
Supplementary Note 1

Effective-mass theory of armchair carbon nanotubes

In this Note we recall the effective-mass theory of electronic π-states in single-wall carbon nan-

otubes, focusing on the lowest conduction and highest valence band of undoped armchair tubes1–3.

Carbon nanotubes may be thought of as wrapped sheets of graphene, hence nanotube electronic

states are built from those of graphene through a folding procedure, after quantizing the transverse

wave vector. Low-energy graphene states belong to one of the two Dirac cones, whose apexes in-

tersect the degenerate K and K′ points, respectively, at the corners of graphene first Brillouin zone.

At these two points the energy gap is zero.

Close to Brillouin zone corners τ = K,K′, a nanotube state ψ(r) is the superposition of

slowly-varying envelope functions F τη(r) multiplied by the Bloch states ψτη(r), the latter having

two separate components localized on sublattices η = A and η = B, respectively (cyan and red

dots in Supplementary Fig. 1):

ψ(r) =
∑
τ=K,K′

∑
η=A,B

F τη(r)ψτη(r). (1)

The effective-mass approximation of Supplementary Eq. (1) goes beyond the usual one-valley

treatment, as below we explicitly consider intervalley coupling due to Coulomb interaction. The

relative phases of different Bloch state components ψτη are fixed by symmetry considerations, as
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detailed in Supplementary Note 7. The envelope F τη is a pseudospinor with respect to valley and

sublattice indices, F ≡ (FKA, FKB, FK′A, FK′B)T . In the valley-sublattice product space, F obeys

the Dirac equation of graphene:

γ
[
σx ⊗ 1τ k̂x + σy ⊗ τzk̂y

]
F (r) = εF (r). (2)

Here σx and σy are 2 × 2 Pauli matrices acting on the sublattice pseudospin, τz and the 2 × 2

identity matrix 1τ act on the valley pseudospin, k̂x = −i∂/∂x is is the wave vector operator along

the circumference direction x and k̂y = −i∂/∂y acts on the tube axis coordinate y, γ is graphene’s

band parameter, and ε is the single-particle energy. Furthermore, F obeys the boundary condition

along the tube circumference:

F (r + L) = F (r) exp (2πi ϕ) , (3)

where L is the chiral vector in the circumference direction of the tube and |L| = L = 2πR is the

circumference. A magnetic field may or may not be applied along the tube axis, with ϕ = φ/φ0

being the ratio of the magnetic flux φ piercing the tube cross section to the magnetic flux quantum

φ0 = ch/e. Supplementary Eq. (2) depends on the reference frame. Note that in our effective-mass

treatment the x and y directions are parallel to the circumference and axis of the tube, respectively,

as shown in Supplementary Fig. 1a, whereas in the main text as well as in the first-principles

treatment the z axis is parallel to the tube.

The energy bands are specified by the valley index τ , the valence index α = c, v denoting

either the conduction (α = c) or the valence band (α = v), and the wave vector k in the axis direc-

tion. The wave functions in K and K′ valleys are respectively F ≡ (F K
αk(r), 0)T and (0,F K′

αk(r))
T ,
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Supplementary Fig. 1 Carbon nanotube reference frames for the effective-mass model. a Ref-

erence frame for the armchair tube used in this work. The x and y directions are parallel to the

circumference and axis of the tube, respectively. The small vector is RB
0 , i.e., the basis vector

locating the origin of the B sublattice. Cyan and red dots point to A and B sublattices, respectively.

b Ando’s reference frame for a generic tube. The frame origin is located on an atom of the B

sublattice. The tube frame is obtained by rotating the x′y′ graphene reference frame by the chiral

angle α. The chiral vector L identifying the tube circumference is L = −ma− (n+m)b in terms

of the conventional chiral indices (n,m), where a and b are the primitive translation vectors of

graphene shown in the picture. For an equivalent choice of L one has α = π/6 for (n, n) armchair

tubes and α = 0 and for (n, 0) zigzag tubes. a is the lattice constant of graphene.
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with F τ
αk(r) ≡ (F τA

αk , F
τB
αk )T being a plane-wave pseudospinor in the sublattice space,

F τ
αk(r) = ξταk(x)

1√
A

exp (iky), (4)

where A is the tube length and the wave function ξταk(x) for the motion along the circumference

direction is

ξταk(x) =
1√
L

exp (ik⊥x)Fταk. (5)

The constant pseudospinor Fταk is a unit vector with a k-dependent phase between the two sublat-

tice components,

FKαk =
1√
2

(
b(k)

sα

)
, FK′αk =

1√
2

(
b∗(k)

sα

)
, (6)

where

b(k) =
k⊥ − ik√
k2
⊥ + k2

, (7)

and sα = ±1 for conduction and valence bands, respectively. In Supplementary Eqs. (5) and (7)

the transverse wave vector k⊥ is proportional to the magnetic flux ϕ,

k⊥ =
ϕ

R
. (8)

In each valley, the energy is

εα(k) = sαγ
√
k2
⊥ + k2, (9)

where the origin of the k axis is located at the Dirac point K (K′).

Figure 2a of main text shows the first-principles band structure of the (3,3) tube in a range of

a few eV around the Dirac point, with k scanning half Brillouin zone, between the origin (k = 0, Γ

point) and k = π/a (a = 2.46 Å is graphene lattice constant). The negative k axis, containing the
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Supplementary Fig. 2 GW band structure of the (3,3) tube. a GW band structure vs wave vector

k close to the Dirac point K. Red [grey] and black dots point to chirality indices C = +1 and -1,

respectively. b Electron-hole pair excitation energy vs k. The lines are linear fits to the data.
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K′ point, is obtained by specular reflection. The DFT /GW location of the Dirac point is K = 0.289

(2π/a), whereas the effective-mass estimate is K = 1/3 (2π/a) (the discrepancy between DFT

and tight-binding predictions is well documented in the literature4, 5). As seen in Supplementary

Fig. 2a, the GW bands are approximately linear in an energy range of at least ± 0.4 eV around the

Dirac point, which validates the effective-mass model at low energy.

Note that, in the absence of the magnetic field, electron states have a well defined chirality6–8,

which is one of the two projections, C, of the sublattice pseudospin onto the momentum direction,

expressed as the eigenvalues C = ±1 of the operator σy ⊗ τz. The chirality index is highlighted

by red (C = +1) and black (C = −1) colour in Supplementary Fig. 2a.

Supplementary Note 2

Electron-electron interaction: Effective-mass vs first-principles description

Within the effective-mass framework, the Coulomb interaction v between two electrons on the

carbon nanotube cylindrical surface located at r ≡ (x, y) and r′ ≡ (x′, y′), respectively, is2

v(r, r′) =
∑
q

eiq(y−y
′) 2e2

κrA
K0

(
2R

∣∣∣∣q sin

(
x− x′

2R

)∣∣∣∣) , (10)

where κr is a static dielectric constant that takes into account polarization effects due to the elec-

trons not included in the effective-mass description plus the contribution of the dielectric back-
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ground. The interaction matrix element between single-particle states is9, 10

V(τ,α,k+q),(τ ′,β′,k′);(τ ′,α′,k′+q)(τ,β,k)

=

∫
dr

∫
dr′ [F τ

αk+q(r)]
† ·F τ

βk(r) v(r, r′) [F τ ′

β′k′(r
′)]† ·F τ ′

α′k′+q(r
′)

=
1

A
F †ταk+q ·Fτβk F

†
τ ′β′k′ ·Fτ ′α′k′+q v(q), (11)

where the one-dimensional effective interaction resolved in momentum space,

v(q) =
2e2

κr
I0(R |q|) K0(R |q|) , (12)

is modulated by a form factor given by overlap terms between sublattice pseudospinors [I0(z) and

K0(z) are the modified Bessel functions of the first and second kind, respectively11]. The effect

of screening due to the polarization of those electrons that are treated within the effective-mass

approximation is considered by replacing v(q) with

w(q) =
v(q)

ε(q)
(13)

in the matrix element (11), where ε(q) is the static dielectric function (to discriminate between

screened and unscreened matrix elements we use respectively ‘w’ and ‘v’ letters throughout the

Supplementary Information). It may be shown that dynamical polarization effects are negligible in

the relevant range of small frequencies, which is comparable to exciton binding energies.

