
Master in High Performance
Computing

High performance data analysis and visualization tools for
the MedBFM physical-biogeochemical model

Supervisors :
Stefano Salon,
Giampiero Cossarini,
Giorgio Bolzon,
Paolo Lazzari

Candidate:
Cosimo Livi

3rd edition
2016–2017

Contents

1 Introduction 3

2 Setup 6
2.1 Preparing the machine . 6
2.2 Installing Paraview . 6

2.2.1 Using prorietary OpenGL . 7
2.2.2 Using OSMesa . 8
2.2.3 Define the Environment . 9
2.2.4 Set up a Paraview Server . 9

2.3 Installing OGSParaviewSuite . 10

3 Implementation and Features 11
3.1 The Repository . 11
3.2 OGSparaviewSuite: applications and benchmarks 12

3.2.1 OGSvtk . 13
3.2.2 LoadNetCDF . 16
3.2.3 OGSStatistics . 16

3.3 From Python to Paraview Plugins . 20
3.4 Paraview Custom Filters in Action . 24

4 Documentation 30
4.1 OGSParaviewSuite . 30

4.1.1 OGSvtk . 30
4.1.2 LoadNetCDF . 34
4.1.3 OGSStatistics . 37

4.2 OGS Custom Filters . 44
4.2.1 Sources . 45
4.2.2 Filters . 48

5 Aknowledgements 52

2

1 Introduction

The MedBFM model system is developed and managed by OGS and operationally pro-
duces analysis, forecast and reanalysis of biogeochemical 3D fields for the Mediterranean
Sea in the framework of the Mediterranean monitoring and forecasting center of the
EU Copernicus Marine Environment Monitoring Services (CMEMS). The present post-
processing scheme is based on an off-line suite of python scripts (aka “bit.sea”) which
is used to monitor the model output, to prepare the quality information documents
targeted towards the users, and for scientific research. However, the inner complexity
of the multivariate 4D data products (i.e., approximately 50 variables organized in 3D
gridded fields evolving in time), the increase of the number of products (operational and
derived), validation metrics, and users number, all combined with the continuos refining
of spatial resolution, pose a series of challenges for the efficient management of the whole
data stream analysis workflow and its performance.
Indeed, the usual approach to data analysis can easily become too complex for the
generic user: the need to exploit a cluster for the analysis of large amount of data poses
strong limits on the practical usability of standard analysis routines, as can be seen from
skatch in Fig.1.1. The alternative approach proposed in this thesis work aims to develop
an efficient and scalable tool that can directly access model’s output (thus skipping the
postprocessing phase), obtaining on-the-fly and on-demand results, while keeping a flexi-
ble and dynamic structure that also provides an intuitive graphical user interface (GUI),
granting an easy access to the users.
This service may be able to run on a dedicated server for remote visualization, offering
the possibility to interactively inquire datasets to a large number of users.
The natural environment for this kind of application is Paraview, since it is an open-
source software with the capabilities to visualize and analyze large amount of data, both
using interactive or batch/scripting methods.

Figure 1.1: sketch of the comparison between the traditional approach to data analysis
with the new scheme proposed in this work.

3

Indeed, Paraview is built on excellent graphic libraries (vtk) and also offers the pos-
sibility to customize its features and filters through low-level python and C++ program-
ming. Moreover, the typical pipeline structure offered by Paraview seems to perfectly
satisfy the aforementioned needs of flexibility and dynamicity of the analysis tool we
would like to produce.
One of the most important step for the new approach we had in mind was to find the best
way for bridging the gap between the native data structures used by OGS and the vtk’s
requirements and formats for a proper visualization in Paraview. In order to facilitate
this process, we developed a python module called OGSParaviewSuite, which is able to
provide all the methods required for the conversion and the manipulation of data, as
well as some high performance implementation for their analysis. as shown in Fig.1.2.
The OGSParaviewSuite module essentially collects some features from the bit.sea, vtk
and ctypes python modules and wraps them into simple classes and routines.

Figure 1.2: sketches of the classes provided by the OGSParaviewSuite module.

This tool has been the fundamental building block for the source scripts of custom
Paraview’s filters, greatly facilitating the, anyway complicated, developing process. A
Paraview filter can be defined in general as a function that receives an input and produces
an output; when several filters are chained togheter, then it is called a pipeline.
Therefore, one of the main scope of the project was to produce (with python) all the
needed filters in order to dynamically fetch data from model’s raw output, visualize and
manipulate it, all without saving any extra file on disk.
This last aspect is of foundamental importance, since a long climatological simulation
can easily produce 1TB of data in NetCDF format and the production of auxiliary files
for visualization would be catastrophic in term of disk space and performances. Once

4

all the custom filters are produced, the last step of the work is to set-up a remote server
with several services running on it. The server will be able to provide to the users a
full access to the database and to the new developed tools, and this is accomplished
exploiting the servers services offered by Paraview.
The thesis is organized as follows:

• Section 2 provides a detailed list of instructions for installing Paraview from source
by using the provided installation scripts and for linking it with the tools developed
in this work, on a machine mounting Ubuntu Linux distribution.

• Section 3 presents an overview of the developing process, starting from an explana-
tion of the repository structure. The features introduced by the OGSParaviewSuite
python module, as well as their benchmark, are then explained through some ex-
amples, with a short guide on how to use them for Paraview’s filter programming.
In the last part of this section the usage and capabilities of the developed filters
are shown.

• Section 4 collects a full documentation of OGSParaviewSuite classes and methods,
as well as the the documentation of the custom filters developed in this work. It
can be considered as a stand-alone section that can be consulted without having
read the whole thesis.

Note about text coloring and style: in the following of the work the texttt font
for everything that is related to the unix’s bash envirionment, while for quoting python
code the python highlight will be used, so that the classes of a module will appear in
blue, as OGSvtk, while methods are highlighted in red, as for example GetVariable.

5

2 Setup

In this section the procedure for a proper installation of Paraview and the OGSPar-
aviewSuite will be presented. At first the required steps for installing on the machine
all the required software and libraries are presented in subsection 2.1, then subsection
2.2 hosts a detailed guide related to the installation of Paraview through the provided
installation scripts, as well as the server setup. In subsection 2.3 the procedure related to
a correct installation of the OGSParaviewSuite python model, developed in this thesis
work, is explained.

2.1 Preparing the machine

The following guide is for a machine mounting Ubuntu 16.04, but the same procedure
can be applied for CentOS7, by taking into account that packages in this case will have
different names.
At first, install the basic software:

sudo apt -get install git python -dev python -pip libopenmpi -dev cmake

pip install numpy matplotlib mpi4py

Paraview is based on qt libraries and recents builds use the latest qt5 version. Backward
compatibility with qt4 is anyway offered, which are usually easier to install. In order to
have Paraview working with qt4 libraries the following packages needs to be installed:

sudo apt -get install qt4 -dev -tools libqt4 -core

If qt5 libraries are strictly needed one can choose between install qt5 from source or by
adding a new repository:

sudo add -apt -repository ppa:beineri/opt -qt593 -xenial

sudo apt -get update

sudo apt -get install qt59 -meta -full

source /opt/qt59/bin/qt59 -env.sh

with this option the libraries will be installed in /opt/ folder and it may be more difficult
to properly link them to Paraview. At this point clone the repository:

git clone https :// gitlab.com/clivi/OGS_Paraview_module.git

For now let’s focus only on the Paraview’s installation scripts inside the tools folder,
which brings us directly into the next part of the guide.

2.2 Installing Paraview

Two different ways of installing Paraview will be presented in this section: one will use
proprietary OpenGL drivers for GPU rendering, while the other allows to render only
by using CPUs thanks to the open source OSMesa drivers. The former is indicated
when the machine in which Paraview is installed has access to a GPU and to a physical

6

or virtual screen, while the latter is useful in the cases of headless servers (i.e. servers
without a display), or in general if GPUs are not available.
In this second case, OSMesa drivers will be installed for simulating OpenGL on CPUs
and no display window will be opened by Paraview, so that it can be used only in a
client-server configuration.

2.2.1 Using prorietary OpenGL

This is the simplest case as does not requires any additional software. The script
install paraview.sh will download, unpack, build ad install the desired configura-
tion of Paraview using cmake.
Inside the script there are several important shell variables, like VERS, that must be an
existing version of Paraview, and INSTALL PREFIX, that defines the installation path.
Besides them, the most important section of the script is relative to the cmake configu-
ration, below an example:

Configure CMAKE

cmake ../ \

-DCMAKE_BUILD_TYPE=Release \

-DCMAKE_INSTALL_PREFIX=$INSTALL_PREFIX \

-DBUILD_SHARED_LIBS=ON \

-DBUILD_TESTING=OFF \

-DVTK_RENDERING_BACKEND=OpenGL \

-DVTK_SMP_IMPLEMENTATION_TYPE=OpenMP \

-DVTK_USE_X=ON \

-DPARAVIEW_QT_VERSION =4 \

-DPARAVIEW_BUILD_QT_GUI=ON \

-DPARAVIEW_ENABLE_CATALYST=ON \

-DPARAVIEW_BUILD_CATALYST_ADAPTORS=ON \

-DPARAVIEW_ENABLE_PYTHON=ON \

-DPYTHON_INCLUDE_DIR="/usr/include/python2 .7" \

-DPYTHON_LIBRARY="/usr/lib/x86_64 -linux -gnu/libpython2 .7.so" \

-DPYTHON_EXECUTABLE="/usr/bin/python" \

-DPARAVIEW_USE_MPI=ON \

-DMPI_C_INCLUDE_PATH="/usr/include" \

-DMPI_CXX_INCLUDE_PATH="/usr/include" \

-DMPI_C_COMPILER="/usr/bin/mpicc" \

-DMPI_CXX_COMPILER="/usr/bin/mpicxx" \

-DMPIEXEC="/usr/bin/mpiexec" \

-DPARAVIEW_INSTALL_DEVELOPMENT_FILES=ON \

-DCMAKE_C_COMPILER=mpicc \

-DCMAKE_CXX_COMPILER=mpicxx

7

The variable PARAVIEW QT VERSION can be set to 4 or 5, depending on the desired Qt ver-
sion (usually 4 is more stable but deprecated). Also the variable VTK RENDERING BACKEND

can be set to OpenGL or OpenGl2, depending on the available hardware and drivers (check
the GPU’s capabilities).
Note: it is very important that the full paths to python objects, MPI libraries and
binaries are correct, remember to check them since they are usually different depending
on the OS and architectures.

