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1 Introduction

The distinctive feature of M-theory is the description in geometrical terms of non-

perturbative phases of superstrings. This approach is very effective for local geometries,

where the dynamics of gravitational degrees of freedom gets decoupled and we gain a

framework for the description of non-perturbative gauge theory dynamics. M-theory beau-

tifully encodes the Seiberg-Witten geometry of four dimensional N = 2 theories in terms

of M5-brane compactifications [1–3]. In particular in [3] a full class of generalized quiver

gauge theories has been described in terms of multiple M5-brane systems covering a generic

punctured Riemann surface Cg,n. For example, for C0,n and C1,n one recovers Witten’s con-

structions of linear and circular quivers in the appropriate degeneration limits.

In this context a very intriguing relation between the partition function of four dimen-

sional SU(2)n+3g−3 superconformal N = 2 gauge theories [4] and Liouville theory on Cg,n

has been discovered in [5]. This proposal has been a subject of intensive investigations

and refinements from different viewpoints. Evidence for this conjecture as well as complete

proofs for some cases can be found in [6–18]. Extensions to higher rank gauge groups

and Toda field theories were introduced and discussed in [19–25]. The refinement of the

correspondence in presence of gauge theory observables has been presented and studied

in [26–42]. Moreover, some arguments for the derivation of the AGT correspondence were

proposed in the M-theory context in [43, 44] and via matrix models in [45–66].

Here we would like to address this correspondence from a complementary point of view,

explaining how to recover the geometry of the M-theory set-up and the Seiberg-Witten data

in the wildest generality. To this end we derive a generalized matrix model from Liouville

theory on Cg,n and study its large N limit recovering the gauge theory Seiberg-Witten

curve as its spectral curve. This provides a check of the AGT conjecture at all genera.
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In section 2 we derive the generalized matrix model — as extended Selberg integrals —

starting from the Coulomb gas representation of the residues of the perturbative Liouville

theory correlators. The matrix model potential that we get has the form anticipated by [45]

and in the elliptic case it coincides with the one derived in [64].

In section 3 we discuss the stability of this picture and its consistency with respect to

the degeneration of the curve Cg,n in general and present the degenerations of punctured

tori as an explicative example.

In section 4 we analyze the large N limit and show how, by consistently adapting

to our case the standard matrix model techniques, one gets a spectral curve in terms of

quadratic differentials on Cg,n precisely reproducing the Seiberg-Witten curve and differ-

ential proposed in [3].

We leave our concluding remarks to section 5 and devote an appendix to the detailed

study of the degenerations of the C2,0 Seiberg-Witten data.

2 From Liouville theory to generalized matrix model

In this section we derive the generalized matrix model which corresponds to the n point

conformal block on a Riemann surface Cg of genus g. We derive it from the perturbative

calculation of the correlation function of the Liouville theory by following the discussion

in [67].

The n-point function of the Liouville theory on Cg is given by the following path integral

A ≡
〈 n

∏

k=1

e−2mkφ(wk ,w̄k)

〉

Liouville on Cg

≡
∫

Dφ(z, z̄)e−S[φ]
n

∏

k=1

e−2mkφ(wk ,w̄k) , (2.1)

where the Liouville action is given by

S[φ] =
1

4π

∫

d2z
√

g (gab∂aφ∂bφ + QRφ + 4πµe2bφ) . (2.2)

We divide the Liouville field into the zero mode and the fluctuation φ(z, z̄) = φ0 + φ̃(z, z̄),

obtaining

A =

∫

Dφ̃e−S̃
n

∏

k=1

e−2mkφ̃(wk ,w̄k)

∫ +∞

−∞
dφ0e

−µe2bφ0
R

d2z
√

ge2bφ̃
e−

Qφ0
4π

R

d2z
√

gRe−2φ0
P

k mk ,

(2.3)

where

S̃ =
1

4π

∫

d2z
√

g (gab∂aφ̃∂bφ̃ + QRφ̃) . (2.4)

We can integrate out the zero mode φ0 as

∫ +∞

−∞
dφ0 e−µe2bφ0

R

d2z
√

ge2bφ̃
e−2(g−1)Qφ0e−2φ0

P

k mk =
µNΓ(−N)

2b

(
∫

d2z
√

g e2bφ̃

)N

, (2.5)

where we have used
∫

d2z
√

gR = 4πχ = 8π(1 − g) and N is defined as

N ≡ 1

b

∑

k

mk +
Q

b
(1 − g) . (2.6)

– 2 –
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Therefore, the n-point function can be written as

A =
µNΓ(−N)

2b

∫

Dφ̃e−S̃

(
∫

d2z
√

g e2bφ̃

)N n
∏

k=1

e−2mkφ̃(wk,w̄k) . (2.7)

When N ∈ Z≥0, the correlator diverges due to the factor Γ(−N). The residues AN at

these simple poles are computed then in perturbation theory in b around the free scalar

field action (2.4). From now on, our convention is that

〈. . .〉free on Cg
=

∫

Dφ̃e−
1
4π

R

d2z
√

ggab∂aφ̃∂bφ̃ . . . , (2.8)

which leads to

AN =
(−µ)N

2bN !

〈

e−
Q
4π

R

d2z
√

gRφ̃(z)
N
∏

i=1

∫

d2zi
√

ge2bφ̃(zi)
n

∏

k=1

e−2mkφ̃(wk)

〉

free on Cg

. (2.9)

The condition (2.6) ensures momentum conservation in the free theory.

Here we choose as a reference volume form d2z
√

g = |ω(z)dz|2 where ω(z) is the

coefficient of a reference holomorphic differential. This differential has 2g − 2 zeros, which

we denote by ξI (I = 1, · · · 2g − 2). Then, the first factor in the expectation value of (2.9)

becomes

Q

2π

∫

d2z φ̃(z)∂∂̄log |ω|2 =
Q

2π

∫

d2z φ̃(z)

2g−2
∑

I=1

(2π)δ2(z − ξI) = Q

2g−2
∑

I=1

φ̃(ξI) , (2.10)

where we have used R = −(2/
√

g)∂∂̄log
√

g. Thus, we obtain

AN =
(−µ)N

2bN !

