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Abstract. Dark matter with momentum- or velocity-dependent interactions with nuclei
has shown significant promise for explaining the so-called Solar Abundance Problem, a long-
standing discrepancy between solar spectroscopy and helioseismology. The best-fit models
are all rather light, typically with masses in the range of 3–5 GeV. This is exactly the mass
range where dark matter evaporation from the Sun can be important, but to date no detailed
calculation of the evaporation of such models has been performed. Here we carry out this
calculation, for the first time including arbitrary velocity- and momentum-dependent inter-
actions, thermal effects, and a completely general treatment valid from the optically thin
limit all the way through to the optically thick regime. We find that depending on the dark
matter mass, interaction strength and type, the mass below which evaporation is relevant can
vary from 1 to 4 GeV. This has the effect of weakening some of the better-fitting solutions to
the Solar Abundance Problem, but also improving a number of others. As a by-product, we
also provide an improved derivation of the capture rate that takes into account thermal and
optical depth effects, allowing the standard result to be smoothly matched to the well-known
saturation limit.
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1 Introduction

The search for the particle nature of dark matter (DM) has been a major focus of both
the particle and astrophysics communities for several decades now. In the vast majority of
models considered in the literature, a non-gravitational link between the dark sector and the
standard model (SM) implies some amount of elastic scattering with nucleons, either directly
with quarks, or through loop effects. This observation has been the motivation behind a
concerted effort in large-scale direct detection experiments such as LUX [1], SuperCDMS [2],
PICO [3, 4], Panda-X [5] and XENON1T [6], which aim to measure the recoil energies of
heavy nuclei following collisions with DM particles from the Galactic halo. Most of these
experiments were designed with the canonical weakly-interacting massive particle (WIMP)
in mind, so the target nuclear masses and threshold energies are optimally suited to detect
particles with masses in the 100–1000 GeV range. However, GeV-scale dark matter models
are not at all disfavoured, and in some cases even preferred. For example, asymmetric (A)DM,
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a theoretical framework motivated by the baryon asymmetry, naturally predicts a mass of
around mχ/mp ∼ ΩDM/Ωb ∼ 5 [7].

It has been known for quite some time [8–10] that the Sun is a very good laboratory
in which to search for such low-mass particles, as mass-matching of 1–4 GeV DM candidates
with hydrogen and helium results in highly efficient momentum transfer in scattering events.
If particles from the DM halo scatter in the Sun to energies below the local escape velocity,
they become gravitationally bound, eventually returning to rescatter and rapidly settle into
a stable configuration near the centre [11]. If the particle comes from the low-velocity tail of
the Galactic DM distribution, then the momentum transfer needed to capture a DM particle
can be quite small. This makes solar capture highly complementary to direct detection
experiments, which instead probe the high-velocity part of the distribution. This aspect also
endows capture and direct detection with quite different sensitivities to interactions that
scale with the momentum exchanged in collisions (qtr) or the DM-nucleon relative velocity
(vr).

DM capture by the Sun has two observable effects: 1) the production of observable GeV-
energy neutrinos from self-annihilation into SM particles [12–20]; and 2) the transfer of heat
from the solar core to outer regions, due to the large mean free path of weakly interacting
particles in the Sun [21–25]. Despite contributing a very small fraction of the Solar mass (at
most a part in 1010), the additional heat transport can have dramatic effects on standard
(MeV-energy) solar neutrino production, as well as the solar structure itself, which can be
probed with helioseismology. If the particles interact weakly enough to carry energy on
macroscopic scales, yet have a large enough cross-section to efficiently transfer energy, then
these effects can be dramatic. This “sweet spot” is called the Knudsen transition, where
local thermal equilibrium (LTE) gives way to non-local, Knudsen transport. It has recently
been learnt [25–29] that for certain types of interaction, DM capture and energy transport
can actually improve the fit of the Standard Solar Model (SSM) to helioseismological data,
potentially solving the decade-old Solar Abundance Problem. This problem represents a > 6σ
mismatch between SSM predictions and the sound speed profile, the location of the base of
the convection zone, the surface helium abundance and the structure of the core [30–37].
Such a solution requires going beyond the classic spin-independent (SI) and spin-dependent
(SD) “billiard ball” interaction models, to a more general parameterisation that allows for
the scattering cross-section to depend on both the relative velocity of a collision vr and the
transferred momentum qtr. Although the best solutions in many models are excluded by
recent direct detection experiments [2, 38], a handful are still allowed [28].

Crucially, the strongest effects on solar physics come from light DM particles, with
masses below ∼ 5 GeV. At such low masses, there is a non-negligible chance that a scattering
event will lead to ejection of the DM particle from the Sun, i.e. evaporation. The original
formalism to calculate evaporation rates was developed in Ref. [8], where it was shown that
evaporation prohibits accumulation of DM of mass less than 4 GeV in the Sun, if its scat-
tering cross-section is constant with respect to vr and qtr. The corresponding evaporation
mass for velocity- and momentum-dependent DM is not known. Given the very different
phenomenology of such models for capture and transport, it is reasonable to expect that the
impacts of evaporation will also vary with the interaction.

This work has two main goals: first, to update the capture and evaporation formalism
of [8], in order to include a more self-consistent description of thermal and rescattering effects
governing these processes; and second, to extend the computation of the evaporation rate to
the generalised form factor models described in Refs. [27, 28]. Ref. [39] has performed this
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computation for two of the models considered here, although their focus was mainly on DM-
electron scattering. Other recent calculations of the evaporation [40, 41] and capture rates
[26, 27, 42] in the Sun have not included the thermal or rescattering (optical depth) effects.
The very recent Ref. [43] looked at capture through multiple scattering events, though their
focus was on constant cross-sections and much heavier (∼ TeV) dark matter.

In Sec. 2, we begin by defining and calculating the thermal quantities involved in the full
evaluation of the capture and evaporation rates, including the velocity distributions, effective
DM temperature, thermally-averaged cross-sections and the optical depth. Sections 3 and 4
present the improved capture and evaporation rate calculations, respectively. We conclude
in Sec. 5, and provide details of the more involved calculations in Appendices A, B and C.

2 Dark matter microphysics, distributions and thermodynamics

2.1 Cross-sections and kinematics

In this paper we study solar capture and evaporation of DM with nuclear couplings propor-
tional to some power of the momentum exchanged in collisions (qtr), or to some power of
the DM-nucleus relative velocity vr. This leads to the following differential cross-sections for
scattering of DM and nuclear species i:

dσi
d cos θ

(vr, θ) = σ0,i

(
vr
v0

)2n

, (2.1)

dσi
d cos θ

(vr, θ) = σ0,i

(
qtr
q0

)2n

. (2.2)

In general we are most interested in the cases where n = −1, 1 or 2, as these non-trivial
velocity and momentum-dependences have been seen to arise in various concrete particle
models for DM. We will also consider the special case n = 0 of a constant cross-section.

