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ABSTRACT
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Understanding the properties of strongly correlated materials is a tough work

since most of the times analytical tools cannot be applied due to the complicated

nature of the problem. Here we apply quantum Monte Carlo techniques in order

to tackle one of the most important and unknown phenomena of many materi-

als: the mechanism of superconductivity. We study the Hubbard-Holstein model

which is one of the most simple theoretical models including strong correlation

and electron-phonon coupling. By using twist-averaging boundary conditions we

eliminate finite-size errors in the Monte Carlo simulations. With this useful tool

we first solve the Hubbard-Holstein model by variational Monte Carlo by report-

ing the phase diagram of the model for different phonon frequencies at half filling.

Then we investigate the phase separation away from half filling. Finally we try to

attack the problem with an essentially unbiased method based on the auxiliary

field quantum Monte Carlo technique and accelerated Langevin dynamics. By

curing the sign problem via Cauchy integration in the complex plane where the

auxiliary fields have been defined, we report the effect of the electron-phonon

coupling on some observables such as magnetization, spin and charge structure

factors. We show preliminary results that are already meaningful to understand

the nature of the transition between magnetism and charge order in the model

at half filling.

Keywords: Hubbard-Holstein Model, Twist averaging, Variational Monte Carlo,

Auxiliary Field Quantum Monte Carlo, Molecular Dynamics, Path Integral Monte

Carlo, Langevin Dynamics.
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Chapter 1

Introduction

Understanding the interplay between electron-electron and electron-phonon in-

teractions is a very challenging task. There has been an intense work in the

condensed-matter community, since the early developments of many-body ap-

proaches to describe metals, insulators, and superconductors [1]. It is known

that the low-temperature properties of several materials are controlled by the

competition or sometimes the cooperation between electron-electron and electron-

phonon interaction terms. For example, high-temperature superconductors, such

as Cuprates and Iron based superconductors have phase diagrams as shown in the

Fig. 1.1. In both kind of materials there exists a clear evidence of strong electron-

electron correlation. On the other hand, it has been observed that the role of

phonons could be not entirely negligible, as suggested by the kinks in the elec-

tron dispersion [2] or by the signatures of the isotope effect [3, 4]. In alkali-doped

fullerides, which are often known to be phononic superconductors, it has been ob-

served the existence of a superconducting phase close to a Mott transition [5, 6].

Therefore, this particular feature suggests that both the Coulomb repulsion and

the electron-phonon coupling are taking place in the mechanism of supercond-

cutivity. They are both strong and cooperate to establish a strongly-correlated

superconductor. Similarly, in pnictide superconductors [7], such as LaOFeAs, and

in aromatic superconductors, such as potassium-intercalated picene [8], there are

evidences that, in addition to the strong electron-electron correlation, there is also
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a non-negligible electron-phonon where electrons couple with the lattice degrees

of freedom.

In a short and simple summary, electron-electron repulsion generates spin fluc-

tuations that mediate a non-local pairing among electrons and may give rise to

d-wave superconductivity. On the other hand, electron-phonon coupling directly

mediates a local attraction among electrons which results in an s-wave super-

conductor. In addition to that, a strong electron correlation may also lead to

spin-density waves and a magnetically ordered state, which competes with super-

conductivity; instead, a local attraction may also generate charge localization,

i.e., charge-density-wave (CDW) or dimerized (Peierls) states. Therefore, it is a

very complicated task to obtain the properties of a system in which both inter-

actions are relatively strong and competing each other. Among many theoretical

models, in this respect, the Hubbard-Holstein model represents a good prototyp-

ical one that includes both electron-electron interaction and also electron-phonon

coupling.

1.1 Hubbard-Holstein Model

The Hubbard-Holstein model is one of the simplest models including both

electron-electron interaction and also electron-phonon coupling. It incorporates

the electron-electron interaction as an on-site Coulomb repulsion U (the Hubbard

term) [9] and the electron-phonon coupling g between electrons and dispersion-

less Einstein phonons with energy ω0 (the Holstein terms) [10], and also a kinetic

term for electrons:

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ + ω0

∑
i

b†ibi + g0

∑
i

ni(b
†
i + bi ),

where 〈i, j〉 indicate nearest-neighbor sites (on a square lattice); moreover, on a

given site i, c†i,σ (ci,σ) creates (destroys) an electron with spin σ, b†i (bi ) creates

(destroys) a phonon, and ni =
∑

σ ni,σ =
∑

σ c
†
i,σci,σ is the electron density.

In analogy, we also define the phonon density on the site i by mi = b†ibi . Of

course, this model gives a simplified description of real solids, since both the
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Coulomb repulsion and the electron-phonon interaction are assumed to be local.

In addition, the latter term is modeled by coupling the lattice displacement xi ∝
(b†i + bi ) to the electron density ni.

The physical properties of the Hubbard-Holstein model are determined by

the parameters ω0/t and g0/t independently. However, it is useful to define

the quantity λ = 2g2
0/ω0, which is often considered to be the strength of the

electron-phonon coupling. When ω0/t→∞, i.e in the antiadiabatic limit where

the phonons have a large energy, this parameter measures the effective electron-

electron attraction since in this case the retarded interaction mediated by phonons

becomes instantaneous. Indeed, for ω0 � t there is an exact mapping from the

Holstein model to the negative-U Hubbard model with Uatt = −λ. Therefore,

the Hubbard-Holstein model reduces to the Hubbard model with a renormalized

on-site interaction, i.e., Ueff = U − λ. On the other hand when w0 is of the order

of the electron hopping t such an exact mapping between the two models does

no longer holds. Therefore, in the general case with a finite phonon energy, the

multidimensional parameter space of the Hubbard-Holstein model with U/t, g0/t,

ω0/t, as well as the electron density n results in an extremely rich physics and

various approaches have been used to understand its ground-state properties.

One can also write the model in terms of the phonon position and momentum

degrees of freedom by the following transformation:

X̂ =
1√
2

(b†i + bi ), (1.1)

and

P̂ = i
1√
2

(b†i − bi ), (1.2)

The resulting expression of the Hamiltonian is written as follows:

H = −t
∑
〈i,j〉,σ

(c†iσcjσ+h.c)+
U

2

∑
j

(nj−1)2 +g
∑
j

X̂j(nj−1)+
w0

2

∑
j

(
X̂2
j + P̂ 2

j

)
.

(1.3)

with g =
√

2g0. Therefore, for this representation we have the coupling constant

as λ = g2/w0.

Another way of introducing the electron-phonon coupling has been considered
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within the Su-Schrieffer-Heeger model [11], in which the lattice displacements are

coupled to the hopping term rather than to the local density. The Su-Schrieffer-

Heeger model is more suitable to describe materials with delocalized phonons,

whereas the Holstein model can be used as a good approximation for molecular

solids in which there are local phonon modes like in the case of fullerene molecules

doped with alkali-metal atoms.

1.2 Numerical Simulations

Computer simulations are very useful tools available to solve very complicated

problems. In many theoretical models, such as the Hubbard-Holstein model,

that cannot be solved through analytical treatments, the use of computer simu-

lations are most common. The phase diagram of the Hubbard-Holstein model

has been studied using several techniques such as, Gutzwiller approximation

[12], variational Monte Carlo (VMC) [13], dynamical mean-field theory (DMFT)

[14, 15, 16], finite-temperature determinant quantum Monte Carlo (DQMC)

[17, 18, 19], also in 1D [20], but no unbiased zero temperature calculation is known

in 2D. In this thesis we will make an attempt to understand the ground state

properties of the 2D Hubbard-Holstein model by using numerical tools. First,

we will apply variational monte carlo method and then auxiliary field quantum

monte carlo with accelerated Langevin dynamics. All these techniques, mainly

developed in this thesis, will be explained in details in the upcoming chapters.
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(a) L. Taillefer , Ann. Rev. , 1, 51-70 (2010).

(b) S. Nandi et all. Phys. Rev. Lett. 104, 057006
(2010).

Figure 1.1: An example of the phase diagram of Cuprates (top) and Iron-based
supercondcutors (bottom).
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1.3 Outline of the Thesis

In the 2nd Chapter an overview of Variational Monte Carlo (VMC) and stochastic

reconfiguration techniques will be given. The variational Ansatz for the Hubbard

and the Hubbard-Holstein models will be introduced.

In Chapter 3 technical details about auxiliary field quantum Monte Carlo

(AFQMC) and the accelerated first order Langevin dynamics will be discussed.

Some benchmark tests and results will be reported for the pure Holstein model

via accelerated Langevin Dynamics. After introducing the Hubbard interaction

we will consider the corresponding Hubbard-Holstein model by employing for the

first time to our knowledge an exact integration scheme allowing the elimination

of the phonon degrees of freedom. The resulting complex integration in the

electronic fields will be moved to the real axis via the Cauchy theorem. Then,

some benchmark results will be introduced for the pure Hubbard model.

In Chapter 4 twist averaging boundary conditions in grand canonical ensembles

will be introduced and applied to the negative-U Hubbard model both by VMC

and AFQMC methods. Some benchmark comparisons and results will be reported

for the negative-U Hubbard model at half filling and at finite doping and in the

weak coupling regime.

In Chapter 5 the VMC method will be applied to the Hubbard-Holstein model

by using twist averaged boundary conditions. The phase diagram of the model

will be reported at half filling for different phonon frequencies and phase separa-

tion will be investigated at finite hole doping.

In Chapter 6 the accelerated first order Langevin dynamics will be applied

to the Hubbard-Holstein model. Therefore, stochastically exact ground state

properties in the thermodynamic limit of the model will be reported without sign

problem for the first time.

In Chapter 7 the thesis will be concluded by discussing the main outcomes of

this PhD thesis.
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Chapter 2

Variational Monte Carlo

The most important and successful algorithm for computing large multi dimen-

sional integrals is certainly the Monte Carlo (MC) method. For many physical

problems it is very hard to do analytical integrations due to the very large num-

ber of degrees of freedom. However, by using MC one can perform these hard

integrations via stochastic sampling over configuration space. A configuration

space provides information about degrees of freedom in the system. For example,

for the system of spinless particles the configuration space |x〉 is given by the

positions of the particles. Another example is the system of electrons in which

the configuration space can provide information about both the spin and the po-

sitions of electrons in the system. The MC method is determined by well defined

stochastic algorithms, usually named Markov process. According to this method

one can change randomly the degrees of freedom like spin or positions of the par-

ticles in the configuration space. After this operation the change (the move) is

accepted or rejected according to the Metropolis acceptance criterium [21]. The

main ingredient of Variational Monte Carlo (VMC) is a trial wave function and

the fact that the expectation value of a Hamiltonian over any trial wave function

provides an upper bound for the exact ground state energy.

E =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

≥ E0. (2.1)
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Therefore, in VMC the main aim is to construct a trial state which is close to the

exact ground state wave function. In VMC the wave function should at least have

the same qualitative properties of the system of interest. For the fermionic system,

such as electrons, the wave function should satisfy the anti-symmetry properties

of the electrons. Thereby one can represent a part of the wave function as a

Slater determinant which can be constructed from the ground state of a mean

field Hamiltonian. A correlator or a projector to fix the particle number is also

generally added as a Jastrow term taking into account the correlation between

the electrons. Therefore, the general trial wave function |ψT 〉 to be considered

can be written as:

|ψT 〉 = P|D〉, (2.2)

where P is the projector over a fixed particle number and/or correlator, whereas

D is the uncorrelated antisymmetric determinant part. Expectation value of any

operator can be calculated as

〈O〉 =
〈ψT |O|ψT 〉
〈ψT |ψT 〉

=
∑
x

OxPx, (2.3)

where Px = |ψT (x)2|∑
x |ψT (x)2| is the probability distribution and Ox = 〈x|O|ψT 〉

〈x|ψT 〉
is the local

estimator of the operator O at a given configuration |x〉. A new configuration

|x′〉 is generated via Markov chain by changing a degree of freedom in the |x〉 and

this change is accepted or rejected via Metropolis Algorithm i.e. Px→x′ = min

[1, |ψT (x′)2

ψT (x)2 |]. After thermalization, i.e., for large enough number of Metropolis

steps Nstep, Ō ≈ 1
Nstep

∑Nstep
n=1 Oxn as a consequence of the central limit theorem.

In order to calculate the statistical error one can use the jackknife method by

dividing the whole data set into M blocks each containing Lbin data set such that

M ∗Lbin = Nstep and calculating the average of the ith block by excluding the ith

block.

Ōi =
1

Lbin(M − 1)

Nstep∑
j 6∈i

Oj, (2.4)

the standard deviation of the total average Ō is obtained as follows

σ2 =
M − 1

M

M∑
i=1

(Ō − Ōi)2. (2.5)
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2.0.1 Stochastic Reconfiguration

A general many-body wave function is constructed using several parameters and

each of these parameters can be optimized stochastically by minimizing the energy

of the system. By changing slightly the set of variational parameters α to α′ the

change of the trial wave function, within the linear approximation, can be written

as follows

|ΨT (α′)〉 ' δα0|ΨT (α)〉+

p∑
k=1

δαk
∂

∂αk
|ΨT (α)〉, (2.6)

|ΨT (α′)〉 =

p∑
k=0

δαkOk|ΨT (α)〉, (2.7)

O0 = 1 and Ok are the logarithmic derivatives defined for any configuration |x〉.
Therefore, the local estimator of the operator Ok can be formulated as

Ok(x) =
∂ ln〈x|ΨT (α)〉

∂αk
. (2.8)

Likewise, one can use the projection method which is the application of the Hamil-

tonian operator iteratively onto the trial wave function to extract the ground state

wave function. For one iteration we have

〈ΨT |(Λ−H)H(Λ−H)|ΨT 〉
〈ΨT |(Λ−H)2|ΨT 〉

≈ 〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

− 1

Λ

(〈ΨT |H2|ΨT 〉
〈ΨT |ΨT 〉

−
(〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

)2
)
.

(2.9)

for large enough Λ. Therefore, the energy after projection will be automatically

lower than before. With this in mind we can apply the projection to our un-

changed wave function and obtain the new projected wave function |ΨT (α)P 〉 as

follows

|ΨT (α)P 〉 = (Λ−H)|ΨT (α)〉. (2.10)

At this point, in order to ensure to obtain a lower energy, we impose that Eq.(2.7)

and Eq.(2.10) are equal s.t.

