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Abstract

This thesis describes the development of a fraud detection scheme for
car insurance customers, based only on information that is available at the
moment of underwriting. It explains how we manipulated raw anonymised
data and turned it into a graph, and how we used this graph to assign a
fraudulence score to each node. Finally, it evaluates the performance of this
score in identifying unknown fraudsters.

The results obtained in the thesis have been obtained by means of several
ad hoc optimised and parallel algorithms, which have been tested and run
on multiple HPC platforms.
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1 Introduction

The presence of frauds is a common trait of almost every activity: from identity
theft to counterfeit money, from fabricated data in medicine, to plagiarism in
school and academia. While methods and opportunities for frauds quickly evolve
with technology, we can often trace the existence of such frauds as far back in time
as we can find written sources. The Latin poet Martial already complains about
other poets reciting his poems in public without paying him the due royalties or
citing him as their author, while other Latin sources refer to attempts at detecting
false coins.

The insurance sector is not an exception to this, and frauds of several kinds
are known to happen frequently: from providing false data in order to reduce the
price of a policy, to inflating or fabricating claims. The methods of catching frauds
before they happen go under the name of fraud prevention, and those of finding
them after the fraud has taken place constitute the field of fraud detection.

Since at least the '80s, it is common practice in several industries to use statis-
tical tools to prevent and detect frauds. The development of the field is often hard
to assess because, despite fraud detection being a necessary and highly beneficial
activity, there is little interest on the companies’ side in advertising their fraud
detection schemes and advances. This has several reasons: fraudsters might be
able to find workarounds to known schemes, and customers might be disturbed
by knowing that their bank is the target of frauds. Despite this, a vast scientific
literature on the topic is available and the interested reader can see [BH02| and
[IPLSG10] for surveys of it.

Without delving into the details of any of the available of fraud detection
schemes, there is one common challenge that all of them have to face: class im-
balance. The incidence of fraud varies according to the field and the kind of fraud
one deals with; in the European car insurance market it is for example estimated
that the rate of fraudulent claims ranges from less than 1% to more than 20%,
with great variation depending on the kind of frauds, on the region, and on the
methods used to estimate their incidencdll

Obviously, not all of frauds are known, so that the class of known fraudsters in a
dataset often ends up representing less than 1% of the sample. In this setting, even
a classifier that correctly identifies 90% of fraudsters and 90% of non-fraudsters
will end up with less than 10% of precision, making it in practice very expensive

1See the IVASS (Institute for the Supervision of Insurance) report on frauds in the Italian in-
surance market at https://www.ivass.it/pubblicazioni-e-statistiche/pubblicazioni/
pubblicazioni-antifrode/index.html, and the European report on the motor insurance
market https://www.insuranceeurope.eu/sites/default/files/attachments/Europeany,
20motor’20insurance20markets.pdf,
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to use. A strategy to deal with this problem is assigning a score of fraudulence to
nodes, so that more expensive and accurate verifications can be triggered for the
most suspicious nodes.

This thesis describes the recent progress and current status of the fraud detec-
tion project which started in 2016 as a collaboration between the Master in High
Performance Computing (MHPC), Generali’s Analytic Solution Center (ASC), and
Genertel’s Customer Intelligence and Common Services.

Last year’s MHPC student A. Ando was provided with anonymised data con-
taining personal information about Genertel’s car insurance customers. The dataset
contains anonymised information about customers (age, ISTAT cells of addresses,

..), and about several items they are related to (credit cards, plate and phone
numbers, e-mail addresses, ...). The model that was used to analyse these data
was suggested by M. Amoruso and V. Consorti: it consists of a customer net-
work in which customers become nodes and shared items become links. Moreover,
known fraudsters are marked, and other nodes are rated as more or less suspicious
according to how they connect to known fraudsters.

A few months after receiving the data in anonymised form, the project gave its
first results, in November 2016, when it became possible to process 10-15% of the
available data and extract a network of customers connected by their credit cards,
plate numbers and e-mail addresses (see A. Ando’s thesis [And16] for a report on
the status of the project in December 2016). On top of this, it was also possible
to detect communities and analyse them.

Since the first results where promising, several new goals and directions of
development emerged for the project:

G.1 process all the available data instead of just 10-15% of it, and extract a
network from it,

G.2 reduce the time required to create the network and to analyse the output
communities,

G.3 explore new kinds of links (phone numbers, addresses, .. .),
G.4 make the code more flexible and adaptable to changes in the model,

G.5 develop a score of fraudulence and evaluate how predictive of the fraudster
status it is,

G.6 develop a visual tool for the inspection of suspicious communities,
G.7 trace the evolution of communities in time,

G.8 make the whole software available on the ASC platform.



Next, in sections we will outline the current implementation and the
main results with explicit references to the goals [G.IHG.§

1.1 Overview of the current implementation

The path from raw data about customers to the analysis of communities can
be divided into three parts: the construction of the network, the detection of
communities and, finally, their analysis.

These three parts are sequential in nature: one can try to parallelise each of
them, but a complete construction of the network is needed for the community
detection to start, and a complete community detection is needed for the analysis
to start.

Currently, the construction of the network is written in Scala Spark and can in
principle scale across multiple nodes, but has only been tested on a single node. As
for the community detection part, it is written in Python using the igraph [CNO6]
library. At the moment, it is the serial bottleneck of our work. Finally, the analyses
are implemented in Python and parallelised using Python’s multiprocessing library.

1.2 Computational infrastructure and software ecosystem

The computational facilities to develop and test all of our code were provided by
eXact Lab? on the C3HPC clusteil A node of the C3HPC cluster has 2 Intel Xeon
2.70GHz CPUs with 12 cores each, and 64GB of RAM. Each node is connected to
a lustre parallel file system via an InfiniBand network.

Our software was first developed on two dockers providing respectively Python
2.7 and 3.2, on top of a Java Virtual Machine, Scala [OACT 04|, and Apache Spark
[ZXWT16]. All the python code is compatible and has been tested both with
Python 2.7 and with Python 3.2. Docker containers [Merl4]| quickly provided
us with a sealed and controlled environments for developing and testing under
different configurations.

We also tested our Spark code on a cluster mounting a Hadoop parallel file
system: it runs without modifications and with similar performances.

Finally, for an interactive visualisation and querying of the output communities
as graphs, we have used Neo4j [RWET3].

1.3 Overview of the main results

Implementing the network creation from scratch in Scala using the Spark SQL
library has proved very effective in tackling goals and [G.2} Spark’s imple-

Zhttp://wuw.exact-lab.it/
3https://www.c3hpc.com/
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mentation of the MapReduce paradigm allowed to overcome the previous memory
constraints, while its parallel implementation of relational algebra reduced the
computational complexity from O(n?) to O(nlog(n)). This meant that we were
able to process 680% more data in less than 10% of the time.

On top of this, Scala provides strong typing and type inference, so that once
we were able to create a network using credit card links, it was easy to add into
the mix all other kinds of links, including the previously unused phone numbers,

addresses and dates of birth. This essentially completes tasks and

The increase in the amount of data, and therefore in the size of the network,
came with new challenges in the detection and analysis of communities. As a
result, we had to slightly modify our clustering technique, and develop algorithms
and heuristics to split or avoid excessively large communities.

Once the network creation was set up and the communities were extracted, we
focused on scoring them. Note that this has to be done multiple times, because
the community detection algorithm that we use, label propagation, has a random
component in it, and returns mildly different outputs at each run.

Concerning after trying a few natural measures, we developed a score
which quantifies how unlikely a community is to contain the amount of fraudsters
it does in fact contain. This is essentially a variation of the p-value, with some
modifications (see formulas (4]) and (5)) in order to make it more reproducible and
relevant to our problem. The validity of the score in identifying fraudsters was also
checked, with very satisfactory results. If one aims at precision, it is possible to
identify 7% of fraudsters with 41% precision. If instead one wants a higher recall,
it is possible to identify 11% of fraudsters at the cost of lowering precision to 32%.
More details on this can be found in figures [[TaHI1d] and Table [6]

Note that these high scores should not be read as “the score finds 7% of frauds
with 41% precision”: the score is able to identify 7% of fraudsters with 41% pre-
cision after any reference to the fraudster status of the corresponding nodes has
been removed from the data. This difference has important implications which are
discussed in Section [5.2.3

Finally, the goal of a fraudulence score is not identifying fraudsters beyond
doubt, but rather detecting abnormal situations and prioritise them according to
how suspicious they are, so that the most suspicious ones can be further inspected.
With this in mind, we developed a few Python functions that allow a user to load
the output data, filter it (for example by score), and visualise the output in Neo4].
In Section |5.3| we provide an example of how we used these functions to find two
communities with a suspicious evolution over time. This sets the matter for task
[G.6] but it certainly leaves a lot of room for further work on task [G.7]



1.4 Availability and portability of the code

One of the priorities of the project was that the implemented tools would later
become available to Genertel and Generali’s ASC.

In order to better simulate the environment of the ASC platform, and to have
more freedom with installations, we decided to develop the whole project within
a docker environment. The docker itself and the whole code were made available
to the ASC, who were able to successfully run it on their platform (see [G.8).

A few small Python modules were made available to Genertel’s Customer In-
telligence and Common Services. These modules contain handy functions to load
and analyse communities on their laptops after most of the computational work
has been done on a cluster.