Note that terms, similar to Supplementary Eq. (11), that scatter electrons from one valley to

the other are absent in the effective mass approximation. These small intervalley terms, as well as

the interband exchange terms, which are both induced by the residual, short-range part of Coulomb

interaction, are discussed in Supplementary Note 3.
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Supplementary Fig. 3 Effect of chirality on Coulomb interaction matrix elements. a Energy bands

and chiralities of electron states in armchair carbon nanotubes in the absence of the magnetic field.

Solid and dashed lines highlight chirality C = ±1, respectively. b Allowed scattering processes

induced by long-range Coulomb interaction. The indices τ = K, K′ and α = c, v label valleys and

bands, respectively. The chirality is conserved at each vertex of diagrams.

Effect of chiral symmetry. The chiralities of electron states, which is illustrated in Sup-

plementary Fig. 3a (solid and dashed lines label C = +1 and C = −1, respectively), signficantly

affects Coulomb interaction matrix elements. This occurs through the form factors of the typeF †·F

appearing in Supplementary Eq. (11), which are overlap terms between sublattice pseudospinors.

As apparent from their analytical structure,

F †ταk+q · Fτβk =
1

2
[ sign(k) sign(k + q) + sβsα] , (14)

the chiral symmetry of the states is conserved at each vertex of Coulomb scattering diagrams

(see Supplementary Fig. 3b), hence initial and final states scattered within the same band must

have the same momentum direction. This significantly affects the Bethe-Salpeter equation for
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excitons, as we show below. We are especially interested in the dominant long-range Coulomb

matrix element12 that binds electrons and holes:

V(τ,c,k+q),(τ,v,k);(τ,v,k+q)(τ,c,k) ≡
Ṽ (k + q, k)

A
. (15)

This term scatters electron-hole pairs from the initial pair state (c, k)(v, k) to the final state (c, k +

q)(v, k+ q) within the same valley τ . Throughout this Supplementary Information we use the tilde

symbol for quantities whose dimension is an energy multiplied by a length, like V = Ṽ /A.

In the first instance we neglect screening, since for low momentum transfer, q → 0, polar-

ization is suppressed hence ε(q)→ 1. In this limit Coulomb interaction diverges logarithmically,

v(q)→ −2e2

κr
ln(R |q|), (16)

but this is harmless to the Bethe-Salpeter equation, since v(q) occurs only in the kernel of the

scattering term, hence it is integrated over q for macroscopic lengths A,

− 1

A

∑
q

Ṽ (k + q, k) . . .→ − 1

2π

∫
dq Ṽ (k + q, k) . . . , (17)

which removes the divergence. Note that, throughout this Supplementary Information and opposite

to the convention of Fig. 2c of main text, we take V as a positive quantity. In detail, we discretize

the momentum space axis, k → ki, where ki = i2π/(Na), i = −N/2 + 1, . . . , 0, 1, . . . , N/2,

N = A/a is the number of unitary cells, and ∆k = 2π/(Na) is the mesh used in the calculation.

Hence, the regularized matrix element, integrated over the mesh, is

V (kj + qi, kj) =
1

2π

∫ qi

qi−∆k

dq Ṽ (kj + q, kj). (18)
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Supplementary Fig. 4 Dominant interband Coulomb matrix element in the (k, k′) space close to

the K point. a Effective-mass ‘bare’ matrix element V (k, k′), with κr = 10 and ε(k − k′) = 1.

The isolines of the two-dimensional contour map point to the heights of 4 and 8 meV, respec-

tively. b Modulus of DFT screened matrix element WDFT(k, k′) obtained within the random phase

approximation for the (3, 3) armchair tube. Here N = 900 and K = 0.289(2π)/a.
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In Supplementary Fig. 4 we compare V (panel a, κr = 10) with the modulus of the screened

DFT matrix elementWDFT obtained for the (3, 3) tube (panel b). The two plots are three-dimensional

contour maps in a square domain (k, k′) centered around the Dirac point, with K = 0.289(2π)/a

and N = 900. The two matrix elements agree almost quantitatively, as they both exhibit: (i) zero

or very small values in the second and fourth quadrants, i.e., k > K and k′ < K or k < K and

k′ > K (ii) a logarithmic spike on the domain diagonal, i.e., k′ → k. This behavior has a sim-

ple interpretation in terms of exciton scattering, as an electron-hole pair with zero center-of-mass

momentum, (c, k)(v, k), has a well-defined chirality with respect to the noninteracting ground

state, i.e., ∆C = +2 = 1 − (−1) for k > K (∆C = −2 for k < K). The chirality of the e-h

pair is conserved during Coulomb scattering, i.e., as the pair changes its relative momentum from

2k = k − (−k) to 2k′.

Effect of electronic polarization. In order to appreciate the minor differences between

V (k, k′) and WDFT(k, k′) it is convenient to compare the cuts of the maps of Supplementary Fig. 4

along a line k′ = k0, as shown in Supplementary Fig. 5 for k0 = 0.289(2π)/a (panel a) and

0.28(2π)/a (panel b), respectively. For small momentum transfer, q = k − k0 ≈ 0, V (k, k0)

(squares) exhibits a sharper spike than WDFT(k, k0) (filled circles). This is an effect of the regular-

ization of the singularitity occurring in the DFT approach, as in the first-principles calculation the

tube is actually three-dimensional. As |q| increases, V is systematically blushifted with respect to

WDFT since it does not take into account the effect of the RPA polarization, Π(q), which acquires

a finite value.
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Supplementary Fig. 5 Dominant interband Coulomb matrix elements vs k. Dominant interband

Coulomb matrix elements V (k, k0) (squares), W (k, k0) (empty circles), and WDFT(k, k0) (filled

circles) vs k, with fixed k0. a k0 = 0.289(2π)/a. b k0 = 0.28(2π)/a. Curves are discontinuous at

K = 0.289(2π)/a, lines are guides to the eye, N = 900.

Within the effective-mass approximation, Π(q) enters the dressed matrix element W through

the dielectric function13,

ε(q) = 1 +
2e2

κr
I0(R |q|) K0(R |q|) Π(q). (19)

Here we use the simple ansatz

Π(q) = Aansatz(Rq)
2, (20)

as this choice makes the dressed Coulomb interaction scale like the three-dimensional bare Coulomb

potential for large q (i.e., at short distances), W ∼ 1/q2. In Supplementary Fig. 5a, b the dressed

matrix element W [empty circles, Aansatz = 50/(πγ), γ/a = 1.783 eV] quantitatively agrees with

its ab initio counterpart, WDFT (filled circles), in the whole range of k in which electrons are mass-

less (cf. Supplementary Fig. 2). Note that for k > K = 0.289(2π)/a the effective-mass potentials
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are exactly zero whereas WDFT shows some numerical noise.

Effect of the magnetic field. The magnetic field along the tube axis adds an Aharonov-

Bohm phase to the transverse momentum, k⊥. This breaks the chiral symmetry C of single-particle

states, alters the form factors of Supplementary Eq. (14) (see Ando13), and lifts the selection rule on

k. This is apparent from the smearing of the maps of Supplementary Fig. 6 close to the frontiers of

the quadrants, k, k′ = K, wheres at the same locations in Supplementary Fig. 4 (no field) the plots

exhibit sharp discontinuities. The cuts of Supplementary Fig. 6 along the line k′ = k0, as shown

in Supplementary Figs. 7a and b for k0 = 0.289(2π)/a and 0.28(2π)/a, respectively, confirm the

good agreement between W (k, k0) and WDFT(k, k0).

