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Abstract

We explore the diagonalization methods used in the PWscf (Plane-Wave Self Consistent
Field), a key component of the Quantum ESPRESSO open-source suite of codes for materials
modelling. For the high performance of the iterative diagonalization solvers, two solutions
are proposed. Projected Preconditioned Conjugate Gradient (PPCG) method as an alternative
diagonalization solver and Porting of existing solvers to GPU systems using CUDA Fortran.
Kernel loop directives (CUF kernels) have been extensively used for the implementation of
Conjugate Gradient (CG) solver for general k-point calculations to have a single source code
for both CPU and GPU implementations. The results of the PPCG solver for I'-point calculation
and the GPU version of CG have been carefully validated, and the performance of the code on
several GPU systems have been compared with Intel multi-core (CPU only) systems. Both of
these choices reduce the time to solution by a considerable factor for different input cases which
are used for standard benchmarks using QE package
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CHAPTER 1

Introduction

For more than four decades Density Functional Theory [2] and its applications have been a
significant contributor in many fields of science as well as in industry. Due to its extensive ap-
plications, a number of computational packages for material simulation and modelling emerged.
Among them, one of the prominent ones is Quantum ESPRESSO (QE). It is an integrated suite
of computer codes for electronic-structure calculations and materials modelling [1, 3] written
mainly in Fortran. This free, open-source package is released under the GNU General Public
License (GPL) [4]. Its use has been extended outside the intended core research fields such
as theoretical condensed matter and quantum chemistry to a vast community of users pursuing
diverse research interests.

This software suite offers the possibility to introduce advanced programming techniques
while maintaining highly efficient and robust code base. In the landscape of ever-evolving
high-performance computing technology, this adaptive capability renders considerable advan-
tages to QE software package. Even when it seemed the cutting edge software technology of
Graphics Processing Unit’s (GPU) for high-performance computing was out of reach for this
Fortran code base, QE offered a mixed Fortran and CUDA C solution [5]. In 2017 NVIDIA
offered its CUDA Fortran model analogues to CUDA C. This opened an abundance of oppor-
tunities for the code bases that are implemented in Fortran programming language including
QE. Since QE is a modular suite which shares common libraries and data structures, a strategy
of porting computationally heavy modules to GPU was possible. As part of the first imple-
mentation following the CUDA Fortran model, NVIDIA ported libraries such as FFT-3D and
Davidson diagonalization with the help of a custom eigensolver [6] and released the first ver-
sion of the QE-GPU package [7]. In this project, we attempt to extend this porting process to
other vital parts of the QE code such as the Conjugate Gradient (CG) solver, I'-point calcula-
tions, etc., This project also reflects on the performance analysis and comparison of the different
diagonalization solvers on CPU and GPU systems.

Since iterative diagonalization is one of the most time-consuming procedures in the QE
code, other methods have to be investigated and implemented. If one were to summarise the
desired qualities of such a solver, then it should be at least as fast as Davidson and should
consume less memory like CG. An ESLW project [8] was initialised with modularisation and
investigation of iterative diagonalization as its objectives. As part of this Davidson and CG

solver were extracted and implemented in such a way that other code bases can also make use of



it. In addition to that, a version of Davidson with the reverse communication interface (RCI) [9]
and Projected Preconditioned Conjugate Gradient (PPCG) [10] methods were implemented. For
the PPCG solver initial tests with I"-point calculations suggest that it is an improvement over
Davidson solver.

Chapter 4 and 5 are entirely devoted to the description of the computational methodology
of this porting process and for the results and comparisons of the benchmarks. Chapter 3 deals
with the CPU implementation details of the PWscf library of QE along with the discussions
regarding the newly implemented PPCG solver.



CHAPTER 2

Theoretical Background

The fundamental postulates of quantum mechanics assert that microscopic systems are de-
scribed by wave functions that characterize all the physical quantities of the system. For a
solid system with a large number of microscopic subsystems (atoms) and having a huge num-
ber of particles, it is difficult to solve the Schrodinger equation Hv = FE1), analytically. For
these solid systems the main interest is to find approximate solution of non-relativistic time in-
dependent Schrodinger equation. In general, Hamiltonian of such systems are defined by the
kinetic energy of the electron and nuclei, electron-electron interaction, nuclei-nuclei interaction,
electron-nuclei interaction. These interactions can be expressed in the following Hamiltonian
= 1, F in the units of 27.21eV/, distance in the units of

(in atomic units & = |e] = m, =
bohr radius),

47re
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The small indexes(i,j) are referring to electrons and capital (I,J) are for nuclei. This is known
as many body Hamiltonian. Various number of approximations are adopted to solve this many
body Hamiltonian, which are explained in detail below.

2.1 Approximations to solve Many-Body Problem

2.1.1 Born-Oppenheimer Approximation

Since nuclei are much heavier than electrons, their velocities are much smaller in compari-
son. To a good approximation, the Schrédinger equation can be separated into two parts: One
part describes the electronic wavefunction for a fixed nuclear geometry. The second describes
the nuclear wavefunction. This is the Born-Oppenheimer (BO) approximation. We assume that
electrons move in an electrostatic field generated by the nuclei. Since we consider the nuclei to

be at rest we can rewrite the Hamiltonian as

2
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In BO approximation, the total wave function is limited to one electronic surface, i.e. a par-
ticular electronic state. The BO approximation is usually very good, but breaks down when
two (or more) electronic states are close in energy at particular nuclear geometries. Further

approximations are needed to solve this Hamiltonian.

