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Superfluid flow above the critical 
velocity
A. Paris-Mandoki1,2,8, J. Shearring  1, F. Mancarella3,4, T. M. Fromhold1, A. Trombettoni5,6 & P. 
Krüger1,7

Superfluidity and superconductivity have been widely studied since the last century in many different 
contexts ranging from nuclear matter to atomic quantum gases. The rigidity of these systems with 
respect to external perturbations results in frictionless motion for superfluids and resistance-free electric 
current flow in superconductors. This peculiar behaviour is lost when external perturbations overcome 
a critical threshold, i.e. above a critical magnetic field or a critical current for superconductors. In 
superfluids, such as liquid helium or ultracold gases, the corresponding quantities are a critical rotation 
rate and a critical velocity respectively. Enhancing the critical values is of great fundamental and practical 
value. Here we demonstrate that superfluidity can be completely restored for specific, arbitrarily large 
flow velocities above the critical velocity through quantum interference-induced resonances providing a 
nonlinear counterpart of the Ramsauer-Townsend effect occurring in ordinary quantum mechanics. We 
illustrate the robustness of this phenomenon through a thorough analysis in one dimension and prove 
its generality by showing the persistence of the effect in non-trivial 2d systems. This has far reaching 
consequences for the fundamental understanding of superfluidity and superconductivity and opens up 
new application possibilities in quantum metrology, e.g. in rotation sensing.

The breakdown of superfluidity1, 2 or superconductivity3 above a critical velocity or a critical current, respectively, is 
caused by the production and growth of excitations. When the flow velocity of a superfluid exceeds a critical velocity 
vc the creation of excitations becomes energetically favourable. This destroys the frictionless motion, as shown in 
classic experiments with superfluid helium4 and in more recent experiments with ultracold bosons5 and fermions6.

The occurrence of a critical velocity is conventionally understood in terms of a maximum velocity below which 
there is no or at most a bounded production of excitations. While almost no excitations are present for subcritical 
velocities, a fast onset of growing excitations occurs for supercritical velocities. The production rate of excitations 
gradually decreases for further increased velocity as the kinetic energy of the fluid becomes so high that it dom-
inates all other energy scales including those related to defects in the flow channel or in the trapping potential.

This conventional scenario is qualitatively illustrated in Fig. 1 and contrasted to the main result of this paper, 
namely the presence of supercritical, arbitrarily large, velocities for which there is a bounded growth and pro-
duction of excitations occurring for a specific class of defects. For these velocities superfluidity occurs due to a 
resonance between the characteristic length scales of the defect and of the incident wave. This phenomenon can 
be viewed as a nonlinear counterpart of the Ramsauer-Townsend effect that occurs in the linear case described 
by the Schrödinger equation7. Here we demonstrate this in a case study of the flow of one-dimensional (1d) Bose 
gases in the presence of a rectangular defect. To illustrate the generality of the effect in terms of dimensionality 
we then consider 2d defect potentials, showing that the wavepacket dynamics displays the same qualitative results 
persisting even in the presence of a non-separable potential.

In general, the rate of excitation growth depends on the microscopic details of the superfluid and on how it 
is coupled to the environment. The details of this coupling determine the dissipation mechanism causing the 
creation of excitations and, ultimately, vc. In the case of a superfluid moving through a confining channel, for 
example, the microscopic interactions with the walls provide the source of possible breakdown of superfluidity. 
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In the present paper we treat the case of a superfluid moving with velocity v in presence of a single defect at a fixed 
position that is gradually ramped on.

A simple and ingenious way to estimate vc and give a qualitative explanation of the breakdown of superfluidity 
is provided by the Landau criterion8. The Landau criterion is a cornerstone of our understanding of the dynamical 
behaviour of superfluids, stating that superfluid flow is sustained against external perturbations or defects up to a 
critical value of the velocity8. Its elegance, power and usefulness rely both on simplicity and generality. There is no 
need to know the specific nature of the perturbation or the characteristics of the defects, no need to know all the 
microscopic details of the superfluid, and no need to compute the excitation spectrum of the moving system; only 
the knowledge of the low-energy excitation spectrum ε(p) of the system at rest is required. In Landau’s treatment 
the microscopic description of the dissipation sources is not considered, since the former relies on the determina-
tion of the conditions under which the creation of elementary excitations becomes energetically favourable, in 
contrast to microscopic computations in which the interactions of the superfluid with its environment are explic-
itly taken into account. By applying a Galilean transformation to the co-moving frame it can be shown that for v <  
vL (where = εv minL

p
p
( )  is the Landau critical velocity8) the production of elementary excitations is energetically 

unfavourable. From the Landau criterion it follows that for Bose gases with a weak, short-range interaction, the 
Landau critical velocity is equal to the sound velocity c, so that here “supercritical” means “supersonic”. The 

