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1 Introduction

Dualities in supersymmetric gauge theories are powerful tools providing a better under-

standing of the strongly coupled regime. In this paper we study some dualities in Yang-

Mills (YM) and Yang-Mills-Chern-Simons (YM-CS) theories in three dimensions preserving

4 supercharges (N = 2). In three dimensions the Yang-Mills coupling g2 is dimensionful,

making the theory super-renormalizable but often strongly coupled in the infrared (IR).

The theories we consider are believed to flow to interacting fixed points in the IR. In the

case where a Chern-Simons term is present one can also define the theory without Yang-

Mills coupling, so that the Lagrangian is classically marginal; such a theory is also exactly

superconformal in the sense of [1], albeit strongly coupled unless the CS level k or the

number of flavors is large, and it can be thought of as the IR limit of a YM-CS theory.

The type of duality we want to consider is an exact equivalence between the IR fixed

points of two distinct YM-CS theories. Such an “IR duality” is reminiscent of four-

dimensional N = 1 Seiberg duality in the conformal window [2]. There are roughly two

kinds of IR dualities which are known to exist in 3d N = 2 gauge theories. The first kind is

known as mirror symmetry [3, 4]: its hallmark is that it exchanges the role of fundamental

fields and monopole operators [5, 6]. The second kind of duality, more akin to Seiberg

duality [5, 7–10], has recently attracted renewed attention [11–19]. In this paper we will

focus on such “Seiberg-like” dualities.

We stress that the Chern-Simons terms for global symmetries, which we call “global

CS terms”, can change under duality (section 2). We consider (section 3) novel Seiberg-like

dualities for YM-CS theories with unitary gauge groups and generic number of fundamen-

tal and antifundamental matter representations. They can be obtained from dual pairs of

theories considered by Aharony [9] via RG flows triggered by real mass deformations.1 We

are careful to specify the relative global CS terms that arise in these dualities. These terms

become especially important when (part of) the global symmetries are gauged within a

larger theory, e.g. a quiver (section 4). We support our claims (section 5) by showing that

the partition functions Z on the squashed 3-sphere S3
b [21] agree on the two sides of the du-

alities. By numerical computation (section 6) we can check that |Z| increases along the RG

flow in some simple cases, giving support to the conjectured “F-theorem” [22]. We further

comment (sections 7 and 8) on previously known dualities for the case of symplectic and

orthogonal gauge groups and extend the orthogonal dualities of [15] to Yang-Mills theories

without CS interactions.2 These results can be used to check the duality between N = 5

Usp(2NUsp)k ×O(NO)−2k theories put forward in ABJ [11] from the partition function.

2 Global Chern-Simons terms

Let us consider YM-CS theories with a semi-simple global symmetry group G. We assume

that there are no accidental symmetries in the IR. Let JI , I = 1, · · · , rank(G) be the

conserved currents in the Cartan subalgebra of G. The two-point function of conserved

1Some of these flows to vectorlike theories were previously analyzed in [20].
2The latter duality is also proposed in [23].
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currents in three dimension can contain a conformally invariant contact term [24]

〈JµI (x)JνJ (y)〉 = −wIJ
4π

ǫµνρ∂ρ δ
3(x− y) + · · · . (2.1)

The coefficients wIJ are part of the definition of the conformal theory in the IR.

In the UV where we have a Lagrangian description, the contact terms (2.1) correspond

to Chern-Simons interactions for the background gauge fields coupling to the conserved

currents,

Sbackground =
∑

I,J

kIJ
4π

∫

M3

AI ∧ dAJ , (2.2)

where M3 is the manifold on which the theory is defined. We have wUVIJ = kIJ . The

formulas for the non-Abelian symmetries are similar. For a pair of dual theories with the

same IR physics, it might happen that there is a relative global Chern-Simons term so that

the IR contact terms wIJ in (2.1) agree. This was noticed previously in the context of

mirror symmetry [25] and we find this also to be the case in many Seiberg-like dualities.

Let us further comment on the N = 2 supersymmetric completion of such interactions.

Whenever JI is the current of a non-R Abelian symmetry, JµI is simply the θθ̄ component

of a linear superfield JI (with D2JI = D̄2JI = 0), it couples to a background vector

superfield VI , and the N = 2 completion of (2.2) is

∑

I,J

kIJ
4π

∫

d3x

∫

d4θ VIΣJ , (2.3)

where ΣJ = ǫαβD̄αDβVJ is the linear multiplet containing the field strength of VJ . On the

other hand, the supersymmetric gauging of the R-symmetry is more subtle; see [21, 26, 27]

for recent discussions. The R-symmetry current JµR is the lowest component of a R-multiplet

Rµ including the supercurrent and the stress-energy tensor. It can be coupled minimally

to supergravity: there exists a supergravity multiplet3 whose highest component is a gauge

field A
(R)
µ for local R-symmetry transformations (it is an auxiliary field in the off-shell

SUGRA multiplet). Therefore there exists an N = 2 completion of the CS term

kRR
4π

∫

A(R) ∧ dA(R) , (2.4)

which involves supersymmetry preserving background fields in the SUGRA multiplet, in

the spirit of [21, 27]. A full description of this is left for the future.

3 Dualities for U(n) theories with “chiral” matter

Let us consider the following “SQCD-like” theory in three dimensions. We take a N = 2

supersymmetric gauge theory with gauge group U(n), coupled to s1 matter superfields Q̃a

in the antifundamental representation n and s2 matter superfields Qb in the fundamental

representation n; in short we denote this matter content (s1, s2), and the quiver diagram

3It is the dimensional reduction from 4 to 3 dimensions of the new-minimal SUGRA multiplet of [28].
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(a) Electric. (b) Magnetic.

Figure 1. (a) Quiver diagram of the U(n)k electric theory. (b) Quiver diagram of the magnetic

U(m)−k theory, where m is defined in (3.11). For special values of the parameters, there might be

extra singlets T and/or T̃ in addition to the mesons M , as explained in the text.

is in figure 1 (left). In addition to the super-Yang-Mills couplings for the U(n) vector

multiplet, we allow for N = 2 Chern-Simons interactions, with Chern-Simons level k. Due

to the absence of chiral anomalies in three dimensions, we can take s1 6= s2, a situation we

loosely call “chiral”. On the other hand, cancelation of a Z2 anomaly [29, 30] requires that

k +
1

2
(s1 + s2) ∈ Z . (3.1)

This theory is expected to flow to an interacting fixed point in the IR, generally strongly

coupled. Dualities can be very useful to obtain more clues about the IR dynamics, for

instance about the chiral ring of superconformal primaries.

3.1 Aharony’s duality

The case of a U(n) gauge group with k = 0 and matter content (nf , nf ) has been studied

in detail over the years [5, 7, 9, 31]. Classically this three-dimensional SQCD theory has

both a Coulomb and a Higgs branch. The Higgs branch corresponds to VEVs for the

gauge-invariant mesons M = Q̃Q. The Coulomb branch corresponds to VEVs for the

adjoint scalar σ in the vector multiplet. Since a generic VEV for σ breaks the gauge

group to its maximal torus and it gives mass to all quarks, the low energy theory along

the Coulomb branch consists of free photons (and their superpartners) for the unbroken

U(1)n gauge group. The free vector multiplets can be dualized into chiral superfields

Φi = 2π
e2 σi + iϕi, where ϕi are dual photons (of period 2π), and the classical Coulomb

branch is parameterized by monopole operators Yi ∼ exp Φi. However instanton corrections

lift most of the Coulomb branch [5, 7, 9]. The only remaining monopole operators are the

ones with flux H = (±1, 0, · · · , 0) in the Cartan of the gauge group, which we denote as T

and T̃ . They have charge ±1 under the topological symmetry with current Tr(∗F ). At the

quantum level, for nf < n−1 a dynamically generated superpotential lifts all SUSY vacua.

For nf = n− 1 the singular classical moduli space is deformed quantum-mechanically. We

will focus on the case nf ≥ n, for which there is an effective superpotential on the moduli

space,

Weff = (nf − n+ 1)(T T̃ detM)
1

nf−n+1 . (3.2)

In the case nf = n the IR physics is described by a sigma model for the chiral superfields

M , T and T̃ . For nf > n the effective superpotential (3.2) correctly describes the moduli

– 4 –
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space4 except for the origin M = T = T̃ = 0 where it is singular. In 4d N = 1 SQCD it

is well known that the same problem is cured by the introduction of a dual gauge group

coupled to dual quarks which can be weakly coupled (below the 4d conformal window) [2].

In three dimensions the gauge coupling is never IR free, but a situation similar to the

4d conformal window, with two different theories flowing to the same IR fixed point, can

occur. Such a Seiberg-like duality was proposed by Aharony a while ago [9].

Let us call the N = 2 supersymmetric U(n) gauge theory with matter content (nf , nf ),

denoted (Q̃a, Qb), the “electric” theory. The “magnetic” theory of [9] is a U(nf −n) gauge

theory with matter content (nf , nf ), denoted (qa, q̃b), together with n2
f singlets Ma

b , two

singlets T and T̃ and a superpotential

W = q̃Mq + tT + t̃T̃ , (3.3)

where t and t̃ are the monopole operators in the U(nf − n) gauge group with Abelian flux

+1 and −1 respectively. The description of the magnetic theory is to be taken with a grain

of salt, because of the appearance of monopole operators in W [9]. The significance of (3.3)

is that we have the relations

qq̃ = 0 , t = 0 , t̃ = 0 , (3.4)

in the chiral ring of the magnetic theory. We also have

q̃M = 0 , Mq = 0 , (3.5)

which tell us that for generic q, q̃ the meson matrix M has at least nf −n zero eigenvalues,

so that rankM ≤ n like in the electric theory. The representations under gauge and global

symmetries of the fields in both theories are:

U(n) U(nf − n) SU(nf ) SU(nf ) U(1)A U(1)M U(1)R

Q̃ n 1 nf 1 1 0 rQ
Q n 1 1 nf 1 0 rQ

q̃ 1 nf − n nf 1 −1 0 1 − rQ
q 1 nf − n 1 nf −1 0 1 − rQ
M 1 1 nf nf 1 0 2rQ
T 1 1 1 1 −nf 1 nf (1 − rQ) − n+ 1

T̃ 1 1 1 1 −nf −1 nf (1 − rQ) − n+ 1

t 1 1 1 1 nf −1 −nf (1 − rQ) + n+ 1

t̃ 1 1 1 1 nf 1 −nf (1 − rQ) + n+ 1

(3.6)

The duality identifies M with the mesons Q̃Q, and the singlets T , T̃ with the gauge-

invariant monopole operators of the electric theory. In the magnetic theory we also have

4For T̃ = T = 0 we have rank(M) ≤ n; if either T or T̃ is non-zero we have rank(M) ≤ n − 1, while if

both T and T̃ are non-zero then rank(M) ≤ n− 2. In particular the semi-classical result that M = Q̃Q has

at most rank n < nf is reproduced.
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monopole operators t and t̃ which survive instanton corrections of the U(nf − n) gauge

group.5 However they vanish in the chiral ring, due to (3.4).

This duality has received renewed attention recently: it has been checked at the level

of the partition function in [14] and the matching of the superconformal index between the

dual theories was discussed in [16].

