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1 Introduction

Entanglement is one of the most non-classical features of quantum mechanics and much

effort has been expended in trying to figure out a quantitative measure for the amount of

entanglement inherent in a quantum state. In local quantum field theories one such measure

is provided by the entanglement entropy SA associated with a specified (spacelike) region

A located on a Cauchy slice Σ. This quantity is defined to be the von Neumann entropy of

the reduced density matrix ρA obtained by integrating out the degrees of freedom in the

complementary region Ac. Famously the entanglement entropy is UV divergent, with the

leading divergence being given by the area of the entangling surface ∂A (the boundary of

A). However, the finite part of the entanglement entropy contains non-trivial information

about the quantum state and in certain cases serves as a novel order parameter. As usual,

it is this finite part which we shall consider.
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Our interest is in understanding the behaviour of entanglement entropy for field the-

ories defined on compact spatial geometries; so we take Σ to be a compact Riemannian

manifold (typically Sd−1). One of the questions which we wish to address is whether the

entanglement entropy for a fixed state of the field on Σ is a smooth function of the (geo-

metrical attributes of the) region A. We envisage considering a family of smooth regions

Aα characterized by some parameter α, which is a proxy for the relative size of A ⊂ Σ.

The main question we want to ask is whether SA(α) is smooth under changing α.

For finite systems, analogy with statistical mechanics suggests that this would indeed

be true. There should be no room for any discontinuity in SA(α) since the reduced density

matrix will change analytically with α. The place where this is expected to break down is

when we attain some analog of the thermodynamic limit, i.e., when the number of degrees

of freedom involved gets large. So a natural place to look for non-smooth behaviour is in

the dynamics of large N field theories on compact spacetimes in the planar limit. This

naturally motivates the study of field theories which can be captured holographically by

gravitational dynamics using the gauge/gravity correspondence. We will refer to these

holographic field theories as large c (central charge) theories; for conventional non-abelian

gauge theories c ∼ N2.

In past few years much progress has been made in understanding entanglement en-

tropy in large N field theories (at strong coupling) thanks to the seminal work of Ryu

& Takayanagi [RT] [1, 2], who gave a very simple geometric prescription for computing

SA for static states in terms of the area of a bulk minimal surface anchored on ∂A. This

prescription was extended by Hubeny, Rangamani, and Takayanagi [HRT] to arbitrary

time-dependent states in [3] where one considers extremal surfaces, which can also be re-

lated to light-sheets discussed in covariant entropy bound context [4]. There have been

many attempts to derive the prescription from first principles; the first was made in [5]

which was critically examined in [6]. More recently, [7] gave a nice argument deriving the

prescription for a special class of states (conformally invariant vacuum) and spherically

symmetric regions, by converting the reduced density matrix ρA to a thermal density ma-

trix. A local version of this argument has been made recently in [8] and together with

the results of [9, 10] goes quite a way in establishing the holographic prescription of [1] for

static states. Given these developments, it is apposite to take stock of the implications of

the holographic entanglement entropy prescription for the question we have in mind.

Let us first record some basic facts about SA which we will use to investigate the

behaviour of SA(α). It is a well known fact that when the total state of the field theory

is pure, the entanglement entropy of a given region and its complement are the same:

SA = SAc . This however ceases to be true when the entire system is itself in a density

matrix ρΣ. To measure the deviation from purity of the system we could monitor the

difference δSA = SA−SAc . From our perspective this quantity has some useful advantages.

Firstly, it is finite since the divergent contributions which are given in terms of intrinsic

and extrinsic geometry of the entangling surface ∂A cancel. Secondly, it is bounded from

above by the von Neumann entropy of the entire density matrix ρΣ, by the Araki-Lieb

inequality [11]:

| δSA | ≡ | SA − SAc | ≤ SA∪Ac = SρΣ . (1.1)
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So one way to phrase our original question is to ask whether δSA(α) is a smooth

function of α ∈ [0, 1] which we take to be a suitable function of the ratio of Vol(A)/Vol(Σ)

such that δSA is an odd-function around α = 1
2 and becomes the total entropy ±SρΣ at

α = 0, 1. The issue we want to focus on is whether there is any discontinuity either in SA(α)

or its derivatives as we vary α. We will argue here that for large c field theories SA(α)

(given by the RT prescription) has to be continuous for time-independent (static) density

matrices ρΣ. However, there can be non-trivial behaviour in ∂αSA(α): we will exhibit

explicit examples where the function SA(α) is continuous but fails to be differentiable.1 It

is important to distinguish this from situations where the total density matrix itself varies;

one can certainly have entanglement entropy of a fixed-size region which is discontinuous

e.g. as a function of temperature [13, 14], as is quite familiar from the simpler example

of Hawking-Page transition. Here we fix the total density matrix (which has the bulk

equivalent of fixing the spacetime) and consider the entanglement entropy as function of

the region.2

To understand the potential issues, we need to explain one key feature of the holo-

graphic prescription of [1, 3]. To compute SA, we find extremal surfaces3 EA in the bulk

spacetime M which are anchored on ∂A; in the asymptotically AdS spacetimes we con-

sider, we demand that ∂EA = ∂A. However, there can be multiple such surfaces in a

given spacetime. We are instructed to restrict attention to extremal surfaces EA which are

homologous to the boundary region A under consideration [16] and from the set of such

surfaces pick the one with smallest area. To wit,

SA = min
X

Area(EA)

4GN
, X = E :

{
∂EA ≡ EA

∣∣
∂M = ∂A

∃ R ⊂M : ∂R = EA ∪ A
(1.2)

where the region R is a bulk co-dimension one smooth surface (in the d + 1 dimen-

sional spacetime M) which is bounded by the extremal surface EA and the region A
on the boundary.

It was appreciated already in [16] that the homology constraint is crucial for the Araki-

Lieb inequality to be satisfied. The issue was further elaborated in [17] where 1+1 dimen-

sional CFTs on a torus were considered (see also [18] for a recent discussion). In particular,

its effects are most acutely felt when ρΣ is a density matrix, for then we anticipate the

bulk spacetime to have a horizon [19]. In static spacetimes this implies a non-trivial topol-

ogy in the bulk when restricted to a constant time slice, which can be easily intuited by

considering the Euclidean section of the geometry.

The homology constraint, being non-local from the boundary perspective, allows non-

trivial behaviour in the nature of the extremal surfaces that are admissible for the problem.

Indeed as we will show explicitly, there are many simple examples where one has multiple

1In fact, as we indicate in section 7, in time dependent examples the situation may be much more

intricate and will be discussed elsewhere [12].
2Explicit examples of discontinuities in ∂αS(α) for field theories on a plane were recently noticed in [15],

which arises as a result of the minimal surface changing topology (even in causally trivial spacetimes).
3We use the notation EA for generic extremal surfaces and indicate minimal surfaces relevant for static

geometries by MA. While we review the various assertions in terms of extremal surfaces we will for the

most part (until section 6) only consider minimal surfaces in this paper.
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extremal surfaces and only some of them are homologous to the boundary region in ques-

tion. In fact, the most bizarre aspect of our analysis is that for certain choices of boundary

regions there are no connected minimal surfaces satisfying the homology constraint: one

is forced into considering disconnected surfaces.4 Multiply connected extremal surfaces in

turn imply that one can have novel behaviour in SA or equivalently in δSA; we go on to

show that in static spacetimes these indicate that δSA(α) is continuous but not differen-

tiable, exhibiting explicit examples involving global AdS black hole geometries. We argue

that the lack of differentiability is the worst it gets for δSA in static spacetimes, proving

that δSA has to be a continuous function of α. Furthermore, when we are forced onto the

branch of disconnected extremal surfaces, it is easy to establish that δSA = SρΣ , i.e., the

Araki-Lieb inequality is saturated; we refer to this phenomenon as entanglement plateau.5

While in simple examples one can establish entanglement plateaux by explicit construc-

tion, it is interesting to examine when it should happen on general grounds. Curiously, it

is easy to provide a bound, though in a somewhat roundabout manner using machinery

outside the extremal surface technology. The necessary concept is geometric and has to

do with the behaviour of the causal wedge associated with A. These objects were studied

in the context of ‘causal holographic information’ in [22] from a very different perspective

(the motivation being to characterize the minimal amount of holographic information in

the reduced density matrix). Using the topology of the causal wedge one can establish

criteria for when the extremal surfaces EA become disconnected. The precise statement

and its proof will appear elsewhere [23], but we will flesh out the physical aspects of the

argument in what follows. Suffice to say for now that we find the interplay between causal-

ity and extremal surfaces extremely intriguing and believe that it points to some yet to be

fathomed facet of holography.

The outline of the paper is as follows: we begin in section 2 with a discussion of the

general behaviour of the entanglement entropy SA as function of the size parameter α and

argue that in the holographic context, SA(α) and consequentially δSA(α) should be contin-

uous functions. We then proceed to see the explicit behaviour of entanglement entropy in

1+1 dimensional CFTs on a torus in section 3 and in higher dimensional CFTs in section 4.

After displaying explicit examples of the entanglement plateaux, we outline the connection

with causal wedges in section 5. We then step back to compare the prescriptions involv-

ing minimal (RT) versus extremal (HRT) surfaces and relatedly the role of the homology

requirement in section 6 and conclude with a discussion of open issues in section 7. Some

technical aspects of finding the minimal surfaces are relegated to the appendices.

2 Generic behaviour of holographic SA(α)

We begin our discussion by explaining the continuity of SA(α). Importantly, we focus on

the RT prescription for static configurations, where the entire problem can be formulated

4The exchange of dominance between connected and disconnected surfaces in confining backgrounds for

field theories on non-compact geometries R1,d−2 × S1 has been well studied in the context of holographic

entanglement entropy, cf., [20, 21] for initial work. We will be however be considering field theories on

compact spatial volumes.
5 This phenomenon like many others encountered in holographic duals is a feature of large c theories. At

finite central charge we cannot have any sharp plateaux; we thank Hong Liu for discussions on this issue.
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on a d dimensional Riemannian bulk geometry with (d− 1)-dimensional boundary (in the

conformal class of) Σ. Consider a family of boundary regions Aα ⊆ Σ specified by a real

number α. For example, we can fix the shape of A and let α denote the overall size; in

the simplest case of (d − 2)-spherically symmetric A on a spatial slice of ESUd boundary

spacetime, we take α ∈ [0, 1] to be the fractional volume of the system.6

Now, consider the function S(α) defined by a minimization of area over all smooth

bulk surfaces homologous to Aα. Starting from any surface homologous to Aα, we may

allow it to relax, continuously decreasing the area, such as by the mean curvature flow

described in appendix A. Since the area is bounded from below, it must tend to a limit, of

which one quarter in Planck units is given by Sk(α). This may take several values, labeled

by k, depending on the initial surface chosen, corresponding to different local minima of

the area functional. Generically, the surface itself will also converge to an endpoint,7 which

will be a corresponding minimal surface Mk
α. As α is varied, we expect these minima to

come in a discrete set of families depending smoothly on some parameter (since Aα and

the spacetime are smooth), giving a set of curves in the plane of α and area. This means

we have a set of functions Sk(α), defined on some interval of α, continuous, and smooth

away from critical points of α, with S(α) = mink Sk(α).