Figure 1. Schematic plot of the qualitative behaviour of excitations in a superfluid. Excitations are plotted as a 
function of the superfluid velocity at a given time (dotted line: standard picture; solid line: this work). For 
velocities below a critical velocity (v < vc), the production of excitations is suppressed and superflow persists: at 
longer times the number of excitations remains very small. At higher velocities (v > vc) a sharp onset of 
excitations (growing with time) destroys the superfluid properties. At very high velocities ( v vc) the kinetic 
energy becomes so large that the defect hardly affects the flow. This standard picture has to be adjusted when 
resonant quantum interference reinstates superfluidity with fully suppressed excitation growth at a series of 
discrete supercritical velocities. The solid line shows an example for a rectangular defect shape (for the same plot 
at different times see Fig. 3). A detailed discussion of how it is possible to quantify the production of excitations 
in a specific case is provided in the text, see Eq. 3.

Figure 2. Square-shaped defect potentials. (a) Schematic plot of the 1d potential (Eq. 2). (b) Comparison of the 
asymptotic behaviour of D and of the reflection coefficient R for g = 0 as a function of kd. Panels (c) and (d) are 
depicting the 2d potential (Eq. 6) for ε = 2 (separable potential) and ε = 1 (non-separable potential), 
respectively.
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detailed analysis of different superfluid systems, including helium and ultracold gases, shows that the Landau 
criterion often quantitatively overestimates the value of vc, especially in the 2d and 3d cases (see also recent find-
ings in 1d9). This, together with the occurrence of a non-vanishing superfluid fraction also above the Landau 
critical velocity10 implies that the Landau criterion is neither necessary nor sufficient. However, despite the fact 
that in general vL ≠ vc, the identification of a critical velocity above which the production of excitations destroys 
the superfluid motion is a criterion of paramount clarity and relevance.

For v > vc superfluidity is destroyed in the sense that a non-vanishing normal fluid component develops and 
even at zero temperature the superfluid fraction ρS is smaller than the total density ρ, e.g. resulting, for the case of 
superconductivity, in a non-vanishing resistance. Superfluidity is completely destroyed once ρS = 0 is reached. The 
conventional picture implies that the latter happens for any velocity larger than some finite velocity, which we 
denote as ⁎vc  to keep it in general distinct from vc (of course, ≥⁎v vc c).

The Landau criterion is based on a perturbative treatment of “small” defects affecting the superfluid motion. 
The possibility to explore superfluid motion in a non-perturbative regime of parameters has attracted considera-
ble interest, e.g. in non-perturbative and/or exact studies of the dynamical propagation of a superfluid in presence 
of “non-small” defects (of tunable shape and intensity) or periodic potentials11, 12. The existence of flow in chan-
nels above the Landau critical velocity was first discussed in ref. 13, and the density pattern in the supercritical 
flow of 4He has been in discussed in ref. 14.

The point we address in this paper at a non-perturbative level is the surprising possibility of stable superfluid 
propagation with bounded emission of excitations (i.e. ρs = ρ at zero temperature) for a series of specific, but 
arbitrarily large incident velocities. Therefore, the notion of the existence of a finite critical velocity above which 
no superfluid flow exists can no longer be maintained universally.

Model
To illustrate the existence of perfect supercritical flow and the associated phenomena arising from it, we choose 
defects of rectangular shape in the 1d flow of a superfluid, whose behaviour is governed by the Gross-Pitaevskii 
equation15:

 ψ ψ ψ ψ ψ∂
∂

= −
∂
∂
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t m x

V x t g
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2 2

2
2

Figure 3. Growth and suppression of excitations. Disturbance D given by Eq. 3 vs v/vc at various equidistant 
times (growing from the bottom of the figure), where vc is equal to the sound velocity c. Darker lines indicate 
longer times. The line highlighted in red corresponds to t = tbarrier. At specific values of v, the disturbance does 
not grow with time after the barrier has finished rising. The insets illustrate this phenomenon in detail for the 
first minimum. Panels (a–c) show the density n(x) = |ψ(x, t0)|2 (in blue) and the potential V(x, t0) (in green) at 
time t0 = 2.2tbarrier for three different initial values of v corresponding to the minimum and maximum points  
for D indicated as “a”, “b”, “c” in the main figure. The initial condition is a plane wave travelling with momentum 
ħk = mv towards the right. The simulation parameters are g = 15 × (ħ2/2md), α = 3 × (2md2/ħ) and V0 = 
2 × (ħ2/2md2).
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where ψ(x, t) is the condensate wavefunction, g is the one-dimensional nonlinear coefficient16, and V(x, t) is an 
applied external potential.

We consider a homogeneous system with stationary flow at velocity v in an initially flat potential, in which 
a rectangular defect is then introduced to study the dynamical response. The potential is therefore chosen to be 
(see Fig. 2a):

α=





< <V x t V t x d( , ) tanh( / ) for 0
0 otherwise

,
(2)

0
2 2

where d is the width and V0 the strength of the defect, which is ramped on at time t = 0 with a speed parametrized by 
α. At time t = tbarrier ≡ 1.5α the value of the defect is 0.98V0, so it is almost completely turned on as shown in Fig. 4b. 
The initial state (when the barrier is absent) ψ(x, t = 0) = ψ0eikx is a plane wave with momentum k and velocity v =  
ħk/m corresponding to atom density n ≡ |ψ0|2. Since for t = 0 the defect is absent, ψ(x, t = 0) is a solution with 
momentum k of the time-independent Gross-Pitaevskii equation. The purpose of ramping on the defect is to adia-
batically lead the system towards possible supercritical superfluid solutions for specific values of the momentum k.

Our treatment is based on the use of Gross-Pitaevskii equation and we do not include dissipation explicitly. 
In current experiments with ultracold atoms superfluidity is preserved for long times of up to a few seconds with 
velocities of ~μm/ms and rings with radius ≳20 μm17, 18, while our simulations consider a time span of less than 
100 ms for typical experimental parameters (see Experimental Considerations). We therefore expect that the time 
scale at which superfluidity above the critical velocity is destroyed by dissipation is long compared to the time 
scales we numerically investigated.

Methods
From a theoretical perspective, a challenging point is to define the transmission and reflection coefficients in 
presence of a nonlinearity (g ≠ 0). The reason is that the usual definitions used for linear matter waves19, 20 do 
not apply to this case. In fact the superposition principle of an incoming and a reflected wave is no longer valid, 
and furthermore, bound states in the defect can be present due to the interaction term21. For a weakly interact-
ing Bose gas one can quantify the transmitted part of an incident wavepacket by the study of the dynamics in 
presence of defects22–29. A different approach, alternative to defining transmission and reflection coefficients, is 
to characterise the breakdown of superfluidity by studying the drag exerted by a matter wave on an obstacle30 or 
the stationary wave patterns of a δ-like potential moving at supersonic velocity31. A special case is represented by 
rectangular defects in 1d. Even though the difficulty of defining the transmission coefficient for a finite g ≠ 0 per-
sists, one can write solutions of the time-independent Gross-Pitaevskii equation in terms of Jacobian functions32, 

33. Using such wavefunctions the current-phase relation has been determined for subsonic motion34, 35. Neglecting 
the mean-field interaction outside the potential well gives raise to a major formal simplification, since it makes 

Figure 4. Suppressed excitation growth. (a) Disturbance D calculated as a function of time for the initial 
velocities v corresponding to the minima and maximum labelled “a”, “b”, “c” in the main part of Fig. 3. (b) shows 
the corresponding time dependence of the barrier strength. The background shading indicates the rate of 
change of the barrier strength. For times t > tbarrier, where the barrier strength has settled, D has a linear 
dependence on time. The creation of excitations can then be characterised by the slope D of the disturbance at 
large times (the linear fits for the times considered in the calculation of D are plotted as a black lines) and it is 
extremely small at the velocities corresponding to the minima a and c (see central right panel in Fig. 6 for 
details).
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possible to analytically calculate the transport properties of the system in terms of incoming and outgoing waves 
and resonances and bound states are obtained in closed form36.

