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Introduction

The overall goal of this thesis is to evaluate the feasibility of FPGA based computer
system in HPC. This works is performed within ExaNeSt, an EU funded project
which aims to develop and prototype energy efficient solutions for the production
of exascale-level supercomputers.

As the matter of fact, the current computer architectures need to be re-thought
in order to reach the exascale performance. Scale current technologies will make
the power consumption so large, that to run and maintain such systems will be
technologically and economically too much demanding.

Let’s take for example the system TSUBAME3.0, the #1 in the Green500 list
of June 2017, which has an energy efficiency of 14.11 GFLOPS/Watt. If we assume
to be able to scale this system without loss of efficiency to reach 1 exaFLOPS, the
resulting system will have a power consumption of 70.9 MW, 500 times more than
the actual power (142 kW).

This makes clear that the power consumption issues demands the study of a
new class of HPC systems based on energy efficient solutions.

The ExaNeSt project is trying to satisfy the energy ef-
ficiency constrain using a Multiprocessor System-on-Chip,
which embeds on the same package ARM cores and a
FPGA. These technologies are designed with special at-
tention to power consumption. The project research area
are interconnection network, storage and cooling systems.

ExaNeSt is involved also in the early development phase of scientific software ap-
plications because this provides hints on how to design the hardware architecture.
This is called co-design approach.

This thesis investigates the High Level Synthesis of OpenCL kernels. We stud-
ied the design and the performance of OpenCL kernel functionality brought into
the programmable logic of a FPGA-based device. We apply this study to offload
the compute intensive part of Molecular Dynamic codes into the FPGA.
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In the rest of the chapter, we give a short overview of key concepts used in
our work. Namely, we briefly review the basic features of a FPGA and we clarify
the meaning of High Level Synthesis. The main aspects of OpenCL are presented
also. Finally, we close the chapter with a short introduction of the computational
method used, the Molecular Dynamics.

FPGA

Field Programmable Gate Arrays are semiconductor devices that are based around
a matrix of Configurable Logic Blocks (CLB in Figure 1) connected via pro-
grammable links. These devices make possible to develop compute functionality
directly at the silicon level managing the connections of the Configurable Logic
Blocks.

Figure 1: FPGA[8].

Hardware Description Language are used to describe the structure and behav-
ior of digital circuits that can be implemented into the FPGA. The major HDL
are VHDL and Verilog, they represent a circuit with Register-Transfer Level ab-
straction, which models a digital circuit as a flow of digital data between registers
and logical operations performed on them.

Hardware Description Languages cannot be considered as usual programming
languages (as C, C++, Python, Fortran ...). HDLs do not provide a list of in-
struction to be executed, they describe a digital hardware which is able to process
the desired signals.

So, it is not possible to simply translate the programming languages instruc-
tions into HDL statements. The usage of High Level Synthesis is needed in order
to get a hardware design from a program code.
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High Level Synthesis

The High Level Synthesis is an automated design process that interprets an algorith-
mic description of a desired behavior and creates digital hardware that implements
that behavior[5].

A High Level Synthesis software takes a function written in a programming
language and produces a hardware description that can be implemented in FPGAs.
In our thesis, we employed Vivado HLS. This tool makes possible to synthesize C,
C++, SystemC and OpenCL functions in Verilog and VHDL. In particular, we
studied the synthesis of kernels written in the OpenCL programming language.

OpenCL

Open Computing Language (OpenCL) is a framework for heterogeneous parallel
computing platforms maintained by the industrial consortium Khronus Group.
OpenCL defines a programming language (derived from C) and a series of Appli-
cation Programming Interfaces for to manage the code execution. The OpenCL
programming language is focus on the execution of many threads in parallel, it is
applicable to different kind of computing devices as graphic cards or other kinds of
accelerators. These devices are integrated in a host computer system that manages
them thought the OpenCL API. Usually, the host computer system and the com-
puting device do not share the same main memory space. OpenCL API provide
also functions to manage transactions between the host and the device.

Figure 2: OpenCL kernel work item index scheme[10].

The functions written in the OpenCL language that run on the computing
device are said kernels. The instructions in a kenel are executed independently
by many work-items. A work-item is identified by a multidimensional index. A
fixed number of work-items are grouped into a work-group. Also, work-groups
are identified by a multidimensional index. This system of indexes is useful to
distribute the work between the work-items in a block fashion way.
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Figure 3: OpenCL memory model[10].

Moreover, OpenCL programming language defines the following memory model
for data declared in kernels:

• the variables in the global memory context can be accessed by every work-
item of every work-group,

• the local memory context contains variables shared between the work-items
of the same work-group;

• the private memory context includes variable which are private with-in each
work-item.

Molecular Dynamic

Molecular dynamics (MD) is a numerical simulation for studying the movements
of particles (atoms or molecules) that can interact between each other for a fixed
period of time. Particles interact through forces that can be calculated using
interatomic potentials or molecular mechanics force fields. Given the total force
acting on each particle, the numerical solution of Newton’s equations of motion
provides the dynamic evolution of the system. Molecular Dynamics is applied to
chemical physics, materials science and bio-molecular modeling.

In Chapter 3, we analyze the synthesis of an OpenCL kernel that computes
interatomic forces using the Lennard-Jones potential. We decide to concentrate our
study on this operation because it is the most time-consuming part of Molecular
Dynamics simulations.
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Chapter 1

Hardware and software platform

In this chapter, we introduce the hardware and software platform adopted for this
work. First of all, we describe the Xilinx Zynq Ultrascale+ device architecture and
the AXI protocol, which manages its internal communication. Then, we show the
software workflow that allows to port in the device an OpenCL kernel. In the last
section, we consider the programming paradigm adopted to write OpenCL code
that can be efficiently synthesized for the FPGA.

1.1 Hardware kit

The goal of the ExaNeSt project is to develop a board, which contains four Xilinx
Zynq Ultrascale+ chips. During the design finalization and production of the
board, the ExaNeSt project employs the Trenz Starter Kit 808 1 as testbed. Such
a board is composed of

• a Trenz TE0808-03 module equipped with a Xilinx Zynq Ultrascale+ XCZU9EG
MPSoC and 2 GByte of DDR memory shown in Figure1.1[a];

• a Trenz TEBF0808-04A carrier board, which mounts the Trenz TE0808-03
module shown in Figure1.1[b].

The carrier board is placed inside a conventional ATX case (Figure1.1[c]). The
power supply came from a standard ATX PSU. We employed this kit in order to
test and analyze the capabilities of the Zynq Ultrascale+ MPSoC.

1https://wiki.trenz-electronic.de/display/PD/Starter+Kit+808
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(a) TE0808-03 module (b) Carrier board (c) Board case

Figure 1.1: Trenz Starter Kit 808

1.2 Zynq Multiprocessor System-on-Chip

The XCZU9EG chip belongs to the Xilinx Zynq Ultrascale+ EG MPSoC pro-
duction line. MPSoC stands for Multiprocessor System-on-Chip, which identifies
a system-on-a-chip which uses multiple heterogeneous processors. In particular,
Zynq devices are divided in two parts (Figure 1.2): the Processing System (PS)
and the Programmable Logic (PL), which is the FPGA itself.

