






Environmental modulation of diatom LHCX multigene family  |  3947

this work we correlated LHCX expression profiles with the 
photosynthetic and photoprotective performances in variable 
experimental conditions, including changes in light irradi-
ance and nutrient availability. These analyses revealed that 
the four P.  tricornutum LHCX genes respond differently to 
various environmental cues, as summarized in Fig. 5.

The analyses of the mRNA and protein responses indicate 
that amounts of the different LHCXs are tightly regulated at 
the transcriptional, and probably also the post-translational 
level. As LHCX3 and LHCX4 have a similar size, it was not 
possible to quantify the amount of these two proteins under 
the different stresses using one-dimensional electrophoresis. 
However, considering the transcript and biochemical analy-
ses together (in the case of LHCX2 and LHCX1), it seems 
that LHCX1 is always expressed at high levels even in non-
stress conditions, which is consistent with it having a pivotal 
role in NPQ regulation and light acclimation as proposed pre-
viously (Bailleul et al., 2010).

LHCX2 and 3 are induced following high light stress, 
where they may contribute to increase the diatom photopro-
tection capacity. Their induction, as well as the accumulation 
of LHCX1, may result from the integration of different sig-
nals. Two members of the blue light-sensing cryptochrome 
photolyase family, CPF1 (Coesel et  al., 2009) and CRYP 
(Juhas et al., 2014), modulate the light-dependent expression 
of LHCX1, LHCX2, and LHCX3. Also, the recently identi-
fied Aureochrome 1a blue light photoreceptor, which regu-
lates P. tricornutum photoacclimation (Schellenberger Costa 
et al., 2013), may affect how much of each LHCX there is in 
a cell. Moreover, chloroplast activity, through the redox state 

of the plastoquinone pool, may also regulate LHCX1 and 
LHCX2 gene expression in HL (Lepetit et al., 2013).

A different regulation pattern is seen in the case of LHCX4, 
the only isoform which is induced in the absence of light. The 
amount of LHCX4 mRNA rapidly decreases following a 
dark to light transition, and this repression is lost when pho-
tosynthesis is halted with the PSII inhibitor DCMU. This 
suggests that chloroplast-derived signals could participate in 
inhibiting gene expression, even at very low light irradiance, 
by an as yet unknown process. The peculiar trend observed 
in the LHCX4 light response suggests a possible role for this 
protein in P.  tricornutum photoacclimation. The increased 
LHCX4 transcript and possibly protein content is mirrored 
by a decrease in NPQ capacity and a slightly reduced Fv/Fm in 
the dark-adapted cells, compared with cells grown in the light 
(Fig.  1E; Table  2). Moreover, reduced PSII efficiency and 
slightly altered growth were observed in cells overexpressing 
LHCX4 in the light (Fig. 4G), suggesting that LHCX4 could 
have a negative impact on chloroplast physiology. Indeed, a 
comparative analysis of the P.  tricornutum LHCX protein 
sequences indicates that LHCX4 lacks key protonatable resi-
dues that in Chlamydomonas are involved in NPQ onset when 
the lumen acidifies (Ballottari et  al., 2016). These residues 
are, however, conserved in the LHCX1, 2, and 3 isoforms. 
According to the model established in green algae for the 
protein LHCSR3, these residues diminish their electrostatic 
repulsion upon protonation, allowing a rearrangement of 
the protein structure and pigment orientation and enhance-
ment of the quenching capacity (Ballottari et al., 2016). The 
substitution in LHCX4 of the acidic residues (aspartate and 

Fig. 5.  Model of the P. tricornutum LHCX regulation. Scheme summarizing the multiple external signals and stresses that differentially regulate the 
expression of the four LHCXs. The LHCX genes are shown in the nucleus and the LHCX proteins in the chloroplast. + and – boxes indicate positive and 
negative transcriptional regulation, respectively, in response to white light (yellow), blue light (blue, through the cryptochromes, Cry, and aureochromes, 
Aureo, photoreceptors), darkness (black), chloroplast signals (green), iron starvation (grey), and nitrogen starvation (orange). In the P. tricornutum cell: N, 
nucleus; C, chloroplast; M, mitochondrion. In the chloroplast: PSI and PSII, photosystem I and II, respectively; PSI* and PSII*, excited photosystems; PQ, 
plastoquinone pool; b6f, cytochrome b6f complex; ΔpH, proton gradient; NADPH, redox potential.
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glutamate) with non-protonatable residues (asparagine and 
glycine) would prevent such regulation. Instead, LHCX4 
could contribute to the observed capacity of P. tricornutum 
to survive long periods in the dark and its repression could 
be needed for a rapid acclimation following re-illumination 
(Nymark at al., 2013). Consistent with this, high LHCX gene 
expression has also been observed in sea-ice algal commu-
nities dominated by diatoms that have adapted to the polar 
night (Pearson et al., 2015).

