
Master in High Performance
Computing

Discrete Simulation of DDN
IME R© for architecture

prototyping

Supervisor(s):
Jean-Thomas Acquaviva,
Stefano Cozzini

Candidate:
Daniele Tolomelli

3rd edition
2016–2017

Contents

1 Introduction 3
1.1 Problem Explanation . 3

1.1.1 Device presentation . 3
1.1.2 The problem . 3
1.1.3 The solution . 4

1.2 Requirements Analysis . 5
1.2.1 HPC Relevance . 5

1.3 Development environment . 6
1.4 SimPy . 6

2 IME Architecture 7
2.1 Network communication time 8
2.2 Tokenized communication . 10
2.3 File queuing . 11

2.3.1 Queue Issues . 14
2.4 Distributed Hash Table (DHT) 15
2.5 Server side write . 15

2.5.1 Control plane . 15
2.5.2 Data plane . 16

2.6 Data Read . 17

3 Development 18
3.1 Environment choice . 18
3.2 Tools Chosen . 18
3.3 Simpy . 19
3.4 SimPy Components . 19

3.4.1 Timeout . 19
3.4.2 Resources . 20
3.4.3 Processes Management 22

3.5 Tools created . 22
3.6 Profiling . 22

1

3.7 Alternative Python Implementations 23
3.7.1 Pypy . 23

3.8 Flamegraph . 25

4 Advanced IME Topics 27
4.1 Erasure coding for data loss 27

4.1.1 Handling remainders 29
4.1.2 Parity generation . 29

4.2 Data Recovery . 31

5 Performances investigation 33
5.1 Geometry . 33
5.2 Disk Bandwidth . 35
5.3 Server count . 37
5.4 Conclusion . 40

6 Glossary 42

2

Chapter 1

Introduction

1.1 Problem Explanation

1.1.1 Device presentation

Computer memories are designed to fit particular needs, based on their size
or latency. The memory hierarchy make every program able to write the
most accessed data in la lower latency memory in order to access the most
the smaller and lower latency memory. Every time some data is not present
in a lower level memory, the system must read the higher latency one, wasting
CPU cycles waiting for the memory to complete the operation. To avoid or
to mitigate this issue, an additional memory layer can be added. This is
what happened with L3 Cache: it is not needed for the computer to work,
but make it faster, caching more data at the same time.
With the same idea Data Direct Networks developed a device that act as a
cache between main memory and mass storage, filling the gap that there is
right now.
As a cache, it operates in a transparent way, making every already developed
program able to run on on this platform.
The device can intercept IO calls in many ways, so its users can choose the
method most appropriate method for themselves.

1.1.2 The problem

The system as of now has some scaling issue when a large amount of servers
are installed. To keep data consistency, the system has to perform some
transactions from server to server. This traffic will decrease the performance
of the clients traffic. This limits the amount of servers and with this also the
amount of cache data available.

3

Moreover inside the system are present a lot of free parameters, which will
be discussed later, that can affect performances. At the current time we
are unable to determine their optimal value. Multiple runs with different
configurations will help the investigation to the optimal configuration given
an architecture.

1.1.3 The solution

The solution proposed by DDN is a simulator of the system, enabling the
fast exploration of different solutions without the need to actually build many
systems.
Different kind of simulators exist. Below will be explained some of them:

Simulator Details
Analytical Every event is weighted through a function and a final

formula should lead to the result. The precision is
based on the error of each function from the real value

Trace-based The simulation is based on a trace generated by the
environment we want to simulate. The input is the
result of the operations. Can take much storage space

Execution Driven Instead of taking result from a trace, the simulator
actually perform some task. Instead of taking stor-
age space takes time because actions are actually per-
formed

Event based Instead of simulating time passing the events are
scheduled and called consecutively. Suitable if events
do not happen regularly or at a regular interval

Discrete Event Time evolve by ’hop’. The clock of the system is in-
creased when an event occurs. The completion of an
event is defined by a transition function. The flow of
event is defined by a finite state diagram.
Time is split in small units. As an event happens,
there is a change of state in the system following a
finite state machine diagram.

Continuous Event Time is continuous in contrast with discrete event sim-
ulator.

From these simulator, the most suitable for the case is the Discrete
Event Simulator. The analytical simulator is suitable for an environment
where some events can be parametrized, but IME is a complex environment

4

with resources and network fabric that can be busy when required.
For trace-based and execution driven is required data and machine configu-
ration and none of them are available since IME is a new hardware.
Event based simulation can represent better the environment, more precisely
a discrete event simulator is more effective since is not needed a continuous
time space, avoiding rounding errors due to binary representation.

1.2 Requirements Analysis

Simulators are not necessarily computationally intensive applications. The
computational complexity depend on the accuracy of the environment to be
simulated. In this case the simulation of network transactions will end up in
waiting an amount of simulation time based on a formula. Such approach
allows to focus on flexibility, where the system can easily evolve on by a
component basis. For instance a more accurate model can be implemented if
it appear that the modeling of the communication layer is injecting too much
noise. Following the principle of ”Not reinventing the wheel” the project has
started using a library for discrete simulation. This accelerated the project
since at this point only the logic of the system has to be implemented. After
the development part will come the investigation phase to better understand
every free parameter inside the system. To list the requirements, these are:

• environment focused on flexibility

• compatible simulation library

• monitor tools to inspect the system performances

• test-suite for the simulated system

Every good practice about software design and development is implicit
in this list.

1.2.1 HPC Relevance

The simulator by itself is not the product relevant from the HPC point of
view. What is relevant instead is the problem it is going to solve: there is
already a problem of scalability of a product and the simulator should solve
or help to solve it faster than traditional development process would. This
will accelerate architecture and configuration investigation.

