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Interplay of charge and spin dynamics after an interaction quench in the Hubbard model
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We investigate the unitary dynamics following a sudden increase �U > 0 of repulsion in the paramagnetic
sector of the half-filled Hubbard model on a Bethe lattice, by means of a variational approach that combines a
Gutzwiller wave function with a partial Schrieffer-Wolff transformation, both defined through time-dependent
variational parameters. Besides recovering at �Uc the known dynamical transition linked to the equilibrium Mott
transition, we find a pronounced dynamical anomaly at larger �U∗ > �Uc manifested in a singular behavior of
the long-time average of double occupancy. Although the real-time dynamics of the variational parameters at
�U∗ strongly resembles the one at �Uc, a careful frequency spectrum analysis suggests a dynamical crossover,
instead of a dynamical transition, separating regions of a different behavior of the spin exchange.
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Pump-probe time-resolved spectroscopy is growing in
importance as a tool for studying and manipulating correlated
materials [1]. On one hand, it gives access to new enlightening
information about the dynamical properties of those materials,
beyond the reach of conventional spectroscopy. In addition,
it provides a very efficient tool to drive phase transitions on
ultrashort time scales, and concurrently investigate them in
the time domain. There are cases where the photoinduced
phases are actually those observed at thermal equilibrium upon
heating, as, for instance, in photoexcited VO2 [2]. This might
be suggestive of a quasithermal pathway, though that is not
generically the case, even in the same VO2 [3]. Indeed, there
is evidence of photoinduced hidden phases that are absent
at equilibrium [4,5], as well as of remarkable nonthermal
transient properties [6,7].

At first sight it might seem unsurprising to observe
nonthermal behavior in correlated electron systems, which are
complex materials with several competing phases and many
actors playing a role. In reality, even the simplest among all
models of correlated electrons, i.e., the single-band Hubbard
model, where the complexity of real materials is reduced just
to the competition between the on-site repulsion U and the
nearest-neighbor hopping t , shows puzzling and still contro-
versial nonthermal behavior. In a seminal work [8], Eckstein,
Kollar, and Werner discovered by time-dependent dynamical
mean-field theory (t-DMFT) that the unitary evolution of the
half-filled Hubbard model in an infinitely coordinated Bethe
lattice after a sudden increase of the repulsion U from the
initial U0 = 0 to a final Uf > 0 displays a sharp crossover
at Uf = Uc, which, within the relatively short, numerically
affordable simulation times, resembles a genuine dynamical
transition. Such an interpretation was, however, contrasted
by the observation that, if one assumes thermalization, the
temperature that corresponds to the energy supplied by the
quench U = 0 → Uc is well above the second-order critical
end point of the Mott-transition line in the T vs U equilibrium
phase diagram [8]. The same dynamical crossover was later
found, still in an infinitely coordinated lattice, by a variational
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approach based on a time-dependent Gutzwiller wave function
[9,10], which is not as rigorous as t-DMFT but allows
simulating much longer times. In particular, by considering
a linear ramp rather than a sudden quench, this crossover was
shown [11] to be a genuine dynamical transition linked to the
equilibrium Mott transition. The same conclusion has been
recently drawn by the nonequilibrium self-energy functional
theory [12], which is supposed to be more rigorous than
the variational Gutzwiller approach, though not as much as
t-DMFT. We emphasize that, should this dynamical anomaly
be confirmed to correspond to a dynamical Mott transition, it
would imply [8] that even the simplest single-band Hubbard
model may display nonthermal behavior, at least in lattices
with an infinite coordination number. However, there is
evidence that the same occurs also when the coordination is
finite [13,14].

It is therefore worth proving or disproving the existence of
this dynamical transition by other complementary techniques,
looking forward to numerical developments that could allow
t-DMFT to finally settle this issue. Here, we make such
an attempt by extending out of equilibrium the variational
approach that we recently proposed [15], and which combines
a Gutzwiller wave function with a partial Schrieffer-Wolff
transformation, both defined now by time-dependent vari-
ational parameters. Although the method has the limits of
any other variational approach, it does favorably benchmark
[15] against more rigorous, but also numerically much more
demanding, techniques.