〈 2g−2
∏

I=1

eQφ̃(ξI )

∫ N
∏

i=1

d2zi|ω(zi)|2e2bφ̃(zi)
n

∏

k=1

e−2mkφ̃(wk)

〉

free on Cg

. (2.11)

The ℓ-point function of the free theory on Cg is given in the factorized form as [68–70]

〈 ℓ
∏

i=1

eikiφ(zi,z̄i)

〉

free on C
= (detImτ)1/2δ

(

∑

i

ki

)

×

∫ ∞

−∞

g
∏

a=1

dpa

∣

∣

∣

∣

ℓ
∏

i=1

ω(zi)
−k2

i /4
∏

i<j

E(zi, zj)
kikj/2 exp

(

2πi
∑

a,b

papbτab + 2πi
∑

a,i

paki

∫ zi

ωa

)
∣

∣

∣

∣

2

(2.12)

where τab is the period matrix, E(zi, zj) is the prime form, {ωa} is a basis of normalized

holomorphic one-forms, and pa is interpreted as the momentum flowing through the a-th

A-cycle.

– 3 –
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Using the explicit expression (2.12) for (2.9), we find that the residue AN of the n-point

function of the Liouville theory reduces to the following integral

AN ∝
g

∏

a=1

∫ +∞

−∞
dpa

∣

∣

∣

∣

C(w,m, ξ, p) exp

(

2πi
∑

a,b

papbτab

)
∣

∣

∣

∣

2

N
∏

i=1

∫

d2zi|ω(zi)|2+2b2
∣

∣

∣

∣

exp

(

4πb
∑

a,i

pa

∫ zi

ωa

)
∣

∣

∣

∣

2

∣

∣

∣

∣

∏

i<j

E(zi, zj)
−2b2

∏

i,k

E(zi, wk)
2bmk

∏

I,i

E(ξI , zi)
−1−b2

∣

∣

∣

∣

2

, (2.13)

where the factor C(w,m, ξ, p) was defined as

C(w,m, ξ, p) =
∏

I

ω(ξI)
Q2

4

n
∏

k=1

ω(wk)
m2

k
g2
s

∏

k<ℓ

E(wk, wℓ)
− 2mkmℓ

g2
s

∏

I,k

E(ξI , wk)
Qmk

gs (2.14)

×
∏

I<J

E(ξI , ξJ)−
Q2

2 exp

[

2π
∑

a

pa

(

Q
∑

I

∫ ξI

ωa − 2
∑

k

mk

∫ wk

ωa

)]

.

As in the torus case [64], it is not straightforward to factorize the integrals over the

Riemann surface into holomorphic and anti-holomorphic integrals for generic N . However

this is easily performed in the large N limit. Indeed, the last two-lines of (2.13) can be

written as
∫

∏

i

d2zi |µe
b

gs
W |2 ∼

∣

∣

∣

∣

∫

∏

i

dziµe
b

gs
W

∣

∣

∣

∣

2

(2.15)

where µ and W are

µ =

[

ω(zi)
1+b2

∏

i,I

E(zi, ξI)
−1−b2

]

∏

1≤i<j≤N

E(zi, zj)
−2b2

∏

i

E(zi, z
∗)2b

P

k mk/gs (2.16)

W =
N

∑

i=1

( n
∑

k=1

2mk log
E(zi, wk)

E(zi, z∗)
+ 4π

g
∑

a=1

pa

∫ zi

ωa

)

(2.17)

where we have chosen a base point z∗ in order to split the measure from the potential and

we have rescaled the parameters as mk → mk/gs and pa → pa/gs. Notice that the term in

the square brackets in (2.16) is independent on the zeroes of the conformal factor, ensuring

therefore that the generalized matrix model correctly embodies the conformal symmetry

of Liouville theory.

The large N limit amounts to take gs → 0 keeping gsN , b, mk and pa finite. In this

limit, the conditions for the criticality are given by

b
∑

j 6=i

E′(zi, zj)

E(zi, zj)
dzi −

n
∑

k=1

mk
E′(zi, wk)

E(zi, wk)
dzi − 2π

g
∑

a=1

paωa(zi) = 0 (2.18)

where E′(z1, z2) ≡ ∂z1E(z1, z2). The conditions obtained from the z̄i-derivatives are just the

complex conjugate of (2.18). It is remarkable that the conditions for criticality are separated

– 4 –



J
H
E
P
0
7
(
2
0
1
1
)
0
5
5

into holomorphic and anti-holomorphic equations, which implies that the integrals over

the Riemann surface in (2.13) can be factorized into holomorphic and anti-holomorphic

integrals in the large N limit as stated in (2.15). We are therefore left with the following

matrix-like integral

Z
Cg,n

N (w, m, p, v) ≡
∫ N

∏

i=1

dzi

[

ω(zi)
1+b2

∏

i,I

E(zi, ξI)
−1−b2

]

∏

1≤i<j≤N

E(zi, zj)
−2b2

∏

i

E(zi, z
∗)2b

P

k mk/gs

× exp

(

b

gs

N
∑

i=1

( n
∑

k=1

2mk log
E(zi, wk)

E(zi, z∗)
+ 4π

g
∑

a=1

pa

∫ zi

ωa

))

, (2.19)

where w = {wk} , m = {mk}, p = {pa} and v = {να} are the filling fractions να ≡ bgsNα

which specify the holomorphic integral above. The integrand in (2.19) is a proper one-

from in each variable zi on the covering space of the Riemann surface due to momentum

conservation (2.6). The matrix model potential that we find is in the form anticipated

by [45].

In order to count the number of moduli of our matrix model we should note that there

are n + 2g − 3 independent filling fractions: naively the number of critical points of the

action is 2g−2+n+1. However, there are constraints coming from the fact that we are free

to move the base point z∗ and that we have specified the residue at the base point as above

by using the momentum conservation. The latter is equivalent to the constraint on the

sum of filling fractions
∑

α να = bgsN . These constraints reduce the number of moduli by

two, thus giving the correct counting. The paths of the integrals are defined such that only

the solution of (2.18) labeled by the fixed filling fractions {να} contributes to the integrals.