Figure 1.2: Xilinx Zynq Ultrascale+ EG
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1.2.1 Programmable System (PS)

The Programmable System of our Zynq device contains, among the others, the
following units:

• Application Processing Unit (APU). Quad-core ARM Cortex-A53 with 32KB
L1 Cache and 1MB L2 Cache. ARM cores embed the NEON (advanced
SIMD) technology for Single/Double Precision Floating Point computing.
The APU is designed to carry out general purpose tasks as running an OS or
performing floating-point computing. The clock frequency is up to 1.5 GHz.

• Real Time Processing Unit (RPU). Dual-core ARM Cortex-R5 with 32KB
L1 Cache. The RPU is used for safety critical operations, which need to
respond in a deterministic time. The clock frequency is up to 600 MHz.

• Graphics Processing Unit (GPU). ARM Mali-400 MP2 with 64KB L2 Cache.
The GPU can be used exclusively for graphics and is not suitable for general
computing tasks [2, p.44]. The clock frequency is up to 667 MHz.

• Dynamic Memory Controller (DDRC). A multi-ported memory controller
that enables the PS and the PL to share the access to the DDR memory.

In this work, we employ the Application Processing Unit (APU) in order to
drive the design in the Programmable Logic. The same task could be done also
by the Real Time Processing Unit (RPU). We decide to use the APU because it
is faster, its clock is higher and thus more appropriate for HPC. The RPU is best
suited to execute tasks that require real-time processing.

1.2.2 Programmable Logic (PL)

The Programmable Logic contains the FPGA, an integrated circuit that can be
programmed after fabrication. The FPGA contains various types of Configurable
Logic Blocks, that can be wired together and configured in different ways. The
main types of Configurable Logic Block are:

• Lookup Tables (LUT) are truth tables in which each combination of inputs
returns an output. LUTs are capable to implement any Boolean logic func-
tion.

• Flip Flops (FF) store Boolean values. The input data is latched and passed
to the output port on every clock cycle.
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• Digital Signal Processing (DSP) are complex computational unit. The DSP
are arithmetic logic units composed by three different stages: the pre-adder,
the multiplier and the add/accumulate engine. These blocks implement func-
tion of the form P = B(A+D) + C or P+ = B(A+D).

• Block RAM (BRAM) are dual-port RAM modules, they can provide access
to two different locations during the same clock cycle. Each BRAM can hold
18k or 36k bits. Not only BRAM can store data, LUTs can be used as 64-bit
memories. LUT memories are fast because they can be instantiated in any
part of the Programmable Logic, this reduce routing problem and increase
performances.

Table 1.1 shows the total number of each Configurable Logic Block type in our
device.

LUT FF DSP BRAM 18K
548160 274080 2520 1824

Table 1.1: Available resources in the Programmable Logic of XCZU9EG.

1.2.3 Connections between PL and PS

The connections between PL and PS is one of the key point of our device. On
Zynq Ultrascale+ devices, a total of 12 interfaces connect the PL with the PS.
They are divided in Master and Slave interfaces.

The Master interfaces allows the PS to control the PL. They are M AXI HPM0 LPD
and M AXI HPM[0-1] FPD in Figure 1.3.

The Slave interfaces allows the PL to access the PS. These interfaces are usu-
ally provide connections to the DDR memory subsystem. This is the case of
S AXI HPC[0-1] FPD, S AXI HP[0-3] FPD and S AXI LPD shown in Figure
1.3.

In our work, we use only the S AXI HP[0-3] FPD interfaces because their
specific function is to exchange (with high-performance) large data sets between
the DDR memory and the PL. The interfaces S AXI HPC[0-1] FPD have the
same purpose, but they pass through the cache coherency interconnect (CCI)
which manages cache coherency within the APU. We do not use them because we
do not need this feature.
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Figure 1.3: PL and PS interfaces

1.3 AXI protocol

In this section, we introduce the AXI protocol: an on-chip interconnect specifica-
tion for the connection and management of functional units in a System-on-Chip.
This protocol plays an important role in our work because it manages the commu-
nications between the PL and the PS. It allows to control the PL and to connect
the PL to the DDR memory.

There are three types of AXI buses/interfaces:

• AXI3/AXI4 for high-performance memory-mapped transactions. It allows
burst of up to 16 for AXI3 and 256 for AXI4 data transfer cycles with just a
single address phase. We use it to connect the functional blocks to the DDR
memory.

• AXI4-Lite for simple, low-throughput, single memory-mapped transaction.
We use it to control and to set the status of the functional blocks in PL.

• AXI4-Stream for high-performance stream (not mapped) transactions.

The AXI Master interfaces start AXI transactions to communicate with AXI
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Slave interfaces. The transaction involve data exchange between the master and
slave on multiple channels.

Memory-mapped transactions (performed by AXI4 and AXI-Lite) involves data
transfers over a memory space mapped by addresses. Stream transactions do not
involve a mapped memory space.

1.3.1 Burst memory access

The key feature of the AXI protocol are the burst memory transactions. The mas-
ter begins each burst by driving control information and the address of the first byte
in the transaction to the slave. As the burst progresses, the slave must calculate the
addresses of subsequent transfers in the burst[3], said beats. Having a single burst
instead of multiple single memory transactions simplifies a lot the communication
between the master and the slave. They need to exchange less control/synchro-
nization messages improving the overall performance of transactions.

A burst is defined by the following characteristics.

• Burst size is the number of bytes transferred in each beat.

• Burst length is the total number of beats that form the burst.

• Burst type can be INCR, FIXED and WRAP. In a FIXED burst, the address
is the same for every beat. This kind of burst is useful to empty FIFOs. In
an INC burst, the address for each beat is an increment of the address of the
previous one. The INC burst is used to access sequential memory locations.
A WRAP burst is similar to an INC burst, except that the address wraps
around to a lower address if an upper address limit is reached. This burst
type is used for cache line accesses[3].

In our work, when we refer to burst, we mean the INC type. We use it in order
to transfer sequential DDR memory locations form/to the PL. In Section 2.1.2, we
present experimental results that show the importance of bursts.

Note. The burst size must not exceed the data bus width of either interface
involved in the transaction. Otherwise, the transaction does not take place.
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Note on Zynq. The internal Programmable System interfaces are AXI3 compli-
ant, while the Programmable Logic interfaces are AXI4 compliant. The AXI3/AXI4
conversion takes place transparently in the Programmable System. For that rea-
son, the maximum burst length for our device is 16 (i.e. the maximum burst length
for AXI3 interfaces).

1.4 Software workflow

The implementation of kernels written in OpenCL programming language on a
Zynq Ultrascale+ device involves three steps. Each step is performed by means of
a software tool belonging to the Xilinx Vivado Suite2. We provide details of each
step in the following sections.

1.4.1 Vivado High Level Synthesis

Vivado HLS performs the High Level Synthesis of existing codes written in C,
C++, SystemC and OpenCL programming language. Vivado HLS takes a func-
tion written in such languages and produces a Register-Transfer Level design that
models such function in a digital circuit. The synthesis of OpenCL kernels pro-
duces functional blocks having

• an AXI4-Lite Slave interface for block control and kernel arguments trans-
mission (s axi control in Figure 1.4);

• an AXI4 Master interface for the connection to the DDR memory subsystem
(m axi gmem in Figure 1.4).

These are the conventional interfaces for the OpenCL kernel synthesis. The de-
signer cannot specify them otherwise. The synthesis of C, C++ and SystemC codes
gives the possibility to choose more interface type and tune different parameters.
More details on [7].