We now wish to consider the behaviour of S(α) ≡ mink Sk(α). In simple spacetimes,

such as pure AdS and small deformations thereof, there is only a single family k = 1

which covers the full range of α, so in such cases S(α) is manifestly smooth. However,

it may happen at some point that two families, k = 1, 2, exchange dominance such that

S(α) = S1(α) < S2(α) for α smaller than some critical value αX , and S(α) = S2(α) < S1(α)

for α > αX . At α = αX , S1 = S2 = S, so S(α) is necessarily continuous. However, there

will generically be a discontinuity in ∂αS(α), so S(α) has a kink.

We argue that this discontinuity of the derivative is as bad as it can get, and S(α)

itself can never be discontinuous. For suppose S(α) has a jump discontinuity at some value

α = αm, so S(α) has different limits S− < S+ from the left and right respectively. Then

by taking some surface with α less than, but sufficiently close to, αm, and area sufficiently

close to S−, and deforming slightly, we expect to be able to find a surface with α > αm, but

area still less than S+: the variation in α may be taken as small as desired to temper the

change in area. This is in contradiction with Sα being the minimum of the area functional.

If desired, this deformed surface can be considered as the initial surface of a mean curvature

flow. This argument precludes, for example, a discontinuity when new families of minimal

surfaces appear at α = αm, and do not exist for α < αm. This creation can happen,

and typically such families appear at αm in pairs (we shall present an example in figure 8

below), but when this happens the area of the new family must exceed the area of some

existing family.

The above argument indicates that within the RT prescription, the entanglement en-

tropy of a given region A should vary continuously with the parameters specifying the

6With the standard SO(d−1) symmetric metric on spatial sections of ESUd, i.e., ds2
Σ = dθ2+sin2 θ dΩ2

d−2,

we have α =
∫ θ∞

0
(sin θ)d−2dθ/

∫ π
0

(sin θ)d−2dθ = 1
2
− Γ( d

2
)

√
π Γ( d−1

2
)

cos θ∞ 2F1

(
1
2
, 3−d

2
, 3

2
, cos2 θ∞

)
for a polar

cap characterized by co-latitude θ∞.
7For some special spacetimes, such as extremal black holes with an infinite throat, this need not be

strictly true, though it does not materially affect the argument.
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geometrical attributes of A. In the following two sections, we will see this behaviour real-

ized manifestly, even in situations where new families of minimal surfaces get nucleated at

some intermediate α. By examining these families more closely, we will identify examples

with large multiplicities of minimal surfaces.

3 Entanglement entropy in 1 + 1 dimensional CFTs

In the previous section we have argued that for the holographic entanglement entropy given

by a minimization procedure, SA(α) must be continuous but need not be differentiable.

The lack of differentiability is typically associated with two families of minimal surfaces

exchanging dominance. Such an occurrence is not new, and good examples already exist in

the literature. The simplest one occurs for the bulk spacetime being the BTZ black hole,

where this point was appreciated already in the early days [1, 16, 17] and fleshed out a

bit more explicitly in [18]. We quickly review this story to illustrate the contrast with our

other examples in higher dimensions.

The metric for the BTZ black hole is given by8

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dθ2 , f(r) = r2 − r2

+ . (3.1)

It is a simple matter to find the minimal surfaces for regions A = {θ : |θ| ≤ θ∞} since these

are given by spacelike geodesics. The result is best described by writing down the spatial

projection of the surfaces [22]

M1(θ∞) :

{
(r, θ) : r = γ(θ, θ∞, r+) ≡ r+

(
1− cosh2(r+ θ)

cosh2(r+ θ∞)

)− 1
2
}

(3.2)

and is plotted in figure 1 for large and small black holes, for a set of θ∞ ∈ [0, π].

As can be easily seen in figure 1, connected spacelike geodesics (satisfying the homology

constraint) always exist for any θ∞ and r+. This makes sense, since there is no reason for

the geodesics to break up (in fact, spacelike geodesics can orbit the black hole arbitrarily

many times before returning to the boundary, albeit at the expense of greater length). As

we will see in section 4, this is in stark contrast to the behaviour of co-dimension 2 surfaces

in higher dimensional black hole spacetimes. Also note that in the BTZ case, another effect

of the low dimensionality is that arbitrarily small black hole (r+ → 0 in (3.1)) always looks

effectively large in terms of the effect it has on geodesics.

Let us now consider the proper length along these geodesics and compute the entan-

glement entropy. As is well known, this computation reproduces the CFT computation of

Cardy-Calabrese [24] for thermal CFT on the infinite line. Naive application of the RT

result for the CFT on a cylinder leads to9

(SA)naive =
c

3
log

(
2 r∞
r+

sinh(r+ θ∞)

)
, ∀ θ∞ ∈ [0, π] (3.3)

8We work in units where the AdS length `AdS = 1 and also set the radius of the boundary circle R

parameterized by θ ∈ [0, 2π] to unity. It is easy to restore dimensions when necessary as we illustrate later.
9We use CFT central charge determined by the Brown-Henneaux analysis c = 3 `AdS

2G
(3)
N

and note that

T =
r+

2π `AdS R
is the temperature of the thermal density matrix ρΣ.
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Figure 1. Minimal surfaces (geodesics) in BTZ geometry with black hole size r+ = 1 (left) and

r+ = 0.2 (right). In each panel, the thick black circle represents the AdS boundary, and the thick

red circle the black hole horizon. The minimal surfaces are depicted by the thin curves, color-

coded by θ∞, with θ∞ varying between 0 (red) and π (purple) in increments of 0.05π. For ease

of visualization we use a compactified radial coordinate ρ = tan−1 r. The boundary region A is

centered at θ = 0 which is plotted on top.

where r∞ is a radial cut-off to regulate the proper length of the geodesic and is our proxy

for the boundary UV cut-off scale. It is then a simple matter to check that the naive result

for δSA

(δSA)naive =
c

3
log

[
sinh(r+ θ∞) csch(r+ (π − θ∞)

]
(3.4)

violates the Araki-Lieb inequality. For the BTZ black hole SρΣ = π r+

2G
(3)
N

= 2π2

3 c T R, which

is clearly bounded, while (3.4) diverges as θ∞ → 0.

The basic point is simply the following: for regions A which are sufficiently large

θ∞ ≥ θX∞ > π/2 the holographic entanglement entropy is not computed from the connected

minimal surface M1 but rather from a shorter two-component (disconnected) one M2. Note

that in any static black hole spacetime, the bifurcation surface is minimal by virtue of the

null generator of the horizon vanishing there quadratically, forcing its extrinsic curvature

to vanish. While for any A there exists a connected minimal surface which satisfies the

homology condition, there also exists a disconnected minimal surface, given by the union

of the (connected) minimal surface for Ac and the bifurcation surface of the event horizon,

which likewise does the job. Thus the second family of minimal surfaces, parameterized by

θ∞, is simply

M2(θ∞) :

{
(r, θ) : r = r+ ∪ r = γ(θ, π − θ∞, r+)

}
, (3.5)

where γ is given by (3.2) (an example of both families of surfaces is plotted in figure 2

explained below). Taking this fact into account we learn that the holographic entanglement

– 7 –
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Figure 2. Comparison of the two families M1 and M2 of the minimal surfaces (geodesics) in BTZ,

with black hole sizes r+ = 1 (left) and r+ = 0.2 (right) as in figure 1, plotted at the critical value

of θ∞ where they exchange dominance, i.e. at θ∞ = θX∞. The connected family M1 is represented

by the solid curve (color-coded by θ∞ as in figure 1), while the disconnected family M2 is given by

the two dashed curves (color-coded by π − θ∞). The thick orange arc on the boundary represents

the region A.

entropy is given by

SA(θ∞) = min

{
Area(M1)

4G
(3)
N

,
Area(M2)

4G
(3)
N

}
, (3.6)

which then implies upon evaluating the lengths of the curves explicitly that

SA =


c

3
log

(
2 r∞
r+

sinh(r+ θ∞)

)
, θ∞ < θX∞

c

3
π r+ +

c

3
log

(
2 r∞
r+

sinh(r+ (π − θ∞))

)
, θ∞ ≥ θX∞

(3.7)

where we introduce the entanglement plateau scale θX∞ to distinguish the dominant saddle

point of the area functional. This can be explicitly evaluated as a function of the black

hole size (or temperature) to be

θX∞(r+) =
1

r+
coth−1 (2 coth(π r+)− 1) . (3.8)

For orientation, we plot the two sets of minimal surfaces M1(αX ) and M2(αX ) at the

transition value αX = θX∞/π in figure 2 (again for two black hole sizes for ease of comparison

with figure 1). At this value of α, M1 (solid curve) and M2 (dashed curves) have equal

proper lengths. Note that in the high temperature (large black hole) limit, the entanglement

plateau scale approaches the size of the entire system:

lim
r+→∞

θX∞(r+) = π . (3.9)

– 8 –
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Translating this into field theory quantities and using α = θ∞
π to parameterize the

fraction of the system we consider, we have

αX =
1

2π2 T R
coth−1

(
2 coth

(
2π2 T R

)
− 1
)

(3.10)

where R is the radius of the boundary CFT cylinder. The main feature we want to illustrate

is that for α > αX

δSA = SρΣ =
2π2

3
c T R =⇒ SA = SAc + SρΣ (3.11)

as anticipated. Essentially for large enough boundary regions we can read off the thermal

entropy by comparing directly the entanglement entropy of a region and its complement.