The measure factor in (2.19) can be regarded as a generalization of the Vandermonde

determinant. The differential dz∂zW has simple poles with residues ({2mk},−2
∑

k mk)

at the points ({wk}, z∗).
The integral in (2.13) is then obtained by integrating (2.19) and its complex conjugate

over the filling fractions. Thus, in the large N limit, AN becomes

AN =

∫ ∞

−∞

g
∏

a=1

dpa

∫ n+2g−3
∏

k=1

dνk

∣

∣

∣

∣

exp

(

2πi

g
∑

a=1

g
∑

b=1

paτabpb

)

C(w, m, p, ξ)Z
Cg,n

N (w, m, p, v)

∣

∣

∣

∣

2

.

(2.20)

At the level of the generalized matrix model, the filling fractions να are free parameters.

Together with pa (a = 1, . . . , g) which are independent parameters in the potential, we

have totally n+3g−3 independent moduli which are identified with the internal momenta

in the Liouville conformal block and then with the Coulomb moduli of the gauge theory.

The explicit correspondence of these parameters with the internal momenta is discussed in

detail in section 4.1. Under this identification, we see from (2.20) that Z
Cg,n

N (w, m, p, v) is

proportional to the conformal block of Liouville theory [71].

– 5 –
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3 Degenerations

To study the behavior of the generalized matrix model when approaching perturbative

corners in the space of gauge couplings, we have to study what happens when we degenerate

Cg,n. The degeneration is usually described by using the plumbing fixture decomposition

of the curve. Let Ut be the annulus

Ut = {(z,w)|zw = t; |t| < |z| < 1; |t| < |w| < 1}

which as t ∼ 0 describes the squeezed cylinder. The curve undergoes the decomposition

Cg,n =Cg−1,n,2∪ Ut when the degeneration is of pinching type and Cg,n =Cg1,n1,1∪ Ut∪ Cg2,n2,1

with g1 + g2 = g and n1 +n2 = n, with 1− 2gi −ni < 0, when the degeneration is dividing.

The components Cg,n,h are here Riemann surfaces with genus g, n punctures and h non

overlapping disks removed which will become the punctures in the degeneration limit. The

fact that the holomorphic integrals react correctly under the degeneration of the curve Cg,n

is a remnant of the analogous property of the conformal field theory [72] and is indeed

a consequence of the construction we performed in the previous section. We assume the

shrinking cycle do not intersect the contour system along which (2.19) is evaluated.

Let us focus on the dividing case first. In this case the prime form E(z, z′) behaves as

follows. If both its arguments belong to a given same component, the prime form reduces to

the prime form on that component, while if its arguments belong to different components,

then E(z′, z′′) ∼ E1(z
′, P1)E2(P2, z

′′)t−1/2, where P1,2 correspond to the punctures created

by the dividing. To see what the prime form degeneration implies for the generalized matrix

model measure and potential, we have to split the integration contours in components

according to the dividing decomposition. This splits the {zi} in two sets according to

which components of the contour they are integrated along, namely N ′ of them on the first

component and N ′′ on the second with N = N ′ + N ′′. Correspondingly, also the puncture

set will split in two subsets w = w′ ∪ w”, one for each component. By using the above

degeneration formulas for the prime form and the fact that the holomorphic harmonic

differentials ωa reduce to the ones relative to the two splitting factors, we get that

Z
Cg,n

N (w, m, p, v) ∼ Z
Cg1,n1+1

N ′ (w′ ∪ P1, m
′ ∪ m∗

1, p
′, v′)Z

Cg2,n2+1

N ′′ (w′′ ∪ P2, m
′′ ∪ m∗

2, p
′′, v′′) (3.1)

where m∗
1 = bgsN

′ − ∑

k′ mk′ + gsQ(g1 − 1) and m∗
2 = bgsN

′′ − ∑

k′′ mk′′ + gsQ(g2 − 1)

after using momentum conservation. In the computation of (3.1) one needs to count the

two extra zeros for the reference holomorphic differential to be placed at the location of

the two resulting punctures. The direct computation of the above mass formulas from the

integral (2.19) indeed gives, for example, m∗
1 = −bgsN

′′ − g2gsQ +
∑

k′′ mk′′ where the

first term comes from the generalized Vandermonde, the second from the measure term in

the square bracket and the third from the punctures. The computation of m∗
2 is identical.

Notice that m∗
1 + m∗

2 = −gsQ corresponding to the fact that the two Liouville insertions

generated at the punctures are conjugated and therefore the masses of the two flavors at

the two punctures Pi are equal. The conformal modulus which gets traded to the mass is

the total filling fraction between the two integrals. Formula (3.1) is valid for each dividing

degeneration such that g = g1 + g2, n = n1 + n2 with 1 − 2gi − ni < 0.

– 6 –
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In the pinching case, the prime form restricts to the one of the degenerate surface

together with the holomorphic differentials with zero αg-cycle. The left over one scales as

2πiωg(z) ∼ ∂z log E(z,P1)
E(z,P2)

up to O(t) terms. In this limit, since ω in the conformal factor

has been chosen to be regular, two of its zeroes will be at the two punctures generated at

the pinching node and by direct computation one gets

Z
Cg,n

N (w, m, p, v) ∼ Z
Cg−1,n+2

N (w ∪ {P1, P2}, m ∪ {m∗
+,m∗

−}, p̂, v) (3.2)

where p̂a are the momenta in the g − 1 left over handles and

m∗
± = −gsQ

2
± ipg , (3.3)

with pg the momentum in the squeezed one. The two contributions to the above mass

formulas arise respectively from the term in the square brackets in the measure and the

second term in the potential. Once again, the two masses at the generated punctures are

Weyl conjugated m∗
+ + m∗

− = −gsQ. In the pinching case the conformal modulus which is

traded for the mass is the momentum flowing in the squeezed handle. The formulas above

are general and valid at finite N .

In the following subsection we will discuss in detail the punctured torus case as an

illustration. One could also study for example the punctured genus two case. This case is

special since all degenerations reduce to punctured tori.1 We discuss some aspects of the

Seiberg-Witten geometry on genus two curves in the appendix.

3.1 Degenerations of punctured tori

In this subsection, we concentrate on the pinching degeneration of a torus which leads to

a sphere with two more punctures. Associated with the torus with n punctures we can

consider a class of quiver gauge theories [2, 3] whose particular weak coupling descriptions

include a gauge theory with circular quiver. Specifying a particular weak coupling descrip-

tion corresponds to choosing a particular marking (a pants decomposition) of the Riemann

surface. This gauge theory will reduce in the pinching of the torus to a linear quiver theory

with n − 1 SU(2) gauge groups associated with a sphere with n + 2 punctures. In what

follows, we verify that the generalized matrix model correctly reduces to the Penner type

matrix model on the sphere [45].