Here we devise another approach where we quantify the production and growth of excitations by introducing 
the time-dependent quantity D t( ), which we refer to as the disturbance, defined as

∫ ψ ψ= − =
−

D t dx x t x t( ) ( ( , ) ( , 0) ) , (3)L

0 2 2 2

where the integral is calculated over the region where the initial wave propagation is directed towards the defect. 
We verified that it is appropriate that the integration in Eq. 3 is taken on the left of the defect (for positive veloci-
ties): other choices, such as integrating over the whole interval or only on the right of the defect, produce less clear 
and stable results, see panels (a), (b) and (c) in Fig. 3. Note that D t( ) is constructed to characterise the variance 
(and not the average) of the fluctuations of the density. Of course, if the defect is absent =D 0.

For the numerical solution we use the projected fourth-order Runge-Kutta method in the interaction pic-
ture37, which we confirmed to be very stable for all times within the considered range. We made sure to choose a 
sufficiently large system size 2L and sufficiently short observation times to avoid finite size effects. For practical 
purposes we apply periodic boundary conditions on a domain with finite length L d2  (with x∈[−L, L]) and 
only evaluate our disturbance estimator for times before any features emerging in the dynamics have reached the 
system boundaries. Up to that point no difference is found with respect to the homogeneous system for identical 
finite size systems with the same defect and a different choice of boundary conditions. We ensure that our results 
are never plotted for times beyond that limit. In fact our L is so large, up to L = 700 times the size of the defect, 
that we find a very long plateau, for example in the value of D t( ) (see Fig. 4a), with stable and reliable numerical 
results before the limit imposed by the finite size of the simulation domain has any effect. In the following, we 
refer to this constant value reached by D t( ) during the plateau simply as D.

Given the explicit arguments of the Landau criterion it is important to clarify what is meant by completely restored 
superfluid flow above the critical velocity: (i) A supercritical solution of the dynamical equations exists for specific 
values of the superfluid’s momentum and system parameters (i.e. interaction strength and geometric properties of the 
defect) and the flow of such a solution is stable under small perturbations. (ii) The perturbations of the propagating flow 
created by the defect are bounded in time (at least for experimental time scales) and no new excitations are produced 
when the barrier is completely ramped on. (iii) The superfluid flow is physically inducible and accessible.

We have found that all three conditions are fulfilled for the supercritical flow discussed here. We have indeed veri-
fied that the production of excitations at the supercritical excitation-free points is bounded in time, that the flow is sta-
ble under small perturbations for times larger than the typical experimental time-scales of ultracold atom experiments 
with 1d Bose gases, and that the obtained findings do not crucially depend on the ramping time of the well/barrier.

Figure 5. Effect of the ramping time on the excitation growth: disturbance as a function of time for varying 
ramping time constant α. After the barrier reaches its maximum value when t ~ α, the disturbance has a linear 
dependence on time. (a,c) Non-interacting (gn/V0 = 0) disturbance growth. (b,d) Disturbance growth for an 
interacting (gn/V0 = 7.5) gas. Top plots (a,b) show the behaviour for off-resonant momenta kd = 4.4 and kd =  
5.4 while the bottom ones (c,d) are calculated at their respective values of resonant momenta kres. In the 
resonant case, both the absolute disturbance as well its asymptotic slope are orders of magnitude smaller than in 
the non-resonant case.



www.nature.com/scientificreports/

6SCieNtifiC RepoRtS | 7: 9070  | DOI:10.1038/s41598-017-08941-8

Results
It is well known that in the non-interacting regime the transmission coefficient across a square potential, as found 
by solving the time-independent linear Schrödinger equation, reaches exactly unity for specific values of the 
momentum of an incident plane wave (Ramsauer-Townsend resonances)7.

After the barrier has been ramped on, D t( ) is found to increase linearly with time both in the linear (g = 0) 
and in the nonlinear (g ≠ 0) case. In the linear case the behaviour of the rate of change of D t( ), i.e. D, is qualita-
tively very similar to the behaviour of the reflection coefficient R, as shown in Fig. 2b, and both are vanishing near 
the points of perfect transmission: R is exactly zero there as obtained from a computation with the 
time-independent Schrödinger equation (and the barrier permanently on)7, while D in those points, as obtained 
from the time-dependent Schrödinger equation (and the barrier being ramped on), is found to be several order 
of magnitudes smaller than for other velocities. In other words, Fig. 2b also shows that the minima of D reproduce 
quantitatively the velocities for which the reflection is exactly zero in the time-independent computation.