The momentum transfer can be written as a function of the center of mass scattering
angle θcm

1

q2tr = (1− cos θcm)v2r
2m2

χ

(1 + µ)2
, (2.3)

where
µ =

mχ

mi
. (2.4)

The values of the normalisation constants v0 and q0 are arbitrary, and simply set the
relative velocity and momentum transfer at which the constant part of the reference cross-
section σ0,i is defined. We choose

v0 = 220km s−1, (2.5)

q0 = 40 MeV. (2.6)

These correspond to typical values encountered in Earth-based direct detection experiments.
The reference cross-section for each species can be obtained from the reference DM-nucleon
cross-section σ0 ≡ σ0,H. For spin-independent (SI) interactions, this is given by

σ0,i = σi|Fi(qtr)|2, (2.7)

σi ≡ σ0A
2
i

(
mi

mp

)2(mχ +mp

mχ +mi

)2

. (2.8)

1For the sake of readability, we keep relevant factors of c, ~ and kB implicit.
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Here σi is the constant part, and Fi(qtr) is the nuclear form factor. For scattering on pro-
tons, |FH(qtr)|2 = 1 for all qtr. This remains true for heavier species only at small momentum
transfer; at large momentum transfer, this term introduces an additional momentum depen-
dence to the differential cross-section. To describe this, wherever the momentum transfer
can be large, we use the exponential (Helm) form factor [44]

|Fi(ER)|2 = exp(−ER/Ei), (2.9)

with

Ei ≡ 3/(2miΛ
2
i ), (2.10)

Λi ≡ [0.91 (mi/GeV)1/3 + 0.3] fm, (2.11)

where ER = q2tr/(2mi) is the nuclear recoil energy.
For spin-dependent (SD) interactions,

σ0,i = σi = σ0
4(Ji + 1)

3Ji
|〈Sp,i〉+ 〈Sn,i〉|2

(
mi

mp

)2(mχ +mp

mχ +mi

)2

, (2.12)

where Ji is the nuclear spin and 〈Sp,i〉 and 〈Sn,i〉 are the respective expectation values of the
spins of the proton and neutron subsystems.

2.2 Dark matter temperature

In the non-local Knudsen regime, the dark matter profile is fully specified by a single tem-
perature Tχ, which is a weighted average of the stellar temperature with which the DM is in
thermal contact.

The relative speed distribution for two particle species following Maxwell-Boltzmann
velocity distributions with temperatures Tχ and T (r) is

f(vr)dvr =

√
2

π
v2r

(
Tχ
mχ

+
T (r)

mi

)− 3
2

e

− v2
r

2

(
Tχ
mχ

+
T (r)
mi

)
dvr. (2.13)

The `th moment of this distribution is:

〈v`〉 =
2√
π

Γ

(
3 + `

2

)(
2Tχ
mχ

+
2T (r)

mi

)`/2
. (2.14)

Using Eqs. 2.1, 2.2, 2.3 and 2.14, we can also calculate the thermally-averaged cross-sections.
When considering scattering of the bound population of DM with nuclei in the Sun, T (r)mi

� 1,
so the integral is dominated by small relative velocities, and the momentum transfer is
typically very small. This means that to a very good approximation |Fi(qtr)|2 ∼ 1. We then
compute the thermally-averaged total cross sections (integrating over cos θ, which yields an
overall factor of 2 for the velocity-dependent case with respect to Eq. 2.1):

〈σv〉i(T1, T2) = σi
22+nΓ(32 + n)

(
T1
mχ

+ T2
mi

)n
√
πv2n0

, (2.15)

〈σq〉i(T1, T2) = σi
4Γ(32 + n)

(
T1
mχ

+ T2
mi

)n
√
πq2n0

m2n
χ

µ2n+
f(n). (2.16)
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Figure 1: Dark matter temperature Tχ in units of the central temperature Tc, as a function of the dark
matter particle mass and interaction type, using the AGSS09ph solar model [32, 34]. Left : spin-independent
scattering; Right : spin-dependent scattering. In the spin-dependent case, both qn and vn interactions give
identical temperatures.

Here µ± ≡ (1± µ)/2. For n ≤ 0, f(n) = 1; for n > 0,

f(n) ≡ 1

2

∫ 1

−1
d cos θ(1− cos θ)n =

2n

n+ 1
. (2.17)

In the same way, we can obtain the thermally-averaged product of the nuclear scattering
cross-section and the DM-nucleus relative velocity 〈σv〉 for scattering between bound DM
and solar nuclei,

〈σvv〉i(T1, T2) = σi
2n+5/2Γ (n+ 2)

(
T1
mχ

+ T2
mi

)n+1/2

√
πv2n0

, (2.18)

〈σqv〉i(T1, T2) = σi
25/2Γ (n+ 2)

(
T1
mχ

+ T2
mi

)n+1/2

√
πq2n0

m2n
χ

µ2n+
f(n). (2.19)

Using Eqs. (2.18)-(2.19), we can now implicitly define the temperature of the DM
isothermal component in terms of the isothermal density profile niso (defined later in Eq. 2.26),
as

Tχ =

∫ R
0 dr4πr2T (r)

∑
i〈σv,qv〉i [Tχ, T (r)]ni(r)niso(r, Tχ)∫ R

0 dr4πr2
∑

i〈σv,qv〉i [Tχ, T (r)]ni(r)niso(r, Tχ)
. (2.20)

This equation does not depend on the value of σ0, nor on the overall DM population in the
Sun, so we can solve it once and for all for different values of mχ and n. We show the resulting
temperature curves for the Sun in Fig. 1, using the AGSS09ph solar model [32, 34] for the run
of nuclear densities. As can be seen, the DM temperature does not differ greatly for different
interaction types. This definition of the DM temperature is a significant improvement over
that of Ref. [45], as it accounts for scattering of DM on multiple nuclear species, and does not
rely on the assumption that the net energy flux across the solar surface due to dark matter
scattering is zero. This second assumption is equivalent to assuming the total evaporation
rate is zero (though we note that it is possible to correct the temperature of Ref. [45] for the
impacts of evaporation [39]).
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Figure 2: Value of f(K) as a function of the cross-section, for mχ = 1 GeVand spin-independent (left) and
spin-dependent (right) interactions.

We end this section on a technical note. By setting f(n) = 1 for n = −1 in the thermal
averages, we have implicitly employed the momentum-transfer cross-section σqtr ≡ (1−cos θ)σ
for the q−2 case. This is necessary to avoid divergence in the forward-scattering limit, where
momentum transfer is negligible. This regularization method avoids the imposition of an
arbitrary cutoff or screening length.

2.3 Dark matter velocity distribution

We approximate the DM population in the Sun by a mixture of an isothermal component
(following a Maxwell-Boltzmann velocity distribution), and a component tracking the local
temperature of the gas (the LTE component). Indeed, Gould and Raffelt [23] found that the
true distribution of weakly interacting particles can be accurately modelled via interpolating
functions that connect the LTE and non-local isothermal component. The overall dark matter
velocity distribution inside the Sun relevant for evaporation is then:

fevap(v) = [1− f(K)]niso(r)e
−mχv

2

2Tχ + f(K)nLTE(r)e
−mχv

2

2T (r) , (2.21)

where

f(K) ≡ 1

1 + (K/K0)2
. (2.22)

Here K0 = 0.4, and K is the Knudsen number, defined as

K ≡ λ

rχ
. (2.23)

The scale radius rχ of the DM cloud is given by

rχ =

√
3Tc

2πGρcmχ
, (2.24)

and the typical inter-scattering distance λ is given by

λ ≡

(∑
i

ni(0)〈σv,q〉i(Tχ, Tc)

)−1
. (2.25)
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Figure 3: Masses and cross-sections leading to f(K) = 0.5, the point at which heat transport by DM in the
Sun transitions between the isothermal and Knudsen regimes. Here we show curves for different interaction
types σ ∝ qn, vn, assuming spin-independent scattering (left) or spin-dependent scattering (right).

The resulting values of f(K) are shown in Fig. 2, for the case of mχ = 1 GeV.
The two spatial distributions are given by

niso(r) = Nisoe
−mχφ(r)/Tχ , (2.26)

nLTE(r) = NLTE

[
T (r)

T (0)

] 3
2

e
−
∫ r
0 dr

′ α(r′)dT/dr′(r′)+mχdφ/dr′(r′)
T (r′) , (2.27)

where α(r) is the thermal diffusivity, which depends on both the DM mass and the vr/qtr-
dependence of the differential cross-section. The quantities Niso and NLTE are normalisation
constants, defined such that the integral over each distribution is 1. We take the values of α
from the calculations of Ref. [25].

In Fig. 3, we show the critical value of the cross-section where the transition from the
isothermal to the Knudsen regime takes place, as a function of mass. We define this as the
cross-section for which f(K) = 0.5.