3.2 Chiral SQCD with Chern-Simons levels

In the more general case s1 6= s2, the Higgs branch of the U(n) theory is still parametrized

by mesons M = Q̃Q, but the Coulomb branch is generically lifted. Indeed, for a generic

VEV σ = diag (x1, · · · , xn), integrating out the massive quarks generates Chern-Simons

terms for the vector multiplets in U(1)n. For U(1)i ⊂ U(1)n, we have

keff
i = k − 1

2
(s1 − s2) sign(xi) , (3.7)

where k is the (possibly vanishing) bare CS level of the U(n) gauge group. A non-zero

Chern-Simons level gives a so-called topological mass mT = g2k/2π [32] to the Abelian

vector multiplets, lifting the Coulomb branch at one-loop, even before instanton corrections

are taken into account. Let us define the effective CS levels

k± ≡ k ± 1

2
(s2 − s1) . (3.8)

There are four interesting cases according to the signs of k+ and k−, which we denote by

[p,q]a = [−k+,−k−]a , [p,q]b = [k+, k−]b ,

[p,q]∗a = [−k+, k−]∗a , [p,q]∗b = [k+,−k−]∗b .
(3.9)

The labels [p,q] are by definition non-negative integers. In fact there are only two in-

equivalent cases, say [p,q]a and [p,q]∗a, because the b-cases are related to them by a CP

transformation. We will therefore consider the a-cases in the following. The limiting cases

between the a and ∗a theories, such as [p,0]a, are quite interesting: one of the two effective

CS levels vanishes and half of the Coulomb branch remains unlifted.

The global symmetry group of our theories is SU(s1)×SU(s2)×U(1)A×U(1)M×U(1)R,

unless s1s2 = 0 in which case U(1)A is not present. We have

U(n) SU(s1) SU(s2) U(1)A U(1)M U(1)R0

Q̃ n s1 1 1 0 0

Q n 1 s2 1 0 0

(3.10)

The fundamental fields are neutral under the topological symmetry U(1)M , but monopole

operators are charged under it. The U(1)R0 defined here is a convenient choice of UV R-

charge, corresponding to rQ = 0 in (3.6). We will discuss the superconformal R-symmetry

in more detail in section 6.

5Note that the topological charge M = Me of the electric theory is related to the topological charge Mm

of the magnetic theory by Me = −Mm.
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These theories either break supersymmetry spontaneously (in some cases due to a

runaway), or they enjoy a Seiberg-like dual description.6 Whenever it exists, the “mag-

netic” theory is a U(m) gauge theory at Chern-Simons level −k, with s1 chiral superfields

q̃a in the fundamental representation and s2 chiral superfields qb in the antifundamental

representation — the quiver is in figure 1 (right). The rank m of the dual gauge group is

[p,q]a : m =
s1 + s2

2
− k − n ,

[p,q]b : m =
s1 + s2

2
+ k − n ,

[p,q]∗a : m = s1 − n ,

[p,q]∗b : m = s2 − n .

(3.11)

In addition, we have s1 × s2 gauge singlets Ma
b , dual to the mesons Q̃aQb. In the case

[p,0]a we also have an additional singlet T dual to a gauge invariant monopole operator,

and in the case [0,0] we have the duality of [9]. The singlets are coupled to the magnetic

sector through the superpotential

Wmag = q̃Mq + δp0 tT + δq0 T̃ t̃ . (3.12)

Note that the Giveon-Kutasov duality [12] is the case [p,p]a. Remark that the dual of a

theory of type [p,q]a is a theory of type [p,q]b, with extra singlets coupled through (3.12);

similarly the dual of a theory of type [p,q]∗a is a theory of type [p,q]∗b.

Supersymmetry breaking occurs when the parameter m in (3.11) is negative (recall

however footnote 6). Consider a theory in any of the four cases (3.9), with matter content

(s1, s2) and m > 0. If we give a complex mass to a pair (Q̃,Q) by a superpotential term

W = µQ̃s1Qs2, we flow to a theory of the same type with matter content (s1 − 1, s2 − 1).

In the magnetic dual, this correspond to a linear term µMs1
s2 in Wmag, which leads to

a VEV for qs2 q̃s1 and breaks the dual gauge group to U(m − 1), consistently with the

proposed duality. On the other hand, if we start with a theory at m = 0, the complex

mass deformation leads to a superpotential Wmag = µMs1
s2 in the dual theory, which breaks

supersymmetry spontaneously.

It is interesting to consider generic real mass parameters for our theories. All the mass

terms can be understood as background values for scalars in external vector multiplets

which gauge the global symmetries. We have:

m̃a : SU(s1) a = 1, · · · , s1
mb : SU(s2) b = 1, · · · , s2
mA : U(1)A

ξ : U(1)M

(3.13)

We take m̃a to correspond to the Cartan of U(s1), but we add the constraint
∑

a m̃a = 0

to get to SU(s1). Similarly
∑

bmb = 0 for SU(s2). The term ξ is best thought of as a

6The only exception is the case k = 0, s1 = s2 = nf = n−1, where the classical moduli space is deformed

quantum-mechanically [5].
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Fayet-Iliopoulos (FI) parameter for the diagonal U(1) in the gauge group. The quarks Q̃,

Q have effective real mass
M [Q̃ai ] = −xi + m̃a +mA ,

M [Qib] = xi −mb +mA ,
(3.14)

where xi are the eigenvalues of σ. The duality we consider holds for generic massive

deformations, provided that the magnetic theory has some definite Chern-Simons terms

for the flavor group, which we will derive.

The numerology (3.11) for the dual gauge group can also be found from a Type IIB

brane construction [33], where the statement that SUSY is broken for m < 0 follows from

the s-rule of [34]. Here we prefer to keep the discussion in purely field theory terms.

3.3 Dual of the [p, 0]a theory

All Seiberg-like dualities we consider for U(n) gauge theories can be derived from the

duality of [9]. Starting from the electric theory [0,0]a of section 3.1, we can integrate out

nf−s2 of the quarks Q after giving them a large negative real mass m0 < 0. This gets us to

a theory with s1 = nf antifundamentals, s2 fundamentals, and CS level k = −(s1 − s2)/2,

which is precisely the [p,0]a case with p = s1−s2. This real mass deformation corresponds

to a VEV for a background scalar from the flavor group, so we can easily identify the dual

operation in the magnetic theory of [9] and obtain the magnetic dual of our [p,0]a theory.

Integrating out chiral superfields with real masses also generates Chern-Simons level for

the flavor group. For any two Abelian factors U(1)i and U(1)j which couple to the fermions

ψ with charges qi, qj, we generate a Chern-Simons level

δkij =
1

2

∑

ψ

qi(ψ) qj(ψ) sign(M [ψ]) . (3.15)

Let us denote by Qβ (β = s2 + 1, · · · , s1) the s1 − s2 massive quarks of real mass

M [Qβ ] = m0, while the rest of the quarks are massless. From (3.14), we must have

m̃a = 0 , mb6=β =
s1 − s2
s1

m0 , mβ = −s2
s1
m0 , mA = xi =

s1 − s2
2s1

m0 , (3.16)

Remark that we also need to shift the real scalar for the diagonal U(1) in the gauge group

U(n). In this particular vacuum, the effective FI term is

ξeff = ξ +
s1 − s2

2
|m0| , (3.17)

and this should vanish for the vacuum to be supersymmetric. Therefore we need to turn on

a bare FI term ξ = s1−s2
2 m0. Denote by Fβ the U(1)β in the Cartan of U(s1 − s2) ⊂ U(s1)

under which Qβ are charged, and by Fb the Cartan of the remaining U(s2) group. Let us

define the symmetry U(1)F such that

M [φ] = F [φ]m0 , (3.18)

for any field φ, when (3.16) holds. It is

F ≡ s1 − s2
s1

∑

b6=β

Fb −
s2
s1

∑

β

Fβ +
s1 − s2

2s1
A[0,0] +

s1 − s2
2

M +
s1 − s2

2s1
(Qe +Qm) , (3.19)
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where Qe is the charge under the diagonal U(1) in the U(n) gauge groups, while Qm
corresponds to the magnetic gauge group U(m) (in the Aharony dual theory). In this

formula A[0,0] denotes the U(1)A symmetry of the [0,0]a theory we start with. Let us

define a new U(1)A symmetry

A[p,0] = A[0,0] +
∑

Fβ , (3.20)

such that A[Qb] = 1 for the light quarks (b 6= β), and A[Qβ ] = 0. Equivalently, if we

break the SU(s1) flavor group acting on the Q’s into SU(s2)× SU(s1 − s2)×U(1)B , where

B[Qb] = s1 − s2 for b 6= β, and B[Qβ] = −s2, we have

A[p,0] =
s1 + s2

2s1
A[0,0] +

1

s1
B − s1 − s2

2s1
(Qe +Qm) . (3.21)

This definition makes clear that the new axial symmetry is defined through a mixing with

the gauge symmetry. Turning on a real mass mÃ for the A[p,0]-symmetry corresponds to

mA[0,0]
=
s1 + s2

2s1
mÃ , mB =

1

s1
mÃ , xi = −s1 − s2

2s1
mÃ , (3.22)

including a finite shift of the scalar σ in the vector multiplet. We also define a new trial

R-symmetry in the chiral theory

R[p,0] = R[0,0] −
s1 − s2

2
M , (3.23)

assigning the same charge to the (bare) monopole operators T[p,0], T̃[p,0] of the IR theory.

In the electric theory [0,0]a, we have

U(n) SU(s1) Fb Fβ A[p,0] M R[p,0] F
Q̃a n s1 0 0 1 0 0 0

Qb′ n 1 −δb′b 0 1 0 0 0

Qβ′ n 1 0 −δβ′β 0 0 0 1

(3.24)

The only microscopic fields charged under F are Qβ, by definition. Integrating out the

s1 − s2 matter multiplets yields a CS level k = −(s1 − s2)/2 for the gauge group and a

global CS term for our choice of R-symmetry,

kRR = −1

2
n(s1 − s2) . (3.25)

There also are some more subtle global CS terms due to the definitions we gave for the

axial and R-symmetries. Let A be the U(n) gauge field, and A(M), A(A) and A(R) the

background gauge fields for the U(1)M , U(1)A and U(1)R symmetries, respectively. The

FI parameter ξ is the lowest component of the linear multiplet ΣM containing dA(M), so

that ∫

d3x

∫

d4θΣM Tr(V ) =

∫

d3x ξTr(D) +

∫

dA(M) ∧ Tr(A) + · · · (3.26)

The shifts in (3.21) and (3.23) modifies this last coupling according to

dA(M) ∧ Tr(A) → d
(

A(M) +
s1 − s2

2
A(R)

)

∧ Tr
(

A− s1 − s2
2s1

A(A) 1)

, (3.27)
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U(m) SU(s1) Fb Fβ A[p,0] M R[p,0] F
q̃a m s1 0 0 −1 0 1 0

qb
′

m 1 δb′b 0 −1 0 1 0

Ma
b′ 1 s1 −δb′b 0 2 0 0 0

T 1 1 −1
2 −1

2 − s1+s2
2 1 s1+s2

2 − n+ 1 0

qβ
′

m 1 0 δβ′β 0 0 1 −1

Ma
β′ 1 s1 0 −δβ′β 1 0 0 1

T̃ 1 1 −1
2 −1

2 − s1+s2
2 −1 3s1−s2

2 − n+ 1 −(s1 − s2)

Table 1. Charges for the fundamental fields in the magnetic theory of Aharony. The fields charged

under F (lower part of the table) are massive and integrated out in order to find the Seiberg dual

of the [p,0]a theory.

and thus generates the mixed CS levels

kMA = −ns1 − s2
2s1

, kRA = −n(s1 − s2)
2

4s1
, (3.28)

where the factor of n comes from the trace over the gauge group.

