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 Sliding friction between crystal lattices and the physics of cold ion traps are so far non-

overlapping fi elds. Two sliding lattices may either stick and show static friction or slip with 

dynamic friction; cold ions are known to form static chains, helices or clusters, depending on 

the trapping conditions. Here we show, based on simulations, that much could be learnt about 

friction by sliding, through, for example, an electric fi eld, the trapped ion chains over a corrugated 

potential. Unlike infi nite chains, in which the theoretically predicted Aubry transition to free 

sliding may take place, trapped chains are always pinned. Yet, a properly defi ned static friction 

still vanishes Aubry-like at a symmetric – asymmetric structural transition, found for decreasing 

corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible 

in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional 

friction phenomena could thus become accessible in future cold ion tribology.         
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 T
he fi eld of sliding friction has been recently revived because 
of experimental and theoretical advances especially con-
nected with nanosystems, with brand new opportunities to 

grasp the underlying phenomena of this important and technologi-
cally relevant area. Unlike macroscopic friction, in which contact 
irregularities dominate, the nanoscale off ers perfectly defi ned crys-
tal lattice facets that can mutually slide. One fundamental piece of 
physics arising in this limit is the possibility of frictionless sliding 
when two perfect lattices are mutually incommensurate — their 
periodicities unrelated through any rational number — an ideal-
ized situation sometimes referred to as superlubric 1 . Graphite fl akes 
sliding on graphite were, for example, shown to be pinned by static 
friction — the fi nite threshold force  F  s  necessary to provoke motion —
 when aligned, but to turn essentially free sliding once a rotation 
makes them incommensurate 2 . An additional prediction, rigorously 
proven for one-dimensional (1D) infi nite harmonic chains sliding 
in a periodic potential (the  ‘ corrugation ’  potential, in frictional lan-
guage), is that the incommensurate vanishing of static friction will 
only occur as long as the sliding chain is suffi  ciently hard compared 
with the corrugation strength. Instead, when that strength exceeds 
a critical value, the chain becomes locked, or  ‘ pinned ’ , to the corru-
gation, thus developing static friction despite incommensurability. 
Unlike most conventional phase transitions, this celebrated Aubry 
transition 3 – 6  involves no structural order parameter and no break-
ing of symmetry — just a change of phase space between the two 
states, the unpinned and the pinned one. Th e concept of pinned and 
unpinned states is by now qualitatively established in the sliding of 
real incommensurate 3D crystal surfaces 7 . Yet, the onset of static 
friction in the prototypical 1D chain, in which the Aubry transi-
tion is mathematically established, has never been experimentally 
validated. Even less is known about dynamic friction, about which 
we have no other insight than generic linear response 8  and some 
data on 3D rare gas overlayers 9 , both suggesting a quadratic increase 
with corrugation. 

 Cold atomic ions can form linear chains. Despite their mutual 
Coulomb repulsion, ions can be corralled inside eff ective poten-
tial traps generated by quadrupolar radio-frequency electrodes 10 . 
So far, cold ion chains raised interest in view of promising appli-
cations for spectroscopy 11 – 13 , frequency standards 14,15 , study and 
control of chemical reactions 16  and quantum information 17 – 20 . We 
are concerned here with the possibility that they could be of use 
in the fi eld of friction. In the rest of this work, explicitly simulated 
 gedanken experiments  will demonstrate that trapped cold ions may 
in fact represent an ideal system for future nanotribological studies 
addressing both static and dynamic friction. In static friction, the 
celebrated Aubry transition will become experimentally accessible 
for the fi rst time. In dynamics, the friction rise with increasing 
corrugation should become measurable, giving new impulse to 
future theory work.  