(Λ−H)|ΨT (α)〉 =

p∑
k=0

δαkOk|ΨT (α)〉. (2.11)
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By projecting each side with the k′ component we obtain

〈ΨT (α)|Ok′(Λ−H)|ΨT (α)〉 =

p∑
k=0

δαk〈ΨT (α)|Ok′Ok|ΨT (α)〉, (2.12)

for k’=0

〈ΨT (α)|(Λ−H)|ΨT (α)〉 = δα0 +

p∑
k=1

δαk〈ΨT (α)|Ok|ΨT (α)〉, (2.13)

and for k’ 6= 0

〈ΨT (α)|Ok′(Λ−H)|ΨT (α)〉 = δα0〈ΨT (α)|Ok′|ΨT (α)〉

+

p∑
k=1

δαk〈.ΨT (α)|Ok′Ok|ΨT (α)〉
(2.14)

after substituting the δα0 in the previous equation we obtain

p∑
k=1

δα,k

[
〈ΨT (α)|Ok′Ok|ΨT (α)〉 − 〈ΨT (α)|Ok′|ΨT (α)〉〈ΨT (α)|Ok|ΨT (α)〉

]
= 〈ΨT (α)|H|ΨT (α)〉〈ΨT (α)|Ok′|ΨT (α)〉 − 〈ΨT (α)|Ok′H|ΨT (α)〉.

(2.15)

by defining the covariance matrix as

Skk′ =
[
〈ΨT (α)|Ok′Ok|ΨT (α)〉 − 〈ΨT (α)|Ok′ |ΨT (α)〉〈ΨT (α)|Ok|ΨT (α)〉

]
, (2.16)

and the quantities

fk′ = 〈ΨT (α)|H|ΨT (α)〉〈ΨT (α)|Ok′|ΨT (α)〉 − 〈ΨT (α)|Ok′H|ΨT (α)〉, (2.17)

such that we arrive at differential equation

fk′ =

p∑
k=1

δαkSkk′ . (2.18)

One can easily prove that the quantities defined above are proportional to the

generalized forces which are the derivatives of the energy

fk′ = −1

2

∂E(α)

∂αk′
= −1

2

(〈ΨT |Ok′H +HOk′ |ΨT 〉
〈ΨT |ΨT 〉

+

〈|ΨT |H|ΨT 〉
(
〈ΨT |Ok′|ΨT 〉+ 〈ΨT |Ok′|ΨT 〉

)
|〈ΨT |ΨT 〉|2

)
.

(2.19)
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where E(α) = <ΨT |H|ΨT>
<ΨT |ΨT>

. Therefore, when there is no variation in the variational

parameters, i.e. the forces are zero, this implies that we are at the minimum of the

energy landscape. In the case of steepest descent (SD), the energy is optimized

by changing the parameters according to the calculated forces

αk −→ αk + ∆tfk. (2.20)

However, in the SR algorithm the variational parameters are obtained after in-

verting the Eq.(2.18) such that the new parameters are changed as

αk −→ αk + ∆t
∑
i

S−1
ki fi. (2.21)

The advantage of the SR algorithm is that all the variational parameters are

changed in a correlated way. In addition to that, since the change in the param-

eters is related to the inverse of the covariance matrix, the parameters change in

the directions such that the variance of the parameters are small which allows a

more stable algorithm compared to standard SD algorithm. More details about

the SR method can be found at [22, 21].

Computing the logarithmic derivatives, Ok, for any configuration needs some

attention. Calculation of these terms for any kind of variational parameters such

as the ones in the Jastrow part or in the Slater determinant can be found at [21]

in detail.

2.1 Variational Wave Functions

As already emphasized in the previous section, the key ingredient of VMC is the

construction of a proper wave function which can represent the ground state of

the model of interest in a reliable and computationally affordable way. Generally

the variational wave function is a correlated Ansatz including several variational

parameters which have to be optimized by minimizing the energy of the sys-

tem to approach the ground state, for example, by means of the SR approach

described above. In the upcoming sections we describe the correlated Ansatz
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that we use to approximate the ground state of strongly correlated lattice models

such as Hubbard and Hubbard-Holstein Models which we have introduced in the

introduction.

2.1.1 Variational wave function for Hubbard Model

In order to study the negative/positive-U Hubbard Model,while employing the

VMC method, we can construct a Jastrow-Slater wavefunction of the form

|Ψ〉 = JP|ΨT〉, (2.22)

where P is the projector fixing the particle number and J is the density-density

Jastrow correlator defined by

J = exp

(
−1

2

∑
i,j

vi,jninj

)
, (2.23)

where ni =
∑

σ niσ is the total number of particles in the ith site and vi,j depend

only on the distance between the lattice sites in order to satisfy the translational

and rotational invariance properties of the variational wave function. It has been

shown that, for the Hubbard model, it is particularly important to consider a

Jastrow factor where the pseudopotential vi,j is non zero even when the two

lattice points are at very large distance d, since in this way the correct low-energy

description, i.e correct charge fluctuations at small momenta are captured [23, 24].

Monte Carlo integration is done over the configuration space as described be-

fore. In the system of interest electrons have defined positions and spins along

the quantization axis Szi = ±1/2 which is the z-direction in our case. In order to

generate new configurations, one can perform Markov chains by considering the

moves (hoppings) defined by the Hamiltonian of the system of interest. There-

fore, the moves should consists of the hopping terms in the Hamiltonian such as

the kinetic part or the exchange part if present in the Hamiltonian. With this

limitation the VMC conserves the total number of particles N and the total pro-

jection Sztot =
∑
i

Szi = 0 of the spin in the chosen quantization axis. Thus, these

12



kind of projections are implicitly assumed in the Hubbard Hamiltonian defined

in Eq. (3.7). While sampling the most probable configurations in order to get the

ground state of the Hubbard model, it is also possible to consider the moves which

change the number of particles (remaining in the Sztot = 0 subspace). Therefore,

by means of charge fluctuations one can extend the sampling from canonical en-

semble (CE) to grand canonical ensemble (GCE) by enlarging the Hilbert space,

where the former consists of local moves conserving the particle number while

the latter includes moves allowing fluctuations of the particle number.

When we allow the particle fluctuations during the Markov chains, i.e. when

the grand canonical ensemble (GCE) is sampled, a fugacity term exp(−f
∑
i

ni)

has to be added to Eq. (2.23) in order to control the particle number. At half fill-

ing the fugacity is determined by the condition that Eq. (2.23) remains unchanged

(up to a constant) for the particle-hole symmetry:

ciσ → (−1)xi+yic†i−σ (2.24)

where xi, yi are the lattice coordinates of the site i. This implies that f =
1
N

∑
i,j vi,j after a straightforward calculation.

In some part of this thesis we will focus mainly on the attractive version of

the Hubbard Hamiltonian, i.e., we will study the negative-U Hubbard model.

Negative-U Hubbard model is known to be SU(2) symmetric at half-filling, i.e.,

there exist both the superconducting (SC) order and charge density wave (CDW)

order. On the other hand, away from half-filling the system is known to have

uniform SC order. In order to study the ground state properties of the negative-

U Hubbard model the antisymmetric part of the wavefunction, |ΨT〉, is chosen

to be the ground state of a mean-field (MF) Hamiltonian HMF that contains the

electron hopping, chemical potential and singlet s-wave pairing terms;

HMF = −t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
− µBCS

∑
iσ

niσ

+ ∆0

∑
i

(
c†i↑c

†
i↓ + h.c.

)
, (2.25)

where µBCS, and ∆0 are variational parameters. Such a Hamiltonian can be

written in terms of a 2Nx2N matrix, where N is the number of lattice sites, after

13



the particle hole transformation on the spin-down particles,i.e.

ci↑ = ci↑ ci↓ = c†i↓ (2.26)

After this operation one can write the mean field Hamiltonian as follows

HMF = c†H0c (2.27)

where H0 is a 2Nx2N matrix and c is 2Nx1 vector with its first N elements

correspond to spin up and the rest to spin down. We can diagonalize the HMF

and the eigenvalues are written in the diagonal matrix Λ = U†H0U. With this

operation we can write the mean field Hamiltonian in terms of new creation and

annihilation operators as follows

HMF = c†UΛU†c (2.28)

Therefore, for a system of Ne number of electrons we can write a non interacting

wave function by using the one particle eigenstates of the Hamiltonian:

|ΨT 〉 =
Ne∏
i=1

(
2N∑
j=1

Ujic
†
j)|0〉 (2.29)

where the 1st index of U is the orbital index and the second one is the particle

index. The ground state wave function is then constructed by occupying the

lowest eigenvalue orbitals and all the variational parameters vi,j, µBCS, and ∆0

are optimized via the stochastic-reconfiguration technique explained before.

2.1.2 Variational wave function for the Hubbard-Holstein

Model

In this section, we describe the correlated many body variational wave function

that we have used in the numerical calculations for the Hubbard-Holstein model.

In addition to the electrons we have also phonon degrees of freedom in the model.

Therefore, the configuration space that we sample is composed of both electronic

and phononic configurations. The variational Ansatz should include information

also about the phononic correlations in addition to the terms we have used also
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for the Hubbard model. We have used also in this case a Jastrow-Slater trial

function defined by:

|ΨT 〉 = J eeJ epP(Ne)|Φel
T 〉 ⊗ |Φ

ph
T 〉. (2.30)

Here, |Φel
T 〉 is the ground state of a quadratic mean-field Hamiltonian that contains

electron hopping and pairing of singlet type as follows:

HMF = −t
∑
〈i,j〉,σ

c†i,σcj,σ + h.c.− µ
∑
i,σ

c†i,σci,σ

+
∑
i,σ

(−1)Ri [∆CDW + ∆AF(−1)σ̄] c†i,σci,σ

+∆SC

∑
i

c†i,↑c
†
i,↓ + h.c., (2.31)

where µ, ∆CDW, ∆AF, and ∆SC are parameters that are optimized in order to min-

imize the variational energy via the stochastic reconfiguration method described

in the previous section. Ri = (Xi, Yi) indicate the coordinates of the site i in the

square lattice, and σ̄ = +1 (−1) for up (down) electrons. This parametrization

of the wave function provides a quite easy and flexible description of the ground

state since one can allow any order of interest in the wave function and compare

the energies of different states to understand, at least qualitatively, the possible

orders in the ground state wave function .For example, if one allows a CDW order

(when ∆CDW 6= 0 and ∆AF = ∆SC = 0), or antiferromagnetic Néel order (when

∆AF 6= 0 and ∆CDW = ∆SC = 0), or superconducting order (when ∆SC 6= 0 and

∆CDW = ∆AF = 0) one can compare the energies of these states and pin the order

that is most likely to occur in the exact ground state. Moreover, it is possible to

construct states with coexisting orders. The mean-field Hamiltonian described

above can easily be diagonalized to define the uncorrelated electronic state |Φel
T 〉,

which has the following form:

|Φel
T 〉 = e(

∑
i,j fi,jc

†
i,↑c
†
j,↓)|0〉, (2.32)

where the pairing function fi,j depends upon the variational parameters of the

mean-field Hamiltonian. The projector P(Ne) is used to fix the total number of

electrons Ne in the system.
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The uncorrelated phononic part in the wave function is then given by:

|Φph
T 〉 = eµph

∑
i n
ph
i eb

†
k=0|0〉 (2.33)

where µph is the fugacity term which controls the total number of phonons, nphi is

the total number of phonons on ith site and |0〉 is the vacuum state of phonons.

After expanding the exponential one can write the wave function as:

|Φph
T 〉 =

∑
Nb

eµph
∑
i n
ph
i

(
b†k=0

)Nb
Nb!

|0〉, (2.34)

where b†k=0 = 1/
√
N
∑

i b
†
i creates a phonon in the k = 0 momentum state (N

is the number of sites). Here, Nb denotes the total number of phonons. Denoting

by |nph1 , . . . , n
ph
N 〉 the (normalized) configuration with nphi phonons on the site i,

the uncorrelated phononic wave function can be written as:

|Φph
T 〉 =

∑
nph1 ,...,nphN

eµph
∑
i n
ph
i√

nph1 ! . . . nphN !
|nph1 , . . . , n

ph
N 〉. (2.35)

For a fixed phonon configuration |xph〉 = |nph1 n
ph
2 n

ph
3 .....n

ph
N 〉 the overlap of the

phononic wave function with the given configuration is given by:

〈xph|Φph
T 〉 =

eµph
∑N
i=1 n

ph
i√

nph1 !nph2 !nph3 !....nphN !
. (2.36)

Finally, the terms J ee, and J ep are density-density Jastrow correlators for the

electron-electron and electron-phonon correlations, respectively and are written

as follows:

J ee = exp

(
−1

2

∑
i,j

veei,jninj

)
, (2.37)

J ep = exp

(
−
∑
i,j

vepi,jnin
ph
j

)
, (2.38)
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where veei,j, and vepi,j are long ranged variational parameters as pseudo-potentials,

including the on site terms, that are taken to be translationally invariant such

that they depend only upon the distance between ith and jth site, i.e., |Ri−Rj|.
As before we will optimize each of these parameters independently via SR method

to reach the lowest possible energy which describes the ground state of the system.

We have considered that all the pseudo-potentials are taken to be symmetric,i.e.

for example, veei,j = veej,i and this is valid for all parameters in all Jastrow correla-

tors. It has been observed that the electron-phonon Jastrow term is fundamental

to obtain an accurate description when finite electron-phonon coupling term g/t

is used in the Hamiltonian. As for the Hubbard model described in the previous

section, the long range electron-electron Jastrow factor is fundamental to capture

the correct charge fluctuations of the ground state [23, 24].

As mentioned before, the configuration space that is sampled along the Markov

chain is defined by specifying both electron and phonon occupations on each site

such that we work in a basis where the number of phonons nphi is specified on

each lattice site, and also the number of electrons with spin-up and spin-down

configurations ni,σ. The uncorrelated phononic part is given by Eq. (2.35) and

contains a single variational parameter µph to control the total phonon number.

We do not need to include any cutoff in the number of phonons which comes as

one of the most important advantages of our wave function. With this represen-

tation it is very easy to identify the nature of the ground state by just looking at

the optimized variational parameters. For example, obtaining a finite ∆AF imme-

diately implies that the state displays AF order. It is worth to mention that the

present approach allows us to easily capture metastable states, with given phys-

ical properties: for example, by fixing ∆AF = 0, it is possible to obtain the best

paramagnetic state, even if the region of interest displays an antiferromagnetically

ordered ground state.