Supplementary Note 3

Effective mass: Bethe-Salpeter equation

In this Note we detail the calculation of low-lying excitons of armchair carbon nanotubes, |u〉,

within the effective mass theory. The analysis of the first-principles exciton wave function for

the (3,3) tube shows that the lowest conduction and highest valence bands contribute more than

99.98% to the spectral weight of excitons. Therefore, according to conventional taxonomy, these

excitons are of the M00 type. Within the effective-mass approximation, |u〉 is written as

|u〉 =
∑
σσ′τk

ψτ (k)χσσ′ ĉ
τ+
k,σ v̂

τ
k,σ′ |0〉 , (21)
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Supplementary Fig. 6 Interband Coulomb matrix element in the (k, k′) space in the presence of

a magnetic field. Dominant interband Coulomb matrix element in the (k, k′) space close to the K

point in the presence of a magnetic field, with ϕ = 7.59 · 10−3. a Effective-mass dressed matrix

element W (k, k′), with κr = 10 and Aansatz = 50/(πγ). The isolines of the two-dimensional

contour map point to the heights of 4 and 8 meV, respectively. b Modulus of DFT screened matrix

element WDFT(k, k′) obtained within the random phase approximation. Here N = 900 and K =

0.289(2π)/a.
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Supplementary Fig. 7 Coulomb matrix element vs k in the presence of the magnetic field. Domi-

nant interband Coulomb matrix elements W (k, k0) (empty circles) and WDFT(k, k0) (filled circles)

vs k with fixed k0 and ϕ = 7.59 · 10−3. a k0 = 0.289(2π)/a. b k0 = 0.28(2π)/a. Lines are guides

to the eye. N = 900.

where |0〉 is the noninteracting ground state with all valence states filled and conduction states

empty, and the operator ĉτ+
k,σ (v̂τ+

k,σ) creates an electron in the conduction (valence) band labeled

by wave vector k, spin σ, valley τ . The exciton |u〉 is a coherent superposition of electron-hole

pairs having zero center-of-mass momentum and amplitude ψτ (k). The latter may be regarded

as the exciton wave function in k space. The 2 × 2 spin matrix χσσ′ is the identity for singlet

excitons, χ = 1s, whereas for triplet excitons χ = σs·n, where n is the arbitrary direction of

the spin polarization (|n| = 1) and σs is a vector made of the three Pauli matrices. Throughout

this work we ignore the small Zeeman term coupling the magnetic field with electron spin, hence

triplet excitons exhibit three-fold degeneracy. Here we use the same notation, |u〉, for both singlet

and triplet excitons, as its meaning is clear from the context.
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The Bethe-Salpeter equation for the triplet exciton is

Eeh(τ, k)ψτ (k)− 1

A

∑
q

W̃ τ(k + q, k) ψτ (k + q)

− 1

A

∑
τ ′ 6=τ

∑
q

W̃ ττ ′(k + q, k) ψτ ′(k + q) = εu ψτ (k). (22)

The diagonal term Eeh(τ, k) is the energy cost to create a free electron-hole pair (τ, c, k)(τ, v, k),

Eeh(τ, k) = 2γ
√
k2
⊥ + k2 + Στ (k), (23)

including the sum of self-energy corrections to electron and hole energies, Στ (k), which may be

evaluated e.g. within the GW approximation. This self-energy, which describes the dressing of

electrons by means of the interaction with the other electrons present in the tube, is responsible

for the small asymmetry of the Dirac cone close to K, as shown by the GW dispersion of Supple-

mentary Fig. 2a. Since this asymmetry appears already at the DFT level of theory and is similar

to the one predicted for the Dirac cones of graphene14, it necessarily originates from mean-field

electron-electron interaction and it does not depend on R. We take into account the effect of Στ (k)

onto Eeh(τ, k) by explicitly considering different velocities (slopes of the linear dispersions) for

respectively left- and right-moving fermions, according to:

Eeh(K, k) = 2γ [1 + αsl sign(k)]
√
k2
⊥ + k2,

Eeh(K′, k) = 2γ [1− αsl sign(k)]
√
k2
⊥ + k2. (24)

We infer the actual values of γ and slope mismatch parameter αsl from the linear fit to the first-

principles GW dispersion (in Supplementary Fig. 2b the solid lines are the fits and the dots the

GW data), which provides γ = 5.449 eV·Å and αsl = 0.05929.
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Supplementary Fig. 8 DFT intervalley interband Coulomb matrix element WKK′(k, k′) in (k, k′)

space. Here ϕ = 1.52 · 10−3, N = 900, A = aN , and K = = −K′ = 0.289(2π)/a.

The second and third terms on the left hand side of Supplementary Eq. (22) involve interband

Coulomb matrix elements. The intravalley term W̃ τ is the dressed long-ranged interaction dis-

cussed in the previous Note. The intervalley term W̃KK′ makes electron-hole pairs to hop between

valleys. As illustrated by the DFT map of WKK′(k, k′) = W̃KK′/A in (k, k′) space (Supplementary

Fig. 8), this term, almost constant in reciprocal space, is at least one order of magnitude smaller

than W , as seen by comparing the small range 0.18–0.3 meV of the energy axis of Supplementary

Fig. 8 with the range 0–9 meV of Supplementary Figs. 4 and 6. Therefore, WKK′ may be regarded

as a weak contact interaction that couples the valleys, consistently with the model by Ando3, 9,

W̃KK′(k, k′) =
Ω0w2

4πR
, (25)

where Ω0 = (
√

3/2)a2 is the area of graphene unit cell and w2 > 0 is the characteristic energy

associated with short-range Coulomb interaction. We reasonably reproduce first-principles results

taking w2 = 2.6 eV—this would be a plane located at 0.24 meV in Supplementary Fig. 8. This
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estimate is not far from Ando’s prediction w2 = 4 eV. Note that the previous theory proposed by

one of us3 relies on the scenario WKK′ > W , which is ruled out by the present study.

The Bethe-Salpeter equation for the singlet exciton is obtained from Supplementary Eq. (22)

by simply adding to the kernel the bare exchange term

+
Ω0w1

2πRA

∑
τ ′

∑
q

ψτ ′(k + q), (26)

where w1 > 0 is a characteristic exchange energy3, 9. From first-principles results we estimate

w1 = 4.33 eV, whose magnitude is again comparable to that predicted by Ando9. Supplementary

Eq. (22), with or without the exchange term, is solved numerically by means of standard linear

algebra routines.

Minimal Bethe-Salpeter equation. The minimal Bethe-Salpeter equation illustrated in the

main text includes only one valley (with αsl = 0) and long-range Coulomb interaction. Within

the effective-mass approximation, the Dirac cone indefinitely extends in momentum space, hence

one has to introduce a cutoff onto allowed momenta, |k| ≤ kc. Supplementary Fig. 9a shows the

convergence of the lowest-exciton energy, εu, as a function of kc. Reassuringly, εu smoothly con-

verges well within the range in which GW bands are linear. This is especially true for the screened

interaction W (black circles), whereas the convergence is slower for the unscreened interaction V

(red circles), as it is obvious since W (q) dies faster with increasing q. This behavior implies that

the energy scale associated with the exciton is intrinsic to the tube and unrelated to the cutoff, as

we further discuss below.
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In the reported calculations we took kc = 0.05(2π)/a as a good compromise between accu-

racy and computational burden (we expect that the maximum absolute error on εu is less than 0.1

meV). This corresponds to an energy cutoff of 1.4 eV for e-h pair excitations. Whereas for these

calculations, as well as for the data of Supplementary Fig. 9a, the mesh ∆k in momentum space is

fixed [∆k = 1.43 · 10−5(2π)/a], Supplementary Fig. 9b shows the convergence of εu as a function

of the mesh, ∆k. Interestingly, εu smoothly decreases with ∆k only for a very fine mesh, whereas

for larger values of ∆k the energy exhibits a non-monotonic behaviour. This is a consequence of

the logarithmic spike of the Colulomb potential at vanishing momentum, which requires a very

fine mesh to be dealt with accurately.