2.2.2 Using OSMesa

If Paraview is being installed on a server that neither has access to a display (physical
or virtual) nor to a GPU, then OSMesa drivers must be used. In order to do so, at first
llvm and then mesa must be installed (better from source), and this can be accomplished
using the provided installation scripts.
Once mesa drivers are installed, just run the script install paraview osmesa.sh, which
is essentially the same as the one presented in subsection 2.2.1, but now osmesa config-
uration variables appear in the cmake configuration:

Configure CMAKE

cmake ../ \

-DCMAKE_BUILD_TYPE=Release \

-DCMAKE_INSTALL_PREFIX=$INSTALL_PREFIX \

-DBUILD_SHARED_LIBS=ON \

-DBUILD_TESTING=OFF \

-DVTK_RENDERING_BACKEND=OpenGL \

-DVTK_SMP_IMPLEMENTATION_TYPE=OpenMP \

-DVTK_USE_X=OFF \

-DVTK_OPENGL_HAS_OSMESA=ON \

-DVTK_USE_OFFSCREEN=OFF \

-DOPENGL_INCLUDE_DIR=IGNORE \

-DOPENGL_xmesa_INCLUDE_DIR=IGNORE \

-DOPENGL_gl_LIBRARY=IGNORE \

-DOSMESA_INCLUDE_DIR=${MESA_DIR }/ include \

-DOSMESA_LIBRARY=${MESA_DIR }/lib/libOSMesa.so \

-DPARAVIEW_QT_VERSION =4 \

-DPARAVIEW_BUILD_QT_GUI=OFF \

-DPARAVIEW_ENABLE_CATALYST=ON \

-DPARAVIEW_BUILD_CATALYST_ADAPTORS=ON \

-DPARAVIEW_ENABLE_PYTHON=ON \

-DPYTHON_INCLUDE_DIR=$PYTHON_DIR/include/python${PYTHON_VERS %.*} \

-DPYTHON_LIBRARY=$PYTHON_DIR/lib/libpython${PYTHON_VERS %.*}.so \

-DPYTHON_EXECUTABLE=$PYTHON_DIR/bin/python \

-DPARAVIEW_USE_MPI=ON \

8

-DMPI_C_INCLUDE_PATH="$MPI_DIR/include" \

-DMPI_CXX_INCLUDE_PATH="$MPI_DIR/include" \

-DMPI_C_COMPILER="$MPI_DIR/bin/mpicc" \

-DMPI_CXX_COMPILER="$MPI_DIR/bin/mpicxx" \

-DMPIEXEC="$MPI_DIR/bin/mpiexec" \

-DPARAVIEW_INSTALL_DEVELOPMENT_FILES=ON \

-DCMAKE_C_COMPILER=mpicc \

-DCMAKE_CXX_COMPILER=mpicxx

So, now several new variables related to the osmesa build are present. It is important,
as before, that all the full paths to libraries and binaries are correct.

2.2.3 Define the Environment

After a successfull installation of Paraview, a last step is required: define the environ-
ment. If just one version of Paraview is installed, the simplest way to proceed is to
modify the bashrc file in the user’s home; if one needs, indeed, to switch between differ-
ent versions of the software, the best approach is to prepare some environment scripts
that every time export the needed paths only in that shell.
What is required is to tell the system where to look for vtk libraries, python packages and
binaries installed by Paraview, and this can be done by modifying three environment
variables: LD LIBRARY PATH, PATH and PYTHONPATH, in the following way (assuming
Paraview is installed into /opt/5.4.0):

PV_DIR="/opt /5.4.0"

export LD_LIBRARY_PATH=$PV_DIR/lib:$PV_DIR/lib/paraview -5.4/

site -packages/vtk:$PV_DIR/lib/paraview -5.4: $PV_DIR/lib/

paraview -5.4/site -pacakges/paraview/vtk:$LD_LIBRARY_PATH

export PYTHONPATH=$PYTHONPATH:$PV_DIR/lib/paraview -5.4/

site -packages:$PV_DIR/lib/paraview -5.4/site -packages/vtk

export PATH=$PV_DIR/bin:$PATH

Now vtk libraries and python modules will be available also for the system, so that vtk
can be used inside C codes and python scripts without being forced to use pvpython.

2.2.4 Set up a Paraview Server

Once Paraview is successfully installed on both the server and the client machines, it
is possible to work in client-server mode. This configuration has several advantages: at
first, all the data can be kept only in the server machine, as well as the custom python
modules and plugins. Moreover, since the server can be launched in parallel with mpirun,
it allows to exploit a parallel implementation of a filter, if it has one. One last positive
aspect is the possibility to split computation from rendering, so that if the server is
headless or does not have a GPU, the rendering can be made by the client machine,

9

while the computation are still executed on the server side.
In order to establish a connection, these steps must be followed:

• Launch pvserver on the remote server. Once logged with ssh launch:

mpirun -np 12 pvserver --server -port =11111

• Open an ssh tunnel in the client machine:

ssh -L 11111: < hostname >:11111 -N user@hostname

• Launch Paraview on the client, click ”Connect”, then click ”Add server”, select a
name, press ”configure”, choose start up as ”Manual” and save.

At the end of this procedure, the client connects to the remote server and all the installed
plugins will be available.

2.3 Installing OGSParaviewSuite

The installation of OGSParaviewSuite python module and the paraview custom filters
is really straightforward:

• if it hadn’t been already done, clone the repository:

git clone https :// gitlab.com/clivi/OGS_Paraview_module.git

• add the folder bit.sea to the PYTHONPATH:

export PYTHONPATH =/ path_to_bit.sea/bit.sea:$PYTHONPATH

then enter into CLIMATOLOGY folder and lunch the script update clim folder.sh.

• copy all the .xml files from the PW filters folder into:
paraview install dir/lib/paraview-5.4/plugins (if the plugins folder is not
present, create it).

• compile C++ library needed by OGSParaviewSuite: got to the folder clib/src

inside the repository, edit the Makefile in order to set the correct include path of
CFLAG variable to vtk’s include directory (usually is paraview installation dir/

5.4.0/include/paraview-5.4) and type make.

Now Paraview is linked with OGS’s python modules and custom filters.

10

3 Implementation and Features

This section is intended as a full overview of the developing process, with step by step
examples for introducing the reader to the new tools produced during this thesis work.
The repository’s structure is presented in subsection 3.1, with a detailed list and de-
scriptions of the files contained in it. In subsection 3.2 the basic features offered by the
implemented OGSParaviewSuite python module are explained and benchmarked, while
subsection 3.3 will present how to exploit the module for developing Paraview’s plugins.
In the last part, embodied by subsection 3.4, the custom plugins developed in this work
are explained and analyzed.

3.1 The Repository

In this subsection the content of the git repository that stores all the work will be
explained in detail, as well as the data structure of the MEDBFM model.
The MEDBFM output comes in NetCDF4 files and three different resolution can be
selected:

• Low: each variable’s file occupies about 11 MB.

• Mid: each variable’s file occupies about 50 MB

• High: each variable’s file occupies about 200 MB

for each resolution, a file called meshmask.nc stores the information about the domain
subdivision into the different bathymetric levels (coast, open sea and everywhere) and
different sub-basins (which can be intended as the different regions of the Mediterrean
sea). Moreover, the model’s grid uses Latitude and Longitude for x̂ and ŷ directions, so
that a proper projection to a plane and, thus, a conversion to meters must be performed
in order to obtain a rectilinear grid.
The connection among the aforementioned structure with the vtk requirements for vi-
sualization inside Paraview is handled by the OGSParaviewSuite python module, which
relies on the files contained in the repository.
The repository contains the following folders:

MESHMASK: all the files required for domain subdivision and conversion to meters are stored into
the MESHMASK folder, where three subfolders (one for each resolution) can be found.
Each of them contains the files required by the OGSParaviewSuite’s routines for
handling the grid creation and domains subdivision. The latter is obtained by
adding two mask variables to the grid, one for the coast and the other for the sub-
basins, that will be used for dynamically select the desired region of the sea. Two
scripts are also provided in order to re-obtain all these required files starting only
by the meshmask.nc file: LonLattoMeters.py and mask extractor.py. Both can
be executed using the following syntax:

python LonLattoMeters.py -i$PWD -r "desired resolution"

11

CLIMATOLOGY: the folder contains the files required for a dynamic evaluation of the climatol-
ogy, and a bash script update clim folder.sh used for update a file inside the
bit.sea folder with the information required to find the aforementioned climatol-
ogy files. The script is supposed to being launched inside the CLIMATOLOGY folder
immediately after the download.

bit.sea: all the custom python modules, like OGSParaviewSuite, are stored in this folder,
thus it is mandatory to add it to the PYTHONPATH (see Sec.2.3).