In the Markov chain, we update the phonon configurations by adding or remov-

ing one particle randomly at a given random site. In this way we are compatible

also with some of the terms of the Hamiltonian. Therefore, the Metropolis algo-

rithm for this wave function is defined as follows
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creation of a phonon at site i:

The configuration after creating a single particle at site i is |x′〉 =

|nph1 n
ph
2 n

ph
3 ....n

ph
i + 1...nphN 〉 and the ratio of the two configuration |x′〉 and |x〉

is

〈x′|J ep|Φph
T 〉

〈x|J ep|Φph
T 〉

=

e
µph

∑N
i=1 n

ph
i√

nph1 !nph2 !nph3 !..(nphi +1)!..nphN !

e
µph

∑L
i=1

n
ph
i√

nph1 !nph2 !nph3 !..nphi !..nphN !

R+
l =

eµph√
nphi + 1

R+
l . (2.39)

destruction of a phonon at site i:

The configuration after desrtoying a single particle at site i is |x′〉 =

|nph1 n
ph
2 n

ph
3 ....n

ph
i − 1...nphN 〉 and the ratio of the two configuration |x′〉 and |x〉

is

〈x′|J ep|Φph
T 〉

〈x|J ep|Φph
T 〉

=

e
µph

∑N
i=1 n

ph
i√

nph1 !nph2 !nph3 !..(nphi −1)!..nphN !

e
µph

∑L
i=1

n
ph
i√

nph1 !nph2 !nph3 !..nphi !..nphN !

R−l = e−µph
√
nphi R−l . (2.40)

Energy calculation of the phononic part:

The calculation of the energy matrix elements for the e-ph coupling term can

be computed as follows

〈x|b†i |J ep|Φph
T 〉

〈x|J ep|Φph
T 〉

=

√
nphi
〈x′|Φph

T 〉
〈x|Φph

T 〉
R+
l = e−µphnphi R+

l . (2.41)

〈x|bi|J ep|Φph
T 〉

〈x|J ep|Φph
T 〉

=

√
nphi + 1

〈x′|Φph
T 〉

〈x|Φph
T 〉
R−l = eµphR−l . (2.42)

where R+
i and R−i are the ratio of the Jastrow terms when a phonon is created
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or destroyed at site i respectively.

R+
i = exp

[
−
∑
l

(vepl,ini)

]
, (2.43)

R−i = exp

[
+
∑
l

(vepl,ini)

]
. (2.44)

Note that when there is a term related to the electron hopping, one has to

include also the ratios of the electron-electron Jastrow and also the electron-

phonon Jastrow since this process will change both these Jastrow terms. More

details about electron-electron Jastrow ratio and update calculations can be found

at [21].
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Chapter 3

Auxiliary Field Quantum Monte

Carlo

The auxiliary field quantum Monte Carlo (AFQMC) method is based on the

idea that the imaginary-time propagation e−βH|ΨT〉 of a trial wave function |ΨT〉
with a long-enough projection time β can project out the exact ground-state wave

function |Ψ0〉, provided that the trial wave function is not orthogonal to the exact

ground-state wave function, i.e., 〈ΨT|Ψ0〉 6= 0 [25]. One can construct the trial

wave function by filling the lowest energy orbitals of a mean field Hamiltonian

which can be constructed in a way similar to the VMC case described in the

previous section. The pseudo-partition function of a system with a Hamiltonian

H can be defined as [21]

Z = 〈ΨT|e−βH|ΨT〉 = 〈ΨT|(e−∆τH)2T |ΨT〉, (3.1)

where β is discretized into 2T time slices with an interval ∆τ in the R.H.S. of

the Eq.(3.1) given by β = 2T∆τ . Then the ground-state expectation value of an

operator O can be written as

〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

= lim
T→∞

〈ΨT|(e−∆τH)TO(e−∆τH)T |ΨT〉
Z

. (3.2)
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Generally an interacting Hamiltonian H consists of a one-body term defined as

HK which is written in terms of two creation and annihilation operators, i.e,

c†c as the kinetic term in the Hubbard Hamiltonian. In addition to the one

body term there can exist also a two-body term HV which is the term describing

the interaction between the particles and written in terms of 4 creation and

annihilation operators such as c†cc†c as in the interaction part of the Hubbard

Hamiltonian. These terms HK and HV generally do not commute. In order

to simplify this expression one can factorize the propagator e−βH in Eq.( 3.1)

using the Trotter-Suzuki decomposition [26, 27]. In this case the imaginary-time

propagator e−βH can be written as:

e−∆τH = e−∆τHKe−∆τHV +O(∆τ 2), (3.3)

e−∆τH = e−
∆τ
2
HKe−∆τHVe−

∆τ
2
HK +O(∆τ 3), (3.4)

where O(∆τ 2) is the systematic error due to the time discretization in the first

case whereas O(∆τ 3) is the error in the second symmetric case. Since there are

2T number of slices, the errors are accumulated and the resulting systematic error

is at most O(∆τ) in the first case whereas it is at most O(∆τ)2 in the second

case. When the second symmetric discretization is used the resulting expression

of the partition function can be written as follows

Z = 〈ΨT |e−
∆τK

2 e−∆τV e−∆τKe−∆τV e−∆τK ....e−∆τV e−∆τKe−∆τV e−
∆τK

2 |ΨT 〉. (3.5)

The expression of the partition function is composed of exponential terms that

are applied to a trial wave function consecutively as it can be seen in the above

equation. It can be shown that the application of a term containing an exponential

of a one-body operator to a Slater determinant transforms it to another Slater

determinant. However, application of an exponential term containing two-body

operator to a Slater determinant is much more complicated as it is not given by

a single Slater determinant. In order to simplify this operation one can write

the interaction term as a superposition of one-body term using the so called

Hubbard-Stratonovich transformation [28, 29] namely any two-body operator Ô

can be recast as the integration of one-body operators over auxiliary fields such

that

e
1
2
Ô2

=

∫ ∞
−∞

dσ
(e− 1

2
σ2

√
2π

)
eÔσ. (3.6)
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For the Hubbard model we decompose the Hamiltonian into two terms

HK = −t
∑
〈i,j〉,σ

(
c†i,σcj,σ + H.c.

)
− µ

∑
i,σ

c†i,σci,σ, (3.7)

HV = U
∑
i

ni,↑ni,↓. (3.8)

The most common choices for the HST are by coupling the fields either to the

charge or to the density as follows

e
γ
2

(ni,↑−ni,↓)2

=

∫ ∞
−∞

dxi√
2π
e−

1
2
x2
i+
√
γxi(ni,↑−ni,↓). (3.9)

e
γ
2

(ni,↑+ni,↓−1)2

=

∫ ∞
−∞

dxi√
2π
e−

1
2
x2
i+
√
γxi(ni,↑+ni,↓−1). (3.10)

where γ = U∆τ in the first case, whereas γ = −U∆τ for the second case. There-

fore, for positive values of U the second equation involves complex expressions.

Hirsch pointed out that since the occupation numbers are only 0 or 1 for fermions,

one can introduce Ising-like discrete fields, xi = ±1 [30], such that∏
i

e−∆τUni,↑ni,↓ =
∏
i

1

2
e
−∆τ

2
(ni,↑+ni,↓)

∑
xi=±1

exiγ(ni,↑−ni,↓), (3.11)

∏
i

e−∆τUni,↑ni,↓ =
∏
i

1

2
e
−∆τU

2
(ni↑+ni↓−1)

∑
xi=±1

exiγ(ni↑+ni↓−1).

where cosh γ = e
∆τ |U|

2 . After this operation the partition function is written as

Z =
∑
x=±1

〈ΨT |e−
∆τK

2 e−∆τV x2T e−∆τKe−∆τV x2T−1e−∆τK ....e−∆τV x2 e−∆τKe−∆τV x1 e−
∆τK

2 |ΨT 〉.

(3.12)

where V x
t indicates the HF transformed one-body potential at tth time slice with

set of fields x = {x1
t , x

2
t , ...x

N
t } for each lattice sites. The summation over the

auxiliary fields {xji} are performed by the Monte Carlo sampling. For AFQMC,

the sampling is done via Markov chains which include local field-flip operations.

By defining the propagator as

Px(t, 0) = e−
∆τK

2 e−∆τV xt e−
∆τK

2 ...e−
∆τK

2 e−∆τV x2 e−
∆τK

2 e−
∆τK

2 e−∆τV x1 e−
∆τK

2 . (3.13)
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one can write the single particle Green’s function as

Gt
j,i =

〈ΨT |Px(2T, t)c
†
icj|Px(t, 0)|ΨT 〉

〈ΨT |Px(2T, 0)|ΨT 〉
. (3.14)

which allows us to calculate all the ratios of determinants and all relevant ob-

servables in an efficient way [21]. Now the partition function can be written

as

Z =
∑
x=±1

〈ΨT |Px(2T, 0)|ΨT 〉 (3.15)

In order to calculate the ground state expectation value of any operator A we

compute
〈ΨT |A|ΨT 〉
Z

=

∑
x=±1〈ΨT |Px(2T, T )APx(T, 0)|ΨT 〉∑

x=±1〈ΨT |Px(2T, 0)|ΨT 〉
, (3.16)

In AFQMC applications it is possible that 〈ΨT |Px(2T, 0)|ΨT 〉 is negative which

results in so called negative sign problem. In this case the expectation values of

the operators will be weighted also with the sign. Therefore, expectation value

of an operator will be calculated as

〈A〉 =
〈AxSx〉
〈Sx〉

. (3.17)

where Sx is the sign of 〈ΨT |Px(2T, 0)|ΨT 〉. For the Hubbard model AFQMC

suffers from the negative-sign problem when U > 0, if the particle-hole symmetry

is broken. However, in several interesting cases one can choose an appropriate

HST transformation suitable for the model and study the ground state of the

model of interest with no sign problem. For this thesis, in the case of negative-U

Hubbard model we have used the transformation defined as 3.10 in which case

we use real auxiliary fields. Indeed, in the case of the attractive Hubbard model,

there is no sign problem whenever the number of up-spin particles equals the one

of the down-spin particles [21].

3.1 First Order Langevin Dynamics

Molecular Dynamics simulations are very useful tools to simulate classical many-

body systems consisting of N classical particles in a volume V by integrating the
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Newton’s equation of motion [31, 32]. The First order Langevin Dynamics (LD)

can be used to simulate N classical particles in a finite volume at temperature

T, the so called NVT ensemble [31]. Langevin equations are a set of stochastic

differential equations defined as follows

dR(t)

dt
= f(R(t)) + η(t), (3.18)

with R(t) = {x1, x2, x3....xN} being the coordinates of the particles and f(R(t))

being the classical force calculated as

fi = −∂V (R)

∂xi
,

and η(t) is a random noise mimicking the interaction of particles with the heat

bath. The average value of the noise vanishes and its components do not correlate

with each other and within different times such that

〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2Tδi,jδ(t− t′). (3.19)

It is very well known that after some equilibration time the system will converge

to the Boltzmann distribution [21]

P (R) =
1

Z
e−

V (R)
T , (3.20)

where Z is the partition function defined as:

Z =

∫
dRe−

V (R)
T . (3.21)

3.1.1 Accelerated Langevin Dynamics

One can accelerate the integration scheme of the stochastic differential equations

by means of a covariance matrix coupling the degrees of freedom and in this case

the equation of motion will be written as follows

dR(t)

dt
= S−1f(R(t)) + η(t), (3.22)
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where S is the acceleration matrix that for practical reasons of efficiency has to be

chosen as close as possible to the Hessian matrix whereas η(t) is a random noise

similar to the previous non-accelerated dynamics with the following properties:

〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2TS−1
i,j δ(t− t′). (3.23)

For obvious numerical reasons we need to discretize the differential equation de-

scribed in Eq.(3.22). Therefore, the discretized Langevin equation with R =

{x1, x2, ..., xL} is written as

Rn+1 = Rn + ∆S−1fn +
√

2T∆zn. (3.24)

where zn = S−1/2zn, and zn as normally distributed random numbers. S−1/2 is

obtained after diagonalizing the inverse matrix as follows

U †S−1U = Λ therefore S−1/2 = UΛ1/2. (3.25)

As it can be seen the dicretization results in an error which dominates as
√

∆

as ∆ → 0, however, the error in the probability distribution scales as ∆ [21].

Therefore, we expect an error of the order of ∆ for the physical quantities we

measure.

3.2 Path Integration via Accelerated Molecular

Dynamics on the Holstein Model

The Holstein model is one of the simplest models including electron-phonon cou-

pling, however, without taking into account the electron-electron correlation. It

is known that at half filling this model is describing polarons namely electrons

with the cloud of phonons [10]. The Hamiltonian is

H = −t
∑
<ij>σ

(c†iσcjσ + h.c) + g
∑
i

X̂ini +
∑
i

(Mw2
0X̂

2
i

2
+

1

2M
P̂ 2
i

)
. (3.26)

and we can decompose the Hamiltonian as a kinetic term

K̂ = −t
∑
<ij>σ

(c†iσcjσ + h.c) +
∑
i

1

2M
P̂ 2
i , (3.27)
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and a potential term as

V̂ = g
∑
i

niX̂i +
Mw2

0

2
X̂2
i . (3.28)

The non-symmetric decomposition of the propagator can be written as follows:

Z = 〈ΨT |e−∆τK̂e−∆τV̂ e−∆τK̂e−∆τV̂ e−∆τK̂ ....e−∆τV̂ e−∆τK̂e−∆τV̂ e−∆τK̂ |ΨT 〉.
(3.29)

We decompose also the kinetic part into pure electronic and pure phononic part

as follows:

e−∆τ(−t
∑
<ij>σ(c†iσcjσ+h.c)+

∑
i

1
2M

P̂ 2
i ) = e−∆τ(−t

∑
<ij>σ(c†iσcjσ+h.c))e−∆τ(

∑
i

1
2M

P̂ 2
i ).