1.5 Sections’ content

We now provide a brief outline of the content of each section.

Section [2 describes and motivates the model, with a focus on the ways it deals
with probabilistic or potentially false data.

Section [3| explains how our implementation of the network extraction part
allowed us to process more data in less time (compared to the previous implemen-
tation).

Section [] describes and benchmarks the performances of a clustering algorithm
and of an enriched version of it which we implemented. It also checks for validity
of certain assumptions we made in the model (see Section , and measures the
reproducibility of the output (see Section under different perturbations of the
initial data.

Section [b| explores several directions of analysis of the output communities:
from the more classical centrality measures, to scoring and prediction, to visual
inspection.

Section [6] discusses the computational weights that each part of our implemen-
tation has, comparing them with the previous implementation and explaining the
reasons for differences.

Section [7] summarises the results once more, and suggest a few possible next
steps in the development of the project.

Finally, appendices and contain two side results, the first one about
a probabilistic approach to parallel clustering, and the second one about a fast
implementation of a function to compute the adjusted mutual information score.



2 From data to model

In order to abstract the customer network of Genertel into a graph, we replace
every customer with a node. Next, we replace linking items (e.g. credit card
numbers, plate numbers, ...) by links among the nodes representing customers
which are related to that item.

Figure 1: Nodes and links carry properties and types with them.

In some cases, this is achieved essentially by joining the corresponding tables:
if an item (a credit card number, a plate number, an email address or a phone
number) is shared by two customers, we create a link joining the two correspond-
ing nodes. In other cases, this requires more complex manipulations: when two
customers are associated with addresses that are close enough, we combine the
distance of those addresses, the population of the town the addresses are in, and
the difference between the customers’ ages into a link.

While the general framework of customers becoming nodes and shared informa-
tion becoming links is very simple, one needs to work with caution to implement
it in a meaningful way.

In this section we will discuss some of the main issues we encountered when
going from raw data to a graph.

2.1 Unique identification of customers

A first problem one has to deal with is that of uniquely identifying customers.
The most conservative approach is using the anonymised “Codice Fiscale” when
available, which gives us 7.63M nodes. Every resident in Italy is assigned a “Codice
Fiscale” it can be thought of as a social security number or a tax code, and it
should in theory uniquely identify the person it is associated with.
Nonetheless, even this approach will cause some undesired collisions: “Codice
Fiscale” is in practice not a unique ID, and ISTAT estimates that there are approx-



imately 36k non-unique codes, involving approximately 75k peoplﬁﬂ Given these
data, one can estimate the number of collisions in our network (i.e. of nodes that
end up representing two different people): with 7M nodes, we expect 350 nodes
corresponding to more than one physical customer. As the number of nodes dou-
bles, the number of expected collisions is multiplied by four: this means that even
for 14M nodes we expect only 0.01% ambiguous nodes. This sort of perturbation
is well within the stability range of the model (see Section , so that we will
ignore it from now on.

A less conservative approach would require using several pieces of personal data
to reconstruct a surrogate fiscal code when the actual one is not available. While
this approach would approximately double the number of nodes in the network, the
“Codice Fiscale” is much more reliable than those isolated pieces of information,
and 7TM customers seemed to be a sufficient base for our network. On top of this,
new issues would arise with possibly creating two nodes out of a single person.
For all of the above reasons we chose to stick to the first interpretation: one fiscal
code, one node.

Still, in order to leave the possibility of choosing another kind of ID for nodes,
we have endowed nodes with a “node;p” attribute of type string (instead of just
using the fiscal code ID) and worked with this interface instead of working directly
with the fiscal code ID.

2.2 Probabilistic links

While sharing a credit card number seems to establish a sure connection between
two customers, living nearby is a much weaker kind of link. To account for this
difference, links are endowed with a weight, a real number between 0 and 1 repre-
senting the probability that the two customers actually know each other.

For example, credit card links enter the model with a maximum value of 1.0,
meaning that by default we treat the link as true, while address (ISTAT) links
have their weight capped at 0.8, meaning that, even if two people live at the same
address and have the same age, we still cannot be sure they know each other.

On top of this, for a link of type address the weight should be decreasing with
respect to the distance of the two addresses and to the population of the town
they are in. We model this effect with a Bose-Einstein distribution, so that the
decrease is exponential.

4See the ISTAT report on “Codice fiscale e omocodie” for the exact figures:
http://www.agenziaentrate.gov.it/wps/file/Nsilib/Nsi/Documentazione/Archivio/
Agenziatcomunica/Archivio+conferenzete+audizioni/Archivio+conferenzetaudizioni+
2016/Audizione+del+Direttore+dell+Agenzia+delle+Entrate+10+02+2016/Audizione+-+
CodicetFiscale+e+Omocodie+-+10+feb+2016+df.pdf.
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Finally, the weight should also account for the possibility that a certain item is
false: if by any mean we determine that a linking item has a probability p of being
true, the weight of all links corresponding to it should be rescaled accordingly.

Figure [2| shows an example of the resulting distribution of links by their weight.

1e7 Links by weight
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Figure 2: The distribution of links with respect to their weights.

2.3 False information

Even though all data was provided in anonymised form, the presence of false data
is blatant: certain anonymised email addresses are shared by tens of thousands of
nodes, and similar figures arise for phone and plate numbers.

A crosscheck with Genertel’s original data confirmed that the items appearing
most frequently were often false, and suggested that we could ignore items shared
by too many nodes. This decision has two main consequences: on the one hand, a
choice of when to ignore a link has been introduced and our model should therefore
be tested for different ways of making this choice, on the other hand we have
reduced the number of links in the graph.

Since each linking item generates a number of links which is proportional to
the square of the number of nodes that share it, a false and frequent linking
item introduces an important computational burden. On top of that, a very small
percentage of frequent false linking items will easily end up generating the majority

11



of links in the network: Table|l|shows how the number of links of type email which
are generated as we vary the cutoff for their frequency.

cutoff  nlinks

120 61.3M
200 82.5M
300 110.1M
400 137.1M

Table 1: The number of links increases linearly with the frequence cutoff.

For all the above reasons, it seems not only computationally sparing, but also
desirable for the adherence of the model to reality, that links arising from frequent
linking items are weighed less, up to a point where their weight is so small that
the link is ignored. This is implemented by means of two cutoffs: a first one,
customisable via a config file, acts directly on linking items removing those which
appear more times than a given limit, and a second one, currently enabled only
for links of type address, which filters links with a weight smaller than 0.05.

2.4 Multiple links

It is possible for two customers to share multiple pieces of data (credit cards,
plates, phones, ...). This translates into multiple links among two given nodes in
our customer network, and leads to a choice.

One option is combining these links by treating them as independent pieces of
information. This approach is the most faithful to the interpretation of weights as
probabilities and has the advantage of reducing the number of links in the graph.

Another valid option is keeping all links. While this second option is less
faithful to the interpretation of links with weights as probabilities of customers
knowing each other, it helps in assigning a different relevance to the following two
situations:

e two nodes sharing a single credit card,

e two nodes sharing several credit cards, plate numbers and phone numbers.

Another advantage of this approach is that it is easier to keep track of which items
generated which links.

Our final choice is somewhere in the middle. Let n; and ns be nodes, then we
combine links of type ISTAT with the independent-probabilities formula

11— J] —wp),

L(ni,n2)

12



where L is any link of type ISTAT, that is to say the ones involving addresses. As
for links of other types, we will just keep all of them. This reflects the fact that
weights for addresses are usually lower than weights for other kinds of links, so
that our approach will still distinguish a situation where two nodes share a single
address, from one where they share multiple ones.

13



3 Constructing the network

Given lists of customers and linking items, we want to extract two pieces of infor-
mation:

e a list of triples (nodejp,itemyp,w) representing a customer being related to
an item, with the linking item having probability w of being true,

e a list of 5-tuples (noderp,node’, w,t,itemyp) representing a non-directed
link, with w the probability of the link being true, ¢ being the type of the
item which generated the link (e.g. telephone, plate, ...), and item;p the
ID of the item that gave rise to this link.

Since links of address type arise as a combination of multiple addresses, we have
dropped their item;p and replaced it with a default value.

While a naive approach to the construction of (noderp,node;p,w,t,item;p)
from (noderp,item;p,w) involves O(n?) comparisons, an elementary usage of
relational algebra (via any implementation of SQL) reduces the complexity to
O(nlog(n)).

Since Apache Spark provides a parallel implementation of the basic operations
of relational algebra (join, select) and much more (map, type-safe tables since
2.0), we decided to rely on it for the construction of the network. Spark offers
interfaces in Java, Scala and Python: choosing Python would mean abandoning
the already-mentioned type-safety benefits of Spark 2.0, and since Spark itself is
written in Scala, it seemed natural to fall back to Scala rather than Java.

3.1 Performance

Spark provides its own implementation of MapReduce. While reducing the number
of chunks into which each dataset is partitioned will reduce the amount of reads
and writes, this has at least two undesirable effects:

e if one chunk requires more time than the others, all processors but one will
be idle while waiting for the bulkiest chunk to finish,

e the required memory increases as the number of chunks decreases

In most cases, Spark is able to determine the optimal number of partitions to use for
a given operation. We have tried suggesting to Spark several values for the Spark
SQL shuffle.partitions variable, without noticing any significant difference in
performance. Nonetheless, when trying to work with all links, without any cutoff
on their frequency, it is easy to run out of memory: it is important to know that

14



time (s)

one can always avoid that by setting shuffle.partitions to a higher value (e.g.
192 partitions with 64GB of RAM).