The behaviour of δSA for 1+1 dimensional CFTs is shown explicitly later in figure 5 (where

we also demonstrate a similar feature in higher dimensional holographic field theories).

In deriving the relations (3.11), we have implicitly assumed r+ ≥ 1 (equivalently

TR ≥ 1
2π ), which is where the BTZ black hole is dual to the thermal density matrix for

the CFT. For lower temperatures the density matrix is dual to thermal AdS geometry and

the holographic computation described above should be modified. Geodesics in thermal

AdS will actually give a result which says SA = SAc at leading order in the c→∞ limit.10

The thermal result will only be recovered by considering 1/c corrections. This makes sense

since for TR < 1
2π one is in the ‘confined’ phase of the CFT (the terminology is inherited

from higher dimensions where one has an honest confinement/deconfinement transition in

the large N planar gauge theory).

In 1 + 1 dimensions we have also the ability to compare our large c result for SA or

δSA with the behaviour encountered in small central charge systems, which is known for

a couple of cases. The result for the entanglement entropy of a free neutral Dirac fermion

c = 1 was derived in [17] and was extended to a grand canonical density matrix including

a U1) chemical potential in [25].11 In either case we can use the resulting expressions

(which being rather long we refrain from reproducing here) to understand the behaviour

of the entanglement in the system. Using the explicit expressions one can check that the

resulting answer exhibits no sharp feature. δSA/SρΣ is a smooth monotone function of

α, see figure 3. This is also consistent with the recent discussion of [26] who compute

analogous quantities in a harmonic chain which is a gapped theory and note that sharp

features can only occur in the c → ∞ limit (which as we mention earlier implements the

thermodynamic limit).

Note that the Dirac fermion example is so far the only case for which the entanglement

entropy of a thermal CFT in finite volume is explicitly known. In general one expects that

the details of the spectrum of the CFT play a crucial role in the entanglement, i.e., the

answer is not a simple universal function of the central charge as the holographic result (3.7)

10 This is the statement that O(1) corrections cannot be recovered from the classical gravity

approximation.
11We note that angular momentum chemical potential was considered in [3], which can be captured

holographically using a rotating BTZ black hole in the large c limit. However the ensemble is stationary

(and not static) so one needs to work with extremal surfaces as emphasized there.
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Figure 3. Plot of the curves δSA/SρΣ
for a Dirac fermion in 1 + 1 dimensions in the canonical

(T 6= 0) [17] and grand canonical (T, µ 6= 0) [25]. We examine the behaviour for a range of

temperatures and chemical potential. The solid curves from bottom are β = 4 (red), β = 2 (blue),

β = 1 (magenta) and β = 0.1 (black). The situation with the chemical potential turned on is

indicated with the same colour coding with µ = 0.1 represented by circles and µ = 0.5 by triangles.

The symmetry µ↔ 1−µ is used to restrict µ ∈ [0, 1/2] and we see that for µ = 0.5 the normalized

δSA is essentially the same at any temperature. This behaviour should be contrasted against the

large c holographic result displayed in figure 5 for d ≥ 2 thermal CFTs.

suggests. It would be interesting to see if one can use the technology of [9] to argue directly

from a CFT analysis for an entanglement plateau relation like (3.11) in the asymptotic large

c limit.

The behaviour of SA(α), not surprisingly, is in fact rather similar to the behaviour of

the entropy or free energy in the thermal ensemble (a point we will revisit in section 7). In

both cases there are multiple saddle points, which exchange dominance. For the thermal

density matrix the saddles are the thermal AdS geometry and the BTZ black hole both of

which exist for the entire range of the dimensionless parameter TR. For the holographic

entanglement entropy SA we have again two distinct saddles available for the entire range

of parameters: the connected and disconnected surfaces M1 and M2 exist for all values of

α ∈ [0, 1]. For a sufficiently large region α ≥ αX , however, it is the disconnected surface

that dominates and results in the entanglement plateau. We will soon see that existence

of both families over the entire range of α is peculiar to three dimensions and the situation

is much more intricate in higher dimensions.

4 Entanglement entropy in higher dimensional field theories

In the previous section we saw that already in the 3-dimensional bulk spacetime corre-

sponding to a thermal state in the dual CFT, we have multiple families of minimal surfaces

Mi anchored at the boundary entangling surface ∂A, for arbitrary A. Let us now examine

the analogous situation in higher dimensions. We will consider the Schwarzschild-AdSd+1

– 10 –
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bulk spacetime (`AdS = 1),

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θ dΩ2

d−2

)
, f(r) = r2 + 1−

rd−2
+ (r2

+ + 1)

rd−2
. (4.1)

Large black holes r+ ≥ 1 describe the thermal state on ESU (e.g. of N = 4 SYM on

S3 × R in the best-understood case of d = 4), but we will consider black holes of any size

for generality. For simplicity, we will take the boundary region A to be a disk centered

at the ‘north pole’ θ = 0 with radius θ∞, and consider only surfaces which maintain the

residual SO(d− 1) spherical symmetry and remain at constant t. This effectively reduces

the problem to a 2-dimensional one: we can specify any such minimal surface as a curve

in the (r, θ) plane.12

The equations of motion for the minimal surface are obtained from the Nambu-Goto

action for minimizing the area of the surface. Using an auxiliary parameter s we have the

Lagrangian for the system

L = (r sin θ)d−2

√
1

f(r)

(
dr

ds

)2

+ r2

(
dθ

ds

)2

. (4.2)

The Euler-Lagrange equations for r(s) and θ(s) are equivalent due to the reparameteriza-

tion invariance, giving a second order ODE for r(s) and θ(s). The second equation comes

from choice of parameter.13

The topology of the problem constrains any surface to pass through a pole of the sphere,

so to classify all connected surfaces we may start integration (w.l.o.g.) at the North pole.

Requiring smoothness of M there, we obtain a one-parameter family of minimal surfaces,

specified by the ‘initial value’ for the radial coordinate at the north pole, r0 ≡ r(θ = 0).14

Given r0, we find the minimal surface and from this read off the latitude θ∞ which it is

anchored on. From this we will classify the boundary region size by α, the proportion of

the area contained in the boundary region homologous to the surface: α = Vol(A)
Vol(Sd−1)

which

tends to 0, 1 as θ∞ → 0, π respectively.

4.1 Entanglement plateaux in d > 2

Considering α as a function of initial radius r0, the situation is rather different from the

d = 2 case. In d > 2, α reaches a maximum value of αm < 1: for sufficiently large

regions, there are no connected minimal surfaces obeying the homology constraint! This

can be intuited from analogous behaviour in the classic ‘soap bubble’ problem in flat

12For plotting purposes, we will consider a compactified radial coordinate ρ = tan−1 r as in section 3,

and double up the θ ∈ [0, π] coordinate to θ ∈ [−π, π] so that all curves will be reflection-symmetric. The

black hole will then be represented by a disk of radius tan−1 r+ centered at the origin.
13One might be tempted to use θ itself as a parameter, but it turns out that θ is not monotonic in higher

dimensions. We choose s such that the evaluation of the area integral on-shell reduces to
∫
ds (r sin θ)d−2,

for good behaviour numerically. In particular, the results for the regularized area of the surface are less

error-prone since r increases exponentially in s as the boundary is approached.
14Apart from ODE methods, the numerical construction of the surfaces is also done using a mean cur-

vature flow. The reader interested in the details is encouraged to consult appendix A where we outline the

necessary mathematical technology and the algorithm used for obtaining the surfaces.

– 11 –
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space, of finding a minimal surface between two circular rings. To reduce the area, there

is a tendency to shrink the radius of the tube, counteracted by the constraint of ending

on the rings. But when the ratio of ring radius to separation is sufficiently small, the

rings do not hold the surface up enough to prevent the tube radius from shrinking to zero,

and the surface separates into two disconnected parts. This reasoning carries over directly

to our set-up, and the process of surfaces splitting into disconnected pieces can be seen

explicitly in the animations of our numerical simulations of mean curvature flow, to be

found on the arXiv as ancillary files for the submission. The area cost of having a wide

tube is greater in higher dimensions, which leads one to expect that αm should be smaller,

reflecting the greater tendency of the surfaces to split up.15 The physical point is that this

leaves no option but to consider the disconnected surfaces, to which we now turn. In the

next section, we offer a very different geometrical justification of why connected extremal

surfaces homologous to A cannot exist beyond a certain θ∞, which is based on causality

in the full Lorentzian geometry.

So far, we have a one-parameter family of connected surfaces M1. In addition to this,

we must consider the ‘disconnected’ family M2 of surfaces with two connected components:

the first, anchored to the boundary, is a reflection of a connected surface already considered,

passing through the South pole. Due to the nontrivial Sd−1×R topology of the static slice

of the geometry, this alone fails to satisfy the homology constraint, so it is supplemented

by a second piece, the bifurcation sphere on the event horizon of the black hole. To

identify the correct entangling surface determining SA(α), we must compare the areas of

these two families; they exchange dominance at αX < αm, as is inevitable from continuity.

This means that at this value αX , there are two surfaces of equal area, and as we vary

α through αX , the surfaces jump and the entanglement entropy as a function of region

size has a kink. In figure 4 we show the surfaces which determine SA(α) for various black

hole sizes and dimensions. Those passing ‘above’ the black hole belong to the family M1,

and those passing ‘below’ should be supplemented by the horizon, and belong to M2.

Comparing the panels horizontally, we see that the smaller the black hole, the smaller

αX gets; indeed, as r+ → 0, αX → 1/2, whereas as r+ → ∞, αX → 1; we plot the

actual curve αX (r+) in section 5. On the other hand, comparing the panels vertically,

we see that as d increases, the surfaces get less affected by the black hole until close to

the horizon. This is easy to understand from the simple fact that gravity falls off faster

in higher dimensions, and chimes perfectly with the intuition recently explained in [28].

Turning to common characteristics, one universal feature of all cases is that none of the

minimal surfaces (anchored on the boundary) can penetrate past the event horizon. This

is in fact true for any static geometry with a horizon [29].16

15This behaviour is in fact reminiscent of similar observation in gravitational context of the Gregory-

Laflamme instability of higher-dimensional black strings (or branes), which are likewise more prone to

fragmenting with increasing dimension [27, 28].
16More specifically, [29] showed that for asymptotically AdS spacetimes with planar symmetry the deepest

reach (i.e. the turning point, furthest away from the boundary) of any extremal surface which is fully

anchored on (a single) AdS boundary cannot occur inside a black hole. On the other hand, in time-

dependent spacetimes, there do exist extremal surfaces anchored on the boundary which penetrate past the

horizon [12, 29–33]. For this reason, entanglement entropy is cognizant of some physics inside the horizon.