 Results  
  Model and symmetry breaking transition   .   Th e low-temperature 
equilibrium geometry of trapped cold ions is determined by the 
aspect ratio asymmetry of the confi ning potential, according to the 
eff ective hamiltonian 21,22  
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 where  r   i      =    ( x   i  ,  y   i  ,  z   i  ) is the position of the  i th ion,  m  its mass,  e  its 
charge and the three terms represent kinetic energy, Coulomb 
repulsion and the eff ective parabolic trapping potential, respectively, 
with transverse and longitudinal trapping frequencies   ω    �   and   ω   || . 
As is known experimentally 23  and theoretically 24,25 , by decreasing 
the asymmetry aspect ratio  R     =      ω   ||  /   ω    �  , the trap potential deforms 

(1)(1)

from spherical to cigar-shaped and the equilibrium ion geometry 
changes from 3D clusters to helices to chains, initially zig-zag and 
fi nally linear and straight along  z , as shown in  Figure 1c . As many 
as a hundred ions may be stabilized in a linear confi guration, with a 
few   μ  m ion – ion spacing  a  0 , typical repulsion energy  e  2  /  a  0  ~ 3.3   K and 
temperatures below  ~ 1     μ  K. An interesting observation was made by 
Garcia-Mata  et al.  26 , that ion chains in an additional incommensurate 
periodic potential (produced, for example, by suitable laser beams) 
would, if only the spatial inhomogeneity of the trapping potential 
could be neglected, resemble precisely the 1D system in which an 
Aubry transition is expected as a function of corrugation strength. 
Unfortunately, the trapping potential itself introduces an additional 
and brutal break of translational invariance, at fi rst sight spoiling 
this neat idea. Th e ion – ion spacing is only uniform near the chain 
centre, increasing strongly towards the two chain ends, where it 
diverges owing to the trap confi nement (see, for example,  Fig. 1 ). 
Incommensurability of the chain with the periodic potential is 
therefore lost, and seemingly with that all possibilities to study 
phenomena such as the vanishing of static friction at the Aubry 
transition, a transition known to depend critically on a precisely 
defi ned value of incommensurability 27 . 

 However, this conclusion is overly pessimistic. In contexts unre-
lated to friction, a fi nite chain in a periodic potential 28 – 30  is known 
to turn the would-be Aubry transition to a structural phase transi-
tion. Th e transition survives, as we will show, despite the addition of 
the confi ning trap potential. Th e distorted state, prevailing at strong 
corrugation, exhibits under suitable conditions a change of sym-
metry and an accompanying displacive order parameter, measuring 
the breaking of inversion symmetry about the chain centre. Simula-
tions carried out by pulling the trapped chain with a longitudinal 
force (such as in principle provided by a static external electric fi eld) 
reveal that the distortion transition is associated with a continuous 
onset of static friction from zero to fi nite, thus mimicking at fi nite 
size, and despite the trapping potential, the static friction onset 
theoretically expected at the ideal Aubry transition. 

 We simulate by means of standard (weakly damped) classical 
molecular dynamics  N     =    101 ions trapped by the parabolic potential 
of equation (1), and seek fi rst the static ( T     =    0) equilibrium geo metry. 
Below a critical aspect ratio  R  0     =    1.18 × 10     −    3 , the equilibrium geome-
try is a linear chain, whereas at  R     =     R  0  there is a transition to a planar 
partly zig-zag structure (see  Fig. 1  and  Supplementary Movie 1 ), 
further evolving to a helical structure and eventually to a 3D 
cluster when  R  → 1 (ref.  24 ). Choosing  R     =    0.5 × 10     −    3  for the frictional 
simulation of a 1D trapped linear chain, we introduce an additional 
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    Figure 1    |         Trapped ion chains over a periodic corrugated potential. ( a,b ) 

Sketch of the proposed ion trap confi guration in a periodic potential; ( c ) 