Vivado HLS supports version 1.0 of the OpenCL programming language. More-
over, it provides various directive in order to optimize the code synthesis. The most
fundamental directives deal with the aspects of loop optimization and memory par-
tition. The goal of the designer is to annotate the code with directives in order
to produce a design with better performance. The directive list is available in [9].
These aspects are discussed in details in Section 1.5.

2http://www.xilinx.com/products/design-tools/vivado.html
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Figure 1.4: Synthesized functional block.

Vivado HLS at the end of the step produces a functional block (Figure 1.4)
and a control driver written in C. The functional block needs then to be integrated
within the Processing System by means of Vivado IDE. The driver is used to write
a program running on the Programmable System that controls the functional block
in the Programmable Logic.

Remark. The OpenCL programming language is no longer use beyond this step.

1.4.2 Vivado Integrated Design Environment

Vivado IDE is a design environment for Xilinx FPGAs. It creates, synthesizes,
implement designs. We use Vivado IDE in order to integrate the functional block
created in the previous step within the Zyqn Ultrascale+ device.

Figure 1.5: Project design.

After the creation of a valid design project (Figure 1.5), the following steps
bring to the production of a bitstream, which contains information for the config-
uration of the FPGA logic.

• The synthesis is the process of transforming an RTL design into a FPGA
logic representation. It starts from a Hardware Description Language listing
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(Verilog or VHDL) and creates a lower level logic abstraction involving the
Configurable Logic Blocks of the FPGA. The synthesis is performed for every
block in the project design.

• The implementation places and routes the results of the block synthesis into
the FPGA device resources while meeting the logical, physical, and timing
constraints of the design. An important phase is the static timing analysis.
This process calculates the timing delays of routes in order to verify if the
clock constrains are meet.

• The bitstream generation produces the configuration bits that encode the
result of the implementation. The bitstream is the data that is materially
loaded into the FPGA logic.

The output of the Vivado IDE step is a Hardware Platform Specification File
(.hdf extension). This file is a zip archive containing the bitstream, the functional
block driver (created by Vivado HLS) and other various board configuration files.
This archive is the starting point for board code development performed in the
next step.

1.4.3 Xilinx Software Development Kit

Xilinx SDK is a software development environment based on Eclipse which makes
possible to develop, debug and test C/C++ codes which control the functional
blocks built in the Programmable Logic. These codes run on the Programmable
System in the APU (our case) or in the RPU.

It must be noted that the proposed workflow do not use the OpenCL host
code in order to control the logical blocks. The control code running on the Pro-
grammable System follows a completely different approach. Essentially, there is a
reserved memory location for each functional block. The slave AXI4-Lite interface
s axi control (in Figure 1.4) is used to read/write such memory location in
order to get/set the control status of the block.

The block control is managed by four signals: start, ready, idle and done.

• The start signal is set to high in order to start the computation on the
functional block.

• The idle signal is asserted to low when the functional block is operating.
It is high when the computation is completed.
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• The ready signal is asserted to high when all the inputs are read and the
functional block is ready to accept new inputs.

• The done signal is asserted to high when the functional block has finished
its operations and the outputs can be read.

These signals can be get/set through the C driver created by Vivado HLS.
The start signal is set to high invoking XBlockname Start function. The
status of ready, idle and done signals are returned by XBlockname IsDone,
XBlockname IsIdle and XBlockname IsReady functions. Where Blockname
is the name of the functional block.

Furthermore, using Xilinx SDK it is possible to flash the FPGA if it is connected
to the computer by a JTAG interface.

1.5 OpenCL from the FPGA prospective

The workflow described in the previous sections allows us to

• implement one or more compute units in the Programmable Logic;

• run a code in the Programmable System APU that is able to control compute
units in the Programmable Logic.

We considered a compute unit as a digital circuit which performs the tasks
of a working group of the corresponding OpenCL kernel. The following sections
introduce how the OpenCL paradigm is applied to Zynq Ultrascale+ devices.

1.5.1 Computing aspects

The key concept in accelerator devices (as GPUs) is to have many independent
working items running in parallel. It is different for FPGAs. Vivado HLS makes the
execution of the working items sequential. Essentially, it puts the working items in
a loop over their id. This loop can have variable or fixed bounds. In case of fixed
boundaries Vivado HLS can optimize the size of local memories and provide the
estimation of latency. The programmer can define the loop boundaries by setting
the attribute reqd work group size. This attribute specifies the size of the
working group executed by a compute unit.
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1 __attribute__ ((reqd_work_group_size(128, 64, 8)))
2 __kernel void foobar( ... )
3 {
4 int i = get_local_size(0);
5 int j = get_local_size(1);
6 int k = get_local_size(2);
7
8 ... // code to be executed
9

10 }

Listing 1.1: reqd work group size example.

Listing 1.1 defines a kernel having the working group dimension of 128, 64 and
8 work items. Vivado HLS transparently trasforms this kernel in a function shown
in Listing 1.2.

1 void foobar( ... )
2 {
3 for(int i = 0; i<128; ++i)
4 for(int j = 0; j<64; ++j)
5 for(int k = 0; k<8; ++k)
6 {
7 ... // code to be executed
8 }
9 }

Listing 1.2: Listing 1.1 transformation.

This code transformation makes loops very important. In fact, the main goal
of the developer is to modify the kernel code in order to create efficient loops. The
following characteristics are considered in loop optimization.

• Count : total number of loop iterations.

• Iteration latency : number of clock cycles spent for each iteration.

• Total latency : number of clock cycles spent for the entire loop.

Vivado HLS provides some directives in order to make loops run more effi-
ciently. These directives deal with two standard loop optimization techniques:
pipelining and unrolling. In the following sections, we explain the meaning of
these techniques in High Level Synthesis.
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Pipelining

Accordingly to [4, p.20]: Pipelining is a digital design technique that allows the
designer to avoid data dependencies and increase the level of parallelism in an
algorithm hardware implementation. The data dependence in the original software
implementation is preserved for functional equivalence, but the required circuit is
divided into a chain of independent stages. All stages in the chain run in parallel
on the same clock cycle. The only difference is the source of data for each stage.
Each stage in the computation receives its data values from the result computed by
the preceding stage during the previous clock cycle .

Figure 1.6: FPGA implementation without pipeline[4]. This design is made of 5
stages: A, B, C, D and E. There are just two registers, one at the beginning and
one at the end. Just one signal per clock cycle can traverse all the stages.

This design makes possible to different loop iterations to be inside the pipeline
at the same time. The number of clock cycles between the start time of consecutive
iterations is said Initialization Interval (II). Vivado HLS tries to set II equals to 1
(i.e. a new iteration starts for each clock cycle). This is not always possible. The
developer can also suggest the value of II.

Figure 1.7: FPGA implementation with pipeline[4]. It is possible to pipeline the
design in Figure 1.6 adding a register after each stage. In this way different signal
can occupy different stage of the design in the same clock cycle.

Two kinds of attributes can be used to pipeline loops: xcl pipeline loop
and xcl pipeline workitems.
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The first attribute annotates for loops inside each work item. Listing 1.3
shows a code in which the for loop in line 5 is pipelined. It must be noted
that the loop over all work-item ids (we remind that Vivado HLS substitute the
parallelization over the work item with for loops as show in Listing 1.1 e 1.2.) is
not executed in pipeline.