– 12 –
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in 3 + 1 (top) and 4 + 1 (bottom) dimensions, analogous to the plots of figure 1. In each panel, the

thick black circle represents the AdS boundary, and the thin red circle the black hole horizon. The

boundary region A is centered at θ = 0 (North Pole) which is plotted on top. Further plots with

other black hole sizes and higher dimensions can be found as ancillary files with the submission.

It is evident from the symmetry of our setup that in the regime α ≥ αX , we have

the identity

SA = SAc + SρΣ (4.3)

so that we manifestly saturate the Araki-Lieb inequality. This is identical to the situation

described in section 3. Indeed, a plot of δSA as a function of α for various dimensions

explicitly reveals the entanglement plateaux as illustrated in figure 5 where we include the

result for d = 2 CFTs as well for completeness. In figure 5(a) we show the behaviour for a

fixed dimension d = 4 as we vary the temperature by changing the black hole size, whereas

in figure 5(b) we display the behaviour for different dimensions at fixed TR = d−1
2π . We

see that the entanglement plateau ends by a kink (e.g. in d = 2 the behaviour of δSA/SρΣ

can be obtained from (3.7)), the extent of which gets smaller with increasing dimension.

– 13 –

http://arxiv.org/src/1306.4004/anc


J
H
E
P
0
8
(
2
0
1
3
)
0
9
2

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0
δSA
SρΣ

δSA
SρΣ

αα
(b)(a)

Figure 5. Entanglement entropy plateaux for Schwarzschild-AdS black holes dual to thermal

field theories. (a). Behaviour in Schwarzschild-AdS5 for varying r+. From right to left we have

r+ = 1
4 (blue), r+ = 1

2 (purple), r+ = 1 (yellow), r+ = 2 (green) and r+ = 4 (blue). (b). Dimension

dependence of the plateaux, at the Hawking-Page transition pointRT = d−1
2π for d = 2, 3, 4, 5, 6 (red,

yellow, green, blue, purple respectively). Note that the horizon size is related to the temperature

via r+ = 2π
d

(
RT +

√
(RT )2 − d(d−2)

4π2

)
.

To be sure, the precise details depend on the nature of the comparison; we have found

it reasonable to fix the temperature (in units of the boundary sphere) and compare the

behaviour across dimensions. In general the plateau width decreases as a function of T for

a given dimension (the behaviour as a function of d depends on the precise value of RT ;

see ancillary files for RT = 2
3).

4.2 Sub-dominant saddles: folds in minimal surfaces

Although we now have the curve SA(α) for the full range of α, it is interesting to ask what

happens to the connected minimal surfaces (and hence the disconnected ones as well, by the

reflection symmetry) in their sub-dominant regime. We know that a continuation of these

families must exist, since the deepest radius r0 did not cover the full range down to r+.

As we decrease r0 from the critical value r0(αX ), the endpoint of the surface α increases

beyond αX as expected, but as previously noted, reaches a maximum at α = αm, beyond

which there simply are no connected surfaces at all. Instead, as one decreases r0 further,

the endpoints α start to recede to lower values again, even though the ‘neck’ of the surface

M1 near θ = π keeps closing off. This behaviour is illustrated in figure 6. Bringing r0

still closer to the horizon reveals another surprise: the pattern repeats itself. Eventually

α reaches a minimal value (which happens to be very close to 1 − αm) and turns around

again. In other words, now the corresponding minimal surface has two necks, one near

θ = π and the other near θ = 0.

Careful examination reveals that the closer the minimal radius r0 is to the horizon,

the more intricate the surface. The endpoints θ∞ are restricted to lie sufficiently close to

the equator θ = π
2 , in particular, 1 − αm . α . αm, as manifested in figure 7, where we

plot α as a function of rescaled coordinate x0 = 1
2 log(r0 − r+) indicating the proximity of

r0 to the horizon (cf appendix B).

In fact, the pattern of minimal surfaces exhibits a discrete self-similarity. The minimal

surfaces wrap the horizon multiple times, the distance from the horizon of each wrapping

– 14 –
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Figure 6. Continuation of family M1 of minimal surfaces in Schwarzschild-AdS5 for r+ = 1. As

the turning point r0 approaches the horizon, we see an intricate pattern of the minimal surfaces

folding back onto themselves; solutions with n-folds are denoted M1,(n). We illustrate M1,(0) (red,

yellow) and M1,(1) (blue, purple) surfaces for two specific choices of α; these two families terminate

at α = αm (green).
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α

Figure 7. Near-horizon analysis of folds in the minimal surfaces for r+ = 1 (left) and r+ = 0.2

(right) black holes in Schwarzschild-AdS4. Here x0 = 1
2 log(r0 − r+) measures the closest approach

of the surface to the horizon.

parametrically separated from the next. We denote the solution with n-folds around the

horizon as M1,(n). The connected surfaces described earlier in figure 4 are M1,(0) with

this refinement in the notation. The existence of these solutions and their properties can

be analytically understood using a local analysis around the turning points, and near
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α
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α
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Figure 8. Regulated of minimal surfaces (normalized in units of black hole area), for (a)

Schwarzschild-AdS4 (r+ = 1), and (b) Schwarzschild-AdS5 (r+ = 1). The blue curve is the family

M1, and the purple curve the disconnected family M2. The area of the connected minimal surfaces

grows without bound, since we encounter multiply-folded surfaces M1,(n) which for n > 1 which

wrap the horizon multiple times. The swallow-tail behaviour characteristic of first order phase

transitions is clearly visible in the plots.

the horizon away from the turning points, as we illustrate in appendix B. Further, this

analysis is generic for any spherically symmetric non-extremal horizon, so there is nothing

particularly special about Schwarzschild-AdS in this regard.

Of course, such surfaces which fold around the black hole multiple times have larger

area (approximately by the black hole area times the number of foldings) than their sim-

pler cousins, so these surfaces are not directly relevant for the entanglement entropy. This

is already visible explicitly in figure 8, where we plot the actual areas of the minimal

surfaces, as a function of α. For α > αX the disconnected family M2 takes over, a

fact we have already used to demonstrate the entanglement plateau in figure 5. In the

regime α > αX the connected surfaces have greater area, and indeed the area continues to

grow as the surface folds over about the horizon. It is intriguing to note that the differ-

ence Area(M1,(n)) − Area(M1,(n−2)) ≈ 2SρΣ increasingly more accurately as n gets large.

While the sub-dominant connected surfaces M1,(n) for discussed above are irrelevant for the

boundary entanglement for α > αX it is nevertheless curious that such a simple geometry

as Schwarzschild-AdS allows for such a rich structure of minimal surfaces!

5 Causality and holographic entanglement

In section 4 we have examined the families of minimal surfaces in static thermal density

matrices for holographic theories which compute the entanglement entropy. The main sur-

prise was that beyond a certain size of A, namely for α > αm, there are no connected

surfaces homologous to A, which automatically forces the holographic entanglement en-

tropy to plateau in the sense described earlier. Above, we demonstrated this result by

explicitly constructing minimal surfaces in the bulk Schwarzschild-AdSd+1 spacetime; the

robustness of numerical construction rests on explicitly allowing surfaces to relax to min-

imal ones using a mean curvature flow as explained in appendix A. However, the absence

of connected minimal surfaces is in fact necessitated by a certain relational property of

– 16 –
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minimal surfaces and causal wedges. The latter is a construct that crucially involves the

Lorentzian structure since it has to do with causal relations between points. We now pro-

ceed to explain the basic physics behind this connection, leaving the technical details for a

separate discussion [23].

Given a boundary region A ⊂ Σ, one can construct a causal wedge (which, follow-

ing [22], we denote by �A) associated with it in the bulk. The construction involves first

identifying the boundary domain of dependence ♦A of A, which for the rigid boundary

geometry is simply the region where one can reliably Cauchy-evolve initial data laid down

on A. If one has full knowledge of ρA then one can compute correlation functions of all

local operators inserted in ♦A; this is just a basic statement of causality in relativistic

quantum field theories. We then construct the causal wedge �A in the bulk, defined as

the set of points inM which can communicate with and simultaneously be communicated

from ♦A; in other words, through which there exists a causal curve which starts and ends

in ♦A. The reader interested in the precise definitions is invited to consult [22].

Since the causal wedge is constructed purely based on where causal curves reach into

the bulk, one might naively imagine that for a simply-connected boundary region A the

causal wedge has trivial topology. This turns out not to be the case [23]. While the causal

wedge for a simply connected region has to be simply connected (a consequence of topo-

logical censorship), it can have ‘holes’. This implies that �A possesses non-contractible

d − 2 spheres on its boundary. Intuitively, this can happen because of geodesic trapping,

as we now explain. The boundary of the causal wedge is generated by null geodesics. Bulk

spacetimes which possess null circular orbits (arising from a sufficiently strong gravita-

tional potential) cut off some of these generators, while allowing some others to fly-by and

thereby create a hole in the wedge. Intuitively, the play-off is always between gravitational

attraction and centrifugal repulsion and for a wide family of geometries one is able to engi-

neer these so as to obtain the desired effect. Happily for us, the simplest class of examples

where such a feature can be exhibited explicitly are the Schwarzschild-AdSd+1 geometries,

wherein for large enough region A (which we denote by α > α�), the causal wedge �A
exhibits a hole [23].