Therefore we are led to take D t( ) also in the nonlinear case as a good indicator of the excitations produced by 
the barrier and D as a measure of the rate of the excitations produced. We observe that despite the general diffi-
culty to define a transmission coefficient in the nonlinear case discussed above, a situation of flow unaffected by 
the defect can still be identified with perfect (unity) transmission, which is equivalent to no excitation production 
and therefore measured as ≈D 0 in our case.

Our results for the 1d case are summarised in Figs 3–6. Figure 3 shows that essentially no excitations are pro-
duced for velocities below the sound velocity =c gn m/  (here vc ≈ vL = c). In 1d, the Landau criterion allows 
obtaining quantitatively the critical velocity and, as expected, excitations are produced for v > vc. Additionally, as 
time progresses D t( ) increases and, for large velocities, the growth rate of D t( ) is smaller. However, there are 
velocities v > vc, for which the production of excitations is inhibited. As shown in the inset of Fig. 3, close to these 
points the production of excitations is bounded in time. Panels (a), (b), (c) of the upper part of Fig. 3 show the 
density at a fixed time larger than tbarrier. Away from the minima, phonons are emitted (Fig. 3b) while at the min-
ima breathing states form inside the defect (Fig. 3a and Fig. 3c)30. We verified that these results depend neither on 
the particular measure of disturbance chosen, nor on the periodic boundary conditions, nor on the choice of L. 
These findings also do not critically depend on the value α. This is true for typical experimental values of α as well 
as for very small values of α, where small fluctuations of D t( ) occur for specific choices of quantifiers of the dis-

Figure 6. Resonant momenta. Centre-right: disturbance growth rate D as a function of kd for four different 
values of interaction: gn/V0 = −0.5, 0, 0.5, 7.5 (blue, green, red, purple lines, respectively). Left: Resonant 
momenta kresd (with mvres = ħkres) as a function of gn/V0 for the first four excitation-free points. The solid red 
lines are the perturbative prediction (Eq. 5), the blue points indicate numerically calculated values and the green 
line shows ksoundd, with ksound = mc/ħ and the sound velocity =c gn m/  (notice that in this figure we are fixing 
all parameters, including V0 = 2 × ħ2/2md2, and varying g). Bottom-right and top-right: detailed view of the first 
and fourth resonances, respectively.
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turbance. We finally observe that our results hold for a wide range of interaction strengths, including large values 
of g > 0, so that the validity of these results spans from the regime where the healing length is smaller than the 
defect width to the regime where it is larger. For small negative values of gn/V0, in the interval between −0.5 and 
0, the resonances are still present, as shown in Fig. 6. In this case, the time scale at which the attractive interaction 
causes instabilities that lead to a collapse is still larger than the simulation time, which is limited by the finite size 
of the domain. When g becomes more negative, then collapse and instabilities are observed.

As shown in Fig. 4a, there is a clear difference between the growth of D t( ) at the resonant and non-resonant 
velocities. At resonant velocities, excitations are produced exclusively during the ramping of the defect and the 
disturbance is afterwards constant. For non-resonant velocities the disturbance grows linearly with time, which 
leads us to quantify the growth of excitations by computing the time derivative of D t( ) for t > tbarrier (and checking 
that the obtained value does not depend on the computation interval). The analysis of the numerical results shows 
that D is extremely small at the resonant velocities (being suppressed by at least 4 orders of magnitude with 
respect to non-resonant velocities). D is also very small for v < vc in agreement with the Landau criterion.

The creation of excitations can be well characterised by the slope of the disturbancefor t > tbarrier, where D t( ) 
has a linear behaviour. In Fig. 5 we show D t( ) for g = 0 and for a finite value of g. In both cases the disturbance is 
evaluated for on- and off-resonance initial momentum. The asymptotic slopes D for off-resonance incident 
momenta are much larger than for the on-resonance momenta. For each of the cases we also vary the ramping 
time constant α, and it is seen that in all the cases–including the instantaneous ramp-on with α = 0–the behav-
iour of D t( ) is rather well approximated by a linear behaviour for times α and that the slope does not depend on 
the ramping time. We also observe that at the resonance points where the slope of D t( ) flattens, the behaviour of 