1 __attribute__ ((reqd_work_group_size(128, 1, 1)))
2 __kernel void foobar( ... )
3 {
4 __attribute__((xcl_pipeline_loop))
5 for(int i=0; i<8; ++i)
6 {
7 ... // code to be executed
8 }
9 }

Listing 1.3: xcl pipeline loop example.

If we want to pipeline the work items, it is possible to use xcl pipeline workitems
attribute. This attribute annotates the instructions that are executed in pipeline
in the work item loop created by Vivado HLS. For example, the instructions inside
the curly bracket at line 6 in Listing 1.4 are executed in a pipeline.

1 __attribute__ ((reqd_work_group_size(128, 1, 1)))
2 __kernel void foobar( ... )
3 {
4 __attribute__((xcl_pipeline_workitems))
5 {
6 ... // code to be executed
7 }
8 }

Listing 1.4: xcl pipeline workitems example.

The effect of pipelinig is to reduce the total latency of loops. In fact, the total
latency with and without pipeline can be computed as

total latency no pipe ≈ iteration latency × loop count

total latency pipeline ≈ iteration latency +
(
II × loop count

)
The iteration latency in the two cases could be different, the insertion of mul-

tiple register can increase the iteration latency of the pipelined design. However,
loop pipeling has been always advantageous in designs developed for our study.
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Unrolling

The purpose of the loop unroll is to reduce the loop count and to execute different
loop iteration at the same time. This can reduce latency and improve perfor-
mance, but also consumes more FPGA resources. In fact, the stages needed by
one iteration are replicated inside the FPGA.

The attribute opencl unroll hint(n) unrolls a loop with a factor of n.
It is also possible unroll completely a loop using the opencl unroll hint at-
tribute alone as shown in Listing 1.5.

1 __attribute__ ((reqd_work_group_size(128, 1, 1)))
2 __kernel void foobar( ... )
3 {
4
5 __attribute__((opencl_unroll_hint))
6 for(int i=0; i<8; ++i)
7 {
8 ...
9 }

10
11 }

Listing 1.5: opencl unroll hint example.

Very Important Note. It is not possible have nested pipelines and loops inside
a pipeline. In the case there is a loop inside a pipeline it needs to be completely
unrolled otherwise the pipeline cannot be created. The complete unroll is done in
automatic by Vivado HLS, but this implies that the inner loops need to have a
count known at compile time.

1.5.2 Memory aspects

It is important to note that the Programmable Logic and the Programmable Sys-
tem share the same DDR memory space. The developer does not need to transfer
data between the host and the device memories using OpenCL API.

Global memory

The global memory is accessible by the Programmable System and all the compute
units built in the Programmable Logic. This memory takes place in the DDR chips
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on the Trenz TE0808-03 module (in Figure 1.1[a]) outside of the Zynq Ultrascale+
device.

We usually connect the master interface m axi gmem (Figure 1.4) of the com-
pute units to the slave interface S AXI HP[0-3] FPD (Figure 1.3) of the PS. In
this way, the compute units can access the DDR memory passing through the PS
memory subsystem.

This memory context is accessed using global pointers passed as kernel argu-
ments. The width of the master interface m axi gmem is equal to the largest type
define as global pointer in the kernel arguments. For example, the synthesis of
the kernel in Listing 1.6 produces a compute unit in which the master interface is
wide 32bit, the size of int. To maximize the data throughput, it is recommended
to choose data types that have the same size of S AXI HP[0-3] FPD width. In
Section 2.1.1, we show experimental measure of the data throughput varying the
argument datatype.

It is recommended to transfer data in bursts because this hides the memory
access latency and improves bandwidth utilization. A dramatic improvement in
data throughput is confirmed by the experimental results shown in Section 2.1.2.
There are two ways to trig the bursts:

• using the async work group copy function from the OpenCL program-
ming language,

• requesting data from consecutive address locations in a pipelined loop.

The codes in Listing 1.6 and 1.7 do the same think. They read 128 elements of
in, store the values in the local array in buff, do some works, write the content
of out buff in out.

1 __attribute__ ((reqd_work_group_size(128, 1, 1)))
2 __kernel void foobar(__global int * in, __global int * out)
3 {
4 __local int in_buff[128], out_buff[128];
5
6 event_t e_in = async_work_group_copy(in_buff, in, 128, 0);
7 wait_group_events(1, &e_in);
8 ...
9 event_t e_out = async_work_group_copy(out, out_buff, 128, 0);

10 wait_group_events(1, &e_out);
11
12 }

Listing 1.6: async work group copy burst example.
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The synthesis of Listing 1.6 produces two pipelines, one for each async work group copy
function. Listing 1.7 produces only one pipeline. A pipeline can contain at most
one burst write and one burst read, other memory transactions in the pipeline are
not executed in burst.

1 __attribute__ ((reqd_work_group_size(128, 1, 1)))
2 __kernel void foobar(__global int * in, __global int * out)
3 {
4 __local int in_buff[128], out_buff[128];
5
6 __attribute__((xcl_pipeline_workitems))
7 {
8 in_buff = in[get_global_id(0)];
9 ...

10 out[get_global_id(0)] = out_buff;
11 }
12
13 }

Listing 1.7: Inferred burst example.

Local and Private memory

The private and local memory contexts identify variable that are stored in
BRAM and LUT inside the Programmable Logic. These memories are very fast
but their size is in the order of few MByte. This space is not small if compared
with the size of the registers and the local memory in GPUs, which are in the
order of some KByte.

The BRAMs can provide two memory accesses to different location at the
same clock cycle. In the case in which an array needs to be accessed more than
two times per clock cycle, it is possible to spread its content on multiple BRAMs.
This practice is said array partition, it allows to improve data throughput inside
the Programmable Logic making possible to access more data for each clock cycle.
Various types of partitioning exist:

• cyclic is performed by putting consecutive array elements into different par-
titions in a round robin fashion;

• block is done by filling each partition with consecutive array elements;

• complete decomposes the array into individual elements.
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It is possible to partition arrays using the xcl array partition attribute
as shown in Listing 1.8. For example, bufA and bufB are spread on 4 cyclic/block
partitions. Whereas, bufC is totally decomposed in 32 elements.

1 __attribute__ ((reqd_work_group_size(...)))
2 __kernel void foobar( ... )
3 {
4
5 int bufA[32] __attribute__((xcl_array_partition(cyclic,4,1)));
6 int bufB[32] __attribute__((xcl_array_partition(block,4,1)));
7 int bufC[32] __attribute__((xcl_array_partition(complete,1)));
8
9 ...

10
11 }

Listing 1.8: Partitioning example.

Vivado HLS analyses how arrays are accessed in order to partition them au-
tomatically. Sometimes, it fails. In that case the developer can partition them
manually as in Listing 1.8.
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Chapter 2

Performance analysis

This chapter describe the tests performed in order to understand how to write
efficient codes for the Zynq Ultrascale+ device. The simplicity of the considered
codes allows us to practice on the concepts introduced in the previous chapter and
to build up an idea about the performance of our device.

2.1 Data throughput

We consider the data throughput as the rate at which data in the DDR memory
can be transmitted and processed by the Programmable Logic of our device.

In the following section, we analyze the data throughput of different OpenCL
kernels that performs the addition of two floating-point arrays and store the result
in a third. We choose the array addition operation because it is usually a band-
width bounded problem. In this way, we are able to study in detail which is the
best approach to exploit the available bandwidth of our device.