The presence of non-trivial topology has an important implication for the minimal

surfaces M. This is at first sight surprising, as one might have naively thought that since

minimal surfaces are defined in the Riemannian section (constant-time slice), they ought

to be utterly ignorant of any causal argument which is intrinsically Lorentzian. This naive

reasoning is however too quick: One can show that all extremal surfaces EA (of which the

minimal surfaces MA considered herein are a special case) must lie outside (or at best on

the boundary of) the causal wedge [22, 23, 34]. Here by ‘outside’ we mean ‘not within’

— in other words an extremal surface EA must penetrate deeper into the bulk than the

corresponding causal wedge �A. The result can be intuitively understood by realizing that

a minimal surface wants to minimize its area and thus wants to spend much of its existence

deep in the interior where it can minimize the red-shift factor of AdS (which augments the

area element of the directions along the boundary). This effect is less dominant for lower-

dimensional surfaces, and null geodesics can additionally offset the large spatial distances

– 17 –
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by large temporal ones.17 Hence generically the causal wedge boundary is nestled between

the extremal surface and the AdS boundary. As an aside, this statement forms a crucial

ingredient in the arguments of [35] who argue that the holographic dual of the reduced

density matrix ρA must comprise of a bulk region that is larger than the casual wedge �A.18

We are now in a position to explain the behaviour found in section 4. For α >

α� the ability of the causal wedge to develop holes implies that we should anticipate a

corresponding change in the minimal surface. Indeed MA cannot pass into the hole in

�A while remaining connected to the boundary, because of the nesting property: in order

to do so, it would have to pass through the causal wedge. This means that it either lies

completely outside the causal wedge or is contained entirely within the hole! One fact

which is somewhat obvious by causality is that the hole in the causal wedge must lie

outside the black hole event horizon. For static black hole spacetimes we have argued that

the bifurcation surface is a candidate extremal surface in section 3. So in the presence of

the hole in the wedge we can have a minimal surface component on the far side of the black

hole (hence outside �A) and another component being simply the bifurcation surface. In

fact, as in the BTZ discussion, the homology constraint imposed upon the RT prescription

by the Araki-Lieb inequality necessitates both components. Hence the only surfaces that

are both minimal and homologous to A are the disconnected surfaces M2 described in

section 4.

We demonstrate explicitly that αX ≤ αm ≤ α� as one anticipates for first order

transitions for Schwarzschild-AdS5 in figure 9. As the figure indicates, the causal wedge

pinch off happens at α = α� which is significantly larger than the bound αm on existence

of corresponding extremal surfaces. In other words, the connected minimal surface ceases

to exist long before this is necessitated by the topology of the causal wedge. While this

may seem to somewhat weaken our arguments regarding the utility of the causal wedge, we

should note that the pinch-off value α = α� is a rather weak bound from the causal wedge

standpoint as well: already before the causal wedge pinches off, its geometry precludes the

requisite minimal surface. This is because prior to the pinch-off the opening becomes too

long and narrow to admit any extremal surface. To support the latter, the neck would have

to accommodate a sufficient ‘flare-out’ shape, as explained in section 4.1, which occurs for

θ∞ smaller by ∼ O(ρ0−ρ+), where ρ0 is the ρ-radius of null circular orbit and ρ+ gives the

horizon size. Hence a more sophisticated analysis which takes into account the shape of

the causal wedge apart from its topology would provide a much stronger bound on αm. It

would interesting to examine in detail precisely how close we can get to αm, but we leave

this for future exploration.

17Note that in comparison to pure AdS geometry, both null geodesics and extremal surfaces are neverthe-

less pushed towards the boundary by the gravitational potential well of a deformed bulk spacetime. This in

effect means that both entanglement entropy and causal holographic information defined in [22] grow with

positive mass deformations of the spacetime.
18Caveat: The statements made above should be viewed with suitable caution, as they require some work

to be established rigorously. For further discussion and a proof of the nesting property of causal wedges

and extremal surfaces (modulo some technical assumptions), we refer the reader to [23] (see also [34] for a

related discussion in causally trivial spacetimes).
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Figure 9. The critical values of α encountered in our discussion as a function of r+. We plot

the largest fraction of the boundary region characterized by α for which (i) a connected minimal

surface exists αm (blue), (ii) for which disconnected/connected exchange dominance αX (purple)

and, (iii) the critical α for which the causal wedge develops holes α� (olive) in the Schwarzschild-

AdS5 spacetime.

6 Minimal versus extremal surfaces and the homology constraint

So far, we have examined the properties of the entanglement entropy as given by the RT

proposal involving minimal surfaces (which is a well-defined problem if we can look for

our surfaces in a Riemannian geometry). This allowed us to argue in section 2 that the

entanglement entropy for a certain region A, measured in a fixed total density matrix ρΣ, is

continuous as a function of parameters α describing the region A. On the other hand, the

general prescription for holographic entanglement entropy must be formulated in a fully

covariant fashion. In other words, in absence of a geometrically-preferred bulk spacelike

slice (which for static cases we could take to be a constant-t slice where ∂
∂t is the timelike

Killing field), we need to have a prescription which does not rely on a specific coordinate

choice. This motivated HRT [3] to propose the extremal surface prescription (1.2), which

is fully covariant and well-defined for arbitrary time-dependent asymptotically-AdS bulk

geometries. It has henceforth been assumed that the two prescriptions, RT and HRT,

are equivalent for static geometries. In this section we wish to revisit this assumption, in

conjunction with the closely-related issue of the homology requirement.

Let us start by specifying the prescriptions more explicitly, for completeness also adding

a recent ‘maximin’ reformulation of HRT by Wall [34]. In each formulation, the surface is

required to be anchored on ∂A, satisfy the homology constraint, and in case of multiple sur-

faces satisfying these criteria, be the minimal-area one. The differences in the prescriptions

enter at the level of constructing the requisite surfaces, and can be summarized as follows:

• RT [1, 2]: minimal surface on constant-t spacelike slice Σbulk
t

• HRT [3]: extremal surface in the bulk M

• Wall [34]: minimal surface on any achronal bulk slice Σ̃, maximized over all possible Σ̃.
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While RT is restricted to static spacetimes, Wall’s prescription is formulated in causally

trivial bulk geometries. In this context, [34] proves equivalence between the maximin and

HRT prescriptions assuming the null energy condition. Although the maximin construction

is useful for some purposes (for example, it allows [34] to argue the existence of such

surfaces and prove strong subadditivity in the time-dependent context), it is conceptually

more complicated since the requisite surface is obtained by a two-step procedure of first

minimizing the area on some achronal slice Σ̃, and then maximizing the area with respect

to varying Σ̃. Moreover, here we wish to consider causally non-trivial spacetimes, so we

will henceforth restrict attention to the RT and HRT proposals.

In a globally static geometry, RT and HRT proposals are indeed equivalent, since any

extremal surface anchored at constant t on the boundary must coincide with the minimal

surface on Σbulk
t , cf. [3].19 However, in a static but not globally static geometry (i.e.

when there is a global Killing field which is timelike near the AdS boundary but does not

necessarily remain timelike everywhere in the bulk), the situation can appear more subtle.

To illustrate the point, let us consider the eternal non-extremal Reissner-Nordstrom-

AdS geometry, corresponding to a static charged black hole. It has a metric of the

form (4.1), but with f(r) having two positive real roots at r = r± with r+ corresponding

to the outer (or event) horizon and r− the inner (or Cauchy) horizon with 0 < r− < r+.20

The causal structure is indicated in the Penrose diagram in figure 10. Apart from the

bifurcation surface of the event horizon at r = r+ which has zero extrinsic curvature (and

therefore is a compact extremal surface), there is an analogous compact extremal surface

at the inner horizon r = r−. At both surfaces the ∂
∂t Killing field vanishes (and its norm

decreases in spacelike directions and increases in timelike directions), but whereas the area

of the surface is minimized to spatial deformations and maximized to temporal ones in the

case of event horizon, it is the other way around for the inner horizon.

Outside the black hole, the geometry is qualitatively similar to that of Schwarzschild-

AdS, in the sense that e.g. causal wedges for large enough boundary regions A will have

holes. This will in turn preclude the existence of connected extremal surfaces anchored on

∂A and homologous to A in this regime, by the argument of section 5. In such a regime,

the RT prescription then instructs us to take the surface homologous to Ac, along with the

compact surface wrapping the event horizon. On the other hand, in the HRT prescription,

there would a-priori be nothing to prevent us from taking the latter component to wrap

the inner horizon instead: its area is manifestly smaller than that of the event horizon, and

it still satisfies the (naive) homology constraint, as indicated pictorially by the green curve

in right panel of figure 10. In particular, there exists a smooth co-dimension one surface

whose only boundaries are the inner horizon, the extremal surface homologous to Ac, and

the region A on the boundary.

19It is worth commenting that the proof presented in [3] shows that the HRT proposal reduces to the

minimal surface RT proposal in static geometries. The question of whether there are extremal surfaces not

localized on a constant time slice and having smaller area than the minimal surface is, as far as we are

aware, open. One might argue based on Euclidean continuation of static geometries that such surfaces do

not play any role in determining SA; we thank Tadashi Takayanagi for useful discussions on this issue.
20For example, in 4+1 bulk dimensions, f(r) = r2 + 1− M

r2
+ Q2

r4
=
(
1− r2+

r2

)(
1− r2−

r2

)
(r2 + 1 + r2

+ + r2
−).
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...
...

...
...

r = 0

r =∞
r = r+

r = r−

Figure 10. A sketch of the Penrose diagram for non-extremal Reissner-Nordstrom-AdS black

hole (the figure repeats in the vertical direction, indicated by the ellipsis). The AdS boundaries are

indicated by the black vertical lines, the curvature singularities by purple vertical wiggly curves, the

horizons by blue diagonal dashed line, the projection of the boundary region A by the orange dot,

and the projection of the extremal surface by the blue horizontal line. The two panels distinguish

the RT (left) and naive HRT (right) prescriptions in case of disconnected surfaces: in the former the

disconnected surface lies at the event horizon (red dot) with the homology region R indicated by

the red dotted line. In the HRT case, the disconnected surface is at the Cauchy horizon (green dot),

and corresponding R then interpolates between this surface and its other boundaries as indicated

by the green dotted curve.

Note that if this were indeed the correct prescription, then we would find that, instead

of saturating the Araki-Lieb inequality as in (4.3), we would only satisfy it: δSA would still

plateau as a function of θ∞, but at a value which is lower21 than the expected value SρΣ :

δSA(θ∞ ≥ θX∞) =
Ωd−1 r

d−1
−

4G
(d+1)
N

=

(
r−
r+

)d−1

SρΣ . (6.1)

Although this result is consistent with the Araki-Lieb inequality, it is nevertheless at odds

with the CFT expectation: for nearly-neutral black holes where r− � r+ we should be

close to the thermal value rather than parametrically separated from it!