2.4 Optical depth

When the DM-nucleon cross-section becomes large, the flux of DM particles traversing the
Sun is significantly reduced over its path length. To account for this effect, we add to all
volume integrals an additional extinction factor η(r), defined as

η(r) =
1

2

∫ 1

−1
dze−τ(r,z), (2.28)

with the optical depth τ defined as

τ(r, z) =

∫ √R2−r2(1−z2)

rz
dx
∑
i

ni(r
′)〈σi〉evap,cap. (2.29)

Here z ≡ cosβ and r′2 ≡ x2 + r2(1− z2). The definitions of the various geometric quantities
is shown in more detail in Fig. 4. Here we neglect additional (small) corrections expected
due to multiple scattering events and departures of the DM velocity distribution from pure
isotropy [39, 46]. In Figs. 5 and Fig. 6 we show the resulting optical depth and suppression
factor, for evaporation of an example 1 GeV DM candidate with a constant spin-dependent
cross-section.
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Figure 4: Definitions of the quantities x, z ≡ cosβ and r′2 ≡ x2 + r2(1 − z2) used for calculating the
extinction coefficient due to the optical depth seen by a dark matter particle (Eqs. 2.28 and 2.29).

Using this average optical depth formalism and taking the limit of very large cross-
sections, it is possible to reproduce the geometric limit for the capture cross-section. We
give the analytic proof in Appendix A.1, and carry it through to the geometric limit for the
actual capture rate in Appendix A.2, for n = 0.

In calculating the optical depth (Eq. 2.29), the average cross-section must be calculated
using the appropriate DM velocity distribution. Therefore, apart from the constant cross-
section case, where the optical depth for capture and evaporation coincide, in all other cases
this calculation must employ different DM velocity distributions for capture and evaporation.

2.4.1 Optical depth for DM capture

For capture, the optical depth expresses the probability that an incoming DM particle would
not yet have been scattered off its path before reaching an interaction point at some height
r in the star. For this calculation, we should therefore use the velocity distribution of the
incoming, unbound DM from Galactic halo. This results in a relative velocity distribution
between unbound halo DM and nuclei in the Sun of (see Appendix B for more details)

fcap(ur)dur =
ur
v�

√
3

2π(v2d + 3Tµ/mχ)

(
e
− 3(ur−v�)2

2(3Tµ/mχ+v2
d

) − e
− 3(ur+v�)2

2(3Tµ/mχ+v2
d

)

)
dur. (2.30)

Here ur is the relative velocity far away from the Sun. By the time a DM particle arrives to
collide with a nucleus in the Sun, ur will have been boosted by the local escape velocity ve,
giving a DM-nucleus relative velocity wr(r) =

√
u2r + v2e(r). Taking into account this velocity

boost from the Sun’s potential well, the final distribution of DM-nucleon relative velocities
at the interaction point relevant for capture is

fcap(wr)dwr =
wr
v�

√
3

2π(v2d + 3Tµ/mχ)

e− 3

(√
w2
r−v2

e−v�
)2

2(3Tµ/mχ+v2
d

) − e
−

3

(√
w2
r−v2

e+v�
)2

2(3Tµ/mχ+v2
d

)

 dwr.

(2.31)
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Figure 5: The value of the optical depth τ as a function of z = cosβ and the distance r, for mχ = 1 GeV
with constant (n = 0) spin-dependent interactions. Other cases have similar behaviours.

The moments of this distribution are

〈w4
r〉 = (v2� + v2e + v2d + 3Tµ/mχ)2 + 2

3(v2d + 3Tµ/mχ)(2v2� + v2d + 3Tµ/mχ), (2.32)

〈w2
r〉 = v2� + v2e + v2d + 3Tµ/mχ, (2.33)

〈w−2r 〉 = AH−1 (Ave, Av�) /(v�
√
π), (2.34)

where

A2 ≡ 3
2(v2d + 3Tµ/mχ)−1, (2.35)

H−1(x, y) ≡
∫ ∞
0

t

t2 + x2

(
e−(t−y)

2 − e−(t+y)2
)
dt. (2.36)

From this, we can calculate the average cross-sections in the usual way, with

〈σv〉i,cap = 2σ0,i〈v2n〉/v2n0 , (2.37)

〈σq〉i,cap = 2−nf(n)〈σv〉i,cap(v0/q0)2n(mχ/µ+)2n. (2.38)

These expressions for the average cross-sections do not include the effects of nuclear
form factors, which are relatively minor in the limit of small Λimχ/µ+. This holds to an
excellent approximation for lighter elements, and is still reasonable even for heavier elements.
Taking the example of an mχ = 5 GeV DM particle interacting via a spin-independent q2

cross-section, the impacts of the form factors is only O(10%).

2.4.2 Optical depth for DM evaporation

Turning to evaporation, the optical depth expresses the probability that a DM particle that
has received a strong enough kick to evaporate does not interact again before escaping from
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Figure 6: The extinction coefficient η as a function of σ0 and the distance r from the centre of the Sun, for
mχ = 1 GeV, n = 0, spin-dependent interactions. Other cases have similar behaviours. We have limited the
plot range to the interval [0, 10].

the Sun. It is therefore necessary to use the speed distribution that the DM has after receiving
such a kick. We therefore require the distribution of the velocities of the population of DM
particles that are in the process of evaporating. These will be the particles with velocities
equal to or greater than the local escape velocity ve. In general this population will be
completely dominated by those with velocities not much above ve, as higher velocities will
be progressively more Boltzmann suppressed. We can therefore approximate the DM speed
to be equal to ve, while still assuming a Maxwell-Boltzmann distribution for the nuclei.

In fact, we can find the relative speed distribution for this case from the equivalent
expression for DM capture without additional gravitational focussing (Eq. 2.30), by treat-
ing the halo DM as having just a single speed, i.e. setting the width of the DM velocity
distribution to zero, vd → 0. In this case, when the width of the halo DM distribution is
zero, the speed of DM in the frame of the Sun is simply v�. We can therefore set v� to the
relevant DM velocity for evaporation, i.e. v� → ve(r), and immediately obtain the result for
the distribution of relative speeds between nuclei and evaporating DM:

fevap(wr)dwr =
wr
ve

√
mχ

2πTµ

(
e
− mχ

2Tµ
(wr−ve)2 − e−

mχ
2Tµ

(wr+ve)2
)
dwr. (2.39)
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Figure 7: Capture rates as a function of the reference scattering cross-section σ0, for n = 0, 1, 2,−1, mχ =
2 GeV. The upper panels show v2n

r scattering, the lower ones show q2n
tr scattering, the left panels are for SI

interactions and the right panels for SD. The solid lines indicate the result using the full treatment including the
optical depth factors. Dashed lines are the standard capture rate, which uses the optically thin approximation,
and the dotted lines indicate the respective saturation limits. The dot-dash grey line indicates the absolute
geometric upper limit. Percent-level discrepancies between the limiting values of some capture curves and
their corresponding saturation limits are due to slow numerical convergence, which becomes an issue in the
limit where the calculation of the full capture rate is dominated by scattering in an infinitely thin shell near
the solar surface.

The moments of this distribution are

〈w4
r〉 = v4e + 10v2eTµ/mχ + 15(Tµ/mχ)2, (2.40)

〈w2
r〉 = v2e + 3Tµ/mχ, (2.41)

〈w−2r 〉 =
1

ve

√
πmχ

2Tµ
Erfi

(
ve

√
mχ

2Tµ

)
e
−mχv

2
e

2Tµ , (2.42)

and the average cross-sections can be obtained using Eqs. (2.37) and (2.38). Again, these
expressions do not account for the effect of form factors in spin-independent interactions.
Note that all cross-sections are r-dependent as both T and ve depend on r.

In Fig. 5 we give an example of our results for the optical depth τ , while in Fig. 6 we
plot η. Both of these figures are for n = 0; the results for other cases are qualitatively similar.