We evaluate the data throughput measuring the execution time spent by Com-
pute Units in the Programmable Logic to perform the array addition. The data
throughput can be computed as

data throughput =
data write + data read

execution time

In our tests, we performed the sum of 512 MB1 sized floating point arrays. So,
data write = 512 MB and data read = 1024 MB.

11 Megabyte = 1024 Kilobyte = 1024 * 1024 Bytes
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2.1.1 Test argument datatype

In this section, we measure the data throughput varying the datatype of global
pointers in the kernel arguments. The size of the datatype becomes the width
of the Compute Unit master interface (m axi gmem in Figure 1.4). The master
interface connects the Compute Unit to the DDR memory.

1 __kernel void __attribute__((reqd_work_group_size(WGSIZE, 1, 1)))
2 vadd(__global FTYPE *a, __global FTYPE *b, __global FTYPE *c)
3 {
4 __attribute__((xcl_pipeline_workitems))
5 c[get_global_id(0)] = a[get_global_id(0)] + b[get_global_id(0)];
6 }

Listing 2.1: Kernel code.

Listing 2.1 shows the considered OpenCL kernel. It is a plain array addition
kernel which has been annotated with just two directive: the first at line 1 sets
the work group size to WGSIZE, the second at line 4 creates a pipeline for the
element summation. We kept the kernel code as simple as possible in order to
observe the behavior of the Vivado HLS synthesis. It creates a pipeline with II
(Initiation Interval) = 2, infers the burst write of c and reads a and b with single
transactions (no burst).

We synthesized three different versions of this kernel varying the aggregate
width of the vector type in kernel arguments. The size of the work group was
changed in order to maintain constant the total number of work groups (see Table
2.5). In this way, the overhead to launch the work groups on the Compute Units
is the same for all the three cases.

FTYPE WGSIZE Master
interface width

float 2048 32
float2 1024 64
float4 512 128

Table 2.1: Kernel parameters.

We implemented the three Compute Unit in three different projects, all of them
having the same design shown in Figure 2.2. In practice, we connected the master
interfaces of 16 Compute Units to the same slave interface S AXI HP0 FPD. So,
up to 16 CU share the DDR memory access through that slave interface. We set
the width of S AXI HP0 FPD to its maximum (128 bit) and the Programmable
Logic clock frequency to 100Mhz.
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Results

For each project, we evaluate the data throughput increasing the number of used
Compute Unit: 1, 2, 4 and 16. The results are shown in Table 2.2 and plotted in
Figure 2.1. We can make the following observations.

• Data throughput increases linearly respect to the width of the CU master
interface. It is maximum when the master interface have the same width of
the slave interface, i.e. 128 bit.

• Data throughput do not increase further if more than 4 CU are used.
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Figure 2.1: Plot of the data throughput varying master interface width and the number
of used Compute Unit.

CU → 1 2 4 8 16
float4 [128 bit] 665.56 701.32 734.13 745.35 742.06
float2 [64 bit] 273.60 342.54 372.94 373.20 372.49
float [32 bit] 139.17 163.67 183.01 186.34 186.31

Table 2.2: Values expressed in MB/s of the data throughput varying master interface
width and the number of used Compute Unit.
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Figure 2.2: Project design: test argument datatype.
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2.1.2 Test burst memory access

In the following section, we evaluate how data throughput changes when we
enable or disable bursts. For these tests, we use all the four slave interface
(S AXI HP[0-3] FPD) in order to connect the Compute Units to the DDR mem-
ory. Furthermore, we test also the data throughput with different clock frequencies
of the PL.

Listing 2.2 shows a kernel that performs all memory accesses in bursts. It
operates on float4 arrays because it is more efficient (as confirmed by tests in
the previous section). This kernel contains two pipelines:

• the first at line 8 reads the values of a and stores them in priv a,

• the second at lines 12-13 reads the values of b and stores them in priv b
and then stores the sum of priv a and priv b in c.

Vivado HLS infers a burst read for the first pipeline. For the second, a burst
read and a burst write. In fact, Vivado HLS is able to infer bursts in at most one
sequential read and one sequential write per pipeline.

1 __kernel void __attribute__ ((reqd_work_group_size(512,1,1)))
2 vadd(__global float4 *a, __global float4 *b, __global float4 *c)
3 {
4
5 float4 priv_a, priv_b;
6
7 __attribute__((xcl_pipeline_workitems))
8 priv_a = a[get_global_id(0)];
9

10 __attribute__((xcl_pipeline_workitems))
11 {
12 priv_b = b[get_global_id(0)];
13 c[get_global_id(0)] = priv_a + priv_b;
14 }
15
16 }

Listing 2.2: Burst access.

In order to evaluate the data throughput without bursts, we wrote another
kernel modifying Listing 2.2 to avoid them. In sake of this, we simply reversed
the sequential access of the arrays: we substituted get global id(0) with
LAST-get global id(0) in lines 8,12 and 13. Where LAST is the index of
the last element of the arrays. In this way, Vivado HLS is no more able to infer
bursts.
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In both kernels, Vivado HLS is able to create the pipelines with II (Initiation
Interval) = 1. We synthesize these two kernels varying the clock frequency of the
Programmable Logic to 100 , 200 and 300 MHz. For each frequency, we put the two
kernels in two different projects. Their design is shown in Figure 2.4. There are
8 Compute Units in this design. We employed all the four S AXI HP[0-3] FPD
slave interfaces: two Compute Units are connected to one slave interface. So, at
most 2 CU share the DDR memory access through the same slave interface.

Results

For each project, we evaluated the data throughput (with and without the burst)
increasing the number of used Compute Units from 1 to 8. The results are shown
in Table 2.3 and 2.4 and plotted in Figure 3.2. We can make the following obser-
vations.

• Burst memory transaction are fundamental to achieve good performance.
The peak data throughput in this case is 8000 MB/s. Without burst, the
peak performance drops to 2311 MB/s.

• The increase of the PL clock frequency produces a higher data throughput,
especially in case of burst.

• In case of burst, higher is the PL clock frequency less CU are needed to get
a high data throughput.

CU → 1 2 3 4 5 6 7 8
300 MHz 4402.1 6985.1 8000.2 7589.6 7706.2 7881.5 7701.4 7586.2
200 MHz 2988.5 5723.0 7403.0 7249.7 7129.8 7510.9 7353.7 7195.9
100 MHz 1534.6 3081.7 4619.4 6189.5 6275.8 6741.9 7000.4 6960.1

Table 2.3: Burst data throughput [MB/s] varying PL clock frequency and number of
CU used.
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CU → 1 2 3 4 5 6 7 8
300 MHz 1007.9 1650.6 1899.9 2216.5 2206.1 2231.5 2239.4 2311.2
200 MHz 1001.4 1616.7 1882.0 2199.9 2189.6 2215.6 2222.8 2301.5
100 MHz 529.56 1001.3 1515.1 1955.6 2032.7 2117.3 2200.3 2275.5

Table 2.4: Data throughput [MB/s] without burst varying PL clock frequency and
number of CU used.
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Figure 2.3: Data throughput with/without burst varying PL clock frequency.