In the magnetic theory of Aharony, we should integrate out all fields charged under

F (3.19). The charges of the various fundamental fields are summarized in table 1. Remark

that the monopole operator T survives as a singlet in the dual theory: half of the Coulomb

branch of the electric theory survives. In the IR the magnetic theory is a U(m) theory

(m = s1−n) at CS level km = −k = (s1−s2)/2. There are also various global Chern-Simons

terms from integrating out, together with a contribution similar to (3.28). Since we are free

to add the same global CS interactions to both sides of the duality, to state the final result

we should express all global Chern-Simons levels as relative levels ∆kIJ ≡ kmagnIJ − kelecIJ

between the magnetic and the electric description. We also express everything in term of

m, s1, s2 and k.

The electric theory is a U(n)k gauge theory having matter content (s1, s2) with s1 >

s2, where the CS level is

k = −1

2
(s1 − s2) . (3.29)

The magnetic theory is a U(s1 −n)−k gauge theory with matter content (s2, s1) plus

s1s2 singlets Ma
b and a singlet T , coupled by a superpotential

W = q̃Mq + tT̃ , (3.30)

where t is the gauge-invariant monopole operator of the magnetic gauge group. Moreover

there are relative global CS levels

∆kSU(s1) = k , ∆kSU(s2) = 0 (3.31)
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for the non-Abelian part of the flavor group SU(s1) × SU(s2) and

∆kAA = ks1 +
1

8
(s1 + s2)

2 , ∆kAM = −k +
1

4
(s1 + s2)

∆kMM =
1

2
, ∆kAR = −k(s1 + k) − 1

4
(s1 + s2)(m− k)

∆kRR = km+
1

2
(m− k)2 , ∆kMR = −1

2
(m− k) .

(3.32)

for the Abelian flavor symmetries U(1)A × U(1)M × U(1)R, where m = s1 − n.

The above formulas extend to the case s2 = 0, ignoring the CS levels involving U(1)A.

3.4 Dual of the [p, q]a theory

To go to a [p,q]a theory with pq > 0, we start again from the non-chiral theory [0,0]a, and

we integrate out nf−s1 of the antiquarks Q̃ (denoted Q̃α, α = s1+1, · · · , nf ) together with

nf −s2 of the quarks Q (denoted Qβ, β = s2 +1, · · · , nf ), with M [Q̃α] = M [Qβ ] = m0 < 0.

For this we take the mass parameters and FI terms

m̃a = −nf − s1
nf

m0 , m̃α =
s1
nf
m0 , mb =

nf − s2
nf

m0 , mβ = − s2
nf
m0

mA =
2nf − s1 − s2

2nf
m0 , xi =

s1 − s2
2nf

m0 , ξ =
1

2
(s1 − s2)m0 , (3.33)

with m0 → −∞. Similarly to the previous subsection, we define a symmetry F such

that (3.18) holds when the masses (3.33) are turned on, and the new axial and R-symmetries

A[p,q] = A[0,0] −
∑

α

F̃α +
∑

β

Fβ , R[p,q] = R[0,0] −
s1 − s2

2
M . (3.34)

In the electric [0,0]a theory, we have

U(n) F̃a F̃α Fb Fβ A[p,q] M R[p,q] F
Q̃a n 1 0 0 0 1 0 0 0

Qb n 0 0 −1 0 1 0 0 0

Q̃α n 0 1 0 0 0 0 0 1

Qβ n 0 0 0 −1 0 0 0 1

(3.35)

Integrating out Q̃α and Qβ yields a CS level k = −nf + s1+s2
2 for the U(n) gauge group,

together with global CS terms. This leads us to the [nf − s2, nf − s1]a field theory. The

charges of the fields in the magnetic theory are reproduced in table 2.

The electric SQCD-like theory is a U(n)k CS theory with matter content (s1, s2), with

k < −1

2
|s1 − s2| . (3.36)

The magnetic theory is a U(m)−k CS theory, where

m =
1

2
(s1 + s2) − k − n , (3.37)
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U(m) F̃a F̃α Fb Fβ A[p,q] M R[p,q] F
q̃a m −1 0 0 0 −1 0 1 0

qb m 0 0 1 0 −1 0 1 0

Ma
b 1 1 0 −1 0 2 0 0 0

q̃α m 0 −1 0 0 0 0 1 −1

qβ m 0 0 0 −1 0 0 1 −1

Mα
b 1 0 1 −1 0 1 0 0 1

Ma
β 1 1 0 0 −1 1 0 0 1

Mα
β 1 0 1 0 −1 0 0 0 2

T 1 −1
2 −1

2 −1
2 −1

2 −1
2(s1 + s2) 1 nf − n− s1−s2

2 + 1 −(nf − s1)

T̃ 1 −1
2 −1

2 −1
2 −1

2 −1
2(s1 + s2) −1 nf − n+ s1−s2

2 + 1 −(nf − s2)

Table 2. Charges for the fundamental fields in the magnetic theory. The fields charged under F
are integrated out to obtain the Seiberg dual of the [p, q]a theory.

with matter content (s2, s1) along with s1s2 singlets M , and superpotential W = q̃Mq. In

addition there are relative global CS interactions at level

∆kSU(s1) =
1

2

(

k − s1 − s2
2

)

, ∆kSU(s2) =
1

2

(

k +
s1 − s2

2

)

(3.38)

for the non-Abelian flavor symmetry group and

∆kAA =
1

2
k(s1 + s2) + s1s2 , ∆kAM =

1

2
(s1 − s2)

∆kMM = 1 , ∆kAR = −1

2
(k +m)(s1 + s2)

∆kRR =
1

2

(
(k +m)2 +m2

)
+

1

8
(s1 − s2)

2 , ∆kMR = −1

2
(s1 − s2) (3.39)

for the Abelian symmetries.

3.5 Dual of the [p, q]∗a theory

To obtain a [p,q]∗a theory, we start again from a [0,0]a theory with nf flavors. We now

keep the nf = s1 antiquarks Q̃ massless, while integrating out s1− s̃ of the quarks (denoted

Qβ) with a negative mass and s̃− s2 of the quarks (denoted Qγ) with a positive mass. For

this we take the limit m0 → −∞, scaling

m̃a = 0 , mb =
s1 + s2 − 2s̃

s1
m0 ,

mβ = −2s̃− s2
s1

m0 , mγ =
2s1 + s2 − 2s̃

s1
m0 ,

mA = xi =
s1 + s2 − 2s̃

2s1
m0 , ξ =

1

2
(s1 − s2)m0 .

(3.40)
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U(m) SU(s1) Fb Fβ Fγ A[p,q]∗ M R[p,q]∗ F
q̃a m s1 0 0 0 −1 0 1 0

qb m 1 1 0 0 −1 0 1 0

Ma
b 1 s1 −1 0 0 2 0 0 0

qβ m 1 0 1 0 0 0 1 1

qγ m 1 0 0 1 0 0 1 −1

Ma
β 1 s1 0 −1 0 1 0 0 1

Ma
γ 1 s1 0 0 −1 1 0 0 −1

T 1 1 −1
2 −1

2 −1
2 − s1+s2

2 1 s1+2s̃−s2−2n
2 + 1 s̃− s2

T̃ 1 1 −1
2 −1

2 −1
2 − s1+s2

2 −1 3s1−2s̃+s2−2n
2 + 1 −(s1 − s̃)

Table 3. Charges for the fundamental fields in the magnetic theory. The fields charged under F
are integrated out to obtain the Seiberg dual of the [p, q]∗a theory.

We define a symmetry F as before, and the new axial and R-symmetries

A[p,q]∗ = A[0,0] +

s1−s̃∑

β

Fβ +

s̃−s2∑

γ

Fγ , R[p,q]∗ = R[0,0] −
s1 + s2 − 2s̃

2
M . (3.41)

In the electric theory we have

U(n) SU(s1) Fb Fβ Fγ A[p,q]∗ M R[p,q]∗ F
Q̃a n s1 0 0 0 1 0 0 0

Qb n 1 −1 0 0 1 0 0 0

Qβ n 1 0 −1 0 0 0 0 1

Qγ n 1 0 0 −1 0 0 0 −1

(3.42)

Integrating out the heavy quarks generates a CS level k = s̃ − (s1 + s2)/2 for the U(n)

gauge group and leads us to the [s1 − s̃, s̃ − s2]
∗a theory. The charges for the magnetic

theory are given in table 3.

The electric theory is a U(n)k CS theory with matter content (s1, s2) with s1 > s2
and

|k| < 1

2
|s1 − s2| . (3.43)

The magnetic theory is a U(s1 − n)−k theory with matter content (s2, s1) together

with s1s2 singlets M , and superpotential W = q̃Mq. There are relative global CS terms

∆kSU(s1) = k , ∆kSU(s2) = 0 (3.44)

for the non-Abelian flavor symmetry group and

∆kAA = ks1 , ∆kAM = s1

∆kMM = 0 , ∆kAR = 0

∆kRR = −km , ∆kMR = −m
(3.45)

for the Abelian symmetries, with m = s1 − n.
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3.6 Summary of the U(n)k dualities

The missing cases can be obtained from the ones above by parity (P) and/or charge con-

jugation (C). Firstly, if we go from a U(n)k theory with matter content (s1, s2) and with

k < 0 to another such theory with k > 0, the global CS levels change according to

P : kglobal = f(k, s1, s2,m) → kglobal = −f(−k, s1, s2,m) . (3.46)

This is our P transformation. Secondly, if we go from a theory with s1 > s2 to a theory

with s2 > s1, the net effect on the global CS levels is obtained by exchanging s1 and s2:
7

C : kglobal = f(k, s1, s2,m) → kglobal = f(k, s2, s1,m) . (3.47)

The electric theories [p,q]a and [p,q]b — that we call minimally chiral — have gauge

group U(n)k and matter content (s1, s2) with

|k| > 1

2
|s1 − s2| ≥ 0 . (3.48)

The dual magnetic theories have gauge group U(m)−k, where

m =
1

2
(s1 + s2) + |k| − n , (3.49)

with matter content (s2, s1) along with s1s2 singlets M and superpotential W = q̃Mq. The

relative global CS levels are

∆kSU(s1) =
1

2

(

k + sign(k)
s1 − s2

2

)

, ∆kSU(s2) =
1

2

(

k − sign(k)
s1 − s2

2

)

,

∆kAA =
1

2
k(s1 + s2) − sign(k) s1s2 , ∆kAM = − sign(k)

s1 − s2
2

,

∆kMM = − sign(k) , ∆kAR = sign(k)
(m−|k|)(s1+s2)

2
,

∆kMR = sign(k)
s1 − s2

2
,

∆kRR=− sign(k)
( (m−|k|)2+m2

2
+

(s1−s2)2
8

)

. (3.50)

The electric theories [p,q]∗a and [p,q]∗b — that we call maximally chiral — have

gauge group U(n)k and matter content (s1, s2) with

0 ≤ |k| < 1

2
|s1 − s2| . (3.51)

The dual magnetic theories have gauge group U(m)−k, where

m = max(s1, s2) − n , (3.52)

7We loosely call this operation and the previous one C and P , but they are really the C and P trans-

formations together with a relabeling of the parameters.
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with matter content (s2, s1) along with s1s2 singlets M and superpotential W = q̃Mq. The

relative global CS levels are

∆k
SU

(
max(s1,s2)

) = k , ∆k
SU

(
min(s1,s2)

) = 0 ,

∆kAA = kmax(s1, s2) , ∆kAM = max(s1, s2) ,

∆kMM = 0 , ∆kAR = 0 ,

∆kRR = −km , ∆kMR = −m .