This observation suggests that we need some modification to the homology constraint

specification in (1.2): the mere presence of some smooth surface R with the requisite

boundaries does not seem to suffice. One natural restriction, which indeed has already

been employed in [34], is to require that R be everywhere spacelike.22 With this additional

21The special case of extremal RN-AdS black hole with r− = r+ is somewhat more subtle, since there is

no bifurcation surface (instead the spacial geometry exhibits an infinite throat). We think this is a feature

rather than a bug, indicative of being at strictly zero temperature; however the HRT prescription can be

applied in the same limiting fashion as is commonly done with e.g. the Wald entropy of extremal black holes.
22We thank Matt Headrick for useful discussions on this point.
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Figure 11. Sketch of the Schwarzschild-AdS ‘bag of gold’ embedding diagram (left) and Penrose

diagram (right). Here the right asymptotic boundary of eternal Schwarzschild-AdS geometry is cut-

off by a static shell (brown dotted curve), beyond which the spacetime caps off through a smooth

origin as indicated. The embedding diagram depicts event horizon bifurcation surface (red curve)

and the boundary region A (orange curve), at the endpoints of which is anchored the connected

part of the extremal surface (blue curve). The Penrose diagram has the same conventions as in

figure 10, but now the homology surface R (dotted green line) goes all the way around the tip.

restriction, the above example would be safely invalidated, since R cannot reach from the

Cauchy horizon bifurcation surface r = r− to the AdS boundary r = ∞ while remaining

spacelike everywhere, as evident from figure 10. The only other compact extremal surface

which is spacelike-separated from the boundary region A and the extremal surface homolo-

gous to Ac is the event horizon bifurcation surface, which recovers the thermal answer (4.3),

consistently with our expectations.

However, while the spacelike restriction on the homology constraint recovers the ther-

mal answer for the global eternal charged black hole, there are other geometries where

this does not suffice. As our second exhibit, consider a Schwarzschild-AdS ‘bag of gold’

geometry, discussed in e.g. [19, 36]. This has causal structure and a spatial embedding

geometry as sketched in figure 11. The right asymptotic region, as well as interior of the

black hole and white hole, are the same as in the eternal Schwarzschild-AdS geometry, but

the left asymptotic region is modified by a presence of a shell whose interior has a smooth

origin. Moreover, one can fine-tune the shell’s trajectory such that it remains static —

so the entire spacetime admits a Killing field ∂
∂t . In the CFT dual, such static geometry

describes some equilibrium mixed (though not precisely thermal) density matrix.

Let us once again examine the entanglement entropy of a sufficiently large region A, for

which the causal wedge has a hole, so that no connected extremal surface anchored on ∂A
can pass on A’s side of the black hole. In the global eternal Schwarzschild-AdS spacetime,

the homology constraint would then have forced us to take the connected surface on Ac’s
side of the black hole, along with the bifurcation surface on the event horizon. In the

present case however, while the bifurcation surface is still an extremal surface (cf. the red

curve in figure 11), its inclusion in the entanglement entropy computation is no longer

required by the homology constraint (even including the spacelike restriction): there exists
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· · ·
· · ·

Figure 12. Sketch of the Schwarzschild-AdS joined to Schwarzschild-dS geometry across a shell:

embedding diagram (left) and Penrose diagram (right), with same conventions as in figure 11.

In contrast to the capped off geometry, however, here we do have a smaller (but non-zero) area

extremal surface (green circle/dot) which is required by the homology constraint.

a smooth spacelike co-dimension 1 region R (indicated by the dotted green line in the

Penrose diagram of figure 11), wrapping the bag of gold at the given instant in time, whose

only boundaries are A and the extremal surface for Ac (denoted by the blue curve in

figure 11). In other words, in this geometry,

SA = SAc =⇒ δSA = 0 ∀ θ∞ . (6.2)

We stress that while the CFT is not in the precisely thermal state, it is certainly not in a

pure state either [19], so a relation of the form (6.2) is wholly unexpected.23

In comparing the RT and HRT prescriptions for the Schwarzschild-AdS bag of gold

case, we encounter a slight ambiguity in the RT prescription, namely in what is really meant

by a ‘constant t slice’: strictly-speaking, the static coordinate patch ends at the horizon

(which also follows from thinking about the Euclidean section), so the RT prescription

should not see any difference between this and the eternal Schwarzschild-AdS geometry

— hence predicting that δSA = SρΣ for large regions. On the other hand, if one were

instructed to take a full (geodesically complete) time-symmetric slice through the global

geometry, one would reproduce the HRT result (6.2). We also note that one could consider

intermediate cases, with any δSA ≤ SρΣ , by putting a Schwarzschild-dS geometry with

smaller event horizon r̃+ < r+ on the left of the shell, as indicated in figure 12. The

corresponding embedding diagram for a time-reflection-symmetric slice would not cap off,

necessitating the inclusion of a bifurcation surface for this Schwarzschild-dS geometry in

the entanglement entropy computation, in order to satisfy the homology constraint.

We have presented several examples of static (though not globally static) asymptot-

ically AdS geometries for which the RT and HRT proposals might differ, depending on

the precise formulation of the homology constraint and of RT’s constant time slice. We

have not offered any definitive resolution; this is an interesting and important area which

we leave for future exploration. The specific simple examples we have presented above all

have some potentially dubious features: in case of Reissner-Nordstrom-AdS, the Cauchy

23However, as indicated in section 7, similar effect takes place in time-dependent situations involving

black hole collapse.
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horizon is unstable, while in the other two cases, the shell is unstable. Moreover, in all

cases, the difference between the prescriptions occurs due to a part of the geometry which

is beyond the horizon and thus causally inaccessible to an asymptotic observer. While this

feature might therefore seem rather unappealing, we stress that in general we would be

forced into such situation in any case, as long as the entanglement entropy is related to

some locally-defined geometric construct, due to the teleological nature of the event hori-

zon. The examples mentioned above merely illustrate the issues we have yet to confront

to fully understand the holographic entanglement entropy prescription.

7 Discussion

We have focused on exploring the behaviour of entanglement entropy SA under smooth

deformations of the entangling region A in finite systems. Of particular interest to us is

the distinction between the behaviour of holographic field theories, which in the large c

(planar limit) and strong coupling limit can be mapped onto the dynamics of classical

gravity, versus field theories away from the planar limit. Sharp features in observables are

possible in the latter since the planar limit allows one to enter a ‘thermodynamic regime’,

as evidenced for example by the thermal phase transitions in finite volume [37–39].

We focused in particular on the Araki-Lieb inequality which gives a useful measure of

the relative entanglement of a region A and its complement Ac. While this would vanish

if the entire system were in a pure state, it carries non-trivial information about the total

density matrix in general. We indeed encounter an interesting phenomenon of entanglement

plateaux: the Araki-Lieb inequality is saturated for finite system sizes, owing to some non-

trivial features of minimal surfaces which compute the holographic entanglement entropy.

Focusing on thermal density matrices in CFTs we find that in 1 + 1 dimensional

field theory the Araki-Lieb inequality forces us to modify the expression of entanglement

entropy for a large enough region (a point previously noted in [17, 18]) and provide an

analytic prediction of when the plateau is attained. We also contrast this behaviour of

large c theories against low central charge theories. There being very few exact results on

the entanglement entropy of thermal CFTs in finite volume, we focused on the available

expressions for Dirac fermion (with and without chemical potential). In the c = 1 case

we note the absence of any plateau and the Araki-Lieb inequality is only saturated when

the region under consideration (or its complement) is maximal. In higher dimensional

holographic examples this no longer is the case, δSA is forced by virtue of the features of

the holographic construction to plateau (see below).

For the main part of this work, we have considered the RT prescription for calculating

the holographic entanglement entropy, which is valid for static equilibrium situations. In

this context, one is instructed to work at a given instant in time, and the entanglement

entropy computation then involves finding the area of a requisite minimal surface in the

corresponding Riemannian geometry. Though innocuously simple-sounding, there is a rich

set of features associated with what precisely is meant by ‘requisite’. For a specified

boundary region A, the boundary of the relevant surface MA must coincide with the

– 24 –



J
H
E
P
0
8
(
2
0
1
3
)
0
9
2

entangling surface ∂A, it must be homologous to A, and in case of multiple such surfaces,

it must be the one with smallest area.

It has already been observed previously that the last restriction can cause the entan-

glement entropy to have a kink (i.e., its first derivative with respect to the parameter α

characterizing the region A can be discontinuous). This is because there can exist multiple

families of minimal surfaces which can exchange dominance. Here we have explored this

multiplicity further, and discovered that even in the most simple case of global eternal

Schwarzschild-AdSd+1 geometry with d ≥ 3, in a certain regime of α there is actually an

infinite tower of minimal surfaces anchored on the same entangling surface (though only

the lowest two have a regime of dominance), seemingly approaching self-similar behaviour.

This curious feature can arise thanks to the dimensionality of the surfaces and compact-

ness of the horizon. On the other hand, in other regimes of α (namely for sufficiently large

region A), there is only a single, disconnected minimal surface satisfying the homology

requirement — unlike in the 2 + 1 dimensional case, a connected minimal surface homolo-

gous to A simply does not exist. This novel feature may be understood as a consequence

of certain properties of causal wedges discussed in [23].

We note in passing that the distinction between the AdS3 and higher dimensional

examples is quite reminiscent of the Hagedorn behaviour encountered in the dual field

theories. In AdS3 the BTZ black hole saddle point exists for all values of temperature (as

does the thermal AdS one), but it becomes sub-dominant at low temperatures. In higher

dimensions, the Schwarzschild-AdS saddles only exist above a minimum temperature Tmin;

they however take over from the thermal AdS saddle at a slightly higher temperature

TH > Tmin (when the horizon size is comparable to AdS length scale). So at low enough

temperatures we are always forced into the confining state. In the context of entanglement

entropy the analogous observation is about the existence of connected minimal surfaces in

the black hole geometry (we should emphasize that we are always in the deconfined phase

to be able to use the black hole saddle). In three dimensions, connected surfaces always

exist but fail to be dominant past some critical region size; in higher dimensions they cease

to exist past a critical region size given the homology constraint.