The Spark code was only tested on a single node, with the scalability results
reported in Figure [3]

Network construction: scalability Network construction: speedup
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Figure 3: Scalability and speedup of the network construction in Spark.

Of course, one cannot expect linear scaling for a join operation: a lot of read
and write is necessary to load the chunks that need to be joined, and the nlog(n)
computations that are needed are certainly not enough to mask the IO operations.
On top of this, the workload associated with a join is often unbalanced, so that
processes will hang while waiting for the biggest chunk to finish. Despite all of
this, Spark achieves a remarkable speedup of 14 with 24 processors.

3.2 Type safety and modularity

The network model grew richer and richer during the development of this project.
From the initial approximation of credit cards linking customers in a deterministic
way, we got to a model including:

e several types of links,

e links valid or not according to multiple criteria (missing initial date of valid-
ity, missing IDs, ...),

e probabilistic links, i.e. trusted to be true only to a certain extent (with the
extent measured in various ways),

15



e the possibility to restrict the network to a certain time window,
e possible changes in the structure of the input data (column names or order).

In order to make it easier to incrementally implement and change each of these
aspects, we have created several classes.

First, an ArgsHandler singleton is used to parse a config file and command
line arguments.

Raw data is then read into DataFull case classes, one for each input ta-
ble: these are case classes whose fields match the columns of the original data.
Their names are composed by the table name and the Full suffix, e.g. CCredFull,
RatingFull, SoggettiFull. These classes include a few checks about empty fields
and provide a shorten or a multiShorten method: both methods discard some
useless fields and give standard names to the remaining ones.

After the shorten (or multiShorten) method is applied, we get a Data case
class (e.g. CCred, Rating, Soggetti). These classes provide a uniform interface
for their fields, useful to write generic Spark SQL code for them.

This design makes the code more robust with respect to changes in the shape
of the raw data: if its fields change in name or order, we only need to modify
the DataFull classes accordingly. Unfortunately, we were unable to complete a
templatisation of this design, so that the addition of new types of links still results
in code duplication. Nonetheless, this design allowed us to write very generic and
high-level code.

As an example, the code in Source [I| reads the credit cards table and returns
a dataset of CCred objects. While doing that, it selects only records that were
acquired in a certain time window, discards records that miss essential fields,
and possibly generates multiple records from a single credit card (attaching it for
example to both the owner of a card and the person on behalf of which a payment
was made using that card).

Source 1: Extracting linking items from the raw data.

val nodes_CCred: Dataset[CCred] = csv_reader
.csv( ArgsHandler.getPath( "data", table_name ) )
.as[CCredFull]
.filter( _.isValid )
.filter( _.isInTimeWindow( start_date, end_date ) )
// discard useless fields, possibly generate multiple links
.flatMap( _.multiShorten )
filter( _.isValid )
.distinct

16



The same code, changing only the two types CCred and CCredFull, works for any
input table.

Analogously, the code in Source [2] computes all credit card links associated
with a given dataset nodes_CCred.

Source 2: Computing links given linking items.

val links_CCred: Dataset[Link] = nodes_CCred.alias("di")
// self-join over CCred ID

.joinWith(
nodes_and_CCred.alias("d2"),
$"d2.LABEL" === $"d1.LABEL" )

.map (

x => Link(
ID_NODO_1 = x._1.MAIN_ID,
ID_NODO_2 = x._2.MAIN_ID,

WEIGHT = x._1.WEIGHT,
TYPE = CCred.link_abbreviation,
ID_LINK = x._1.LABEL ) )
// remove duplicates and self-edges
.filter( x => x.ID_NODO_1 > x.ID_NODO_2 )
.write
.csv( ArgsHandler.getPath( "links", CCred.getTableName ) )

Also in this case, the same code works for any kind of link, provided one changes
the two occurrences of the typename CCred.
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4 Detecting communities

4.1 The “social”’ assumption

The whole project is based on the assumption that at least some fraudsters are
distinguishable by looking at how they place themselves in the network with respect
to other known fraudsters. This assumption can be formalised as the negation of
the following;:

1. The probability of a node N1 developing a link with a node N2 is independent
of the fraudster status of N1 and N2.

This hypothesis can be rejected reasoning as follows. Assuming it is true, the
fraudster status of nodes does not affect the shape of the network. As a conse-
quence, the subdivision of the network into communities also does not depend on
the fraudster status of nodes. If this is the case, labels and fraudster statuses are
independent of each other, and we expect a binomial distribution (with a certain
probability pr) for the number of fraudsters in any given community.

There are now two problems:

1. we do not know the actual probability that a node corresponds to a fraudster,

2. for nodes that are not marked as fraudsters, we don’t know whether they
truly are not fraudsters.

Finally, the hypothesis that we are going to disprove is the following.

Hypothesis 1 (: Fraudsters are distributed according to a binomial distribu-
tion with probability pr.

A stronger and more quantitative version of hypothesis is the following.

Hypothesis 2 (: At least x% known fraudsters are distributed according to a
binomial distribution with probability pr.

While a small group of very social fraudsters is enough to disprove H[I] disproving
the refined hypothesis for a given value of x also provides a lower bound to the
proportion of social fraudsters among known ones.

The hypothesis H1 turns out to be so far from reality, that even the very
conservative Bonferroni correction will disprove it.

Intuitively, the Bonferroni correction says that if a p-value under a certain
threshold # is required to consider a result significant, and we run N experiments,
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we should use ¢/N as a new threshold for significance across our multiple ex-
periments. For more details on the Bonferroni correction, and alternative less
conservative methods, see the multiple testing problem section in [FHTO0I1].

More precisely, in order to disprove we proceed as follows:

e for every node we recover the numbers ny and np of nodes and known
fraudsters in its community,

e for every node we compute the probability of having more than ng successes
by flipping ny times a coin with probability pr (i.e. is the right-sided p-value
of the corresponding binomial distribution),

e we apply a certain decreasing monotonous function (see equation (3)) in sec-
tion [5.2| for more details) to that p-value to get a score s(n) for each node,

e we plot the reverse cumulative distribution of scores, i.e. for a fixed score s
we plot the number of points with score greater than s.

e we produce a synthetic list of fraudster statuses (randomly, irregardless of
the actual fraudster status), and repeat the whole procedure.

Distribution of pvalue scores in the network
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Figure 4: The cumulative distribution of scores is incompatible with H1.

The resulting plot is shown in Figure [4] with lighter shades corresponding to
higher probabilities pr. More precisely, we have tried to simulate the presence of
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0.9%, 1.8%, 4.5% and 8.1% of fraudsters in the network: the values for pr span
the interval of estimated incidence for certain kinds of fraud in the Italian car
insurance market.

The thin black vertical line is the score of an event 20 times less likely to
happen than the most extreme event that actually happened. It is expected to
have, and empirically has, = equal to $(1/ncomm), With neomm the total number
of communities. It can be thought of as a 0.05 significance threshold, which also
accounts for the multiplicity of experiments according to a Bonferroni correction.
In other words, any of the thousands nodes to the right of the vertical black line
disproves H[I]

As for the big step on the far right, whose magnitude is inflated by the loga-
rithmic scale on the y-axis, it corresponds to the most suspicious community: it is
a community of 140-150 nodes with 75-80 fraudsters.

4.2 Survey of available algorithms

The igraph library provides several community detection methods. Our choice of
label propagation was dictated by two primary concerns: runtime and size of the
output communities.

Other than with label propagation, we have also tried to cluster our network
using two other algorithms, both based on modularity: community_fastgreedy
and community_multilevel. Both algorithms use some heuristics to iteratively
optimise the modularity score, and are said to converge in linear time according
to igraph’s documentation. Results where disappointing with both of them: while
community_fastgreedy could not converge in 20 hours, community_multilevel
did converge, but some of the resulting communities where too big (up to 100k+
nodes) to have any practical use.