33



va
dd

_2
bl

oc
ks

s_
ax

i_
co

nt
ro

l

s_
ax

i_
co

nt
ro

l1

M
00

_A
X

I

va
dd

_2
bl

oc
ks

1

s_
ax

i_
co

nt
ro

l

s_
ax

i_
co

nt
ro

l1

M
00

_A
X

I

va
dd

_2
bl

oc
ks

2

s_
ax

i_
co

nt
ro

l

s_
ax

i_
co

nt
ro

l1

M
00

_A
X

I

va
dd

_2
bl

oc
ks

3

s_
ax

i_
co

nt
ro

l

s_
ax

i_
co

nt
ro

l1

M
00

_A
X

I

va
dd

_0

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

va
dd

_1

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

va
dd

_1

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

ax
i_

in
te

rc
on

ne
ct

_0

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I
M

00
_A

X
I

S
01

_A
X

I

va
dd

_0

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

va
dd

_1

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

va
dd

_0

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

ax
i_

in
te

rc
on

ne
ct

_0

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I
M

00
_A

X
I

S
01

_A
X

I

va
dd

_0

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

va
dd

_1

V
ad

d 
(P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_g
m

em

ax
i_

in
te

rc
on

ne
ct

_0

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I
M

00
_A

X
I

S
01

_A
X

Iax
i_

in
te

rc
on

ne
ct

_0

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I
M

00
_A

X
I

S
01

_A
X

I

zy
nq

_u
ltr

a_
ps

_e
_0

Z
yn

q 
U

ltr
aS

ca
le

+
 M

P
S

oC
 (

B
et

a)

M
_A

X
I_

H
P

M
0_

F
P

D

M
_A

X
I_

H
P

M
1_

F
P

D

S
_A

X
I_

H
P

0_
F

P
D

S
_A

X
I_

H
P

1_
F

P
D

S
_A

X
I_

H
P

2_
F

P
D

S
_A

X
I_

H
P

3_
F

P
D

ps
8_

0_
ax

i_
pe

rip
h1

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

ps
8_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t (
P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

Figure 2.4: Project design: test burst memory access.
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2.2 Floating Point Arithmetic

It is not easy to evaluate the floating-point peak performance of FPGAs. The
Programmable Logic of the Zynq Utrascale+ devices lacks of specific units for
floating-point computation. The floating-point operations need to be synthesized
using the Configurable Logic Blocks. For example, floating-point additions are
implemented using 2 DSP and a variable number of FF and LUT, depending on
the PL clock frequency.

In order to have a rough idea about the floating-point performance, we followed
the guideline in [6]. This white paper suggests to test a design that occupy most of
FPGA resources performing floating-point additions at the maximum FPGA clock
frequency. It is hard to successfully implement useful kernels in sake of to occupy
most of the resources with a high clock frequency. Usually, the implementation fails
for routing problems. Especially, when the synthesized kernel performs floating-
point operations.

So, we developed a kernel (in Listing 2.3) that can be synthesized without
problems using almost all the available DSPs, which are one of the key components
of arithmetic operations. This kernel does a simple and useless operation: it sums
recursively a float value with itself and an increasing index. In particular,

• lines 10-17 read the N FLOAT float values in burst, and store them in the
private array p[];

• lines 19-23 perform the floating point computation: they sum recursively
N FLOP times the values of p[] with themselves and the index r;

• lines 26-33 burst write the content of p[] in the global memory.

It is possible to increase the number of floating point operations easily changing
the N FLOP parameter. Moreover, it is possible to maintain constant the number
of floating-point addition units varying the UNROLL parameter.

N FLOP UNROLL used DSP
39 32 2496 (99%)
78 16 2496 (99%)
624 2 2496 (99%)

Table 2.5: Kernel parameters and PL resource usage.

Three different Compute Units are synthesized and implemented in three projects.
We choose three couples of N FLOP and UNROLL values (Table 2.5) in order to
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keep constant the number of floating-point addition units (and as a consequence
the number of DSPs).

The project design is very simple, there is only one Compute Unit connected to
the slave interface S AXI HP0 FPD, as shown in Figure 1.5. The Programmable
Logic clock frequency is 300 MHz.

1 __kernel void __attribute__ ((reqd_work_group_size(1, 1, 1)))
2 flop(__global float4 *g, int enable)
3 {
4
5 float p[N_FLOAT]
6 __attribute__((xcl_array_partition(cyclic,UNROLL,1)));
7
8 int l1_it = (enable==0)? 0 : N_FLOAT;
9

10 __attribute__((xcl_pipeline_loop))
11 load:for(int i=0; i < N_FLOAT/4; ++i)
12 {
13 p[4*i] = g[i].x;
14 p[4*i+1] = g[i].y;
15 p[4*i+2] = g[i].z;
16 p[4*i+3] = g[i].w;
17 }
18
19 __attribute__((xcl_pipeline_loop))
20 l1:for(int I=0; I < l1_it; I+=UNROLL)
21 l2:for(int i=0; i < UNROLL; ++i)
22 l3:for(int r=0; r < N_FLOP; ++r)
23 p[I+i] = p[I+i] + ((float)r);
24
25
26 __attribute__((xcl_pipeline_loop))
27 write:for(int i=0; i < N_FLOAT/4; ++i)
28 {
29 g[i].x = p[4*i] ;
30 g[i].y = p[4*i+1];
31 g[i].z = p[4*i+2];
32 g[i].w = p[4*i+3];
33 }
34
35 }

Listing 2.3: Kernel code

36



Results

We measured the execution times of the three kernel versions for a fixed size
problem. We compute the FLoating-point Operation per Second as

FLOPS =
number of float adds

execution time

the results are shown in the 3rd column of Table 2.6.

Moreover, we measure execution times of the kernels performing just the mem-
ory transactions (without computation). This let us to measure the data trans-
action time in order to estimate the FLOPS excluding the data communication.
This estimation considers only the floating-point computation performed by the
PL, when data is already available in PL internal memory. These results are shown
in the 4th column of Table 2.6.

We have the following observations.

• More number of operations performed for each input (i.e. N FLOP) produces
better FLOPS performance. This shows that the limiting factor is the data
throughput.

• The performance computed excluding the memory transaction are constant
as the number of floating-point addition units.

We want to stress out the fact that the measured performance are related to
the particular design developed. These results can give only a rough idea about
the performance of our device. We believe, that it would be very hard to get
performance of the same magnitude solving useful real-world problems.

N FLOP UNROLL overall compute only
GFLOPS GFLOPS

39 32 21.5 347.3
78 16 40.5 347.1
624 2 178.3 347.3

Table 2.6: Performance results.
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Chapter 3

Molecular Dynamics

In this chapter, we analyze the implementation of the Molecular Dynamics force
compute kernel into the Programmable Logic of our Zynq Ultrascale+ device.
Molecular Dynamics simulation algorithm involves many steps. We decide to study
specifically the force computation step for the following reasons.

• It is performed at every time step of the simulation.

• It is compute intensive. A high order polynomial needs to be evaluated in
order to get force values.

• It does not have a sequential pattern for most memory readings. In order to
compute the forces acting on a particle, the positions of its neighbor particles
need to be read. This implies a gather memory access pattern.

So, it is easy to understand that the force computation kernel needs to be the
first to be ported and tested in novel architectures. We evaluate forces using the
Lennard-Jones potential.