We refine the minimal effective-mass Bethe-Salpeter equation by including: (i) The short-

range part of interaction, which couples the two valleys as well as lifts the degeneracy of spin

singlet and triplet excitons. (ii) The tiny difference between the e-h pair excitation energies of left

and right movers. This eventually leads to a quantitative agreement with exciton energies and wave

functions obtained from first principles, as shown by Fig. 3b, c and Fig. 6a, b of main text.

Scaling properties of the Bethe-Salpeter equation. If a well-defined (i.e., bound and nor-

malizable) solution of the Bethe-Salpeter equation (22) exists, then it must own a characteristic

length and energy scale—respectively the exciton Bohr radius and binding energy15. To check

this, we introduce the scaling length ` to define the following dimensionless quantities: the wave

vector κ = k`, the energy Eu = εu`/γ, and the exciton wave function ξτ (κ) = ψτ (k)/
√
`. We also

define the dimensionless intravalley interaction as Ωτ(kR, k′R) = (κr/e
2)W̃ τ(k, k′), to highlight
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Supplementary Fig. 9 Convergence of exciton energy within a single valley in the effective-mass

approximation. a Excitation energy of the lowest exciton, εu, vs cutoff in momentum space, kc. The

black (red) curve is the energy obtained using the screened (unscreened) long-range interaction,

W (V ), in the Bethe-Salpeter equation for the triplet exciton. Here ∆k = 1.43 · 10−5(2π)/a and

ϕ = 1.52 · 10−5. b Excitation energy of the lowest exciton, εu, vs mesh in momentum space, ∆k.

Here kc = 0.05(2π)/a and ϕ = 1.52 · 10−5.
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that the wave vector k appearing as an argument of the interaction is always multiplied by R. This

is important for the exciton scaling behaviour.

Neglecting the small corrections to the exciton binding energy due to intervalley scattering

(w2 = 0) and cone asymmetry (αsl = 0), the dimensionless Bethe-Salpeter equation for armchair

tubes in the absence of a magnetic flux becomes

2 |κ| ξτ (κ) −
αgraph

2π

∫
dκ′ Ωτ [κ′(R/`), κ(R/`)] ξτ (κ

′) = Eu ξτ (κ), (27)

where αgraph = e2/(κrγ) is graphene fine-structure constant, the scaled exciton wave function must

satisfy the scale invariant normalization requirement,
∑

τ

∫
dκ |ξτ (κ)|2 = 1, and the dielectric

function entering Ω takes the dimensionless form

ε(κ) = 1 +
2Aansatz

π
αgraphκ

2(R/`)2I0(|κ|R/`) K0(|κ| `/R) . (28)

The only scaling length ` leaving Supplementary Eqs. (27) and (28) invariant is the tube

radius, R, wich fixes the binding energy unit, γ/R. Supplementary Eq. (27) shows that αgraph is the

single parameter combination affecting the scale invariant solution, whereas solutions for different

radius R are related via scaling,

εu =
E0

R
, (29)

with E0 being calculated once for all for the (3,3) tube radius, R = 2 Å. The same conclusion

holds for finite cone asymmetry αsl and dimensionless magnetic flux ϕ. Note that, for a fixed value

of ϕ, the possible values of the magnetic field B scale like 1/R2.

The above demonstration relies on the assumption that the parameters κr and Aansatz, which
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control the screening behavior of the carbon nanotube, do not depend significantly on R. On the

other hand, one might expect to recover, for large R, the screening properties of graphene. This in

turn would imply that κr would tend to smaller values and hence εu would decay slower than 1/R.

The first-principles investigation of this issue is left to future work.

Supplementary Note 4

Self-consistent mean-field theory of the excitonic insulator

The ground-state wave function of the excitonic insulator, |ΨEI〉, exhibits a BCS-like form,

|ΨEI〉 =
∏
σσ′τk

[
uτk + χσσ′vτke

iη ĉτ+
k,σv̂

τ
k,σ′

]
|0〉 , (30)

where η is the arbitrary phase of the condensate, the e-h pairs ĉτ+
k,σv̂

τ
k,σ′ |0〉 replace the Cooper

pairs (e.g. ĉK+
k,σ ĉ

K′+
−k,−σ |0〉), and the 2× 2 matrix χσσ′ discriminates between singlet and triplet spin

symmetries. The positive variational quantities uτk and vτk are the population amplitudes of va-

lence and conduction levels, respectively, which are determined at once with the excitonic order

parameter, ∆(τk). Explicitly, one has

u2
τk =

1

2

(
1 +

Eeh(τ, k)/2[
E2

eh(τ, k)/4 + |∆(τk)|2
]1/2

)
,

v2
τk = 1− u2

τk, (31)

plus the self-consistent equation for ∆ [equivalent to Eq. (2) of main text],

|∆(τk)| = 1

A

∑
τ ′k′

W̃ ττ ′(k, k′)
|∆(τ ′k′)|

2
[
E2

eh(τ
′, k′)/4 + |∆(τ ′k′)|2

]1/2 . (32)
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The symbol W̃ ττ ′(k, k′) in Supplementary Eq. (32) is a shorthand for both intra and intervalley

Coulomb interaction matrix elements. For the spin-triplet EI [χσσ′ = (σs·n)σσ′], which is the abso-

lute ground state, one has, for τ = τ ′, the long-range intravalley term, W̃ ττ(k, k′) = W̃ τ(k, k′), and,

for τ 6= τ ′, the short-range intervalley term, W̃ ττ ′(k, k′). For the spin singlet (χσσ′ = δσσ′), the un-

screened direct term must be subtracted from the dressed interaction, W̃ ττ ′(k, k′)→ W̃ ττ ′(k, k′)−

Ω0w1/2πR. Supplementary Eq. (32) allows for a scaling analysis similar to that for the exciton

binding energy.

If interaction matrix elements W̃ were constant, then Supplementary Eq. (32) would turn

into the familiar gap equation of BCS theory, with ∆ constant as well. Since the long-range part

of interaction is singular, the dependence of ∆(τk) on τ and k cannot be neglected and hence the

solution is not obvious. It is convenient to rewrite Supplementary Eq. (32) as a pseudo Bethe-

Salpeter equation,

2
[
E2

eh(τ, k)/4 + |∆(τk)|2
]1/2

ϕ(τk)− 1

A

∑
τ ′k′

W̃ ττ ′(k, k′) ϕ(τ ′k′) = 0, (33)

with the pseudo exciton wave function defined as

ϕ(τk) =
|∆(τk)|

2
[
E2

eh(τ, k)/4 + |∆(τk)|2
]1/2 . (34)

This shows that, at the onset of the EI phase, when ∆(τk) is infinitesimal—at the critical magnetic

field—the exciton wave function for εu = 0 is the same as ϕ apart from a constant, ϕ(τk) ∼

ψτ (k). This observation suggests to use ψτ (k) at all values of the field as a good ansatz to

start the self-consistent cycle of Supplementary Eq. (33), which is numerically implemented as

a matrix product having the form ϕnew = W · ϕold. Taking at the first iteration |∆old(τk)| =
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2−1 [Eeh(τ, k)− εu] |ψτ (k)/ψτ (0)| and building ϕold(τk) according to Supplementary Eq. (34), we

obtain numerical convergence within a few cycles, ϕnew = ϕold, with the number of iterations

increasing with decreasing ∆. At finite temperatures, the self-consistent equation for ∆ takes the

form

|∆(τk)| =
1

A

∑
τ ′k′

W̃ ττ ′(k, k′)
|∆(τ ′k′)|

2
[
E2

eh(τ
′, k′)/4 + |∆(τ ′k′)|2

]1/2
× tanh

{
1

2kBT

[
E2

eh(τ
′, k′)/4 + |∆(τ ′k′)|2

]1/2
}
, (35)

where T is the temperature and kB is Boltzmann constant.