4.3 Splitting huge communities

Communities with more than 10k nodes (let’s call them “huge” from now on)
cause several problems. First, they increase the computational cost of all commu-
nity analyses: since both closeness and betweenness centrality have computational

complexity
O((E+VlegV)V),

and since the number of edges increases at least linearly with the number of ver-
tices, we should expect the cost of such analyses to increase at least quadratically
with the number of vertices (see Section |5.1] ).
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On top of that, such communities are in practice created by a few linking
items, each shared by hundreds of nodes: these items are either false or owned by
brokers, and their information would, unless cleaned out, suppress that of genuine
links among customers. For this reason, linking items are assigned a weight as
a decreasing function of their frequency, as reported in Figure [5] The user can
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Figure 5: A logistic function associates a weight with a number of occurrences

adjust how steep this function is and where the initial plateau ends (i.e. which
is the minimum number of occurrences that should be considered suspicious) by
altering the cliff_point and middle_point parameters, which correspond to the
cliff_x and middle_x points in Figure [f

In order to further inhibit the creation of huge communities, the label propa-
gation method provided by igraph has been replaced by the following algorithm.
Given a graph, assign the same label to all nodes and repeat the following pseu-
docode until a certain exit condition is satisfied:

# identify links in communities that are already small enough
small_comm_links = [ i for i, L in enumerate(links)

if size[label[L]] < threshold_size ]
# detect communities wvia label propagation
clusterization = g.label_propagation(fixed_labels=small_comm_links)
# remove edges whose modes belong to two different communities
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delete_crossing_edges(g, clusterization)
# 1f some community ts disconnected, split 2t into components
clusterization = g.components ()

A choice for an exit condition (which allows to easily predict the time taken
by the whole algorithm) is that of fixing in advance the number of iterations. In
order to determine a reasonable maximum number of iterations, we looked at the
evolution across iterations of the size of the biggest community and of the number
of communities. While it is hard to determine when and if the biggest community
will split, the plot in Figure @ suggests stopping after few iterations (3-10) could
be a good compromise between computational cost and results.
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EEE nnodes > 300 1.09 71 —— avg max size
3.0 I nnodes > 1000
I nnodes > 3000
25 0.9
(%2} [%2]
[} [}
8201 kS
e « 0.8
o o
3151 8
£ £
2 207
1.0
0.5 1 0.6 1
0.0- , . . . , , . . ,
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
iteration iteration
(a) Nodes in big communities. (b) Average size of the biggest community.

Figure 6: Splitting big communities.

On top of that, one can measure the average reduction for the size of the biggest
community over several runs (see Table [2land Figure . The average reduction is
18% after the first subsplitting, gets to 28% after 20 iterations, and then stabilises
at approximately 30% in the long run.

Table 2: Average reduction of the max community size.

iteration 1 5 10 20 30 40
reduction 18.0% 23.8% 27.4% 28.0% 29.3% 29.5%
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4.4 Variability of detected communities

The rate of convergence of label propagation, and sometimes even the convergence
itself, are a consequence of the asynchronous update of the labels in the network.
This has two drawbacks:

e any attempt at parallelising label propagation requires a lot of communica-
tion, since the modification of one label needs to be communicated to all
neighbours before we can proceed to the next label,

e its results are probabilistic, since the order in which the nodes are traversed
is casual.

While the first point is certainly a problem, the second one can be turned into an
advantage. We can actually think of label propagation as of a random variable,
so that its output is not just a clustering, but a probability associated with each
possible clustering. This has several positive consequences:

e by running it multiple times, we can rate certain clusters as more reliable
than others,

e by running it multiple times, we can measure how often two given nodes are
put into the same cluster,

e we have introduced an intrinsic level of parallelism, since multiple runs of
label propagation are independent of each other.

In particular, in appendix [B.1, we outline an implementation for a Monte Carlo
approach to clustering which exploits the variability of the output of label propa-
gation.

Still, for the output to be meaningful we need the results to be, at least to a
certain extent, reproducible, i.e. that two independent runs should produce similar
enough outputs. One way to measure the reproducibility of the results is via mutual
information (MI).

Mutual information is a measure of the level of agreement of two partitions of
a set into classes. For issues that are discussed in detail in appendix [8.2] we will
use a variant of mutual information known as adjusted mutual information (AMI)
in order to measure the variability of the output clustering.

Given two clusterings M and N of our network, the maximum value for their
AMI is 1, and it is only attained when M and N coincide. Pairs of clusters which
do not share any MI (i.e. knowing N; does not provide any information on M;,
and vice versa) are given a negative score. The expected AMI for two random
clusterings of given shapes (i.e. sizes of communities) M and N is 0.
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Figure 7: The AMI score varies as we try to split big communities.

As shown in Figure [7, the AMI of the outputs of two independent runs before
we split big communities is on average 0.925. After two iterations, it increases
to 0.935, and successive iterations leave it roughly unchanged. If one needs more
stability in the output, it can be achieved by decreasing the subsplit_threshold
parameter, which is the minimum size of communities that can be split into smaller
ones. The AMI score of 0.941, which we achieved with subsplit_threshold=40,
roughly corresponds to shuffling 3% of the labels.

Another related problem is that of the stability of our output with respect to
variations in the network. Since we should expect part of the links to be false or
missing, we should also check that the communities we have found do not change
much if a few nodes or links are added or removed.

In more quantitative terms, assume an input network I' is given, and assume
that we have extracted two clusterings M and N from it. Select a subset P of
nodes of I'; and construct two new perturbed clusterings:

e Randomly reassign the labels of N for all nodes in P.

e Remove P from I', and run label propagation. Reinsert P and assign random
labels to its nodes.

Denote the first clustering by N’ and the second by N”. On the one hand, we
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expect

AMI(M, N) > AMI(M, N') > AMI(M, N"). (1)

The left inequality is expected because M and N mainly agree: on the part where
they agree, shuffling will make AMI decrease, on the rest it is expected to leave
it unchanged. The right inequality is expected since for both pairs (M, N') and
(M, N") all information about the labels of the perturbed nodes P is lost, but
for the (M, N") pair also some information concerning nodes connected to the
perturbed ones was lost.

On the other hand, we hope that AMI(M, N') and AMI(M, N”) are similar
enough: this would mean that the unperturbed nodes were still able to group in
a way similar to that of N. We have run a few tests of this kind, and the results
are grouped in Table

More precisely, we first construct the network, run label propagation once and
call the output clustering M. Next, we run label propagation three more times on
the initial network, but after removing respectively 3% of the linking items, 4%
of the links, and 3.7% of the nodes from it. The corresponding three columns of
Table [3| record the resulting AMI scores with respect to the initial clustering M.

After that, we run label propagation once more, with the original unperturbed
network, and call the output clustering N. Finally, we shuffle 4.5% of the labels
of N, and measure the AMI score with respect to the initial run.

Overall, we can conclude that perturbations in the initial network produce
perturbations of similar entity in the resulting labels, at least when the magnitude
of the original perturbation is comparable with those in Table [3]

Table 3: AMI score under several perturbations

M N 3.0% 4.0% 3. 7% 4.5%
items links nodes labels
AMI(M,-) 1.0 0.934 0.916 0.906 0.879 0.876
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5 Community analysis

Given a clustering of our network, one would like to extract several kinds of infor-
mation from its communities.

A first kind of information is given by graph-theoretical exact measures of
the communities: how many nodes they have, how many fraudsters, how central
are nodes in them, and many more. This part had already been implemented
in [And16], but we wrote it again from scratch to address several HPC concerns
related to it. We will discuss these concerns in Section [5.I] In the end, our
implementation is an order of magnitude faster of the previous one, despite the
increased workload.

Another kind of information is completely new, and consists of a fraudulence
score that is assigned to nodes purely on the basis of their position in the network.
Developing such a score, and evaluating its efficiency, is a daunting task. By
means of a few optimisations, we brought it down to a computational cost that is
manageable by an ordinary laptop in less than a minute. In Section we will
motivate, describe and benchmark our fraudulence score.

Finally, it is very relevant from the business point of view that the output can
be inspected and read in a purely graphical way. We have also addressed this
issue, providing a few functions which allow to visualise communities and track
the evolution of fraudsters in time. Examples of this are given in Section [5.3]

5.1 Parallel implementation and workload imbalance

As requested by Genertel, we have created four tables:

T.1 nodes and centrality measures,
T.2 links and their labels,
T.3 distance matrices,

T.4 community sizes, centralisation measures and types of links.

Tables [T.1], [T.2] and [T.4] naturally fit in a structured NumPy array, allowing
for field-name based column access (in a database fashion). Table instead has
a more irregular structure, that of a list of square symmetric matrices of variable
size. Since the number of communities ranges from hundreds of thousands to more
the a million, saving the matrices separately is unfeasible. For these reasons, we
have chosen to organise the output matrices of Table as HDF5 files.

The computation of all tables comes with a trivial level of parallelism:
the analyses concerning a given community can be performed independently from
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those concerning any other community. While this suggest that implementing
them with Python’s multiprocessing might achieve an almost linear scaling, a few
problems arise:

P.1 the whole data fits in memory, but it becomes too big if it is replicated,

P.2 the cost of analyses depends on the size of a community, so that we need to
balance the workload,

P.3 certain analyses are too expensive for very big communities, so that we need
to spot them in advance and possibly skip them,

P.4 the cost of analyses depends also on the shape of a community, and is not
entirely predictable from the number of nodes and links.

In our work we have addressed each of the above problems. As for [P.1], we have
adopted a master—slave approach, in which a master process will slice the inputs
and feed only the needed part to each slave. Even though this approach introduces
a serial bottleneck, the cost of splitting the input is negligible with respect to that
of some analyses. In fact, Figure [§|shows that the serial part accounts for less than
2% of the total time, while the real bottleneck is the time required to analyse the
single biggest community.

In order to deal with we have developed a heuristic to estimate the work-
load associated with the complete set of analyses associated with a given commu-
nity. This heuristic accounts for a fixed “initialisation” time and for a variable part
depending on the size of the graph:

72.0- N - L-logy(L + 1)
CPUGHZ

where N is the number of nodes, L is the number of links, CPUgy, is the number
of arithmetic operations per second our CPUs can do, and the result is expressed
in seconds.