sketch of the straight and zig-zag chain equilibrium geometries determined 

by different aspect ratios of the trapping quadrupolar potential. The lateral 

zig-zag amplitude has been artifi cially magnifi ed.  
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periodic  ‘ corrugation ’  potential  U U z= 0 2cos(( / ) )p l   . To address 
the best-studied case of Aubry transition, we choose the corruga-
tion wavelength   λ   to be  ‘ golden ratio ’  incommensurate relative to 
the chain centre ion – ion spacing  a  0 ,  l = +2 1 50a /( )   (refs  4,5 ). Pre-
serving the inversion symmetry of the chain, the periodic potential 
phase is chosen so that the central ion is at a potential maximum. 
At vanishing external force, the chain equilibrium confi guration 
can then be followed while adiabatically increasing the corrugation 
amplitude  U  0 . As shown in  Figure 2 , the chain ground state remains 
fully left  – right symmetric right up to a critical corrugation ampli-
tude  U  c     =    0.01627 (in dimensionless units; see Methods), where it 
sharply turns asymmetric, with the centre of mass (CM) moving 
right or left  by an amount  δ  z  CM ( U  0 ) (see  Supplementary Movie 2 ). 
Th is transition, similar but not identical to that known for free fi nite 
chains 28,30 , is the remnant of the Aubry transition of the ideal infi nite 
chain. In both the fi nite and the infi nite chain, the probability to fi nd 
an ion (here the central ion) positioned exactly at a periodic potential 
maximum vanishes above the critical corrugation strength, at which 
the ion moves out to a minimum distance    ψ    away from the poten-
tial maximum 5,31 . Unlike the Aubry transition that has no structural 
order parameter, the ( T     =    0) fi nite chain transition is structural, 
characterized by a displacive order parameter  δ  z  CM , Ising-like as the 
central ion can identically fall left  or right of the centre. Th is order 
parameter grows continuously as | U  0  –  U  c | 

   β     at the transition (see 
 Fig. 2 ). We fi nd   β      =    0.496    ±    0.005 for the trapped linear ion chain, 
which is practically coincident with the exponent   κ      =    0.5 known for 
fi nite chains with short-range forces and without trapping poten-
tial 29 . Moreover, upon reducing the confi ning shape asymmetry by 
increasing the aspect ratio to  R     =    1.2 × 10     −    3 , the chain equilibrium 
geometry evolves from linear to a partly planar zig-zag ( Fig. 2 ), 
still symmetric about  z     =    0 at  U  0     =    0. For increasing corrugation, a 
symmetry-breaking transition similar to that of the linear chain 
takes place here too at  U  c     =    0.01357 — a smaller value, as in the zig-
zag the ions are further apart — and for such case   β      =    0.504    ±    0.005 
(see  Supplementary Movie 3 ). For both the linear and the zig-zag 
chain, the critical amplitude  U   c   also depends on the incommensu-
rability ratio   λ   /  a  0  (not shown). Although these results are valid at 
 T     =    0, it should be stressed that as in all small-size systems, the tem-
perature will cancel all symmetry breaking and order parameters, 
owing to thermal jumps taking place above the energy barrier  Δ , 
which separates the two opposite Ising-like order parameter val-
leys. However, the mean time lapse between jumps diverges expo-
nentially when  T  �  T  b  ~  Δ  /  k  B , the trap blocking temperature. Except 
too close to  U  c , ion traps are routinely cooled down to temperatures 
of order 10     −    7  (in our units  e  2  /  d  ~ 6.3   K) way below the blocking 
temperature (for example,  T  b  ~ 180     μ  K even for  U  0     =    0.014, barely 
above the critical  U  c     =    0.01357). Th erefore, even at fi nite tempera-
tures, the ion chain will still break inversion symmetry and exhibit a 
distortive order parameter for macroscopically long times similar to 
the  T     =    0 results detailed above.   

  Determination of the static friction force   .   Th us far the descrip-
tion of the ion trap in a periodic corrugation, still free of external 
forces. To study static friction, we apply a uniform force  F , such 
as that of an electric fi eld parallel to the chain axis. Th e usual pro-
cedure used to determine static friction — the smallest force capa-
ble of causing a pinned-to-sliding transition, following which the 
chain is depinned with unlimited sliding — does not work here, as 
the fi eld-induced CM displacement  δ  z  CM ( F ) is fi nite by necessity, 
owing to the confi ning trap potential. We circumvent that problem 
by monitoring another quantity, namely the restoring force  F  R  that 
must be applied to the chain in order to shift  its CM coordinate back 
exactly to zero — keeping the central ion of the chain exactly on top 
of the corrugation maximum at  z     =    0. In the infi nite free chain, this 
alternative defi nition of static friction coincides with the standard 
pinned-to-sliding Peierls – Nabarro threshold force  F  PN  5,32 , identifi able 