2.1.2 The Hartree approximation

For non interacting particles we can write the wave function as a product of individual
particle wave function. Hartree considered each system obeying a Schrodinger equation and

one can write the wave equation for an n particle system as,
() = Cy [] 6i(r3) (2.3)

Here interaction of one electron with the others are incorporated in an average way. We can

write the Schrédinger equation as

(;V2 + ‘/ea:t(r) + Vadditional(r)> ¢z - Eigbi (24)

Where V.., (r) is the average potential felt by the electron at r and V,,44i¢iona is related to electron-
electron interaction. The limitations of this approximation include, not taking correlation into

consideration, the wavefunction is not antisymmetric,etc,.

2.1.3 Hartree-Fock Method

One must include the antisymmetry as well in order to describe a wave function. Use of the
slater determinant can be of use since it takes care of the spin. Interchanging the position of
two electrons is equivalent to interchanging the corresponding column. If two electrons at the
same spin interchange positions, v’ must change sign. This is known as exchange property and
is the manipulation of Pauli principle. One of the most common ways of dealing with many -

Fermion problem is to assume that each electron can be considered separately in the one electron

approximation.
Xi(r1) xa(r1) ... xa(ri)
1 X1(r2) Xa(r2) ... Xa(r2)
PP (r) = N (2.5)
X1(rn) X2(rn) .. Xn(rn)
H = < Z V2+Vezt >+ Z|r—r\ (2.6)
z#ﬁ



Solving the Schrodinger equation with the slater determinant as the wave function, we will

arrive at the equation given bellow:

—1 / i,0 j,O /
(2V2 + Vewt +/ ’rp(_r 5 Z / gb] U¢ZU¢ £)9i(r) drdr) Gio(T) = €ihi (1)

r)|r—v|
zya
2.7)

This is called the Hartree-Fock equation. The Hartree-Fock equations describe non-interacting

electrons under the influence of a mean field potential consisting of the classical Coulomb poten-
tial and a non-local exchange potential. The correlation energy accounts for the energy lowering
due to quantum fluctuations. Since this is still a 3N dimensional problem, an analytical solution
would be difficult. Even though this methods succeeded in describing various systems, it failed
because of the poor exchange and correlation limits of electrons. Adopting further approxima-
tions were needed to minimise the problem. The triumph came with the formulation of Density
Functional Theory (DFT) in solving this complex problem [11]. The same is explained in the

following sections.

2.2 Density Functional Theory

Density Functional Theory (DFT) emanate from the Hohenberg-Kohn theory and Kohn-
Sham equation [11]. This uses density as a fundamental quantity instead of wavefunction, which
leads to a situation were the complexity of the problem can be effectively reduced from 3N

variables to 3. The density of the electrons p(r) can be expressed as,

p(r) = N/d3r2d3...d3rN¢(r,r2, LN (1, 12,1 y) (2.8)

The indication that the density can be used as a fundamental parameter just like the wavefunction

was first suggested by L. Thomas and E Fermi in 1927.

2.2.1 Thomas-Fermi-Dirac Equation

Thomas and Fermi independently considered the first three terms of the Hartree-Fock equa-
tion. At that time they were not aware of the exchange energy and neglected the correlation term.
For a plane wave systems like homogeneous electron gas one can solve the HF equation and
find out the approximate energy as follows. For a homogeneous electron gas ¢;(r) = ﬁe“;“’
The exchange term for this model will be,

- - [ZE SR s (2.9)

(2.10)
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where K = (%) Using this if we minimise the total energy by doing a variation with respect

to density provided that the total electrons in the system remains the same. We get,

/ 1/3
p(_r) e <3ﬂ(r)> _ (2.11)

lr — 1| T

5
3

1
p(r)2/3 + Vear + 5/

The Lagrangian multiplier ;4 will be the chemical potential of the homogeneous electron gas.
It shows that given a density it will give a number. The idea of using density as a fundamental
variable is originated from this concept. But the density comes out by solving the Thomas-
Fermi-Dirac equation wasn’t accurate, in order to fix this Weizsdcker added the correction term
é i %dr Thomas-Fermi becomes relevant when the system is dense or the kinetic energy

is higher.

2.2.2 Hohenberg - Kohn Theorem

The question of treating p(r) as a fundamental variable is answered by Hohenberg - Khon
Theorem (HK). In 1964 Hohenberg and Kohn proved two theorems. The first theorem may
be stated as follows: for any system of interacting particles in an external potential V.. (r),
the density uniquely determines the potential. If this statement is true then it immediately fol-
lows that the electron density uniquely determines the Hamiltonian operator. The second the-
orem establishes a variational principle: For any positive definite trial density p;(r),such that
[ pi(r)dr = N then E[p;(r)] > E,

HK theorem provides evidence for the one-to-one correspondence between external potential
Vert(r) and ground state density po(r). It gives good approximation to the ground density as
well as the energy. But still we have to solve many electron Schrédinger equation. A practical
implementation can be carried out using Kohn-Sham method which is discussed in the next

section.