3 Capture rate

At this point we can derive an improved version of the traditional Gouldian capture rate [47],
removing the original assumption that the Sun is optically thin to DM scattering. For this,
only the results (and assumptions) of Sec. 2.4 are necessary. Using the equations obtained
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in C.2, we can write the capture rate as

C =

∫ R�

0
dr4πr2η(r)

∫ ∞
0

du
w

u
f cap� (u)

∑
i

Ω−i (w), (3.1)

where f cap� (r) is the DM speed distribution in the reference frame of the Sun, normalised to
the local DM number density

f cap� (u) =
ρχ
mχ

lim
T→0

fcap(u) =
ρχ
mχ

√
3

2π

u

v�vd

[
e
− 3(u−v�)2

2v2
d − e

− 3(u+v�)2

2v2
d

]
. (3.2)

In Fig. 7 we show the resulting capture rate as a function of the cross-section and
interaction type for a DM mass of 2 GeV, comparing with both the traditional optically-
thin calculation and the result obtained in the optically thick limit. One can clearly see the
smooth transition from the optically thin regime to the saturation limit.

Close inspection of Fig. 7 reveals that we have not plotted a saturation value for the q−2

interaction. This is due to our use of the momentum-transfer cross-section for computing the
thermal averages in the optical depth for q−2 scattering, but not in the capture expression
(3.1). Indeed, the saturation limit relies on precise cancellation between the cross-sections
in η and C in the large σ limit, which is not possible for q−2 interactions if the forward
scattering divergence is to be removed. Instead, where the resulting capture rate would
exceed the absolute geometric limit (as is the case for SD scattering), we have truncated it
at this value. Despite the slight inaccuracy introduced by this approximation and the use of
the momentum-transfer cross-section, this procedure is more physically motivated than e.g.
the smoothing function employed by Ref. [39], as it accounts for the saturation behaviour.

4 Evaporation

4.1 Evaporation rate

Using Eqs. (2.21) and (C.33) from Appendix C.3, the evaporation rate is

E =

∫ R�

0
dr4πr2η(r)

∫ ve(r)

0
dwfevap� (w)

∑
i

Ω+
i (w), (4.1)

where Ω+(w) is defined in Eqs. (C.33) and (C.34):

Ω+(w) =

∫ ∞
ve

R+(w → v)dv, (4.2)

R+(w → v) =

∫ ∞
0

ds

∫ ∞
0

dt
32µ4+√
π
k3ni

dσi
d cos θ

(s, t, v, w)
vt

w
e−k

2u2 |Fi(qtr)|2

×Θ(t+ s− v)Θ(w − |t− s|). (4.3)

Due to the linearity of the evaporation rate in fevap� (v), we can rewrite it as

E = f(K)ELTE + [1− f(K)]Eiso, (4.4)

and the two contributions can be calculated separately. The factor dσ
d cos θ inside R+ should

be expressed using Eqs. (2.1), (2.2), (C.1) and (C.12).
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Figure 8: Evaporation rates of a 3 GeV dark matter particle in the Sun, for different reference scattering
cross-sections σ0 and spin-independent (SI) dark matter interactions with nuclei. The upper plot is for an
SI cross-section that depends on neither momentum exchange nor relative velocity, left panels refer to vr-
dependent scattering, right panels refer to qtr-dependent scattering, and the lower three rows are for n = 1, 2
and −1, respectively. Curves show the evaporation rates that would follow if energy transport in the Sun were
either purely local (ELTE) or purely Knudsen/isothermal (Eiso), as well as the total weighted combination of
the two (E). The evaporation rate can be seen to increase with increasing cross-section, until the gas becomes
optically thick to scattering, beyond which evaporation is suppressed.
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Figure 9: As per Fig. 8, but for spin-dependent interactions.
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The resulting evaporation rates can be seen for SI interactions in Fig. 8, and for SD
interactions in Fig. 9. Here we show not only the total evaporation rate, but the individual
rates ELTE and Eiso. The evaporation rate shows the expected increase with scattering cross-
section in the optically thin regime, before turning over at larger cross-sections due to the
impacts of the optical depth. In this region, dark matter can only effectively evaporate from
the surface layers of the Sun, as particles up-scattered to greater than the local escape velocity
deeper in the Sun nevertheless collide again and redeposit their energy in the outer layers
before they can complete their escape. It can also be seen from this figure that properly
accounting for the degree of locality of energy transport in the Sun is crucial for obtaining
an accurate description of evaporation in the optically thick regime.

4.2 Effects of evaporation

To determine the DM population of the Sun, one must solve the equation

dN

dt
= C − EN −AN2, (4.5)

where C is the capture rate, E the evaporation rate and A the annihilation rate. To get a
rough idea of the impacts of evaporation on the DM population in the Sun for asymmetric
dark matter, we can set A = 0 and assume that C and E are approximately constant for
most of the life of the Sun, giving

N(t�) =
C

E

(
1− e−Et�

)
= Ct�

(
1− e−Et�
Et�

)
. (4.6)

When evaporation is negligible this simplifies to

N(t�)→ Ct�. (4.7)

The factor that quantifies the importance of evaporation is thus

1− e−Et�
Et�

. (4.8)

In Fig. 10 we show for each interaction the regions of parameter space in σ0 and mχ where
this factor is less than 0.5, i.e. where evaporation depletes the solar DM population by at least
50%. Because the specific value of the cross-section at which evaporation passes from the
optically thin to the optically thick regime varies with mass, as does the maximal evaporation
rate at the transition point, we see that the effective evaporation mass for different cross-
sections can be anywhere between 1 and 4 GeV, depending on the interaction and its strength.

This has important implications for the impact of vr-dependent and qtr-dependent scat-
tering on helioseismology and solar neutrino rates, and by extension, their prospects for
solving the Solar Abundance Problem. In particular, these mass and interaction ranges en-
compass some but not all of the best-fit regions found in Ref. [28]. Some of these models will
therefore become poorer fits, as the impacts of DM will be reduced. In some cases the effect
will be only mild, at the 10–20% level, but in others it will be quite substantial. In other
cases however, where such low masses were excluded in Ref. [28] due to overly large impacts
of captured DM, the fits are expected to improve markedly, possibly revealing ever better
solutions than seen previously. Specifically, a substantial part of parameter space for the
v−2 and v2 spin-dependent models can produce very large effects on solar observables while
remaining compatible with direct detection experiments. A reduction in the DM population
due to evaporation should bring these effects in line with helioseismological observations; full
implementation of our results into solar simulations will quantify this impact.
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Figure 10: Regions of parameter space where the dark matter population in the Sun is depleted by more
than 50% due to evaporation, for different spin-independent (SI, upper panel) and spin-dependent (SD, lower
panel) interactions.
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5 Conclusions

In this paper we have derived the detailed expressions necessary for calculating the rate at
which captured dark matter with momentum- and velocity-dependent couplings evaporates
from the Sun. For the first time, we have also included a full treatment of thermal effects
and the transition to the optically thick regime in the evaporation expressions, and treated
both spin-independent and spin-dependent interactions. We have also developed an improved
calculation of the capture rate for dark matter by the Sun and other stars, accounting for
the effect of a finite optical depth.

Mirroring the manner in which conductive energy transport is maximised at the tran-
sition from local to non-local transport, we find that evaporation is most efficient at cross-
sections intermediate between the optically thick and thin regimes. At lower cross-sections,
evaporation is reduced due to the reduced scattering rate; at higher cross-sections, would-be
escapees are foiled by subsequent re-scattering in the outer atmosphere before they can effect
their final departure. Depending on the interaction type and strength, dark matter lighter
than a mass of between 1 and 4 GeV can be significantly impacted by evaporation in the Sun.
These effects will modify some (but not all) of the best-fit points identified in previous inves-
tigations of solar physics in the context of momentum- and velocity-dependent dark matter
models. They will also modify other points that were previously found to give poor fits due
to an overpopulation of dark matter, potentially leading to even better fits than observed
previously.
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A Geometric and saturation limits

A.1 From optical depth to the saturation limit

Here we show how, in the limit of large scattering cross-section, our treatment of the optical
depth in the capture rate recovers the saturation limit. We will demonstrate this for a
constant number density nH of just one element (H). The case for many elements follows
from the replacement nHσ0 →

∑
i niσi. The case of radially-varying number densities can

be obtained by just replacing ni → ni(R�), as we will see that in the high-σ limit, the
only contribution to the integral comes from the surface. Finally, for vr and qtr-dependent
cross-sections, one can replace σ0 → 〈σ〉(R�).