The quasiparticles of the EI are the free electrons and holes. For example, in the simplest

case of the spin-singlet EI (χσσ′ = δσσ′), the electron quasiparticle wave function
∣∣∣Ψτk↑

EI

〉
differs

from the ground state |ΨEI〉 as the conduction electron state labeled by (τ, k, ↑) is occupied with

probability one as well as the corresponding valence state:∣∣∣Ψτk↑
EI

〉
= ĉτ+

k,↑
[
uτk + vτke

iη ĉτ+
k,↓v̂

τ
k,↓
] ∏
στ ′k′

′ [
uτ ′k′ + vτ ′k′e

iη ĉτ
′+
k′,σv̂

τ ′

k′,σ

]
|0〉 . (36)

Here the symbol
∏′

means that the dummy indices τ ′k′ take all values but τk. The quasiparticle

energy dispersion is

E(τk) =

√
E2

eh(τ, k)/4 + |∆(τk)|2 , (37)

with the reference chemical potential being zero, as for the noninteracting undoped ground state.

E(τk) is increased quadratically by the amount |∆(τk)| with respect to the noninteracting energy,

ε(τk) = Eeh(τ, k)/2. This extra energy cost is a collective effect reminescent of the exciton

binding energy, since now the exciton condensate must be ionized to unbind one e-h pair and

hence have a free electron and hole.
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Supplementary Note 5

Inversion symmetry breaking in the excitonic insulator phase

Carbon nanotubes inherit from graphene fundamental symmetries such as time reversal and spatial

inversion. Time reversal T̂ swaps K and K′ valleys whereas the inversion Î is a π rotation around

an axis perpendicular to the tube surface and located in the origin of one of the frames shown in

Supplementary Fig. 1. This swaps the valleys as well as the A and B sublattices. Whereas the

noninteracting ground state |0〉 is invariant under both inversion and time reversal, T̂ |0〉 = |0〉 and

Î |0〉 = |0〉, the EI ground state breaks the inversion symmetry16. Here we consider a spin-singlet

exciton condensate (χσσ′ = δσσ′) with T̂ |ΨEI〉 = |ΨEI〉, hence the excitonic order parameter is

real, η = 0, π (otherwise the EI ground state would exhibit transverse orbital currents).

To see that the inversion symmetry of the EI ground state is broken we use the following

transformations (whose details are given in Supplementary Note 7):

Î v̂τk,σ = −i sign(k) v̂−τ−k,σ,

Î ĉτk,σ = i sign(k) ĉ−τ−k,σ, (38)

where the shorthand −τ labels the valley other than τ . The transformed ground state is

Î |ΨEI〉 =
∏
στk

[
uτk − vτkeiη ĉτ+

k,σv̂
τ
k,σ

]
|0〉 , (39)

where we have used the fact that uτk = u∗τk = u−τ−k and vτk = v∗τk = v−τ−k, as a consequence of

time reversal symmetry. The original and transformed ground states are orthogonal in the thermo-
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dynamic limit,

〈ΨEI| Î |ΨEI〉 = 2
∏
τk

(
u2
τk − v2

τk

)
→ 0, (40)

since u2− v2 < 1. On the contrary, 〈0| Î |0〉 = 1. Therefore, the symmetry of the EI ground state is

lower than that of the noninteracting ground state so the EI phase has broken inversion symmetry,

i.e., charge is displaced from A to B sublattice or vice versa.

Supplementary Note 6

Charge displacement between A and B sublattices

In this section we compute the charge displacement between A and B carbon sublattices in the EI

ground state. To this aim we must average over the ground state the space-resolved charge density

%(r) = e
∑
i

δ(r− ri), (41)

where the sum runs over all electrons in the Dirac valleys. The explicit form of the charge density,

in second quantization, is

%̂(r) = e
∑

τkτ ′k′σ

[
ϕ∗cτk(r)ϕcτ ′k′(r)ĉ

τ+
k,σ ĉ

τ ′

k′,σ + ϕ∗vτk(r)ϕvτ ′k′(r)v̂
τ+
k,σv̂

τ ′

k′,σ

+ ϕ∗cτk(r)ϕvτ ′k′(r)ĉ
τ+
k,σv̂

τ ′

k′,σ + ϕ∗vτk(r)ϕcτ ′k′(r)v̂
τ+
k,σ ĉ

τ ′

k′,σ

]
. (42)

We recall that the states of conduction (α = c) and valence (α = v) bands appearing in Supple-

mentary Eq. (42), ϕατk(r), are products of the envelope functions F times the Bloch states ψτ at

Brillouin zone corners τ = K, K′,

ϕατk(r) = F τA
αk (r)ψτA(r) + F τB

αk (r)ψτB(r), (43)
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where ψτA(r) [ψτB(r)] is the component on the A (B) sublattice. Neglecting products of functions

localized on different sublattices, like ψ∗τAψτB, as well as products of operators non diagonal in τ

and k indices, which are immaterial when averaging over the ground state, one obtains:

%̂(r) =
e

2AL

∑
τ

[
|ψτA(r)|2 + |ψτB(r)|2

]∑
kσ

(
v̂τ+
k,σv̂

τ
k,σ + ĉτ+

k,σ ĉ
τ
k,σ

)
+

e

2AL

∑
τ

[
|ψτA(r)|2 − |ψτB(r)|2

]∑
kσ

(
ĉτ+
k,σv̂

τ
k,σ + v̂τ+

k,σ ĉ
τ
k,σ

)
. (44)

The first and second line on the right hand side of Supplementary Eq. (44) are respectively

the intra and interband contribution to the charge density. Only the intraband contribution survives

when averaging %̂ over |0〉, providing the noninteracting system with the uniform background

charge density %0(r),

%0(r) = 〈0| %̂(r) |0〉 =
e

aL

∑
τ

[
|ψτA(r)|2 + |ψτB(r)|2

]
, (45)

with
∑

k 1 = A/a. Since |ψKA(r)| = |ψK′A(r)| = |ψA(r)|, and similarly for B, this expression

may be further simplified as

%0(r) =
2e

aL

[
|ψA(r)|2 + |ψB(r)|2

]
. (46)

It is clear from this equation that %0 is obtained by localizing the two π-band electrons uniformly

on each sublattice site. When averaging %̂ over |ΨEI〉, the charge density %(r) exhibits an additional

interband contribution,

%(r) = 〈ΨEI| %̂(r) |ΨEI〉 = %0(r) +
2e cos η

AL

[
|ψA(r)|2 − |ψB(r)|2

]∑
τk

uτkvτk, (47)

which is proportional to
∑

τk uτkvτk and hence related to the EI order parameter. This term, whose

origin is similar to that of the transition density shown in Fig. 3d of main text, as it takes into
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account the polarization charge fluctuation between |0〉 and a state with one or more e-h pairs

excited, is driven from the long-range excitonic correlations. Importantly, the charge displacement

is uniform among all sites of a given sublattice and changes sign with sublattice, the sign depending

on the phase of the exciton condensate, η. The charge displacement per electron, ∆e/e, on—say—

each A site is

∆e

e
=
a cos η

A

∑
τk

uτkvτk, (48)

which is the same as Eq. (3) of main text. In order to evaluate numerically ∆e/e, for the sake of

simplicity we neglect the exchange terms splitting the triplet and singlet order parameters (i.e., we

assume w1 = 0). The quantum Monte Carlo order parameter %AB defined in the main text is, in

absolute value, twice |∆e/e| as there are two relevant electrons per site.