Documentation: the folder that hosts the present thesis as documentation, as well as the source tex
file, and a simple presentation about the project.

PW filters: inside this folder all the source python scripts used for the custom Paraview’s
plugins are stored, as well as the actual plugins (the xml files) and a python script
for the conversion from python to xml.

clib: hosts the source code and the Makefile for compiling the C++ library needed by
the OGSParaviewSuite module. In order to compile it, just change the include
path of the CFLAGS variable so that it points to the correct path of vtk’s include
folder (see Sec.2.3).

macros: a macro for plotting with matplotlib inside Paraview are present. This macro is a
python script that can be loaded directly inside Paraview using the ”Load macros”
function.

tools: the folder that contains the installation scripts for Paraview and OSMesa. Their
usage is explained in Sec.2.2.

3.2 OGSparaviewSuite: applications and benchmarks

The OGSParaviewSuite python module has been developed with the aim to connect
the OGS’ data structure, including the resolutions and the domain subdivision, with
vtk libraries, in order to obtain an easy-to-use interface for producing satisfying 3D
visualization and statistic analysis. Indeed, the final purpose was to be able to properly
exploit the dynamic nature of a Paraview pipeline, giving to the users the possibility
to quickly select the desired region of the sea to visualize and, eventually, being able to
perform on it a complete and on-the-fly statistic analysis, all with very simple operations
through the Paraview’s interface.
This section will mainly focus on the attempt to give to the reader the key aspects of
this module and introduce him to the basic usage of the different classes and methods
through some examples; for an extensive description of all the functions provided, refer
to the documentation on Sec.4.
Three classes are defined inside the module:

• OGSvtk: provides the routines needed for on-the-fly conversion of model’s output
NetCDF files in a vtk visualizable object.

12

• LoadNetCDF: allows to access the variables stored in NetCDF files and convert
them into numpy arrays

• OGSStatistic: provides the routines necessary to perform statistic operations on
the desired sea region. It exploits a custom C++ library and wraps it to the python
code using Ctypes.

3.2.1 OGSvtk

This class essentially offers the instruments for an on-the-fly conversion from raw model’s
output to a visualizable vtk object, which can be visualized without saving any additional
file on disk. This is a mandatory feature, since a long simulation output can easily reach
the TeraByte threshold, so that it would be really problematic if auxiliary vtk files would
be required for visualization.
Another important feature this class introduces is the possibility to add a mask for
coasts, sub-basins and depth subdivisions, so that any desired region can be selected for
insvestigation.
Let’s see in detail how this class works, starting from an example:

Load module

from OGSParaviewSuite import *

Initialize class

OGS = OGSvtk(’/home/user/MESHMASK ’)

OGS.SetResolution(’mid’)

Create vtkRectilinearGrid

rg = OGS.CreateRectilinearGrid ()

OGS.AddMask(rg)

Load data from NetCDF

data = OGS.LoadNetCDF.GetVariable(’input_file ’,’N3n’)

Add data to vtkRectilinearGrid

rg.GetCellData ().AddArray(OGS.createVTKscaf("N3n",data))

Get the output

self.GetOutput ().ShallowCopy(rg) # if inside Paraview ’s

programmable filter

At first the module is imported (this requires to have added bit.sea folder to the
PYTHONPATH, see Sec.2.3), and then the class is initialized by giving as input the full
path to the MESHMASK folder.
In the next step the resolution is set, possible arguments of SetResolution are low, mid

and high.
At this point we are ready to create the vtk rectilinear grid rg: the CreateRectilinearGrid
method returns a vtkRectilinearGrid variable (see vtk documentation) that acts as a

container for both the raw NetCDF4 variables, and the mask variables, but also contains
some metadata informations (like the path to MESHMASK and the selected resolution)
which can be accessed by the subsequent filters.
Variables can now be added to the grid, starting from the masks: the AddMask method
allows to select which mask shall be added to the grid; an example of coast and sub-

13

basins masks is presented in Fig.3.1: essentially a different integer value is assigned to
each region of the sea, so that with a simple threshold filter acting on the right mask
variable one can select any desired region.

Figure 3.1: Left: top view of coast mask variable, highlighting open sea regions (red)
and coasts region (white). Right: top view of basins mask variable. Every sub-basins
corresponds to a different integer value, from 1 to 16.

The last steps are about adding an actual variable to the grid: at first the variable
must be loaded in a numpy array through the method GetVariable. The loaded array
must be converted to a vtk float array before it can be added to the grid, and this is
done by the createVTKscaf method. An example of how a variable is visualized is shown
in Fig.3.2, where only the domain’s cells related to the sea are kept.

Figure 3.2: Example of the visualization of a Nitrate variable (”N3n”) in mmol/m3,
after a threshold filter for removing the land cells from the grid.

Once one or more biogeochemichal variables are added, the grid is then ready to be
sent to the output. Inside a Paraview’s programmable filter this can be done by the

14

self.GetOutput() call, while optionally one can decide to dump the result to a vtk file
with the WriteGridToVtk method.
It is useful to measure the time required to fulfill the whole sequence presented in the
example, and also the actual memory (RAM) consumption required for on-the-fly visu-
alization. These information are presented in Fig.3.3.

Figure 3.3: Top: execution time for the following methods: SetResolution (Res),
CreateRectilinearGrid (Grid), LoadNetCDF (Load) and createVTKscaf (Add). The
total time required is less than 1 second also for the high resolution case. Bottom:
RAM consumption (blue) and actual array size (red) for all the resolutions.

As shown from Fig.3.3, the manipulation performed through the OGSParaviewSuite

module is extremely efficient and allows to produce a visualizable output in less than
1s also for the less favourable case (high resolution). The drawback is paid in terms
of memory usage, as this process introduces a noticeable overhead of roughly a factor
of 3 with respect to the original variable size, giving some constraints on the maximum
number of variables that can be loaded depending on the total free memory of the system.

15

3.2.2 LoadNetCDF

This is an auxiliary class used for automatically convert a biogeochemical variable stored
inside a NetCDF file to a numpy 3D array. As can be observed from the example of
the previous subsection, the LoadNetCDF class is embedded in the OGSvtk class, so that
usually there is no need to initialize it separately.
For those cases in which a separate initialization of this class is required, a short descrip-
tion of how to use it is presented:

Class initialization

LoadNetCDF = LoadNetCDF(z,y,x) # Requires grid dimensions

of loaded variable

Loads single variable

data = LoadNetCDF.GetVariable(’path’,’name’) # Result is

3D numpy array

Loads variables from list at given date

list = LoadNetCDF.GetListVariablesAtDate(’path’,’date’,var_list)

Loads all variables at given date

list = LoadNetCDF.GetAllVariablesAtDate(’path’,’date’)

If initialized individually, the class requires as input the rectilinear dimensions of the
imported variable. This step is skipped when the OGSvtk class is used, since it auto-
matically initialize an LoadNetCDF class when the resolution is set. One way to proceed
for a manual initialization is to load the file MESHMASK/any resolution/dims.npy on a
python shell and print it, since it contains exactly the information about grid size for
every resolution.
The class then provides three methods for extracting variables: GetVariable, which
allows to load a single variable, GetListVariablesAtDate and GetAllVariablesAtDate,
which instead can be used for load more variables at once. In the latter cases the result
comes in a list in which all elements are in the form [’var name’,3D numpy array].

3.2.3 OGSStatistics

This class is the most complex and it is used to perform statistical analysis on a desired
domain. The class’ methods compute average, standard deviation, minima, maxima and
percentiles for both areal (i.e. for any surface) and volume analysis. All the heaviest
computations are performed through a custom C++ library, boosting up the computa-
tional speed and allowing this class to be efficiently used in a Paraview filter in order to
keep the Pipeline responsive.
Two main procedures for evaluating statistics are offered by the class: the FastStatistics
and the FlexibleStatistics methods. The former allows to work in all the regions

defined by the masks, so that the cells of interest are accessed through an array slicing
and all the preliminary informations, like cells surface and volume, are loaded from bi-
nary files; at this level most of the computational operation are made at python level
by exploiting efficient array slicing, so that ctypes is needed only for the percentiles
evaluation. The latter indeed offers the possibility to extract statistics on every kind of
domain, allowing for example to cut or threshold the domain in any desired form, and

16

the information is extracted on the fly; since in this case a foor loop over all the cells is
required (since they are not known a priori), all the routines are written in C++ and
linked with ctypes in order to boost the speed of the process. Anyway, the execution is
still slower with respect to the FastStatistics methods.
In the following the usage of the class is explained, starting again from a simple exam-
ple:

Initialize classes

OGS = OGSvtk(’/MESHMASK ’)

OGSStatistics = OGSStatistics(’/path_to_C_library ’)

Define Grid and load data

OGS.SetResolution(’mid’)

rg = OGS.CreateRectilinearGrid ()

OGS.AddMask(rg)

data = OGS.LoadNetCDF.GetVariable(’data’,’N3n’)

rg.GetCellData ().AddArray(OGS.createVTKscaf(’N3n’,data))