5

1.3 Development environment

To satisfy the stated requirements has been chosen to develop the project
in Python because of its flexibility and to create many models, focusing the
attention on the system architecture instead of low level details.
The simulation library chosen is SimPy [7], a discrete events simulation li-
brary. It is well maintained and perfectly integrated with language.
A drawback of a Python environment is its dynamic types: this is not a prob-
lem in general but one of the main features of python instead, that makes it
one of the best scripting language. But for bigger projects the requirements
from the changes and type checking protect us against implementation er-
rors. From version 3.5 the language allows Type annotations that doesn’t
prevent the developer from using different data types but integrated with a
modern IDE, it will suggest before running the program the potential issues,
speeding up development.

1.4 SimPy

This discrete event simulation library is Events oriented. An event can be
processed and can be represented ad a function performing some general
action, based on the situation. The caller event can wait for the completion
of the task called or just trigger it and simulate an async call. This make
a simulation of a multithreaded environment really simple and few lines of
code are required for the simulation to work.
More details on this library will be explained later, in section 3.3

6

Chapter 2

IME Architecture

IME system is based on a Client-Server interaction: every compute node has
a Client side process intercepting IO communications that are sent to IME
servers.

(2.1)

System representation

Figure 2.1 Graphical layout of an IME node. Clients have a local disk and a connection

to the IME servers through a Network Fabric. Each server has a set of SSDs installed

acting as a cache

7

In a possible configuration , as shown in figure 2.1, can be detected some
different components:

• 3 clients with a single HDD each. This hard drive is used to store the
local image of the OS. In modern data center, client nodes tend to be
disk-less (they boot over the network). Local HDD can be used to store
the /tmp and the /var and various Linux system log mechanism. But
applications are doing most (if not all) of their I/O using the fabrics.

• a Network Fabric that interconnects every component of IME

• up to 20 SSDs per server, that can store data faster compared to the
single client’s HDD

Given the skeleton of the architecture, can be added or removed clients,
servers and disks for each one. This changes will end up in different perfor-
mances that the simulator must be able to detect.
The aim of this simulator is to detect the bottlenecks in order to gain knowl-
edge on which parts need to be improved allowing the system to scale. Every
configuration and test will be discussed in depth in the analysis section (5).

2.1 Network communication time

Network communication is one of the main task that are committed in this
system, so an accurate model to represent it is needed.
The parameters that determine the time elapsed in a network transaction
are latency and bandwidth. A file theoretically is sent dividing its size by the
bandwidth available. In the real world we have to consider also the latency
present inside the system: the smallest file possible will be sent only after
< latency > amount of time.

(2.2)

8

Measured IB bandwidth

Figure 2.2 Infiniband network performs differently based on the requests size involved in

the transaction. The plot represent different performance based on IB architecture and

request size. IME has installed EDR Infiniband so the upper blue curve represents IME

network speed. This data come from a work of Jean-Thomas Acquaviva as shown in [4]

From figure 2.2 we know that the optimal packet size for communication
over infiniband is 1MB.
IME Client packs together requests smaller than this threshold and split big-
ger files to achieve this communication pattern. This is further referred as
Network Buffer. If requested explicitly, every request can be flushed in
order to complete a communication in case of remainders. This set a domain
over the size of the packet sent: we always will have packets that are in the
interval]0, 1024]KB. The model should predict correctly the time required
by any network communication inside this interval.

file size (KB) time required
0 latency

1024 1024KB / bandwidth

These are respectively the worst and the best usage of the network.

9

To replicate the behaviour of a real network infrastructure is needed a func-
tion with a diagonal limit, namely limx→+∞ y(x) = +∞, that is a real be-
haviour for every network.
The function of choice then is an hyperbole adjusted to match the specified
coordinates.

(2.3)

Network transaction time

Figure 2.3 The diagonal limit function applied in the network and disk performance

model

2.2 Tokenized communication

IME has been designed to be employed with a large number of both clients
and servers. This lead to many parallelization problems and resource man-
agement. With a large amount of clients, the network bandwidth will run out
very quickly. To avoid denial of service or resource stavation, IME is using
tokenized communication, the standard way to implement throttling. The
concept of the token is similar to the Token Ring communication [3] that
prevents a single client to use all the resources of the system and sharing
equally the bandwidth among all the clients. Here instead of having a single

10

token shared over all the clients, each client has a fixed amount of tokens.
The token usage is the following:

• Consumed when making a request

• Recovered when receiving an answer

This means that for n token, a single client can have n communications in
parallel. So far DDN already set a value of 24 tokens that are not completely
used in real applications, meaning that there is not a bottleneck, but is
anyway a free parameter that can be inspected and adapted in the simulator.

2.3 File queuing

Every clients has internally a write queue for every single server. As it is
asked to write a file, the client will scatter the single file to multiple queues
in order to make us of most servers and speed up the transaction. When a
client wants to perform a write it has to care about:

• The amount of servers that will be involved depending on the file size

• Not scattering too much a single file to avoid unnecessary broadcast
operations reading a small amount of data

• Perform small transactions of 1MB to maximize network bandwidth

Since this system involves not only disk operations but also network ones,
we must be careful to not deplete the network resources. This means that
to maximize an IO operation, make sense using as many devices as possible,
but in a network environment is better to reduce at minimum the packets
emitted.
To overcome these opposing behaviour, IME has 2 layers of file queuing:
bucket-based and buffer-based queuing systems. A bucket is considered as
a part of a file of a fixed size. A single file is split in bucket-sized parts and
then queued to be split again to buffer-sized parts, in order to perform a
network communication.

(2.4)

11

Queueing system using buckets

Figure 2.4 Files to be sent are initially queued. To decide their targets, or their parts if

splitting is needed, these are queued considering chunks bigger than network buffers,

called buckets. Then every bucket is split in network Buffer sized chunks and later sent

• 4 servers are installed

• the user asked to write every file, 32, 12, 16 MB respectively, in chrono-
logical order.