with the static friction  F  s  of the system. In the pinned Aubry state, the 
critical force  F  PN  is exactly suffi  cient to drive to zero the minimum 
equilibrium deviation    ψ    of one  ‘ kink ’  away from the nearest cor-
rugation maximum, eventually triggering the free motion that initi-
ates the pinned-to-sliding transition of the whole system 5,33 . Analo-
gously, for trapped ions a growing external force  F  gradually causes 
the central atom deviation from the potential maximum to decrease, 
and eventually to vanish at  F     =     F  R . We conclude that  F  R  measures the 
static friction even in a trap, in which proper free sliding is impeded. 
As shown in  Fig. 3  (inset), for  U  0     <     U  c  the central ion of the trap 
spontaneously remains precisely at zero, whence  F  R     =    0. However, 
at  U  0     >     U  c , at which the force-free displacive order parameter  δ  z  CM  
turns spontaneously non-zero, a fi nite restoring force  F  R  must be 
applied in order to cancel it. Th e growth of the symmetry-restoring 
force  F  R  with  U  0  ( Fig. 3 ) is, despite the larger threshold, generally 
close to the Aubry static friction expected theoretically for the infi -
nite ideal chain 1,4 , when calculated for same chain parameters  a  0 ,  U  0  
and golden ratio   λ  , as those at the trapped chain centre. We have 
thus established a connection between the trapped chain restoring 
force  F  R  and the Peierls – Nabarro static friction of the infi nite chain, 
of tribological signifi cance 1 . Numerical diff erences between the two 
are of course hardly surprising. Th e fi nite size  Na  0  cuts off  the Aubry 
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    Figure 2    |         Linear and zig-zag chain symmetry breaking. Zero-temperature 

ion chain equilibrium centre-of-mass coordinate  δ  z  CM  versus periodic 

corrugation amplitude  U  0  for the linear chain (red) and zig-zag chain 

(blue). Position, time and energies in dimensionless units (see Methods). 

The insets zoom on the linear chain and the zig-zag central portions, 

highlighting the symmetry breaking taking place at  U  0     =     U  c  and above.  
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    Figure 3    |         Ion chain static friction versus corrugation amplitude. Effective 
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critical region in which the correlation length exceeds this size. For 
the same reason, the chain-depinning exponent   χ  ,  F  R  ~ | U  0  –  U   c   |  

  χ   , 
which we fi nd to be about 1.85    ±    0.2, diff ers from the higher exponent 
( ~ 3) expected for the infi nite free chain for short-range forces 5,31,32 . 
Th e eff ective static friction of linear and zig-zag chains also diff ers 
slightly (see  Fig. 3 ); the soft er zig-zag chain is easier to pin, owing to 
its larger compliance than the linear chain. Overall, both cases pro-
vide a measurable realization of the sharp onset of static friction at the 
Aubry transition, valid beyond the limitations of a trapped chain.   

  Dynamic friction   .   Besides static friction and its Aubry-like vanish-
ing transition, ion traps could in addition provide nontrivial insight 
on dynamic friction. Th e onset of dynamical friction in depinned 
infi nite chains is a very subtle event, as discussed in the litera-
ture 34 ; the pinned-to-sliding onset has been simulated and elegantly 
described by Braun and coworkers 5,33 . In tribology, we are primarily 
interested in the growth, for incommensurate sliders at fi nite sliding 
speed, of dynamical friction with increasing corrugation. 

 To simulate the chain dynamical behaviour, we initially displace 
the ions away from their equilibrium confi guration with a static fi eld, 
then remove the fi eld and follow the spontaneous  ‘ ringdown ’  damp-
ing of the bodily oscillation of the whole chain in the trap potential. 
For an initial large CM displacement of order 10  a  0 , the chain oscil-
lation damping is readily observable, and for a weak corrugation 
 U  0  �  U  c  can be measured even in the absence of an external heat 
bath. Th e initial potential energy (here  ~ 0.1) is converted to Joule 
heating of the chain at a ringdown rate, which is a direct measure of 
dynamic friction. Actually, a trapped chain has an intrinsic dynamic 
friction even in the absence of corrugation, because of the trap-
potential-induced transfer of kinetic energy from the CM motion 
to internal chain phonon modes. However, this eff ect is small; the 
conversion and the corresponding dynamic friction is strongly 
enhanced by the corrugation potential, as shown in  Figure 4  and 
in  Supplementary Movies 4 and 5  (for the linear and zig-zag con-
fi gurations of the chain, respectively). Simulation of the chain oscil-
lations yields a ringdown amplitude decay for both linear and zig-
zag chains, of the form  A  0    exp    −    [ t  /  τ ]. We fi nd that the lifetime   τ  ( U  0 ) 
strongly decreases for increasing  U  0 . Th e corresponding increase 
in dynamic friction  F  D , directly proportional to   τ       −    1 , is to a good 
approximation quadratic,  F  D   ~ a    +    bU  0  