Compute Statistics

perc = [0.05, 0.50, 0.95] # Percentiles

depths = [200 ,1000 ,2000] # depths for volume stat

Areal = OGSStatistics.FastArealStatistics(OGS ,rg,sub_list ,

’coast’,var ,perc) # Areal Stat

Volume = OGSStatistics.FastVolumeStatistics(OGS ,rg ,sub_list ,

’coast’,depths ,var ,perc) # Volume Stat

As seen from the example, the OGSStatistics class requires a vtkRectilinearGrid with
variables loaded in it, and thus the use of OGSvtk is necessary.
To initialize this class, the full path to the folder containing the C++ library must be
given as argument; then a vtkRectilinearGrid is created with the OGSvtk ’s methods and
loaded with variables.
At this point the methods offered by OGSStatistics class can be used. In the example
only the fast routines are showed, since the syntax of the flexible ones is very similar.
Two different methods are used for evaluating Areal and Volume statistics, and both
take as arguments an OGSvtk object (OGS), a vtkRectilinearGrid (rg), a list with the
sub-basins names (sub list), a string for the coast levels (’coast’), the variable on which
to perform the statistic (var) and an array with the percentiles to be evaluated (perc).
The volume case requires an extra argument which corresponds to the depth levels to
be integrated (depths). The output comes in a numpy 2D array with the depth levels
on rows and the relative statistic values on columns, following this order: average, std,
minima, percentiles and maxima. The output can be arranged into a vtkTable in order
to be viewed inside Paraview’s GUI, where can be plotted with a provided macro for
obtaining plots as the ones showed in Fig.3.4.

17

Figure 3.4: Some examples of what can be obtained from the OGSStatistic class
through two screenshot of the Paraview’s GUI. On the left, a depth analysis on two dif-
ferent sub-basins that shows relevant statistics (solid lines) and climatology (red points).
On the right two examples of time-dependent statistics analysis are shown: an Hovmoller
plot and the behaviour of some statistics quantities at fixed depth over time.

It is of interest to benchmark the performances also in this case. At first, the boost
introduced by the use of ctypes for linking the python code to the C++ libraries is
investigated and showed in Fig.3.5: here the three routines that have a ctypes im-
plementation have been tested against their python corrispective and the histogram
shows the ration between C++ and python times. The aforementioned routines are
FastStatistics, FlexibleStatistics and Statistic_to_vtkUnstructuredGrid (Prop. in
FIg.3.5, for ”Propagation”). The first two of them were already mentioned, while the
last one is an auxiliary function which allows to propagate the statistics results on the
3D view inside Paraview.

Figure 3.5: Histograms of the ratio between C++ time and python time for three dif-
ferent functions and resolutions.

18

As seen from Fig.3.5, the ctypes approach allows to obtain a relatively small speed-
up (10%÷ 30%) in the case of Fast methods, but the speed-up raises up to 90% for the
other cases, so that an implementation of those without ctypes would be simply too slow
for being used dynamically in a Paraview’s pipeline.
Another important analysis is the total time required for the statistical routines to
give back the results. In Fig.3.6 the execution time for the Fast and Flexible statistics is
evaluated for all the resolutions by using the whole domain (which is the worst scenario)
as test case.

19

Areal Volume

Figure 3.6: Histograms of the execution times for Fast and Flexible statistics at all the
available resolutions, for both areal and volume analyses, using the whole domain as test
case. As expected, Fast statistics is faster.

The plot shows, how expected, that Fast routines are much faster then Flexible ones,
but it must be kept in mind that Flexible statistic has been developed for analyze small
(and arbitrary) portions of the sea, and when the domain is on the order of a sub-basin
size, Flexible statistics is also very fast.

3.3 From Python to Paraview Plugins

Now that the basic tool for filter developing has been explained in detail, the approach
to plugins development is explained in this section. Since the objective is to obtain
Paraview plugins, we must follow a specific way of writing the python scripts for the
filter, i.e. the scripts must be splitted among three sections: the first one hosts some
global variables that are used for defining the filter’s name and output type, and a
dictionary with all the variables that must appear in the filter’s graphic interface, then
the remaining sections are represented by two functions called RequestInformation and
RequestData.
Essentially, RequestInformation is used for preparing the pipeline in the case that some
information is required before the main code is executed (we have used it only for dealing
with timesteps and sources), while RequestData hosts the main body of the code.
Let’s try to go through this structure using a very simple example, i.e a filter that allows
to load two biogeochemical variables (nitrate and phosphate) from the dataset:

Listing 1: custom filter script example

Name = ’OGSImportNetCDF ’

Label = ’OGS Import NetCDF ’

Help = ’Imports NetCDF data from OGS’

20

NumberOfInputs = 0 # programable source

InputDataType = ’’

OutputDataType = ’vtkRectilinearGrid ’

ExtraXml = ’’

Properties = dict(

File_date = ’20150605 -12:00:00 ’,

Mesh_resolution = 1, # To work with enum 1: high 2:

mid 3: low

Path_to_mesh = ’/MESHMASK/’,

Path_to_python = ’path_to_bit.sea/’,

Path_to_ave_freq = ’/INPUT/’,

Biogeochemical variables

V_N1p = True ,

V_N3n = True ,

def RequestInformation ():

executive = self.GetExecutive ()

outInfo = executive.GetOutputInformation (0)

dataType = 10 # VTK_FLOAT

numberOfComponents = 1

vtk.vtkDataObject.SetPointDataActiveScalarInfo(outInfo ,

dataType , numberOfComponents)

def RequestData ():

import sys , os

import numpy as np

from OGSParaviewSuite import OGSvtk

Initialize class

OGS = OGSvtk(Path_to_mesh);

Mesh resolution

if Mesh_resolution == 1: OGS.SetResolution(’high’);

if Mesh_resolution == 2: OGS.SetResolution(’mid’);

if Mesh_resolution == 3: OGS.SetResolution(’low’);

Create a VTK rectilinear grid

rg = OGS.CreateRectilinearGrid ();

Initialize the sub masks

OGS.AddMask(rg ,AddSubMask=True ,AddCoastMask=True ,AddDepth=

True);

Append the date to the dataset

rg.GetFieldData ().AddArray(OGS.createVTKstrf("Date","%s"

% File_date));

21

Process biogeochemical variables

varn_list = ["N1p", "N3n"]

varb_list = [V_N1p , V_N3n]

Postprocess variables in batch mode

for ii in range(0,len(varn_list)):

if varb_list[ii]:

fname = "%s/ave.%s.%s.nc" % (Path_to_ave_freq ,

File_date ,varn_list[ii])

Load from NetCDF

data = OGS.LoadNetCDF.GetVariable(fname ,varn_list[

ii])

Write data

rg.GetCellData ().AddArray(OGS.createVTKscaf(

varn_list[ii],data))

Output the file to ParaView

self.GetOutput ().ShallowCopy(rg);

The global variables at the beginning of the filters define some metadata informations,
like the filter’s name that will appear in Paraview’s GUI. The variables related to the
Input and Output are very important since define how to use the filter in a pipeline: it
can be ”attached” only to a filter that produces an output correspondent to this filter
Input. Since in this case the filter is a source, Input information is blank.
The variables defined into the Properties dictionary will appear in the filter’s GUI and
allow the user to dynamically interact with the filter. In this case the RequestInformation

is necessary as the filter is a source and must initialize a pipeline. It hosts some basic
information related to the data handled by the filter.
The main script is defined inside the RequestData and it allows to select the variables
that must be loaded in the grid (in this example case just two for simplicity).
Once the python script is complete, it must be converted to a proper .xml file. This can
be done by a script provided by Paraview developers, that do almost all the job for us,
but it is not perfect. The command line is:

python python_filter_generator.py "input_file".py "output_name".xml

At this point the .xml file can be loaded in Paraview and tested.
As aforementioned, the automatic conversion provided by the generator script is not
perfect as the variables order defined in the Properties dictionary inside the python
scripts will be not be respcted. Indeed in the .xml file these varaibles will appear in
alphabetical order and in order to prevent this, some PropertyGroup sections can be
manually added to the xml files. These sections allow to group some varialbes togheter,
give a name to the group and control the order of appearance in the Paraview’s GUI.
The correct way to use PropertyGroup is shown in the code below:

How variables appear in the xml code

<IntVectorProperty

name="V_N1p"

22

label="N1p"

initial_string="V_N1p"

command="SetParameter"

animateable="1"

default_values="0"

number_of_elements="1">

<BooleanDomain name="bool" />

<Documentation ></Documentation >

</IntVectorProperty >

<IntVectorProperty

name="V_N3n"

label="N3n"

initial_string="V_N3n"

command="SetParameter"

animateable="1"

default_values="1"

number_of_elements="1">

<BooleanDomain name="bool" />

<Documentation ></Documentation >

</IntVectorProperty >

To be added manually:

<PropertyGroup

panel_visibility="default"

label="Biogeochemical variables">

<Property name="V_N1p" />

<Property name="V_N3n" />

<Documentation >

Activate/Deactivate variables coming

from AVE_FREQ files

</Documentation >

</PropertyGroup >

The PropertyGroup section allows also to add labels to the included variables, and add
a short documentation to them.
Note: if a filter needs to deal with time steps, also the following piece of code must be
added manually to the .xml file:

<DoubleVectorProperty information_only="1"

name="TimestepValues"

repeatable="1">

<TimeStepsInformationHelper />

<Documentation >Available timestep values.</Documentation >

</DoubleVectorProperty >

23

It is too dispersive to explain in every detail how filter programming works in all the
different cases and, moreover, that would go beyond the scope of this manuscript. An
interested reader can investigate the source scripts contained in the PW filters folder
in the repository for further informations and examples.