D t t( )barrier  is non-monotonous when α is increased. One can have a qualitative understanding of this by 
observing that–at the resonances–the disturbance D t( ) saturates asymptotically in time to a constant value when 
the wavelength inside the barrier resonates with the barrier width. This asymptotic value of D t( ) is minimal when 
the ratio between the crossing time ~ md( 2 / )2  and the ramping time (~α) approaches a value on the order of 
unity. A barrier ramped too fast while being crossed by the particles produces a larger disturbance D t t( )barrier , 
as expected. Conversely, a barrier ramped up too slowly will produce a consistent non minimal disturbance 

D t t( )barrier  since the wavelength inside the barrier varies during ramping process and is not always resonant. 
Accordingly, the minimum for D t t( )barrier  must occur at an intermediate value of the (characteristic) ramping 
time α, comparable to the crossing time through the barrier, explaining the non-monotonous behavior displayed 
in Fig. 5 around α ~ 1 in the units of the figure.

Since we find that D is independent of the ramping time α both for vanishing and finite g, the resonances 
found in the linear case g = 0 must reproduce the momenta of the Ramsauer-Townsend effect, obtained by a 
time-independent computation in quantum mechanics textbooks19, 20. This result is confirmed in Fig. 6 where it 
is shown that for g = 0 the resonant momenta obtained by means of this dynamical method coincide with the 
results obtained by solving the time-independent linear Schrödinger equation. Since it is useful in the following, 
we note that the incident momenta kres that result in Ramsauer-Townsend resonances, of unity transmission in 
the linear case (g = 0), are given by

π
= = +k g mV n

d
( 0) 2 ,

(4)res
2 0

2

2 2

2

with n = 1, 2, ….
In the central right inset of Fig. 6 we plot the values D as a function of the velocity for four interaction 

strengths. By performing the same analysis for different values of gn/V0, we obtain the behaviour of the resonant 
velocities vres as a function of g. The results are plotted in the left part of Fig. 6 for the case of a barrier (positive V0) 
with gn/V0 varying between −0.5 and 7.5. In this figure the dimensionless parameters kresd and gn/V0 are used, 
meaning that distances are measured in units of d and energies in units of V0. The presented results do not depend 
on the particular choice of d or V0 as long as those dimensionless parameters are used. Furthermore, by consider-
ing the slope D as a function of k for different values of α, we verified that within the achieved numerical preci-
sion, the value of the resonant momenta does not depend on α.

With respect to the non-interacting limit g = 0 the shift of the resonant momenta is positive for repulsive (g > 
0) interactions, while it is negative for attractive (g < 0) interactions. Similar results hold for a potential well (V0 
< 0), but with a negative shift for repulsive interactions and a positive one when the interactions are attractive. 
Our results are plotted in Fig. 6 together with a multiple-scale analytical derivation valid for small g, predicting 
values of kbarrier (defined below) corresponding to a total transmission across the barrier38. These resonant 
momenta are given by kbarrierd = nπ + δ, where = −k k mV

barrier
2 2 0

2
 (with velocity v = ħk/m and k incident 

momentum). When there is no interaction (g = 0), then δ has to be zero and the linear resonant momenta (4) are 
recovered. In accordance with ref. 38 we find

δ π
=

+a kd n3 ( )
8

, (5)

with a = 2mgn/v2. Note that our result (Eq. 5) differs from Eq. 24 of ref. 38 by the factor (−1)n which is present 
there. The analytical predictions for small g match the numerical data well for the higher excitation-free points, 
but less so for the lower resonant velocities. The ratios of the slopes of vres as a function of g between the analytical 
and the numerical results are 0.47, 0.83, 0.92 and 0.95 for the first four excitation-free points in increasing velocity 
order. To understand such a difference between our numerical findings and analytical results from multiple-scale 
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analysis, we observe that in ref. 38 the computation is done with the time-independent nonlinear Schrödinger 
equation. This restricts the problem to static situations and requires a perturbative determination of the eigen-
functions with the defect permanently turned on. Here we instead study a dynamical problem in which the bar-
rier is off at the beginning and then ramped on. This has two advantages: we are able to start from an exact 
eigenfunction (the plane wave), and we drive the system by adiabatically ramping the potential to the maximum 
of the resonance (while generically a multi-peak hysteretic structure of the values of transmission occurs when 
the nonlinear term is present). A possible reason of the mismatch between numerical and analytical results (also 
for very small g) could be attributed to the fact that our numerical procedure is based on the use of the full 
time-dependent Gross-Pitaevskii while the analytical computation is based on a perturbative treatment of the 
time-independent problem. However, as shown in Fig. 5, varying the ramping time α, and also bringing this time 
to zero, the slope D of the growth of the excitation does not vary. This happens also in the absence of interactions 
(g = 0) for which the slope has a clear minimum at the momenta given by the exact time-independent quantum 
mechanics computation19, 20. Given the fact that the same happens at finite g (see right part of Fig. 5), we conclude 
that the difference appears not to be due to ramping time effects. Since a perturbative computation should be 
exact by construction for small interactions, we believe that it would be interesting to obtain analytical and/or 
numerical solutions of the time-independent Gross-Pitaevskii equation in presence of a rectangular barrier and 
compare them both with the perturbative results38 and with the numerical results of the present paper.