Since on the torus the canonical bundle is trivial, the choice of a base point is not

needed. The prime form is E(z,w) = θ1(z−w|τ)
θ′1(0|τ) and therefore the generalized matrix

model (2.19) reduces to

Z
C1,n

N ∼
∫ N

∏

i=1

dzi

∏

i<j

θ1(zi − zj)
−2b2e

b
gs

P

i W (zi) , (3.4)

1The dividing degeneration C2,n → C1,n′+1 ∪ C1,n−n′+1 generates two punctured tori. Indeed, the genus

two prime form in such a degeneration reduces to the relevant θ-functions on the two tori since the period

matrix at genus two becomes diagonal in the degeneration limit. In the pinching case C2,n → C1,n+2,

the genus two θ-function entering the explicit expression of the prime from as E(z,w) =
θ(

R

z

w

−→ω ,τ)√
ω�(z)

√
ω�(w)

contracts to the torus θ-function times a contribution from the off-diagonal term of the period matrix which

cancels in the degeneration limit the square-roots of the abelian differentials appearing in the denominator

of the prime form.

– 7 –
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up to zi-independent factors. The potential is

W (z) =

n
∑

k=1

2mk log θ1(z − wk) + 4πpz , (3.5)

and

θ1(z) = 2 sin(πz)

∞
∏

m=1

(1 − e2πizqm)(1 − e−2πizqm)(1 − qm) , (3.6)

with q = e2πiτ . The momentum conservation is given by

−
n

∑

k=1

mk + bgsN = 0 . (3.7)

Also, the identification of the moduli of the torus and the gauge coupling constants of

SU(2) gauge groups qk is as follows [5, 64]:

e2πi(w1−w2) = q1 , e2πi(w2−w3) = q2 , . . . , e2πi(wn−1−wn) = qn−1 , e2πiτ =
n

∏

k=1

qk , (3.8)

which, by fixing wn = 0, leads to

e2πiwn−1 = qn−1 ≡ tn−1 , e2πiwn−2 = qn−2qn−1 ≡ tn−2 , . . . , e2πiw1 = q1 . . . qn−1 ≡ t1 .

(3.9)

The mass parameters and one of the Coulomb moduli correspond to mk and p respectively.

Let us consider the pinching degeneration of the torus. We take Imτ → ∞ which

corresponds in the gauge theory to the decoupling limit of the n-th gauge group qn → 0.

To consider the behavior of the generalized matrix model in this limit, we first observe that

the prime form reduces as

(dz)−1/2(dw)−1/2 θ1(z − w)

θ′1(0)
→ (dz)−1/2(dw)−1/2 sinπ(z − w)

π

= (dξ)−1/2(dζ)−1/2(ξ − ζ) , (3.10)

where in the last line we have changed coordinates to ξ = e2πiz and ζ = e2πiw. It is

straightforward to see that the Vandermonde determinant of (3.4) reduces to that of the

usual β-deformed matrix model. The potential also reduces to

W (ξ) =

n
∑

k=1

2mk log(ξ − tk) + 2(−gsQ/2 − ip) log ξ , (3.11)

where we have used (3.9) with tn = 1. Note that the first term corresponding to the

momentum at ξ = 0 comes from the measure factor ω(z)1+b2 of the generalized matrix

model (2.19). By the pinching, the punctures at ξ = 0 and ∞ are created. However,

the latter disappeared from the potential, which thus reduces exactly to the Penner type

matrix model [45, 63]2

W (z) =

n−1
∑

k=0

2mk log(z − tk) + 2mn log(z − 1) , (3.12)

2The convention here is slightly different from the one in [45, 62, 63]. The momenta are related as

2m = mDV. Our convention leads to the momentum conservation (3.13).
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with the momentum conservation

−
n

∑

k=0

mk − m∞ + bgsN = gsQ , (3.13)

where m∞ is the momentum inserted at infinity. The relation between the parameters tk
and the gauge couplings [63] (See also [18]) is the same as the one defined in (3.9) with

t0 = 0. It follows from (3.11) that m0 = −gsQ/2 − ip.

Let us then analyze the momentum conservation under this degeneration. On one

hand, in the original generalized matrix model, the conservation is described by (3.7). On

the other hand, in the Penner type one, the conservation is (3.13). The momentum at

infinity is then

m∞ = −gsQ

2
+ ip . (3.14)

These values of the momenta m0 and m∞ are the ones which were already derived in the

generic analysis of the previous section (3.3). Note that there is a slight difference between

the momenta m0 and m∞, which however disappears in the large N limit.

The original generalized matrix model has n−1 independent filling fractions να. Recall

that the overall
∑

α να = bgsN is constrained by the momentum conservation. Thus, by

adding p, we have n independent parameters which are identified with the vevs of the

vector multiplet scalars. The degeneration limit and the above argument mean that p in

the potential is the vev of the n-th SU(2) vector multiplet scalar and some combinations

of the filling fractions are the vevs of the other SU(2) scalars. We will give the precise

identification in the large N limit in the next section.

4 Spectral curve of the generalized matrix model

In this section, we derive the spectral curve of the generalized matrix model (2.19) in the

large N limit and show that it coincides with the Seiberg-Witten curve of the corresponding

gauge theory.

In the large N limit, the evaluation of (2.19) reduces to the calculation of the critical

points. The condition for criticality is given by

dW (zi) − 2bgs

∑

j 6=i

dzi log

(

E(zi, zj)

E(zi, z∗)

)

= 0 , (4.1)

where the potential W (z) is defined in (2.17) and we have used the momentum conser-

vation (2.6). Then, the prepotential in the large N limit, defined as exp(F/g2
s ) ≡ Z, is

given by
1

g2
s

F =
b

gs

∑

i

W (zi) − 2b2
∑

i<j

log

(

E(zi, zj)

E(zi, z∗)

)

, (4.2)

where each “eigenvalue” zi satisfies (4.1).