• Bucket size = 8MB

• Buffer size = 2MB, just for plotting purposes

• parity is not considered

In figure 2.4 the first queue is the file-oriented one: every file as it seen by
the client point of view. Then the central box represents the queue to each
server with the bucket view of the files. The last one represents also the
server’s queues but with network buffers instead of buckets.
This different granularity allows to make us of the server’s devices if a file is
big enough, saving at the same time network operations when the user asks
to read those later.

(2.5)

12

Queuing system not using buckets

Figure 2.5 If buckets are not used, a file would be more spread over the servers, meaning

more read requests generated and a higher network usage.

The upper image shows how packets should be distributed without the bucket
queuing layer. Note that, from the buffer point of view, the green file could
be split over all the servers, that translates in great write operation but poor
read operation, since it has to perform a broadcast over all the system. This
example must be thought with bigger numbers: in a case with 50 servers,
with a buffer point of view, a file of 50MB involves a broadcast, while the
bucket point of view mitigate this behaviour increasing the file size required
by a broadcast to 400 MB.
Some examples in the following table shows the number of read requests gen-
erated from a single client reading a file, using the bucket view or not where
50 servers are installed.

Number of requests using
Data read also buckets only buffers
1 MB 1,2 1,2
8 MB 1,2 8,9
48 MB 6,7 48,49
400 MB 50 50

For requests size below 400MB there are benefits reducing the number of
read requests generated and so the network traffic. For requests bigger than
400MB we cannot see the difference since network traffic reduction has been
overcome by IO operations.

13

2.3.1 Queue Issues

Using the buckets system, targets must be decided in this step and then the
buffer queue adapt the data to be sent at a different granularity. The parity
groups are chosen based on a pseudo-random sequence that should even out
the load to the servers.
This system has some issues when some queue is empty: since the target are
not chosen based on the length of the queue, it may happen that some queue
is empty and the parity group will not be complete.

(2.6)

Packets choice based on parity groups

Figure 2.6 Every row represents the queue to a server while every column represents the

parity map. A circle means that for the creation of that parity group, a packet from that

queue must be popped and sent.

In figure 2.6 each row is a queue while every column shows a parity group.
A circle shows that an element should be picked from that queue.

14

In the first column the parity group identified by 106 shows that should be
popped an element from queue 1,3,5 and 6. The integer identifier is the
binary representation of the queues involved. In the first column (106)10 =
(1101010)2
In this case the algorithm has a bit of tolerance: at the beginning is more
likely that a single queue does not have any element so, before dropping this
method, it tries some more times to send full parity groups. The chances are
in the order of the server count.
After this approach failed more than the chances allowed, another approach
is applied: parity groups are sent based on what is left, meaning that the
precomputed parity groups are not the only groups inside the system, but
new ones can be created based on the needs.

2.4 Distributed Hash Table (DHT)

IME servers must be aware of the data that are inside the system, being also
fault tolerant in case of failures. These should also be careful of not flooding
the network with too many requests.
DDN used a DHT to solve this problem, allowing the scaling of the number
of servers and allowing the failure of a single one.
As a file is stored to a server, its metadata, its way to access it are sent to
another server responsible of delivering the accidentally lost data.

2.5 Server side write

As the server receive a buffer, a number of steps are performed before sending
back an ack to the client.
Two separate task are performed, divided in two different planes: Control
plane and Data plane

2.5.1 Control plane

Here is performed metadata propagation if necessary and done some logging
operation to a local journal device.
Metadata propagation involve the communication of the current metadata to
another machine, meaning that this operation has to wait an ack before being
completed. This can hit very hard the performances, forcing an additional
network communication for every write. So this operation is cached instead
and done as one of the following condition is met:

15

• Client requested an eager commit

• Cache limit reached. After 128 requests is sent a single request instead
of 128

• Timeout triggered. If no write happened recently, current data must
anyway be saved so is forced a propagation

Metadata propagation is a necessary step in order to recover data in case of
failures: the metadata can be read from the DHT of another working server,
then data can be recovered asking to every involved server the lost parity
groups.

2.5.2 Data plane

Data received is stored locally as well as metadata. Since data and meta-
data are accessed in a different pattern, and metadata represent a bottleneck
when it comes to files reading, metadata are stored in dedicated devices, less
capable but with wider bandwidth.
The problem to face in this case is to make use of every device understanding
the way every device works.
As for network communications, the diagonal limit behaviour (see section
2.1) can be applied also in this case. Then we look for bigger transactions,
avoiding small ones.
The request is seen in a twofold way:

• As a set of file parts. These informations are stored as metadata, in
order to know exactly where each file part is stored. In the picture
this is represented by the upper layer. In this case the user sent files
a,b,c,d,e and f

• As a byte stream: aware of the behaviour of HDD we are now interested
in the data as a set of bytes to be written to the disk, nothing more.
Metadata will tell us the exact location of a file, but we know want to
perform the most efficient operation.
In this step the network is split in CML oids, chunk of 128KB. Each
of these will be stored to different device, if possible, in a round-robin
fashion to distribute equally the load.
In the picture the CML oid-s generated are the light blue boxes

(2.7)

16

File to CML oid conversion

Figure 2.7 The received files are stored as CML oid, a byte-level view of the incoming

data. Every CML oid can store a fixed amount of data

2.6 Data Read

If a client wants to read a file, or a part of it, it interrogates its file map
to make a request to the interested server, saving network communication
avoiding a broadcast if not necessary.
After the server received the request, it has to interrogate its local DHT in
order to know from which devices has the requested data. A read operation
is then performed on those devices and data is sent back to client using as
always a buffered communication of 1 MB per packet.
This is the optimal work flow, that is without any kind of error.

17

Chapter 3

Development

Since IME is a complicated environment, has been chosen to develop the
simulator using an iterative approach. This allowed an understanding of
the whole system showing a single part at a time, at the cost of creating
prototypes that needed to be rewritten partially or completely.
To speed up this prototyping approach has been used the Dot language [1] to
quickly develop finite state machines that will have been later implemented.