(3.53)

Similarly, one can work out the limiting cases [0,p]b, [0,p]a and [p,0]b from the

[p,0]a case of section 3.3. In the [0,p]b case, the electric theory is U(n)k with matter

content (s1, s2) and k = 1
2(s1 − s2) > 0, and the relative global CS levels are obtained

from (3.31)–(3.32) by a P transformation (3.46). In the [0,p]a case, the electric theory

U(n)k has k = 1
2(s1 − s2) < 0, and the global CS levels are obtained from (3.31)–(3.32) by

a C transformation (3.47). Finally, the [p,0]b case corresponds to an electric theory with

k = −1
2(s1 − s2) > 0, and it is obtained from the [p,0]a case by a CP transformation.

4 Consequences for Chern-Simons quivers

In recent years it was realized that M2-branes at Calabi-Yau singularities can be described

by N = 2 Chern-Simons quivers [35]. Generally such a quiver has gauge group U(n1) ×
· · · × U(nG) with some CS interactions, and fields Xij in bifundamental representations

coupled together by a superpotential [36–42]. The M2-brane quivers can also include so-

called flavors (fields in the fundamental/antifundamental representation of some of the

U(ni) factors) [43–45]. While most of the literature focussed on the case with equal ranks

ni = N , it was argued recently that this is not the case for rather generic M-theory

backgrounds [46].

Seiberg-like dualities for M2-brane quivers were studied in [11, 47, 48], but a thorough

understanding of Seiberg-like dualities for chiral quivers is still missing. While we hope to

report some progress in that direction in the near future, in this section we briefly discuss

some obvious consequences of the dualities of section 3 for chiral quivers.

Let us consider a generic quiver of the kind described above. We pick a node with

gauge group U(n0) and Chern-Simons level k0, and we consider its direct neighborhood,

as shown in figure 2(a). The nodes connected to the node 0 with incoming arrows have

gauge groups U(ñi), i = 1, · · · , L, and the nodes connected to node 0 with outgoing arrows

have gauge groups U(nj), j = 1, · · · , R. Some of these contiguous nodes could be global

symmetries, corresponding to flavors. The contiguous nodes have CS levels k̃i and kj ,

respectively. Let us denote by Ai0 the number of bifundamental fields between U(ñi) and

U(n0), and by A0j the number of bifundamental fields between U(n0) and U(nj). The total

numbers of antifundamental and fundamentals fields for U(n0) is

s1 ≡
F∑

i=1

ñiAi0 , s2 ≡
R∑

j=1

A0j nj . (4.1)
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(a) Local neighborhood in a CS quiver. (b) The Seiberg dual neighborhood.

Figure 2. Seiberg-like duality acting on a quiver. Remark that the dual quiver also contains some

mesonic fields M , although generally many of the mesons will be massive due to the superpotential.

The big flavor group SU(s1) × SU(s2) of chiral SQCD splits according to8

SU(s1) →
∏

i

SU(ñi) × SU(Ai0) , SU(s2) →
∏

j

SU(nj) × SU(A0j) , (4.2)

where the factors SU(ñi), SU(nj) are gauged (unless the node i or j stands for a flavor

group), while the factors SU(Ai0), SU(A0j) are global symmetries, which can be further

reduced due to the superpotential.

Performing a Seiberg-like duality on node 0 leads to the situation of figure 2(b). All

arrows connected to node 0 are reversed, and various mesonic fields are generated. Some

of the mesons may have a complex mass, in which case they should be integrated out.

While the rank n0 is the only one which changes under Seiberg-like duality on node 0, the

CS levels of the contiguous nodes are in general affected. We have two distinct situations,

corresponding to cases [p,q] and [p,q]∗ of section 3.

4.1 Minimally chiral case

The first case is a direct generalization of the non-chiral case studied in [47, 48]. If |k0| ≥
1
2 |s1 − s2|, the Seiberg dual has a gauge group U(m0) at level −k0 for node 0, with

m0 =
s1 + s2

2
+ |k0| − n0 . (4.3)

The CS levels of the contiguous nodes are then

k̃′i = k̃i +
1

2
Ai0

(

k0 + sign(k0)
s1 − s2

2

)

, k′j = kj +
1

2
A0j

(

k0 − sign(k0)
s1 − s2

2

)

,

which can be deduced from (3.38) or (3.50).

8In the following we ignore various U(1) factors. In general the U(1) and SU(n) part of the U(n) gauge

groups can have different CS levels, and one should keep track of how the CS terms for the Abelian sector

transform under duality. A full discussion of this is beyond the goal of the present section.
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4.2 Maximally chiral case

The “maximally chiral” case is when |k0| ≤ 1
2 |s1 − s2|. When s1 > s2, we have U(m0) at

level −k0 for node 0, with

m0 = s1 − n0 , (4.4)

while the CS levels of the contiguous groups are

k̃′i = k̃i +Ai0 k0 , k′j = kj . (4.5)

This follows from (3.44). Similarly, if s2 > s1, we have

m0 = s2 − n0 ; k̃′i = k̃i , k′j = kj +A0j k0 . (4.6)

In four dimensional quivers, Seiberg duality of an interesting class of chiral quivers (del

Pezzo quivers in particular) can be understood in term of so-called “mutations”, which

are mathematical operations which change the basis of fractional branes at a Calabi-Yau

singularity [49–51]. It turns out that the mutation prescription of [51] exactly corresponds

to the Seiberg-like duality for the maximally chiral case (4.4)–(4.5) or (4.6), for left or right

mutations, respectively [52].9

5 Dualities for U(n) theories and S3

b partition function

Recently it was understood that the partition function ZS3 for any N = 2 superconfor-

mal theory on a 3-sphere can be reduced to an ordinary integral using localization tech-

niques [53–55]. The S3 partition function can be computed for any trial R-charge. We

can further squash the S3 into a U(1) × U(1) isometric hyperellipsoid S3
b with squashing

parameter b as in [21] (b = 1 corresponding to the round sphere).

Jafferis argued that |ZS3 | is extremized10 by the superconformal R-charge [54]. We will

apply Z-extremization to our theories in section 6. In this section we will derive identities

between partition functions which provide strong checks of the proposed dualities.

5.1 S3
b partition function for chiral U(n) SQCD

Consider the partition function of the electric theory as defined at the beginning of section 3,

namely U(n)k gauge theory with (s1, s2) matter. The localized partition function is an

integral on the VEVs of the real scalar σ = (x1, · · · , xn) in the vector multiplet, all the

others fields being frozen to zero expectation value. As a function of the real scalars in

background vector multiplets (3.13), the partition function of the electric theory reads

Z
(s1, s2)
U(n)k

(m̃a;mb;mA; ξ) =
1

n!

∫
∏

1≤i<l≤n

1

Γh(±(xi − xl))

n∏

j=1

dxj e
−πi k x2

j−2πi ξ xj

×
s1∏

a=1

Γh(−xj + m̃a +mA + ω rQ)

s2∏

b=1

Γh(xj −mb +mA + ω rQ) ,

(5.1)

9In 4d we have s1 = s2 to cancel the gauge anomalies, and there are no CS interactions, therefore the

distinction we made between minimally and maximally chiral theories does not arise.
10In all known examples it is minimized.
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where ω = i b+b
−1

2 (ω = i for the round S3). The building block of the integrand is

the hyperbolic Gamma function Γh(z) ≡ Γh(z;ω1, ω2), with periods ω1 = ib and ω2 =

i/b understood from now on. Several useful formulæ about Γh and our notations are

gathered in appendix A. In particular, we define Γh(a ± x) = Γh(a + x)Γh(a − x). We

are free to choose an R-symmetry R so that R[Q̃] = R[Q] ≡ rQ by a mixing with the

central U(1) gauge symmetry. The U(1)M symmetry can also mix with the R-charge

(it corresponds to an imaginary part for the FI parameter ξ), but that only affects the

R-charge of monopole operators. More generally, mixing a global symmetry U(1)I with

the R-symmetry corresponds to giving an imaginary part to the real mass mI according

to [21, 54, 55]

mI → mI + ω aI ⇔ R→ R+ aIQI , (5.2)

where QI is the U(1)I charge.

Integrals such as (5.1) were studied in recent years by mathematicians, in particular

by van de Bult [56]. For the integers n, s1, s2 ∈ Z≥0 and t ∈ Z (unless s1 = s2 = t = 0),

van de Bult defines (Definition 5.3.17 in [56])

Jn, (s1, s2), t(µ; ν;λ) ≡ 1√−ω1ω2
n
n!

∫

Cn

∏

1≤i<l≤n

1

Γh
(
± (xi − xl)

)

×
n∏

j=1

dxj e
πi

2ω1ω2
(tx2

j+2λxj)
s1∏

a=1

Γh(µa − xj)

s2∏

b=1

Γh(νb + xj) .

(5.3)

The contour C is a path that goes from Rex = −∞ to Rex = ∞, goes below all the poles

from Γh(µ−x) and above all the poles from Γh(ν +x); it can go to infinity on the left and

right with some tilt so that (5.3) converges — see [56] for the precise definition. In this

paper we will always take C to be the real axis. We see that, for ω1 = ib, ω2 = ib−1,

Z
(s1, s2)
U(n)k

(m̃a;mb;mA; ξ) = Jn, (s1, s2), 2k(µ; ν;λ) , (5.4)

with

λ = 2ξ , µa = m̃a +mA + ω rQ , νb = −mb +mA + ω rQ . (5.5)

We have the constraints

s1∑

a=1

µa = s1mA ,

s2∑

b=1

νb = s2mA . (5.6)

Following closely the notation of [56], we rename Z
(s1, s2)
U(n)k

according to the four cases (3.9):

Z
(s1, s2)
U(n)k

=







Imn [p,q]a if k ≤ −1
2 |s1 − s2|

Imn [p,q]b if k ≥ +1
2 |s1 − s2|

Imn [p,q]∗a if |k| ≤ 1
2(s1 − s2)

Imn [p,q]∗b if |k| ≤ 1
2(s2 − s1)

(5.7)

where the rank m of the dual gauge group, is given in (3.11), and p and q are related to

the effective CS levels k± (3.8) as in (3.9).
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5.2 Aharony duality and real mass deformations

Consider Aharony duality [9] reviewed in section 3.1. At the level of the partition function,

it can be written (recall n+m = nf )

Imn [0,0]a(µ; ν;λ)=Inm [0,0]b(ω−ν;ω−µ;−λ) Γh

(

(m+1)ω−nfmA±
λ

2

)m+n∏

a,b

Γh(µa+νb). (5.8)

It has been noticed in [14] that this is precisely Theorem 5.5.11 of [56], once specialized

to parameters satisfying (5.6), namely
∑

a µa =
∑

b νb = nfmA. The factors Γh(µ + ν)

correspond to the mesons M , and the previous factors correspond to the singlets T , T̃ .