2  for weak corrugation ( Fig. 5 ). 
A quadratic increase is just what the linear response theory predicts 
based on Fermi ’ s golden rule 8,35 . It also agrees with the experimental 
quartz crystal microbalance monolayer friction data of Coff ey and 
Krim 9 . Th ere is no dynamic friction theory for the infi nite linear 
chain to be used for comparison with the trapped chain results of 

 Figure 5 ; therefore, the present results can be considered as a fi rst 
exploratory result in this direction. Th e exceedingly small values of 
 a  indicate the strong harmonicity of the chain, whose CM motion 
can only with great diffi  culty excite the higher frequency intra-chain 
phonons in the absence of corrugation. Th e quadratic increase 
with  U  0  refl ects the eff ective opening of anharmonic excitation 
channels through Umklapp scattering. Larger oscillation ampli-
tudes could not be readily simulated because the Joule heat 
liberated would in that case be excessive and would destroy the chain 
in the lack of some external dissipation mechanism. A fully non-
linear behaviour of dynamic friction would be expected to emerge 
in that case, with outcomes strongly dependent upon the heat 
disposal mechanism.    

 Discussion 
 Th e remarkable static and dynamic friction properties emerging 
for trapped ion chains seem well amenable to experimental study. 
Th e exceedingly small values of the distortion  δ  z  CM  necessary to 
establish an accurate value for the eff ective static friction  F  R  will 
require a fi ne tuning of corrugation and applied force. However, 
upon increasing the force, the instant  F     =     F  R  is reached and the sym-
metric position  δ  z  CM     =    0 is attained; the chain will spontaneously 
jump over the barrier to the opposite Ising order parameter valley. 
By, for example, alternating in time rightward and left ward forces, the 
eff ective static friction  F  R  could become readily detectable in experi-
ment as the threshold force magnitude for the chain ’ s CM to sway 
visibly left ward and rightward. Th e present static friction study is 
conducted at zero temperature, ignoring quantum eff ects, without 
external sources of heating, cooling or damping, and assuming that 
a suffi  ciently strong eff ective periodic corrugation potential can be 
laser generated. Although each of these points requires careful con-
sideration, none, as will be discussed below, is in our view fatal to 
the results presented for static friction. Th e proposed dynamic fric-
tion experiment would heat up the trapped ion chains and cause 
their destruction once the Joule heating is excessive. However, we 
verifi ed that even at a temperature of  ~ 0.55   K, orders of magnitude 
higher than the eff ective chain Debye temperature of  ~ 145    μ K (con-
sidering Mg     +      ions separated by  a  0     =    5    μ m), the chain is still stable in 
the strong trapping potential. 

 In conclusion, the fi eld of cold atoms has had a tremendous devel-
opment, recently covering important interdisciplinary areas such as 
Anderson localization 36 . Now it is proposed that the potential tribo-
logical impact of cold ion results could also be signifi cant. Th e onset 
of static friction is a rich problem of current interest 37,38 , and so is 
the dynamic friction growth with corrugation 9 . Most importantly, 
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  Figure 4    |         Ion chain kinetic ringdown oscillations. The two panels show 
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ion chains represent a new clean design, free of most complications 
of real crystal lattices and with many more controllable parameters 
for a study of basic nanofrictional properties.   