3.1 Environment choice

Based on the conditions explained in the introduction (see section 1.2),
Python seemed a reasonable choice. Mostly because of its flexibility to
changes, not worrying about small detail like memory addresses and garbage
collection. Since this applications is not computationally intensive, not in-
volving any kind of floating point operation, the cost of an interpreted lan-
guage is not so high.
Moreover modern features coming from Python 3.5+ made easier to develop
a relatively big applications as this simulator is, like types annotations and
better generators support.

3.2 Tools Chosen

• Dot graphs

• SimPy

• PyPy

• vmprof & Flamegraph

18

3.3 Simpy

Simpy is the library the projects is based on. It is a Discrete Simulation
library that fulfill the requirements. Exploiting language mechanics like gen-
erators does not add overhead on the application. It is process-based mean-
ing that every task can be scheduled as a process, not waiting for others
task to be completed. The library is anyway serial, not creating threads
by itself. Anyway it can be integrated using other libraries, like threading
(see [2]), but so far the simulation achieve reasonable wall times, there is
no need to parallelize it. Simpy offer a framework in which our routines are
executed and tracked. The status of an agent inside the system is tracked
using python generators, lazy iterators that generate the requested iterator
only when needed. Because of the framework environment we need specific
functions that returns a generator Simpy can take care of and others that
keep track of the system status. Simpy functions can return generators to
make the virtual clock going on, create other virtual processes or wait for
other processes to be completed, according to the situation. The other set
of functions are those that implement the system’s logic.

3.4 SimPy Components

The philosophy of Simpy led to the development of some ready-to-use compo-
nents that ease the process management like mutex and task queues. Anyway
Simpy provides only tools to manage the processes, lacking some structures to
extract usage data to investigate at the end of the simulation. For this reason
some more tools has been developed both in Python, for internal simulation
data extraction, and Bash to automate plotting and file management.

3.4.1 Timeout

The library has some predefined events like a Timeout event that just simu-
lates time passing for the caller.
This call blocks only the calling agent, allowing every other event already
triggered to be processed correctly.
Every real time consuming action is simulated through this function: the call
with the correct amount of time will make the calling agent to wait until the
task is virtually completed.

19

3.4.2 Resources

In every simulation environment there are components that needs to be ac-
cessed by many agents and to process correctly this resource contention. This
means keeping a queue of every agent and trigger one as a resource is freed.
SimPy takes care of this queue management, providing many types of re-
sources, fitting many needs.

• Resource [8]: allows multiple agents to access this tool at the same
time. A request to this resource is blocked if the quantity of agents
using it is already at the maximum value. The maximum number of
agents can be set in its constructor. Setting capacity = 1 means this
resource will behave as a mutex.
An example is accessing a disk to write a file: only a single file can
be written at once, so the device’s resource will have a capacity set
to 1. The writing process must obtain access to this resource before
proceeding further.

(3.1)

Resource request management

Figure 3.1 Request management using simpy.Container. A Resource with still space

accepts a new request (left). A full one rejects the request instead (right)

As shown in Figure 3.1 the requests are accepted based on the current
load of the resource. If there is still room for another request, as hap-
pens in the left case, the request is accepted.
Otherwise if the request is completely filled, the request is blocked until
some of the already occupying request free the resource.

20

• Container [6]: whereas the ”Resource” tracks the number of accesses
to a resource, the container is concerned about the quantity of a re-
source stored. As a container cannot store bigger amount of goods than
its size and cannot give more than it has stored already.
An example is shown if Figure 3.2 where different put and get requests
are performed. Put requests (on the right) are allowed if there is enough
space, get requests are allowed if there is enough good stored.
As a side note, the library still lack custom callback implementation to
handle blocked requests. This means that there is not the possibility to
perform some actions if a container is too full, blocking some requests.
This forces to not fully rely on SimPy classes and implement custom
solutions that benefits from these callbacks.

(3.2)

Container Request management

Figure 3.2 A simpy container with a capacity of 100. On the left the requests to put a

good in the Container, allowed only if there is enough space. On the right the get

requests, allowed only if there is enough resource currently stored in the container.

21

3.4.3 Processes Management

Inside the SimPy framework in order to simulate a behaviour a task is seen
as a process. This is just a concept: a SimPy simulation runs on a single
system process. After having instanced one or more processes, the caller is
able to manage its flow based on the nature of the situation. It can:

• instance one or more processes an proceed with the flow, in case the
call should not wait for the completion and the task created.

• wait for the completion of the single process, in case the caller should
wait for the completion of the task created

• create more processes. Proceed with the flow as soon as only one fin-
ishes its execution

• create more processes. Proceed with the flow when every one finishes
its execution

3.5 Tools created

Since SimPy provide only simulation utilities, lacking data gathering com-
ponents and plotting, these features has been developed aside. Specifically
has been designed:

• Logger: in order to gather data about the components, every action
is registered using a shared object. Every step is registered, in terms
of time spent on that action or in times an action is performed. At the
end of the simulation the data gathered are printed to external files,
allowing parsing and plotting using external resources.

• Testing environment: to inspect the behaviour of the system should
be easy to specify many test cases using different configurations. For
this reason bash scripts and makefiles has been developed to manage
the simulator at a higher level. At the end of the multiple simulations,
plots are generated based on the data gathered from each run.

3.6 Profiling

Time spending operations are simulates as already specified. The simulator
is not a computationally intensive application but as things start to grow,
the wall time increases. This because of the large amount of data needed

22

to run the application: a file of 1 GB must be split in buckets, network
buffer and finally in CML oid of size 128 KB. This result in 1GB/128KB =
8192CML oid allocated just for a single gigabyte of data written. Some
experiments on C integration has been conducted but the real problem is
data allocation and its management. The usage of suitable data structures
for every need plays a key role in speeding up the simulator.
Talk about xargs and how memory bound the simulator is

3.7 Alternative Python Implementations

Looking for performances is reasonable to try different implementation of the
python interpreter. The official one is CPython, but other implementation
for different usage are available. Some of them are

Name Description
Jython Implementation that runs on the JVM. Python code is com-

piled into bytecode enabling better performances. Also re-
moves the Global Interpreter Lock making use of real threads.

