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Abstract

The understanding of the principles underlying the structure of fermion masses and

mixing is one of the important open problems in present day research in particle physics.

One way to address this problem is by means of a symmetry principle, as it has been

often the case in particle physics. Several efforts have been spent in particular to un-

derstand lepton masses and mixing by means of flavour symmetries. The first part of

this thesis deals with the following problem: can an unbroken flavour symmetry provide

an approximate description of lepton masses and mixing in the symmetric limit? Even

though many models are available relying on specific flavour groups, a comprehensive

analysis along the above direction is missing. We provide a complete answer to this ques-

tion in two different cases of neutrino mass generation, from the Weinberg operator or

from the seesaw mechanism. We allow the symmetry group to be as general as possible.

We show that the pattern of lepton masses and mixing only depends on the dimension,

type (real, pseudoreal and complex) and equivalence of the irreducible components (“ir-

rep decompositions”) of the flavour group representations. In other words, we will derive

relations between irrep decompositions and lepton mass patterns, and also between irrep

decompositions and possible structures of the PMNS matrix. As we will see, once the de-

composition of flavour group representation into irreducible components is specified, one

can write down the mass pattern and corresponding form of the mixing matrix without

knowing the explicit mass matrix.

First we assume that the light neutrino masses are generated by the Weinberg oper-

ator, and that the flavour symmetry directly constrains their mass matrix. Under this

assumption, we find that there are six viable cases which can account for the approximate

description of lepton masses and mixing in the symmetric limit. In all of these cases the

neutrino mass spectrum is either inverted hierarchical or the neutrino mass matrix is com-

pletely unconstrained (anarchy). In the context of SU(5) unification, only the anarchical

option is allowed. Therefore, if the present hint of a normal hierarchical spectrum were

confirmed, we would conclude (under the above assumption) that symmetry breaking

effects must play a primary role in the understanding of neutrino flavour observables.

Then, we consider the case in which light neutrino masses originate from the type I

seesaw mechanism and take into account also the transformation properties of the singlet

neutrinos under the flavour group. Such a “high-scale” is not always equivalent to the

previous “low-scale” analysis. We recover the conditions under which the equivalence of

the two analyses necessarily holds. When the two analyses are equivalent, the conclusions

obtained in the low-scale analysis hold. Otherwise, the high-scale analysis may provide

new results and a normal hierarchy of neutrino masses can be obtained in the symmetric

limit.

The last part of the thesis is devoted to the new measurements of the anomalous triple

gauge boson couplings in the electroweak sector. The goal is to find measurements leading
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to a large increase of the interference between the SM amplitude and the contributions

from CP -even dimension six operators in the effective field theory. In particular, in order

to overcome non-interference, due to the helicity selection rule, between the amplitudes

of the SM and the operator O3W in the tree level process of qq̄ → VTVT , in which

VT is transverse polarization state of weak gauge bosons, we propose two distributions

that will lead to a better accuracy. The first one is the angular distribution of the

interference cross section over the SM one, for the decay of two final state vector bosons.

The second one considers a beyond leading order effect from adding one hard jet in the

final state. Improvements compared to the traditional methods as well as LHC high

luminosity prospects will also be discussed.
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Chapter 1

General introduction

The past several decades have witnessed a tremendous success of the standard model

(SM) of particle physics. With the discovery of the Higgs boson at LHC in 2012, the

existence of the last missing building block of SM was confirmed: all SM predictions

have been successfully tested by a vast variety of experiments, with good accuracy and

agreement. Even though there is no doubt that the SM is one of the most successful and

powerful theory ever built, there is a wide consensus that it is not the ultimate theory of

everything for several reasons.