(3.30)

We also define the electronic propagator as follows

e−∆τK̂el = e−∆τ(−t
∑
<ij>σ(c†iσcjσ+h.c)). (3.31)

Now inserting position identities,
∫
dX|X〉〈X| = 1, inside the partition function

we obtain

Z =

∫
dX1dX2...dXT+1〈ΨT ||XT+1〉〈XT+1|e−∆τK̂ele−

∆τ
2M

P̂ 2

e−∆τV̂ |XT 〉〈XT |e−∆τK̂el

e−
∆τ
2M

P̂ 2

e−∆τV̂ |XT−1〉〈XT−1|e−∆τK̂ele−
∆τ
2M

P̂ 2

e−∆τV̂ ....|X3〉〈X3|

e−∆τK̂ele−
∆τ
2M

P̂ 2

e−∆τV̂ |X2〉〈X2|e−∆τK̂ele−
∆τ
2M

P̂ 2

e−∆τV̂ |X1〉〈X1||ΨT 〉.
(3.32)

In this way we have inserted T+1 position identities for T number of time

slices. From now on by letting M=1, one of the terms corresponding to the

pure phononic part is evaluated as

〈X|e−
∆τ
2
P̂ 2|X ′〉 =

∫
dk

2π
〈X|e−

∆τ
2
P̂ 2|k〉〈k|X ′〉, (3.33)

with
∫

dk
2π
|k〉〈k| = 1 and since 〈X|k〉 = eikX we have the following expression∫
dk

2π
eik(X−X′)e−∆τk2/2 =

∫
dk

2π
e
−(
√

∆τ
2
k− 1√

2∆τ
i(X−X′))2

e−
(X−X′)2

2∆τ , (3.34)

by completing the squares as above and evaluating the shifted Gaussian integral

we obtain

〈X|e−
∆τ
2
P̂ 2|X ′〉 =

√
1

2π∆τ
e−

1
2

(X−X′)2
∆τ . (3.35)
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When the electron-phonon coupling is included, the wave function used is the

tensor product of electronic and phononic wave functions such that 〈ΨT | =(
〈Ψe

T | ⊗ 〈Ψ
ph
T

)
|. At the boundaries we assign a trial wave function for phonon

variables such that 〈Ψph
T |XT+1〉 = 1, and also 〈X1|Ψph

T 〉 = 1. With this in mind

the total partition function can be written as follows

Z =

∫
dX1dX2...dXT+1〈Ψe

T |e−∆τK̂el

√
1

2π∆τ
e−

1
2

∑
j

(X
j
T+1

−Xj
T

)2

∆τ e−∆τ
∑
j

w2(X
j
T

)2

2

e−∆τg
∑
iX

j
Tnj

√
1

2π∆τ
e−

1
2

∑
j

(X
j
T
−Xj

T−1
)2

∆τ e−∆τK̂ele−∆τ
∑
j

w2(X
j
T−1

)2

2 e−∆τg
∑
j X

j
T−1nj√

1

2π∆τ
e−

1
2

∑
j

(X
j
T−1

−Xj
T−2

)2

∆τ e−∆τK̂el ....e−∆τ
w2 ∑

j(X
j
2)2

2 e−∆τg
∑
j X

j
2nj

√
1

2π∆τ

e−
1
2

∑
j

(X
j
3−X

j
2)2

∆τ e−∆τK̂ele−∆τ
w2 ∑

j(X
j
1)2

2 e−∆τg
∑
j X

j
1nj

√
1

2π∆τ
e−

1
2

∑
j

(X
j
2−X

j
1)2

∆τ e−∆τK̂el|Ψe
T 〉.

(3.36)

this expression can be written in more compact way as follows

Z = C
∫

[dX] exp
[
− 1

2

∑
l,m,j

Al,mX
j
lX

j
m

]
〈Ψe

T |e−∆τK̂ele−∆τg
∑
iX

j
Lnje−∆τK̂el

e−∆τg
∑
j X

j
L−1nje−∆τK̂el ....e−∆τg

∑
j X

j
2nje−∆τK̂ele−∆τg

∑
j X

j
1nje−∆τK̂el |Ψe

T 〉
(3.37)

where

[dX] =
∏
j,l

dXj
l (3.38)

and

C =
( 1

2π∆τ

)NT
2

(3.39)

and the matrix A is defined as follows

Al,m =
1

∆τ
[2δl,m − δl,m+1 − δm,l+1] + ∆τw2

0δl,m (3.40)

It can be seen that there are Gaussian terms coupling the phonon fields at dif-

ferent time slices. This system can be imagined as a polymer with components

attached each other via spring with some spring constant. The spring constant is

increasing as the imaginary time step decreases and as the number of time slices

increases. Therefore, any tiny change in any phonon field will not change the

overall system in a significant way. Therefore, simulating such a stiff system with

a MC integration scheme might not be the most efficient way because within the

27



standard MC the phonon field updates can have only small local changes around

each site and time slice. It is also possible to propose many moves in many time

slices at once [33]. However, this scheme is very expensive since it requires the

computation of determinants from scratch, implying that it is not possible to

compute the ratio of determinants in a cheap way via Eq.( 3.14). Here we pro-

pose to update all phonon fields at once using the accelerated Langevin dynamics

by the computation of the forces [34] as formulated in Eq.(3.24). As described

above, the difficulty of sampling the partition function in our problem is due to

the harmonic part which we formulated as the A matrix above. Therefore, we

have chosen the acceleration matrix, defined as S in Eq.(3.24) to coincide with

the matrix A in Eq.(3.40) .

After all, we have T+1 time slices and for each time slice we have N number

of phonon fields. Therefore, we would like to calculate the corresponding forces

which are defined as

f jt = ∂Xj
t

ln(W(σ)) (3.41)

where f jt is the force corresponding to tth time slice and jth site at this time

slice, whereas Xj
t is the phonon field at tth time slice and jth site, and W(σ)

is the integrand in Eq.(3.37). The forces include a purely phononic term which

can be calculated very easily by differentiating the harmonic part of the partition

function, or by the A matrix defined above. In addition to this term, there is also

another term coming from the electronic part of the partition function. One can

calculate this term of the forces and any other electronic correlations very easily

via Eq.( 3.14). After the calculation of all forces for all lattice sites and the time

slices, the fields are updated according to the Eq.( 3.24). The expectation values

of purely phononic variables such as potential and kinetic energies are calculated

as

〈w
2X2

2
〉 =

T−1∑
i=2

w2X2
i

2
(3.42)

and the kinetic energy at a particular time slice is given by

− ∂

∂∆τ
〈X|e−∆τp2/2|X ′〉 = − ∂

∂∆τ

[√ 1

2π∆τ
e−

1
2

(X−X′)2
∆τ

]
(3.43)

〈p
2

2
〉 =

[ 1

2∆τ
− 1

2
(
X −X ′

∆τ
)2
]

(3.44)
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3.2.1 Test Projector Molecular Dynamics on Holstein

Model: Charge Structure Factor at Half Filling

It is known that the tight-binding square lattice model with nearest-neighbour

couplings has perfect nesting properties, i.e., there exists a vector Q = (π, π)

connecting opposite sides of the Fermi surface. As soon as a tiny amount of

electron-electron or electron-phonon correlation is switched on a gap opens up.

For the pure Holstein model it is expected that an infinitesimally amount of

electron-phonon coupling will lead the system to be charge ordered. Therefore,

measuring the charge structure factor at the nesting vector can be a relevant

check to test our newly formulated projector molecular dynamics algorithm. The

charge structure factor (SF) is defined as

Scdw(Q) =
1

N

∑
i,j

eiQ.(ri−rj)ninj (3.45)

By observing the iteration step (one iteration means computation of all forces

at every time slice for every sites and updating all the phonon fields at once)

we can observe the effect of the acceleration scheme in our LD algorithm. With

this in mind, we can monitor our results of the structure factor for w/t = 1 and

electron-phonon coupling strength g/t = 2.0 and g/t = 1.0 at ∆τ = 0.1 as a

function of the iteration steps. In figure 3.1 the convergence of SF is reported.

The two behaviours of the SF with and without acceleration matrix show that the

acceleration scheme fastens the convergence of SF and also significantly decreases

the auto-correlation time.

One important source of systematic error on the observables is given by the

LD time discretization. In figure 3.2 one can observe the convergence of SF for

different MD time steps. It can be seen that the convergence is fastened as one

increases the ∆MD as expected. In figure 3.3 the SF values as a function of MD

step are reported. The error due to discretization of LD equation turned out to

be less than few percent. Moreover this source of systematic error can be easily

controlled because the extrapolation to the zero MD step is very well behaved

and smooth.
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The same formulation of the pure Holstein model can be simulated via finite

temperature Determinant Quantum Monte Carlo (DQMC) technique in which the

imaginary time propagation provides quantities of interest at a fixed temperature

in the grand canonical ensemble instead of projecting the ground state of the

system. A very fist application of this technique was done in ref. [35] on the

Hubbard model and then later many studies have been done via this algorithm

also for the Holstein [33] and Hubbard-Holstein models [17, 18]. The connection

between DQMC and our projector MD/MC algorithm is that as the temperature

is decreased, i.e. imaginary time propagation is increased, the results of these

techniques should converge to the same values. With this in mind, we compared

our results of the structure factor with the one of Scalettar et al. for w/t = 1 and

electron-phonon coupling strength g/t = 2.0 and g/t = 1.0 at ∆τ = 0.1. Indeed

figure 3.4 shows the inverse temperature dependence of the structure factor on

an 8x8 cluster. One can observe the rapid convergence of our projector algorithm

to the zero temperature limit of the DQMC algorithm.
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Figure 3.1: Charge structure factor as a function of MD iteration step for
∆MD=0.025 and ∆τ=0.1 for g=1(up) and g=2(down) with and without acceler-
ation matrix on the 8x8 cluster
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3.3 Sign Problem Free Hubbard-Holstein Model

In the previous section the electron-electron interaction is not included in the

Hamiltonian. Now we are at the point of introducing the electron-electron corre-

lation via the onsite Hubbard interaction as follows

H = −t
∑
<ij>σ

(c†iσcjσ+h.c)+
U

2

∑
j

(nj−1)2 +g
∑
j

X̂j(nj−1)+
w0

2

∑
j

(
X̂2
j +P̂ 2

j

)
.

(3.46)

We can define electronic and phononic kinetic parts as

K̂ = −t
∑
<ij>σ

(c†iσcjσ + h.c), (3.47)

K̂ph =
w0

2

∑
j

P̂ 2
j , (3.48)

whereas the potential term of pure electronic, mixed and pure phononic as

V̂ =
U

2

∑
j

(nj − 1)2, (3.49)

V̂eph =
∑
j

X̂j(nj − 1), (3.50)

V̂ph =
w0

2

∑
j

X̂2
j . (3.51)

This time with the usual decomposition we obtain an expression of the single-time

propagator as resulting with an error O(∆τ)

P = e−∆τK̂e−∆τK̂phe−∆τV̂ e−∆τV̂ephe−∆τV̂ph . (3.52)

By using the HST transformation defined in Eq.( 3.6) the interaction can be

transformed as follows

e−∆τ U
2

(nj−1)2

=

∫ ∞
−∞

dσ
(e− 1

2
(σj)2

√
2π

)
ei
√

∆τUσj(nj−1). (3.53)

35



After this operation the whole partition function can be written as

Z =

∫
dX1dX2..dXT+1〈ΨT |xT+1〉〈xT+1||e−∆τK

∫ ∞
−∞

dσT

(e−∑
j

1
2

(σjT )2

√
2π

)
ei
√

∆τU
∑
j(nj−1)σjT e−∆τp2/2e−∆τg

∑
j X̂

j
T (nj−1)e

w0
2

∑
j(X̂

j
T )2 |xT 〉〈xT |e−∆τK∫ ∞

−∞
dσT−1

(e−∑
j

1
2

(σjT−1)2

√
2π

)
ei
√

∆τU
∑
j(nj−1)σjT−1e−∆τp2/2e−∆τg

∑
j X̂

j
T−1(nj−1)

e
w0
2

∑
j(X̂

j
T−1)2

...|x2〉〈x2|e−∆τK

∫ ∞
−∞

dσ1

(e−∑
j

1
2

(σj1)2

√
2π

)
ei
√

∆τU
∑
j(nj−1)σj1e−∆τp2/2

e−∆τg
∑
j X̂

j
1(nj−1)e

w0
2

∑
j(X̂

j
1)2|x1〉〈x1||ΨT 〉.

(3.54)

which can be written in a compact way as follows

Z =

∫
[dX]

∫
[dσ] exp

[
− 1

2

∑
l,m,j

(
Al,mX

j
lX

j
m + δl,m(σjl )

2
)]

×〈ΨT |
T∏
l=1

{
exp

[∑
j

(
−∆τgXj

l + i
√
U∆τσjl

)
(nj − 1)

]
exp (−∆τK)

}
|ΨT 〉,

(3.55)

where

[dX] =
∏
j,l

dX l
j, (3.56)

[dσ] =
∏
j,l

dσlj, (3.57)

are defining the integration variables over phonon and electron fields. And

Al,m =
1

w0∆τ
[2δl,m − δl,m+1 − δm,l+1] + ∆τw0δl,m. (3.58)

is the matrix defining the pure phononic part of the partition function expression

as for the pure Holstein model described in the previous section. It is easy to show

that the pure phononnic part can be diagonalized exactly with the expression as

follows: ∑
l,m

Al,mX
j
lX

j
m =

T∑
n=1

En(Xj
n)2, (3.59)

where

Xj
n =

√
1

T + 1

T∑
l=1

sin(wnl)X
j
l , (3.60)
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and the eigenvalues

En =
1

w0

(2− 2 cos(wn)) + ∆τw0, (3.61)

with

wn =
π

T + 1
n. (3.62)

One can see that in the Eq.( 3.55) both the electronic and phononic fields are

coupled to the density. In order to simplify this expression one can combine these

terms as follows

σ̄lj = σlj +
ig∆τ√
U∆τ

X l
j. (3.63)

The simplified expression after this shift can be written as follows

Z =

∫
[dX]

∫
[dσ̄] exp

[
− 1

2

∑
l,m,j

(
Al,mX

j
lX

j
m + δl,m((σ̄jl )

2 +
2ig∆τ√
U∆τ

σ̄jlX
l
j −

g2∆τ

U
(X l

j)
2)
)]

×〈ΨT |
T∏
l=1

{
exp

[∑
j

(
i
√
U∆τ σ̄jl

)
(nj − 1)

]
exp (−∆τK)

}
|ΨT 〉.

(3.64)

However, this operation will lead a complex shift in the boundaries of the integral

as

∫ ∞+ ig∆τ√
U∆τ

Xl
j

−∞+ ig∆τ√
U∆τ

Xl
j

. According to the Cauchy theorem the integration of any function

that is analytical inside a contour C is zero [36], namely:∮
C

f(z)dz = 0. (3.65)

where C is a closed contour over which the function f(z) is integrated. The

partition function in Eq.( 3.64) is analytical since there is no pole in the contour

C = C1 +C2 +C3 +C4 shown in the Figure 3.5. The shifted integration can be

moved back to the real axis in the case the integration
∫
C2+C4

∫
[dX]

∫
[dσ̄][....]→ 0

as R→∞. This condition is satisfied as long as the propagator is positive definite

and since the Gaussian term of the order of
∫
C2+C4

∫
[dX]

∫
[dy] exp(−R2/2)[....]

will suppress the other contributions as R → ∞ leading the overall integration

over the y-axis to be zero on C2+C4 shown in Figure 3.5. With this in mind now

we can shift all the [dσ̄] integrations to the real axis with real valued σ̄ variables.