3.4 Paraview Custom Filters in Action

Now that all the steps beyond the development of a custom filter have been highlighted,
we are able to present the final product of the work, embodied in a complete suite for
data visualization and analysis for the OGS MEDBFM model’s datasets.
In this section some pipeline examples will be showed, starting from the simplest case
aimed to visualize any desired region of the sea, and then adding some filters for statis-
tical analysis.
The typical pipeline to visualize data is presented in Fig.3.7, as well as its appearance
in the Paraview’s GUI.

Figure 3.7: Screenshot from Paraview application. On upper-left corner it is shown the
pipeline browser, where the three linked filters appear. On the bottom-left corner the
OGS Select Basin custom GUI shows that only the Alboran sub-basin has been choosen
for the visualization. The right side of the image hosts three render views, one for every
step of the pipeline.

Every step of the pipeline allows to visualize a different level of the grid, so that
the first component (OGS Import NetCDF) produces the raw grid populated with the
desired variables, then the second component (OGS Select Coast) cuts away land sections
and allows to select coast level. The last component (OGS Select Basin) is used to select
the desired sub-basins for visualization.
One of the most interesting aspects of the Paraview’s pipeline is its dynamic behaviour, so

24

for example, if some changes are performed at the top level filter (OGS Import NetCDf in
this case), the effects of such modifications will be propagated downstream. A very useful
application of this feature is the possibility to obtain movies representing the evolution
of the system over the timesteps by just using the ”OGS Import NetCDF (time series)”
filter and press the ”play” button: all the timesteps will be loaded sequentially and the
pipeline will be applied to each of them.
Let’s now apply some statistics by starting, as an example, from the depth analysis
on the Alboran Sea through the ”OGS Stat Table” filter, as shown in Fig.3.8. All the
results obtained from a statistical filter come in a vtkTable (which is analogous to an
Excel sheet) that can be plotted using provided macros.

Figure 3.8: Snapshot of the Paraview’s GUI. In this case the ”OGS Stat Table filter” is
used for obtaining the statistics of the Alboran sub-basin. The obtained values are then
plotted using the provided macro PythonStatPlot. Note that the ”OGS Stat Table”
filter is applied directly to the ”OGS Import NetCDF” filter.

This approach is based on the Fast statistic routines of the OGSParaviewSuite mod-
ule, so that is the fastest way to perform statistical analyses, but it only allows to
examine fixed regions of the domain. Indeed, as can be seen from Fig.3.8, this filter di-
rectly applies on the ”OGS Import NeCDF” filter, since it only needs to take the desired
variables from it, then the domain selection for the analysis is made through the filter’s
GUI.
In order to perform analysis on any domain’s region, the right instrument to use is the
”OGS Custom Stat Table” filter, as shown in the example reported in Fig.3.9.

25

Figure 3.9: Snapshot of the Paraview’s GUI. Now ”OGS Custom Stat Table filter”
is directly applied to the result of a clip filter acting on the Alboran sub-basin. The
statistic is computed on the arbitrary region extracted by the clip filter and plotted with
the ”PythonStatPlot” macro.

In this case, a section of the Alboran sub-basin is selected through a clip filter and
then the statistic is evaluated on this region using the ”OGS Custom Stat Table” filter.
The interaction between Paraview’s existing filters with the new custom filters allows a
completely new class of investigations, since for the first time a statistical analysis can
be focused on very small regions of the sea, or on specific sections, in a very easy and
intuitive way.
Not only vertical profiles analysis, but also time investigation is possible. The sources
which deal with time analysis are ”OGS Hovmoller Plot” and ”OGS Time Statistic”.
The former provides the information required for producing an Hovmoller plot, which
contains a depth analysis for every time steps of a specified statistical quantity (average
for example). The latter instead is used to perform a 2D plot, with time on x axis, of the
desired statistics at a fixed depth. Different values of time aggregation can be selected
among, ranging from monthly to yearly, and allowing to obtain useful averages of the
desired quantities also over long periods.
Two examples of a possible application of these sources are shown in Fig.3.10.

26

Figure 3.10: Left: ”OGS Hovmoller Plot” filter’s output, showing the depth distribution
of the N3n variable average from a two years simulation. In order to obtain the plot,
the macros HovmollerPLot must be used. Right: plot of the ”OGS Time Statistic”
filter’s output.The plot is obtained using the Paraview’s Plot Data filter on the output
of ”OGS Time Statistic” and it shows Minima, Maxima and Averages of variable N3n
on the Alboran sub-basin over a 100 years simulation.

These kinds of applications require to manipulate a large number of files, since long
climatologic simulations can easily compute more than 1000 timesteps, and thus the
same amount of files is saved for every variable. The time required to process such big
number of files can become large, and this ends up to be a problem for pratical usage of
these filters, as shown in Fig.3.11.

27

Figure 3.11: Execution time of ”OGS Time Statistic” filter against number of files on all
domain (dashed) and smallest sub-basin (solid), for each resolution. While for the low
resolution case the execution time is limited until the database becomes very large (on
the order of 1000 files) for the medium and high resolution it quickly raises, reducing
the actual praticity of this kind of applications.

In order to speed up these applications, parallelization is required. In Fig.3.12 the
speed up obtained with a parallel version of the ”OGS Time Statistic” filter is shown.
The parallel implementation has been done through the exploitation of mpi4py python
module, using a classic data distribution approach.

28

Figure 3.12: Speed up obtained with a parallel version of the ”OGS Time Statistic”
filter.

As shown by the plot above, the speed up in this configuration is evident and now
the filter allows to obtain a result over an analysis on more than 1000 files in roughly
15s, running on 12 processors.
Unfortunately, in order to exploit a filter that offers a parallelization, Paraview must run
in client-server mode, i.e. a Paraview server must be launched in parallel on a server
machine and then the user has to connect to it through a local client (see Sec.2.2). This
configuration requires the user to have the same version of Paraview as the one present
on the server installed on its local machine.

29

4 Documentation

This section will present a detailed documentation of both the OGSParaviewSuite and
custom filters. The OGSParaviewSuite classes and methods documentation is hosted
in subsection 4.1, where some examples are also provided in order to show their workin
principles. A detailed list of all custom filters features and properties is presented in
subsection 4.2.

4.1 OGSParaviewSuite

The OGSParaviewSuite python module groups the classes used for low level vtk, NetCDF
and Statistics manipulation of OGS native datasets. The main purpose is to connect
the existing OGS structure with complex vtk manipulation through classes methods, so
that the complex vtk manipulations are hidden to the user.
Three classes are defined inside the module:

• OGSvtk

• LoadNetCDF

• OGSStatistic

4.1.1 OGSvtk

from OGSParaviewSuite import OGSvtk

This class provides the basic tools for the conversion to raw NetCDF files to a vtkRec-
tilinearGrid that can be visualized into Paraview.
In the following boxes the class methods are explained, and a general example is provided
at the end.
Public Member Functions

__init__(self,maskpath)

Parameters:

maskpath: string.
Full path to meshmask folder.

Description: initialize OGSvtk class. Maskpath folder must contain three subfolders called
low, mid and high in which the files required by the class are stored (that can be generated
using the scripts mask extractor.py and LonLattoMeters.py).

30

SetResolution(self,resolution)

Parameters:

resolution: string.
Value of the resolution to be set. Accepted values are ’low’,’mid’
and ’high’

Description: Used for setting the resolution of the vtk structure accordingly with the OGS
input data that will be used. Once the SetResolution method is used, the following binaries
files are loaded from the respective resolution folder, and stored in an internal class variable:
Lon2Meters.npy, Lat2Meters.npy, nav lev.npy, dims.npy. All this files are generated
with the scripts mask extractor.py and LonLattoMeters.py. Also an internal LoadNetCDF
class is initialized.
This method should be used just after the class initialization since it is required by all the
following methods.

CreateRectilinearGrid(self)

Returns:

out: vtkRectilinearGrid.

Description: returns a vtkRectilinearGrid object with the proper dimensions, accordingly
with the resolution set by the SetResolution method. The output contains also two string
arrays containing the full path to meshmask folder and the resolution.

AddMask(self,input,AddSubMask=True,AddCoastMask=True,AddDepth=True)

Parameters:

input: vtkRectilinearGrid.

AddSubMask: boolean.
If True, adds the sub-basins mask to the input vtkRectilinearGrid

AddCoastMask: boolean.
If True, adds the coasts mask to the input vtkRectilinearGrid

AddDepth: boolean.
If True, adds the depth mask the to input vtkRectilienarGrid

Description: adds different masks to the rectilinear grid as CellData variables. The masks variables
will appear in the Paraview GUI with all the other biogeochemical variables. Masks are used by
normal and custom threshold filters in order to dynamically select different regions of the sea for both
visualization and statistics evaluation.

31

createVTKscaf(self,varname,data,type = vtk.VTKFLOAT)

Parameters:

varname: string.
Name of the resulting vtkFloatArray.

data: np.array.
Three dimensional numpy array containing the data related to a
native varaible. The correct format is just the one obtained after
the extraction using one of the methods of the LoadNetCDF class.

type: vtkDataFormat.
Specifies the data format, default is VTKFLOAT.