It is natural to assume that the eigenvalues are distributed in line segments around the

critical points of W (z), similarly to the usual matrix model. Indeed the second term in (4.2)
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reduces locally to the standard Coulomb gas potential. We denote the line segments as Cα

where α = 1, · · · , n + 2g − 2. We assume that Cα do not include the base point z∗ and

the punctures wk, at which the potential W (z) diverges. We denote by Nα the number of

eigenvalues on the line segment Cα, where Nα satisfies
∑n+2g−2

α=1 Nα = N .

Let us introduce the eigenvalue density current ρ(z) supported on {Cα} and normalized

as
∮

Cα
ρ(z) = bgsNα ≡ να. Using the variables introduced above, the prepotential and the

condition for criticality are written as

F =

∫

P

α Cα

ρ(z)W (z) −
∫

P

α Cα

∫

P

α Cα

ρ(z)ρ(z′) log
E(z, z′)
E(z, z∗)

, (4.3)

dW (z) − 2

∫

P

α Cα

ρ(z′)dz log

(

E(z, z′)
E(z, z∗)

)

= 0 , (4.4)

respectively. Here, z in (4.4) is on either of the line segment Cα and the integral is defined

as the principal integral.

In order to solve the above condition (4.4) , we define the following one form, which is

the generalization of the resolvent of the usual matrix model

R(z) ≡
∫

P

α Cα

ρ(z′)dz log

(

E(z, z′)
E(z, z∗)

)

. (4.5)

This “resolvent” is defined at generic points z on the Riemann surface contrary to the

second term in (4.4). Note that the resolvent as well as dW (z) are single-valued one-forms

on the Riemann surface. The resolvent has cuts at the line segments Cα and a simple pole

at z∗. Also, the filling fractions are obtained by integrating the resolvent along the cuts as

να =
1

2πi

∮

Cα

R(z) . (4.6)

On the line segments Cα, the resolvent behaves as

R(z + iεeiϕ(z)) + R(z − iεeiϕ(z)) = 2P

∫

P

α Cα

ρ(z′)dz log

(

E(z, z′)
E(z, z∗)

)

= dW (z) , (4.7)

R(z + iεeiϕ(z)) − R(z − iεeiϕ(z)) =

∮

z
ρ(z′)dz log

(

E(z, z′)
E(z, z∗)

)

= −2πiρ(z) (4.8)

where we take the real number ε infinitely small and we assume that a properly defined

function ϕ(z) exists such that z + iεeiϕ(z) or z − iεeiϕ(z) does not go across the cuts Cα

when z moves along Cα. The integral in (4.7) is principal integration, which is given as

an average of integral along the path above the singularity and that below the singularity.

The resolvent should be determined such that (4.7) and (4.8) are satisfied for z ∈ Cα. A

candidate of the solution for (4.7) is

R0(z) =
1

2
dW (z) . (4.9)

However, it does not reproduce the correct structure of singularity expressed in (4.8). We

need singular contributions:

R(z) =
1

2
dW (z) + R(z)sing , (4.10)
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where (4.7) and (4.8) impose

R(z + iεeiϕ(z))sing + R(z − iεeiϕ(z))sing = 0 . (4.11)

R(z + iεeiϕ(z))sing − R(z − iεeiϕ(z))sing = −2πiρ(z) . (4.12)

The above discussion is valid for a generic potential W (z). In the following, we use its

explicit form (2.17) to determine the resolvent R(z). Then, we find that

Rsing(z) =

∫

P

α Cα

ρ(z′)dz log

(

E(z, z′)
E(z, z∗)

)

−
n

∑

k=1

mkdz log

(

E(z,wk)

E(z, z∗)

)

− 2π

g
∑

a=1

paωa(z)

=

∫

P

α Cα

ρ(z′)dz log E(z, z′) −
n

∑

k=1

mkdz log E(z,wk) − 2π

g
∑

a=1

paωa(z) (4.13)

does not depend on the base point z∗, where we used the momentum conservation (2.6)

and ignored the subleading term in the large N expansion. We see that R(z)sing has cuts in

the regions Cα and simple poles with residues mk at z = wk. Moreover, it is independent

on the base point z∗ as expected.

From (4.11), we see that the sign of R(z)sing changes across the cuts. Therefore its

square only displays singularities at the punctures z = wk. From (4.13) we see that these

are at most quadratic poles with coefficients mk
2. The spectral curve of the generalized

matrix model thus reads

Rsing(z)2 =
n

∑

k=1

mk
2η(z,wk) + ζ(z) (4.14)

where η(z,wk) are quadratic Strebel differentials, with double pole at wk, and ζ(z) is a

quadratic differential which has at most simple poles at wk. ζ(z) is determined in terms

of n + 3g − 3 parameters; in particular it depends on the n + 2g − 3 independent filling

fractions να and the g internal momenta pa. This form of the curve is the same as that of the

Seiberg-Witten curve of quiver gauge theory as a cover of the base Riemann surface [2, 3].

As discussed in [73], the physical information is included in the Prym variety of the Seiberg-

Witten curve, rather than the Jacobian variety. This reduces the number of independent

periods of the Seiberg-Witten differential to n + 3g − 3, which agrees with the number of

the filling fractions and pa.

In order for the above argument to be a check of AGT correspondence at all genera,

we need to show that the spectral curve is indeed the same as the one proposed, in the

Virasoro conformal block side, to be the Seiberg-Witten curve: the insertion of the energy-

momentum tensor in the conformal block

〈

T (z)

n
∏

k=1

Vαk
(wk)

〉

Cg

→ −x(z)2

g2
s

〈 n
∏

k=1

Vαk
(wk)

〉

Cg

(4.15)

in the semi-classical limit, which corresponds to the large N limit in the generalized matrix

model. It was claimed that xdz coincides with the Seiberg-Witten differential. This was

checked in the cases on a sphere and a torus already in [5]. A useful way to capture
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the energy-momentum tensor insertion is to consider the insertion of the degenerate field

Φ1,2(z) ≡ e−
φ̃(z)

b in the conformal block. By this insertion, the conformal block satisfies

the BPZ equation and can be expanded in gs as [26]

〈

Φ1,2(z)

n
∏

k=1

Vαk
(wk)

〉

Cg

∼ exp

(F0

g2
s

+
1

bgs

∫ z

x(z′)dz′ + . . .

)

(4.16)

Thus, the counterpart of the Seiberg-Witten differential in the Virasoro side can be obtained

by calculating

x(z) = bgs
∂

∂z
log

〈Φ1,2(z)
∏n

k=1 Vαk
(wk)〉Cg

〈∏n
k=1 Vαk

(wk)〉Cg

(4.17)

in the semi-classical limit.