By defining

A′ = A− g2∆τ

U
I, (3.66)

37



Figure 3.5: Schematic contour integration of a function integrated over a closed

contour C = C1 + C2 + C3 + C4. The shift

∫ ∞+ ig∆τ√
U∆τ

Xl
j

−∞+ ig∆τ√
U∆τ

Xl
j

corresponds to the

integrals in the imaginary y-axis with ia = ig∆τ√
U∆τ

X l
j.

the partition function can be rearranged as follows

Z =

∫
[dX]

∫
[dσ̄] exp

[
− 1

2

∑
l,m,j

(
A′l,mX

j
lX

j
m + δl,m((σ̄jl )

2 +
2ig∆τ√
U∆τ

σ̄jlX
l
j

)]

×〈ΨT |
T∏
l=1

{
exp

[∑
j

(
i
√
U∆τ σ̄jl

)
(nj − 1)

]
exp (−∆τK)

}
|ΨT 〉.

(3.67)

Any Gaussian integral including complex quantities can be evaluated as follows∫
exp

(
− 1

2
x.A′.x + iJ.x

)
dx =

√
(2π)N

det (A′)
exp

(
− 1

2
J.A′

−1
.J
)
. (3.68)

where X is an N dimensional vector such that X = {Xj
i } and J = 2g∆τ√

U∆τ
σ̄ with

σ̄ = {σ̄ji } where i, j indicating time slice and the site index respectively. Likewise,

after rearranging the terms in the exponential, one can integrate over the phononic
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fields X and obtain the following expression of the partition function

Z = C(∆τ)

∫
[dσ̄] exp

[
− 1

2

∑
l,m,j

(
Pl,mσ̄

j
l σ̄

j
m

)]

× 〈ΨT |
T∏
l=1

{
exp

[∑
j

(
i
√
U∆τ σ̄jl

)
(nj − 1)

]
exp (−∆τK)

}
|ΨT 〉,

(3.69)

where

C(∆τ) =

√
(2π)NT

det (A′)T
, (3.70)

Pl,m = δl,m +
∆τg2

U
[A′]−1

l,m, (3.71)

A′ = A− g2∆τ

U
I, (3.72)

[A′]−1
l,m =

2

T + 1

T∑
n=1

sin (wnl) sin (wnm)(En −
g2∆τ

U
)−1, (3.73)

det (A′) =
T∏
n=1

(En −
g2∆τ

U
). (3.74)

After all this operations we have a very simple expression for the overall partition

function. As it can be seen, whenever the matrix Pl,m is positive definite we have

a convergent expression for the partition function. This condition is satisfied as

long as

U ≥ g2

w0

(3.75)

One can also observe that after a particle-hole transformation defined in the

previous chapter we have

Z = C(∆τ)

∫
[dσ̄] exp

[
− 1

2

∑
l,m,j

(
Pl,mσ̄

j
l σ̄

j
m

)]

× 〈ΨT |
T∏
l=1

{
exp

[∑
j

(
i
√
U∆τ σ̄jl

)
(n↑j − n↓j)

]
exp (−∆τK)

}
|ΨT 〉.

(3.76)

which results in spin-up and spin-down parts of the partition function to be

complex conjugate of each other. Therefore, at half-filling this property will

allow us to have always positive weights. In this way, we will be able to perform

calculations without experiencing sign problem. In case some order is included
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in the trial wave function, this should also satisfy the condition that the spin-up

part will be the complex conjugate of the spin down part. Otherwise the sign

problem will affect the scheme. Antiferromagnetic order satisfies the previous

condition since after the particle hole transformation, we will obtain the required

condition to avoid the sign problem.

3.3.1 Test Sign Free Projector Molecular Dynamics on

Pure Hubbard Model at Half Filling

Before investigating the ground state properties of the Hubbard-Holstein model

one should perform some benchmark calculations in order to test the correctness

of our newly formulated approach. As emphasized in the case of the pure Holstein

model, the discretization of MD equations results in an error of the order of the

time step. Therefore, one should perform an extrapolation to the zero time

step which is the limit of unbiased sampling. In here, we would like to perform

benchmark calculations for the pure Hubbard model by comparing them with

AFQMC calculations which are not affected by the time step errors.

Figure 3.6 shows the kinetic energy, double occupation and the magnetization

of the pure Hubbard model at U =4 on the 12x12 lattice as a function of the

MD discretization time step for ∆τ =0.1 and β =12. The ∆MD =0 limit was

simulated by purely MC method described in the very first section of the Chapter.

It can be seen that we are able to simulate the pure Hubbard model with the extra

cost of ∆MD → 0 extrapolation. With this confidence, we can add the electron-

phonon coupling and perform ground state calculations for the Hubbard-Holstein

model which we will analyze in the upcoming chapters in detail.
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Figure 3.6: Kinetic energy, double occupation and magnetization at U=4 of pure
Hubbard model as a function of MD step on the 12x12 cluster. The ∆MD =0
values are obtained by AFQMC sampling.
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Chapter 4

Twist Averaging and Finite-Size

Errors in the Negative-U

Hubbard Model

4.1 Twist Averaging Boundary Conditions (TABCs)

for Lattice Models

Due to the computational cost, numerical simulations are done with finite number

of particles. However, the main aim is usually to understand the thermodynamic

properties of the systems. For example, for the simulation of electronic systems,

different number of particles are used in order to reach the thermodynamic limit

and extrapolate the observables of interest as a function of the system size. How-

ever, this task can be very difficult especially in the weak coupling (|U |/t � 8)

regime because in this limit allowed finite number of momenta plays a crucial

role, therefore, the results obtained with conventional periodic-boundary condi-

tions (PBC) may significantly depend on the system size which makes the ex-

trapolations to the thermodynamic limit very difficult. Due to this well known

drawback of PBC numerical techniques dealing with fermions are facing a big
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and challenging limitation. Thermodynamic limit extrapolations of the models

with simple Fermi surface, such as the half-filled Hubbard model as it is perfectly

nested, can be thought as less severe but, at weak coupling, even this regime of

interest can be very challenging.

Twist-averaged boundary conditions (TABCs) for Monte Carlo simulations

have been introduced in order to control the finite size effects for the first time in

continuum systems [37] and then adopted for lattice model [38, 39, 40, 41, 42, 43].

Brillouin zone integration is done via TABCs, therefore, physical quantities are

estimated by averaging them over several twisted-boundary conditions [44], rather

than limiting the calculation to a single set of k-points, such as PBC. It has

been shown that within TABCs approach one can substantially reduce finite-size

effects [37, 40, 41, 42, 43] and, within QMC, the cost of performing TABCs is the

same as performing several independent calculations with different twists. Thus

performing TABCs is particularly useful and appealing within QMC and, quite

recently, is becoming widely used in order to study the properties of strongly

correlated systems.

This approach has been used also for continuum models as reported in the

reference [37]. Likewise, on a system defined on a lattice, by indicating the

coordinates of the lattice site by Ri = (xi, yi) and the corresponding creation

operators. Twisted-boundary conditions correspond to impose [44]:

c†Ri+Lxσ
= eiθ

σ
x c†Riσ

,

c†Ri+Lyσ
= eiθ

σ
y c†Riσ

,
(4.1)

where Lx = (L, 0) and Ly = (0, L) are the vectors that define the periodicity of

the square lattice; θσx and θσy are two phases in the interval (−π, π) determining the

twists along the x and the y directions. The number of sites N is given by N = L2.

In order to preserve time-reversal invariance and translational invariance of the

BCS pairs, one can impose that θ↑ = −θ↓ in both directions. The expectation

value of any operator A in TABCs can be calculated by

〈A〉 =
1

NTABC

∑
θ

〈Ψθ|Aθ|Ψθ〉
〈Ψθ|Ψθ〉

. (4.2)

where θ = (θσx , θ
σ
y ), Aθ is the operator corresponding to A under the applied
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boundary condition Eq. (4.1), NTABC is the number of twist angles in the whole

Brillouin zone, and |Ψθ〉 is the uncorrelated wave function |ΨT 〉 for VMC or for

AFQMC, constructed by imposing a phase as in Eq. (4.1) to the trial wave func-

tion |ΨT〉 as well as to the Hamiltonian of the system. However, one should note

that all the wave functions with different θ share the same variational parameters,

thus, while performing the stochastic optimization scheme for VMC described in

Chapter 2 we average stochastically all the logarithmic derivatives resulting from

different twisted wave functions. Also one should note that the two-body part

and also the Jastrow correlator are not affected by the applied phase. In order

to perform TABCs, we typically take NTABC = 1088 points in the Brillouin zone.

Recently, by using finite-temperature determinant quantum Monte Carlo with-

out TABCs, the convergence of physical quantities to the thermodynamic limit

have been examined for the canonical ensemble (CE) and the grand-canonical en-

semble (GCE) [45],. It has been shown that finite size scaling via GCE provides a

convergence faster than CE. One of the reason can be that due to the fluctuation

of the particle number, the fermi surface of the system in the thermodynamic

limit can be constructed, i.e., Gibbs-free energy at U = 0 coincides with the one

in the thermodynamic limit [38]. Due to the fact that at zero temperature one

occupies only the electronic states within the given Fermi surface, and therefore,

it is extremely important for fermionic systems to allow an integration over many

momenta, this mimics the thermodynamic limit. Therefore, while doing TABCs

we will consider Brillouin zone integration also in the GCE.

4.2 Finite Size Errors in 2D Negative-U Hub-

bard Model

The achievements of numerical simulations are constantly increasing with very big

impact on theoretical and experimental condensed matter physics as they allow

reliable solutions of correlated models which cannot be solved analytically [46] and
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also providing accurate benchmark results about very important physical prob-

lems such as the emergent collective properties of quantum many-body systems,

like Bose-Einstein condensation (BEC) and superconductivity. An interesting as-

pect of the numerical simulations is that it is possible to compare directly the

results of the simulations with clean and realistic representations of Hubbard-

like lattice models obtained for instance with ultracold atoms trapped in optical

lattices [47, 48, 49, 50].

One of the simplest models describing the electrons subject to an attractive

interaction is the negative-U Hubbard model. This model is clearly relevant for

describing the standard mechanism of superconductivity within the Bardeen-

Cooper-Schrieffer (BCS) theory [51, 52, 53]. There is a huge amount of lit-

erature about both the ground state and the finite temperature properties of

this important model. However, we will mention a few of them related to the

purpose of this work. At finite temperatures, the phase diagram of the model

have been investigated by quantum Monte Carlo [54, 55, 56, 57, 58] and also

there are dynamical-mean-field theory calculations [59, 60] to study the BEC to

BCS crossover. Normal (non-superconducting) state properties have been studied

via finite-temperature Monte Carlo calculations [61], by focusing mainly on the

BCS-BEC crossover, and a work [62] was published investigating the zero tem-

perature quantum critical point between a metal and a superconductor. There

are also variational Monte Carlo (VMC) calculations at zero temperature where

the ground-state properties of the model as a function of the interaction strength

for several electron fillings [63, 64] having been studied.

The finite size effects are mostly pronounced at zero temperature and at weak

coupling, therefore, it is very important to explore efficient ways to reduce these

errors and benchmark them systematically. What we will do in this thesis is to

assess with some confidence the behavior of the superconducting order parameter

in this regime.
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Figure 4.1: s-wave variational parameter ∆0 as a function of n at U = −2.
MF calculations are performed on L = 12 and L = 384 clusters, and VMC
calculations are done in GCE without Jastrow correlator on L = 12 with PBC
and TABCs. The error bars in the VMC results are smaller than the symbol
sizes. (S.Karakuzu et al.,98,075156 (2018))

4.2.1 Size effects in mean-field approximation

Before investigating the finite-size effects in correlated systems, it is instructive to

study the finite-size effects within the single-particle theory. For this purpose, we

treat the attractive Hubbard model in Eq. (3.7) within the self-consistent mean-

field approximation by decoupling the interaction term into the s-wave pairing

terms.
c†i↑c

†
i↓ = 〈c†i↑c

†
i↓〉+ δc†i↑c

†
i↓,

ci↓ci↑ = 〈ci↓ci↑〉+ δci↓ci↑.
(4.3)

this approximation will allow the Hubbard Hamiltonian to be written as in the

Eq.(2.25) with ∆ = |U |〈c†i↑c
†
i↓〉 = |U |〈ci↓ci↑〉. One can write Eq.(2.25) in momen-

tum space

HMF =
∑
kσ

εkc
†
kσckσ + ∆

∑
k

(c†k↑c
†
−k↓ + c−k↓ck↑). (4.4)
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where εk = −2t(cos (kx) + cos (ky))−µBCS. After diagonalizing the equation via

the transformation below [65]

φ†k↑ = ukc
†
k↑ + vkc−k↓,

φ†k↓ = ukc
†
k↓ − vkc−k↑.

(4.5)

with the constraint that u2
k + v2

k = 1, one can show that the self-consistency

equation can be written as

1

|U |
=

1

L2

∑
k

1

2Ek

. (4.6)

n =
1

L2

∑
k

(
1− εk

Ek

)
. (4.7)

where Ek =
√

∆2 + ε2k .

In figure 4.1 the s-wave superconducting order parameter ∆0 is shown as a

function of electron density n where n = 1 corresponds to the half filling within

the mean-field approximation at U = −2 for L = 12 and L = 384. It has

been confirmed that the order parameter does not depend on the system size

for L > 384, implying that by using L = 384 we have already converged to the

thermodynamic limit. On the contrary, significant size effect, i.e., the oscillatory

dependence on n is observed for L = 12 which shows that we are far from the

thermodynamic limit for this cluster size.

One can obtain the same results by using the VMC and setting the Jastrow

correlator J in Eq. (2.30) to be unity, i.e., vi,j = 0. We have performed the VMC

calculations on L = 12 and L = 12 with 32×32 twist angles in the whole Brillouin

zone. One should note that, for the latter case, the number of the momenta in

the Brillouin zone coincides with that for L = 384. We have shown that the

results obtained by VMC in GCE without Jastrow part indeed well agree with

those retained with the mean-field ones.
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4.2.2 s-wave variational parameter

It is known that the mean-field calculations do not take into account the correla-

tions between the electrons. However, we can improve the accuracy for treating

the electron correlations by including the Jastrow correlations in Eq. (2.30). In

the figure 4.2 we have plotted the superconducting variational parameter ∆0 as

a function of the electron density n within VMC for the clusters of size L = 12

and L = 16 with different boundary conditions and in different ensembles. We

can see that when we use the fixed system size of L = 12, the results with a sin-

gle boundary condition show oscillatory dependencies on n, as in the mean-field

approximation for L = 12. On the contrary, within TABCs in both ensembles,

the oscillatory dependencies are significantly smoothed. Is has been also shown

that if we further increase the system size to L = 16, a sizable decrease of ∆0 is

observed in CE especially for the low-density regime, while the change in GCE is

almost negligible, implying that by using the GCE our results show smaller size

effects.