Supplementary Note 7

Reference frame and symmetry operations

The reference frame of the armchair carbon nanotube shown in Supplementary Fig. 1a is obtained

by rigidly translating the frame used by Ando in a series of papers2, 9, 13, recalled in Supplementary

Fig. 1b. In Ando’s frame the origin is placed on an atom of the B sublattice and the y axis is parallel

to the tube axis, after a rotation by the chiral angle α with respect to the y′ axis of graphene. On the

basis of primitive translation vectors of graphene a and b displayed in Supplementary Fig. 1b, the

chiral vector takes the form L = −ma− (n+m)b when expressed in terms of the conventional17

chiral indices (n,m). For an equivalent choice of L, one has α = π/6 for (n, n) armchair tubes
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and α = 0 for (n, 0) zigzag tubes.

In the frame of Supplementary Fig. 1a used throughout this Supplementary Information, the

vectors locating the sites of A and B sublattices are respectively

RA
na,nb

= RA
0 + naa + nbb (49)

and

RB
na,nb

= RB
0 + naa + nbb, (50)

where (na, nb) is a couple of integers and RA
0 (RB

0 ) is the basis vector pointing to the origin of

the A (B) sublattice. Besides, one has a ≡ a(
√

3/2,−1/2), b ≡ a(0, 1), RA
0 ≡ a(2/

√
3, 1/2),

RB
0 ≡ a(

√
3/2, 0), where a = 2.46 Å is the lattice constant of graphene. Among the equivalent

corners of graphene first Brillouin zone, we have chosen as Dirac points K ≡ 2π
a

(1/
√

3, 1/3) and

K′ = −K. The corresponding Bloch states are:

ψKA(r) =
1√
N

∑
na,nb

eiK·R
A
na,nb φπ(r−RA

na,nb
),

ψKB(r) = −eiπ/6 ω 1√
N

∑
na,nb

eiK·R
B
na,nb φπ(r−RB

na,nb
),

ψK′A(r) = eiπ/6 ω
1√
N

∑
na,nb

eiK
′·RA

na,nb φπ(r−RA
na,nb

),

ψK′B(r) =
1√
N

∑
na,nb

eiK
′·RB

na,nb φπ(r−RB
na,nb

), (51)

where N is the number of sublattice sites, φπ(r) is the 2pz carbon orbital perpendicular to the

graphene plane, normalized as in Secchi & Rontani10, and ω = exp (i2π/3).

The relative phase between the two sublattice components of Bloch states within each valley,

shown in Supplementary Eq. (51), is determined by symmetry considerations18. Specifically, the
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sublattice pseudospinor transforms as a valley-specific irreducible representation of the symmetry

point group of the triangle, C3v:

FKαk ∼
(
x− iy
x+ iy

)
, FK′αk ∼

(
x+ iy

−x+ iy

)
. (52)

In addition, the relative phase between Bloch states of different valleys is fixed by exploiting

the additional C2 symmetry. The latter consists of a rotation of a π angle around the axis perpen-

dicular to the graphene plane and intercepting the frame origin. This rotation, which in the xy

space is equivalent to the inversion Î, swaps K and K′ valleys as well as A and B sublattices. With

the choice of phases explicited in Supplementary Eq. (51) the inversion operator Î takes the form

Î = −σy ⊗ τy R̂, (53)

where R̂ is the inversion operator in the xy space. In contrast, the time-reversal operator T̂ swaps

valleys but not sublattices,

T̂ = σz ⊗ τx K̂, (54)

where K̂ is the complex-conjugation operator. The orthogonal time-reversal of Supplementary

Eq. (54) should not be confused with the symplectic transformation19, which does not exchange

valleys.

The magnetic field along the tube axis breaks both Î and T̂ symmetries. However, the reflec-

tion symmetry y → −y along the tube axis still swaps the valleys (but not sublattices), as it may

be easily seen from a judicious choice of K and K′ Dirac points. This protects the degeneracy of

states belonging to different valleys in the presence of a magnetic field.
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Supplementary Discussion

Effects of Dirac cone asymmetry and magnetic field on the exciton wave function

The origin of the asymmetry of the exciton wave function in k space, illustrated by Fig. 3b of main

text, may be understood within the effective mass model applied to a single Dirac valley—say K.

In the presence of a vanishing gap, electrons (and excitons) acquire a chiral quantum number, C,

which was defined above. With reference to the noninteracting ground state, |0〉, the e-h pairs

ĉK†k,σv̂
K
k,σ′ |0〉 have chiral quantum number ∆C = +2 for positive k and ∆C = −2 for negative k.

Since long-range Coulomb interaction conserves chirality, we expect the wave function of a chiral

exciton to live only on one semi-axis in k space, either ψK(k) = 0 for k < 0 and ∆C = +2, or

ψK(k) = 0 for k > 0 and ∆C = −2.

Supplementary Fig. 10 plots ψK(k) by comparing the case of a perfectly symmetric Dirac

cone (panel a, αsl = 0) with the case of a distorted cone, mimicking the first-principles GW band

dispersion (panel b, αsl = 0.05929). This analysis is of course possible only within the effective

mass model, as no free parameter such as αsl may be changed in the first-principles calculation.

In the symmetric case (Supplementary Fig. 10a) ψK(k) is even in k since nothing prevents the

numerical diagonalization routine from mixing the two degenerate amplitude distributions with

∆C = ±2. Hovever, as the Dirac cone symmetry under axis inversion, k → −k, is lifted by en-

ergetically favoring e-h pairs with ∆C = −2 (Supplementary Fig. 10b), the wave function weight

collapses on the negative side of the axis. Therefore, the asymmetry of the exciton wave function

is explained by the combined effects of chiral symmetry and cone distortion.
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Supplementary Fig. 10 Effect of the asymmetry of the Dirac cone on the exciton wave function

within the effective mass approximation. Wave function of the lowest-energy exciton within a

single valley, ψK(k), vs wave vector, k. a The slope asymmetry parameter has a vanishing value,

αsl = 0, hence the Dirac cone is symmetric under axis inversion, k → −k. b αsl = 0.05929. Here

w2 = w1 = 0 and ϕ = 1.52 · 10−5.
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Supplementary Fig. 11 Effect of the magnetic field on the exciton wave function in k space.

Square modulus of the wave function of the lowest triplet exciton, |ψτ (k)|2, vs wave vector, k, for

increasing values of the magnetic flux, φ/φ0. a, b φ/φ0 = 0. c, d φ/φ0 = 0.0015. e, f φ/φ0 =

0.0091. Panels a, c, e (b, d, f) refer to valley K′ (K). The first-principles data for the (3,3) tube

(black dots) are compared with the effective-mass predictions (blue curves). As the field increases

the weight distribution becomes broader and more symmetrical around the Dirac point.
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As the chiral symmetry is destroyed by piercing the tube with a magnetic flux, the exciton

wave function ψ becomes symmetrically distibuted around the origin of k axis. This is shown in

Supplementary Fig. 11 from both first-principles (dots) and effective-mass (solid curves) calcu-

lations of |ψτ (k)|2 for increasing values of the dimensionless magnetic flux φ/φ0 (for panels a,b

φ/φ0 = 0, for c, d φ/φ0 = 0.0015, for e, f φ/φ0 = 0.0091). As the gap increases with the field,

the excitons becomes massive and more similar to the conventional Wannier excitons reported in

the literature13, 20, 21: the weight distribution in k space is broader and its peak more rounded, with

a Gaussian-like shape identical in both valleys (respectively valley K′ in panels a, c, e and val-

ley K in panels b, d, f). The agreement between first-principles (dots) and effective-mass (solid

lines) predictions is very good, further validating the model. However, at high field (panels e and

f, φ/φ0 = 0.0091), the effective-mass curve becomes discontinuous at the Dirac cone whereas the

first-principles curve is smooth. This is an artefact of the effective-mass model as the high-field

functional form of the distorted Dirac cone shown by Supplementary Eq. (24) exhibits a step at

k = 0 that increases with k⊥. This crude modelization may be cured rather simply: however, its

drawbacks do not affect the results presented in this paper in any significant way.