For constant density, the integral in Eq. (2.29) can be done analytically, giving

τ(r, z) = nHσ0

(√
R2
� − r2(1− z2)− rz

)
. (A.1)

Let us now compute any volume integral of the form

I =

∫ R�

0
4πr2f(r)nHσ0η(r)dr. (A.2)
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From now on we will drop all indices. In the high-σ limit, the contribution from inside the
Sun drops exponentially, as does the contribution for z < 0. We can therefore rewrite the
integral as

I =

∫ R�

R�(1−ε)
2πr2drf(r)nσ

∫ 1

0
e−nσ(

√
R2
�−r2(1−z2)−rz)dz. (A.3)

Changing variables from r to % ≡ 1−r/R�, exchanging the order of integration and bringing
all terms outside the integral that do not vary exponentially around r = R�,

I = 2πR3
�f(R�)nσ

∫ 1

0
dz

∫ ε

0
e
−nσ

(
R�
√

1−(1−%)2(1−z2)−rz
)
d%. (A.4)

Now we expand the exponent as a series in % around % = 0, giving

R�
√

1− (1− %)2(1− z2)− (1− %)R�z = R�
%

z
+O(%2). (A.5)

Integrating in %,

I =
2πR3

�f(R)nσ

nσR�

∫ 1

0
z
(

1− e−nR�σε/z
)
dz. (A.6)

It is now safe to take the limit σ →∞

2πR2
�f(R�)

∫ 1

0
zdz = πR2

�f(R�), (A.7)

so that the final result is

lim
σ0→∞

∫ R�

0
4πr2f(r)nHσ0η(r)dr = πR2

�f(R�), (A.8)

corresponding to an effective cross-section equal to the saturation limit πR2
�.

A.2 Capture rate and geometric/saturation limits

Using the result of the previous section, and drawing on those of Appendix C, we now calcu-
late the geometric and saturation limits for the capture rate. We define the geometric limit as
the maximum value that the capture rate can have from pure geometrical considerations. In
contrast, the saturation limit is the limiting value of the capture rate for large cross-sections,
which is necessarily less than or equal to the geometric limit. The saturation limit differs
from the geometric limit by the kinematic probability that a DM particle interacts with the
Sun but is not captured, and instead bounces away.

We start by calculating the saturation limit, considering n = 0. Using Eqs. (C.23) and
(C.25), together with the formula for the capture rate (Eq. 3.1), we get

C =

∫ R�

0
dr4πr2η(r)

∫ ∞
0

du
w

u
f cap� (u)

{
2µ2+
µw

nHσ0

(
v2e −

µ2−
µ2+

w2

)
Θ

(
v2e −

µ2−
µ2+

w2

)

+
∑
i≥He

6µ2+
m2
χΛ2w

niσi

(
e
−
m2
χΛ2(w2−v2

e)

3µ − e
−
m2
χΛ2

3µ2
+
w2
)

Θ

(
v2e −

µ2−
µ2+

w2

)}
. (A.9)
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The saturation limit can then be obtained using Eq. (A.8), remembering that the total cross-
section is 2σi:

C =
1∑

i 2niσi
πR2
�

∫ ∞
0

du
w

u
f cap� (u)

2µ2+
µw

nHσ0

(
v2e −

µ2−
µ2+

w2

)
Θ

(
v2e −

µ2−
µ2+

w2

)

+
∑
i≥He

6µ2+
m2
χΛ2w

niσi

e−m2
χΛ2(w2−v2

e)

3µ − e
−
m2
χΛ2

3µ2
+
w2

Θ

(
v2e −

µ2−
µ2+

w2

)
∣∣∣∣∣
r=R�

. (A.10)

We can now make some approximations. First, we assume that on the surface of the Sun,
the only elements relevant for capture are the lighter ones. In particular, we will neglect
the contribution of iron. This is not due to low number density, as that could be partially
compensated for by the A2

i cross-section enhancement, but rather due to kinematics: for
heavy elements the kinematic limit expressed by the Θ function in the integral is satisfied
only for the tail of fcap, giving a negligible contribution. Second, for the light elements that
contribute one has

mχmiΛ
2w2 ∼ mχmiΛ

2v2e � 1. (A.11)

It is therefore safe to expand the exponentials, cancelling the form factors and obtaining for
the helium contribution an expression similar to the hydrogen one:

C =
πR2
�∑

i niσi

∫ ∞
0

du
1

u
f cap� (u)

[∑
i

µ2+
µ
niσi

(
v2e −

µ2−
µ2+

w2

)
Θ

(
v2e −

µ2−
µ2+

w2

)]

=
πR2
�∑

i niσi

∑
i

∫ √µve/µ−
0

du
1

u
f cap� (u)

[
µ2+
µ
niσi

(
v2e −

µ2−
µ2+

w2

)]
. (A.12)

This integral can be calculated analytically, however the result is quite long, so we now make
the further approximation √

µ

µ−
ve(R�)� v�, vd. (A.13)

This approximation is valid for mχ . 6 GeV for H and He. For other elements it is not
always true; we will see in the next section that this may cause some small loss of precision,
especially for higher values of mχ or for q2ntr cross-sections, where heavier elements with larger
momentum transfers are more important. We now obtain

C =
πR2
�∑

i niσi

∑
i

∫ ∞
0

du
1

u
f cap� (u)

[
µ2+
µ
niσi

(
v2e −

µ2−
µ2+

w2

)]
(A.14)

=
ρχπR

2
�∑

i niσi

∑
i

niσi
v�mχ


[
v2e −

µ2−
µ

(
v2� +

v2d
3

)]
erf

(√
3

2

v�
vd

)
−
√

6

π

µ2−
3µ
v�vde

−
3v2
�

2v2
d

 .

This formula gives the saturation limit taking into account the probability, given by kine-
matics, that DM interacts but bounces away. To calculate the geometric limit, we instead
assume that the capture probability is one (a ‘sticky hard sphere’), starting from Eq. (A.9).
After substituting

Pcap =
µ2+
µw2

(
v2e −

µ2−
µ2+

w2

)
Θ

(
v2e −

µ2−
µ2+

w2

)
→ 1, (A.15)
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and going through the same steps again, we find

C =
πR2
�∑

i niσi

∑
i

∫ ∞
0

du
1

u
f cap� (u)niσiw

2

= πR2
�

∫ ∞
0

du
1

u
f cap� (u)w2

=
ρχπR

2
�

3v�mχ

(3v2e + 3v2� + v2d
)

erf

(√
3

2

v�
vd

)
+

√
6

π
v�vde

−
3v2
�

2v2
d

 . (A.16)

This result matches that of Refs. [27, 28]. Note that without setting the capture probability
to 1, one necessarily finds a dependence on both the element and its number density. Note
also that the upper limit given by Eq. (A.16) can never be reached, as even in the best case
µ− = 0, one has

Pcap =
v2e
w2

=
v2e

v2e + u2
< 1. (A.17)

Moreover, the best case µ− = 0 cannot be reached simultaneously for all elements. The
approximate formula Eq. (A.14) is a very good approximation for any mχ . 10 GeV. The
geometric limit Eq. (A.16) overestimates the saturation limit by O(10%).

Eq. (A.14) can be interpreted in the following way: the capture rate at saturation is equal
to the product of the DM flux ρχw/mχ, the geometric cross-section πR2

�, the probability to
interact with the element i, Pint,i = niσi/

∑
j njσj , and the capture probability with that

element Pcap,i = (ve/w)2µ2+/µ− µ2−/µ, all summed over all elements and integrated over the
velocity distribution.