2d square defect. To illustrate the robustness of the results presented in the previous section, we consider a 
2d square defect described by the potential

ε α
α
α

=











∈ ∈

∈ ∉

∉ ∈
V x y t

V t x d y d
V t x d y d
V t x d y d

( , , )

tanh( / ) for [0, ] and [0, ]
tanh( / ) for [0, ] and [0, ]
tanh( / ) for [0, ] and [0, ]

0 otherwise

,

(6)

d2

0

0

0

2 2

2 2

2 2

where ε is a dimensionless parameter (see Fig. 2c,d). When ε = 2 the potential (Eq. 6) is separable and it can be 
written in the form V2d(x, y, t) ≡ V1d(x, t) + V1d(y, t) where V1d is given by Eq. 2. Therefore, in the linear case, for 
ε = 2 fully transmitted incident velocities occur similarly to what happens in 1d, due to the separability of the 
problem. For ε ≠ 2 the potential 6 is not separable: nevertheless, both in the linear and in the nonlinear case we 
find a structure of peaks analogous to the 1d case with the disturbance pertinently defined as

∫ ∫ ψ ψ= − =
− −

D t dx dy x y t x y t( ) ( ( , , ) ( , , 0) ) (7)D
L L

2
0 0 2 2 2

(similar to the 1d case, other choices of D t( )D2  display the peaks less clearly). Numerical results from the 2d 
Gross-Pitaevskii equation with the potential V2d (Eq. 6) are reported in Fig. 7. We observe that the results do not 
sensibly depend on ε because the two potentials occupy an extended region and only differ in a small portion of 
it [0, d] × [0, d].

Experimental Considerations. Superfluid motion in the presence of defects has been extensively inves-
tigated in ultracold atom experiments: superfluidity can be probed by stirring a laser beam5, 39–41 and the critical 
velocity has been measured5. Experiments on superfluid motion have been performed also with moving optical lat-
tices42, in toroidal geometries17, 18, with ultracold fermions near unitarity6 and in two-dimensional Bose systems43.

An experimental setup to test the results presented in this paper can be implemented with ultracold Bose gases 
trapped on an atom chip. A 1d quasi condensate can fill a several hundred microns long potential tube44 with a 
very small potential variation along the tube and correspondingly homogeneous density. The gas can be set in 
motion at a controlled velocity by removing the residual longitudinal confinement and applying a short pulse of 
a magnetic gradient in the same direction. Velocities of the order of, or exceeding, a typical sound velocity of 
c ~ 1 mm/s can be achieved straightforwardly. By applying currents to microwires on the chip, a magnetic defect 

Figure 7. 2d results. Rate of change of the disturbance defined in Eq. 7 as a function of the incident velocity k 
for different values of the interactions (g = 0 and g = 15) and of the parameter ε: separable stands for ε = 2 and 
the non-separable potential is with ε = 1. The initial wavefunction is ψ ψ= = +x y t e( , , 0) ik x y

0
( )/ 2 .
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can be produced and controlled. Its geometric shape can be tailored with a resolution given by the atom-surface 
distance z0. In order for a rectangular defect with sharp edges to be formed, the defect length d must be a few 
times larger than z0. Here it is critical that z0 ≈ 1 so that individual excitationless resonances can be distinguished 
from the intermittent regimes of fast excitation growth. The excitation behaviour can be probed by varying the 
velocity v of the gas’s motion or by varying the final amplitude of the defect V0 at fixed v. The difference in V0 for 
the first two excitation-free points is expected to be ∆ ≈ = × . × µV h m6 9kHzh

m d d0
3
2

1 2 12

2 2  for the example of 
87Rb, so that d z0 needs to be sufficiently small to maintain ΔV0 ≈ μ ≈ h × 1 kHz, where μ is the chemical 
potential of the repulsively interacting gas. Appropriate ramping times of the defect are of the order of millisec-
onds (tbarrier ≈ 40 ms) for d ≈ 3 μm.