Figure [9 shows the performance of this heuristic on big communities over four
different runs (with four different sets of parameters in the creation of the net-
work). While systematically overestimates the workload associated with small
communities, it usually predicts that of bigger ones with an error within 20%.

Regarding [P.3], it is still possible that a community is so big, that analysing
it would take several hours, or even days, of computation. With this case in
mind, we have added the possibility of specifying in a config file a maximum time
for analysing a single community. When the expected time, evaluated by the
heuristic formula which we have just discussed, exceeds the maximum time,
the most expensive analyses are skipped for that community, and its expected time
is drastically decreased.

workload(N, L) = +0.01, (2)
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Figure 8: The analyses cannot scale below the time needed by the biggest com-
munity.

Finally, problem [P.4] stems from the fact that the time required by most cen-
trality measures depends deeply on the structure of the graph. To account for this
extra variability in the time required to analyse a given community, it is convenient
create more jobs than the number of available processors. Python’s multiprocess-
ing provides then a simple way of creating a queue of jobs and feeding them one
at a time to processors as they become available.

5.2 Scoring nodes and predicting fraudsters

After showing in Section that fraudsters in the network exhibit a “social” be-
haviour, we would now like to take on the harder task of predicting which nodes
are fraudsters from their position in the network.

A first guess is simply checking the number ny of fraudsters in the same com-
munity of a given node, possibly averaging over multiple runs. This has the main
drawback of not taking into account the size of the community.

The obvious correction is to normalise ng dividing it by the number ny of
nodes in the community. The problem with this measure is that a community
with 2 nodes and 1 fraudster would be given the same score as one with 20 nodes
and 10 fraudsters. The reason why this sounds so intuitively wrong, is that we
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Figure 9: Workload prediction on big communities.

naturally, and even subconsciously, assess that the probability of finding at least
10 fraudsters who know each other among 20 people is much higher than that of
finding 1 fraudster out of 2 people. The formal and classical statistical measure
for this difference is the p-value.

To make averaging the score across multiple runs easier, and to make the score
higher for more suspicious communities, we decided to work with the following
decreasing monotonous modification of the p-value:

s(n) :=log (1 —log (p(n))) , (3)

where n is a node, and p(n) is the right-sided p-value associated with it. More
precisely,
p(n) = p—value(np, b (ny,pr) ,right)

where ny and ng are the number of nodes and fraudsters in the same community
as n, pr is the probability which we estimate for nodes to be fraudsters, and b is
a binomial distribution. A naive lower estimate for pr is the proportion of known
fraudsters in the network. Since the actual number is known to be several times
higher, we will usually work with pr = 1.8% (which is a compromise between the
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expected and actual numbers of fraudsters in the network), and test our results
up to pr = 8.1%.
Once such a tentative score is put forward, three questions are natural:

Q.1 is it reproducible?
Q.2 does it distinguish known fraudsters?

Q.3 does it still distinguish them if their fraudster status is hidden?

Questions and [QQ.2] are answered in Section [5.2.1] while question |Q.3| is
treated in sections [5.2.2 and [5.2.3]

5.2.1 Score reproducibility

In order to answer and [Q.2, we ran our clustering algorithm 8 times, and
measured the average and variance of the score for each node, marking fraudsters
with a different colour. To plot the results, we perturb the averages and variances
by 2% (additively and multiplicatively), so that frequent values will appear as
dense areas in the figure.

Figure shows the output of this: fraudsters (in magenta) have indeed a
higher score, together with a few more non-fraudsters. The vast majority of nodes,
approximately 97%, has score and variance less than 0.5, meaning that they have
been reliably scored as non-suspicious.

Note that of course, since many fraudsters are isolated in their community, they
end up having a low score. The magenta stripe that goes from (0,0) to (1.5,0)
corresponds to fraudsters that reliably end up being the only fraudster in their
community.

What is still not satisfactory is the stability of the score (see Figure . In
order to reduce the variance of the score, we replace it with the average score over
several runs:

& () = > sl),

=v]

where R is the number of runs over which we average (e.g. R = 8). The updated
plot with average and variance for & is shown in Figure [I0b] and proves that the
new score is much more stable. Moreover, it is sometimes possible to compute the
new score & in the same time as the original score s, provided enough memory is
available to fit the whole network R times.

In order to check that high scores are reproducible, and that their reproducibil-
ity has improved by passing from s to &, we report in tables [] and [5] the counts

30



0.8

0.6

0.4

std(score)

0.2

0.0

s=std(s) / ; i 3
— s=0.2%std(s) Ll o E -

score

(a) Score over 1 run, standard deviation over 8 batches (total 8 runs).

0.8

std(score)
o
&

o
=

0.2

0.0

(b)

Figure 10:
runs (pr = 1.8%).

—— s=std(s) /
5=0.2*std(s) / 7

score

Score over 8 runs, standard deviation over 8 batches (total 64 runs).

The score becomes more reproducible after averaging it over several

for suspicious nodes, i.e. nodes with scores higher than a fixed threshold ¢, and
stable suspicious nodes, i.e. suspicious nodes with respectively

std(s) < 0.2-s, std(6) < 0.2- 6.

The values for the threshold ¢ (“strict” and “lax”) have been chosen as the minimal
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ones that exclude respectively communities with 2 fraudsters out of 2 nodes and
1 fraudster out of 2 nodes. In mathematical terms,

tiax = 6 (p-value (1,b (2, pp) , right)) + ¢ (4)
tstrict = 6 (p-value (2,b (2, pr) , right)) + & (5)

More explicitly, with pr = 0.018, they are respectively 2.34 and 1.61.

Table 4: Stability of suspicious scores (initial score s)

.. stable stable
suspicious .. .
suspicious fraction
lax 26720 19503 0.73
strict 13995 10336 0.74

Table 5: Stability of suspicious scores (averaged score &, R = 8)

.. stable stable
suspicious .. .
suspicious fraction
lax 29685 28319 0.95
strict 15220 14987 0.98

There is one problem though with the computation of &(x) for large R, possibly
several values of pr, and a large number of nodes: the binom_test function from
scipy.stats requires 0.5-1.0ms per computation on a single core, and we often
need to compute millions, if not hundreds of millions, of p-values. This would still
be a matter of at most an few hours on a full node of the C3HPC cluster, but
we will now describe a different approach, which allows to do the scoring on a
common laptop a few seconds.

In order to make the scoring faster, note that the distinct pairs (ng,ny) of
numbers of nodes and fraudsters in a community are in practice not more than
a few thousands, and one can use memoization instead of recomputing the result
each time.

Source 3: A hand-made caching function annotation in Python 2.7.

class MemoDict(defaultdict):
def __missing_ _(self, key):
val = self[key] = self.default_factory(key)
return val
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memo_pvalue = MemoDict(
lambda q : binom_test(q[0],q[1],0.02,’greater’) )

memo_pvalue[(2,5)] # compute pvalue, add key, return pvalue
memo_pvalue[(2,5)] # return precomputed pvalue

The code in Source [3is a common idiom in Python, which simply overrides the
method used by a dictionary when a missing key is provided, so that it first
computes the p-value, and then stores it in the dictionary for future retrieval.
Since Python 3.2, the same effect can be achieved with the 1ru_cache decorator.

5.2.2 Evaluating classifiers

Ideally, one would like to select a test set and hide the status of known fraudsters
in it, compute the score with the remaining ones, and then use this score to select
a pool of suspicious nodes.

Let Ny be the number of known fraudsters within the test set (their status
has been hidden), Ng the number of suspicious nodes in the test set, and Nyg
the number of suspicious nodes which are in fact fraudsters (i.e. true positives).
Then, a natural goal is maximising Nyg and minimising Ng, or in other words, to
maximise precision.

Already in this simple evaluation idea, a problem arises: since most fraudsters
are unknown, even a perfect classifier would return a poor precision score.

Another way to asses the results of a classifier is to measure how many fraud-
sters it finds out of the ones that were hidden, i.e. Nggs/Ng, also known as recall.
This is more promising, but one must bear in mind that blindly trying to increase
recall often results in a complete loss of precision.

Finally, the classical F-scores take into account both precision and recall, but
it seems better to keep track of both recall and precision explicitly, at least at this
stage.

5.2.3 Reconstructing fraudsters

In order to test our score &, we hide the status of a random set of nodes containing
exactly Ny fraudsters, and compute & with this incomplete information. After
that, we mark as suspicious all nodes whose score is higher than a certain threshold
(with two natural values being and (7).

Figures 11d|show precision and recall in different settings: the light-shaded
lines are for train scores, while the dark-shaded ones are for test scores. Different
colours correspond to different values of pr. Since the class of fraudsters is very
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small, we use cross validation to measure precision and recall.
figures are averaged over 40 test sets.
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Figure 11: Precision and recall scores for different values of the threshold on &.

Note that changing the threshold from “lax” to “strict” allows us to choose
whether to prioritise precision over recall, or vice versa.

As an example of how to read figures let us assume that the actual
percentage of fraudsters is 8.1%, and score all the nodes accordingly using &.
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This value for the percentage of fraudsters in the network is at the high end of the
range of plausible values, and the corresponding score & is prone to presuming
that nodes are non-fraudsters.