After confirming the significant reduction of the finite-size effects, we show in

Fig. 4.3 how the Jastrow correlator affects the magnitude of the optimal varia-

tional parameter. By using the same system size of L = 12 with the same number

of twist angles, the Jastrow correlator reduces the magnitude of the s-wave varia-

tional parameter by more than a factor of two for n = 1. Even when the electron

density n is small, the reduction of the variational parameter is not negligible,

showing the importance of the inclusion of the electron correlations. Note that,

this systematic comparison of the variational wave function with and without

Jastrow correlator for the entire doping range has been made possible only with

TABCs, because the results with a single boundary condition exhibit oscillatory

behaviours both in the mean-field approximation and the VMC.
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Figure 4.2: s-wave variational parameter ∆0 as a function of n at U = −2
calculated by VMC. The system size and boundary conditions used are indi-
cated in the figure. Here, GTABC represents the grand-canonical twist-averaged
boundary conditions, TABC the canonical twist-averaged boundary conditions,
PBC-APBC the PBC in one direction and APBC in the other, and PBC-PBC
the PBC in the both directions. The error bars are smaller than the symbol sizes.
(S.Karakuzu et al., 98,075156 (2018))

4.2.3 Pairing correlation function

Due to the fact that the wave function Ansatz explicitly breaks the U(1) symme-

try, we have observed a finite order or equivalently finite variational parameters

in the mean-field approximation or in the VMC calculations in finite-size systems.

In order to compare the results with the ones of the numerically exact AFQMC,

one has to calculate a correlation function because order parameters are zero by

symmetry. In order to examine the long-range superconducting correlation, we

define the s-wave pairing correlation function

φ2(L) =
1

2N

∑
i

〈
∆†i∆i+j + H.c.

〉
, (4.8)
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Figure 4.3: s-wave variational parameter ∆0 as a function of n at U = −2.
The results for MF on L = 384 and VMC on L = 12 with and without Jastrow
correlator in GCE with TABCs are shown. The error bars in the VMC results
are smaller than the symbol sizes. (S.Karakuzu et al., 98,075156 (2018))

where ∆†i = c†i↑c
†
i↓ and i + j indicates the site that has the largest distance from

site i for a given periodic system of system size N = L2.

In the figure 4.4 we have shown the calculated pairing correlation function

with VMC for various boundary conditions. As in the case of the variational

parameter discussed in the previous section, strong finite-size effects are observed

for L = 12 with single boundary condition. By further increasing the system size

to L = 16, TABCs with CE reduce the oscillatory dependence on n. By changing

the ensemble to GCE, the size effects are further reduced.

We have performed careful finite-size-scaling analyses for the pairing corre-

lation function for U = −2,−3, and −4 at half filling and at quarter filling in

Figs. 4.5 and 4.6, respectively. It can be seen that even at half filling it is almost

impossible to extrapolate the pairing correlation in the case of single boundary

conditions since the qualitative dependence on L changes as the system size grows
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Figure 4.4: Pairing correlations φ2 as a function of n at U = −2 calculated by
VMC. The system size and boundary conditions used are indicated in the figure.
The abbreviations are the same as those in Fig. 4.2. (S.Karakuzu et al., 98,075156
(2018))

especially when the value of |U | is small. Moreover, it is evident that the TABCs

with GCE represents the best available technique, much better than all the other

approaches based on CE. In particular, at quarter filling, severe system-size de-

pendencies of the correlation function are observed, implying that the finite-size

scaling with a single PBC is almost impossible within the feasible cluster sizes.

The extrapolated thermodynamic values of the superconducting correlations cal-

culated by VMC in GCE via TABCs are reported as follows: 0.01994(4) for

U = −2, 0.0497(4) for U = −3, and 0.0758(5) for U = −4 at half filling, and

0.00095(25) for U = −2, 0.0143(1) for U = −3, and 0.0378(4) for U = −4 at

quarter filling.

Figure 4.7 shows the pairing correlations obtained with AFQMC for L = 8 and

L = 12 as well as VMC in GCE on L = 12. As in the case of VMC, the results

with the single PBC shows significant size effects, efficiently reduced by TABCs

also within AFQMC. At variance with VMC, AFQMC results in the vicinity of

the half filling shows the value of φ2 becomes larger than that at half filling.
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This behaviour has been observed in the early QMC study on the attractive

Hubbard model [66], where the model can be mapped to the repulsive Hubbard

model under the magnetic field (see also Sec. 4.2.4) and can be attributed to the

spin-flop transition in the strong-coupling limit.

We show the finite-size scaling of the pairing correlation at half filling and at

quarter filling calculated by AFQMC in Figs. 4.8 and 4.9, respectively. As in the

case of VMC, the TABCs with GCE provide the better finite-size scaling than the

single boundary condition one also in the case of AFQMC calculations. At half

filling, the extrapolated values of φ2 to the thermodynamic limit are 0.0098(3)

for U = −2, 0.0222(6) for U = −3, and 0.0368(2) for U = −4.

At quarter filling, however, it can be seen that the system-size dependencies

of the correlation function are much problematic for single boundary and they

prevent us to perform a systematic extrapolation the thermodynamic limit. Re-

markably this is possible within the TABC approach. We have done the same

extrapolation also for the AFQMC calculations. The thermodynamic values of

superconducting correlations are given as 0.0009(3) for U = −2, 0.0088(1) for

U = −3, and 0.0266(2) for U = −4.

4.2.4 Attractive-repulsive mapping and order parameters

The attractive and repulsive routes of the Hubbard model are related to each other

and they can be mapped to each other via the particle-hole transformation [67]

c̃i↑ → ci↑, (4.9)

c̃i↓ → (−1)xi+yic†i↓. (4.10)

With the help of this mapping we can compare the results of the pairing correla-

tion function φ(L)2 of the negative-U Hubbard model with those of the transverse

spin-spin correlation function in the positive-U Hubbard model. Indeed, in terms

of the newly defined operators c̃iσ, c̃†iσ and ñiσ = c̃†iσ c̃iσ, the Hamiltonian can be
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written as H = H̃ − µN , where

H̃ = −t
∑
〈i,j〉,σ

(
c̃†iσ c̃jσ + H.c.

)
+ |U |

∑
i

ñi↑ñi↓

−
∑
i

[(µ− U)ñi↑ − µñi↓] , (4.11)

whereas φ2(L) can be written as the transverse spin-spin correlation function

M2
xy(L) =

1

2N

∑
i

(−1)xj+yj
〈
S+
i S
−
i+j + H.c.

〉
=

1

N

∑
i

(−1)xj+yj
〈
Sxi S

x
i+j + Syi S

y
i+j

〉
, (4.12)

where S+
i = c̃†i↑c̃i↓, S

−
i = (S+

i )
†
, Sxi = (S+

i + S−i )/2, and Syi = (S+
i − S−i )/2i.

Similarly, the charge-charge correlation in the attractive Hubbard model can be

mapped to the longitudinal spin-spin correlation in the repulsive Hubbard model.

In the present study, however, the charge-charge correlations are not considered

as they will not dominate over the pairing correlations for large distances away

from the half filling.

Since the attractive Hubbard model with µ = U/2 (the half-filled case) cor-

responds to the repulsive Hubbard model with zero magnetic field, the SU(2)

symmetric staggered magnetization M0 in the thermodynamic limit can be esti-

mated from Mxy(L) through the relation

M0 =

√
3

2
lim
L→∞

M2
xy(L), (4.13)

where the factor 3/2 within the square root is multiplied to complement the

contribution from the longitudinal spin-spin correlation which is not included in

M2
xy(L). The estimated values of M0 are as follows: 0.122(1) for |U | = 2, 0.183(2)

for |U | = 3, and 0.2347(4) for |U | = 4. For |U | = 2 and 4, these values are in

agreement with the previous study [43].

At quarter filling, the CDW order (the staggered magnetization along z axis

under the mangetic field in the repulsive case) disappears. Therefore we define

the s-wave order parameter as

Φs =
√

lim
L→∞

φ2(L). (4.14)
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Table 4.1: Comparison of the s-wave superconducting (antiferromagnetic) order
parameter M0 defined in Eq. (4.13) for the attractive (repulsive) Hubbard model
at half filling (n = 1). The number in each parenthesis in this work indicates the
uncertainty due to the extrapolation to the thermodynamic limit. DMET stands
for density-matrix-embedding theory. (S.Karakuzu et al., 98,075156 (2018))

n = 1
|U |/t 2 3 4
VMC (this work) 0.1729(1) 0.2731(7) 0.3371(7)
AFQMC (this work) 0.122(1) 0.183(2) 0.2347(4)
AFQMC [43] 0.119(4) – 0.236(1)
AFQMC [46] 0.094(4) – 0.236(1)
DMET [46] 0.133(5) – 0.252(9)

Table 4.2: Comparison of the s-wave superconducting order parameter Φs defined
in Eq. (4.14) for the attractive Hubbard model at quarter filling (n = 0.5). The
number in each parenthesis in this work indicates the uncertainty due to the
extrapolation to the thermodynamic limit. (S.Karakuzu et al., 98,075156 (2018))

n = 0.5
|U |/t 2 3 4
VMC (this work) 0.031(4) 0.1196(6) 0.194(1)
AFQMC (this work) 0.030(4) 0.094(1) 0.163(1)

The estimated values of Φs from the extrapolated values of φ2(L) are as follows:

0.030(4) for |U | = 2, 0.094(1) for |U | = 3, and 0.163(1) for |U | = 4.

Finally, the extrapolated values of the order parameters to the thermodynamic

limit at half filling (n = 1) and at quarter filling (n = 0.5) are summarized in

Table 4.1 and Table 4.2, respectively.

4.3 Conclusions and discussions

To conclude, finite-size effects on the s-wave order parameter and the pairing

correlation function have been examined for the attractive Hubbard model with

VMC and AFQMC methods. TABCs in GCE can reduce the size effects and

provide smooth extrapolation to the thermodynamic limit. TABCs in GCE also
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enables to systematically examine the effect of the Jastrow correlator as a function

of doping. It has been shown that the Jastrow correlator in VMC significantly

reduces the magnitude of the s-wave variational parameter already in the entire

doping range at U = −2.

We have presented the comparison of the pairing correlation functions for

different values of Hubbard interaction U obtained by VMC and by numerically

exact AFQMC. It has been found that the VMC provides good agreements with

the AFQMC for finite doping. At half filling, there is an “accidental” SU(2)

symmetry in the sense that it can be broken by a small perturbation such as the

next-nearest-neighbor hopping t′. Since the wavefunction breaks this accidental

SU(2) symmetry due to the inclusion of the s-wave pairing and the Jastrow

correlator, the agreement between the VMC and AFQMC is not excellent as

compared to the doped cases. The explicit breaking of the symmetry in the

wave function also explains the reason that the spin-flop transition observed in

AFQMC is not present in VMC.

However, defining the SU(2)-invariant variational wavefunction is in turn very

difficult, if not practically impossible. For example, even if one prepares the

antisymmetric part |ΨT〉 so that the order parameters to be SU(2) symmetric

by adding both s-wave pairing and CDW variational parameters, the Jastrow

correlator J breaks the symmetry. Besides the symmetry consideration, one

might be able to improve the quality of the variational wave function, for example,

by further taking into account the backflow correlations, as in repulsive Hubbard

models [68, 69].

The method for reducing the finite-size effects in the ground state developed

in this thesis is applicable for any correlated lattice models. The calculation

in GCE will be particularly useful for systematically investigating the doping

dependence of the d-wave superconductivity in the repulsive Hubbard model with

parameters relevant for cuprates. Furthermore, the strong reduction of the order

parameter in the entire doping range due to the Jastrow correlator suggests that

the electron-correlation effects beyond the mean-field approximation might not

be negligible even in the weakly attracting fermions in the low-electron-density
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regime. This implies that the method will be also promising to study the ground-

state properties of dilute electron systems. Such systems may include TiSe2

in the series of transition metal dichalcogenides [70], where its electronic state

is in vicinity of the semimetal-semiconductor transition and considered to be a

candidate of excitonic insulators, in which coherent electron-hole pairs are formed

and condensate spontaneously [71, 72].
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Figure 4.5: Finite-size scalings of the pairing correlation φ2(L) for (a) U = −2,
(b) U = −3, and (c) U = −4 by VMC at half filling with different boundary
conditions. The solid lines are the fit to the GTABC data. The extrapolated
value to the thermodynamic limit limL→∞ φ

2(L) is indicated at 1/L = 0 for each
panel. The abbreviations are the same as those in Fig. 4.2. (S.Karakuzu et al.,
98,075156 (2018))
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Figure 4.6: Finite-size scalings of the pairing correlation φ2(L) for (a) U = −2,
(b) U = −3, and (c) U = −4 by VMC at quarter filling with different boundary
conditions. The solid lines are the fit to the GTABC data. The extrapolated
value to the thermodynamic limit limL→∞ φ

2(L) is indicated at 1/L = 0 for each
panel. The abbreviations are the same as those in Fig. 4.2. (S.Karakuzu et al.,
98,075156 (2018))
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Chapter 5

Hubbard-Holstein Model by

VMC

Previous perturbation theory studies and Monte Carlo calculations on the 1D

Holstein model suggest that the ground state of the Holstein model displays CDW

order for any non-zero electron-phonon coupling when ω0/t <∞ [35, 73]. On the

other hand, several studies using density-matrix renormalization group (DMRG)

and Monte Carlo techniques have suggested that there exists a gapless phase with

superconducting correlations for small values of the electron-phonon coupling and

finite phonon energies, and it has been shown that this phase persists also when

the values of U/t is finite, namely for the Hubbard-Holstein model [74, 75, 76, 77,

78, 79]. In addition to these studies, in the limit of infinite dimensions, dynamical

mean-field theory (DMFT) has been employed to investigate the competition

between superconductivity and CDW order [80, 81, 16, 82], the effect of phonons

in the vicinity of the Mott transition [83, 15], the verification of the Migdal-

Eliashberg theory [14], the polaron formation, and the existence of the isotope

effect [84, 85, 86]. However, the Hubbard-Holstein model in two-dimensions has

been very little studied in the past, especially due to the sign problem that the

exact quantum Monte Carlo techniques suffer from [87, 17, 18] as explained in

detail in the 3rd chapter. Therefore, the Hubbard-Holstein model has been mainly

considered within mean-field approaches [88, 89, 12, 90] or by using perturbative
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methods [91, 92]. There is also a work done by using the Variational Monte Carlo

(VMC) method to study the interplay between electron-electron and electron-

phonon interactions in the Su-Schrieffer-Heeger (SSH) model [93]. More recently,

Ohgoe and Imada used the VMC approach to investigate the ground-state phase

diagram of the Hubbard-Holstein model at half filling and at finite doping [13].