2.2.3 Khon-Sham Method

Since density is a fundamental variable we can write the variational principle in terms of

the density functional:

Elp(r)] = T[p(x)] + Vear[p(r)] + Vee[p(r)] (2.12)

Here V_.:[p(r)] = | Vewtp(r)dr. But The kinetic and electron-electron functionals are unknown.
If good approximations to these functionals could be found then a direct minimisation of the
energy would be possible. Kohn and Sham proposed the following approach to approximating
the kinetic and electron-electron functionals. They introduced a fictitious system of N non-
interacting electrons [12] to be described by a single determinant wavefunction in N “orbitals”

¢;. In this system the kinetic energy and electron density are known exactly from the orbitals:

N

L) = —5 3 (o

7

6

Vz\ $i) (2.13)



Here the suffix(s) emphasises that this is not the true kinetic energy but is that of a system of

non-interacting electrons, which reproduce the true ground state density:

N
pr) = > 16| (2.14)

The construction of the density explicitly from a set of orbitals ensures that it is legal — it can
be constructed from an asymmetric wavefunction. If we also note that a significant component

of the electron-electron interaction will be the classical Coulomb interaction or Hartree energy

_ L pm)p(d)

The energy functional can be rearranged as:

Elp(r)] = Ts[p(r)] + Vear[p(r)] + Vi [p(r)] + Exc|p(r)] (2.16)

Where, Ex¢ is called exchange correlation functional:

Exclp(r)] = Tp(r)] = Tulp(x)] + Vee[p(r)] = Vir[p(r)] (2.17)

which is simply the sum of the error made in using a non-interacting kinetic energy and
the error made in treating the electron-electron interaction classically. Applying variational
theorem and minimising the energy with respect to p(r) we get the equation (same as we did

for Hartree-Fock equation):

p(r')
r —r|

[—;VQ + Veut + / dr' + Vxco(p(x)) | ¢i(r) = €;¢;(r) (2.18)

In which we have introduced a local multiplicative potential which is the functional derivative
of the exchange correlation energy with respect to the density, Vxo = %(Cr)(r) This set of
non-linear equations (the Kohn-Sham equations) describes the behaviour of non-interacting
“electrons” in an effective local potential. For the exact functional, and thus exact local
potential, the “orbitals” yield the exact ground state density. These Kohn-Sham equations
have the same structure as the Hartree-Fock equations with the non-local exchange potential

replaced by the local exchange-correlation potential Vxc.

2.3 A Numerical Approach

One could model the numerical approach in solving the Kohn-Sham equation as follows.

The effective potential of the ground state of a system can be constructed provided an initial



guess for the density p(r). The effective potential can be written as

p(r')
—r

V; = Vex /
ff V. ¢+ ‘l"

,| dT’/ + VXC (219)
Once Vs is known, one could proceed to solve the Khon-Sham hamiltonian using the guess
wavefunction to generate the new wavefunction. If the consistency between the new and the
old wave functions are maintained after an iteration the system is said to have achieved self-
consistency.

1
Hygs = —§v2 + Vesy (2.20)

The initial guess is informed by the atomic positions, shape of the lattice, etc,. In this state
solving Khon-Sham Hamiltonian means diagonalizing the Hamiltonian, i.e finding the eigen-
values and eigenvectors corresponding to the given Hamiltonian. This is essentially an iterative
digitalization procedure. One could employ numerous methods to do this, depending on the re-
sources available and intension. The output quantities of the numerical procedure can be used

to determine the properties of the system such as total energy, forces, stress, etc,.

Initial Guess, p(r)

CalCUIate’ ‘/eff = I/th + /\fﬂi?\d?ﬁ/ + VXC

Solve, Hyats = =3V + Vegy| = et

Evaluate electron density, p(r) =) | [i(r)|”

|

converged?

[no]

\[yes}

output

Figure 2.1: DFT Algorithm
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CHAPTER 3
Implementation Details of Quantum
ESPRESSO

QE is capable of performing many different kinds of calculations. The source code consists
of approximately 520,000 lines of Fortran95 code, supplementary code in C, auxiliary scripts
and Python. Two of the main libraries that are in the QE code base are PWscf (Plane-Wave Self-
Consistent Field) and CP (Car-Parrinello). To make the treatment of infinite crystalline systems
straightforward QE codes are constructed around the use of periodic boundary conditions and
efficient convergence criteria. QE can be used for any crystal structure or supercell, and for met-
als as well as for insulators. The framework also includes many different exchange-correlation
functionals such as LDA, GGA [13], advanced functionals like Hubbard U corrections and a
few meta-GGA [14] and other hybrid functionals.

3.1 Structure of the PWscf code

For the purposes of this project we have used PWscf code which self-consistently solves
Kohn-Sham(KS) equations described in the section 2.2.3.

In addition to solving KS orbitals and energies for isolated or extended/periodic systems,
PWscf also performs the structural optimizations using the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm [15]. KS potential depends on the KS orbitals through density as described
by the equation 2.19. This non-linear problem can be solved using an iterative procedure as
described in the section 2.3 and the procedure is given in the Figure 2.1. A schematic represen-
tation of a typical execution of PWscf code involving structural optimization and self-consistent
solution are given in the Figure 3.1. The self-consistency loop is an iteration over the density,
until input and output densities are the same within a predefined threshold. The iterative diag-
onalization can be done using a block Davidson method or Conjugate Gradient (CG) method.
This diagonalization is performed for each k-point. The number of occupied KS orbitals is
determined by the number of electrons in the unit cell.

Majority of the time in the computational procedure is spent on the iterative diagonalization
and calculation of density and the rest for initialization and post processing routines. To make
the expensive parts efficient, QE suite offers parallel computing techniques targeting multi-core
and distributed systems. This hybrid parallelism based on effective use of OpenMP, Message



Passing Interface (MPI), FFTW [16] and LAPAK [17] or ScaLAPACK [18] or ELPA [19] makes
QE a high performance computing library.