Returns:

out: vtkFloatArray.
A vtkFloatArray conversion of the input data in np.array format.

Description: creates a vtk scalar field array from variable data with a specific variable
name.

createVTKvecf3(self,varname,xdata,ydata,zdata,type=vtk.VTK_FLOAT)

Parameters:

varname: string.
VTK variable name

xdata, ydata, zdata: np.array.
Numpy array containing variable data of 1st, 2nd and 3rd
dimensions.

type: vtkDataFormat.
Specifies the data format, default is VTKFLOAT.

Returns:

out: vtkFloatArray.
A 3D vtkFloatArray conversion of the input data in np.array
format.

Description: Creates a VTK 3D vector field array from variable data with a specific
variable name.

32

createVTKstrf(self,varname,data)

Parameters:

varname: string.
Name of the output vtkStringArray.

data: string.
String variable that will be added into the first index of the output
vtkStringArray.

Returns:

out: vtkStringArray.
A vtkStringArray containing the string variable data. The output
array name will be set with string variable varname

Description: Creates a VTK string field array of dimension 1 from a string variable data,
with a specific variable name. This is usually used in order to add some metadata to the
vtkRectilinearGrid.

LoadVolume(self)

Returns:

out: np.ndarray.
A 3D numpy array containing the information of each cells’
volume.

Description: loads from the respective resolution folder the binary volume.npy into a
np.ndarray.

LoadArea(self)

Returns:

out: np.ndarray.
A 3D numpy array containing the information of each cells’ area.

Description: loads from the respective resolution folder the binary area.npy into a
np.ndarray.

33

WriteGridToVtk(self,inp,savename)

Parameters:

inp: vtkRectilinearGrid or vtkUnstructuredGrid.

savename: string.
Full path of vtk file to save on disk.

Description: saves on disk at a given path savename the input vtk Grid. Useful for batch
testing or for export an analysis to a computer which does not have access to OGS databases.

Example

Load module

from OGSParaviewSuite import *

Initialize class

OGS = OGSvtk(’/home/user/MESHMASK ’)

OGS.SetResolution(’mid’)

Create vtkRectilinearGrid

rg = OGS.CreateRectilinearGrid ()

OGS.AddMask(rg)

Load data from NetCDF

data = OGS.LoadNetCDF.GetVariable(’/home/user/database/ave

.19990116 -12:00:00. N3n.nc’,’N3n’)

Add data to vtkRectilinearGrid

rg.GetCellData ().AddArray(OGS.createVTKscaf("N3n",data))

Write vtkRectilineargrid on disk

OGS.WriteGridToVtk(rg ,"test.tk")

4.1.2 LoadNetCDF

from OGSParaviewSuite import LoadNetCDF

This class provides the basic functions required to open and store the OGS biogeochemical
variables produced by the model as NetCDF files into numpy arrays.

Public Member Functions

34

__init__(self, jpk, jpj, jpi)

Parameters:

jpk, jpj, jpi: integer.
Respectively z, y and x dimensions of the NetCDF variables.

Description: initializes LoadNetCDF class. The proper value of jpk, jpj, jpi can be
obtained from OGSvtk.SetResolution method. Note that the usage of this class as
stand-alone can be usually avoided since it is included into the OGSvtk class.

GetVariable(self,filename,varname,maxval=1e20)

Parameters:

filename: string.
Full path to the NetCDF file

varname: string.
Name of the variable to extract

maxval: float.
value from which start to convert to 0, default = 1e20

Returns:

out: np.ndarray.
A 3D numpy array containing the extracted variable.

Description: extracts a selected variable from a NetCDF4 file and stores it into a 3D
numpy array.

35

GetAllVariablesAtDate(self,filename,date)

Parameters:

filename: string.
Full path to the NetCDF file.

date: string.
Date corresponding to extracted variables, must be in the format
’yyyymmdd-hh:mm:ss’.

Returns:

out: list.
List of touples, each list element is in the form [varname,
np.ndarray].

Description: extracts all variables at a selected date and stores the result into a list of
touples. Each element is composed by the variable name and the corresponding 3D
np.ndarray.

GetListVariablesAtDate(self,pathtodata,date,varlist)

Parameters:

filename: string.
Full path to the NetCDF file.

date: string.
Date corresponding to extracte variables, must be in the format
’yyyymmdd-hh:mm:ss’.

varlist: list of strings.
List containing the names of the variables to be extracted.

Returns:

out: list.
List of touples, each list element is in the form [varname,
np.ndarray].

Description: Extracts variables in varlist at a selected date and stores the result into a
list of touples. Each element is composed by the variable name and the corresponding 3D
np.ndarray.

36

faces2cellcenter(self,U,V,W)

Parameters:

U: np.ndarray.
1st component of the Velocity.

V: np.ndarray.
2nd component of the Velocity.

U: np.ndarray.
3rd component of the Velocity.

Returns:

out1, out2, out3 : np.ndarrays.
Three components of the converted face-centered velocity.

Description: Converts a face centered velocity into a cell centered field. Useful for further
use on VTK grids.

Example

Load module

from OGSParaviewSuite import *

Initialize class

OGS = OGSvtk(’/home/user/MESHMASK ’)

OGS.SetResolution(’mid’)

LoadNetCDF = LoadNetCDF(OGS.jpk ,OGS ,jpj ,OGS.jpi)

Load variables

SingleVarData = LoadNetCDF.GetVariable(’/home/user/data/ave

.19990116 -12:00:00. N3n.nc’,’N3n’)

MultiVarData = LoadNetCDF.GetVariablesAtDate(’/home/user/data/’,’

19990116 -12:00:00 ’)

4.1.3 OGSStatistics

from OGSParaviewSuite import OGSStatistics

This class relies on the use of precompiled C++ shared libraries for the most intensive routines.
These libraries are linked to the python module with ctypes.
The class provides efficient algorithms for evaluating statistical quantities of interest, for
example averages, percentiles and standard deviations, over areal and volume domain analyses.
As well as other classes implemented in OGSParaviewSuite module, OGSStatistics is built with

37

the aim to produce fast and efficient Paraview pipelines through the implementation of custom
filters that relies on the functionalities provided by the module.
The results of the statistics can be visualized using custom OGS Paraview filters, in the 3D
space or in a spread sheet table that can be plotted using provided macros.

Public Member Functions

__init__(self,librarypath)

Parameters:

librarypath: string.
Full path to the shared c++ shared library.

Description: Initialize class by giving full path to the c++ shared libraries. Once
initialized, all the c++ functions required by che class are instiantiated with the ctypes
syntax.

CoreStatistics(self,Conc, Weight,perc)

Parameters:

Conc: np.array.
Numpy array containing the variable values on which perform the
statistics analysis.

Weight: np.array.
Weight of the cell, i.e. the area or the volume of the relative cell.

perc: np.array.
Values of the percentiles on which perform the statistic. Its length
must not be greater than 5.

Returns:

out: np.array.
Numpy array with lenght = 9 which stores for every element a
different statistics, in the following order: average, std, minima,
perc0, perc1, perc2, perc3, perc4, maxima. So that for example the
average is accessible with out[0].

Description: Core algorithm for statistics. It will be used by the two main statistics
methods, FastArealStatistics and FastVolumeStatistics. It uses a C++ functions for
evaluating percentiles, with a gain in performances up to 30% (see Subection 3.2) with
respect to the equivalent function written in python. Note that this method should not be
used directly by the user, since it is embodied in the aforementioned functions.

38

FastArealStatistic(self,OGSvtk,rg,sublist,coast,var,

perc = [0.05,0.25,0.5,0.75,0.95],ReturnCutMask = False)

Parameters:

OGSvtk: OGSvtk.
A precedently initialized OGSvtk class variable. Note that the
resolution must have been set before passing it as argument.

rg: vtkRectilinearGrid.
The vtkRectilinearGrid from which variables are extracted.

sublist: list of strings.
List containing the names of the sub-basins where the statistic
analysis is executed. Note that the statistics will be evaluated on
the aggregation of the sub-basins listed in sublist, so that if for
example sublist = [’alb’,’swm’] the statistic will be evaluated
on the region of the sea ’alb’+’swm’. Admitted values for
sub-basins are: alb, swm1, swm2, nwm, tyr1, tyr2, adr1, adr2, aeg,
ion1, ion2, ion3, lev1, lev2, lev3, lev4.

coastlist: string.
Name of the coast level where statistic analysis is performed.
Admitted values are ’coast’, ’open sea’ and ’everywhere’.

var: string.
Name of the variable where statistic analysis is executed.

perc: np.array or list.
Values of the percentiles to evaluate. Default are
[0.05,0.25,0.5,0.75,0.95].

ReturnCutMask: boolean.
If True returns the cut mask (i.e. the cells on which the analysis
have been performed) as a np.ndarray. Default is False.

Returns:

out: np.ndarrays.
Numpy ndarray with the shape (len(nav lev),9) which stores
for every column a different statistics evaluated at every depth
level, in the following order: average, std, minima, perc0, perc1,
perc2, perc3, perc4, maxima. So that for example the average is
accessible with out[:,0].

Description: main method for evaluating areal statistics of an input variable at selected a
sub-basins and bathymetric region (coast level).