A.3 Saturation limits: expressions and checks

The saturation limits for the various cases are

Cnv,sat = πR2
�
ρχv

2
e

v�mχ

1∑
i niσiΥn

(
v2d + 3 Tµmχ , v

2
�

)
×

∑
i=H,He

niσi

{[
Pn

(
v2d
v2e
,
v2�
v2e

)
−
µ2−
µ
Qn

(
v2d
v2e
,
v2�
v2e

)]
erf

(√
3

2

v�
vd

)

+

√
6

π

[
Rn

(
v2d
v2e
,
v2�
v2e

)
−
µ2−
µ
Sn

(
v2d
v2e
,
v2�
v2e

)]
v�vd
v2e

e
−

3v2
�

2v2
d

 (A.18)

Cnq,sat = πR2
�
ρχv

2
e

v�mχ

1∑
i niσiµ

−2n
+ Υn

(
v2d + 3 Tµmχ , v

2
�

)
×

∑
i=H,He

niσiµ
−2n
+

{[
P̂n

(
v2d
v2e
,
v2�
v2e

)
− Tn(µ)

µn+1
Q̂n

(
v2d
v2e
,
v2�
v2e

)]
erf

(√
3

2

v�
vd

)

+

√
6

π

[
R̂n

(
v2d
v2e
,
v2�
v2e

)
− Tn(µ)

µn+1
Ŝn

(
v2d
v2e
,
v2�
v2e

)]
v�vd
v2e

e
−

3v2
�

2v2
d

 . (A.19)
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As the surface temperature is much smaller than the mass, one can safely neglect it in these
expressions. Here the functions Pn, Qn, Rn, Sn are

P0(y, z) = 1 (A.20)

P1(y, z) = 1 + z +
1

3
y (A.21)

P2(y, z) = 1 +
2

3
y + 2z +

1

3
y2 + 2yz + z2 (A.22)

P−1(y, z) =

∫∞
0 dt 1

1+ 2
3
yt2

(
e
−
(
t−
√

3z
2y

)2

− e−
(
t+
√

3z
2y

)2
)

∫∞
0 dt

(
e
−
(
t−
√

3z
2y

)2

− e−
(
t+
√

3z
2y

)2
) (A.23)

Q0(y, z) =
1

3
y + z (A.24)

Q1(y, z) =
1

3
y + 2yz +

1

3
y2 + z + z2 (A.25)

Q2(y, z) =
1

3
y
(
1 + 12z + 15z2

)
+

1

3
y2(2 + 15z) + z(1 + z)2 +

5

9
y3 (A.26)

Q−1(y, z) =

∫∞
0 dt

2
3
yt2

1+ 2
3
yt2

(
e
−
(
t−
√

3z
2y

)2

− e−
(
t+
√

3z
2y

)2
)

∫∞
0 dt

(
e
−
(
t−
√

3z
2y

)2

− e−
(
t+
√

3z
2y

)2
) (A.27)

R0(y, z) = 0 (A.28)

R1(y, z) =
1

3
(A.29)

R2(y, z) =
2

3
+

5

9
y +

1

3
z (A.30)

S0(y, z) =
1

3
(A.31)

S1(y, z) =
1

3
+

5

9
y +

1

3
z (A.32)

S2(y, z) =
1

3
+

10

9
y +

2

3
z +

11

9
y2 +

14

9
yz +

1

3
z2 (A.33)

R−1(y, z) = S−1(y, z) = 0, (A.34)
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and the functions P̂n, Q̂n, R̂n, Ŝn, Tn are

P̂1(y, z) = 1 +
2

3
y + 2z (A.35)

P̂2(y, z) = 1 + y + 3z + y2 + 6yz + 3z2 (A.36)

Q̂1(y, z) =
1

3
y2 + 2yz + z2 (A.37)

Q̂2(y, z) =
1

9

(
5y3 + 45y2z + 45yz2 + 9z3

)
(A.38)

R̂1(y, z) =
2

3
(A.39)

R̂2(y, z) = 1 +
5

3
y + z (A.40)

Ŝ1(y, z) =
1

9
(5y + 3z) (A.41)

Ŝ2(y, z) =
1

9

(
11y2 + 14yz + 3z2

)
(A.42)

T1(µ) = µ2−
(
µ2+ + µ

)
= µ4+ − µ2 (A.43)

T2(µ) = µ2−
(
µ4+ + µµ2+ + µ2

)
= µ6+ − µ3 (A.44)

T−1(µ) = log
µ2+
µ
. (A.45)

The functions Υ in the denominators come from the average σ, given by Eqs. (2.37) and
(2.38). These are defined by

〈σv〉i,cap =
2σ0,iv

2n
e

v2n0
Υn

(
v2d + 3 Tµmχ

v2e
,
v2�
v2e

)
(A.46)

≈ 2σ0,iv
2n
e

v2n0
Υn

(
v2d
v2e
,
v2�
v2e

)
(A.47)

〈σq〉i,cap =
2σiv

2n
e

q2n0
Υn

(
v2d + 3 Tµmχ

v2e
,
v2�
v2e

)
m2n
χ

2nµ2n+
f(n) (A.48)

≈ 2σiv
2n
e

q2n0
Υn

(
v2d
v2e
,
v2�
v2e

)
m2n
χ

2nµ2n+
f(n) (A.49)

Υ0(y, z) = 1 (A.50)

Υ1(y, z) = 1 + y + z (A.51)

Υ2(y, z) = (1 + y + z)2 +
2

3
y (y + 2z) (A.52)

Υ−1(y, z) =
3√

2πyz
H−1

(√
3

2y
,

√
3z

2y

)
, (A.53)

where H−1(x, y) is defined in Eq. (2.36). A fast way to check that the overall normalisation
is fine is to check the limit y, z → 0.2

2Note that limx,y→0 Υ−1(y, z) = 1, however this procedure won’t work for dσ ∝ q−2.
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The geometric limit can be expressed using Eq. (A.18) with

PG(x, y, z) = 1 +
1

3
y + z (A.54)

QG(x, y, z) = 0 (A.55)

RG(x, y, z) =
1

3
(A.56)

SG(x, y, z) = 0. (A.57)

For positive powers of n, the saturation limit is

ρχπR
2
�v

2
e

v�mχ
' 1.05 · 1030

1 GeV

mχ

ρχ
0.4 GeV

s−1. (A.58)

B Velocity distributions

Relative velocity distributions are calculated as follows. We define

f(A, x) =

(
A

π

)3/2

e−Ax (B.1)

For calculating the capture rate, one assumes a Maxwell-Boltzmann distribution with velocity
dispersion vd = 270 km s−1 for the DM halo,

f0χ(ũ)dũd cos θ̃χdφ̃χ = f

(
3

2v2d
, ũ2
)
d3u =

(
3

2π

)3/2 ũ2

v3d
e
− 3ũ2

2v2
d dũd cos θ̃χdφ̃χ, (B.2)

where ũ is the DM speed in the frame where the average speed is zero (i.e. the Galactic rest
frame). The Sun moves at speed |~v�| = v� = 220 km s−1 relative to the frame where DM
has null average speed, so the DM speed in the rest frame of the Sun is

~vχ = ~̃vχ + ~v�. (B.3)

The velocities of nuclei in the Sun follow a Maxwell-Boltzmann distribution with temperature
T = T�(r),

fN (vN )dvNd cos θNdφN = f

(
mN

2T�(r)
, v2N

)
d3vN

=

(
mN

2πT�(r)

)3/2

v2Ne
−mNv

2
N

2T�(r) dvNd cos θNdφN . (B.4)

The thermal motion of the nuclei in the Sun has a negligible effect on the capture rate for
a constant cross-section, so we can safely use the formulae for the capture rate with the
nuclear temperature set to zero. However, in the case of a velocity-dependent cross-section,
it is important to take the thermal motion into account when calculating the average cross-
section, which can then be safely plugged into the formulae for the capture rate that assume
zero nuclear temperature. The joint distribution for ũ and vN is the (six-dimensional) product
of the individual distributions, and can be written as

f6D ≡ f

(
3

2v2d
, |~̃u|2

)
f

(
mN

2T�(r)
, v2N

)
d3ũd3vN

= f

(
3

2v2d
, |~u− ~v�|2

)
f

(
mN

2T�(r)
, v2N

)
d3ud3vN . (B.5)
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The equality follows from Eq. (B.3) and the invariance of the phase space under translations
(i.e. d3u = d3ũ).