IronPython Just as a matter of compatibility, a version of Python that
integrates with Microsoft .NET technologies

Pypy Distribution with a built-in JIT compiler, overcoming the
purely interpreted nature of python

Many other implementations exists, but more for integration into specific
environment, like IronPython does, than achieving a different behaviour of
the interpreter.
The choice of Jython has been dropped since it’s compatible only with python
2.7. From the beginning the simulator has been developed in Python 3.5 due
to useful features for the development of a big project and some utilities on
the generators.

3.7.1 Pypy

Trying a different implementation, Pypy has been chosen. It provides a cus-
tom version of numpy, but the simulator does not make use of numpy. Many
tests showed that an appropriate container from the package collection be-
have better that numpy arrays. The custom numpy installation is the only
step required for Pypy to work.
The features advertised by Pypy are:

23

• Speed using its JIT compiler. Anyway every time the application is
called, the compilation phase must be run again.
On their website Pypy team advertise a speed up over 7x compared to
CPython 2.7. Tests on this specific simulator will follow.

• Less memory usage using a better custom garbage collector

• Compatibility so it can run any existing python applications

Testing the actual performances of Pypy over CPython I run the simu-
lator with a reasonable large request pattern: a single client asked to write
8192 files of 16MB. Since Pypy should use also less memory, main memory
contention between different processes should be mitigated. So multiple re-
quests of the same size have been launched in parallel using xargs command.
The simulator is serial, but more requests can be processes at the same time.
For this reason the usage of xargs is required.
The tests has been done using an Intel i5 4690 3.5GHz 4core/4threads with
the graphical session turned off to avoid data fluctuation due to other pro-
cesses in the system.

Time (s) using CPython 3.5
Processes in parallel First Second Third Fourth Total

1 41.91 41.97 42.10 42.00 167.98
2 43.61 43.32 43.40 43.70 87.02
4 52.56 54.32 54.27 54.05 54.32

Time (s) using Pypy 3.5
Processes in parallel First Second Third Fourth Total

1 69.29 69.31 69.31 69.65 277.56
2 71.92 72.77 72.41 72.37 144.33
4 92.03 92.06 92.60 92.05 92.60

What is clear from the data gathered is that Pypy is not working for our
case. Further discussion will be done in section 3.8.
Using a parallelization of 1, the best times are achieved since there is no
main memory contention. As the number of processes start to grow, more
contention happens but since these times are in parallel, they take less time
overall.
Measuring this phenomenon a result can be extracted from the data using the
formula (max(P4)/min(P1)−1)∗100 where max(P4) is the worst process with

24

a parallelization of 4 and min(P1) is the best process with no parallelization.
For the total case every process can be expressed using an average value of
the times collected so total time4 ∗ 4/total time1 The results follow

Memory contention degradation Single Total
CPython 29.6% 29.3%
Pypy 33.6 % 33.4%

This data shows how Pypy behaves better increasing the parallelization.
The different is not critical, but since Pypy is an alternative implementation,
for this specific application there is no reason to choose Pypy over the default
CPython.

3.8 Flamegraph

(3.3)

Flamegraph profile data

Figure 3.3 Profiling data using Flamegraph. A vector format can be found at

https://drive.google.com/open?id=1JOMhRwSq58nZgOFQMo3JHjH0b6mjI7jh

The profiling task has been accomplished using Flamegraph [5] a stack
trace analyzer generating an interactive vector graphic to inspect graphically
the application.
Figure 3.3 represents the flamegraph of the simulator performing a write of
the file requested, a read operation of every file written and a recovery oper-
ation due to a disk failure.
To better inspect the result, a text version of the data plotted has been pro-
vided. The following are the 20 most expensive functions that are processed
inside the simulator.

25

Time(s) Source File Function
6310 core.py run
6016 core.py step
4273 events.py resume
1007 Server.py data plane
695 events.py init
635 core.py schedule
593 ServerManager.py perform network transaction
560 base.py trigger get
557 ServerManager.py add requests to clients
533 DataIndexer.py write packet
525 Server.py process write request
454 Client.py add write request
445 Client.py populate bucket queue
428 Client.py create buffers from buckets
415 events.py init
410 Client.py send buffers
403 base.py init
373 Client.py send write request
357 resource.py init
357 Client.py prepare write request

Files with a capital letter are from the simulator, lowercase ones are from
SimPy. These are not all different functions: there is the stack to be consid-
ered, so for example the run function includes most of the functions above.
Anyway a non negligible part of the simulation is composed by overhead
introduced by the framework, caused by the resource and processes manage-
ment, aside from their execution.
Must be noted that multiple solutions can be proposed leading to the final re-
sults. Some of these solutions in early prototypes were creating many SimPy
processes in order to simulate the environment. Later this kind of approach
has been dismissed since it was introducing a noticeable overhead inside the
framework. Has been adopted an approach with a single agent that can solve
more tasks on his own, using a single SimPy process.
Moreover the time of many tasks could be computed ahead of time avoiding
object instantiation, but doing so takes the simulator closer to an Analytical
Simulator behaviour, that is not the environment of choice. The only com-
ponents that can be simulated in such a way are those that do not need to
wait for shared resources and can be processed on their own.
So the overhead that SimPy is causing right now has already been reduced
to its minimum.

26

Chapter 4

Advanced IME Topics

4.1 Erasure coding for data loss

In CPU caches, whenever happens a cache miss, data is read from main mem-
ory instead. No data can be potentially lost. In the worst case can happen
a cache miss forcing the lower layer memory to transfer data from the upper
layer memory.
IME acts as a cache too but for the problem it is solving, there is no com-
munication between the source and the target. This means that if data is
lost inside IME, it is permanently lost. IME has a system to overcome this
problem that is Erasure Coding.
As it happens in RAID level 4, 5 and 6, what is stored in the disks is not just
data but also an added amount of data based on the original data. In case of
loss of one piece of data, this missing part can be reconstructed comparing
remaining data and parity.