3.1 Lennard-Jones potential

The Lennard-Jones potential is a model that approximates the potential energy of
a pair neutral atoms or molecules with given positions in space. It is expressed as

V (r) = 4ε ·
[(σ

r

)12

−
(σ
r

)6
]

(3.1)
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where r is the distance between two particles, ε is the depth of the potential well
and σ is the finite distance at which the inter-particle potential is zero. Given
(3.1), the force between two particles can be computed as

F(r) = −∇V (r) = − d

dr
V (r)r̂ = 4ε

(
12
σ12

r13
− 6

σ6

r7

)
r̂ (3.2)

The total force acting on a particle is get by the summation of (3.2) com-
puted for each particle neighbors. The neighbors are all the particles within a
given distance of the considered particle. In fact, (3.2) tends rapidly to zero with
increasing r.

As a starting point of our analysis, we considered the force computation im-
plementation in MiniMD package.

3.2 MiniMD

MiniMD[12] is a simple and lightweight C++ code for molecular dynamics sim-
ulations. The algorithm and implementation mimics in a simpler way the same
in LAMMPS[11], a well know and widely used MD package. In fact, miniMD is
intended to be adapted to novel system architecture to test their performance.

MiniMD provides us a OpenCL kernel code that compute the forces and a
series of C++ objects in order to generate a testbed for to provide initial values
and validate the output.

The original kernel code is shown in Listings 3.1. It implements the following
algorithm: for each particle in the system, compute the distance from each of its
neighbors, if it is lower than a threshold compute the force and add its value to
the total contribution.

3.3 Developed OpenCL kernels

In this section, we introduce a kernel developed in order to port the MiniMD
OpenCL force kernel (Listing 3.1) in the Programmable Logic of our device.

During our study, we developed many different versions of this kernel. We
discuss here in details only the one with the best performance. However, a lot of
work has been done introducing much more complex approaches. But, they do
not show any performance improvement respect to the described one.
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Experimental measures in Chapter 2 confirm the importance to access global
memory using bursts. So, we re-wrote the original MiniMD kernel (Listing 3.1) in
order to read and write sequential data in burst. To achieve this purpose, we use
the async work group copy function and the xcl pipeline workitems
attribute, as described in Section 1.5.2. This involve also the creation of local buffer
in order to stores the data accessed in burst. These local buffers are partitioned
in order to provide enough data per clock cycle. The resulting kernel is shown in
Listing 3.2.

Then, we decided to modify further Listing 3.2 in order to unroll the loop
over the compute intensive part, which evaluates the high order polynomial. In
this way, we exposed more concurrency consuming more Programmable Logic re-
sources. Moreover, this modification allows to add easily a flag to switch off the
computation. In this way, we are able to evaluate the time taken by the memory
transactions. The resulting kernel is shown in Listing 3.3.

In the following sections, we show the performance results of kernels in List-
ing 3.2 and 3.3, which are refereed respectively as plain version and unroll version.
For both, Vivado HLS is able to synthesize all their pipelines with an II (Initiation
Interval) = 1.

In order to evaluate the performance, we measure the time spent in the force
computation for a system with 1048576 particles, the same for every test run. In
order to validate the forces computed on the Programmable Logic, we evaluate
the maximum absolute difference respect to the same computation performed on
the APU using a MiniMD C++ function.

3.3.1 Plain version results

We synthesized the plain version kernel with three different PL clock frequen-
cies: 100, 200 and 300 Mhz. We created one project for each frequency. The
projects with a PL clock frequency of 100 and 200 MHz include 16 Compute
Units. The project with a PL clock frequency of 300MHz includes only 4 Com-
pute Units, because adding more CU makes the static time analysis to fail. In all
the project, the CUs access to the global memory throw all the four slave interface
S AXI HP[0-3] FPD.

The time to compute the forces varying the number of used Compute Units are
shown in Table 3.1 and plotted in Figure 3.1. The maximum absolute difference
with the APU computation is 1.73226e-06.
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Figure 3.1: Force computation time for a 1048576 particle system varying the
number of used CU and the PL clock frequency.

CU → 1 2 3 4 5 6 7 8
100MHz 3475.7 1746.6 1168.8 881.4 832.1 789.5 748.1 701.1
200MHz 2018.2 1115.4 782.9 633.1 613.4 595.7 575.3 559.0
300MHz 1859.7 997.2 718.0 610.5

CU → 9 10 11 12 13 14 15 16
100MHz 702.1 696.2 693.1 692.1 692.5 693.0 690.0 688.7
200MHz 587.0 604.6 612.8 619.4 630.2 639.0 641.8 641.8

Table 3.1: Force computation time [ms] for a 1048576 particle system varying the
number of used CU and the PL clock frequency.
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3.3.2 Unroll version results

We synthesized the unroll version kernel with a PL clock frequency of 200 MHz.
We were able to implement a project with at most 4 CUs with an unroll factor
equal to 5. The unroll consumes more PL resource, so it was not possible to add
more CUs. In order to confront the performance, we create another equal project
with the plain version kernel. In these project, each CU is connected directly to
one of the four slave interface S AXI HP[0-3] FPD.

Table 3.2 show the solution time of the plain and unroll versions. We reported
also the time of only the memory transactions. The maximum absolute difference
with the APU computation is 2.48104e-06.

The results clearly show that most of the time is spent on memory transaction.
The unroll brings only a negligible improvement.
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Figure 3.2: Plot of force computation times of Table 3.2

CU → 1 2 3 4
plain 2017.6 1067.7 759.8 634.3

unroll 1999.7 1056.9 753.4 630.4
mem. only 1877.6 999.2 719.5 610.7

Table 3.2: Force computation time [ms].
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3.4 Listings

In the following section, we report the kernel considered in the previous part of
the chapter. All the kernels take as input the following arguments.

• x a float3 1d-array containing the particle position.

• numneigh a int 1d-array containing the number of neighbors for each
particle.

• neighbors a int 2d-array, it contains the indexes of each particle neigh-
bors.

• maxneighs a int scalar expressing the maximum number of neighbors that
is possible for a particle.

• cutforcesq a float scalar expressing the square of the distance above
that it is possible to avoid computing the force because its value is negligible.

Its output is f, a float3 array containing the force acting on each particle.

3.4.1 Original MiniMD kernel

1 typedef float MMD_float; typedef float3 MMD_floatK3;
2
3 __kernel void force_compute( __global MMD_floatK3* x,
4 __global MMD_floatK3* f,
5 __global int* numneigh,
6 __global int* neighbors,
7 int maxneighs,
8 int nlocal,
9 MMD_float cutforcesq )

10 {
11
12 int i = get_global_id(0);
13 if(i<nlocal)
14 {
15 __global int* neighs = neighbors + i;
16
17 MMD_floatK3 xi = x[i];
18 MMD_floatK3 fi = {0.0f,0.0f,0.0f};
19
20 for (int k = 0; k < numneigh[i]; k++)
21 {
22 int j = neighs[k*nlocal];
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23 MMD_floatK3 delx = xi - x[j];
24
25 MMD_float rsq = delx.x*delx.x + delx.y*delx.y + delx.z*delx.z;
26
27 if (rsq < cutforcesq)
28 {
29 MMD_float sr2 = 1.0f/rsq;
30 MMD_float sr6 = sr2*sr2*sr2;
31 MMD_float force = 48.0f*sr6*(sr6-0.5f)*sr2;
32 fi += force * delx;
33 }
34
35 }
36
37 f[i] = fi;
38
39 }
40
41 }

Listing 3.1: MiniMD original force kernel code.