At this point, to make this expression easier to manage, it helps to define a new set
of coordinates rather than continuing with ũ and vN . A more useful set of coordinates is
the combination of ~s, the speed (in the frame of the Sun) of the centre of mass frame of a
collision between a nucleus and a halo DM particle, and the relative speed of such a collision
~ur. This gives

~s ≡ mN~vN +mχ~u

mN +mχ
, (B.6)

~ur ≡ ~u− ~vN , (B.7)

~u = ~s+
mN

mχ +mN
~ur, (B.8)

~vN = ~s− mχ

mχ +mN
~ur. (B.9)

This transformation has Jacobian equal to one, so one can rewrite Eq. (B.5) using the new
variables ~s and ~ur, and then integrate over everything except ur = |~ur| to get a relative speed
distribution. To do this, we start by rewriting the arguments of Eq. (B.5) in terms of ~s and
~ur:

|~u− ~v�|2 = s2 +

(
mN

mχ +mN

)2

u2r + 2
mN

mχ +mN
sur cos θsr

+ v2� − 2sv� cos θs� − 2
mN

mχ +mN
v�ur cos θr�, (B.10)

v2N = s2 +

(
mχ

mχ +mN

)2

u2r − 2
mχ

mχ +mN
sur cos θsr. (B.11)

Here θsr is the angle between the vectors ~s and ~ur, θs� is the angle between the vectors ~s
and ~v�, and θr� is the angle between vectors ~ur and ~v�. We now have 3 angles, but they
are not independent. Without loss of generality, we can fix the coordinate system such that
~v� lies along the ẑ axis. In this case, θs� and θr� are respectively the polar angles of the
vectors ~s and ~ur, and

cos θsr = cos θr� cos θs� + sin θr� sin θs� cos (φs − φr) , (B.12)

where φs and φr are the azimuthal angles defining the directions of the vectors ~s and ~ur.
Integrating Eq. (B.5) over the unnecessary variables from here is not trivial. To do this

we rely on translational invariance. We can define a new coordinate

~̂s ≡ ~s− c~v�, (B.13)

and choose the quantity c in such a way as to make the integrand independent of θŝ�. Defining

AN ≡
mN

2T�(r)
, (B.14)

Aχ ≡
3

2v2d
, (B.15)

we get

c =
Aχ

AN +Aχ
. (B.16)
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Defining

Bχ ≡ ŝ2 +
A2
N

(AN+Aχ)2
v2� +

m2
N

(mN+mχ)2
u2r + 2 mN

mN+mχ
urŝ cos θŝr − 2 ANmN

(AN+Aχ)(mN+mχ)
v�ur cos θr�

BN ≡ ŝ2 +
A2
χ

(AN+Aχ)2
v2� +

m2
χ

(mN+mχ)2
u2r − 2

mχ
mN+mχ

urŝ cos θŝr − 2
Aχmχ

(AN+Aχ)(mN+mχ)
v�ur cos θr�,

(B.17)

we see that

|~u− ~v�|2 = Bχ − 2
AN

(AN +Aχ)
ŝv� cos θŝ� (B.18)

v2N = BN + 2
Aχ

(AN +Aχ)
ŝv� cos θŝ�. (B.19)

With this change of variables (all Jacobians so far are equal to 1), we find that the joint
distribution becomes

f6D = f
(
AN , v

2
N

)
f
(
Aχ, |~u− ~v�|2

)
d3ŝd3ur = f (AN , BN ) f (Aχ, Bχ) d3ŝd3ur. (B.20)

This expression now only explicitly depends on two angles, θŝr and θr�. We can therefore in-
tegrate easily over φs and φr, as θr� and θsr are just the polar angles and have no dependence
on either of the azimuthal angles. The reduced distribution is then

f4D = (2π)2 f (AN , BN ) f (Aχ, Bχ) ŝ2u2rdŝdurd cos θŝrd cos θr� (B.21)

= (2π)2 f
(
AN +Aχ, ŝ

2 + 2
AχmN−ANmχ

(AN+Aχ)(mN+mχ)
urŝ cos θŝr +

Aχm2
N+ANm

2
χ

(AN+Aχ)(mN+mχ)2
u2r

)
× f

(
ANAχ
AN+Aχ

, v2� − 2v�ur cos θr�

)
ŝ2u2rdŝdurd cos θŝrd cos θr�. (B.22)

If we then integrate over cos θŝr, we find

f3D = 2π2
mχ +mN

AχmN −ANmχ

{
f

(
AN +Aχ,

[
ŝ− ur AχmN−ANmχ

(AN+Aχ)(mN+mχ)

]2)
−f
(
AN +Aχ,

[
ŝ+ ur

AχmN−ANmχ
(AN+Aχ)(mN+mχ)

]2)}
×f
(

ANAχ
AN +Aχ

, v2� − 2v�ur cos θr� + u2r

)
ŝurdŝdurd cos θr�. (B.23)

Integrating over ŝ, this becomes,

f2D = 2πf

(
ANAχ
AN +Aχ

, v2� − 2v�ur cos θr� + u2r

)
u2rdurd cos θr�, (B.24)

and finally over cos θr�, we obtain

fcap(ur)dur =
ur
v�

√
3

2π(v2d + 3Tµ/mχ)

(
e
− 3(ur−v�)2

2(3Tµ/mχ+v2
d

) − e
− 3(ur+v�)2

2(3Tµ/mχ+v2
d

)

)
dur. (B.25)

This expression gives the distribution of relative velocities between nuclei in the Sun, and
DM particles in a halo an infinite distance away from the Sun. When DM falls into the
gravitational potential well of the Sun, it gets accelerated. The actual relative DM-nucleus

– 25 –



speed in collisions taking place at some distance r from the centre of the Sun is therefore
not ur, but the squared sum of the relative speed at infinity and the escape velocity (cf. Eq.
C.8), i.e.

w2
r(r) = u2r + v2e(r). (B.26)

The final expression for the distribution of actual relative speeds is therefore

fcap(wr)dwr =
wr
v�

√
3

2π(v2d + 3Tµ/mχ)

{
exp

[
−

3
(√

w2
r−v2

e−v�
)2

2(3Tµ/mχ+v2
d)

]
− exp

[
−

3
(√

w2
r−v2

e+v�
)2

2(3Tµ/mχ+v2
d)

]}
dwr.

(B.27)
We see that the final result has a rather intuitive form: it is the DM speed distribution in
the frame of the Sun, but with a velocity dispersion instead given by the sum in quadrature
of the halo dispersion vd and the nuclear velocity dispersion

√
3T/mN .

C Capture and evaporation rate calculation

C.1 Definitions of variables

We define the following kinematic variables in the DM-nucleus collision:

• ~w,w DM speed before the collision, and its modulus

• ~vN , vN Nucleon speed before the collision, and modulus

• ~v, v DM speed after the collision, and modulus

• ~s, s Center of mass speed, and modulus

• ~t, t DM speed before collision, and modulus, in the center of mass reference system

• ~t′, t′ DM speed after collision, and modulus, in the center of mass reference system

• θxy angle between two vectors ~x and ~y.