 Methods  
  Simulation details   .   Th e equations of motion derived from (1) turn dimensionless 
by defi ning the quantity  d  3     =    e 2  /  m ω    �   

2 , and expressing distance in units of  d , time in 
units of 1 /   ω    �   and the mass in units of  m . With this defi nition, energy and force are 
also dimensionless in units of  e  2  /  d  and  e  2  /  d   2  , respectively. Simulations are carried 
out using classical molecular dynamics, when necessary with a weak frictional 
damping, and mostly at zero or low temperature. Th e equations of motion have 
been integrated using a velocity-Verlet algorithm with a time step  Δ  t     =    5 × 10     −    3  time 
units. Th e threshold trap potential asymmetry  R  0  for linear / zig-zag structure transi-
tion is determined with adiabatic increments  Δ  R     =    10     −    4  starting from  R     =    0.5 × 10     −    3 . 
Th e critical periodic corrugation potential amplitude  U  c  for the symmetric – asym-
metric transition of linear and zig-zag chains is obtained by adiabatic increments 
 Δ  U  0     =    10     −    5  starting from an initial value  U  0     =    0.012 for the zig-zag confi guration 
and  U  0     =    0.015 for the linear chain. In all the adiabatic increment procedures, a 
small viscous damping     −      γ v   i  , with   γ      =    0.01, is applied to all ions in order to elimi-
nate the excess energy. With our choice of   γ  , a total time of 2500 units between 
successive increments is enough to damp all the excess energy away.   

  Temperature and quantum effects   .   Th e present study is conducted convention-
ally at zero temperature, ignoring quantum eff ects, without external sources of 
heating, cooling or damping, and assuming that a suffi  ciently strong periodic 
potential can be laser generated for the transition to take place at the given incom-
mensurability provided by the laser fi eld. Although temperature is in reality fi nite 
(typically of order 100   nK), the previously reported comparison between left  and 
right chain distortion energies with  k   B   T  implies a symmetry-broken state lifetime 
much longer than any measurement time, justifying the zero temperature treat-
ment, at which data and their signifi cance are clearer. Moreover, in this regime, 
quantum zero-point eff ects could in principle alter some of the details close to the 
depinning threshold, but are otherwise not expected to aff ect the overall friction 
picture, both static and dynamic.   

  Corrugation potential magnitude   .   To produce the eff ective periodic corrugation 
potential, the wavelength   ξ   of a laser light must fi t an electronic excitation in the 
spectrum of the chosen ion species (for example, 280   nm for Mg     +     , 397   nm for Ca     +      
or 399   nm for Yb     +     ); with a typical  a  0     =    5     μ  m the golden mean incommensurate 
periodic potential wavelength is   λ      =    3000   nm �  ξ ; nevertheless, the desired   λ   value 
for the eff ective periodic potential can be obtained by laser beam crossing at a 
chosen angle 26 . Experimentally, it is mandatory to realize a suffi  cient corrugation 
amplitude  U     =     U  0  for the Aubry transition to occur. Assuming, for example, Mg     +      
ions and golden ratio incommensurability, the critical amplitude of the eff ective 
periodic potential  U  c  requires a laser intensity of some hundred  KW / m  2 , which 
seems still within reach. On the other hand, the Aubry pinning transition becomes, 
as is well known, easier with any chain-corrugation incommensurability diff erent 
from the golden ratio 27 , whereby in general the transition would occur even with 
weaker corrugation amplitudes than  U  0 .   

  Phase misalignment effects   .   We assumed so far the possibility to position the 
corrugation potential maximum precisely at the minimum of the harmonic trap, a 
feat that may be experimentally diffi  cult. Slight shift s of the corrugation potential 
phase away from that point would, however, simply smear the Aubry pinning onset 
in the same way as a weak symmetry breaking fi eld transition would aff ect a 
phase transition.   

  Chain heating during ringdown   .   In the oscillation ringdown simulations, the 
initial potential energy diff erence 8.9, due to the chain displacement of 10  a  0 , 
is gradually converted to heating of the chain. With the mass of Mg     +     , the fi nal 
temperature reached is  ~ 0.55   K, orders of magnitude higher than the eff ective chain 
Debye temperature of  ~ 145    μ K. Despite this, we verifi ed by direct simulation that 
at this temperature the chain is still stable in the strong trapping potential.                              
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