We have worked with test sets containing respectively 1%, 4.5%, 9% and 18%
of the known fraudsters. Let us look at the results concerning the biggest test set,
the one containing approximately 18% of known fraudsters (corresponding to 3200
fraudsters). We can for example choose a strict threshold, and we will find a small
set of nodes, 40.5% of which are fraudsters. Such nodes will be 7.4% of the 3200
known fraudsters in the test dataset. Alternatively, we can choose a lax threshold,
and we will find a slightly bigger set of nodes, 31.9% of which are fraudsters. Such
nodes will be 10.8% of the 3200 known fraudsters in the test dataset.

Table [6] shows the actual numbers of trues, positives and true positives on the
test set with pr = 8.1%, and 18% of the network as test set.

Table 6: Precision and recall with pr = 8.1%

true

positive positive true
lax 1080.4 344.7 3200
strict 082.0 235.3 3200

While a mild overfitting is expected, it comes as a surprise from figures [11a]
and that as the test set increases (and therefore the train set shrinks), the
precision score increases. Even though the increase is slight and often within the
error bars of the test set, it is so systematic that we cannot dismiss it as a quirk
of fate.

To understand the reason behind this increase, let’s imagine we have two com-
munities A and B, with 20 and 1000 nodes each, and that we have set pr = 4.5%.
We expect 0.90 fraudsters in A and 45 in B. As for our score s, it passes the lax
threshold with 3 fraudsters out of 20 for A, and with 56 out of 1000 for B. Let’s
now assume that A has in fact 4 fraudsters, and that B has 61, so that their scores
are equal and both above the threshold.

If we now take a 5% test set, the train part of A is likely to be left with 4
fraudsters, or at least 3, and the train part of B is likely to lose 3 fraudsters and
end up with 59. In this scenario, both communities are still scored above the lax
threshold and we get

0+3 0+3
ision = ——— = 0.06 Il =——=1.00
precision = 50 reca 053

If instead we take a 20% test set, A is likely to lose 1 fraudster (and its score will
still pass the threshold), but B will lose 12 fraudsters, and with only 49 fraudsters
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it is far below its threshold. This affects precision and recall in two opposite ways:

1+O:O.25 recall = 1+0

i = 0.08
440 1+12

precision =

Precision is boosted by the fact that we ignored B and its 188 non-fraudsters
contribution to the test group, while recall is destroyed by the fact that we ignored
B and its 12 fraudsters in the test group.
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Figure 12: Hiding a high percentages of fraudsters makes the score of big commu-
nities drop before that of small ones.

Figure [12]is a demonstration of what we have just said. In it, we plot a dot for
each suspicious community: the x-axis keeps track of the size of the community,
while on the y-axis we mark the fraction of the dataset that, if chosen as test
set, would rate a given community as non-suspicious (for pr = 4.5% and a lax
threshold). One can see that this threshold is inversely proportional to the size of
a community, and that therefore as we increase it we will gradually boost precision
and suppress recall.

The last remark on the interpretation of the results of this section is that figures
do not mean that we can find frauds with 40.5% precision and 7.5% recall.
It is in fact possible that sometimes multiple fraudsters have been discovered in
relation to a single event. In this case, when our algorithm discovers a fraudster,
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it looks like it has detected a new fraud, while in fact it has only taken a fraud
that was already known and found yet another fraudster related to it.

See Section [7]for a discussion about which should be the next step for a reliable
identification of unknown fraudsters.

5.2.4 Problems

Finally, we briefly summarise the main problems we encountered while working on
question [Q.3]

e The vast majority of fraudsters is unknown: currently, only 0.4% of the full
network is marked as fraudster, while the estimated incidence for frauds in
the European car insurance market is instead usually placed in the 1-15%
bracket.

e The sample is very unbalanced, which also means that models easily overfit
when trying to learn the characteristic features of the under-represented
class.

e The sample of known fraudsters might not be representative of how actual
fraudsters distribute in the network, but of how those who investigate frauds
find them.

e There is a difference in trying to discover fraudsters and trying to discover
frauds, and so far we have only used our model to discover fraudsters.

5.3 Visualisation and network evolution

On top of the results of Section [5.2] it is also possible to use the score & as
a visual aid while manually looking for suspicious situations. In order to make
the inspection more intuitive, we have implemented a lightweight wrapper of a
pandas dataframe, which allows to load once the whole output of tables [T.1
[T.4 After this, inspect_communities and extract_communities methods can
be repeatedly called to select communities by score or other criteria, and write the
communities’ links and nodes into a format which is suitable for a Neo4j input.

Figures [13| and [14] are sample outputs of this procedure, with red nodes corre-
sponding to known fraudsters in April 2015, mauve nodes corresponding to fraud-
sters discovered between April 2015 and July 2016, and green nodes corresponding
to other nodes. Letters on links correspond the the link types, and by hovering
over the links or the nodes in the Neo4j Cypher shell one can see the anonymised
ID of the item that generated them.

As for Figure[13] this is an example of a small community (6 nodes) which was
detected as suspicious in April 2015 using the “lax” score threshold . There, two
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Figure 13: A new fraudster is found in an already suspicious community.

nodes sharing a phone number had already been marked as fraudsters, and a third
one sharing a plate ID with one of them was in fact discovered in the following
year. By April 2015, the newly discovered fraudster had already shown a strong
association with the other two known fraudsters: over 12 clusterings with data
available in April 2015, it had been associated with the two red nodes 8 times.

Figure [14] is instead an example of a community that was already present in
April 2015, which would be marked as safe by our score &, but that despite that
contains a very suspicious amount of newly found fraudsters. In fact, with the data
available in July 2016, the community would be marked as suspicious even with
the “strict” score threshold for 6. The community is a good example of how
this visual investigation can refine and strengthen the results of more traditional
methods:

e all the freshly found fraudsters share a link of type credit card,

e by hovering over the credit card links, one can notice that it is in fact a single
credit card that generates all of them,

e three more nodes share this credit card and they should probably be looked
at more carefully,

e on top of this, four more nodes share a phone number with these known
fraudsters (two different phone numbers, in this case),

e one of them actually shares also a plate number and an email address with
one of the known fraudsters, so that his role in the network is very suspicious.

Finally, in the case of bigger communities (100+ nodes), visualising them in
Neo4j becomes harder, but one can still easily load a whole community and then,
with a Cypher query, select only the parts of it which are closer to fraudsters.
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Figure 14: A community (non-suspicious until 2015) becomes suspicious in 2016.
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6 Profiling the current implementation

After discussing the current work from raw data to the detection of fraudsters, we
are in the position of comparing the previous implementation, the one available in
November 2016, with the current one.

Currently, the weights of the three parts first described in Section [I.1], i.e.
network creation, community detection, and analysis, varies according to the choice
of several parameters. Nonetheless, these weights are typically within at most one
order of magnitude from each other, ranging from 15 minutes to 2 hours.

With the most elementary configuration, the weight of each part is as shown
in Figure With respect to the previous implementation (see Figure , the
relative weight of the clustering part has increased, while the others have decreased.
As for the total time, currently a complete run on a single node of C3HPC requires
less than 2 hours, while a complete run of the previous implementation would take
at least 20 hours. The speedup is in fact bigger than it looks, since the amount
of processed customers has been increased from 1M to 7.6M, and the model has
been enriched with new links and features.

Profiling: previous implementation (approx.) Profiling: cutoff 120 without subsplit

Network

Analysis

Clustering
Network

Clustering

Analysis

(a) Previous implementation (1.0M nodes).  (b) Current minimal configuration (7.6M nodes).

Figure 15

Multiple factors contributed to these changes:

e we have decreased the complexity of the network creation from O(n?) to

O(nlog(n)) (see Section [3),
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e we have replaced the community detection algorithm with one requiring serial
repetitions of the original one (see Section [4.3)),

e we provide the input for community analyses in batches and balance the
batches’ workload (see Section [5.1)),

e we run on all available data (7.6M customers instead of 1M), but we skip
certain analyses for communities which are too big (see again Section |5.1]).

All of the above factors increase the weight of the only serial part, the community
detection part, either directly, or by decreasing the weight of the other parts.

Note that if we use more sophisticated configurations, e.g. trying to split big
communities and varying certain cutoff variables that suppress frequent linking
items, the differences from the previous implementation become stronger (see Fig-
ure . The clustering part goes from negligible to dominant, and the analysis
part can now reach the same weight as the network creation part. In fact, analysis
is computationally the most expensive part, and would quickly become dominant
as the cutoff variables increase. For this reason, we had to skip some analyses
for very big communities, e.g. communities having a several thousands nodes or a
few millions links.

Profiling: cutoff 120 Profiling: cutoff 200

Network Network
Analysis
AnaIySis .

Clustering

Clustering

(a) Subsplit and cutoff=120. (b) Subsplit and cutoff=200.

Figure 16: Alternate configurations profiling (4.8M nodes). Linking items appear-
ing more than cutoff times are ignored.
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7 Summary of results and future developments

In June 2016, several tens of gigabytes of anonymised data on Genertel’s car insur-
ance customers were available, but still unused. Now, in December 2017, an HPC
pipeline is available for Genertel’s Customer Intelligence and Common Services
and Generali’s Analytic Solution Center to process data, detect communities and
highlight suspicious situations.

While a prototype for some parts of this pipeline was already available when
this thesis started, we have changed its implementation completely in order to
make it faster, to increase its throughput, and to make it more flexible. We have
also enriched, tested and adapted the model multiple times, and introduced several
novel ways of extracting information from it: some of it quantitative, others of a
more visual and human-readable nature.