In the following, we rewrite (4.17) in terms of the generalized matrix model by using

the discussion in section 2. The corresponding calculation in the case of the sphere has

been done in [65]. We use the holomorphic half of the integrand in (2.20) to evaluate the

conformal block in (4.17). The conformal block with the insertion is also obtained just by

changing n to n + 1 and by regarding that mn+1 = gs

2b and wn+1 = z. The momentum

conservation (2.6) is slightly modified to

n
∑

k=1

mk +
gs

2b
+ gsQ(1 − g) = bgsN. (4.18)

By collecting the factor dependent on z, we obtain

x(z) = bgs
∂

∂z
log

(

ω(z)
1

4b2

∏

I

E(z, ξI)
Q
2b E(z, z∗)N−

P

k mk
bgs e−

W (z)
2bgs

〈

∏

i

E(z, zi)

E(z, z∗)

〉)

= −1

2

∂W (z)

∂z
+ bgs

∂

∂z
log

〈

∏

i

E(z, zi)

E(z, z∗)

〉

+ O(N−1) , (4.19)

where we have used the deformed momentum conservation (4.18) in the second equality.

The expectation value is defined by

〈. . .〉 =

∫
∏

dziµe
b

gs

P

i W (zi) . . .
∫

∏

dziµe
b

gs

P

i W (zi)
. (4.20)

A subtlety is that the numerator in (4.20) is defined with the deformed momentum conser-

vation (4.18) while the denominator with the original momentum conservation. However,

note that the effect of the insertion of the degenerate field is a subleading contribution in

the large N limit, as in (4.16). Note also that the deformation of the momentum conserva-

tion gives rise to that of the prepotential F0, which does not depend on z and disappears

by the partial derivative in terms of z. Thus, we can use the same external momenta mk

and the same N as those of the denominator of (4.20) to evaluate the numerator in the

expectation value. Also, some of the internal momenta in the numerator are shifted by

±b/2 depending on where we insert the degenerate operator as discussed in [26], but again,
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the effect of this shift does not produce the factor dependent on z in the large N limit.

Thus, the expectation value in (4.19) can be evaluated by substituting the solution of the

condition of criticality (4.1) or (4.4), which leads to

bgs
∂

∂z
log

〈

∏

i

E(z, zi)

E(z, z∗)

〉

= bgs

〈

∑

i

∂

∂z
log

E(z, zi)

E(z, z∗)

〉

+ O(N−1) . (4.21)

From the discussion above, we finally obtain

x(z)dz ∼ −dW (z)

2
+ R(z) = Rsing(z) , (4.22)

up to O(N−1) terms. This shows that the resolvent Rsing is indeed x(z)dz in (4.15), which

was claimed to agree with the Seiberg-Witten differential.

4.1 Dependence on internal momenta

In this subsection, we show that the spectral curve of the generalized matrix model depends

on the Coulomb moduli parameters in the same way as the Seiberg-Witten curve, which

completes the check of AGT correspondence at all genera. In order to do that, we first have

to specify the marking of the Riemann surface Cg,n, which is done by choosing n + 3g − 3

physically independent cycles. This marking determines the conformal block labeled by a

trivalent graph on one hand, and also the corresponding weak coupling description of the

gauge theory on the other hand. On the gauge theory side, each vacuum expectation value

of each vector multiplet scalar is obtained by an integral along each cycle of the marking γr:

ar =
1

2πi

∮

γr

λSW , (4.23)

where λSW is the Seiberg-Witten differential. We would like to show that the spectral

curve also satisfies the corresponding relation.

Before going to that issue, we show in the following discussion that each pair of pants

has one cut under the marking. In general, three-punctured sphere always has one cut [47]

because the classical potential of the corresponding Penner type matrix model with generic

mass parameters has one extremum. We can also show this by considering the dividing

limit of four-punctured sphere: under the decomposition, it is known that one cut exists

in the pants including the punctures originally at 0 and q, while the other cut exist in

the pants including the punctures at 1 and ∞. Furthermore, unless the mass parameters

vanish, there are no punctures belonging to the cut. This indicates that three-punctured

sphere with generic mass parameters has one cut apart from the three punctures. Since we

have shown that our generalized matrix model behaves correctly in the degeneration limit,

the cuts of its resolvent should be placed in such a way that each pair of pants has one cut.

Once the marking is specified, an explicit correspondence should be determined be-

tween the n + 3g − 3 internal momenta of the Virasoro conformal block and the n + 2g − 3

independent filling fractions together with the n parameters pa in the potential. In order

to see this explicitly, we can use the results on the degeneration obtained in section 3. Note

that among the intermediate states in the conformal block, only the primary state remains
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and appears as the external state in the degeneration limit. Thus, the external momentum

appeared by the degeneration which shrinks a particular cycle can be seen as the internal

momentum of the corresponding place before the degeneration. In order to determine all

the internal momenta, we pinch all the A-cycles of the Riemann surface Cg,n until it be-

comes C0,n+2g and then divide C0,n+2g until they split into three-punctured spheres in a

way that it reproduces the specified pants decomposition. Whichever marking we take, we

can read off all the internal momenta by considering the corresponding degeneration limit.

The A-cycles of Cg,n can be chosen to coincide with some of γr’s. Thus, the set {γr}
can be divided as {γr} = {Aa} ∪ {γα} where a = 1, . . . , g and α = 1, . . . , n + 2g − 3, such

that A-cycles of Cg,n are Aa and γα are the remaining cycles. By shrinking Aa-cycles, we

obtain (3.3). Especially, in the large N limit, the internal momenta (multiplied by gs)

corresponding to the Aa cycles of the Riemann surface Cg are given by

aa = ipa . (a = 1, · · · , g) (4.24)

After pinching all the Aa cycles, the remaining internal momenta can be obtained as written

just below (3.1) by further considering the dividing limit which shrinks γα cycles. Since each

pair of pants has one cut, on which Nβ eigenvalues {zi} exist, the number of eigenvalues

N ′ or N ′′ on each side of the dividing component of the Riemann surface can be written in

terms of sum of the filling fractions. In the large N limit, the internal momenta (multiplied

by gs) flowing through γα cycles are given by

aα =
∑

β

νβ −
∑

k

mk +
∑

a

(±ipa) , (α = 1, · · · , n + 2g − 3) (4.25)

where the range of the sum depends which γα cycle we shrink under the marking of the

Riemann surface. The third term is the contribution from new punctures which appear

by pinching Aa cycles in the previous step. The sign ± is determined for each puncture

according to the direction of the Aa cycle. Although the internal momenta (4.24) and (4.25)

are obtained in the degeneration limit, we assume that these relations hold for arbitrary

moduli parameters of the Riemann surface Cg,n because the filling fraction να and the

parameter pa are independent of the moduli parameters. It is remarkable that the form of

our generalized matrix model in the large N limit is universal for any choice of markings of

the Riemann surface. However, the identification of the parameters with internal momenta

depend on such choice, which reflects in the difference of the conformal blocks labeled by

different trivalent graphs.