39

FastVolumeStatistic(self,OGSvtk,rg,sublist,coast,depth_list,

var,perc = [0.05,0.25,0.5,0.75,0.95],ReturnCutMask = False)

Parameters:

OGSvtk: OGSvtk.
A precedently initialized OGSvtk class variable. Note that the
resolution must have been set before passing it as argument.

rg: vtkRectilinearGrid.
The vtkRectilinearGrid from which variables are extracted.

sublist: list of strings.
List containing the names of the sub-basins where the statistic
analysis is performed. Note that the statistics will be evaluated on
the aggregation of the sub-basins listed in sublist, so that if for
example sublist = [’alb’,’swm’] the statistic will be evaluated
on the region of the sea ’alb’+’swm’. Admitted values for
sub-basins are: alb, swm1, swm2, nwm, tyr1, tyr2, adr1, adr2, aeg,
ion1, ion2, ion3, lev1, lev2, lev3, lev4.

coastlist: string.
Name of the coast level where statistic analysis is performed.
Admitted values are ’coast’, ’open sea’ and ’everywhere’.

depth list: np.array or list.
Depth levels on which the volume analysis is executed.

var: string.
Name of the variable where the statistic analysis is performed.

perc: np.array or list.
Values of the percentiles to evaluate. Default are
[0.05,0.25,0.5,0.75,0.95].

ReturnCutMask: boolean.
If True returns the cut mask (i.e. the cells on which the analysis
have been performed) as a np.ndarray. Default is False.

Returns:

out: np.ndarrays.
Numpy ndarray with the shape (len(depth list+1),9) which
stores for every column a different statistics evaluated at every
depth level, in the following order: average, std, minima, perc0,
perc1, perc2, perc3, perc4, maxima. So that for example the
average is accessible with out[:,0].

Description: main method for evaluating volume statistics of an input variable at a
selected sub-basins, bathymetric region and depths.

40

FlexibleArealStatistic(self,rg,nav_lev,var,

percs = [0.05,0.25,0.5,0.75,0.95])

Parameters:

rg: vtkUnstructuredGrid.
The vtkUnstructuredGrid from which variables are extracted.

var: string.
Name of the variable on which the statistic analysis is performed.

nav lev: np.array.
Numpy array containing all depth values on which the variables
are defined. Can be obtained from the variable OGSvtk.nav lev

after having set a resolution of a OGSvtk class.

perc: np.array or list.
Values of the percentiles to evaluate. Default are
[0.05,0.25,0.5,0.75,0.95].

Returns:

out: np.ndarrays.
Numpy ndarray with the shape (len(nav lev),9) which stores
for every column a different statistics eveluated at every depth
level, in the following order: average, std, minima, perc0, perc1,
perc2, perc3, perc4, maxima. So that for example the average is
accessible with out[:,0].

Description: method for evaluating areal statistic of any vtkUnstructuredGrid. It is slower
with respect to FastArealStatistics since the computation of the areal surface of every
cell is performed on the fly, but allows to perform statistic analyses on every kind of domain,
so that it can be applied on the result of a clipping filter or a threshold filter, allowing to
investigate domains of custom shape, that are not limited to basins or coasts fixed selections.
Note that this routine heavily relies on C++ shared libraries.

41

FlexibleVolumeStatistic(self,rg,nav_lev,var,depth_list,

percs = [0.05,0.25,0.5,0.75,0.95])

Parameters:

rg: vtkUnstructuredGrid.
The vtkUnstructuredGrid from which variables are extracted.

var: string.
Name of the variable on which the statistic analysis is performed.

nav lev: np.array.
Numpy array containing all depth values on which the variables
are defined. Can be obtained from the variable OGSvtk.nav lev

after having set a resolution of a OGSvtk class.

depth list: np.array or list.
Depth levels on which the volume analysis is performed.

perc: np.array or list.
Values of the percentiles to evaluate. Default are
[0.05,0.25,0.5,0.75,0.95].

Returns:

out: np.ndarrays.
Numpy ndarray with the shape (len(nav lev),9) which stores
for every column a different statistics evaluated at every depth
level, in the following order: average, std, minima, perc0, perc1,
perc2, perc3, perc4, maxima. So that for example the average is
accessible with out[:,0].

Description: method for evaluating volume statistic of any vtkUnstructuredGrid. It is
slower with respect to FastVolumeStatistics since the computation of cells volume is
performed on the fly, but allows to perform statistic analyses on every kind of domain, so
that it can be applied on the result of a clipping filter or a threshold filter, allowing to
investigate domains of custom shape, that are not limited to basins or coasts fixed selections.
Note that this routine heavily relies on c++ shared libraries.

42

Statistic_to_vtkUnstructuredGrid(self,grid,varname,input_array)

Parameters:

grd: vtkUnstructuredGrid.
The vtkUnstructuredGrid on which statistics variable will be
added.

varname: string.
Name of the new variable added on grid

input array: np.array.
Array containing the statistics on every depth level. Its values will
be propagated on relative surfaces of input grid in order to being
able to visualize it in the 3D render view.

Description: method used to propagate an array with len(nav lev) elements on a
vtkUnstructuredGrid, in order to be able to visualize it in the 3D render view, as well as all
the other variables. This method can be used for an intuitive visualizations of the results
obtained from statistic analyses routines.

Example

Load module

from OGSParaviewSuite import *

Initialize class

OGS = OGSvtk(’/home/user/MESHMASK ’)

OGS.SetResolution(’mid’)

Create vtkRectilinearGrid

rg = OGS.CreateRectilinearGrid ()

OGS.AddMask(rg)

Load data from NetCDF

data = OGS.LoadNetCDF.GetVariable(’/home/user/database/ave

.19990116 -12:00:00. N3n.nc’,’N3n’)

Add data to vtkRectilinearGrid

rg.GetCellData ().AddArray(OGS.createVTKscaf("N3n",data))

Start statistic evaluation

OGSStatistics = OGSStatistics(’path/to/c++ lib’)

Areal = OGSStatistics.FastArealStatistic(OGS ,rf ,[’alb’],’

everywhere ’,"N3n")

Areal is now a 2D array with depths on rows and

a different statistic value on every column

43

4.2 OGS Custom Filters

In this section the novel custom filters developed for OGS data analysis and visualizations are
explained in details. All the filters have been developed using the OGSParaviewSuite python
module and are implemented into Paraview as plugins, giving the possibility to add an intuitive
custom interface to any of them.
There are two main kinds of custom filters: sources and filters. The main difference between a
Paraview Source and a Paraview Filter is that a source does not need any input. Indeed,
sources usually represent the starting point of a pipeline and does not depend on any other
filter or source.
On the other hand, filters act on an input and produce an output, so that they are
input-dependent and can be applied only if the previous pipeline component’s output is of the
correct type for the filter’s input.
Table 1 shows all the developed custom plugins, grouped following these two main categories.

Sources Filters

OGS Import NetCDF OGS Select Coast

OGS Import NetCDF (time series) OGS Select Basin

OGS Hovmoller OGS Stat Table

OGS Time Statistics OGS Custom Stat Table

OGS Parallel Time Statistics OGS Okubo-Weiss Criterion

OGS Select Okubo-Weiss

OGS Domain Analysis

Table 1: List of all custom sources and filters

In the following a specific paragraph hosts a general description the relative source or filter, as
well as a detailed table explaining the filter’s inputs, outputs and properties.

44

4.2.1 Sources

OGS Import NetCDF
The source loads and visualize inside the Paraview 3D render view a desired list of variables
from a source path defined by the AVE FREQ path property. The path must contains the
original NetCDF files. In order to properly work, the MESHMASK folder must contains all the
required files specified in Sec.2. The source also adds a mask for sub-basins and different coast
levels required by other custom filters.

Property Description Default Value(s) Restrictions

Output

This property
defines the output

of the source.
vtkRectilinearGrid

The output can
only be a

vtkRectilinearGrid

Date of the file

Insert the date of
the NetCDF4 file to be loaded.

Format is yyyymmdd-hh:mm:ss.
19990116-12:00:00

Inserted date must corresponds
to the correct format and

without blank spaces at the end.

Mesh resolution

Select the correct
mesh resolution among

Low, Mid or High.
High

Correct resolution with respect
to selected file must be chosen,

otherwise prints error.

AVE FREQ path
Path to data

folder
Must be the exact

path to data.

AVE PHYS path
Path to physical

data folder
Full path to the

location of AVE PHYS data

FORCINGS path
Path to forcings

data folder
Full path to the

location of FORCINGS data

Time for the forcings
Forcings files are expected

to have different dates.

MESHMASK path Path to MESHMASK folder

MESHMASK folder must contains three
sub-directories: low, mid and high
with inside all the required files.

See Setup section.

Path to python classes Path to bit.sea folder

Biogeochemical variables
Select desired

variables from list.
N3n

OGS Import NetCDF (time series)
The source is analogous to OGS Import NetCDF, with the exception that the whole time
series is loaded, therefore the property Date of the file is absent in this case.

45

OGS Hovmoller
The source produces an areal statistics of all timesteps and all depths between Start date and
End Date properties. The output comes in a vtkTable and can be plotted with the provided
macro HovmollerPlot in order to obtain the Hovmoller plot inside a Paraview’s python view.
The statistics type can be chosen among average, standard deviation, minima, percentiles and
maxima, for every combination of coast levels and sub-basins.