On the one hand, there are many experimental problems (hints), like neutrino mass,

dark matter, gravity, baryon asymmetry in the Universe, (gauge couplings and quantum

numbers unification, inflation), as well as some theoretical problems (puzzles), such as

the hierarchy problem, the naturalness problem, the strong CP problem, the cosmological

constant problem, (the flavour structure of the SM, the pattern of fermion masses and

mixing, the quantization of the electric charge), that cannot be explained by the SM. As

we know, the SM gauge principle governs all strong, weak and electromagnetic interactions

in terms of just three parameters, but the SM contains several other parameters that still

unexplained by the SM itself. This is particularly true in the Yukawa sector of the

SM Lagrangian which determines all matter interactions which give rise to the fermion

masses, mixing and their interactions with Higgs field. Can the Yukawa parameters be

understood in terms of more fundamental physics? Why there are such a big hierarchy

among fermion Yukawa couplings (more precisely fermion masses)? Why lepton mixing

is so different from quark mixing? An honest answer, at the moment, is we don’t know

why they appear as they do, but there can be following two possible rough expectations

to them:

• There might be undiscovered principle, like extension of the SM symmetries, that

explains the origin of all these seemingly free parameters and determine most of

them.

• Those free parameters are just accidental and Nature choose them as they are.

1
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The first possibility is obviously more appealing. Part of this thesis is devoted to its

study.

On the other hand, the SM is a low energy approximation of some UV theory. The

SM is a quantum field theory respecting a specific gauge symmetry, allowing to have a

spontaneous symmetry breaking, and satisfying the renormalizability condition. As an

effective field theory (EFT), it holds up to certain energy scale Λ, above which new physics

effects suppose to play a significant role. The null result from the new physics search in

LHC so far indicates that if a new physics interacts strongly with matter then there is wide

mass gap between the new physics scale and electroweak scale, which makes the treatment

of the SM as an effective field theory more robust. The power counting analysis indicates

that the effects of short distance physics is suppressed by the (E/Λ)D−4 with D > 4 on

the low energy observables, and our ignorance of new physics can be parameterized by

the non-renormalizable operators of the EFT. If the scale is high enough Λ � E then

the renormalizable part of the Lagrangian is a good approximation. If a theory like SM

written at the renormalizable level fails to explain a certain phenomenon, then we may

learn about the scale, at which the SM stops being a valid theory, by considering non-

renormalizable terms. A simple example of this is provided by neutrino masses, which

are zero by construction of the SM and can be generated by a dimension five operator,

the so called Weinberg operator [1], associated to the scale that can be as large as 1015

GeV.

1.1 The standard model in a nutshell

The SM is a theory that describes three out of the four forces known in Nature, namely it

is the theory of strong, weak and electromagnetic interactions of all elementary particles

known up-to-date, and it does not account for the gravity. The SM is defined by the

following two ingredients:

(i) Symmetries and spontaneous symmetry breaking (SSB) :

The gauge group of the SM:

GSM = SU(3)C × SU(2)L × U(1)Y, (1.1)

that is spontaneously broken to the subgroup

SU(3)C × U(1)EM. (1.2)

(ii) The representations of fermions and scalars under the gauge group:

In the SM, there are five types of fermions, which are the quark doublet, the up

quark singlet, the down quark singlet, the lepton doublet and the lepton singlet,

denoted by

qi, uci , dci , li, eci , i = 1, 2, 3 (1.3)
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respectively, and there is one scalar doublet

h = (h+, h0)T . (1.4)

Here the “singlet” and the “doublet” refer to SU(2)L. Each of these fermions comes

in three families and their transformation properties under the representations of

GSM are given in table 1.1. The local gauge symmetries determines which vec-

tor bosons exist in Nature and how they transform under the GSM. Note that we

are using Weyl spinor notation, all fermions are left-handed, even though the sub-

scripts are omitted, and their charge conjugated counterparts transform as a Dirac

conjugate of Right-handed fields ψcL ∼ ψR.

Fields (SU(3)C, SU(2)L)Y Fields (SU(3)C, SU(2)L)Y

qi = (ui, di)
T (3, 2)1/6 li = (νi, ei)

T (1, 2)−1/2

uci (3̄, 1)−2/3 eci (1, 1)1

dci (3̄, 1)1/3 h (1, 2)1/2

Gµ (8, 1)0 Wµ (1, 3)0

Bµ (1, 1)0

Table 1.1: The SM fields gauge quantum numbers.