To derive the identities associated to the new dualities for chiral SQCD, we proceed to

take the limits discussed in sections 3.3 to 3.5 at the level of the partition functions. Let

us define

c(x) ≡ exp

(
πi

2ω1ω2
x

)

, ζ ≡ exp

(
πi(ω2

1 + ω2
2)

48ω1ω2
x

)

. (5.9)

In particular for ω1 = ω2 = i we have ζ = eπi/12. In [56] it is shown that

lim
x→±∞

Γh(x)

ζ− sign(x) c
(
sign (x)(x− ω)2

) = 1 . (5.10)

Consider integrating out a matter multiplet in the fundamental or antifundamental of the

gauge group by giving it a large real mass q0m0, corresponding to a background scalar m0

for some flavor symmetry U(1)0 which assigns charge q0 to the matter multiplet. In the

localized partition function it corresponds to the limit

lim
m0→±∞

Γh(qexi + qαmα + q0m0 + ∆ω) , (5.11)

where qe = 1 for the fundamental and qe = −1 for the antifundamental representation,

while qα are the charges under to the remaining flavor symmetries U(1)α, and ∆ the R-

charge. From (5.10) we see that we generate the terms

ζ− sign (q0m0) exp
(

− sign (q0m0)
πi

2
(qex+ qαmα + ω(∆ − 1) + q0m0)

2
)

. (5.12)

This shows the generation of Chern-Simons terms (3.15) upon integrating out the massive

matter superfield (the physical meaning of the ζ term, if any, is less clear). There are also

terms depending on the parameter m0 that we take to infinity. Using the limit (5.10), the

check of the various Seiberg-like dualities starting from (5.8) is a straightforward (albeit

tedious) exercise.11 The terms depending on m0 cancel out between the two sides of the

identity (5.8), and we find new identities for our chiral SQCD-like theories.

Remark from (5.12) that the CS levels for the global symmetries appear in the partition

function as

c
(

2kRR ω
2 + 4

∑

I
kIR ωmI + 2

∑

I,J
kIJ mImJ

)

, (5.13)

11The identities we will find have been proven rigorously in Theorems 5.5.11 and 5.5.12 of [56]. Here we

reproduce this results with its physical meaning. Moreover there is a small mistake in [56] that we correct

in equation (5.18) below.
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where here I, J run over the non-R global symmetries. We note that ω enters in the

partition function similarly to the real masses mI associated to the non-R symmetries. A

full understanding of that fact from first principle (in the localization procedure) is left for

the future.

5.3 The [p, 0]a theories

To check the duality for the [p,0]a theories of section 3.3, we take the limit (3.16) on both

side of the identity (5.8). Consider first the electric theory. We have to consider the limit

lim
m0→−∞

Imn [0,0]a

(
µ+ α; νb − α, να − α+m0; λ+ (s1 − s2)m0

)∣
∣
x→x−α

(5.14)

with α = s1−s2
2s1

m0, and the shift x→ x− α in the integrand is understood. This is better

written as

lim
m0→−∞

Imn [0,0]a

(
µ; νb, να+m0; λ+(s1−s2)m0

)
c
(

n
s1 − s2
s1

(
λ+(s1−s2)m0

)
m0

)

. (5.15)

We can similarly take the limit on the magnetic side of (5.8). Explicit computation shows

that all factors involving m0 cancel out. We should also redefine

λ→ λ− (s1 − s2)ω + (s1 − s2)mA , (5.16)

which corresponds to the redefinitions (3.21) and (3.23) of the axial and R-symmetries.

This leaves us with the identity

Imn [p,0]a(µa; νb; λ) = Inm [p,0]b

(
ω − νb;ω − µa;−λ+ (s1 − s2)ω

)
s1,s2∏

a,b

Γh(µa + νb)

× Γh

(

− 1

2
(s1 + s2)mA +

1

2
λ+ (m+ k + 1)ω

)

ζ−1

× c
(

2k

s1∑

a

m̃2
a + 2ks1m

2
A + 2kmω2 − 2kλmA − 4k(s1 + k)mAω

)

× c
((

− 1

2
(s1 + s2)mA − 1

2
λ+ (m− k)ω

)2
)

, (5.17)

with k = −1
2(s1 − s2). This is precisely the duality we proposed for the [p,0]a theory,

including the relative CS terms for the global symmetry group.

5.4 The [p, q]a theories

To check the duality for the [p,q]a theories at the level of the partition function, we can

take the limit of section 3.4 on the equality (5.8). One can check that all terms involving
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m0 cancel between the electric and magnetic sides. The identity we obtain is

Imn [p,q]a(µa; νb; λ) = Inm [p,q]b

(
ω − νb;ω − µa;−λ+ (s1 − s2)ω

)
s1,s2∏

a,b

Γh(µa + νb)

× ζ
1
4
(s1−s2)2−k2−2 c

((
k − 1

2
(s1 − s2)

)
s1∑

a

m̃2
a +

(
k +

1

2
(s1 − s2)

)
s2∑

b

m2
b

)

× c
( (
k(s1 + s2) + s1s2

)
m2
A +

1

2
λ2 +

(
(k +m)2 +m2 +

1

4
(s1 − s2)

2
)
ω2

)

× c
(

2(k +m)(s1 + s2)ωmA + (s1 − s2)λ(mA − ω)
)

, (5.18)

giving a nice check of our proposal.

5.5 The [p, q]∗a theories

We can play the same game for the [p,q]∗a theories, taking the limit (3.40) on the duality

relation (5.8). One can show that all factors of m0 cancel, and that we end up with the

relation

Imn [p,q]∗a(µa; νb; λ) = Inm [p,q]∗b(ω − νb;ω − µa;−λ− 2kω)

s1,s2∏

a,b

Γh(µa + νb)

× c
(

2k

s1∑

a

m̃2
a + 2ks1m

2
A − 2kmω2 + 2λ(s1mA −mω)

)

. (5.19)

This agrees with the duality we proposed in section 3.5.

5.6 Complex masses and dual Higgsing

In this section we consider complex mass deformations of the electric theories from the

perspective of their localized partition functions. We will see how the dual description

in terms of Higgsing of the magnetic gauge group arises due to distributional identities

satisfied by hyperbolic gamma functions. By giving complex mass to a suitable number of

flavor pairs we can Higgs completely the magnetic gauge group, reaching m = 0; proceeding

to m < 0 brings us out of the conformal window, to a theory that either has a deformed

moduli space (if k = 0 and s1 = s2 = nf = n − 1, giving m = −1) or, most often, lacks

supersymmetric vacua.

It has been observed previously [13] in the context of Giveon-Kutasov dualities that

integrals that define the localized S3 partition functions of superconformal theories vanish

when the field theory breaks supersymmetry. A similar observation applies more generally

to the Seiberg-like dualities that we are considering: Imn integrals vanish whenever m <

0, including the particular case when the theory is believed to have a deformed moduli

space. The physical significance of this mathematical fact is however dubious: the partition

functions are localized using the superconformal algebra, so that we can trust the matrix

model integrals as partition functions of the field theory only if the IR superconformal

algebra is visible in the UV. For instance, the partition function of the field theory on its
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deformed moduli space, being a free theory, does not vanish, although we find that the

I−1
1 [0,0] integral does.12

We start with the case m = 0, where the identities (5.17), (5.18) or (5.19) provide an

explicit formula for the partition function (5.7), with the understanding that integrals on

a vanishing gauge group I ...0,... are to be replaced by 1. Starting from the partition function

with m = 0, we can obtain the partition function for m < 0 (keeping n, p and q fixed)

by setting µ + ν = 2ω for a number of pairs (Q̃,Q); as explained in appendix A.2, this

corresponds to a complex mass deformation W = Q̃Q of the electric theory. Using the

identities (5.17), (5.18) or (5.19), we see that the partition function vanishes because

Γh(µ+ ν) = Γh(2ω) = 0 (5.20)

appears on the magnetic side.

On the contrary, taking µs1 + νs2 = 2ω for a pair (Q̃s1 , Qs2) to reduce to m− 1 does

not lead to a vanishing result when m > 0: the Γh(2ω) factor in the magnetic partition

function is accompanied by a term which blows up in the integral over the magnetic gauge

group, from Γh(−x)Γh(x) in the integrand. We should rather set µs1 + νs2 = 2ω − 2iǫ and

then take the ǫ → 0 limit on both sides of the identities relating electric and magnetic

partition functions. Using the pole structure of Γh(z), one can show that

lim
ǫ→0

Γh(2ω − 2iǫ)

m∏

j=1

Γh(iǫ± yj) =
√−ω1ω2

m∑

j=1

δ(yj)

m∏

i6=j

Γh(±yi) (5.21)

distributionally, i.e. up to addition of functions with measure zero support that do not

affect integration over
∫
dmy.13 The identity (5.21) explains, from the partition function

point of view, the Higgsing pattern U(m) → U(m− 1) on the magnetic side which is dual

to the complex mass for a pair of fields on the electric side, allowing to reduce from ranks

(n,m) to ranks (n,m− 1) while keeping [p,q] fixed.

6 Remarks on convergence and Z-minimization

At the IR fixed point the superconformal R-charge is some linear combination

Rsupconf = R0 + rQA+ ∆MM , (6.1)

where R0 is the trial R-charge defined above (it is either R[p,q] or R[p,q]∗), which gives

R0[Q] = 0 to the quarks and antiquarks, fixing the unphysical mixing with the gauge

symmetry. We have Rsupconf[Q] = rQ, while ∆M denotes the mixing of the R-current

with topological current, and it will only affect the R-charge of monopole operators (in the

electric theory). The coefficient rQ and ∆M can be found by Z-minimization [54].

12(Added in v2:) Recently [19] conjectured that spontaneous supersymmetry breaking implies that the

localized S3 partition function Zloc vanishes. More precisely, they provided suggestive arguments to the

effect that if the vaccum is not invariant under the supercharge Q used in the localization, then Zloc must

vanish. We thank the authors of [19] for discussion on this point.
13The case m = 1 is just the statement of duality between Nf = 1 SQED and the XYZ model.
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An interesting special case is when either s1 or s2 vanishes, so that there are no

mesonic operators and no Higgs branch. The axial symmetry U(1)A is part of the gauge

group and we can take rQ = 0 in (6.1), since the R-charge of any gauge invariant operator

is independent of rQ.

Let us consider the partition functions in the conformal case, when all real masses are

turned off. This means we take

m̃a = mb = 0 , mA = ω rQ , λ = ω 2∆M . (6.2)

in the various formulae. Moreover we will focus on the round S3, so ω = i. For the electric

partition function,

Zelec = Z
(s1, s2)
U(n)k

(0; 0; irQ; i∆M ) . (6.3)

In the limit x→ ±∞, the integrand of (6.3) takes the form

exp
(
− πik±x

2 + 2π(∆M ∓ αrQ)x
)
, with αrQ ≡ s1 + s2

2
(1 − rQ) − n+ 1 . (6.4)

Therefore the electric partition function (6.3) converges absolutely if and only if

0 < |∆M | < αrQ . (6.5)

Consider next the magnetic dual theory. We have

Zmagn = Zs2, s1U(m)−k

(

0; 0; i(1 − rQ); i
(p− q

2
− ∆M

))

× (singlets) × (phase) , (6.6)

where the singlets and extra phase can be read from the identities of the previous section,

and p, q in (3.8)–(3.9). One can check that for all cases the condition for the integral in

Zmagn to converge absolutely is that

αrQ + p− 2 < ∆M < −αrQ − q + 2 , (6.7)

We see that generically, for some given trial parameters (rQ,∆M ) the electric and magnetic

partitions functions cannot both converge absolutely. In particular a necessary condition

for it to happen is that p < 2 and q < 2.