From a business point of view, we can summarise and quantify the main results
as follows:

e The amount of input records was increased by a factor 7.6, the size of the
network was increased by a factor 65, and the time to create the network
was reduced by a factor 10.

e The time to analyse communities was also reduced by a factor 7, despite an
80 times increase in the number of communities, and an increase in their
size.

e New link types were added to the model, and their impact was analysed and
discussed with Genertel.

e A fraudulence score was introduced. The score has proved useful in recog-
nising fraudsters, and is now stable and reproducible. Moreover, its compu-
tation has been optimised to the point that it takes now a few seconds on a
common laptop.

e The whole software was tested on Generali’s platform.
Each of the above points has one or more HPC insights and results behind it:

e The increase in the amount of processed data was achieved by rewriting the
network creation in Spark using Scala, and by passing to algorithms of a
lower computational complexity.

e The reduction in the analysis time comes from a combination of standard
strategies and new ideas: we reorganised the way communities are analysed,
grouping them in batches, and we developed a heuristics to rebalance the
workload.
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e The model could be easily adjusted multiple times thanks to our typesafe
and object-oriented Scala Spark implementation.

e The fraudulence score and the testing of its validity benefitted from caching
and original approximations of the values needed to compute them.

Moreover, some ideas unrelated to the problem of fraud detection emerged:

e We implemented a Monte Carlo approach to parallel clustering, which uses
non-deterministic community detection algorithms to sample the space of
clusterings of a graph, and provides an intuitive answer to the question “how
do I take the average of two clusterings”.

e We improved by several orders of magnitude the time performance of scikit-
learn’s adjusted mutual information score, at least on clusterings with small
or medium-size communities, and at the expense of a controlled loss of pre-
cision.

What certainly requires more work is the study of the evolution of the network,
together with the assignment of the score at the moment of underwriting.

First, one could try to test the score on the latest fraudsters, in order to control
for the possibility that we are only discovering fraudsters related to already known
frauds. In order to do this, one can run the network creation and the clustering
using data up to a given date, e.g. January 2016, and select as test set a time
window which ends exactly at that date, e.g. going from November 2015 to January
2016. This means selecting all nodes that joined the network in that time window,
and hiding all fraudster statuses that were acquired in that same time window
(including the ones of nodes that joined the network much earlier). The score &
should then be computed using only this amount of information.

A second approach is again to fix a date and run the network creation and the
clustering with the data available at that date, but then select as test nodes, nodes
that have not joined the network yet (and that therefore have not been given a
label so far). This requires an extra step of determining which community they
are more likely to end up in, but has the advantage of being very faithful to the
actual use case of the present fraud detection scheme.

The attribution of a label (and of the score that comes with that label) to a new
node N can probably be done by retrieving the weights of all links of NV from the
network computed on the whole data, and then finding the label with the highest
sum of weights. Note that this has to be done against multiple clusterings, since
the score needs to be averaged to be stable and reproducible. Also, note that N
is more likely to end up in a big community than it would be if we just ran label
propagation after adding it: to balance this effect one could normalise the sum of
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the weights dividing it, for example, by the logarithm of the size of the candidate
community.

Finally, we list some other open interesting directions of development:

Testing new predictors: keeping in mind all the cautions about training and
test sets which we have just discussed, it would be interesting to use the score
and some centrality measures with predictors such as decision tree, random
forest, adaptive boost, and logistic regression.

Parallelising label propagation: this has certainly become the bottleneck of
the current implementation. It is serial, and even a shared memory paral-
lelisation could easily speed it up enough to make it negligible again (as it
was in the previous implementation).

Scaling above 200M links: this is the memory bottleneck of the current
implementation. Since igraph keeps the whole graph in memory, and several
indices with it, it is currently impossible to work with much more than 200M
links.

We have not taken directly into account the distance of nodes from known
fraudsters. This is in fact indirectly included in our score & because nodes
that are distant from fraudsters are less likely to repeatedly end up in the
same community with them, but introducing it in an explicit way could be
beneficial to the predictivity of the score.

The Spark code is currently written in a very generic way, which makes it
easy to templetise it. This would make it more maintainable and reduce
code duplication.

Drastically decrease the cutoffs on items frequency: this is part of the ex-
ploration of the space of parameters of the model. It is still possible that
false repeated links are stifling true ones, and it would be interesting to
see the effects of setting a cutoff at 20, making the function that transforms
frequencies into weights depend on the inverse of the square of the frequency.
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8 Appendices

8.1 Monte Carlo parallel clustering

One of the key features of the fraudulence score & is that it leverages the vari-
ability of label propagation. Obviously, this property is not unique to our score
G: whenever a clustering algorithm is not deterministic, and given any numerical
measure associated with a node and a clustering, we can average this measure over
multiple runs to decrease its variance.

This idea of averaging measures is in fact a device we resort to, only because
we are unable to directly average the communities: given two clusterings, what
does it mean for a third one to be their average? Or more generally, what is
the average of multiple clusterings? By choosing an answer to this question, we
are also implicitly defining the expected value of a non-deterministic clustering
algorithm.

There are many possible definitions for the average of multiple clusterings L;,
some more strict, others more permissive. Instead of defining the clustering di-
rectly, we can describe a sufficient condition for two nodes to be in the same
community, and then take the finest clustering (i.e. the one with the most com-
munities) that satisfies that condition. For example, we can require that two nodes
are in the same community if:

e their labels coincide for all L;,
e their labels coincide for some L;,
e their labels coincide more times than a fixed threshold.

Note that the first option corresponds to taking all possible non-empty intersec-
tions of communities, while the second one corresponds to taking the union of all
communities that share at least a node.

We can also look at the above options from a graph point of view. Let us call a
link crossing if it connects two different clusters, and non-crossing otherwise, i.e.
if it lies entirely in a single community. We can for example say that we take a
graph I' with several clusterings L; on it, and that we only keep those links that
satisfy a given condition:

e the link is non-crossing for all L;,
e the link is non-crossing for some L;,

e the link is non-crossing more times than a fixed threshold.
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This gives us a sub-graph of I'; and we can recover the three options about nodes
by taking the connected components of T'.

Both removing the links that fail to be non-crossing often enough, and tak-
ing connected components, are rather blunt actions. A more gradual way to ex-
tract communities would be using the clusterings L; to assign a ‘relevance weight”
to each link, and then use relevance weights to scale the original weights in the
graph. Afterwards, instead of taking connected components, one could run an-
other clustering algorithm (e.g. the same that was applied in the first place to get
L; clusterings) on the resulting graph.

The same steps, recalibrating the weights and detecting communities multiple
times, can in fact be taken repeatedly, feeding the output of one step as input to
the successive one. What we have just described is a family of clustering algorithms
that one can construct after making some choices:

e how do we detect communities?

e how do we get a “relevance weight” for each link given how often they are
non-crossing?

e how much of the original weights to we keep in the new graph?
e when do we stop re-gauging and detecting communities?

A flow chart for the resulting algorithm is shown in Figure [I7 Since every step
of this algorithm requires several choices, we will describe reasonable options for
each of them in Section R.1.2l

Sample clustering
— algorithm Read graph

Rebalance link
weights

Save memberships
and weights

Has it converged?

Figure 17: Flow chart for an iterative interpolation of clusterings.
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8.1.1 Implementation

As a proof of concept, we provide an implementation of the algorithm outlined in
Figure [17 Its full source code, and example implementations of the functions it
calls are available in a GitHub repository{’

Source 4: A high level function to interpolate clusterings

def interpolate_clusterizations( links, weights, alg,
p=2.0, drag=0.9, N_runs=1, N_procs=1, max_iter=10):

# parallel parts are marked with P, serial ones with S

for curr_it in range(max_iter):
membs = sample(links, weights, alg, N_runs, N_procs) # P
iscross = iscrossing_list(links, membs, N_procs) # P
probs = crossing_probabilities(iscross, p=p) # S
weights = rebalance_weights(probs, weights, drag=drag) # S

return membs, weights

For brevity, in Source [] we have used a fixed number of iterations, but the
complete implementation includes a has_converged function that decides whether
to sample the clustering algorithm again.

Note that we only need alg to be a callable taking 1inks and weights iterables
as arguments, so that one can imagine using the interpolate_clusterizations
function with a clustering algorithm implemented in other languages.

The parallelism of this implementation is hidden within the iscrossing_list
and sample functions, and is trivial in the sense that it does not involve any
communication.

8.1.2 Usage

To ease the choice of the many parameters involved in interpolate_clusterings,
we provide a comment on the usage of each of them:

e p: the exponent of the norm that will be used when averaging the ones and
zeros representing the crossing status of a link. A value of 1.0 is a classical
average, 2.0 is the Euclidian norm, -np.inf is the minimum, np.inf is the
maximum. Decrease the value of p to get stricter (only keep links that are
almost always non-crossing), increase it for the opposite effect (keep links
provided they are sometimes non-crossing).