(4.1)

27

Raid Level 5

Figure 4.1 In RAID 5 data is interleaved with parity bits. If a single disk is corrupted,

missing data can be recovered comparing remaining data using parity

For this correction system to work, we need to make associations between
groups of data that must be grouped together later when data loss happens.
IME considers a single block of data a Network Buffer (see section 2.1)
and the group that will contribute to data recovery as a Parity Group.
As an example, from figure 4.1 A1, A2, A3 and Ap are individually a Network
Buffer. All of them grouped together makes a Parity Group.
Parity generation is a process that happens on the client that want to send
the packets, since it has to create requests that must be aware of the location
of the packets belonging to the same parity group.
Is essential that every piece of the same parity group are sent to different
server: the loss of a single server could otherwise means the loss of multiple
piece of data. If every part is stored in a different server, the inactivity of a
single machine is not a fatal error for the system.
Parity be generated using different methods, meaning that the system can
sustain the loss of multiple piece of data keeping the ability to recover the
lost data. This is an option that can be set or not based on the needs of the
user.

28

4.1.1 Handling remainders

Using this system to recover data, a bond is created among parts of the same
parity group: not only these parts share the same parity group-id but also
must be sent at the same time to the servers. If the packets of the same par-
ity group are not completely delivered to the servers, these cannot recover
this group in case of data loss.
Because of that the client must wait until it has enough data to send, filling
a set of network buffers. If it does not have enough data, it waits until more
write requests are needed. The send operation can anyway be forced using
an eager commit, sending buffers not completely filled or even not enough
buffers to fill a parity group.
Parity data is then generated using the data available.

4.1.2 Parity generation

Parity data is generated for every parity group created based on the geome-
try set. Geometry specify how many, if any, parity packets are generated per
group. Geometry is specified as D + P whereas D represents data packets
per group and P represents parity packets per group. So a geometry of 3 + 1
specify that a group is composed by 3 data packets and 1 parity packet.

(4.2)

29

Parity generation on requests with remainder using
geometry 3+1

Figure 4.2 Parity is generated based on the size of the packets in the same parity group.

The picture shows different cases with different amount of data per packet and different

packet per group.

Figure 4.2 shows the parity generation in different cases based on packet
layout:

1. Canonical case: packet geometry is complete and every packet com-
pletely fills a maximum packet size.

2. Geometry is complete but only a buffer reaches its maximum size and
parity is generated based on the biggest buffer, considering zeros for
the other missing data

30

3. None of the buffers reaches its maximum size, so parity is based on the
biggest one

4. There are not enough buffers to fill the group and parity is generated
based always on the biggest buffer.

4.2 Data Recovery

This is the case when a device cannot read anymore from one of its devices,
for any kind of reason. HDD are prone to failures and SSD, the devices used
in this system, are more likely to fail over time due to usage.
The server is now unable to satisfy the client’s requests but using the Era-
sure coding system, it can recover data comparing packets of the same parity
group and its parity.
Parity can be disabled, activated with 1 or 2 parity packet. The more par-
ity we Introduce, the slower the system become, gaining robustness against
hardware errors. Whenever a file, or a part of it, is written in a server, the
latter propagate its metadata to the next server, in order to protect not only
data, using parity, but also metadata of the files.

(4.3)

Data recovery process

Figure 4.3 If some data is lost, it can be recovered using the Erasure coding system,

gathering and comparing data of the same parity group of the packets lost

If the server is not able anymore to read nor data or metadata, it will con-
tact its next server to understand which files are missing. After this step,
the server is aware of the parity groups to gather to recover the data. It will
then contact the servers that owns the packets of the same parity groups of
the missing ones.
After every packet of a parity group is retrieved, the missing buffer can be
regenerated using the parity information. If has been lost a parity buffer,

31

recovery is anyway necessary to prevent future failures.
In the picture the Gather Parity Groups is relative to metadata gathering.
Send parity Request is the request for the buffers of the same lost buffer’s
parity group not owned by the server. This is a network request, so logically
will come Receive Parity Request but will happen later in time, after the
target server will have sent the answer. After every buffer of the same parity
group will be received, the server is able to rebuild its missing data.

32

Chapter 5

Performances investigation

After the simulator has been completed and tested, the phase of performances
investigation can start. The system has many free parameters that can be
set to get a realistic behaviour of the simulator, but also to investigate its
behaviour in a different condition.
The following sections will show the performance difference focusing on a
single parameter, showing how they will affect the total walltime. For each
experiment are done 5 different runs with a different value for that field,
keeping also the same request pattern.
The following is the standard configuration used across all the experiments.
For every different one a single parameter, or related ones, has been modified.

Field Value Description

TOKEN COUNT 24 Client parallel communications
GEOMETRY BASE 3 Data packets per parity group
GEOMETRY PLUS 3 Parity packet per parity group

SERVER COUNT 20 Server inside the system
HDD DATA COUNT 20 Server Disks per server

HDD DATA READ MBps 2048 Server Disk read performance in MBps
HDD DATA WRITE MBps 1024 Server Disk write performance in MBps
HDD DATA LATENCY us 100 Server Disk latency

HUB BW Gbps 80 Network maximum bandwidth
NETWORK LATENCY nS 6667 Network latency

NETWORK BUFFER SIZE KB 1024 packet size used for communication
BUCKET SIZE 8192 grouping size used for file allocation

READ BLOCK SIZE 4 linear read block size

5.1 Geometry

In this experiment has been investigated how the geometry affects perfor-
mances. Geometry is expressed as a pair of number a + b where a is is the