Similar variational wave functions have been used to study the electron-phonon

coupling in multi-band models [94].

One of the important features of the phase diagram of the Hubbard-Holstein

model is that it displays transition between a charge densiry wave (CDW) (bi-

polaronic) and a Mott insulator at half filling and also the exciting possibility that

a metallic/superconducting phase may exist in between these two phases [95, 96].

In the antiadiabatic limit, namely when ω0/t → ∞, the Holstein model can be

mapped to the negative-U Hubbard model. Due to this property of the model

one can expect a direct transition between an antiferromagnetic (Mott) insulator,

that is stable for U > λ, and a CDW insulator, that is stable for U < λ. However,

in this limit, as explained in the previous Chapter, the CDW state is degenerate

with an s-wave superconductor, due to the SU(2) pseudo-spin symmetry of the

negative-U Hubbard model. In some studies the properties of the transition

between the two insulating states and the possibility of an intermediate phase

have been investigated. In one dimension, it has been reported that there exists a

metallic phase, with strong superconducting correlations, by DMRG studies [76,

77, 78]. It has also been shown that this intermediate region broadens with

increasing the phonon energy (up to ω0/t ≈ 5). On the other hand, the DMFT

calculations showed some results which are contradicting with the ones of DMRG,

claiming that there exists either a direct transition between CDW and Mott

insulator [16] or this intermediate phase is very tiny [82]. Not only in 1D but

also in 2D the situation is not clear with the current studies yet. One of the

few calculations on 2D Hubbard-Holstein model has been done in Refs. [17, 18],

in which they report some evidence for the existence of an intermediate metallic

region at finite temperatures at half filling. Unfortunately, away from half filling it

is almost hopeless to perform reliable calculations due to the sign problem which is

very severe, such that it prevents one from drawing conclusions. Therefore, in this
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thesis we would like to propose some other approaches to tackle the problem. The

VMC technique is one of the possibilities for which one needs to define suitable

wave functions as explained in the previous chapter. In this aspect, Ohgoe and

Imada have recently proposed the “many-variable” VMC wave function which

includes also phonon degrees of freedom [13, 97], and they showed the evidence

of a metallic (with weak superconducting correlations) phase between the CDW

and the Mott insulator at half filling. They also pointed out the presence of phase

separation when doping the CDW insulator, whereas, the ground state is found

to be uniform when doping the metallic phase.

In this thesis, in order to reduce finite-size effects to reach much faster the

thermodynamic limit, as explained in the 3rd chapter, we employ canonical TABC

with an average over Nθ = 576 points in the Brillouin zone in order to evaluate

the expectation value of the Hamiltonian or any other operator. In Fig. 5.1, we

show the size scaling of the energy per site when applying the TABC procedure at

half filling for U = 0, λ/t = 0.98, and ω0/t = 1, and we have compared the results

obtained by TABC with the standard cases with periodic-periodic and periodic-

antiperiodic boundary conditions. In all three cases, the optimized variational

wave functions have ∆SC 6= 0 (and ∆CDW = ∆AF = 0) and the extrapolated

values are all consistent (within few error-bars), and the obtained ground state

energy for all of the cases is E/t = −2.1725(1). Away from half filling, as shown

also in the previous chapter, size effects become even more pronounced and it

is very crucial to use TABC to extract accurate values of the observables in the

thermodynamic limit. In Fig. 5.2, we show the case at quarter filling when U = 0,

λ/t = 2, and ω0/t = 1. As one can see, the periodic-periodic boundary conditions

give scattered results. However, by averaging over twisted boundary conditions,

we obtain rather smooth extrapolation to E/t = −1.652(1). Also in the case

of the Hubbard-Holstein model we would like to emphasize the importance of

using TABC rather than using fixed boundary conditions, since the latter ones

imply huge size effects and require large clusters to reach accurate results in the

thermodynamic limit. With this useful tool in hand we are going to examine the

ground state properties of the model by considering relatively small clusters in

our numerical simulation, with nevertheless small finite-size errors.
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5.1 Results For The Half-filled case

In this section, we would like to show our numerical results for the half-filled case

n = Ne/N = 1 and then move to the doped region with n < 1. In Fig. 5.3,

we report the ground-state phase diagram of the Hubbard-Holstein model for

three values of ω0/t, i.e., ω0/t = 1, 5, and 15, at half filling. As it is shown in

the plot, we represent the phase diagram by three different phases. When the

electron-electron interaction is large compared to the electron-phonon coupling,

the ground state has long-range antiferromagnetic order so that the uncorrelated

part of the electronic wave function has ∆AF 6= 0. It can be seen that for all the

values of the phonon energies this phase is approximately bounded from below)

by the line. In one dimension by DMRG [76, 77, 78] and in two dimensions by

VMC [13] similar behaviours have been reported. On the other hand, for large

electron-phonon coupling, the ground state is a CDW insulator. In this case

the system has doubly-occupied sites (doublons) and empty sites (holons) and

they form a checkerboard pattern. When this charge modulation occurs a large

number of phonons are present on top of doublons, while no phonons are present

on empty sites. Due to this phonon cloud and localization the kinetic energy

of the electrons are reduced drastically so that they hardly hop around in the

lattice. Finally, between these insulators (antoferromagnetic and charge ordered)

there exists an intermediate superconducting phase with pairing correlations that

grow by increasing ω0/t. This phase with pairing correlations is limited to a small

region for weak couplings. However, for intermediate values of the phonon energy

ω0/t, it expands inside the region where U < λ. In the case of increasing ω0/t

further, the superconducting correlations get stronger and stronger, eventually

filling the whole CDW region. As it is mentioned before when ω0/t → ∞ the

system maps to the negative-U Hubbard model and therefore, the CDW state

returns into the game, being degenerate with the superconducting state due to

the emerging SU(2) pseudo-spin symmetry that relates the superconducting and

the CDW states as explained. Due to the fact that the density-density Jastrow

factor breaks this symmetry the degeneracy between SC and CDW breaks too.

Therefore, we cannot recover an exact degeneracy between these two states for

very large phonon energies within the VMC approach.
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We have found out that for ω0/t = 1 and large λ/t, the transition between

the CDW and the antiferromagnetic insulator is first order, since we are able to

stabilize both wave functions even if the stable phase gives the lowest variational

energy. For example, the variational parameters ∆AF and ∆CDW across the tran-

sition for λ/t = 4.5 are reported in Fig. 5.4. By decreasing λ/t, the local minima

disappear and the transition appears to be continuous. For λ/t = 2, which ap-

proximately corresponds to the tip of the superconducting region, CDW and anti-

ferromagnetic parameters vanish for U/t ≈ 1.2, see Fig. 5.4. For smaller values of

λ/t, a superconducting phase can be stabilized for small enough electron-electron

repulsions, with a small but clearly finite pairing term ∆SC. Indeed, we obtain

∆SC = 0.016(1) for U = 0 and ∆SC = 0.008(1) for U/t = 0.2, at λ/t = 0.98.

When we increase the phonon energy, this region of stability for the super-

conducting phase extends, intruding between the two insulators also when λ/t is

large. In Figs. 5.5 and 5.6, we report the behavior of the variational parameters

∆AF, ∆CDW, and ∆SC for ω0/t = 5 and 15. In the intermediate region, both ∆AF

and ∆CDW vanish, whereas ∆SC is finite. Notice that ∆SC is also finite inside the

insulating CDW region, which may be ascribed to the fact that superconducting

and CDW solutions become degenerate for ω0/t → ∞, and, therefore, at the

variational level, some energy gain can be obtained by mixing superconductivity

and CDW order, even when the phonon energy is large but finite.

5.2 Results For The Doped case

For the doped case we would like to assess the stability toward phase separation.

This effect has been found out in the repulsive-U Hubbard model and it has been

confirmed by different methods, even though its U dependence is still controver-

sial [98, 99, 100, 101, 102, 103, 104]. In the case of the pure Hubbard model the

phase separation occurs when it is more convenient to form hole domains since in

this case the energy loss due to the doped holes will be less. Likewise also in the

case of the Hubbard-Holstein model we can consider the formation of domains of

doublons in order to gain energy. In order to highlight the possible presence of
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phase separation in the Hubbard-Holstein model, it is very useful to consider the

so-called energy per hole [105]:

ε(δ) =
E(δ)− E(0)

δ
, (5.1)

where E(δ) is the energy per site at hole doping δ = 1− n. For a uniform phase,

ε(δ) has a monotonically increasing behavior with increasing δ from 0 to 1; by

contrast, phase separation is marked by the presence of a minimum of ε(δ) on

any finite-size clusters and a flat behavior (up to δc, the critical doping below

which phase separation occurs) in the thermodynamic limit. These facts can be

easily understood by considering that ε(δ) represents the slope of the line joining

(0, E(0)) to (δ, E(δ)) and that, in a stable uniform phase E(δ) is a convex function,

while phase separation implies (after Maxwell construction) a linear behavior of

E(δ) up to δc.

The results of the energy per hole are shown in Fig. 5.7. In the lower panel

of the figure one can see the behaviour of the energy per hole when U = 0,

ω0/t = 1, and different values of λ. When the electron-phonon coupling is small,

i.e., when doping the superconducting phase at half filling, the system does not

phase separate. In addition to that, the ground state remains superconducting

also when the electron density is n < 1. The uniform ground state is most evident

when ω0/t is large enough, since the superconducting signal is rather small in

the adiabatic limit and increases with ω0/t. In order to show this feature, we

present the results for ω0/t = 15 in Fig. 5.8. As in the case of the half-filled

Hubbard Holstein model, when the electron density is varied, it is very useful to

use TABC, since using one boundary condition (periodic in x and antiperiodic in y

directions in this case) gives rise to a strongly scattered behavior. On the contrary,

when we dope the CDW ordered phase for large values of λ/t, an infinitesimally

small hole doping leads to a charge instability, therefore phase separation occurs,

and the region of phase separation is increasing with λ. As for the case of an

antiferromagnetic phase, also in the presence of CDW order the injection of few

mobile holes that damage the charge periodicity is not compensated by a kinetic

energy gain. Thus, phase separation appears for sufficiently small hole doping.

In Fig. 5.7, we also show the results for λ/t = 2 and various values of U/t
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(upper panel). Here, the electron-electron repulsion opposes to the electron-

phonon coupling, leading to a reduction of phase separation until it eventually

disappears above a critical value of U/t (by further increasing the electron-electron

repulsion, antiferromagnetism settles down at half filling, thus leading again to

phase separation, as well known for the positive-U Hubbard model [105]).

In Fig. 5.9, we further show that, at finite values of the phonon energy, the

extent of phase separation depends upon the actual values of both U and λ.

Indeed, we observe that, for ω0/t = 1, phase separation is more pronounced for

U/t = 1.38 and λ/t = 3.38 than for U = 0 and λ/t = 2, even if both cases would

give the same effective interaction Ueff = U − λ. This fact can be explained by

the presence, at half filling, of a larger CDW parameter in the former case with

respect to the latter one.

Finally, we would like to compare the energy per hole for U = 0 and λ/t = 2

for different values of ω0/t, in Fig. 5.10. For all three cases, the ground state

at half filling has CDW order (see Fig. 5.3) and, therefore, phase separation is

expected to appear away from half filling. However, in the antiadiabatic limit as

ω0/t→∞, there is no phase separation, due to the fact that the Holstein model

maps to the negative-U Hubbard model, which has a uniform ground state away

from half filling. Indeed, we have shown that phase separation reduces as we

increase ω0/t, such that the position of the minimum in the energy per hole shifts

toward δ = 0. Within this finding we have reported another indication that our

variational approach correctly reproduces the expected physical behavior since the

large w0 limit of the Hubbard-Holstein model is corresponding to the negative-

U Hubbard model which has uniform ground state so no phase separation is

expected.

5.3 Conclusions

In conclusion, we have done accurate VMC calculations to extract thermodynamic

properties of the Hubbard-Holstein model. We have implemented an average
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over canonical twisted boundary conditions in order to decrease the finite-size

effects and we have observed a strong reduction of finite-size errors within this

approach. At half filling, we have found out that there exists a gapless phase

between the CDW and the antiferromagnetic insulator, as also recently reported

by different VMC calculations [13]. Moreover, within our approach, thanks to our

transparent parametrization of the variational wave functions, we can identify

the presence of superconducting correlations in the intermediate phase. When

the phonon energy becomes large, pairing correlations gets larger and the region

of superconductivity broadens into the region of CDW order. The emergence

of superconductivity in the half-filled Hubbard-Holstein model is an example on

how two competing tendencies such as antiferromagnetism, favored by electron-

electron interaction, and CDW order, favored by electron-phonon coupling may

lead to a third stable phase. In addition, we have also studied the effect of doping

the system with holes for both regimes where the half-filled ground state has either

CDW or superconducting order. In the case of doping a CDW phase we have

found out presence of a substantial phase separation region at small dopings and

this observation is quite similar to the case of a doped repulsive-U Hubbard [98,

99, 100, 101, 102, 103, 104]. Instead, in the case of doping a superconducting

region, the ground state remains uniform with superconducting order. However,

we have observed that the superconductivity is found to monotonically decrease

as one dopes the system. We remind that size effects are more pronounced away

from half filling and therefore, TABC are fundamental to reduce finite-size effects.

One of the main outcome of this work is that, within the Hubbard-Holstein

model, superconductivity is rather weak and is suppressed by the electron-electron

repulsion and also against electron doping. Indeed, since phonons are coupled to

the local electronic density in the Hubbard-Holstein model, the competition be-

tween the formation of superconducting pairs and the local Coulomb repulsion

U are very direct which almost immediately suppress the superconducting corre-

lations. In addition, superconducting pairing correlations are maximum at half

filling and are strongly reduced in the presence of hole doping. A different sce-

nario can be expected within the Su-Schrieffer-Heeger model [11], in which the
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lattice displacements are coupled to the hopping term. There should be no su-

perconductivity at half filling, since a Peierls insulator should take place for any

electron-phonon coupling at U = 0 as established in one dimension [106, 107, 19].