The EI mean-field wave function as specialization of the QMC variational wave function

The QMC variational wave function, |ΨQMC〉, is the zero-gap state, |0〉, multiplied by the Jastrow

factor, J = J1J2, which accounts for one- and two-body correlations encoding the variational

degrees of freedom. In this section we focus on a relevant specialization of the pair Jastrow factor,

J2 =
∏

i<j exp[u(ri, rj)], showing that a proper choice of the two-body term u(r, r′) allows to
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recover the mean-field EI wave function to first order in u, i.e., |ΨQMC〉 takes the form

|ΨEI〉 =
∏
k

(uk + vk ĉ
†
kv̂k) |0〉 . (55)

Note that the first-order restriction is consistent with the range of validity of EI mean-field theory22.

Throughout this section we take J1 = 1 and suppress spin and valley indices, as they may be

included straightforwardly in the derivation, as well as we assume positive order parameter for the

sake of clarity (η = 0).

To first order in the two-body factor u, the QMC wave function is

ΨQMC(r1, r2, . . . , rNe) =

[
1 +

∑
i<j

u(ri, rj)

]
Φ0(r1, r2, . . . , rNe), (56)

where Ne is the number of electrons. The Slater determinant Φ0 in real space is obtained by

projecting |0〉 onto

ψ̂†(r1)ψ̂†(r2) . . . ψ̂†(rNe) |vac〉 , (57)

where |vac〉 is the vacuum with no electrons present. The Fermi field annihilation operator ψ̂ is

spanned by the basis of conduction and valence band operators,

ψ̂(r) = ψ̂c(r) + ψ̂v(r), (58)

with

ψ̂c(r) =
∑
k

ϕck(r) ĉk (59)

and

ψ̂v(r) =
∑
k

ϕvk(r) v̂k, (60)
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where the explicit effective-mass form of Bloch states ϕck and ϕvk was given in Supplementary

Note 1.

Similarly, we work out the form of ΨEI in real space,

ΨEI(r1, r2, . . . , rNe) = 〈vac| ψ̂(rNe)ψ̂(rNe−1) . . . ψ̂(r1)

×
∏
k

uk

(
1 + gk ĉ

†
kv̂k

)
v̂†k1 v̂

†
k2
. . . v̂†kNe

|vac〉 , (61)

where the valence band states k1, k2, . . ., kNe , are filled up to the Dirac point in |0〉 and we defined

gk = vk/uk. To first order in gk, ΨEI reads

ΨEI(r1, r2, . . . , rNe) = B Φ0(r1, r2, . . . , rNe)

+ B
∑
k

gk 〈vac| ψ̂(rNe)ψ̂(rNe−1) . . . ψ̂(r1) ĉ†kv̂k v̂
†
k1
v̂†k2 . . . v̂

†
kNe
|vac〉 , (62)

where B =
∏

k uk is a constant. After expanding the field operators ψ̂ in the second row onto the

basis of v̂ and ĉ [cf. (60) and (59)], we observe that the only non-vanishing contributions consist in

products of Ne − 1 operators v̂ times a single operator ĉk. Since ĉk occurs Ne times in the ψ̂(ri)’s,

with i = 1, . . . , Ne, we may write

ΨEI(r1, r2, . . . , rNe) = B Φ0(r1, r2, . . . , rNe) + B
∑
k

gk

Ne∑
i=1

∑
k′1

· · ·
∑
k′i−1

∑
k′i+1

· · ·
∑
k′Ne

× ϕck(ri) ϕvk′1(r1) . . . ϕvk′i−1
(ri−1)ϕvk′i+1

(ri+1) . . . ϕvk′Ne
(rNe)

× 〈vac| v̂k′Ne
. . . v̂k′i+1

ĉkv̂k′i−1
. . . v̂k′1 ĉ

†
kv̂k v̂

†
k1
v̂†k2 . . . v̂

†
kNe
|vac〉 . (63)

To make progress, we consider the generic operator identity

ψ̂(r)ψ̂†(r′) + ψ̂†(r′)ψ̂(r) = δ(r− r′). (64)
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Since electrons are mainly localized at honeycomb lattice sites R and there is—on the average—

one electron per site (Ne = 2N ), this identity may approximately be expressed as

ψ̂v(ri)ψ̂
†
v(rj) + ψ̂†v(rj)ψ̂v(ri) ≈

δri,rj
aLN

, (65)

which provides a useful representation of the identity operator Î for any position of the ith electron:

aLN

Ne∑
j=1

[
ψ̂v(ri)ψ̂

†
v(rj) + ψ̂†v(rj)ψ̂v(ri)

]
≈ Î . (66)

Furthermore, in the spectral representation of Î we single out the contribution of momentum k,

Î ≈ aLN

Ne∑
j=1

[
ϕvk(ri)ϕ

∗
vk(rj)

(
v̂kv̂
†
k + v̂†kv̂k

)
+
∑
k′ 6=k

ϕvk′(ri)ϕ
∗
vk′(rj)

(
v̂k′ v̂

†
k′ + v̂†k′ v̂k′

)]
, (67)

which we plug into Supplementary Eq. (63). Note that, unless ri = rj , the contribution originating

from the second addendum between square brackets of Supplementary Eq. (67) is much smaller

than the one linked to the first addendum because terms that are summed over k′ cancel out as they

have random phases, being proportional to exp [ik′(yi − yj)]. The outcome is

ΨEI(r1, r2, . . . , rNe) = B Φ0(r1, r2, . . . , rNe) + B
∑
k

gk

Ne∑
i,j=1

∑
k′1

· · ·
∑
k′i−1

∑
k′i+1

· · ·
∑
k′Ne

× aLNϕck(ri)ϕ
∗
vk(rj) ϕvk′1(r1) . . . ϕvk′i−1

(ri−1)ϕvk(ri)ϕvk′i+1
(ri+1) . . . ϕvk′Ne

(rNe)

× 〈vac| v̂k′Ne
. . . v̂k′i+1

v̂kv̂
†
kĉk v̂k′i−1

. . . v̂k′1 ĉ
†
kv̂k v̂

†
k1
v̂†k2 . . . v̂

†
kNe
|vac〉

+ (contact term), (68)

where the last contact term is negligible unless two electrons touch. Importantly, the e-h pair wave

function

ϕck(r)ϕ
∗
vk(r

′) = χcvk (r− r′) (69)
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occurring in the second row of (68) depends on r − r′ only, which allows to decouple the sums

over ri and ri − rj , respectively. Then Supplementary Eq. (68) may be rearranged as

ΨEI(r1, r2, . . . , rNe) = B Φ0(r1, r2, . . . , rNe) + B

Ne∑
`=1

aLN
∑
k

gk χ
cv
k (r`)

×
∑
k′1

· · ·
∑
k′i−1

Ne∑
i=1

∑
k′i+1

· · ·
∑
k′Ne

ϕvk′1(r1) . . . ϕvk′i−1
(ri−1)ϕvk(ri)ϕvk′i+1

(ri+1) . . . ϕvk′Ne
(rNe)

× 〈vac| v̂k′Ne
. . . v̂k′i+1

v̂kv̂k′i−1
. . . v̂k′1 v̂

†
k1
v̂†k2 . . . v̂

†
kNe
|vac〉 + (contact term), (70)

where, among all addenda of the mixed sum over momenta k′ and index i, the only non-vanishing

contributions are those permutating the annihilation operators applied to |0〉 that belong to the set

{v̂k1 , v̂k2 , . . . , v̂kNe
}.