We consider the half-filled single-band Hubbard model on
an infinitely coordinated Bethe lattice,

H (t) = − 1√
z

∑
〈ij〉

Tij + U (t)

2

∑
i

(ni↑ + ni↓ − 1)2, (1)

where z → ∞ is the coordination number, U (t) the time-
dependent on-site repulsion, U (t < 0) = U0 and U (t � 0) =
Uf , and Tij ≡ ∑

σ (c†iσ cjσ + H.c.) the hopping operator on the
bond 〈ij 〉 connecting the nearest-neighbor sites i and j .

The dynamics of the model is determined through the saddle
point of the action

S =
∫

dt〈�(t)|i d

dt
− H (t)|�(t)〉, (2)
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which provides the exact solution of the Schrödinger equation
for unrestricted many-body wave functions �(t), or just a
variational estimate of it in case �(t) varies within a subspace
of the whole Hilbert space, which is what we shall do hereafter.
In particular, we assume for �(t) the expression [15]

|�(t)〉 = U(t)PG(t)|ψ0(t)〉, (3)

where ψ0(t) is a paramagnetic uniform Slater determinant,
U(t) a unitary transformation, and finally PG(t) ≡ ∏

i Pi(t),
with Pi(t) a linear operator on the local Hilbert space [9].
In the presence of particle-hole symmetry and discarding the
spontaneous breakdown of spin SU(2) symmetry, Pi(t) can be
generically written as

Pi(t) =
√

2 φi0(t)[Pi(0) + Pi(2)] +
√

2 φi1(t)Pi(1), (4)

where Pi(n) is the projection operator at site i onto the config-
uration with n electrons, whereas φin(t) is a complex function
of time [9]. In infinitely coordinated lattices the wave function
|�(t)〉 is normalized at any time if |φi0(t)|2 + |φi1(t)|2 = 1.

The time-dependent unitary transformation U(t) is of the
Schrieffer-Wolff type [15–17], and it is parametrized by
complex, time, and bond-dependent variational parameters
εij(t),

U(t) ≡ eA(t) ≡ exp

⎡
⎣ 1√

z

∑
〈ij〉

[εij(t)T̃ij − ε∗
ij(t)T̃

†
ij ]

⎤
⎦, (5)

where

T̃ij ≡ [Pi(2)Pj(0) + Pi(0)Pj(2)]Tij[Pi(1)Pj(1)],
(6)

T̃
†

ij ≡ [Pi(1)Pj(1)]Tij[Pi(2)Pj(0) + Pi(0)Pj(2)],

are the components of the hopping operator Tij that couple the
low-energy subspace of singly occupied sites i and j with the
high-energy one where one site is empty and the other doubly
occupied.

We determine ψ0(t), PG(t), and U(t) through the saddle
point of the action (2) with respect to all the variational
parameters, handling U(t) by a series expansion

U†OU = O − [A,O] + 1
2 [A,[A,O]] + · · · , (7)

up to the desired order. For instance,

U†HU � H + U√
z

∑
ij

(εijT̃ij + ε∗
ijT̃

†
ij )

+ 1

8z

∑
ij

Jij[T̃ij + T̃
†

ij ,T̃ij − T̃
†

ij ] + HR, (8)

where

Jij = 4[(εij + ε∗
ij)V − U |εij|2], (9)

and higher-order terms are stored together in HR. In the
calculation below we stop the series expansion at the third
order in power of ε, and consider all processes up to three
neighboring sites. We have tested such an approximation at
equilibrium in comparison with exact DMFT results [18],
and it provides a quite satisfactory description of the metal
and insulating phases for U � UMott/2, where UMott is the
equilibrium location of the Mott transition (cf. Supplemental
Material, Sec. I [19]). Inclusion of higher orders systematically
increases the accuracy and thus allows accessing also the

weaker correlated regime [15]. However, for the sake of
simplicity, we decided to stand to the above approximation,
and consequently we just considered quantum quenches from
a relatively correlated metal at U0 > UMott/2 to higher values
of Uf > U0.