However, superconductivity can be expected to emerge upon doping, and it is

expected to be also more robust against Coulomb repulsion compared to the

Hubbard-Holstein model. Therefore, the Su-Schrieffer-Heeger model would pro-

vide a different mechanism for electron pairing. It can provide a more reasonable

scenario that is more appropriate for explaining the Cuprate and Iron-pnictide

superconductors. Variational investigations can be improved further by the use of

backflow terms, that have been introduced before in order to improve the quality

of the wave functions in the Hubbard model [68, 69].
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Chapter 6

Sign Free Hubbard-Holstein

Model by Accelerated First

Order Langevin Dynamics at

Half Filling

The Hubbard-Holstein model is a very good candidate model to investigate the

high temperature superconductivity since it contains both the electron-electron

interaction via Hubbard U and the electron-phonon coupling as explained in the

previous chapter. At zero temperature the ground state of the Hubbard model

is antiferromagnetically ordered for any finite value of U . When the phonons

with frequency w0 are present in the system the effective value of the electron-

electron repulsion is reduced as is expected to map onto the Hubbard model with

a dynamical effective repulsion with frequency w:

Ueff (w) = U − g2w0

w2 − w2
0

. (6.1)

In the previous chapter we have investigated this model by using VMC, and pub-

lished an almost complete description of its phase diagram [41]. However, the

reliability of the VMC method depends on the quality of the wave function used

in the calculations. It is sometimes possible to be stuck in the local minimas of
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the energy surface and wrong conclusions may be drawn. In order to obtain more

reliable results more accurate methods have been used. There are several works

to understand the finite temperature and ground state properties and the phase

diagram of the model via exact Monte Carlo calculations. Determinant quantum

monte carlo (DQMC) [35, 66] has been widely used for this purpose [17, 18].

However, due to the sign problem, even at half filling, it is almost impossible to

study the model in large clusters and make reliable extrapolations to the ther-

modynamic limit. In this chapter we will examine the ground state properties

of the Hubbard Holstein model via a statistically exact auxiliary field projec-

tor method combined with molecular dynamics which we developed in the 3rd

Chapter. In order to decrease the autocorrelation time we will use first order

accelerated Langevin dynamics as also pointed in the 3rd chapter. By using the

Cauchy integration we have shown that one can eliminate the sign problem at half

filling for U ≥ g2/w0. By defining the dimensionless electron-phonon coupling

strength parameter λ = g2/w0 we can examine the ground state properties of the

model in the region where there is no sign problem.

It is intuitive to think that, when the Hubbard interaction is large compared

to the electron-phonon coupling, the system is antiferromagnetically ordered. On

the other hand, when the electron-phonon coupling is large compared to Hubbard

interaction, the system is charge ordered. One of the open questions about the

Hubbard-Holstein model is whether there is a metallic or a superconducting region

when the Hubbard repulsion is of the order of electron-phonon coupling. In

the work presented in the previous chapter we have concluded that there is a

superconducting region for large w0 whereas this region gets smaller and smaller

as the w0 decreases. This conclusion is in support with another VMC study by

Ohgoe etal. [13] and also a DMFT study in 1D system [16]. However, DQMC

calculations with finite temperature claim the existence of a large metallic region

as the temperature in lowered [17, 18] even when the w0 is small.

The large phonon frequency limit of the Hubbard-Holstein model maps to the

attractive Hubbard model which has been examined in the 4th chapter in details.

For this chapter, we would like to examine the small frequency limit of the model

to investigate the open question explained in the previous paragraph. Therefore,
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as a starting point, we fix the value of the phonon frequency w0=1 for all the

simulations considered here.

6.1 Results

In order to access the information about the order parameters we examine the

charge and spin structure factor of the model for different values of the Hubbard

interaction and the electron-phonon coupling by fixing the projection time β = L.

As defined in the 3rd chapter the charge structure factor is

Scdw(Q) =
1

N

∑
i,j

eiQ.(ri−rj)ninj. (6.2)

whereas the spin structure factor is

Ss(Q) =
1

N

∑
i,j

eiQ.(ri−rj)SiSj. (6.3)

with the pitching vector Q = (π, π) at half filling and Si = 1
2
(ni↑−ni↓) is the value

of the spin at site i. In figures Fig. 6.1 and Fig. 6.2 the spin and charge structure

factors have been plotted respectively for different values of λ on a 12x12 cluster

for U=4. The structure factors at λ=0 for ∆MD=0 have been calculated by

AFQMC sampling as explained also in the 3rd Chapter. The abrupt decrease of

the spin structure factor has been observed whereas the charge structure factor

increases very slowly as λ increased. The same experiment can be done on the

antiferromagnetic order parameter of the system:

mAF (Q) =
1

N

∑
i

eiQ.riSi. (6.4)

In Figure 6.3 the antiferromagnetic order parameter as a function of the molecular

dynamics time step ∆MD has been examined for different values of the electron-

phonon coupling parameter λ for U=4 on the 12x12 cluster size and for λ =4

with different cluster sizes. The strong reduction of the order parameter has been

observed as λ is increased as explained in the previous chapter. On the other hand

very smooth and easy extrapolation of the magnetization can be observed at λ =4
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Table 6.1: Values of mAF and SCDW(Q) in the thermodynamic limits, for different
values of λ, U/t at ω0 = t.

U/t = 1 U/t = 4
λ/U mAF SCDW(Q) mAF SCDW(Q)
0 0.0280(2) – 0.238(3) –
0.25 0.0215(3) 0.838(4) 0.232(2) 0.433(7)
0.50 0.0138(3) 0.862(4) 0.202(4) 0.475(4)
0.75 0.0068(4) 0.890(5) 0.146(2) 0.557(9)
1 0.0009(1) 0.924(5) 0.031(2) 0.83(1)

for different cluster sizes. One can also see the very fast equilibration time as a

function of the MD step.

We have investigated the finite size scaling of the magnetization for U=1 and

U=4 in figure Fig. 6.4 and Fig. 6.5 respectively. The extrapolated values of the

magnetization and charge structure factor in the thermodynamic limit have been

sketched in the figure Fig. 6.6 and the corresponding values are in the Table 6.1.

It can be seen that as λ is increasing the value of the magnetization decreases

whereas the charge structure factor increases. When U ' λ we observe that the

value of the magnetization is almost zero. On the other hand, for any value of U ,

the charge structure factor increases as λ increases. However, it does not diverge

for U ' λ indicating that there is no coexistence of magnetization and charge

order up to U =4. Therefore, we do not observe a first order phase transition

between magnetization and charge order for U ' λ. In addition to that, there

is a region before the divergence of the charge structure factor, with neither

magnetic nor charge ordered correlations which can be attributed to a metallic

or superconducting region.

6.2 Conclusion

We have investigated the finite size and thermodynamic properties of the

Hubbard-Holstein model without sign problem at half filling for U ≥ λ. We
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Figure 6.1: Spin structure factor as a function of molecular dynamics time step
∆MD on the 12x12 cluster with periodic boundary conditions for different values
of electron-phonon coupling strength λ for U=4. At λ=0 the ∆MD=0 value of
the spin structure factor has been calculated by MC.

have found out that a finite λ decreases the effective value of the Hubbard in-

teraction. The total magnetization of a finite system is decreased whereas the

charge structure factor of this finite system is increased. In the thermodynamic

limit, we observe the decrease of magnetization and the increase of the charge

structure factor as λ is increased for both U =1 and U =4. However, we did

not observe signature of the divergence of the charge structure factor for U ≥ λ,

at least upto U =4. Therefore, there is no signature of a first order transition

for these values of Hubbard interaction. Also, we expect a region of metallic or

superconducting correlations when U ' λ extending beyond the U = λ line and

this region gets more broadened for U =1 compared to U =4.
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Figure 6.2: Charge structure factor as a function of molecular dynamics time
step ∆MD on the 12x12 cluster with periodic boundary conditions for different
values of electron-phonon coupling strength λ for U=4.
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Figure 6.3: Antiferromagnetic order parameters mAF at U/t = 4 as a function of
the MD time step ∆MD (a) on a 12 × 12 cluster with periodic boundary conditions
at βt = 12 and different values of the electron-phonon coupling strength λ. The
λ = ∆MD = 0 result (filled circle) in (a) is obtained with the standard Monte
Carlo algorithm for the Hubbard model, that is clearly consistent with the MD
data, extrapolated to ∆MD → 0. (b) same as (a) for λ = 4 with various system
sizes N = L×L with periodic boundary conditions, with βt = L. The inset shows
the equilibration of mAF to its average value (blue line) for the largest cluster as
a function of the MD time τ .
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Figure 6.4: Antiferromagnetic order parameters as a function of the linear size of
the cluster L with periodic boundary conditions for different values of electron-
phonon coupling strength λ for U=1. The U=0 are obtained by the same trial
wave function and put as a guide to eye.
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Figure 6.5: Antiferromagnetic order parameters as a function of the linear size of
the cluster L with periodic boundary conditions for different values of electron-
phonon coupling strength λ for U=4. The U=0 are obtained by the same trial
wave function and put as a guide to eye.
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Figure 6.6: Ground state properties of the Hubbard-Holstein model obtained by
extrapolating the antiferromagnetic order parameters to the thermodynamic limit
for (a) U=1 and (b) U=4. The solid lines in (b) are the fit to mAF and SCDW(Q)

of the form γ
(
λc−λ
U

)θ
with γ, θ, and λc being the fitting parameters determined

by the least-squares method. The parameters are found to be γ = 0.256(8),
θ = 0.39(5), and λc = λAF

c = 4.02(2) for mAF and γ = 0.407(2), θ = −0.286(12),
and λc = λCDW

c = 4.33(4) for SCDW(Q).
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Chapter 7

Conclusion

Understanding the mechanism of superconductivity is one of the most important

challenges of many theoretical, numerical and experimental physicists. Until now

all the efforts of the condensed matter community is still far from the target,

unfortunately. Nevertheless, numerical methods and computer simulations can

nowadays add something to the understanding of the superconductivity by us-

ing appropriate theoretical models. The Hubbard-Holstein model is one of such

models including strong correlations which have been found out in many high Tc

superconductors like Cuprates and Iron based materials. In addition to that, the

model includes also the electron-phonon coupling whose effect is more relevant for

BCS type superconductors but still under debate whether it may be important

also for strongly correlated superconductors. The Hubbard-Holstein model is a

quite simple toy model but still far away and difficult to be treated via analytical

methods. Numerical applications are promising in this sense since many models

can be tackled and studied with reasonable accuracy. Although there are also

some limitations such as finite size effects or difficulties in performing unbiased

calculations. In this thesis we have performed quantum Monte Carlo simulations

in order to understand the properties of strongly correlated models like the Hub-

bard and the Hubbard-Holstein models. As common to many numerical methods

one has to use finite clusters also in the Monte Carlo simulations. However, the

aim is to understand the thermodynamic properties of the model or the system in
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interest. The extrapolations to the thermodynamics limit via finite system sizes

are heavily used in the community to obtain reliable results of the bulk. Here,

by using twist-averaging boundary conditions we have eliminated the finite-size

errors in the negative-U Hubbard model first. We have shown that the twist-

averaging in grand canonical ensemble provides the best size scaling compared to

the canonical case for the attractive Hubbard model.

Then, we have investigated the ground state properties of the Hubbard-

Holstein model via variational Monte Carlo method by defining an appropriate

variational ansatz including the electron-phonon coupling with an appropriate

Jastrow correlator and a coherent representation of the phonon wave function.

Also in this case we have used twist-averaged boundary conditions but in this

case we have found more convenient to remain in the canonical ensemble. The

phase diagram of the model has been reported for different phonon frequencies

at half filling. One of the most surprising results of this work is the existence

of a superconducting region which is sandwiched between antiferromagnetic and

charge ordered regions. We have found out the enhancement of superconducting

correlations and the extension of this region as the phonon frequency is increased.

At finite doping the phase separation has been investigated when a charge ordered

state is doped with holes. We have observed that, as the phonon frequency is

increased, the phase separation region shrinks, which can be interpreted by stat-

ing that the Hubbard-Holstein model is being mapped to the attractive Hubbard

model as the phonon frequency is increased. As well known, the attractive Hub-

bard model has a uniform ground state and does not display phase separation.

This result clearly indicate that the variational wave function we constructed

represents this limit of the model correctly.

Motivated to establish the ground state properties of the Hubbard-Holstein

model we have decided to use an essentially unbiased auxiliary field quantum

Monte Carlo method. However, due to the so called large auto-correlation time we

have found that it is more appropriate to use the accelerated Langevin dynamics

to investigate the ground state of the model. However, the model was affected

by the so called sign problem even at half filling, preventing to obtain its bulk

properties at zero temperature. We have shown that it is possible to eliminate
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the sign problem using the Cauchy integration formula at half filling whenever

the Hubbard interaction U is larger than or equal to the electron-phonon coupling

strength parameter λ, namely when U ≥ λ . As a preliminary calculation, we

have fixed the phonon frequency to be relatively small compared to the electronic

bandwidth such that w =1. We have observed that the magnetization of the

system decreases whereas the charge structure factor increases as we increase λ

for a fixed value of the Hubbard interaction U . No signature of first order phase

transition between magnetization and charge ordering has been found out at least

up to U =4. However, we have observed that there exists a region which has

neither magnetic nor charge ordered correlations whenever U ' λ. This region

extends beyond the U = λ line and extends as the value of the U is decreased.

There are several things which can be done as future work after this thesis.

From the technical point of view, one might try to further develop the Langevin

dynamics and have more efficient simulations of the strongly correlated models.

Obviously, with this highly developed tools we plan to establish the phase diagram

of the Hubbard-Holstein model in a wide range of parameters, also considering

that out preliminary results show that the superconducting phase may be more

extended than the previous expectations. On the other hand, one can study

different models such as the so called Su-Schriffer-Heger (SSH) model which was

also mentioned in the 5th chapter. This model might be more suited for the

description of the superconductivity since the phonon degrees of freedom are

coupled to the hopping of the electrons as in the case of the original BCS picture.
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[89] R. Zeyher and M. L. Kulić, “Renormalization of the electron-phonon inter-

action by strong electronic correlations in high-tc superconductors,” Phys.

Rev. B, vol. 53, pp. 2850–2862, Feb 1996.

[90] A. Di Ciolo, J. Lorenzana, M. Grilli, and G. Seibold, “Charge instabilities

and electron-phonon interaction in the hubbard-holstein model,” Phys. Rev.

B, vol. 79, p. 085101, Feb 2009.
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