3.4.2 Plain version kernel

1 typedef float MMD_float; typedef float3 MMD_floatK3;
2
3 #define WG_SIZE (512)
4
5 __attribute__ ((reqd_work_group_size(WG_SIZE, 1, 1)))
6 __kernel void force_compute( __global MMD_floatK3* x,
7 __global MMD_floatK3* f,
8 __global int* numneigh,
9 __global int* neighbors,

10 int maxneighs,
11 int nlocal,
12 MMD_float cutforcesq )
13 {
14
15 MMD_floatK3 xi, fi;
16 __local int local_numneigh[WG_SIZE]
17 __attribute__((xcl_array_partition(cyclic,2,1)));
18
19 // if(get_global_id(0) < nlocal)
20 {
21
22 __attribute__((xcl_pipeline_workitems))
23 {
24 xi = x[get_global_id(0)];
25 fi = 0.0f;
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26 }
27
28 event_t e0 = async_work_group_copy(local_numneigh,
29 numneigh + WG_SIZE*get_group_id(0), WG_SIZE, 0);
30
31 wait_group_events(1, &e0);
32
33 for (int k = 0; k < maxneighs; k++)
34 {
35
36 __local int neigh_idx[WG_SIZE]
37 __attribute__((xcl_array_partition(cyclic,4,1)));
38
39 event_t e1 = async_work_group_copy( neigh_idx,
40 neighbors + WG_SIZE*get_group_id(0) + k*nlocal,
41 WG_SIZE, 0 );
42
43 wait_group_events(1, &e1);
44
45 __attribute__((xcl_pipeline_workitems));
46 if(k < local_numneigh[get_local_id(0)])
47 {
48
49 MMD_floatK3 delx = xi - x[neigh_idx[get_local_id(0)]];
50
51 MMD_float rsq = delx.x*delx.x
52 + delx.y*delx.y + delx.z*delx.z;
53
54 if (rsq < cutforcesq)
55 {
56 MMD_float sr2 = 1.0f/rsq;
57 MMD_float sr6 = sr2*sr2*sr2;
58 MMD_float force = 48.0f*sr6*(sr6-0.5f)*sr2;
59 fi += force * delx;
60 }
61 }
62
63 }
64
65 __attribute__((xcl_pipeline_workitems))
66 f[get_global_id(0)] = fi;
67
68 }
69
70 }

Listing 3.2: Plain version kernel code.
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3.4.3 Unroll version kernel

1 typedef float MMD_float; typedef float3 MMD_floatK3;
2
3 #define WG_SIZE (512)
4 #define UNROLL 5
5
6 __attribute__ ((reqd_work_group_size(WG_SIZE, 1, 1)))
7 __kernel void force_compute( __global MMD_floatK3* x,
8 __global MMD_floatK3* f,
9 __global int* numneigh,

10 __global int* neighbors,
11 int maxneighs,
12 int nlocal,
13 MMD_float cutforcesq,
14 int enable )
15 {
16
17 MMD_floatK3 xi, fi;
18 MMD_floatK3 _fi[UNROLL];
19 __local int local_numneigh[WG_SIZE]
20 __attribute__((xcl_array_partition(complete,1)));
21
22 const int cpipe_count = (enable == 0) ? 0 : UNROLL;
23
24 // if(get_global_id(0) < nlocal)
25 {
26
27 __attribute__((xcl_pipeline_workitems))
28 {
29 xi = x[get_global_id(0)];
30 fi = 0.0f;
31 for(int K=0; K<UNROLL; ++K) _fi[K] = 0.0f;
32 }
33
34 event_t e0 = async_work_group_copy(local_numneigh,
35 numneigh + WG_SIZE*get_group_id(0), WG_SIZE, 0);
36
37 wait_group_events(1, &e0);
38
39 for (int k = 0; k < maxneighs; k+=UNROLL)
40 {
41
42 __local int neigh_idx[UNROLL][WG_SIZE]
43 __attribute__((xcl_array_partition(complete,1)))
44 __attribute__((xcl_array_partition(cyclic,8,2)));
45
46 MMD_floatK3 delx[UNROLL]
47 __attribute__((xcl_array_partition(cyclic,5,1)));
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48
49 event_t e1 = async_work_group_copy(neigh_idx[0],
50 neighbors + WG_SIZE*get_group_id(0) + k*nlocal,
51 WG_SIZE, 0);
52
53 __attribute__((opencl_unroll_hint(UNROLL-1)))
54 for(int K=1; K<UNROLL; ++K)
55 if(K+k < maxneighs)
56 async_work_group_copy(neigh_idx[K],
57 neighbors + WG_SIZE*get_group_id(0) + (K+k)*nlocal,
58 WG_SIZE, e1);
59
60 wait_group_events(UNROLL, &e1);
61
62 for(int K=0; K<UNROLL; ++K)
63 __attribute__((xcl_pipeline_workitems))
64 if(K+k < local_numneigh[get_local_id(0)])
65 delx[K] = xi - x[neigh_idx[K][get_local_id(0)]];
66
67 if(enable != 0)
68 __attribute__((xcl_pipeline_workitems))
69 for(int K=0; K<UNROLL; ++K)
70 if(K+k < local_numneigh[get_local_id(0)])
71 {
72 MMD_float rsq = delx[K].x*delx[K].x + delx[K].y*delx[K].y

+ delx[K].z*delx[K].z;
73 if (rsq < cutforcesq)
74 {
75 MMD_float sr2 = 1.0f/rsq;
76 MMD_float sr6 = sr2*sr2*sr2;
77 MMD_float force = 48.0f*sr6*(sr6-0.5f)*sr2;
78 _fi[K] += force * delx[K];
79 }
80 }
81
82 }
83
84 __attribute__((xcl_pipeline_workitems))
85 {
86 for(int K=0; K<UNROLL; ++K)
87 fi += _fi[K];
88 f[get_global_id(0)] = fi;
89 }
90
91 }
92
93 }

Listing 3.3: Unroll version kernel code.
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Conclusions

This thesis study spawned a seven months period, from May to December 2017.
Our previous experience was in the field of scientific code development and did
not include any topics related to FPGAs or digital circuit design. At the end of
our work, we developed the following considerations.

• This topic have steep learning curve. In order to have a running code on
the Programmable Logic of the Zynq Ultrascale+ device, a number of steps
need to be performed. Each one leads to the configuration of various aspects.
Understand these aspects involves the study of technical documentation con-
ceived for digital circuit designer: the main users of FPGAs.

• An efficient port on FPGA of OpenCL kernels involves change completely
their code. In our opinion, the OpenCL programming language is not well
suited for FPGAs. In fact, the programming model of the High Level Syn-
thesis of Vivado HLS is based on loops optimization (pipeline and unroll)
and not on parallel working items. There is no convenience of using OpenCL
compared to C. Indeed, Vivado HLS provides more optimization directives
for the synthesis of C codes: specially for the definition of the master/slave
interfaces.

• The main performance limiter of the Zynq Ultrascale+ device is the main
memory bandwidth. Sequential memory transactions (in burst) are manda-
tory in order to exploit efficiently the low available bandwidth. Not all the
computational applications can overcome efficiently this constraint.

The flexibility of the FPGA takes the form of a large number of aspects to
consider. Understand and exploit successfully them is the challenge to win in
order to utilize efficiently the FPGA great capabilities.
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