So far, we have discussed the relation between the internal momenta of the Virasoro

conformal block and the independent filling fractions and parameters pa. In the following,

we check that the corresponding relation as (4.23) is reproduced from the spectral curve

under these identification of the parameters. By using (4.13), we can explicitly calculate

the Aa-cycle integrals as

1

2πi

∫

Aa

Rsing = ipa (a = 1, · · · , g) (4.26)
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Figure 1. A marking of C1,n corresponding to the elliptic quiver and the A1- and γα-cycles. E.g.,

γ1 = A1 + C1 + D1 and γ2 = A1 + C1 + C2 + D1 + D2.

Note that the convention here is
∮

Aa
ωb = δa

b . Taking into account the identification of

the parameters (4.24), we see that the corresponding relation as (4.23) for Aa-cycle is

confirmed.

For the γα cycles, the check is not direct, because γα are not the contours Cα along the

cuts of the spectral curve of the matrix model. Recall that there are indeed n+2g−2 cuts in

the spectral curve, but the integral of the resolvent along one of them is not independent due

to the momentum conservation. We will call the remaining n+2g−3 cuts the independent

ones. It follows that the cycles around the independent cuts, which we have denoted by Cα

(α = 1, · · · n+2g−3), can be expressed as sum of the three cycles which go around each leg

of the pants. That is, Cα can be written as a linear combination of γr (r = 1, · · · n+3g−3)

and Dk (k = 1, · · · n), where Dk are the contours around the simple poles of Rsing. Thus, γα

(α = 1, · · · n+2g−3) can be written as γα = nα
aAa+cα

βCβ +sα
kDk, where the coefficients

nα
a, cα

β and sα
k are integers. (Note that in addition to them there could exist a cycle

around the base point. However, when we consider Rsing, this dependence disappears in

the large N limit, as stated in (4.13).) In terms of these, we calculate the integral over γα

cycles as

1

2πi

∮

γα

Rsing(z) =
1

2πi

∮

γα

[

R(z) −
n

∑

k=1

mkωwk,z∗(z) − 2π

g
∑

a=1

paωa(z)

]

=
∑

β

cα
βνβ −

∑

k

sα
kmk + i

∑

a

nα
apa , (4.27)

where ωx,y(z) = dz log E(z,x)
E(z,y) is the Abelian differential of the third kind.

To determine the coefficients, we briefly show the example below. In the case of the

torus C1,n, there is only one A-cycle and the number of independent cuts is n−1. For n = 1,

there is no independent cut and the parameter p is identified with the vacuum expectation

value of the vector multiplet scalar of N = 2∗ gauge theory as analyzed in [64]. For n > 1,

we consider the marking corresponding to SU(2)n elliptic quiver gauge theory and choose

the A1-cycle and γα-cycles as depicted in figure 1. As stated above, each pair of pants has

one cut. (This can also be explicitly checked by solving the equations of motion in the

weak coupling limit.) Therefore, it is easy to obtain the coefficients above n1
α = 1 and

cβ
α =

{

1 (β = 1, . . . , α)

0 (β = α + 1, . . . , n − 1)
sk
α =

{

1 (k = 1, . . . , α)

0 (k = α + 1, . . . , n − 1)
(4.28)
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This indicates
1

2πi

∮

γα

Rsing(z) =

α
∑

β=1

νβ −
α

∑

k=1

mk + ip (4.29)

in addition to the one obtained by the A-cycle integral (4.26). Comparing it with the

result obtained from (4.25), we see that it exactly reproduces the internal momenta flowing

through γα cycle. Similarly, it is straightforward to check for generic case that (4.27)

coincides with that obtained from (4.25). Thus, we have confirmed that the corresponding

relations as (4.23) for γα cycles are reproduced.

5 Conclusions

In this paper, we have shown that the perturbative analysis of Liouville correlation func-

tions displays in the large N limit holomorphic factorization of the surface integrals and

leads to generalized matrix models, defined on the cover of Cg,n, which describe the relevant

Virasoro conformal blocks. We provided an all genera check of the AGT correspondence

by obtaining the Seiberg-Witten data from the saddle point analysis of these generalized

matrix models.

We underline that the models presented in this paper could be useful for the exploration

of the full set of gauge theories with generalized quiver structure of [3]. Indeed, so far most

of the analysis of the AGT correspondence has been focused on the linear and elliptic

quiver cases, mainly due to the lack of calculational tools for higher genera. However,

to fully exploit the generalized matrix model approach one should be able to extend its

analysis to finite N . This would amount to provide a full derivation at finite N of the

holomorphic factorization, which in turn would give a precise prescription for the contour

integrals possibly extending the recipe of [48–50, 66] to higher genera.

Notice anyway that our large N analysis depends only on the homotopy class of the

contours via the filling fractions as explained in section 4.1. In this sense our results are uni-

versal with respect to a particular choice of contour’s representatives in the matrix integral.

Moreover, for gauge groups of higher rank, which according to [45, 46] should corre-

spond to multi-matrix models, this approach could shed light on the description of strongly

coupled sectors naturally appearing in the general framework and not admitting a known

lagrangian description.

Another very interesting issue to explore is the relation of the generalized matrix

models with the quantization of integrable systems [42, 74–80]. (See also [81–85].) In

particular this could provide an alternative derivation of the quantum Hamiltonians for

Hitchin integrable systems and generalize it to higher genera.
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A Addendum: playing with genus 2 curves

A hyperelliptic curve Cg of genus g is given by the equation

y2 = P2g+2(x)

where P2g+2 is a polynomial of degree 2g + 2 and is realized3 in the total space of TP
g+1
2 .