• µ = mχ/mNi

• µ+ = µ+1
2

• µ− = µ−1
2

• u speed of DM far away from the Sun

Here are some important relations between these quantities:

|~w − ~vN | = t(1 + µ) (C.1)

|µ~w + ~vN | = s(1 + µ) (C.2)

cos θst′ =
s2 + t2 − v2

2st
(C.3)

cos θwvN = −
w2 + v2N − t2(1 + µ)2

2vNw
(C.4)

t′ = t (C.5)

cos θst =
s2 + t2 − w2

2st
(C.6)

v2N = 2µµ+t
2 + 2µ+s

2 − µw2 (C.7)

w2 = u2 + v2e(r) (C.8)
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We would like to express vr, qtr as a function of the variables listed above. For the
relative velocity we can just use Eq. (C.1). For qtr, we need some geometry: the angle
between ~t and −~t′ is

cos(θst′ ± θst) = cos θst′ cos θst + sin θst′ sin θst sinφ, (C.9)

where φ is an azimuthal angle over which we have averaged. Thus,

qtr = mχ2t sin

(
|θst′ ± θst|

2

)
, (C.10)

q2tr = 2m2
χt

2

{
1− (s2 + t2 − v2)(s2 + t2 − w2)

4s2t2

+

√[
1− (s2 + t2 − v2)2

4s2t2

] [
1− (s2 + t2 − w2)2

4s2t2

]
sinφ

}
, (C.11)

〈q2tr〉 = 2m2
χt

2

[
1− (s2 + t2 − v2)(s2 + t2 − w2)

4s2t2

]
. (C.12)

C.2 Capture

We follow the approach of [8, 47]. To calculate the capture rate, we have to evaluate Ω−(w).

Ω−(w) =

∫ ve

0
R−(w → v)dv (C.13)

R−(w → v) =

∫ ∞
0

ds

∫ ∞
0

dt
32µ4+√
π
k3ni

dσi
d cos θ

(s, t, v, w)
vt

w
e−k

2v2
N

×Θ(t+ s− w)Θ(v − |t− s|), (C.14)

where we have defined
k2 =

mi

2T
, (C.15)

and the DM-proton cross-section is given by Eqs. (2.1) and (2.2). Θ(x) is the standard
Heaviside step function. The DM-nucleus cross-section can be obtained from Eq. (2.7). For
the calculation of the average cross-section, it is important to retain the dependence on the
temperature of the nuclei. In contrast, for the kinematics associated with capture, the effect
of the thermal motion of the nuclei is either negligible (constant cross section, n = 0), or
mild (other cases) [39]), so we decide to set their temperature to zero, as this allows us to
simplify the 5-dimensional integral to a 1-dimensional or 2-dimensional one. In this limit,

lim
T→0

8µ2+√
π
k3tµe−k

2v2
NΘ(t+ s− w)→ δ

(
s− wµ

2µ+

)
δ

(
t− w

2µ+

)
, (C.16)

and

vr = |~w − ~u| = t(1 + µ) = w; (C.17)

s(1 + µ) = µw (C.18)

q2tr = 2m2
χt

2

[
1− (s2 + t2 − v2)(s2 + t2 − w2)

4s2t2

]
= m2

χ

w2 − v2

µ
. (C.19)
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Thus,

R−(w → v) =
4µ2+
µ
ni
v

w

∫ ∞
0

dt
dσi
d cos θ

(
wµ

2µ+
, t, v, w

)
δ

(
t− w

2µ+

)
Θ

(
v − w |µ−|

µ+

)
=

4µ2+
µ
ni
v

w

dσi
d cos θ

(
wµ

2µ+
,
w

2µ+
, v, w

)
Θ

(
v − w |µ−|

µ+

)
(C.20)

Ω−(w) =

∫ ve

0
dv

4µ2+
µ
ni
v

w

dσi
d cos θ

(
wµ

2µ+
,
w

2µ+
, v, w

)
Θ

(
v − w |µ−|

µ+

)
(C.21)

=
4µ2+
µw

ni

∫ ve

w
|µ−|
µ+

dvv
dσi
d cos θ

(
wµ

2µ+
,
w

2µ+
, v, w

)
. (C.22)

We now evaluate the above integral for generalised form factor DM. If the differential
cross-section depends on the relative velocity, then for hydrogen

Ω−(w) =
4µ2+
µw

niσ0

∫ ve

w
|µ−|
µ+

dvv

(
w

v0

)2n

=
2µ2+
µw

niσ0

(
w

v0

)2n ∫ ve

w
|µ−|
µ+

dvv

=
2µ2+
µw

niσ0

(
w

v0

)2n(
v2e −

µ2−
µ2+

w2

)
Θ

(
v2e −

µ2−
µ2+

w2

)
(C.23)

and for other elements

Ω−(w) =
4µ2+
µw

niσi

(
w

v0

)2n ∫ ve

w
|µ−|
µ+

dvv|Fi(qtr)|2 (C.24)

=
6µ2+

m2
χΛ2w

niσi

(
w

v0

)2n
e−m2

χΛ2(w2−v2
e)

3µ − e
−
m2
χΛ2

3µ2
+
w2

Θ

(
v2e −

µ2−
µ2+

w2

)
.(C.25)

Note that these differ from the case of a constant cross-section only by a constant factor
(w/v0)

2n.
If the differential cross-section instead depends on the momentum transferred, for hy-

drogen we have

Ω−(w) =
4µ2+
µw

niσ0

∫ ve

w
|µ−|
µ+

dvv

(
m2
χ

q20

)n(
w2 − v2

µ

)n
(C.26)

=
2niσ0µ

2
+m

2n
χ

(n+ 1)µn+1wq2n0

[(
w2µ

µ2+

)n+1

− u2(n+1)

]
(C.27)

=
2µ2+
µw

niσ0


m2
χ

q2
0

1
2µ

(
w4µ2

µ4
+
− u4

)
: n = 1

m4
χ

q4
0

1
3µ2

(
w6µ3

µ6
+
− u6

)
: n = 2

q2
0

m2
χ
µ log µw2

µ2
+u

2 : n = −1,

(C.28)
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and for the other elements,

Ω−(w) =
4µ2+
µw

niσi

(
m2
χ

q20

)n ∫ ve

w
|µ−|
µ+

dvv|Fi(qtr)|2
(
w2 − v2

µ

)n
(C.29)

=
2µ2+
µw

niσi


m2
χ

q2
0

u4

µγ2
u

[(1 + γu)e−γu − (1 + γw)e−γw ] : n = 1

m4
χ

q4
0

2u6

µ2γ3
u

[
(1 + γu + γ2u/2)e−γu − (1 + γw + γ2w/2)e−γw

]
: n = 2

q2
0

m2
χ
µ [G(−γw)−G(−γu)] : n = −1

,

where

G(x) ≡ −
∫ ∞
−x

dy
e−y

y
, (C.30)

and

γu ≡
Λ2m2

χu
2

3µ
(C.31)

γw ≡
Λ2m2

χw
2

3µ2+
. (C.32)

We have suppressed the Θ functions in these formulae to keep them short(er). They agree
with the ones of Ref. [27].

C.3 Evaporation

For evaporation, the temperature of the nuclei has a dominant effect on the kinematics, so
it is not possible to take the zero temperature limit, and we must retain the full expressions.

Ω+(w) =

∫ ∞
ve

R+(w → v)dv (C.33)

R+(w → v) =

∫ ∞
0

ds

∫ ∞
0

dt
32µ4+√
π
k3ni

dσi
d cos θ

(s, t, v, w)
vt

w
e−k

2v2
N

×Θ(t+ s− v)Θ(w − |t− s|). (C.34)

Because we cannot use the TN → 0 limit, it is not possible to evaluate these integrals
analytically (unlike in the case of capture). To speed up the computation, one can still
calculate Ω+(w) on a grid for the variables ve,mχ and tχ, and for each element and differential
cross-section. After that, the evaporation rate can be computed for different solar models
in the same way, and potentially with the same computation speed as for the capture rate.
This is how we intend to apply the results of this paper to solar simulations in the future.
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