Our discussion was primarily focussed on entanglement entropy and in particular on

δSA. One could equally have focussed on the mutual information, I(A,B) = SA + SB −
SA∪B, for two disjoint regions A and B. Holographic studies of mutual information also

reveal an interesting behaviour: for sufficiently separated regions I(A;B) = 0. This is due

to the fact that the extremal surface EA∪B breaks up into a disconnected surface anchored

on A and B to avoid thin necks. This has been extensively discussed in the literature

cf., [6] and [31, 33, 40] for implications of this construct in the context of probing black hole

interiors. For the regions we have considered A and Ac are not strictly disjoint, so we have

to be a bit more careful; naively the mutual information involves the sum of the entropies of

two regions (which we take to be A and Ac) while the Araki-Lieb inequality constrains their

difference, giving I(A;Ac) = 2SA which is UV divergent.24 One can however constrain

24We thank the referee for spotting an error in our original statement and for suggesting use of the

auxiliary purifying system.
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the mutual information between the smaller of A or Ac and the auxiliary system ρ̂Σ which

purifies the global density matrix ρΣ (thus SρΣ = SA∪Ac = Sρ̂Σ
) to vanish when Araki-Lieb

inequality is saturated. For example one has

I(A; ρ̂Σ) = SA + Sρ̂Σ
− SA∪ρ̂Σ

= SA + SρΣ − SAc =

{
0, for α < 1

2

2SρΣ , for α > 1
2

(7.1)

In deriving this we used the fact that SA∪Ac∪ρ̂Σ
= 0 by definition of the purifying degrees

of freedom. In the case of the global thermal density matrix ρ̂Σ is the thermofield double

which lives on the second asymptotic region of the eternal black hole Penrose diagram.

While these causal wedge considerations already by themselves guarantee that the en-

tanglement entropy SA(α) cannot be a smooth function for thermal states in higher dimen-

sions, we have argued that, if defined by a minimization procedure as in the RT prescription,

the entanglement entropy must nevertheless be continuous. Our argument crucially used

minimality. In particular, in the HRT prescription of computing entanglement entropy

via a smallest area extremal surface, the continuity argument given in section 2 does not

apply. It would be interesting to explore whether sufficient time-dependence can provide

counter-examples to continuity or whether the one can generalize the proof of continuity

to the Lorentzian context; we leave further investigation of this issue for the future [12].

Note that in this collapsed black hole context, the homology requirement is satisfied

automatically, though as explained in [12], that itself leads to very curious feature of

entanglement entropy: it can distinguish between an eternal black hole and a collapsed

one, arbitrarily long after the collapse had taken place [41]. In this sense, while in the

AdS/CFT context we are used to classical bulk surfaces providing at best only some coarse-

grained CFT information, the homology requirement induces a fine-grained aspect to the

entanglement entropy observable.

While in the time-dependent setting mentioned above, the RT prescription is mean-

ingless and therefore cannot be compared to the extremal surface generalization of HRT,

we have seen that there are subtle differences between the RT and HRT proposals even is

static situations. Indeed, a similar ‘fine-grained’ quality as mentioned above is manifested

in the entanglement entropy for e.g. the Schwarzschild-AdS bag of gold geometry discussed

in section 6: there the entanglement entropy (as given by the HRT prescription) can easily

distinguish the differences in the geometry behind the horizon, on the other side of the

Einstein-Rosen bridge. Other known diagnostics of the CFT density matrix not being pre-

cisely thermal typically require rather sophisticated machinery, such as detecting lack of

periodicity on the Euclidean time circle of the analytically continued solution. We find it

remarkable that entanglement entropy does the job so easily. This observation of course

crucially hinges on the precise formulation of the homology constraint, which deserves to

be understood better.
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A Mean curvature flow

In this appendix we summarize the algorithm we used to construct the minimal surfaces

in Schwarzschild-AdSd+1 for d ≥ 3. While one can directly numerically solve the Euler-

Lagrange equations of (4.2) directly, it is especially useful to consider alternate strategies

to ensure that we have obtained all the surfaces of interest.

For conceptual and computational purposes, it is useful to view minimal surfaces as

the endpoint of a flow of surfaces of decreasing area. This is analogous to a gradient descent

algorithm for finding a local minimum of a function, for which one considers a point moving

with velocity equal to minus the gradient of the function. This gives a curve along which the

function monotonically decreases, and exponentially decays to the minimum as a function

of flow time tflow ≡ t→∞.

In the analogous process for minimal submanifolds, the function to be minimized be-

comes the area functional, and the flow velocity vector becomes a vector field (which may

be taken to be normal) defined on the submanifold. The appropriate vector field is given

by the mean curvature of the submanifold, and the evolutionary process is known as mean

curvature flow.

We review the required differential geometric technology, and outline an algorithm for

computing the process in the case of codimension-one minimal surfaces.25

A.1 Some geometry

Let n be a smooth n-dimensional Riemannian manifold (e.g., n for situations of interest is a

constant time surface in the bulk spacetimeM), with metric g and Levi-Civita connection

∇. Further, let m ⊂ n be a smooth m-dimensional submanifold (with m < n), defined by

embedding ψ : m→ n. The induced metric on m is inherited from n as γ = ψ∗g given this

embedding. Vectors at a point on the submanifold can be decomposed into components

tangent and normal to m: U = U> + U⊥.

The natural structures associated with m ⊂ n are in terms of the intrinsic and extrinsic

geometry of the embedding, characterized by the induced metric γ (the first fundamental

form) and the extrinsic curvature K (the second fundamental form). Formally, given vector

25The minimal surfaces relevant for computing entanglement entropy using the prescription of [1] are

co-dimension two in the bulk. In static spacetimes however we can localize on a constant time bulk

hypersurface, leading thus to a search of co-dimension one surfaces on the slice.
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fields, say U and V , tangent to m, one can decompose the covariant derivative:

∇UV = (∇UV )> + (∇UV )⊥ = DUV +K(U, V ) , (A.1)

which effectively defines D and K. The former is the Levi-Civita connection of the induced

metric on m, while the latter is a normal-valued symmetric bi-linear form. It is worth

emphasizing that the second fundamental form depends only on the vectors at the point,

so it is a tensor on m. A particularly important object is obtained by taking its trace k,

giving a normal vector field on m: this is the mean curvature field.26 In components, using

coordinates xa intrinsic to m, and Xα on n, we have γab = gαβ ∂aX
α ∂bX

β, and

hαβ = γab ∂aX
α ∂bX

β , K γ
αβ = h µ

α h ν
β ∇ν h γ

µ , kα = hµν K α
µν .

Here h is the projection onto vectors tangent to m. Note that the extrinsic curvature

tensor K γ
αβ is symmetric in its lower indices which lie tangent to m, while the upper index

is transverse.

We are now in a position to make precise the geometric interpretation of the mean

curvature field alluded to above, that it is minus the gradient of the area functional on the

space of submanifolds.

Let us consider a smooth family of embeddings Ψ : I×m→ n, where I is some interval

parameterized by a flow time t. For each t ∈ I, ψt = Ψ(t, ·) : m → n is an embedding.

Let A be the area of the embedded submanifold:

A(t) =

∫
m
ωt, (A.2)

where ωt is the induced volume form on m at time t.

Let V be the vector field given by the local velocity of the surface in this deformation,

so V = Ψ∗
∂
∂t . One should think of Ψ, or ψt, as defining a curve through the space of

embeddings, an infinite-dimensional manifold whose tangent space at ψ is given by the set

of Tn-valued vector fields on ψ. Then V is naturally the tangent vector to the curve.

We now have enough state our key result:

dA

dt
= −

∫
m
g(k, V )ωt. (A.3)

In the space of embeddings, this is the natural inner product between V and −k, which

makes precise the analogy with a gradient. Note that, as is to be expected, only the normal

component of V contributes, since the tangent component is ‘pure gauge’, describing how

parameterization of the embedding evolves, and not the shape of the submanifold itself.

Proof. The method of proof is to compute ∂
∂t of the induced volume form on m, and we

will show it is equal to (−g(k, V ) + D · V >)ωt. Since the last term is a total derivative,

the result will follow, provided that the variation is constrained to a compact region, or

26This definition of the mean curvature is not entirely universal: in some conventions the sign differs,

while in others the trace is divided by a factor of m, so that k is genuinely the mean of the eigenvalues of

K (which incidentally define the principal curvatures of the submanifold).
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we restrict the variation to be normal (so V > = 0). For ease of computation, we work in

a chart of normal coordinates xi on m at the point p, with respect to the induced metric

at time t = 0: γ(∂i, ∂j) = δij , and D∂i∂j = 0. Let ei = Ψ∗∂i. For later use, we note that

since Lie brackets commute with push-forward, [ei, V ] = 0, so ∇V ei = ∇eiV .

The induced volume form is given by ωt =
√

det(g(ei, ej)) dx1 ∧ · · · ∧ dxm, so its

derivative at the point p and t = 0 is

1

2

∂

∂t
(g(ei, ei)) ω0, (A.4)

where we have used the fact that the derivative of detA is detA tr(A−1Ȧ), and that dx1 ∧
· · · ∧ dxm = ω0 at p in our normal coordinates. Now, again computing at the point p

and t = 0,

1

2

∂

∂t
g(ei, ei) =

1

2
V (g(ei, ei))

= g(∇V ei, ei)
= g(∇eiV, ei)
= ei(g(V, ei))− g(V,∇eiei)
= ∂iV

>
i − g(V,Deiei +K(ei, ei))

= D · V > − g(V, k).

In the final line we have used the fact that we have normal coordinates, so ∂i = Di, and

the sum over i reduces to the trace.

A.2 The algorithm

With the necessary mathematical formalism in hand, we now describe an algorithm for im-

plementing the mean curvature flow, specializing for simplicity to the case of codimension-

one surfaces. In this case, having chosen a direction for a normal, the mean curvature

vector field reduces to a scalar field, since the normal space is one-dimensional.

The method used is based on a level-set approach: the surfaces are described by the sets

m = {x ∈ n| Φ(x) = c} (A.5)

for some function Φ and some constant c, and the evolution of the function Φ is what we

shall model. This has several advantages:

• There is no requirement to pick a parameterization of the surface, so no problem with

‘gauge fixing’.

• A whole family of surfaces can be modeled at once, by computing the evolution for

Φ and picking different level sets.

• The algorithm elegantly allows for changes in topology: under mean curvature

flow, surfaces can split into several parts, and this causes no trouble for the level

set method.
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The definition of the flow gives the normal speed of a point on the surface as it evolves:

n(dx
dt ) = k, with n being the normal to m. Provided that dΦ 6= 0, we also have a simple

way of computing a unit normal, n = dΦ
‖dΦ‖ . To deduce the evolution of Φ, differentiate the

definition (A.5) of a surface m:

0 =
∂Φ

∂t
+ dΦ

(
dx

dt

)
=
∂Φ

∂t
+ ‖dΦ‖n

(
dx

dt

)
=
∂Φ

∂t
+ ‖dΦ‖ k .