As it is well known, all genus 2 curves are hyperelliptic. These are realized in general

by a sextic polynomial equation

y2 =

6
∏

i=1

(x − ai) (A.1)

which we denote by C2.

The complex structure moduli M2,0 of genus two curves is then obtained by considering

the complex parameters {ai} modulo the action of the permutation group S6 and the

PSL(2,C).

A basis of abelian differentials is given by ωa = xa−1dx
y , a = 1, 2, while a basis of

quadratic differentials is given by φα = xα−1dx2

y2 , α = 1, 2, 3 [86].

The Seiberg-Witten (SW) geometry of the SU(2) theory at genus 2 is specified by a

double cover of C2 in T ∗C2. As such, this is specified by a general quadratic differential on

C2 in the form

w2 = Φ2 (A.2)

where Φ2 =
∑

α Kαφα can be expanded in the Coulomb moduli Kα of the theory.

The perturbative expansions of the theory are available in the vicinity of the degener-

ation locus of the moduli space, namely around

∂M̄2,0 = M̄1,1 × M̄1,1 ∪ M̄1,2 (A.3)

The second factor in (A.3) is still generically not lagrangian and has to be degenerated as

∂M̄1,2 = M̄1,1×M̄0,3∪M̄0,4 to reach corners around which known lagrangian descriptions

are available. The first factor in (A.3), being given by two copies of the N = 2∗ SU(2)

theory, is already lagrangian. The first degeneration is dividing and the second one is

pinching.

Let us discuss the dividing case in detail. This is reached by taking the limit in which

three branch points in (A.1) collide. To be concrete, let’s fix the position of two of them

at 0 and ∞, write our curve as

y2 = x(x − a1ǫ)(x − a2ǫ)(x − a3)(x − a4) (A.4)

and take the limit as ǫ → 0. The curve (A.4) becomes in the x coordinate

y2 = x3(x − a3)(x − a4)

3Under conformal inversion x = 1/x′ on the Riemann sphere, the stability of the description is guaranteed

by the transformation y = y′x′−(g+1)
= y′

`

∂x
∂x′

´
g+1

2 .

– 17 –
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which, redefining y = xỹ, reads

ỹ2 = x(x − a3)(x − a4) (A.5)

that is the torus with a puncture at x = 0.

Let us check now the SW geometry in the degeneration limit. The issue to discuss is

just the scaling of the Coulomb parameters in this limit. Notice that the degeneration is

obtained by contracting to zero two nearby branching points, therefore we are saturating a

complex structure modulus corresponding to a Beltrami differential µǫ with support around

the origin of size ∼ ǫ. This is dual to a holomorphic quadratic differential which, not to

have a vanishing overlap integral with µǫ should not be zero at x = 0. This is uniquely

determined to be dx2

y2 . Therefore, along the limit with ǫ → 0, the corresponding parameter

in the SW curve has to scale away.

As a consequence of the above reasoning, exposing the ǫ-parameter, the SW curve is

parametrized as

w2 =
u′ǫ + m2x + ux2

y2
(dx)2 (A.6)

The degeneration of C2 is easily kept into account in the SW geometry which becomes

w2 =
m2x−1 + u

ỹ2
(dx)2 (A.7)

The standard parameterization of the punctured torus is in the coordinates where the

puncture sits at ∞. Therefore, we rewrite the elliptic curve (A.5) after the inversion

x = 1
x′ to pull the puncture at x′ = ∞ and redefine accordingly ỹ = 1

(x′)2
ỹ′. After this, the

SW curve reads

w2 =
m2x′ + u

(ỹ′)2
(dx′)2

which we can put in the representation with respect to the periodic coordinate via the

Weierstrass parameterization4 x′ = P(z) + c and ỹ′ = d
dzP(z) so that we stay with

w2 =
[

m2P(z) + (u + cm2)
]

(dz)2 (A.8)

which is the SW curve for a copy of the N = 2∗ theory.

The other copy corresponds to the other half in which the original genus 2 surface was

split. Let’s see how to get this second copy. In order to do it we have to consider the

curve in the coordinate appropriate for the other half, namely we have to change (A.4) to

x = ǫ/x̂ and correspondingly y = ŷ ǫ3/2

(x̂)3
after which we get

ŷ2 = x̂(1 − a1x̂)(1 − a2x̂)(ǫ − a3x̂)(ǫ − a4x̂) . (A.9)

(A.9) becomes after the degeneration limit the curve

ŷ2 = x̂3(1 − a1x̂)(1 − a2x̂)(a3a4)

4The constant c needs to bring (A.5) to the standard Weierstrass form where the quadratic term vanishes

and can be computed explicitly.
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which we bring to the form of a punctured torus by redefining ŷ = ˜̂yx̂ and get

˜̂y
2

= x̂(1 − a1x̂)(1 − a2x̂)(a3a4) .

Let’s follow now what happens to the SW curve (A.6) in the x̂ patch. This becomes

w2 =
u′ + m2x̂−1 + uǫx̂−2

ŷ2
(dx̂)2 (A.10)

which in the limit ǫ → 0 has the same form of (A.7), but referring to the second punctured

torus with an independent Coulomb parameter u′. So, following the same procedure leading

to (A.8), we get the second copy of N = 2∗ with an independent gauge coupling and

Coulomb parameter but the same mass as the first.

A pinching of the genus 2 curves (A.4) can be obtained by letting ǫ → a3
a2

for example.

In such a case the curve gets to

y2 = x(x − a1a3/a2)(x − a3)
2(x − a4) (A.11)

which is, after renaming y = ỹ(x − a3), the twice punctured torus

ỹ2 = x(x − a1a3/a2)(x − a4) . (A.12)

Correspondingly, the holomorphic quadratic differential entering the Seiberg-Witten

curve (A.6) becomes

Φ2 → u′a3/a2 + m2x + ux2

(x − a3)2ỹ2
(dx)2 (A.13)

which explicitly displays quadratic poles at the two images of x = a3 with equal coefficients.

This coefficient is actually fixed by the Coulomb parameter corresponding to the ungauged

group SU(2) at the end of the shrinking of the handle.
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