Property Description Default Value(s) Restrictions

Output
This property defines

the output of the source.
vtkTable

Mesh resolution

Select the correct
mesh resolution among

Low, Mid or High.
High

Correct resolution with respect
to selected data must be chosen,

otherwise prints error.

Path to ave freq
Path to data

folder
Must be the exact

path to data.

Path to mesh Path to MESHMASK folder

MESHMASK folder must contains three
sub-directories: low, mid and high
with inside all the required files.

See Setup section.

Path to python Path to bit.sea folder

Path to library
Path to precompiled
c++ shared library.

The shared library must have been
compiled before paraview execution.

Start date
Starting date
for analysis

19000101
If start date des not belong
to dataset, the nearest date

will be taken.

End date
Ending date
for analysis

22000101
If end date does not belong
to dataset, the nearest date

will be taken.

Coasts selection Select coast level coast and open sea

Any selection can be made.
If both coast and open sea

are selected, all the
domain will be evaluated.

Basins selection Select sub-basins none

Any selection can be made.
If more than one sub-basins

is selected the aggregated domain
will be evaluated.

Variable Select variable for analysis N3n

Statistic type Select statistic for analysis Average

Perc to visualize
Select desired statistics
percentiles for analysis

0.05

Relevant only if Percentiles
has been chosen in

Statistic type. Admitted values
are: 0.05, 0.25, 0.5, 0.75 and 0.95

46

OGS Time Statistic
The source produce an areal statistics of all timesteps, at a selected depth, between Start date
and End Date properties. The output comes in a vtkTable and can be plotted with
paraview’s plot data filter. The source allows to obtain all the statistics for the desired
timesteps and sea region, with the possibility to aggregate the results on different time periods,
which are: All (no filter), Weekly, Monthly, Seasonly and Yearly.

Property Description Default Value(s) Restrictions

Output
This property defines

the output of the source.
vtkTable

AVE FREQ path
Path to data

folder
Must be the exact

path to data.

MESHMASK path Path to MESHMASK folder

MESHMASK folder must contains three
sub-directories: low, mid and high
with inside all the required files.

See Setup section.

Mesh resolution

Select the correct
mesh resolution among

Low, Mid or High.
High

Correct resolution with respect
to selected data must be choosen,

otherwise prints error.

Path to python Path to bit.sea folder

Path to library
Path to precompiled
c++ shared library.

The shared library must have been
compiled before paraview execution.

Start date
Starting date
for analysis

19000101
If start date does not belong
to dataset, the nearest date

will be taken.

End date
Ending date
for analysis

22000101
If end date does not belong
to dataset, the nearest date

will be taken.

Coasts selection Select coast level coast and open sea

Any selection can be made.
If both coast and open sea

are selected, all the
domain will be evaluated.

Basins selection Select sub-basins none

Any selection can be made.
If more than one sub-basins

is selected the aggregated domain
will be evaluated.

Variables
Select variables for analysis

separated by a comma.
N3n

Periodicity Select time aggregation All
If original data has

a lower periodicity than
the selected one returns error.

Depth Select depth level for analysis 200

Statistic type Select desired statistics
Average, Std, Minima,
Percentiles, Maxima

Dump to file
Saves statistic result to

desired path

Resulting file has the
following column order:

Average, Std, Minima, Percentiles, Maxima.

OGS Parallel Time Statistic
The source is exactly the same as OGS Time Statistic, but it contains a parallel
implementation for distributing data among more processes. It can be only exploited in the
client-server configuration.

47

4.2.2 Filters

OGS Select Coast
The filter acts as a custom threshold and is able to visualize from the vtkRectilinearGrid
produced by the OGS Import NetCDF filter only the selected coast region. The possibilities
are: coast, which will show only near-coast regions, open sea, which instead will show only
areas far from coast regions, or both, so that all the sea will be selected.

Property Description Default Value(s) Restrictions

Input Accepted filter input vtkRectilinearGrid

Output Filter output vtkUnstructuedGrid

Coast selection Select desired coast region. coast and open sea

OGS Select Basin
The filter is a custom threshold and is intended to act after the OGS Select Coast filter, in
order to apply a further selection of the domain. The filter allows to visualize a domain section
obtained from an aggregation of the selected sub-basins from the input.

Property Description Default Value(s) Restrictions

Input Accepted filter input vtkUnstructuredGrid

Output Filter output vtkUnstructuedGrid

Basins selection Select desired sub-basins. All sub-basins

48

OGS Stat Table
This filter receives the variables loaded from OGS Import NetCDF and evaluates their
statistics on a selected domain. The analysis can be made both from areal or volume averages.
In the former case, the output will have the same dimension as the original file depth levels,
while in the latter case an additional information with the depth levels to be averaged must be
provided. The output comes in a vtkTable variable and can be plotted directly in Paraview by
using the provided macro PythonPlot.

Property Description Default Value(s) Restrictions

Input Accepted filter input vtkRectilinearGrid

Output Filter output vtkTable

Path to library
Path to precompiled
c++ shared library.

The shared library must have been
compiled before Paraview execution.

Coast selection Select desired coast region. coast and open sea

Basins selection Select desired sub-basins. None

Statistic Type Select between areal or volume statistic Areal

Statistic Options Select statistic type All

percs Select percentiles to be evaluated
0.05, 0.25, 0.5,

0.75, 0.95

This applies only if
Percentily is selected in

Statistic options.

depths
Select depth levels for

volume analysis
200, 600, 6000

The first level goes
fom 0 to the first element,
the second from the first

element to the second
and so on.

Climatology
Adds climatology observation

to the output
On

Only a few variables
have climatological observables:

N3n, N1p, O2o, N5s,
O3h, Ac, O3c, DIC.

Dump to file
Saves statistic result to

desired path

Resulting file has the
following column order:

Average, Std, Minima, Percentiles, Maxima.

49

OGS Custom Stat Table
This filter is analogous to OGS Stat table, but the input can also be a vtkUnstructuredGrid,
as the one produced by any of the Paraview internal clip or threshold filters. This allows to
performs statistics on any piece of domain obtained after a clip or a threshold, at the price of a
slower speed with respect to the OGS Stat table filter.

Property Description Default Value(s) Restrictions

Input Accepted filter input vtkUnstructuredGrid

Output Filter output vtkTable

Path to library
Path to precompiled
c++ shared library.

The shared library must have been
compiled before Paraview execution.

Statistic Type Select between areal or volume statistic Areal

Statistic Options Select statistic type All

percs Select percentiles to be evaluated
0.05, 0.25, 0.5,

0.75, 0.95

This applies only if
Percentiles is selected in

Statistic options.

depths
Select depth levels for

volume analysis
200, 600, 6000

The first level goes
fom 0 to the first element,
the second from the first

element to the second
and so on.

Dump to file
Saves statistic result to

desired path

Resulting file has the
following column order:

Average, Std, Minima, Percentiles, Maxima.

50

OGS Okubo-Weiss
This filter allow to compute the Okubo-Weiss parameter in 2D geophysical turbulence
according to Okubo 1970, Weiss 1991 and Isern-Fontanet 2004.
The Okubo-Weiss parameter is given by W = S2

n + S2
s − w2, where S2

n is the normal strain
squared, S2

s is the shear strain squared and w2 is the vorticity squared.
The filter acts on the result of the ”OGS Import NetCDF” filter and returns a
vtkRectilinearGrid with two variables:

• OW: array containing the Okubo-Weiss parameter expanded in the third dimension.

• OWmask: mask to differentiate from the 3 different flows (W0 is an input coefficient):

– -1 for vorticity-dominated (W < −W0)

– 1 for strain-dominated (W > W0)

– 0 for background field (|W | ≤W0)

Property Description Default Value(s) Restrictions

Input Accepted filter input vtkRectilinearGrid
The input must be the output of OGS Import NetCDf

and must contains velocity vectors

Output Filter output vtkRectilinearGrid

var
Name of velocity vector

as Paravire variable
”Velocity”

The valuemust match with the variable
name from the input.

coef Okubo-Weiss coefficient W0 ”0.2”

OGS Select Okubo-Weiss
Filter intended to show only a region of the sea depending on the selected ranges of the
Okubo-Weiss criterion. The filters takes as input a vtkRectilinearGrid produced by ”OGS
Okubo Weiss” filter and returns a vtkUnstructuredGrid.

Property Description Default Value(s) Restrictions

Input Accepted filter input vtkRectilinearGrid The input must be the output of OGS Okubo-Weiss.

Output Filter output vtkRectilinearGrid

Vorticity Dominated
Selects only regions where

W < W0
”True”

Strain Dominated
Selects only regions where

W > W0
”True”

Background Field
Selects only regions where

|W | ≤W0
”True”

51

5 Aknowledgements

The research reported in this work was supported by OGS and CINECA under HPC-TRES
program award number 2016-02.
The developing work has been carried out by me, Cosimo Livi, and Arnau Mirò, whom I
profundly thanks for the support and help he gave to me. Arnau works at Universitat
Politècnica de Catalunya, and collaborated with me during his period spent at Cineca for the
”Summer of HPC” project, thanks to a grant provided by PRACE. I have been mainly
involved into the developing and benchmarking of the OGSParaviewSuite module and of the
custom filters related to statistic analysis. I also worked on the set-up of the remote server for
working in the client-server configuration. Arnau worked on the implementation of the
Paraview Web service and on the production of the visualization and Okubo-Weiss filters. He
also provided me some really time saving installation scripts.

52