33

data packet per parity group and b is the parity packets per parity group.
This is an option inside the system, meaning that parity packets can be used
or not based on user needs. The more parity is used the more data loss can
be recovered at the same time at the expense of performances. On the other
side can be turned off to communicate data as fast as possible aware of the
fact that the running experiment can not be recovered in case of hardware
failure.
For this experiment has been used the standard configuration with the fol-
lowing settings for geometry

Run 1 2 3 4 5 6 7 8 9 10
GEOMETRY BASE 2 4 6 8 10 15 20 30 40 50

(5.1)

Geometry Experiment

Figure 5.1 Growing the base geometry size reduces the amount of overhead introduced

in a system at the expense of recovery time, which keeps increasing

34

It’s clear from figure 5.1 that while the time required to generate parity
barely decreases after a base geometry of 10, the recovery time still increases
since to recover every packet other geometrybase + geometryplus need to be
contacted, involving network communication and, in this case, congestion.
To better inspect the situation is better to not look at the single values but
a value using a formula involving both the measures. Initially has been used
a simple average between the two measures, that highlighted that the best
size of the geometry was the smallest, since the recovery time increases faster
than the parity generation time decreases.
But what actually happens is that parity generation occur much often than
recovery, which hopefully should not happen at all. So the simple average has
been switched to a weighted average and different weights has been assigned.
In the first weighted average parity generation is 99/100 and the better so-
lution shifted from x = 2 to x = 4.
Using a different weight the solution shifted again to x = 15, so in the case
where a parity generation happens 99.9% of the time, is ideal a geometry of
15+1.
Keeping increasing the weight, representing a more realistic behaviour of the
simulator, suggest to increase as much as possible the size of the packet since
is very difficult that the restoration could happen, and in that case, is ideal
to wait for it to finish slowly but leaving the entire system with a very low
parity overhead.

Geometry Parity Gen.(ns) Restore (ns) Avg 99% (ns) Avg 99.9% (ns)
2 101083 1103562 111107 102085
4 84512 1904740 102714 86332
6 78900 2723940 105350 81545
8 76173 3572632 111137 79669

10 74507 4476210 118524 78908
15 72508 6415274 135935 78850
20 71469 8532990 156084 79930
30 70440 11373276 183468 81742
40 69993 16756538 236858 86679
50 69738 21087047 279911 90755

5.2 Disk Bandwidth

The technology involved in the servers is not the most powerful so the servers
can be improved. The standard settings in the simulator are close to the per-
formances of an SSD, reading speed at 2GB/s and writing speed at 1GB/s.

35

The usage of NVMe memories or PCIe ones can lead to better disk speeds.
This experiment run the tests with the following settings

Run 1 2 3 4 5
DISK WRITE 512 1024 2048 3072 4096

In this case the read bandwidth is supposed to be twice the write band-
width.
To better investigate the influence of the disk bandwidth on the final time,
a setting with a more narrow bandwidth has been tested. If the results are
acceptably bad, IME could be designed to have cheaper drives and invest
more on more meaningful features.

(5.2)

Disk Bandwidth Experiment

Figure 5.2 Disk bandwidth R/W wall times using a different disk quantity per server

Figure 5.2 shows that the single disk performances really depends on the
configuration installed in a single server. In the extreme case where a single

36

disk is installed per server, single disk performance really matters, being able
to reduce by a factor of 5 the total walltime for the write operation, as the
Write time 1 Disk shows.
Nonetheless a real world server uses 20 disks per server and in this case with
such a parallel environment the single disks performance seems to not matter
at all. What happens in this case is that CML oid s are stored in different
disks, so for such a small transaction is more important the disk latency than
the disk bandwidth, and that factor in this experiment has not been modi-
fied since this should involve a different technology instead of a different SSD
drive.

5.3 Server count

In this experiment the aim is to show which benefits can be obtained in-
creasing the number of servers. The aim of DDN is to be able to make use of
thousands of servers, being able to satisfy a lot of requests at the same time.
The setup used in the experiments are the following:

Run 1 2 3 4 5
SERVER COUNT 4 16 64 256 3000

A large amount of servers are useful to satisfy many more requests at the
same time, but they are not useful in case the clients involved in the simula-
tion are too few, even if they have a large amount of data to communicate.
The firsts runs failed to show any improvement because of too few clients in-
volved in the simulation. More clients has been instantiated communicating
less data at the same time.
The following are the results of the simulation with a different request pattern

Multiple tests has been executed using different configurations. The 2
experiments shown in figure 5.3 are completed using a request of total size
256GB and 8GB.
The test in this experiment are more close to a benchmark than a real case
simulation: since both read and write operation involved the whole dataset,
to better compare the recover operation also the latter has been performed
over the whole dataset. This is not possible in the real world because the
system could not survive to a complete disk failure at the same time, but
for simulation purposes is fair to compare different operation on the same
dataset.

(5.3)

37

Server count Experiment

Figure 5.3 The number of servers seems to not affect much the performance

improvement. At the current time they only allow a bigger total disk capacity

As figure 5.3 shows increasing the number of server does not increase
drastically the overall performances. The experiment about the disk band-
width in section 5.2 showed that the time required for the I/O operations
takes now a small percentage of the total simulation wall time. The real bot-
tleneck in this situation is the network bandwidth: more requests take more
time because of data transfer from client to server and vice versa. To figure
out the load of data to be written from each single disk can be computed
arithmetically. Let

d = initial data

D = total data

gb = geometry base

g+ = geometry plus

38

s = total SSDs

w = SSD′s write speed

From simple arithmetic the total data D and total time T required for
write operations are

D =
d(gb + g+)

gb

T =
d(gb + g+)

gbsw

From this formula can be computed the following data:
Init data(GB) Geometry Total SSDs Write Speed(GB/s) Total Time(s)

8 3+1 8 0.15 0.89
8 3+1 80 1 0.13
8 3+1 320 0.15 0.22
8 3+1 320 1 0.03
8 9+1 80 0.15 0.74
8 9+1 80 1 0.11
8 9+1 320 0.15 0.19
8 9+1 320 1 0.03