In general the physical meaning of absolute convergence is not obvious, although it is of

great help both to make sense of the formal limits of section 5.1, allowing to commute limit

and integration, and for numerical evaluations. On physical ground simple convergence is

enough. When k± 6= 0 in (6.4) the integral converges thanks to the Gaussian term.14 When

the effective Chern-Simons levels vanish, corresponding to the case [p,0]a with p ≥ 0, the

absolute convergence criterion (6.5) is certainly physical, and corresponds to the gauge

invariant monopole operator T having positive dimension. This was noticed in [14] for the

[0,0] case.

We performed Z-minimization numerically for a few simple cases. The main new

ingredient here is that we can have ∆M 6= 0 in (6.1), unlike the chiral case studied in [14]

where charge conjugation invariance sets ∆M = 0.

14Generally the integration contour should be taken slightly away from the real axis.
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Case n = 1, k = 0

s1\s2 0 1 2 3 4

0

rQ r r

∆M - 0 - 0

− ln |Z| 0.9687 1.9901

1

1/3 0.4151

- 0 - 0 -

0.8724 1.9548

2

r 0.4085 0.4387

0 - 0 - 0

0.9687 1.9340 2.8447

3

0.4151 0.4370

- 0 - 0 -

1.9548 2.8380

4

r 0.4387 0.4519

0 - 0 - 0

1.9901 2.8447 3.6791

Table 4. Superconformal R-charges and free energy for the case n = 1, k = 0, and for various

values of s1, s2.

We also checked in several examples that whenever two theories can be connected by

a RG flow, the “free energy” defined as

F ≡ − ln |Z| (6.8)

is smaller in the IR theory. This corroborates the conjectured “F-theorem” [22].

Abelian theory at CS level k = 0. Consider a U(1) theory with k = 0, and generic

s1, s2 such that s1 + s2 is even. It is the simplest example of a [p,p]∗ theory, with

p = q = |s1 − s2|. The values of rQ and ∆M are easily found numerically, and are reported

in table 4. In this case we still have parity symmetry, which imposes ∆M = 0. The diagonal

entries in table 4 correspond to the [0,0] case of section 3.1, and the same numerical result

was reported in [14]. We remark that for (s1, s2) = (s1, 0) or (0, s2), the quantity |Z| is

minimized for any value of rQ, as expected, since in this case rQ is a mixing of the R-current

with the gauge current.

The theory with (s1, s2) = (2, 0) is one of the few examples where both the electric and

magnetic partition functions converge when we take x real. The identity (5.19) becomes

I1
1 [1,1]∗a(irQ, irQ, i2∆M ) = I1

1 [1,1]∗b

(
i(1 − rQ), i(1 − rQ),−i2∆M

)
e2πi(2∆M rQ−∆M ) ,

which converges absolutely for |∆M | < min(rQ, 1 − rQ).

Abelian theory at CS level k = −

1

2
. Let us consider next the U(1) theory at Chern-

Simons level −1
2 , with s1 + s2 odd. In this case there is no parity symmetry and we have

∆M 6= 0. The superconformal values of rQ and ∆M are reported in table 5. In the case

s1s2 = 0, the partition function is minimized for any value of rQ, while there is a physically

meaningful contribution to ∆M .
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Case n = 1, k = −1
2

s1\s2 0 1 2 3 4 5

0

rQ r r r

∆M −1
2r - −1

2r + 0.1404 - −1
2r + 0.1841

− ln |Z| 0.3466 1.5126 2.4459

1

r 0.3919 0.4320
1
2r - −0.0437 - −0.0337 -

0.3466 1.4666 2.4228

2

0.3919 0.4278 0.4479

- 0.0347 - −0.0168 - −0.0192

1.4666 2.4064 3.2752

3

r 0.4278 0.4463
1
2r − 0.1404 - 0.0168 - −0.0079 -

1.5126 2.4064 3.2681

4

0.4320 0.4463 0.4574

- 0.0337 - 0.0079 - −0.0044

2.4228 3.2681 4.0882

5

r 0.4479 0.4574
1
2r − 0.1841 - 0.0192 - 0.0044 -

2.4459 3.2752 4.0882

Table 5. Superconformal R-charges and free energy for the case n = 1, k = − 1

2
, and for various

values of s1, s2. In these theories ∆M 6= 0.

U(1)
−1/2 with a single Q̃. The special case U(1) at level −1

2 with a single chiral

multiplet of charge −1 is worth some further attention (it falls into the case [1,0]a). The

flavor group is reduced to U(1)M ×U(1)R, the U(1)A symmetry being gauged. The Seiberg

dual theory is simply a free field T of charge 1 under U(1)M , corresponding to the monopole

of the electric gauge group.15 Since R[T ] = 1
2 in the IR, we must have ∆M = 1

2rQ, and we

can set rQ = 0. In the magnetic theory we also have the CS levels

kMM =
1

2
, kRR =

1

8
, kMR = −1

4
. (6.9)

As a function of the FI parameter ξ and of the undetermined (and physically meaningless)

rQ, the electric and magnetic partition functions read

Zelec(ξ; rQ) =

∫

dx e
πi
2
x2−2πiξx+πrQx Γh(−x+ irQ) , (6.10)

Zmagn(ξ; rQ) = Γh

(

ξ +
i

2

)

e−
πi
12 e−

πi
2

(ξ2− 1
4
−r2Q) eπξ(rQ− 1

2
) . (6.11)

They are equal by (5.17); it is also easily checked numerically.

15See [57] for an early appearance of this duality in the context of mirror symmetry.
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7 Dualities for Usp(2n) theories with fundamentals

Seiberg-like dualities for Usp(2n) Yang-Mills theories with an even number of fundamentals

were conjectured early on by Aharony [9] and recently generalized to Chern-Simons theories

by Willett and Yaakov [14]. For completeness, in this section we briefly review those

dualities and their checks at the level of partition functions [14], listing explicitly the

global CS terms needed to fully specify the duality maps. Later the results of this and the

next section will be used to check the N = 5 Usp × O dualities proposed in [11] on the

ground of a brane construction.

7.1 Yang-Mills theories

A duality for Usp(2n) theory with s = 2nf fundamental flavors Q and no CS interactions

was proposed by Aharony in [9] for nf ≥ n + 1.16 The global symmetry is SU(2nf ) ×
U(1)A×U(1)R. For the purpose of defining the partition function of the field theory on S3

b ,

it turns useful to work with the Cartan subgroup U(1)
2nf

F ∈ U(2nf )F of the flavor group.

Similarly, we will mostly work with an R-symmetry mixed with these Cartan generators.

We define m such that nf ≡ n + m + 1. Then the Usp(2n)0 electric theory has matter

content (i, j = 1 . . . , n are gauge indices; r, u, v = 1, . . . , 2nf are flavor indices)

xi Mr ω

[U(1)i] U(1)Fr U(1)R Mass

Qju ±δij δur ∆u ±xj + µu

Muv 0 δur + δvr ∆u + ∆v µu + µv
Y 0 −1 −2n− ∑

r(∆r − 1) −∑

r µr + 2(m+ 1)ω

(7.1)

with

µu ≡Mu + ∆uω . (7.2)

xi are the scalars in the dynamical gauge vector multiplet, Mr are the scalars in the

background vector multiplets for the flavor symmetry, and ω is the corresponding parameter

for the R-symmetry. In the last column we listed the complexifications of the real masses

of the various fields, which enter the partition function. The fields listed after the last

horizontal line are composite and will not appear in the partition function of the electric

theory. The meson Muv = Qu · Qv ≡ JijQ
i
uQ

j
v transforms in the 2-index antisymmetric

representation of SU(2nf ) due to the contraction with the antisymmetric invariant tensor

Jij of Usp(2n). The monopole operator Y =
∏n
i=1 Yi parametrizes the complex dimension

of the Coulomb branch which is not lifted by instanton corrections. It is given in terms of

the fundamental monopole operators Yi ∼ eα
∨

i ·Φ (the latter expression is valid in the weak

coupling region) associated to the simple coroots α∨
i of the gauge Lie algebra.

Aharony conjectured that for nf ≥ n + 1 the electric theory is dual to a magnetic

Usp(2m) gauge theory, with m = nf − n − 1, with 2nf fundamental flavors q in the

antifundamental representation of the flavor group, no CS interactions, a gauge singlet

16See [8] for the analysis of the moduli space for any nf .
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M dual to the flavor antisymmetric meson, and a gauge singlet Y dual to the monopole

operator parametrising the Coulomb branch of the electric theory. Its matter content is

yi Mr ω

[U(1)i] U(1)Fr U(1)R Mass

qju ±δij −δur 1 − ∆u ±yj + ω − µu
Muv 0 δur + δvr ∆u + ∆v µu + µv
Y 0 −1 −2n− ∑

r(∆r − 1) −∑

r µr + 2(m+ 1)ω

y 0 +1 −2m+
∑

r ∆r
∑

r µr − 2mω

(7.3)

y is the monopole operator of the magnetic theory, defined similarly to Y , not to be confused

with the scalars yi in the dynamical vector multiplet of the magnetic gauge group. Finally,

a superpotential

Wmag = Mrsq
r · qs + Y y (7.4)

preserving all the symmetries trivializes the monopole operator y and the meson of magnetic

quarks in the chiral ring.

To test the conjectured duality, we introduce the partition function on S3
b of a sym-

plectic gauge theory with fundamentals. We define the integrals [56]

Jn, s, t(µ) ≡ 1√−ω1ω2
n
2nn!

∫

Cn

∏

1≤j<k≤n

1

Γh(±xj ± xk)

n∏

j=1

s∏

r=1
Γh(µr ± xj)

Γh(±2xj)
c(2tx2

j ) dxj ,

(7.5)

with t + s ∈ 2Z. 2nn! is the order of the Weyl group of Usp(2n). Then the partition of

the Usp(2n)k gauge theory with s fundamentals with mass parameters µr associated to the

global symmetry group is

ZsUsp(2n)k
(µ) = Jn, s, 2k(µ) , where µr = Mr + ∆rω . (7.6)

t+s ∈ 2Z translates into the quantization of the CS level k+ s
2 ∈ Z which ensures invariance

of the partition function under large gauge transformations.17

As pointed out in [14], the proof of the duality of [9] at the level of partition functions

is provided by the transformation identity Theorem 5.5.9 of [56], which we rewrite as

Z
2nf

Usp(2n)0
(µ) = Z

2nf

Usp(2m)0
(ω − µ) Γh

(

2(m+ 1)ω −
2nf∑

r=1

µr

) ∏

1≤r<s≤2nf

Γh(µr + µs) , (7.7)

with m = nf − n − 1 ≥ 0. The l.h.s. is the partition function of the electric theory (7.1).