O]

Initial

quantities

:>0]

[ Forces, stress

‘ Calculation of Calculation of ‘
new potentials density

. Calculation of ‘ Diagonalization of
—_———>
‘ wavefunctions Hamiltonian

‘ Calculation of new
atomic positions

[ self-consistent ]

SELF-CONSISTENCY

‘ Calculation of \
new forces & stress ‘

STRUCTURE OPTIMIZATION

Figure 3.1: Schematic view of PWscf internal steps

The k-point parallelization which can be controlled using the run-time option -npool dis-
tributes the k-points into K pools. This allows for each pool having Np MPI processes, where
Np = %, N being the total number of MPI processes. In the case of Davidson diagonalization
an additional linear-algebra parallelization is possible using the option -ndiag. This option dis-
tributes the subspace diagonalization solution thereby making full use of the distributed linear
solvers such as ScaLAPACK. A parallel distributed 3D-FFT is performed in order to transform
physical quantities such as charge density and potentials between real and reciprocal space.
Summary of parallelization levels in QE is given in the Table 3.1

3.2 lterative diagonalization

As described earlier in this chapter the most time consuming portion of the PWscf code
during self-consistency is the generalized eigenvalue solver therefore it is imperative that one
should adopt a method which is efficient, resource friendly and fast. In QE two methods are

implemented Davidson and Conjugate Gradient (CG). Depending on the need and resources

10




Group Distributed quantities | Communications Performance
Image NEB images Very low Linear CPU scaling,
Good load balancing;
Does not distribute RAM
Pool k-points Low Near-linear CPU scaling,
Good load balancing;
Does not distribute RAM
Plane-wave Plane waves, G-vector, High Good CPU scaling,
coefficients, Good load balancing,
R-space, FFT arrays Distributes most RAM
Task FFT on electron states High Improves load balancing
Linear algebra | Subspace Hamiltonians Very high Improves scaling,
and constraints matrices Distributes more RAM

Table 3.1: Summary of parallelization levels in Quantum ESPRESSO [1]

available user can choose which algorithm to use to solve the following.

N=Number of occupied states, S=Overlap matrix

Eigenvectors are normalized according to the generalized orthonormality constraints
< ;|S|; >= d;;. The block Davidson is efficient in terms of number of H|y) > required
but its memory intensive. CG on the other hand is memory friendly since bands are dealt with

one at a time, but the need to orthogonalize to lower states makes it intrinsically sequential.

3.2.1 Davidson

Davidson starts with an initial set of orthonormalized trial orbitals @/)Z(O) and trial eigenvalues
ego) =< wl@ |H |¢§0) >. One can introduce the error on the trial solution (gfo)) and the correction
vectors ((wi(o)). The eigenvalue problem is then solved in the 2N-dimensional subspace spanned
by the reduced basis set ¢(*) which is formed by ¢\” = ¢’ and ¢\7, = 6¢\”:

2N )
> (Hix— &Six) ) =0 (3.2)
k=1
O (0) (0 (0) : . .
where Hj, =< ;" |H |, > Sik =< 9’| S|y’ > Conventional algorithms for matrix

diagonalization are used in this step. A new set of trial eigenvectors and eigenvalues is obtained:

2N
¢ =3O ) =<y HPY > (3:3)
j=1

and the procedure is iterated until a satisfactory convergence is achieved.

11



In the PWscf code the main routines that handle the Davidson are as follows:

* regterg, cegterg, which is an acronym of real/complex eigen iterative generalized
* diaghg, cdiaghg, which is an acronym of real/complex diagonalization H generalized
* h_psi, s_psi, g_psi, are code specific

3.2.2 Conjugate Gradient

The eigenvalue problem described in the equation 3.1 can be redefined as a minimization

problem as follows:

mian | < ;| Hlp; > =Y A (< ] S|w; >) (3.4)

J<i
where the )\; are Lagrange multipliers. This can be solved with a preconditioned CG algo-
rithm [20, 21]. The initial settings of solving this problem would involve assuming the first j
eigenvectors have been calculated, where j = i — 1 and the initial guess being the i*" eigen-
vector. Such that < 1 |S[4® >= 1 and < ¥@|S|¢p; >= 0. One can solve an equivalent

problem by introducing a diagonal preconditioned matrix P and auxiliary function y = P~14).

min [< y|Hly > —\ << y|Sly > —1)} (3.5)

Where I = PHP,S = PSP, with additional orthonormality constraint < y|PS|¢; >= 0.
By imposing the starting gradient ¢(® = (H — AS)y(® is orthogonal to the starting vector one

determines the value of lambda :

< y@]82)y© >

(3.6)

After imposing an explicit orthogonalization on Pg(®) to the 1);, the conjugate gradient h(*) is
h(0)

. <hO|SRO>1/2

The minimum of < " |H|y") > is computed along the direction y*) = y© cos 6 + n(?) sin §

introduced with an initial value set to ¢(°) with a normalization direction n(?) =

as defined in [20]. Calculation of the minimum is performed yielding 6 to be:

1 a’
9 = iatan (6(0)_b(0)> (3.7)

Where a(® = 2Re < 4O |H|[n©® > b0 =< nO|H|n® > and ¢ =< yO|H|y©® >
This procedure is iterated to calculate the conjugate gradient from the previous one using the
Polak-Ribiere formula:

R = g 4 4D p=D) (3.8)
-1 _ < (g™ — g(’j_l))|S’9” >
g=]S|gn=1)

(3.9)

h(™) is subsequently re-orthogonalized to y".
12



In the PWscf code the main routines that handle the CG are as follows:

 rcgdiagg, ccgdiagg, which is an acronym of real/cmplx CG diagonalization generalize
» rotate_wfc_gamma, rotate_wfc_k, are for real/complex initial diagonalization