With this prescription for handling the unitary operator
U(t), the expectation values that define the action (2) can be
explicitly evaluated when the coordination number z → ∞,
and can be formally written as

〈�|i d

dt
|�〉 = i〈ψ0|ψ̇0〉 + i

∑
i

(φ∗
i1φ̇i1 + φ∗

i0φ̇i0)

+ if (v,ε̇ij,ε̇
∗
ij,ψ0,ψ

∗
0 ), (10)

〈�|H |�〉 = h(v,ψ0,ψ
∗
0 ), (11)

where v = {φi0,φ
∗
i0,φi1,φ

∗
i1,εij,ε

∗
ij}. Being too lengthy, the

actual expressions of the functions f and h are given in the
Supplemental Material, Sec. II [19].

The saddle-point equations that determine the evolution
of the wave function can be readily obtained. As in the
time-dependent Gutzwiller approximation [9], the evolution
of the Slater determinant ψ0(t) is trivially just the multi-
plication by a time-dependent phase, so that, for instance,
〈ψ0(t)| 1√

z

∑
ij Tij|ψ0(t)〉 = 8/3π ≡ T0 is time independent. In

what follows, we shall use as the energy unit 8T0, and define
u = U/8T0. In these units, the initial state is always prepared
at u0 = 0.5 and then instantly quenched to the final value
uf > 0.5.

On the contrary, the Euler-Lagrange equations for the
components of the variational parameter v are not trivial and
read

iφ̇i0 + i
∂f

∂φ∗
i0

− ∂h

∂φ∗
i0

= 0,

iφ̇i1 + i
∂f

∂φ∗
i1

− ∂h

∂φ∗
i1

= 0, (12)

i
∂f

∂εij
− ∂h

∂εij
− i

d

dt

∂f

∂ε̇ij
= 0,
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FIG. 1. Average double occupancy after the quench from the
correlated metal at u0 = 0.5. For the sake of completeness, we also
show the equilibrium result of a Gutzwiller wavefunction combined
with a Schrieffer-Wolff transformation (SWT) [15] as well as that
obtained by the simpler time-dependent Gutzwiller wave function
(tGA) [9].
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FIG. 2. (a) Time evolution of the double occupancy d(t) at uc.
(b) Time evolution of R(t) just before and after uc, with its time
average drawn in the inset. We note that indeed R has a critical
behavior at uc.

plus their complex conjugates. Assuming translational invari-
ance, we can discard the site index in the above equations. The
resulting differential equations are lengthy but can be written
in the following matrix form,

B̂[v(t)]v̇(t) = a[v(t)], (13)

i.e., as a set of ordinary first-order nonlinear differen-
tial equations, which can be numerically integrated by
Runge-Kutta types of algorithms (see Supplemental Material,
Sec. III [19]).

In Fig. 1 we plot the long-time average of the double
occupancy per site. At uc � 0.6575 we observe a first dynam-
ical anomaly, which is actually the already known dynamical
transition [8,9,12] at which the system shows a rapid relaxation
to a Mott insulator [cf. Fig. 2(a)]. Within Gutzwiller types of
wave functions, the Mott transition is characterized by an order
parameter R = φ0φ

∗
1 + φ1φ

∗
0 , which is finite in the metal and

vanishes in the insulator [9,20]. Formally, R is defined by
observing that the action of the projected operator P†

i ciσPi

on the Slater determinant ψ0 is the same as Rciσ , so that R

can be regarded as the quasiparticle component in the physical
electron ciσ . In Fig. 2(b) we show that, for uf < uc, R(t)
oscillates around a finite value, whereas above uc it oscillates
around zero, as clear in the inset where its time average is
plotted. Therefore our improved wave function also points to
a genuine dynamical Mott transition occurring at uc, which, as
we mentioned, contrasts the belief that the system thermalizes.

In addition, we note two further dynamical anomalies
at uf � 0.77 and uf = u∗ � 1.0326, the latter more pro-
nounced. To better explore their nature, in Fig. 3 we draw
the frequency spectra of R(t) and of the real part of ε(t),
which show that both anomalies are actually triggered by the
frequency crossing of different modes. In addition, at u∗ there
is also one mode that gets soft, not much different from what
happens at uc. In order to identify the origin of the different
modes and the meaning of the softening, we compare the
frequency spectrum of R(t) with the corresponding one in
the simpler time-dependent Gutzwiller wave function [9] (see
Sec. IV of the Supplemental Material [19]), which lacks the
spin correlations brought by the Schrieffer-Wolff transforma-
tion. Both spectra have in common the mode with frequency
ωH [see Fig. 3(a)]. We thus conclude that ωH originates solely
from the dynamics of charge degrees of freedom, and can be
associated with the Hubbard-band mode discussed in Ref. [21]
that becomes soft at the equilibrium Mott transition. In the
present nonequilibrium condition, the softening of the same
mode and its higher harmonics is further confirmation that uc

