization Group and its time-
dependent variants”. In: Lectures on the Physics of Strongly Correlated Systems
XV: Fifteenth Training Course in the Physics of Strongly Correlated Systems. AIP
Conference Proceedings. Department of Physics and Astronomy, University of
Wyoming, Wyoming, USA 82071. AIP, Dec. 2011, pp. 5-92.

Satish Balay et al. PETSc Web page. http://www.mcs.anl.gov/petsc. 2017.
URL: http://www.mcs.anl.gov/petsc.

V Hernandez, J E Roman, and A Tomas. “A parallel Krylov-Schur implementa-
tion for large Hermitian and non-Hermitian eigenproblems”. In: PAMM 7.1 (Dec.
2007), pp. 2020083-2020084.

V. Hernandez et al. Krylov-Schur Methods in SLEPc. Tech. rep. STR-7. Available
at http://slepc.upv.es. Universitat Politecnica de Valencia, 2007.

49

http://dx.doi.org/http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/http://dx.doi.org/10.1145/1089014.1089019
http://arxiv.org/abs/1704.02770v1
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]
[38]

J. E. Roman et al. SLEPc Users Manual. Tech. rep. DSIC-11/24/02 - Revision
3.7. D. Sistemes Informatics i Computacid, Universitat Politecnica de Valencia,
2016.

Jonas Maziero. “Computing partial traces and reduced density matrices”. In: In-
ternational Journal of Modern Physics C 28.01 (Jan. 2017), pp. 1750005-17.

James R. Garrison and Ryan V. Mishmash. Simple DMRG. Version v1.0.0. DOI:
10 . 5281/ zenodo . 1068359. URL: https://github. com/simple-dmrg/

simple-dmrg.

CINECA. MARCONI User Guide. accessed 24 November 2017. 2017. URL:
https://wiki.u-gov. it/ confluence/display/SCAIUS/UG3.1%5C%
3A+MARCONI+UserGuide.

Beat Frischmuth, Beat Ammon, and Matthias Troyer. “Susceptibility and low-
temperature thermodynamics of spin-1/2 Heisenberg ladders”. In: Physical Re-
view B 54.6 (Aug. 1996), R3714-R3717.

Vipin Kumar et al. Introduction to Parallel Computing. 1994.

Intel. Memkind. Version v1.6.0. URL: http://memkind.github.io/memkind/.

50

https://github.com/simple-dmrg/simple-dmrg/releases/tag/v1.0.0
http://dx.doi.org/10.5281/zenodo.1068359
https://github.com/simple-dmrg/simple-dmrg
https://github.com/simple-dmrg/simple-dmrg
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%5C%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%5C%3A+MARCONI+UserGuide
https://github.com/memkind/memkind/releases/tag/v1.6.0
http://memkind.github.io/memkind/

	Abstract
	Acknowledgments
	Introduction
	Background
	Strongly Correlated Quantum Systems
	The DMRG Algorithm
	Infinite-Size Algorithm
	Application to the Heisenberg Spin Chain
	Quantum Numbers and Symmetries

	Libraries for Massively Parallel Linear Algebra

	Implementation
	Basic Implementation
	Workflow
	Kronecker Product of Distributed Sparse Matrices
	Ground State Solution
	Construction of the Reduced Density Matrices
	Construction of the Transformation Matrices
	Basis Truncation

	Quantum Number Conservation
	Tracking of Magnetization Sectors
	Solving for the Ground State in a Target Sector
	Kronecker Product with Index Slicing
	Block Diagonal Reduced Density Matrices

	Results and Performance
	Computational Tools
	System Architecture
	Software Dependencies and Configuration

	Convergence of Ground State Energy Per Site
	Performance Analysis
	Comparison Between Implementations
	Strong Scalability
	Scaling of Computational Resources with Problem Size

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