The r.h.s. is the partition function of the magnetic theory (7.3): the first piece accounts

for the Usp(2m) theory with 2nf = 2(n +m + 1) fundamentals, the second piece for the

singlet Y dual to the monopole, and the third piece for the antisymmetric mesons M .

17Note that a CS term at level k for Usp(2n) contributes exp(−2πik
Pn

j=1 x2
j) = c(4k

Pn
j=1 x2

j). The

extra factor of 2 compared to the U(n) case is due to normalization of the generators [14].
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7.2 Chern-Simons theories

Willett and Yaakov derived dualities for Usp(2n) Chern-Simons theories with fundamental

flavors, by means of real mass deformations of Aharony’s dual theories [14]. Here we repeat

their computation and supplement it with the global Chern-Simons couplings induced by

the massive fermions. The relevant identity that we will need is

ZsUsp(2n)k
(µ) = lim

m0→sign(k)∞
ζ4nk c

(
− 4nk(m0 − ω)2

)
Z
s+2|k|
Usp(2n)0

(µ,m0, . . . ,m0
︸ ︷︷ ︸

2|k|

) . (7.8)

In physical terms, we are giving infinite real mass (with same sign as k) to 2|k| ∈ Z quarks

of the ultraviolet YM theory, thus producing CS interactions at level k for the IR gauge

theory. Applying this limit to both sides of Aharony’s duality (7.7), we find the identity

ZsUsp(2n)k
(µ) = ZsUsp(2m)−k

(ω − µ)
∏

1≤u<v≤s

Γh(µu + µv) ζ
sign(k)(2|k|−1)(|k|−1)

×c
(

− 4nkω2−sign(k)
[

(2m+1)ω−
s∑

r=1

µr

]2
+2k

s∑

r=1

(µr−ω)2+k(2|k|−1)ω2
)

,

m = |k| + s

2
− n− 1 ≥ 0 , k 6= 0 . (7.9)

The sum inside the last term encodes the global CS terms due to the massive fields: massive

electric quarks (this contribution is moved from the l.h.s. to the r.h.s. ), Y , mesons Mu, s+a,

and mesons Ms+a, s+b respectively.

The identity (7.9) reflects the duality of [14] between the electric Usp(2n)k theory

with s fundamentals Q (with k + s
2 ∈ Z),

xi Mr ω

[U(1)i] U(1)Fr U(1)R Mass

Qju ±δij δur ∆u ±xj + µu

Muv 0 δur + δvr ∆u + ∆v µu + µv

(7.10)

and vanishing superpotential, and the magnetic Usp(2m)k theory with s fundamentals q

and singlets Muv dual to the electric mesons,

yi Mr ω

[U(1)i] U(1)Fr U(1)R Mass

qju ±δij −δur 1 − ∆u ±yj + ω − µu
Muv 0 δur + δvr ∆u + ∆v µu + µv

(7.11)

with superpotential

Wmag = Muvq
u · qv (7.12)

when m = s
2 + |k| − n − 1 ≥ 0 and k 6= 0. Again µr is given by (7.2). In addition there

are relative global Chern-Simons terms that can be read from (7.9). For simplicity we list

them here only in the case of maximal global symmetry U(1)A× SU(s)×U(1)R and for an
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R-symmetry mixed with A, giving R[Q] = ∆:

∆kRR =
1

2
sign(k)

[
−(2m+ 1 − s∆)2 + 2|k|s(∆ − 1)2 + |k|(2|k| − 1 − 4n)

]

∆kRA = − sign(k)
s

2
[2n+ 1 − s+ (s− 2|k|)∆]

∆kAA = − sign(k)
s

2
(s− 2|k|)

∆kSU(s) = k .

(7.13)

Notice that when m < 0 supersymmetry is broken and the matrix integral vanishes.

8 Dualities for O(Nc) theories with vector matter

Seiberg-like dualities for Chern-Simons theories with orthogonal gauge groups and matter

in the vector representations have been recently conjectured by Kapustin [15]. The duality

states that the electric N = 2 O(Nc)k CS theory with Nf flavors of vector matter Q in

the fundamental of the U(Nf ) flavor group18

[O(Nc)] U(Nf ) U(1)R
Q Nc Nf ∆

(8.1)

is dual to a magnetic O(Ñc)−k theory with Nf flavors of vector matter q in the antifun-

damental of U(Nf ) and a gauge singlet M in the two-index symmetric representation of

U(Nf ) (dual to the meson of electric quarks)

[O(Ñc)] U(Nf ) U(1)R
q Ñc Nf 1 − ∆

M 1 Nf(Nf + 1)/2 2∆

(8.2)

and a superpotential

Wmag = Muv q
u · qv (8.3)

when Ñc = Nf + |k| + 2 − Nc ≥ 0. The choice of O rather than SO gauge groups is

crucial for the match of global symmetries and moduli spaces of dual theories. In the

original paper it was checked numerically for several low rank dual pairs that the absolute

values of the electric and magnetic partition functions coincide. Another successful test by

means of the superconformal index between dual pairs was performed recently for some low

rank examples [58]. In this section we provide a proof that the partition functions of dual

theories on S3
b match, once certain global CS terms are included, and extend the duality

to the IR fixed points of orthogonal Yang-Mills theories.

When writing the partition function we have to distinguish between Nc even and odd,

due to the different Lie algebras. The partition function of a O(2n)k theory with Nf flavors

of vectors is

Z
Nf

O(2n)k
(µ) ≡ 1

2n−1n!

∫
∏

1≤j<k≤n

1

Γh(±xj ± xk)

n∏

j=1

Nf∏

r=1

Γh(±xj + µr) c(2kx
2
j )dxj , (8.4)

18The Chern-Simons level k is an integer irrespective of Nf .
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where µr = Mr + ∆rω, working again with the Cartan subalgebra of the global symmetry

group. The partition function of a O(2n+ 1)k theory with Nf flavors is

Z
Nf

O(2n+1)k
(µ)≡ 1

2nn!

Nf∏

r=1

Γh(µr)

∫
∏

1≤j<k≤n

1

Γh(±xj ± xk)

n∏

j=1

Nf∏

r=1
Γh(±xj+µr)

Γh(±xj)
c(2kx2

j )dxj .

(8.5)

By means of a trick analogous to that used in [59] for the superconformal indices of 4d

gauge theories, we can reduce the partition functions of the orthogonal gauge theories to

those of symplectic gauge theories with fundamental matter (7.6)–(7.5) (see also [60]). We

will exploit the identity [61]

Γh(2z) = Γh(z)Γh

(

z +
ω1

2

)

Γh

(

z +
ω2

2

)

Γh(z + ω) . (8.6)

Defining

U =
(

0,
ω1

2
,
ω2

2
, ω

)

V =
(

0,
ω1

2
,
ω2

2

)

U ′ =
(ω1

2
,
ω2

2

)

V ′ =
(ω1

2
,
ω2

2
, ω

) (8.7)

and applying formulas (A.13) and (A.14), we get

Γh(2z) =
4∏

a=1

Γh(z + Ua) Γh(±2z) =
3∏

a=1

Γh(±z + Va) (8.8)

Γh(2z)

Γh(z)
=

3∏

a=1

Γh(z + V ′
a)

Γh(±2z)

Γh(±z)
=

2∏

a=1

Γh(±z + U ′
a) (8.9)

4∏

a<b

Γh(Ua + Ub) = 1

3∏

a<b

Γh(Va + Vb) =
1

2
(8.10)

3∏

a<b

Γh(V
′
a + V ′

b ) = 2
2∏

a<b

Γh(U
′
a + U ′

b) = 1 . (8.11)

We use these identities to rewrite the partition functions of the orthogonal theories in term

of those of the symplectic theories. If Nc = 2n is even,

Z
Nf

O(2n)k
(µ) =







2Z
Nf +4

Usp(2n)k/2
(µ,U) , Nf + k ∈ 2Z

2Z
Nf +3

Usp(2n)k/2
(µ, V ) , Nf + k ∈ 2Z + 1

(8.12)

and if Nc = 2n+ 1 is odd

Z
Nf

O(2n+1)k
(µ) =







Nf∏

r=1
Γh(µr) · ZNf+2

Usp(2n)k/2
(µ,U ′) , Nf + k ∈ 2Z

Nf∏

r=1
Γh(µr) · ZNf+3

Usp(2n)k/2
(µ, V ′) , Nf + k ∈ 2Z + 1

(8.13)

The identities encoding Kapustin’s duality for partition functions on the squashed S3
b then

follow from those for Willett-Yaakov’s duality (7.9).
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We start by considering k = 0, corresponding to the IR fixed point of Yang-Mills

theory with Nf flavors of matter in the vector representation, and use the identity (7.7)

for Aharony’s duality of symplectic SQCD theories. The four cases with Nc and Nf + k

even and odd boil down to the single formula

Z
Nf

O(Nc)0
(µ) = Z

Nf

O(Ñc)0
(ω − µ) Γh

(

Ñcω −
Nf∑

r=1

µr

) ∏

1≤r≤s≤Nf

Γh(µr + µs) , (8.14)

with Ñc = Nf + 2 −Nc ≥ 0. This identity suggests that the electric O(Nc)0 theory with

Nf flavors Q in the fundamental of U(Nf ),

[O(Nc)] SU(Nf ) U(1)A U(1)R

Q Nc Nf 1 ∆
(8.15)

is dual to a magnetic O(Ñc)0 theory with Nf flavors q in the antifundamental of U(Nf ),

singlets M in the 2-index symmetric of U(Nf ) dual to the electric mesons, and a singlet Y

dual to a monopole operator of the electric theory with minimal magnetic flux,

[O(Ñc)] SU(Nf ) U(1)A U(1)R

q Ñc Nf −1 1 − ∆

M 1 Nf(Nf + 1)/2 2 2∆

Y 1 1 −Nf Ñc −Nf∆

(8.16)

together with a superpotential

Wmag = Mrs q
r · qs + Y y (8.17)

coupling the singlet Y to a monopole operator of minimal magnetic flux in the magnetic

theory. Magnetic fluxes B (in the Cartan subalgebra of the Lie algebra of the gauge group

G) inserted by monopole operators are constrained by Dirac quantization exp(2πiB) =

idG [62]. Let us introduce generators Hj of the Cartan subalgebra: Hj has vanishing entries

except for
(

0 i
−i 0

)
in the j-th diagonal 2 by 2 block. j runs from 1 to the rank r of the

group. The solution of the quantization condition for orthogonal groups is B =
∑

jmjHj

with integer mj.
19 A monopole operator with minimal flux turns on a single mj with

magnitude 1: such a minimal monopole operator in the electric theory has the correct

quantum numbers to be dual to the singlet Y in (8.16); moreover the quantum numbers

of the minimal monopole operator y in the magnetic theory allow the superpotential term

Y y in (8.17).