Besides the light and redox signals discussed above, our 
study also shows that differences in the availability of iron 
and nitrogen strongly affect the expression of the different 
LHCXs. The signalling cascades controlling these responses 
are still largely unknown, but they probably involve multiple 
regulatory pathways into the nucleus and chloroplast, con-
sidering that these nutrients are essential for diatom photo-
synthesis and growth (Table  2; Fig.  5). Nitrogen starvation 
induces a general increase of all the LHCX isoforms, includ-
ing LHCX4 that is normally repressed in light-grown cells 
(Fig.  3). We can hypothesize that the general increase of 
the LHCX content is needed to protect the photosynthetic 
apparatus, which is strongly affected by nitrogen depriva-
tion, as shown by the drastically reduced Fv/Fm (Table 2), the 
lower maximal rETRPSII (Fig. 3D), and the reduction of PSI 
and PSII protein content. Interestingly, an opposite trend 
is observed for the main enzymes of the xanthophyll cycle, 
which are either not induced or are repressed in cells grown 
in similar nitrogen stress conditions (Supplementary Fig. S3). 
Thus, in nitrogen starvation, the LHCXs could represent the 
major contributors to the observed NPQ increase (Fig. 3C).

At variance with nitrogen starvation, iron starvation has a 
more specific effect on LHCX expression. A strong induction 
of the LHCX2 mRNA and protein levels (Fig. 2) compared 
with the other isoforms was observed, pinpointing this iso-
form as the most likely regulator of the increased NPQ capac-
ity observed in iron stress (Fig.  2C). NPQ in iron-limiting 
conditions is characterized by a slow induction and a com-
plete relaxation in the dark. These slow induction kinetics 
might reflect either lower concentrations of the pH-activated 
de-epoxidase enzyme or its cofactor ascorbate (Grouneva 
et  al., 2006) or slower acidification of the thylakoid lumen 
due to a reduced photosynthetic activity. Indeed, the photo-
synthetic capacity is severely impaired when iron is limiting, 
as demonstrated by the reduction in PSI and PSII subunits 
(Fig.  2B), but also the lower Fv/Fm (Table  2) and rETRPSII 
(Fig.  2D). The decreased electron flow per PSII could also 
reflect a decrease in the iron-containing cytochrome b6f com-
plex, as previously shown for other iron-limited diatoms 
(Strzepek and Harrison, 2004; Thamatrakoln et al., 2013).

The observations made in this and in previous studies 
about the complex LHCX regulation in response to differ-
ent signals prompted us to explore their possible functions 
in P. tricornutum, by modulating their expression in a natu-
ral Pt4 strain characterized by constitutive lower NPQ levels 
(Fig. 4). We observed that the increased expression of all the 
tested isoforms generates a small but still consistent increase 
in the NPQ levels, suggesting a potential involvement of the 
diverse proteins in NPQ modulation, as previously shown for 

LHCX1 (Bailleul et al., 2010). However, we also noticed that 
different overexpressing lines with different transcript and 
protein levels showed a similar NPQ increase. It is difficult to 
interpret these first results, especially in the case of lines over-
expressing LHCX4, whose endogenous expression is inhib-
ited by light (Fig. 1F). They probably reflect the complexity 
of NPQ regulation in diatoms, where the presence of multiple 
players (e.g. several LHCXs and enzymes of the xanthophyll 
cycle) possibly tend to reduce the consequences on NPQ of 
genetic modifications of the qE machinery.

Finally, the exploration of the 5'-flanking regions and 
intronic sequences of the LHCX genes revealed the presence 
of known and potentially novel cis-regulatory elements that 
may contribute to the transcriptional regulation of the dif-
ferent isoforms in stress conditions. We revealed an uneven 
distribution of the CCREs (Ohno et al., 2012; Tanaka et al., 
2016) in the four LHCX genes that may be linked to their 
different light-mediated transcriptional responses. In addi-
tion, we identified a 7 bp motif  in the non-coding sequences 
of LHCX2, 3, and 4. Using genome-wide transcriptomic 
data, we found this motif  specifically enriched in long-term 
nitrogen starvation-induced genes, suggesting a possible 
involvement in the regulation of gene expression in response 
to nitrogen fluctuations. Although additional studies are 
required to demonstrate the functionality of these motifs, 
their discovery may represent a starting point for the iden-
tification of the LHCX regulators in the diatom acclimation 
mechanisms to stress.

Outlook

Here we discovered that the four P. tricornutum LHCXs are 
regulated in a sophisticated way (Fig. 5). Different and proba-
bly interconnected regulatory pathways activated by different 
signals and stresses tightly control the amount of each LHCX 
isoform in the cell. By narrowing down the specific growth 
conditions in which the different LHCXs are required, our 
results set the basis for future work to define the function of 
each isoform in the regulation of chloroplast physiology. The 
generation of new transgenic lines in which the content of 
each LHCX isoform is specifically modulated will be instru-
mental in assessing whether they act with the NPQ regulator 
LHCX1, or play other specific roles. Considering the robust-
ness of LHCX1 expression in all the conditions tested, future 
studies will probably require the use of new LHCX1 loss-of-
function diatom strains. Additional information about the 
association of LHCXs with photosynthetic complexes and 
pigments will also be necessary to understand the role played 
by the expanded LHCX gene family in the efficient acclima-
tion of diatoms to environmental changes.

Supplementary data

Supplementary data are available at JXB online.
Figure S1. Localization of the enriched motifs in non-cod-

ing regions of P. tricornutum LHCX genes.
Figure S2. Alignment of the LHCX proteins and three-

dimensional model of LHCX1.
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Figure S3. Expression of the P.  tricornutum xanthophyll 
cycle genes in nitrogen starvation.

Table S1. List of the oligonucleotides used in this work.
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