The final result is

ΨEI(r1, r2, . . . , rNe) = B

[
1 +

Ne∑
`=1

Φexc(r`)

]
Φ0(r1, r2, . . . , rNe) + (contact term), (71)

with the exciton wave function Φexc being defined as

Φexc(r) = aLN
∑

filled k

gk χ
vc
k (r), (72)

where the sum over k is limited to those levels that are filled in |0〉 and r is the electron-hole

distance. Supplementary Eq. (71) is a non trivial result, as it shows that the EI wave function

in real space is the product of the Slater determinant Φ0—a conventional fermionic state—times

the sum over ` of bosonic wave functions Φexc(r`)—the exciton wave function integrated over the

whole range of possible e-h distances. The significance of Φexc relies on its Fourier transform in

reciprocal space, gk, which is the ratio of those variational factors that solve the gap equation, vk
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and uk. The gap equation may be regarded as the many-exciton counterpart of the Bethe-Salpeter

equation.

Supplementary Eq. (71) should be compared with Supplementary Eq. (56): When no pairs

of electrons are in contact, QMC and mean-field EI wave functions coincide apart from a normal-

ization factor, provided that u(r, r′) = 2Φexc(r − r′)/N . When two electrons touch, say ri = rj ,

a discrepancy arises, which is expected since the QMC wave function enforces the cusp condition

whereas the mean-field ansatz does not.

Detection of Peierls charge density wave through the order parameter %Transl

The QMC analysis of main text introduces the order parameter %Transl as a measure of the charge

displacement between adjacent unitary cells along the tube axis. If the ground state is a charge

density wave (CDW) with period 2a (the characteristic wave vector is q = π/a), then the quantum

average of %Transl extrapolated to the thermodynamic limit is finite. In this section we discuss

whether the order parameter %Transl may also detect a Peierls CDW with nesting vector q = 2kF,

the Fermi wave vector being located at Dirac point K.

A first issue is the commensurability of the QMC supercell with respect to the period of

Peierls CDW. According to DFT calculation kF = 0.289(2π)/a, hence q = 2kF = 0.422(2π)/a

(folded back to first Brillouin zone) and the period is 2.37 a (Supplementary Fig. 12b). This

implies that the size of the commensurate supercell exceeds our computational capability. On the

other hand, the size of a smaller supercell may approximately match a multiple of the Peierls CDW

39



0

0

C
ha

rg
e 

m
od

ul
at

io
n 

 ρ
q(z

) 
- 

ρ 0  (
ar

bi
tr

ar
y 

un
its

)

0 1 2 3 4 5
Axis coordinate  z  (units of a)

0

q = (2π)/a  (undistorted)

q = 2 kF

q = π /a  

0 0.01 0.02 0.03 0.04
1 /  Natom

0e+00

1e-04

2e-04

ρ2 T
ra

ns
l   

(d
im

en
si

on
le

ss
)a

b

c

d

Supplementary Fig. 12 Model charge density wave ground state. a-c Model charge density along

the axis, nq(z)−n0, vs axial coordinate, z. The density is reference from its average value, n0, and

the blue (red) colour stands for positive (negative) charge deviation. The wave vector q identifies

the period of the charge density wave as (2π)/ |q|: undistorted structure, q = (2π)/a (panel a);

charge density wave à la Peierls, q = 2kF, with kF ≡ K (panel b); dimerized charge density wave,

q = π/a (panel c). d Square order parameter,
(
%model

Transl

)2, evaluated over the Peierls charge density

wave model ground state, vs inverse number of atoms in the supercell, 1/Natom. Dashed lines are

guides to the eye.
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period. This is the case e.g. of a supercell made of seven units, whose length compares with three

times the period, 7.11 a.

The key issue is the finite-size scaling of %Transl averaged over the Peierls CDW ground state.

To gain a better understanding, we introduce a simple model for a generic CDW. The charge density

profile, nq(z), is a sinusoidal modulation of wave vector q along the axis z,

nq(z) = nmod sin qz + n0, (73)

where nmod is the modulation amplitude, n0 is the homogeneous background, and we ignore the

relaxation of the ground state occurring in a finite-size supercell. The order parameter %model
Transl that

fits to the model (73) is

%model
Transl =

1

Ncell

Ncell∑
`=1

(−1)`−1

∫ a`

a(`−1)

dz [nq(z)− n0] , (74)

where Ncell is a number of unitary cells such that Ncella is approximately commensurate with the

CDW period, 2π/q. If Ncell is even, then, except for a prefactor, %model
Transl is equivalent to %Transl as

defined in the main text.

The extrapolated value of %model
Transl in the thermodynamic limit, Ncell → ∞, is trivial in two

cases. For the undistorted structure, %Transl = 0 as the integral of nq − n0 over the unitary cell

vanishes. This is illustrated in Supplementary Fig. 12a, where the blue (red) colour stands for

positive (negative) charge deviation, nq(z) − n0. Second, for the dimerized CDW of period 2a,

which is discussed in the main text, any cell with Ncell even is commensurate and hence %model
Transl =

2anmod/π, the integral of nq − n0 over the unitary cell exhibiting alternate sign between adjacent
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cells (Supplementary Fig. 12c). In the following, in order to compare with the VQMC extrapolated

order parameter %AB discussed in the main text, we take nmoda/π = %AB/2 = 0.00825.

We now focus on the Peierls case of nesting vector q = 2kF (Supplementary Fig. 12b). We

assume that Ncell takes only those integer values closest to (2.37)m, with m = 1, 2, . . ., which en-

sures that supercell and CDW periods are approximately commensurate. As illustrated by Supple-

mentary Fig. 12d,
(
%model

Transl

)2 exhibits a complex, non-monotonic dependence on the inverse number

of atoms before vanishing as 1/Natom → 0 [here Natom = 12Ncell as the (3,3) nanotube has twelve

atoms per cell]. This trend should be compared with the perfectly linear vanishing behavior ex-

hibited by %2
Transl in Fig. 4a of main text. We infer that, if the Peierls CDW were the actual ground

state, than %2
Transl evaluated through QMC would show some deviation from linearity, which is not

observed. In conclusion, we rule out the Peierls CDW ground state.
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C atom label x (Å) y (Å) z (Å)

1 2.101836417 0.002803388 -1.230783688

2 1.607960625 1.353495674 -1.230783688

3 1.048473311 1.821401270 0.000000000

4 -0.368220898 2.068523780 0.000000000

5 -1.053234936 1.818369640 -1.230783688

6 -1.976339544 0.715641791 -1.230783688

7 -2.102053467 -0.002752850 0.000000000

8 -1.607747246 -1.353292444 0.000000000

9 -1.048327785 -1.821179199 -1.230783688

10 0.368284950 -2.068831149 -1.230783688

11 1.053260216 -1.818547251 0.000000000

12 1.976108358 -0.715632650 0.000000000

Supplementary Table 1 Equilibrium coordinates of the twelve atoms making the unitary cell of

the (3,3) carbon nanotube, after structural DFT optimization. The cell size along the tube axis,

parallel to z, is 2.461566 Å.
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