From the quantum numbers of the gauge invariants Mrs and Y parametrizing the

moduli space that are listed in (8.16), we see that the effective superpotential on the

moduli space is, with a suitable normalization,

Weff = Ñc(Y
2 detM)

1
Ñc (8.18)

19Note that the lattice of allowed magnetic fluxes for an orthogonal group is finer than the coroot lattice

of the associated Lie algebra [62], since orthogonal groups have nontrivial fundamental group. Monopole

operators with minimal flux do not lie in the coroot lattice.
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if Ñc = Nf + 2 − Nc ≥ 1, namely Nf ≥ Nc − 1. As usual in Seiberg-like dualities, the

singularity at the origin is cured by the introduction of the dual gauge group. Adding a

superpotential mass term allows us to flow to theories with lower Nf . When Nf = Nc− 1,

the magnetic gauge group is O(1) = Z2 and the effective superpotential is regular, Weff =

Y 2 detM . If Nf = Nc − 2 the dual gauge group is trivial and the theory has a deformed

moduli space described by the constraint Y 2 detM = 1 (the strong coupling scale has been

set to unity). Finally there are no supersymmetric vacua if Ñc < 0, namely Nf < Nc − 2.

The identities encoding the dualities of [15] for Chern-Simons theories then follow by

real mass deformations of the duality identity (8.14) for the Yang-Mills theories. The result

is

Z
Nf

O(Nc)k
(µ) = Z

Nf

O(Ñc)−k
(ω − µ)

∏

1≤u≤v≤Nf

Γh(µu + µv) ζ
1
2

sign(k)(|k|+1)(|k|+2)

×c
(

−Nckω
2 − sign k

[

(Ñc − 1)ω −
Nf∑

r=1

µr

]2
+ k

Nf∑

r=1

(µr − ω)2 +
k

2
(|k| + 1)ω2

)

,

Ñc = Nf + |k| + 2 −Nc ≥ 0 , k 6= 0 , (8.19)

which agrees with Kapustin’s conjecture and provides the relative global CS terms

∆kRR =
1

4
k(−2Nc + |k| + 1) +

1

2
kNf (∆ − 1)2 − 1

2
sign(k)(Ñc − 1 −Nf∆)2

∆kRA =
1

2
sign(k)Nf

[

(|k| −Nf )∆ + Ñc − 1 − |k|
]

∆kAA =
1

2
sign(k)Nf (|k| −Nf )

∆kSU(Nf ) =
k

2
.

(8.20)

We close this section remarking that, equipped with the global CS terms for the Usp

and O dualities, one can check at the level of partition functions the dualities for N = 5

Usp(2NUSp)k ×O(NO)−2k theories put forward in [11] on the ground of a brane construc-

tion. The partition functions of dual theories match, up to a phase due to powers of ζ and

RR global CS terms, as in the case of unitary ABJ dualities [13].

9 Conclusions

In this paper we studied Seiberg-like dualities between N = 2 gauge theories in three

dimensions. We proposed new such dualities for U(n) Yang-Mills and Chern-Simons theo-

ries with fundamental and antifundamental matter in complex representation of the gauge

group (often referred to as “chiral”, with an abuse of terminology). All these dualities

follows from the one of Aharony [9]. We were careful to keep track of various relative

Chern-Simons levels for the global symmetry group and we stressed that they are crucial

to the duality map. We also sketched an application of our results to Seiberg dualities for

Chern-Simons quivers.
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Similarly, we specified which global Chern-Simons terms should be included in previ-

ously known dualities for Chern-Simons-matter theories with symplectic [14] and orthogo-

nal [15] gauge groups. We also proposed an Aharony-like duality for O(n) gauge theories

with Yang-Mills kinetic term.

We have checked that all these dualities hold at the level of the partition function. The

corresponding identities for the localized partition functions on S3
b follow from beautiful

recent mathematical results [56], which we checked and explained in physical terms.

There are several obvious roads to travel from here. First, it would be interesting to

further check our proposals and investigate the structure of the quantum chiral ring of these

theories more in depth. An important tool for that is the superconformal index [63, 64]:

it would be nice to check that it matches between dual theories. In particular the global

Chern-Simons terms will be important when dealing with the generalized superconformal

index recently proposed in [65].

Secondly, we have left one untied knot in our characterization of the Chern-Simons

levels for the R-symmetry background gauge field. To clarify the origin of the dependence

of the Lagrangian on ω, we should work in supergravity with an off-shell SUGRA multiplet

containing A
(R)
µ , and see which background supergravity fields should be turned on in order

to preserve supersymmetry on S3
b . This program allowed [27] to explain why ω enters like

in (5.2) in the case of the round sphere (ω = i). One should perform the same kind

of analysis for the squashed S3 and also explain how the N = 2 completion of the CS

interaction A(R) ∧ dA(R) leads to the term kRRω
2 in the field theory Lagrangian on S3

b .

Lastly, the dualities studied here can be used as building blocks for Seiberg-like dualities

in more complicated theories, such as the quiver theories which describe M2-branes at

Calabi-Yau fourfold singularities. This certainly deserves further investigation [66].
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A The S3

b partition function and Γh(z)

Let us consider an N = 2 matter multiplet Φ of R-charge ∆ and charges qα under various

Abelian groups U(1)α (which could be part of the gauge group or the flavor group, in the

overall theory). The scalar component φ couples to real scalars mα in vector multiplets

(including background ones for global symmetries) through

V = m2|φ|2 , m ≡
∑

α

qαmα (A.1)
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When we consider the partition function on S3, Φ gives a contribution [53–55]

ZΦ
S3 =

∞∏

n≥1

(
n+ 1 + im− ∆

n− 1 − im+ ∆

)n

. (A.2)

It can be generalized to the partition function for a U(1) × U(1) isometrically squashed

3-sphere (or hyperellipsoid) S3
b [21]:

ZΦ
S3

b
=

∞∏

n1,n2≥0

(n1 + 1)b+ (n2 + 1)b−1 + im− b+b−1

2 ∆

n1b+ n2b−1 − im+ b+b−1

2 ∆
, (A.3)

with b the squashing parameter (b = 1 is the round sphere). As they stand, these infinite

products are divergent. There is a very natural regularization of (A.3) in term of the

hyperbolic gamma function introduced by Ruijsenaars [67], or equivalently the inverse of

the double sine function of Koyama and Kurokawa [61]. We will follow the notation of van

de Bult [56], and recall the relation between these various functions in (A.10).

First we introduce the double gamma function Γ2, defined as the analytic continuation

of

Γ2(z;ω1, ω2) = exp

(

∂s

( ∑

n1,n2≥0

(n1ω1 + n2ω2 + z)−s
)∣
∣
∣
s=0

)

. (A.4)

Then the hyperbolic gamma function is defined as

Γh(z;ω1, ω2) =
Γ2(z;ω1, ω2)

Γ2(ω1 + ω2 − z;ω1, ω2)
, (A.5)

which formally gives

Γh(z;ω1, ω2) =
∏

n1,n2≥0

(n1 + 1)ω1 + (n2 + 1)ω2 − z

n1ω1 + n2ω2 + z
. (A.6)

Comparing with (A.3), we see that

ZΦ
S3

b
(z) = Γh(z;ω1, ω2) , with ω1 = ib , ω2 = ib−1 , z = m+ ω∆ , (A.7)

where we have defined

ω ≡ ω1 + ω2

2
. (A.8)

Physically, for the squashed S3
b the parameter ω is purely imaginary with |ω| > 1, while

ω = i for the round S3. The presentation (A.6) makes it clear that Γh(z) has poles at

zpole = −n1ω1 − n2ω2 , n1, n2 ∈ Z≥0 , (A.9)

and zeros at z = m1ω1 + m2ω2 for m1,m2 ∈ Z≥1. Poles and zeros are simple unless

ω1/ω2 ∈ Q. In the physical limit (A.7) the poles and zeros fall on the imaginary axis.

Van de Bult’s hyperbolic gamma function Γh(z;ω1, ω2) is related to Ruijsenaars’ hy-

perbolic gamma function G(a+, a−; z) [67] and to the double sine function S2(z; a1, a2)

of [61] as follows:

Γh(z;ω1, ω2) = G(−iω1,−iω2; z − ω) = S−1
2 (−iz;−iω1,−iω2). (A.10)
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The hyperbolic gamma function also has the following integral representation [56]:

Γh(z;ω1, ω2) = exp

(

i

∫ ∞

0

(
z − ω

ω1ω2x
− sin(2x(z − ω))

2 sin(ω1x) sin(ω2x)

)
dx

x

)

, (A.11)

for z such that 0 < Im (z) < Im (ω1 + ω2). It satisfies the difference equations

Γh(z + ω1) = 2 sin
(πz

ω2

)

Γh(z) ,

Γh(z + ω2) = 2 sin
(πz

ω1

)

Γh(z) ,
(A.12)

the reflection formula

Γh(z)Γh(ω1 + ω2 − z) = 1 , (A.13)

and takes the values

Γh(ω) = 1 , Γh

(ω1

2

)

= Γh

(ω2

2

)

=
1√
2
, Γh

(

ω +
ω1

2

)

= Γh

(

ω +
ω2

2

)

=
√

2

Γh(ω1) =

√
ω1

ω2
, Γh(ω2) =

√
ω2

ω1
. (A.14)

We also use the identity [61]

Γh(2z) = Γh(z)Γh

(

z +
ω1

2

)

Γh

(

z +
ω2

2

)

Γh(z + ω) . (A.15)

In this paper we always write the partition function ZΦ
S3

b
as Γh, suppressing the peri-

odicities in (A.7) from the notation:

ZΦ
S3

b
(z) = Γh(z) with z = m+ ω∆ . (A.16)

Finally we use van de Bult’s shorthand notation

Γh(a± x) ≡ Γh(a+ x)Γh(a− x) , (A.17)

so that (A.13) and (A.14) imply

1

Γh(±x)
= −4 sin

(πz

ω1

)

sin
(πz

ω2

)

. (A.18)

The last identity allows us to express the contribution of vector multiplets to the S3
b par-

tition function [21] in terms of hyperbolic gamma functions as well.

A.1 ZΦ
S3 in term of Jafferis’ function

In the case of the round S3, ω1 = ω2 = i, we have the identity [54, 67]

d

dz̃
ln Γh(i(1 − z̃); i, i) = −πz̃ cot (πz̃) . (A.19)

Introducing the complex parameter z̃ = 1 − ∆ + im = 1 + iz, and defining the function

l(z̃) = ln Γh(i(1 − z̃); i, i) , (A.20)
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one can integrate (A.19) to find

if Im z̃ < 0 : l(z̃) =
1

2πi
Li2(e

−2πiz̃) − z̃ ln(1 − e−2πiz̃) − πiz̃2

2
+
πi

12
,

if Im z̃ > 0 : l(z̃) = − 1

2πi
Li2(e

2πiz̃) − z̃ ln(1 − e2πiz̃) +
πiz̃2

2
− πi

12
.

(A.21)

This function l(z̃) was introduced by Jafferis in [54], although it appeared before in the

mathematical literature [61, 67]. We have

ZΦ
S3(z) = Γh(z; i; i) = el(1+iz) , (A.22)

which is perhaps the most useful expression for explicit numerical computations.

A.2 Complex masses and integrating out

Consider two chiral superfields Φ and Φ̃ which are in conjugate representation of the gauge

and flavor groups. They contribute

Γh(m+ ω∆)Γh(−m+ ω∆̃) (A.23)

to the integrand of the partition function. Now consider adding a superpotential term

W = µΦΦ̃ . (A.24)

This gives a constraint ∆ + ∆̃ = 2 on the R-charges, and

Γh(m+ ω∆)Γh(−m− ω∆ + 2ω) = 1 , (A.25)

because of (A.13). Hence any pair of fields with a complex mass term is integrated for free

in the localized partition function.
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