Shttps://github.com/gggsanna/MonteCarloClustering
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e drag: the portion of a link weight that is carried on to the next iteration,
regardless of how many times it was non-crossing. Increase it to get more
reproducible outputs, decrease it to get the weights of crossing links converge
to zero in a faster way.

e N_runs: the number of clusterings to compute before recomputing the weights
of the links. Increase it for more stable outputs.

e N_procs: the number of processes to spawn when a parallel section of the
code starts. Increase it keeping in mind that every process instantiates its
own graph.

e max_iter: the number of iterations, i.e. cycles of multiple clusterings and
rebalancing the weights. Increase it as you decrease drag.

As for the links and weights parameters, they are self-explaining, while the
alg argument is the callable that will detect communities starting from links and
weights.

For further clarification, note that p=-np.inf, drag=0.0 and max_iter=1 cor-
responds to taking the intersection of communities of the initial N_runs runs,
while switching p to np.inf turns it into their union. Setting N_runs=1 and
drag=0.0 recovers instead the subsplitting strategy described in Section 4.3} with
subsplit_threshold=0 and subsplit_iterations equal to the max_iter pa-
rameter.

Finally, running the interpolate_clusterizations function on Genertel’s
car insurance dataset, we found that meaningful choices of parameters typically
involve a high p (e.g. ranging from 1.0 to 6.5) and drag (ranging from 0.9 to 0.95),
a number of iterations high enough to get the weights of the least relevant links
down to 0.2-0.3 (e.g. 12 with a 0.9 drag, 24 with a 0.95 drag). As for N_runs,
it should of course be a multiple of N_procs, which is in turn constrained by the
available memory. On a single C3HPC node, 4 processors and 8 runs were sound
choices.

8.1.3 Interpretation of the output

After several rounds of re-gauging the weights of I, we have probably heavily
deformed the graph, making links that are likely to lie inside one community
stronger and links that are likely to be crossing weaker. By then, we can fix a
threshold weight w,, remove all links with weight less than w,, and finally take the
connected components of the remaining graph. This way, we obtain a clustering
representing the average of the initial ones.

The choice of wy is arbitrary, and suggests that it would be wiser to keep all of
the information associated with different values of w;. Since decreasing the value
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of w; can join some communities but can never split one, what we are looking at is
in fact a hierarchical clustering. Since at every iteration a part w, of the original
weight is preserved, and since we only re-gauge the weights a certain number Njie,
of times, a link with initial weight w cannot end up with a weight less than

W - dragNiter

Moreover, the decrease in the weight of the link is of exponential nature. These
two fact suggest that the appropriate range for the variation of w; is

[wmax : dragNiter7 wmax]

where wy,.x 1S the maximum weight of a link in the graph, and that the appropriate
scale for it is a logarithmic one.

Finally, in the last few years, the idea of looking at features of a dataset which
persist through the variation of a parameter of the model has become increasingly
popular, and has been formalised into topological notion of persistent homology
(see for example [ELZ00| and [CZCGO5]). The hierarchical clustering which we
have described in this section provides the degree 0 part of the persistent homology
of our dataset.

8.1.4 Results

The algorithm has been tested on some synthetic graphs which were generated by
dividing a given list of vertices into 2, 3 or 4 groups, and then specifying a high
number of (randomly chosen) links within each group, and lower numbers of links
crossing from a group to another.

While a systematic study of this is not yet ready, our algorithm seems able to
correctly reconstruct the hierarchy, meaning that in all cases it first recognises the
actual groups as clusters, and then merges them in decreasing order of connections.

We have also tested our algorithm on Genertel’s dataset, and checked that two
conditions are verified:

e the output communities are more stable, reaching an AMI score between
0.97 and 0.98,

e the output weights are distributed in a non-trivial way, that is to say that
they do not just accumulate at extreme values.

Both of these facts suggest that this algorithm might provide the input data for
an interesting topological data analysis of the network.
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8.2 Adjusted mutual information

Given a set S and two labelings (or clusterings, or partitions into classes) M and
N of S, several measures are available in the literature to compare M and N. For
this task, we have mainly relied on some variants of mutual information (MI).
Mutual information measures the amount of information we have on a label V;
provided we know M;, and averages this quantity over the whole network. More

formally,
MIM,N) = Y S P(m,n) - log (%) .

meM neN

If N and M are independent (in the sense of joint probabilities), then the amount
of information they provide one about the other is zero. If they agree completely,
MI(M, N) is the information content of either of the two labelings, which measures
how likely we are to guess a node 7 given the value of N;, and is therefore higher
the finer N and M are. Traditionally, this maximum value is denoted by H(M),
and is known as entropy or self-information of the clustering. Mutual information
is symmetric and invariant under permutation of (the names of) the labels.

This introduces a first issue when we have two pairs of labelings, M, N and
M', N', and we need to know which pair agrees more. If M, N are much finer
than M’, N’, MI(M, N) can take much higher values than MI(M’, N'), making it
difficult to compare these two measurements.

A standard correction for this is the normalized mutual information (NMI):

MI(M, N)
max(H(M), H(N))

NMI(M, N) =

This measure returns values in the [0, 1] interval, with 0 being the expected value
for M and N independent labelings (asymptotically as the size of the network
increases with a fixed number of labels), and 1 being attained only when M and
N coincide (up to renaming the labels).

Despite the normalisation, there is yet another problem in trying to determine
whether M agrees with IV more than M’ agrees with N'. When two clusterings are
very fine (i.e. there are many small classes), their normalised mutual information
is likely to be higher (see [VEB09]).

For example, one can easily fix a list of class sizes such that, given M, N random
labelings with classes of those specified sizes, the expected value of NMI(M, N) is
for example 0.8, which for coarse clusterings would instead indicate a high level
of agreement. In order to correct for this effect, one can introduce the so-called
adjusted mutual information (AMI):

MI(M, N) — E(MI(M, N))

AMI(M, N) = max(H(M), H(N)) — E(MI(M, N))’
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where the expected value E is taken over all pairs of partitions of the same shapes
as M and N.

While scikit-learn provides implementations of each of the above measures (MI,
NMI, AMI), the performance of AMI was not satisfactory for our needs: the time
needed to compute AMI(M, N) using the adjusted_mutual_information_score
function from sklearn.metrics, with M, N fine clusterings, as the ones we have
in our customer network, seems to grow quadratically with the size of the net-
work. Moreover, the time required on a network of size 5k is about a 30s, while
our network is approximately a thousand times bigger. For this reason, we have
implemented a function which computes AMI up to a given tolerance.

Since the computationally expensive part of AMI is the exact computation
of the expected value of NMI(M, N), we decided to measure it experimentally.
In order to do this, given two labelings M and N, we repeatedly shuffle N and
compute the resulting NMI. For big enough networks, the variance of NMI is low,
and the first two values will already agree (up to a certain tolerance). If this is not
the case, we continue shuffling and collecting the resulting NMI until the standard
deviation of our sample is small enough. A simple Python implementation of this
algorithm is the shown in Source [5

Source 5: A fast function that approximates the AMI of two clusterings.

def simple_AMI(a, b, tol=le-3, max_iter=20):
MI = sk_MI(a, b) # current mutual information
bb = copy(b)
MI_vals = []
# approxzimate the expected value of MI
for it in range(max_iter):
shuffle(bb) # wnplace shuffle
MI_vals.append(sk_MI(a, bb))
# the 2nd condition 1s the central limit theorem
if (it > 1) and (std(MI_vals) < sqrt(it)#*tol):
break
E_MI = mean(MI_vals )
H1 = sk_MI(a, a)
H2 = sk_MI(bb, bb)
H = max(H1,H2)
return (MI - E_MI)/(H - E_MI + tolx*le-6)

In the simple_AMI function, sk_MI is the mutual information function imported
from sklearn.metrics, and std, mean, sqrt, shuffle and copy were imported
from NumPy.
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Next, we discuss the performance improvement of our simple_AMI implementa-
tion against the scikit-learn version. We have tested the two functions in a several
different settings:

e on our data, using increasing portions of the network and possibly perturbing
a random fraction of one of the clusterings

e on synthetic data, with multiple sizes and relatively few classes (size’?),
e on synthetic data, with multiple sizes and a relatively average amount of
classes (size’® and size®"),

e on synthetic data, with multiple sizes and relatively many classes (size/3).

The last two cases are the ones that are most similar to our data.

While with few big classes the performances are similar (see Figure , with
simple_AMI being on average 20% slower, in all other cases our implementation
soon outruns the scikit-learn one (see figures [18b] [L8c| and [18d)).

In particular, in the case of many classes and on our dataset , the
speedup for 2k nodes is already around 40, and seems to steadily increase with
the size of the network. While simple_AMI runs on the whole of our network in
approximately 30s, we never managed to compute the AMI of the whole network
using the scikit-learn implementation. With a wild extrapolation from plot [I9] we
can estimate that this is because it would take a few days.

As for the accuracy, it is satisfactory for networks bigger than a few hundred
nodes, which is in fact precisely when it is convenient to use simple_AMI. Figure
is a sample plot of the accuracy on our actual data. Note that, when the error
exceeds the tolerance in Figure 20 the dataset is still very small. On synthetic
datasets, we could check that the accuracy keeps increasing with the size of the
network.
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Approximate vs exact AMI: execution time
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Figure 18: Time to compute AMI vs network and classes size on synthetic datasets.
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Approximate vs exact AMI: execution time
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Figure 19: Time and speedup to compute AMI on Genertel’s dataset.
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