* h_1psi, s_1psi are code specific

3.3 Benchmarks

We are presenting a few CPU benchmarking results of QE version 6.1 done on a single
computing node (20 cores) of Ulysses Cluster (SISSA) to give a perspective on the time to
solution and scalability of the code. The MPI performance analysis of QE on one node (32
cores) of Broadwell (BWD), Knights Landing (KNL) and Skylake (SKL) architectures are done
on Marconi Cluster (CINECA). The development of the GPU code is mainly done on the Drake
machine provided by CNR. The main machines used in this project and their specifications are
given in the table 3.2

Machines | Organization Processors Nodes | Cores | GPU’s | GPU Version
Ulysses SISSA Intel Xeon E5- 16 20 2 K20
2680 v2 2.80 GHz
Drake CNR Intel Xeon E5- 1 16 4 K80
2640 v3 2.60 GHz
DAVIDE CINECA IBM Power8 45 16 4 P100
Marconi CINECA Intel Xeon E5- 1512 | 54432 - -

2697 v4 2.30 GHz

Table 3.2: Main machines used in this project

3.3.1 Details of the Test cases

Throughout this project mainly two test cases are used for benchmarking and analysing the
PWscf code, both for CPU and GPU, the details of these test cases are given in table 3.3. The
results correspond to calculation for a general k-point. One can improve the performance by
doing a I'-point calculation. This is not attempted here since the objective of this tests is that
the results will be to used as a comparison with GPU performance in later chapters. The GPU

performance analysis are done for a general k-point.

3.3.2 Pliscf time to solution on CPU

Time to solution of the PWscf code for the test cases of Si02 and AUSURF112 for a single
node (Ulysses) is given in the table 3.4. This single node performance will be later compared
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Properties Si02 AUSURF112
Lattice parameter (alat) | 22.5237a.u. | 38.7583a.u.
Number of atoms/cell 109 112
Number of atomic types 2 1
Number of electrons 582.00 1232.00
Number of k-points 1 2
Kohn-Sham states 800 800
Number of plane waves 16663 44316
Kinetic energy cutoff 20Ry 15 Ry
Charge density cutoff 80Ry 100 Ry
Convergence threshold | 1.0 x 107 | 1.0 x 107
Mixing beta 0.7000 0.7000

Table 3.3: Details of the test cases used for benchmarking

mk1 from Intel

to the GPU performance. All the CPU versions are compiled with Intel compilers and used

Test Case | Algorithm 4 8 16 20
Si02 David 1218.68 900.00 405.68 370.84
Si02 CG 2834.70 | 2295.16 | 1098.01 | 1009.51

AUSURF112 David 4740.00 | 3385.19 | 1870.86 | 1646.10
AUSURF112 CG 18300.00 | 11880.00 | 10380.00 | 10800.00

Table 3.4: PWscf Time to solution in seconds on a single node of Ulysses (SISSA)

The main subroutines as described in the section 3.2.1 and 3.2.2 for the Davidson and CG
methods behave differently in terms of speed and scaling. The Objective of the following graphs
is to analyse the behaviour of Davidson and CG methods with varying problem sizes. A detailed

benchmark on the CPU performance for multiple nodes is reported in the paper [1, 3].
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Figure 3.2: MPI only performance of Davidson and CG on a single node of Ulysses

An observation that can be made immediately from table 3.4 and the Figure 3.2 is that the
Davidson method requires less time to achieve convergence compared to CG . This behaviour
was expected. On analysing the cegterg subroutine performance one can see that for Davidson
the scaling depend heavily on the problem size contrary to cdiaghg subroutine of CG. However
the massive difference in the time to solution for these methods cannot be disregarded. FFT

library maintains the same pattern in both cases.
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Figure 3.3: MPI with OPENMP performance of Davidson on two nodes of Ulysses

The OpenMP implementation in PWscf is far from being efficient as shown in the figure 5.5.

In an ideal case all the time to solutions should be the same as the MPI only performance on the

two nodes(on the right of vertical line (blue) in figure 5.5).

The MPI performance of PWscf using Davidson on one node (32 cores) of Marconi cluster
using Broadwell (BWD), Knights Landing (KNL) and Skylake (SKL) architectures are given
in the figure 3.4. Total time to solution is the sum of time taken by init_run, electrons and

forces. Among the three architectures BWD and SKL offers a higher performance compared

to KNL.
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Figure 3.4: MPI only performance of PWscf on KNL, BWD and SKL architectures of Marconi
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3.3.3 Limitations and Possible Improvements

Even though Davidson is the preferred method of diagonalzation in the QE community due
to its small time to solution compared to CG, it is memory intensive. It requires a work space
of at least (1 + 3 x david) * nbnd * npwx Where david is a number whose default is set to 4 and
can be reduced to 2, nbnd is the number of bands and npwz is the number of plane-waves. By
construction Davidson diagonalization is faster but not so forgiving on memory. On the other
hand since CG deals with bands one at a time it consumes less memory than Davidson but as a
side effect the time to solution is much higher since it looses the additional parallelization level
which is available in Davidson. This difference becomes apparent in GPU systems since GPU

devices have a limited amount of memory.