256 3+1 80 0.15 28.44
256 3+1 80 1 4.27
256 3+1 320 0.15 7.11
256 3+1 320 1 1.07
256 9+1 80 0.15 23.70
256 9+1 80 1 3.56
256 9+1 320 0.15 5.93
256 9+1 320 1 0.89

Despite in the real simulation network traffic and some more mechanics
makes the data more variable, we can detect a baseline here. The parameter
has been chosen as follows:

• Small and big transaction to show how much the transaction size mat-
ters

• Different geometry to show the influence of geometry

• Different server count to use a more realistic server configuration

• A write speed comparable to an HDD to show the importance of SSDs
in this technology

39

The most realistic configuration is represented by the last line showing
that with a transaction relatively big, still the IO operations takes few time
compared to the total simulation wall time as show in figure 5.3.
To really make use of a big amount of servers, network should scale as well
as servers quantity, at least as total transaction time will be comparable to
the IO times.

5.4 Conclusion

In this thesis we have addressed the problem of performance evaluation for an
existing system and as well performance estimation for non-existing system.
The method has been applied to an industrial Burst Buffer technologies but
can be re-targeted to other component of HPC cluster.
The critical point in the performance evaluation of the complex system, such
as Burst Buffer, is the existence of multiple threshold in the performance
equation. Depending on the quality of the devices, their quantity, the net-
work capabilities, the workload a different bottleneck may be the limiting
factor. This is why engineers need to use such tool in order to quantify and
to balance their system.
During the thesis, additionally to the reverse engineering of the IME Burst
Buffer, important effort has been dedicated to the design and implementa-
tion of a discrete event simulator. Such kind of simulator has been chosen
after a review of the existing trade-off of simulation technologies. We have
executed validation of the simulator on a per component basis. In term of
system integration as the ability to simulate the whole system, we have ex-
ecuted functional tests but fall short for comparing our simulator with real
measurement on IME Burst Buffer.
Two issues have been preventing us to complete this task:

• The component dedicated to the simulation of the network is too sim-
plistic: currently the network topology is considered as a single bus
shared among all the clients and servers while IME network is more
close to a full fat tree. This decision was taken to in order to meet the
deadline and show function validation of the full simulator at the cost
of its accuracy. We plan to complete and demonstrate a more realistic
network component by the time of the defense.

• The execution time of the simulator has not been optimized enough.
Again this was a decision taken to meet the goal; of a functional sim-
ulation of the full scale system. Anyway it appears that simulating
a complex workload on a large scale system may be prohibitive and

40

require hours of execution time. The simulator is still has only a serial
implementation, not taking advantage of a multi-core machine.

Acknowledging these two limitations we consider that the designed sim-
ulator can be helpful in order to guide developers and storage architects
towards a more balanced and scalable system, bringing some value to the
community.
From these 6 months work we think that an important point, if not critical, is
the ability to build a system as a set of articulated components, where com-
ponents can be fed by micro-benchmarks measurements from real systems.
Our work includes two examples with the network performance equation and
the parity computation.
As future work we would like to address first a finer description of the net-
work in order to address the balance between the number of clients and server
depending on the workload. A longer term opening would be the ability to
take as an input and simulate I/O traces, either synthetic or collected on real
life systems.

41

Chapter 6

Glossary

In the main text every topic is explained before it is used implicityl in the
context. Anyway it is easier to dedicate a section with a small explanation
of every detail.

Buffer : short way referring to a Network Buffer. This is a packet of 1
MB of data to be sent or received. From external works we know that this
size is the most suitable to maximize Infiniband performances

CML oid : inside a server, the single packet of data received is split in
CML oid, at byte oriented level, and then written to different devices.

Device: in general a device refers to a server’s SSD

Diagonal Limit : analytical model to simulate the behaviour of the net-
work or disks bandwidth. Explained in detail in section 2.1

Eager Commit : in the server context, metadata propagation is cached
to send as less network communications as possible. If a client has finished
transmitting a file to a server, it will send the last piece of data as an eager
commit, forcing metadata propagation

Geometry : this measure defined as D + P represents how a parity group
is constructed. D represents data packets and P parity ones. See section
4.1.2 for more details

Metadata propagation: in the server context, in order to keep a backup
in case of drive failure, metadata is sent periodically to other servers

Parity Group: in erasure coding context, a request takes part of a Parity
Group. If a single request is corrupted, the others can recover it based on
the additional information, the parity

42

Parity Map: given a packet, it has to keep track of its own parity id and
the location of the others packets belonging to the same parity group. This
information is the parity map

Parity Request : after data corruption, the server asks for the packets with
same parity group id of the packets lost to proceed with recovery

Token: Before starting a packet transmission, the clients need a token.
The token is consumed upon the transmission start and recovered after the
operation being completed, received the acknowledgment from the server

43

Bibliography

[1] Dot language. https://en.wikipedia.org/wiki/DOT_(graph_

description_language).

[2] Python threading module. https://docs.python.org/3/library/

threading.html.

[3] Token ring. https://en.wikipedia.org/wiki/Token_ring.

[4] Jean-Thomas Acquaviva. Data protection and erasure coding. https:

//drive.google.com/file/d/1XFAEAXGlwP_-9AHuDNGwpzjS5TVUO3vU/

view?usp=sharing.

[5] Gregg Brendan. Flamegraph. http://www.brendangregg.com/

flamegraphs.html.

[6] Team Simpy. Container tool. http://simpy.readthedocs.io/

en/latest/api_reference/simpy.resources.html#module-simpy.

resources.container.

[7] Team Simpy. Discrete event simulation for python. https://simpy.

readthedocs.io/en/latest/.

[8] Team Simpy. Resource tool. http://simpy.readthedocs.io/en/

latest/api_reference/simpy.resources.html#module-simpy.

resources.resource.

44