The only ingredient which remains is to compute k using only information from Φ. Luckily,

this is given by a simple formula in terms of the normal k = −∇ · n. To see this, take n to

be the unit one-form, normal to the surface, but also defined, and unit, off it. Extend to

an orthonormal basis27 {ei, n#}. Then:

k = n(∇eiei) = ei(n(ei))− (∇ein)(ei)

= −∇ · n+ (∇n#n)(n#)

= −∇ · n+ g(n,∇n#n)

= −∇ · n+
1

2
n#(g(n, n)) = −∇ · n.

The term ei(n(ei)) in the first line vanishes because n(ei) = 0 everywhere, and the last

equality follows because g(n, n) = 1 everywhere.

This gives us our final evolution equation for Φ:

∂Φ

∂t
= ‖dΦ‖ ∇ ·

(
dΦ

‖dΦ‖

)
=
√
gγδ ∂γΦ ∂δΦ

1
√
g
∂α

( √
g gαβ ∂βΦ√
gγδ ∂γΦ∂δΦ

)
. (A.6)

This is a quasilinear parabolic PDE in Φ, which can be solved numerically by stan-

dard methods.

For the computations in this paper, only spherically symmetric surfaces were consid-

ered, so Φ was a function of two spatial coordinates θ and r (or another suitably redefined

radial coordinate). The PDE was solved with difference methods, with Neumann bound-

ary conditions at the poles of the sphere (θ = 0, π) to keep the surfaces regular there, and

mixed boundary conditions at radial boundaries set by the desired asymptotics.

B Near-horizon behaviour of minimal surfaces

An analytic solution of the equations of motion in a near-horizon approximation explains

the existence of an infinite self-similar family of minimal surfaces, wrapping the horizon

multiple times. We find that this is generic near any minimum of the radius of the Sd−1,

such as the Einstein-Rosen bridge of a non-extremal black hole, and is characterized entirely

by the number of dimensions,28 and a single parameter ξ ≡ r+ κ, where κ is the surface

gravity (which is related to the black hole temperature as T = 1
4π κ).

27We denote the ‘raised index’ normal vector by n#, so that g(n#, U) = n(U)
28Here we will keep to spatial codimension-one surfaces, but the argument carries over essentially un-

changed for surfaces of any dimension m, wrapping a Sm−1 in an SO(d) symmetric space.
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For the analysis we use a modified radial coordinate z, regular at the event horizon,

defined by r = r+ + 1
2 r+ ξ z

2, and parametrize the surface by θ throughout. Dots will

denote differentiation with respect to θ.

We invoke two approximation schemes. The naive linearization holds away from the

poles, but breaks down close the θ = 0, π where ż grows without bound. Near the poles,

we use a different approximation, reducing the problem locally to flat Euclidean space. We

will find that these two approximation schemes have overlapping domains of validity, so the

complete behaviour can be described by matching the asymptotics in each regime. This

predicts a tower of arbitrarily many branches of the surface wrapping the horizon, with a

known relationship between the distances from the horizon of successive surfaces.

Schematically: we start at the North pole θ = 0, and solve in the linear regime towards

the South pole θ = π. There we change to the near-pole regime, in which there will be a

turning point at a minimum angle ∆ away from the pole, at z = z0. These constants are

both computed from matching to the linearized solution. We then match up to another

branch moving back towards the North pole, where there will be a turning point given by

new, parametrically larger, ∆ and z0. The matching process will allow us to produce a

recurrence relation for the sequences ∆n, zn of turning points. We can obtain an entirely

analytic expression for these values, which, sufficiently close to the horizon, match precisely

with the values obtained from numerically integrated surfaces.

B.1 The linear regime

We start with the linear approximation, valid for z, ż � 1. In this case, the minimal surface

equation obtained from (4.2) reduces to

z̈ + (d− 2) cot θ ż − (d− 1) ξ z = 0 , ξ ≡ r+ κ. (B.1)

This equation has regular singular points at θ = 0, π, where the solutions have asymptotics

z ∼ θσ for σ = 0, 3 − d (or constant and z ∼ log θ asymptotics in d = 3). For ξ > 0 it is

easy to show that a solution regular at θ = 0 cannot be regular at θ = π, so the general

solution can be written

z(θ) = A zr(θ) +B zr(π − θ) (B.2)

using the symmetry under θ 7→ π− θ. Here zr is chosen by demanding zr(θ)→ 1 as θ → 0,

and the asymptotics are characterized by a parameter λ, by zr(θ) ∼ λ (π− θ)3−d as θ → π.

In fact, the solutions can be found explicitly in terms of associated Legendre functions, and

λ(d, ξ) can be found analytically.

B.2 Near-pole flat space regime

For the second approximation scheme, we assume z � 1, z � ż, θ � 1, in which case the

problem reduces to that of a spherically symmetric “soap bubble” in flat d-dimensional

Euclidean space, where (θ, z) are the radial and longitudinal coordinates respectively in a

cylindrical polar system. This has the solution

z = z0 ±∆

∫ θ
∆

1

dx√
x2d−4 − 1

. (B.3)
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The constants z0 and ∆ will be small values, describing the distance from horizon and pole

respectively of the turning point of the surface. Note that taking the limit θ → ∞, the

integral converges, so z tends to a fixed value when d > 3: the upper and lower branches

of the surface remain at bounded separation, characterized by the value of

Id =

∫ ∞
1

dx√
x2d−4 − 1

= −
√
π

Γ
(

d−3
2(d−2)

)
Γ
(
−1

2(d−2)

) . (B.4)

The asymptotics are given by

z ∼ z0 ± Id ∆ ∓ 1

d− 3
∆d−2 θ3−d as

θ

∆
→∞ . (B.5)

B.3 Matching asymptotics

With solutions in the two approximation schemes in hand, it now remains only to fix

constants of integration by matching the asymptotics. For definiteness, consider starting

from a known (∆n, zn) close to the North pole, computing the coefficients of the linear

solution, and finally extracting the values of (∆n+1, zn+1) close to the South pole.

The case d = 3 is a little different from d > 3, because of the logarithmic asymptotics,

so we will stick to d > 3 here. A very similar analysis holds in this case, for which we will

omit the details, and present only the results.

Recall the form of the linear solution z(θ) = Azr(θ)+B zr(π−θ), with the terms regular

at θ = 0, π respectively. Consistency imposes that the coefficients have parametrically

different sizes, with A � B. Towards the South pole, the B-mode is also suppressed

relative to the A-mode by the growth of the latter, which renders B essentially irrelevant,

and the turning points can be characterized by a single parameter. Indeed, by matching

the asymptotics near the South pole, for consistency we need zn+1 = Id ∆n+1. Finally, we

match A with the relevant coefficients at each end,

zn + Id ∆n = A =
∆d−2
n+1

λ (d− 3)
, (B.6)

which finally gives us our recurrence relation

∆n+1 = [2λ (d− 3) ∆n]
1
d−2 , (B.7)

demonstrating a parametric growth in ∆, z at each step. This can be conveniently solved

by changing to the coordinate x, defined by r = r+ + e2x, (or 1
2 r+ ξ z

2 = e2x) from which

we get

xn =
x0 − ν

(d− 2)n
+ ν, ∆n =

√
2

κ

exn

r+ Id
(B.8)

with the constant ν given by

ν =
1

2
log

(
r+ ξ

2

)
+

log[2 (d− 2)λ Id−2
d ]

d− 3
. (B.9)
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It should be noted that the initial value of x where the surface smoothly crosses the pole

θ = 0, closest to the horizon, is not at x0, but rather at x = x0+log 2, since the solution here

is not given by (B.3), but by that obtained in the linear regime: constant x to leading order.

For completeness, we record the computed values of λ here:

λ =
cosh(π )

(d− 3)π

2d−2
((

d−3
2

)
!
)2

[(1
2)2 + 2][(3

2)2 + 2] · · · [(d−4
2 )2 + 2]

, d odd

λ = (d− 3)
sinh(π )



(
1

12 + 2

)(
3

22 + 2

)(
5

32 + 2

)
· · ·

(
d− 5(

d−4
2

)2
+ 2

)
, d even

(B.10)

where in both cases,  is defined by

2 = (d− 1) ξ − (d− 2)2

4
. (B.11)

In d = 3, we have slightly altered formulae:

∆n+1 = −2λ∆n log

(
∆n

2

)
(B.12)

xn =
1

2
log

(
r+ ξ

2

)
+ log

[
−∆n log

(
∆n

2

)]
(B.13)

λ =
2 cosh(π )

π
. (B.14)

B.4 Validity

Having done this calculation, it is worth checking to see that we have done something sen-

sible: there must be some overlap between the domains of validity of each approximation.

It is straightforward to confirm this a posteriori, looking at overlaps near the North pole

for definiteness. Firstly, the linear approximation is valid when z, ż � 1, which requires

θ2−d to be much smaller than the coefficient of the growing mode. This holds for θ � ∆.

Secondly, the near-pole approximation is valid when z � ż, which requires θd−2 � ∆d−3

(as well as θ � 1). This means that as long as ∆ remain small, both approximations are

simultaneously valid for

∆� θ � ∆
d−3
d−2 . (B.15)

For d = 3, we have a similar result, with overlap region

e−
1
∆ � θ � −1

log ∆
. (B.16)

B.5 Relation to θ∞

We can straightforwardly use this analysis to show that for θ∞ sufficiently close to π/2

there will be an infinite tower of minimal surfaces. This is because each branch of a surface

is characterized by a single parameter. All surfaces with a particular turning point will

match closely outside that turning point. To obtain a surface on later branches of this
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tower requires the initial value of −x to be exponentially large, so the distance from the

horizon will be suppressed by an exponential of an exponential.

Incidentally, this gives an indirect demonstration of non-existence of connected minimal

surfaces for sufficiently large θ∞. The connected surfaces form a one-parameter family,

parameterized by the maximum depth reached into the bulk, or equivalently the location

x0 of the surface at θ = 0. Considering θ∞ as a function of x0, continuity implies that there

are only two ways for θ∞ to reach arbitrarily close to π. The first is for θ∞ = π for some

x0, but this is precluded from happening by behaviour near the boundary. The other way

is for a sequence xm to exist such that θ∞(xm) tends to π, but the self-similarity properties

of surfaces indicated here will prevent this option also.
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