Conclusions
We have studied the propagation of matter waves across defects of rectangular shape in 1d and 2d starting from 
a stationary flow solution with velocity v in the defect-free case and then ramping on the defect. For velocities 
smaller than a critical velocity vc there is no production of excitations (with vc very well approximated by the 
Landau critical velocity vL in the 1d case). For a set of arbitrarily large supercritical velocities v > vc the growth 
of excitations is fully suppressed, contrary to the generic expectation based on the Landau criterion. For these 
velocities, we find the production of excitations to be bounded in time and to stop entirely when the defect is 
completely turned on. Such excitation-free supercritical velocities are present both for wells and barriers, and 
for repulsive and (small) attractive interactions. We observe that even though in the nonlinear case bound states 
and bifurcation effects are expected, our protocol of ramping on the defect allows us to access the excitation-free 
points in a clean way, not depending on the ramping time.

The obtained excitation-free supercritical velocities are the nonlinear counterpart of the velocities having 
total transmission in the linear Schrödinger case (Ramsauer-Townsend resonances) and are due to the resonance 
between the length scale associated with the matter wave momentum (~2π/k) and the length scale of the defect. 
The shift from the resonance is positive (negative) for repulsive (attractive) interaction in the case of barrier 
defects, and vice versa for well defects. We expect that such excitation-free supercritical velocities exist for a wide 
range of barrier shapes characterised by a well defined length scale, e.g. for trapezoidal defects or two delta-peaked 
potentials. The steeper the defect is at its edges, the more robust will the inhibition of excitations be in the vicinity 
of a set of supercritical velocities. We verified that our results are not a specific features of one-dimensionality by 
showing that similar findings are obtained in a 2d geometry. We also expect that the phenomenon may occur in a 
fermionic superfluid, but of course further studied in this directions are needed.

Previous studies10, 13, 14 addressed superfluid flow for v > vc, implying the existence of a second larger critical 
velocity >⁎v vc c with the possibility of partial superfluidity (0 < ρs < ρ for < < ⁎v v vc c ). Here, in contrast, we 
show that total transmission, and therefore perfect superfluidity (ρs = ρ), can occur for v > vc for specific shapes 
of defects. Moreover (perfect) superfluidity persists for a series of specific, arbitrarily large values of the incident 
velocity. These findings are independent of whether or not the Landau critical velocity coincides with vc or ⁎vc .

We expect that our results are also obtained for other shapes of the defects also characterized by a single length 
scale, as is the case with two δ potentials separated by a distance d. When this length resonates with the incident wave-
length, perfect transmission and complete superfluidity are restored, the key mechanism being the resonance between 
the non-linear wave propagation of the superfluid and the defect. A general potential not characterized by a single 
length scale will typically not exhibit  the resonances discussed in the present paper and, in particular, even when only 
two length scales are involved, transmission resonances will only be present if the lengths are commensurate.

We note that in our treatment we did not explicitly include dissipation. In general the time scale at which 
superfluidity is destroyed due to dissipation may depend on the incident velocity. However, for typical experi-
mental parameters, dissipation only plays a significant role at time scales longer than our simulation times and 
therefore our results should hold even in the presence of dissipation. Nonetheless, in future work it would be 
interesting to include sources of dissipation in the presence of defects characterised by a single length scale.

Understanding matter-wave propagation in the presence of tailored defect potentials is important in a variety 
of applications, ranging from quantum technology applications, in particular quantum sensors based on matter-
wave interferometry45, to fundamental studies such as the study of analogue gravity models and acoustic Hawking 
radiation in Bose-Einstein condensates46.

Motivated by our work, it will be interesting to study general criteria for the existence and stability of super-
critical solutions of the nonlinear Schrödinger equation in the presence of defects with a well-defined length scale. 
Finding exact solutions would ultimately remove the residual numerical uncertainty in excitation growth at the 
supercritical velocities with total transmission. Moreover, intriguing possibilities arise for utilising supercritical 
points in measurement devices based on superfluids and superconductors. Tuning a barrier to a supercritical flow 
resonance would facilitate precise determination of unknown external parameters affecting the flow velocity, such 
as rotation, and performing selective measurements at supercritical velocities.
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