3.4 Overview of Alternative Diagonalization Methods

Due to the factors mentioned in section 3.3.3 there have been a number of attempts made
to find an alternative method which can combine the strength’s of both Davidson and CG
i.e. Fast and less memory consuming. Main possible candidates under consideration are Pro-
jected Preconditioned Conjugate Gradient (PPCG) algorithm [10] and Parallel Orbital-updating
(ParO) algorithm [22]. During the Electronic Structure Library Workshop 2017 conducted by
e-cam [23] at International Centre for Theoretical Physics (ICTP), a project has been initialized
by Prof. Stefano de Gironcoli (SISSA) as an attempt to completely disentangle the iterative
eigensolvers from the PWscf code. This project is hosted in the e-cam gitlab server under the
url https://gitlab.e-cam2020.eu/esl/ESLW_Drivers. The aim of this ESLW project is to
develop an independent eigensolver library by extracting the solvers from PWscf and extend-
ing them such a way that other code bases can also make use of the same. As a result of this
ESLW project, Davidson, CG methods are detached from PWscf and development of other ver-
sions of Davidson which make use of Reverse Communication Interface (RCI) paradigm [9]
and diagonalization methods such as PPCG [10] and ParO [22] are initiated. Even though the
development of these methods are in its infancy they are showing promising results.

3.4.1 Projected Preconditioned Conjugate Gradient (PPCG)

PPCG method follows the algorithm given in Algorithm 1. Which is essentially an amalga-
mation of Davidson an CG. Each band or a small group of bands are updated by diagonalizing
a small (3 x blocksize) x (3 x blocksize) matrix. This matrix is built from the current X,
the orthogonal residual and the orthogonal conjugate direction. Since the bands are dealt with
few at a time this method is memory efficient at the same time it is not as slow as CG, since its
not dealing with one band at a time. This additional parallelization offered by this method in
terms of group of bands which can be treated independently, would make this method as fast
as Davidson. Comparison between Davidson and PPCG on a small test case for a gamma point
calculation is given in the figure 3.6.
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Algorithm 1: PPCG
1 subroutine PPCG (A, T, X(©,X)
INPUT : A - The matrix, T - a preconditioner, X ) - a starting guess if the invariant
subspace X e C™* associated with k smallest eigenvalues of A
OUTPUT: X - An approximate invariant subspace X € C™* associated with smallest
eigenvalues of A
2 X ¢+ orth(X©); P +—[]
3 while convergence not reached do
4 W++—T(AX — X(X % AX))

5 We+— (I - XXW

6 P+— (I-XX*P

7 for j=1,...,k do

8 S — [zj, w), pj

9 Find the smallest eigenpair(6,,,,, Cinin) of S*ASc = 05*Sc, where ¢*S*Sc =1
10 aj — Cmin(1), Bj <— Cmin(2); and v; — cmin(3)(y; = 0 at the initial step)
1 pj < Bjw; +5p;

12 Tj < ;5 + Py

13 end

14 X «— orth(X)

15 if needed perform the Reyleigh-Ritz procedure within span(.X)
16 end

17 end subroutine PPCG
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8 20 40 60
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Figure 3.5: Comparison between Davidson and PPCG algorithms for a problem size of 512 for
MPI only calculation on Ulysses cluster
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This simple test might suggest that the PPCG is better than Davidson. However this test was
done on a small problem size. Since Davidson algorithm performs best with large sizes, further
analysis has to be made before making concrete argument in favour of PPCG. Presently the
I'-point calculation is implemented in PPCG. Future development of this ESLW project would
include extending the current implementation for general k-point calculations and optimizing
the code.
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Figure 3.6: ESLW project-Current methods under development
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CHAPTER 4
Work-flow and description of the

implementation

With the release of a freely distributed PGI compiler in October 2016 (version 16.10) came
an abundant number of possibilities in scientific software products. There are a large number
of code bases which uses Fortran. The choices of running them on the GPU was limited before
CUDA-Fortran which is supported by PGI. The alternate solutions include converting the code
to a C compatible version and use the CUDA C programming model. For years such a solution
existed for QE implemented and maintained by Filippo Spiga [5,24]. This was written in CUDA
C and bundled with the original Fortran source code. This kind of solutions has their drawbacks,
the main one being the maintainability of the code since there will be two versions of the code.
Therefore after the last mirror release of QE version 5 this mixed code base was discontinued.
The advantage of CUDA Fortran is that it can enable the GPU capability without drastic changes
in the original source code. CUDA Fortran is implemented in the PGI compilers. A new version
compatible with QE version 6 has been developed on CUDA Fortran [7] with all significant
computations carried out on GPUs, with an added advantage of having one code base for CPU
and GPU. The CUDA Fortran enabled QE is available for download at https://github.com/
fspiga/qe-gpu

4.1 CUDA Programming Model and CUDA Fortran

CUDA-enabled GPU’s are capable of running tens of thousands of threads concurrently.
This functionality is possible due to a large number of processor cores available on each GPU
device. These processor cores are grouped into multiprocessors. The design of the program-
ming model is done such that it can utilise the massive parallelism capability of the GPU’s. A
subroutine run on a device is called a kernel, and it is launched with a grid of threads grouped
into thread blocks. These thread blocks can operate independently of one another thereby al-
lowing scalability of a program. In addition to that data can be shared between these threads
enabling a more granular data parallelism. The available multiprocessors can schedule these
block of treads in any order allowing the program to be executed on any device with any num-
ber of multiprocessors. This scheduling is performed automatically so that one can concentrate

on the partition of the program into factions that can be run and parallelised on a block of treads.
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CUDA programming model allows utilising both CPU and GPU to perform computations.
This hybrid computing capability can be used to achieve massive performance improvements.

A typical sequence of operations for a simple CUDA Fortran code is:

* Declare and allocate host (CPU) and device (GPU) memory

* Initialize host data

* Transfer data from the host to the device

» Execute one or more kernels which perform operations on the device data
* Transfer results from the device to the host

There are a number of good programming practices to be observed when moving data back and
forth from host to device and vice-versa. Among those the most noticeable being the bandwidth
of PCI’s and bandwidth between device’s memory and GPU, where the former is an order of
magnitude lower than that of the later. From a performance point of view, the less number of

data transfers between the host and the device the better will be the performance.