signals a genuine dynamical Mott transition.
On the other hand, the Schrieffer-Wolff transformation

leads to the appearance of a new mode that does not soften
at uc, and which we associate with the spin exchange J of
Eq. (9) and thus denote as exchange mode ωJ , marked with a
blue dashed line in Fig. 3.

We have found that all remaining frequencies in Fig. 3(a) are
quantized linear combinations of the two principal frequencies
ωH and ωJ , as expected because of the nonlinear character
of the Euler-Lagrange equations (13). We shall label those
secondary frequencies by two integers n,k, and denote them
as ωn,k for uf < uc, while, above uc, as �n,k and �′

n,k , in
the power spectra of R(t) [Fig. 3(a)] and ε(t) [Fig. 3(b)],
respectively. These frequencies are constructed according to
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FIG. 4. Red solid line: Time average value Jav of J (t) in Eq. (9),
as a function of uf . Blue dashed line: The value Jeq of J obtained at
equilibrium by minimizing the energy at u = uf . In gray, we indicate
the region covered by the time fluctuations of J (t).

the following rules:

ωn,k = nωJ + kωH ,

�n,k = n(ωJ − ωH ) + (2k − 1)ωH , (14)

�′
n,k = �n,k + ωH = n(ωJ − ωH ) + 2kωH .

Without the Schrieffer-Wolff transformation, i.e., with ωJ = 0,
the above rules easily follow from the equations of motion of
a classical pendulum that control the dynamics of the simple
time-dependent Gutzwiller wave function [9]. On the contrary,
we determined empirically the rules (15) when ωJ = 0.

According to the rules (15), mode crossings occur when-
ever ωJ = (2m + 1)ωH , and thus the anomaly at uf � 0.77
corresponds to m = 2 while that at u∗ to m = 1. Moreover,
the apparent softening in the dynamics of ε is in reality the
vanishing of the linear combination �′

±1,∓1. In other words,
the anomaly at u∗ is not characterized by the softening of any
of the principal modes, ωH or ωJ , and therefore it is not to be
confused with a genuine dynamical transition. Nonetheless,
close to u∗, we do find changes in the physical properties.
In Fig. 4 we plot as a function of uf the time average Jav

of the spin exchange J (t) in Eq. (9), the region covered by
its time fluctuations, as well as its equilibrium value Jeq. We
observe that, just before u∗, Jav turns from antiferromagnetic
to ferromagnetic and its fluctuations grow larger, which
suggests a change in character of the spin correlations.
Indeed, in our variational approach the sign change of Jav

is a simple way to compensate for the antiferromagnetic
correlations built into the uncorrelated Slater determinant
|ψ0(t)〉 in Eq. (3), and thus to absorb part of the excess energy
supplied by the quench. We also argue it might correspond
to the melting of antiferromagnetism that should occur
when suddenly increasing U starting from a Néel ordered
state [22].

In summary, we have studied the quench dynamics in the
paramagnetic sector of the half-filled single-band Hubbard
model on an infinitely coordinated Bethe lattice, by means
of a variational Gutzwiller wave function enriched with spin
correlations by a variational Schrieffer-Wolff transformation.
We have confirmed the existence of a dynamical Mott
transition at odds with the belief that the model should
finally relax to a thermal state. Even though the variational
wave function does not allow for all dissipative channels
that exist in the real time evolution, we nonetheless believe
that the softening of the Hubbard-band mode with frequency
ωH , which signals the Mott transition at equilibrium [21],
is a genuine phenomenon that will not be swept out in
more rigorous calculations. In addition, we have found that
the time-dependent Schrieffer-Wolff transformation yields
nontrivial spin correlations that undergo a dynamical change
for a final interaction value quite beyond the dynamical Mott
transition.
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