4.1.1 CUDA Fortran specifications

The allocate() command and the assignment operator’s are overloaded in the CUDA For-
tran model so that it can also allow allocation of the device memory (using device attribute)
and data transfer between the host and device memory spaces. The Fortran2003 source alloca-
tion construct, allocate(A, source=B), for cloning A to B is also extended. In CUDA Fortran,
if the A array is defined as a device array and B is defined as host array, then contents of B
will be copied over the PCI bus to A. These methods of data transfer are all blocking transfers,
in that control is not returned to the CPU thread until the transfer is complete. This prevents
the possibility of overlapping data transfers with computation on both the host and device. For
concurrent computation one might employ CUDA API function cudaMemcpyAsync () to perform
asynchronous data transfers

Kernels, or subroutines are typically invoked in host code just as any subroutine is called,
but since the kernel code is executed by many threads in parallel an additional execution
configuration has to be provided to indicate thread specifications, which typically done as
follows:

I my_function is the kernel or subroutine
call my_function <<< N, M >>> (argument_list)

Where, N = Number of thread blocks, M = Number of threads per thread block.

The information between the triple chevrons is the execution configuration which dictates
how many device threads execute the kernel in parallel. Data elements are mapped to threads us-
ing the automatically defined variables threadIdx, blockIdx, blockDim, and gridDim. Thread
blocks can be arranged as such in a grid and threads in a thread block can be arranged in a mul-
tidimensional manner to accommodate the multidimensional nature of the underlying problem.

Therefore both NV and M are defined using a derive type dim3 which has x,y and z components.
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One of the functionalities provided by CUDA Fortran is that it can automatically generate
and invoke kernel code from a region of host code containing tightly nested loops. Such type
of kernels are referred to as CUF kernel’s. A simple example of a CUF kernel is:

I$cuf kernel do <<<*,*>>>
do i=1, n
I a_d is a device array, b is a host scalar
a_d(i) = a_d(i) +b
end do

In the above code wild-cards are used to make the runtime system determine the execution
configuration. Even though the scalar b is a host variable it is passed as a kernel argument by
value upon the execution of the CUF kernel.

4.1.2 Porting strategy

Quantum ESPRESSO has a large community of users, so it would be preferable to change
the code in such a way that it doesn’t impact the existing structure of the code. CUDA Fortran
is designed to make this task easy. Especially the use of CUF kernel’s which allow porting of
the code without modifying the contents of the loops. This functionality is extensively used in
porting the CPU code to GPU systems. This can be illustrated using a simple example.

In the following code subroutine add_scalar is making use of the module array_def which
defines the array a(n) to make a simple addition with a scalar.

module array_def

real :: a(n)
end module array_def

!

I Following subroutine make use of the module array_def
subroutine add_scalar

use array_def, only: a

do i=1, n
a(i) = a(i) + b
end do

end subroutine add_scalar
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Converting this code to a GPU friendly one can be done as follows:

module array_def

real :: a(n)

real,device :: a_d(n)
end module array_def

!

subroutine add_scalar
#ifdef USE_GPU

use array_def, only: a => a_d
felse

use array_def, only: a
#endif

I$cuf kernel do <<<*,*>>>

do i=1, n
a(i) = a(i) + b
end do

end subroutine add_scalar

When compiling without the preprocessor directive USE_GPU. The code will behave the same
as the CPU version. Ignoring the CUF kernel execution configuration. When GPU is enabled
the device allocated array a_d(n) is used instead, for a calculation respecting the CUF kernel.
If the arrays used in the subroutine are explicitly passed then one can make use of the device
attribute to achieve the same effect as above. The following code illustrate the same.

subroutine add scalar(a,n)
real:: a(n)

#ifdef USE_GPU
attributes(device) :: a

#endif

I$cuf kernel do <<<*,*>>>

do i=1, n
a(i) = a(i) + b
end do

end subroutine add_scalar

Since most of the subroutines in Quantum ESPRESSO are of the above type. In some unavoid-

able cases the code is redefined for GPU inside the preprocessor directive statements.
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4.1.3 Libraries Used, Modified Subroutines and Files

The porting of performance critical libraries in QE version 6 using CUDA Fortran was ini-
tiated by NVIDIA. Main parts of the code that was ported include forward and inverse 3D
FFTs, Davidson iterative diagonalization using a dense eigensolver [6] for general k-point cal-
culations, computation of the forces etc,. In this project an attempt has been made to port the
conjugate gradient (CG) algorithm of QE for general k-point(complex dtype). This is a neces-
sary step towards porting the complete code to GPU and to study the advantageous of CG for a
QE-GPU version.

In the source code of QE, the main subroutine which handles the CG algorithm for general
k-point is ccgdiagg() as discussed in the section 3.2.2 which is in the ccgdiagg. f90 file. This
subroutine is called from diag_bands_k subroutine in the ¢_bands. f90 file. The rotate_wfc_k
subroutine required for the CG method is already implemented for the davidson method. All
the calculations done in the ccgdiagg are analogous to the CPU implementation. As an alter-
native to LAPACK/ScalLAPACK libraries Cublas library is used for the GPU portions of the
code. Two of the main cublas subroutines that are used for the CG method are cublasDdot and
cublasZgemv. cublasDdot for calculating the dot product between two vectors and cublasZgemv
for matrix vector operation. Other functions include h_1psi and s_1psi which applies the
Hamiltonian and the S matrix to a vector psi, these are also ported to GPU as part of this project.
mp. 90 file is changed for including mp_sum_cv_d, the mp_sum of complex vector type. Most
of the tightly nested loops are handled with the help of CUF kernels.

In the present stage of the porting process the major computational routines for general
k-point calculation are implemented. I'-point calculation routines are currently under develop-
ment.
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CHAPTER 5

Results and performance

We devote the following sections to discuss several results that were obtained studying the
behaviour of the test cases given in the table 3.3 on NVIDIA Tesla K80 GPU cards known as
Kepler on the Drake machine and Tesla P100 GPU known as Pascal on the DAVIDE cluster.
Which mainly include the performance of Davidson and CG methods on GPU’s with regards

to their speed and memory consumption and a comparison between the GPU and CPU speeds.

5.1 Performance results

The results of the tests on a single node of the Drake machine with K80 GPU’s are given
in the figure 5.1. All tests are performed by binding one process per core. Time to solution is
considerably lower than the CPU counterpart of the respective test cases given in section 3.3.2.
Even though it wouldn’t be fair to consider the scaling with only two data points, one is tempted
to say that the CG code maintains its better scalability feature on GPU as seen from the CPU
results. This feature is slightly prominent in the case of multiple node performances as given
in the figure 5.2 done on P100 GPU’s for AUSURF112. It can be said that for this particular
test case Davidson already has achieved saturation. But Davidson method clearly maintains an
advantage in terms of speed. It is also interesting to note that the time to solution decreases at
least twice in magnitude when going from K80 to P100. This behaviour can be attributed to a
faster memory subsystem and the higher double precision performance of P100 cards of nearly
5 TeraFLOPS, for K80 GPU’s its 3 TeraFLOPS.

By observing the comparison on the memory usage of these two methods given in the fig-
ure 5.3, one could say that what CG loses in speed it gains in memory. This behaviour was
expected since it is the same that we have seen in CPU as well. Davidson by construction con-
sumes more memory than CG. This dissimilarity becomes apparent when using large tests since
the GPU devices have limited memory. For a K80 device this limitation is 12GB, and for a P100
it is 16GB. As shown in the same figure the memory advantage of CG is at least half that of
Davidson when using the default -ndiag when running the PWscf. This heavy memory usage
can be brought down for Davidson by setting -ndiag to the minimum that is 2, which will re-
duce the workspace allowed for diagonalization. This modification, however, would also bring
down the performance of Davidson diagonalization linearly. In the figure 5.3 the horizontal bar

(green colour-online) on the Davidson indicate memory consumption when the -ndiag is set to
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Figure 5.4 shows the average of the volatile GPU utilisation as reported from the nvidia-smi

tool when the kernels are utilising the GPU. This infers that the implementation of the CG
method uses GPU more efficiently than the Davidson in the tested cases.
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5.2 Comparison between GPU and CPU results

Performance comparison between CPU and GPU versions of the same code are given in
the figure 5.5. In all the tested configurations the GPU systems are outperforming the CPU
ones. Adding pool parallelism (/Nx pools) can improve the performance of a fixed number of
CPU or GPU with an increase of Ng. This behaviour is attributed to 3D FFT computations
and the eigensolver [7]. The time to solution similarity between one node of Marconi with
BWD processors and one node on DAVIDE suggest that the GPU implementation of QE is
very competitive to the CPU one. This can be imputed to efficient implementation of FFT
3D library and the custom GPU eigensolver which delivers the performance similar to that of
ScalLAPACK and ELPA.
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CHAPTER 6

Future Work

In ESLW project, the current implementation of PPCG only includes the I'-point calcula-
tion. This has to be extended to general k-point calculations. The ultimate aim of this project
is to develop a self-sustained Kohn—Sham solver module with many different choices for it-
erative diagonalization methods. With this in mind, alternative solvers such as ParO has to be
implemented in the library. An interesting extension to the porting of QE to GPU would include
a GPU version of the PPCG solver. There are places in the GPU code of the CG solver that
can be improved further. Lots of places where loops can be combined to reduce the number of
distinct CUF kernels to save memory bandwidth and reduce latency losses. An immediate step
in the porting process is the I'-point calculation. This part of the CG method is currently under
development, and it’s near completion. Other portions for porting include, extending the code

to non-collinear cases, exact exchange calculations, etc.,
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CHAPTER 7

Conclusion

Distinct approaches which make Quantum ESPRESSO suitable to be executed on massively
parallel supercomputers have been developed and tested in this work. We have used libraries
and programming models which make use of the cutting edge hardware technologies such as
GPU’s. By making the most expensive parts of the QE code such as iterative diagonalization
efficient one would be able to study large quantum systems and push the boundaries of the
material research. We checked the validity and accuracy of PPCG solution and GPU version of
the CG with the known test cases and benchmarked their performance. GPU version of the code
produces accurate results with a time to solution which is multiple factors lower than a reference
CPU system. From the initial impression, the same can be said about the PPCG solver. For the
version of QE ported to GPU systems a trend of increase in performance can be observed from
Tesla K80 GPU (Kepler) to Tesla P100 GPU (Pascal) cards due to the faster memory subsystem
and higher double precision performance. This trend can be expected to follow in the upcoming
generation of NVIDIA GPUs. The work presented here utilises the current advancements in the
software and hardware technology which constitutes an instance of an HPC approach which is
most useful towards scientific computing.

PPCG Solver implemented in the ESLW is available on Gitlab at: https://gitlab.
e-cam2020.eu/es1/ESLW Drivers

CUDA-accelerated version of QE is open-source and available on Github at: https://
github.com/fspiga/qe-gpu
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