Gauge invariance provides us with a set of constraints on the Lagrangian. Having a set

of charge assignments of the SM fields in table 1.1, all possible gauge invariant, of course

must first of all be Lorentz invariant, and the renormalizable terms in the Lagrangian

consisting of the SM fields and their covariant derivatives can be grouped into three pieces

LSM = Lgauge + Lflavour + LEWSB . (1.5)

Each of these parts are

Lgauge =
∑
ψ

ψ†iσµDµψ − 1

4

∑
V

VµνV
µν ,

−Lflavour = yUiju
c
iqjh+ yDijd

c
iqjh

c + yEije
c
i ljh

c + h.c. ,

LEWSB = (Dµh)†(Dµh) + µ2(h†h)− λ(h†h)2 ,

(1.6)

where

ψ = qi, u
c
i , d

c
i , li, e

c
i , V = Ga,Wi, B, hc = iσ2h

∗ ,

Dµ = ∂µ + igsG
a
µT

(3)
a + igW i

µT
(2)
i + ig′BµY ,

Vµν = ∂µVν − ∂νVµ + igv[Vµ, Vν ] ,

(1.7)

and traces in the gauge kinetic terms of non-abelian gauge fields with proper normalization

coefficients are understood. Even though all the SU(2)L invariant contractions between
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two doublets are not written explicitly, one can easily recover them in a similar way, for

example, as the contraction between the qj and h, which is given by εrsqjrhs with r and s

doublet indices. In this Lagrangian all gauge fixing terms, a topological term and ghost

terms are omitted.

1.2 The effective approach

Searching for new physics in the past as well as present-day efforts to go Beyond Standard

Model (BSM) basically relies on the two main techniques: the direct detection of new

particles from the collider experiment, as in the latest example of Higgs boson discovery

at the LHC; or the scrutiny of the deviations from the standard model predictions in some

interaction channels, which is most often described by the EFT approach. The fact that

no new particle has been discovered at the LHC so far is sending us a hint of the existence

of a rather big mass gap between the electroweak scale and a new physics scale, if there

is a strong interaction between the new particles and the SM particles. This suggests

the EFT method is valid and very useful, at least, up to several TeV energy before a

new particle is discovered, so one of the our goals will be concentrated on the path going

beyond SM by EFT analysis. This is the model independent and very powerful way to

describe the effect of high energy theory on low energy observables in terms of the low

energy degrees of freedom only, even without knowing what are the new heavy fields and

which is the details of full high energy Lagrangian, as long as one is focusing on low

energy phenomena.

We will use the EFT method in two directions: on the one hand, the flavour structure

of the SM and in particular in the lepton sector, by describing neutrino masses through

the Weinberg effective operator. We will also discuss limits of this approach when applied

to flavour symmetries. On the other hand, we will use EFT approach to parameterize

possible deviations from the SM by focusing on the measurements of electroweak triple

gauge boson couplings.

Let us now see greater detail the basics of the effective approach. Consider a funda-

mental theory, whose Lagrangian L(ϕ, φ) depends on light and heavy degrees of freedom,

ϕ and φ respectively. When we are working at low energy, E � Mφ ≡ Λ , we can de-

scribe L(ϕ, φ) by an effective Lagrangian LEFT(ϕ) = L (ϕ, φ(ϕ)), where φ(ϕ) is obtained

by the heavy fields equations of motion. LEFT(ϕ) is highly non-renormalizable and can

be expand in a series in the dimension of its operators:

LEFT(ϕ) = Lren(ϕ) +
∑
d>4

∑
i

C
(d)
i

Λd−4
O

(d)
i (ϕ), (1.8)

where Lren(ϕ) is the renormalizable part of the Lagrangian and the dimensionless ex-

pansion parameters C
(d)
i are called Wilson coefficients. They can be fixed, once the UV
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theory is specified, by comparing a certain physical quantity computed in the UV the-

ory with that obtained from the EFT calculation. In case the fundamental theory is

not known, experimental identifications of C
(d)
i gives a powerful hint about the physics

that generates the expansion, as it happened for the electroweak interactions of the SM,

hinted from the already known effective Fermi theory. The non-renormalizable part of

the Lagrangian accounts for the virtual effects of the exchange of heavy fields φ. We can

retain only the operators up to a certain dimension, depending on the accuracy we want

to reach. From this Lagrangian one can see that the higher the dimension of an operator

O
(d)
i , the more powerful the suppression of Λ in its coefficient. This means that lower

dimensional non-renormalizable operators are less suppressed and they can play a more

significant role in low energy phenomena than the higher dimensional ones.

What above can be applied to the SM, where the short distance physics effects on the

SM processes associated to heavier new physics can be effectively parameterized by adding

non-renormalizable operators, suppressed by the mass scales of new degrees of freedom, to

the SM Lagrangian. Such operators must be invariant under the SU(3)C×SU(2)L×U(1)Y

gauge transformations. The idea is then to consider the SM Lagrangian, plus suitable

non-renormalizable interactions, as the low energy limit of a theory assigned at some

high-scale Λ� v

Leff
SM = Lren

SM + LNR
SM, (1.9)

where Lren
SM is the SM Lagrangian and LNR

SM contains non-renormalizable operators involv-

ing the SM fields and invariants under the SM gauge transformations. The experimental

constraints on the coefficients in LNR
SM have to be taken into account when one tries to

construct a fundamental theory.

In the next sections we will deal with effective operators that are particularly relevant

experimentally, and so also for the construction of the theories beyond the SM.

Generally speaking , the efforts in this thesis attempt to address two broad questions

related to the rather different areas of research. First of all, we will find a general argument

to explain if lepton masses and mixing patterns can be approximately described in terms

of a flavour symmetry (together with symmetry breaking effects in the context of the

EFT description in terms of the Weinberg operator). We will provide a complete answer

to the following question: what are the flavour symmetries and their representations that

can give an approximate description of lepton masses and mixing? This question will be

studied in two cases: in the first case we will do low-scale analysis by assuming neutrino

masses are obtained from the Weinberg operator after electroweak symmetry breaking. In

the second case, we will assume that neutrino masses are originated from the type I seesaw

mechanism and take into account also the non-trivial transformation properties of singlet

neutrinos under the flavour group, and we will discuss the limits of the EFT approach in

this context. In the last part of the thesis, we direct our attention toward new physics

search at the LHC, by using EFT approach and giving proposals for how to make manifest

the new physics effects on the diboson production channels that get contributions from the
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triple gauge boson couplings. More specifically, we will investigate important features of

the amplitude, and provide a way to realize the interference between the amplitude of the

SM and that of CP-even dimension six operators generating anomalous triple gauge boson

couplings. And in the meanwhile we will corroborate our theoretical expectation from

the MadGraph5 simulation. The simple reason of studying the dimension six operators

is because they are the less power suppressed non-renormalizable operators relevant for

these processes, as mentioned, there is only one dimension five operator allowed by the

SM gauge symmetries and it is discussed for the generation of neutrino masses in the first

part of the thesis. In the remaining part of this introductory chapter, we will cover some

background knowledge of fermion masses in SM and beyond, flavour symmetry approach

to understand fermion mass hierarchy and mixing, and a short introduction to SM as an

EFT.

1.3 Fermion masses and mixing from flavour

symmetry

This section is devoted to a brief introduction to the neutrino mass generation mech-

anism, a discussion of the fermion mass hierarchy and flavour mixing problem, and a

short chronological overview of the prototypical model buildings to explain fermion mass

hierarchy and mixing.

1.3.1 Neutrino mass generation mechanism

Neutrinos are strictly massless in the SM, but the oscillation experiments indicate that at

least two neutrinos have non-vanishing and all have non-degenerate masses. As known,

there is a unique dimension five operator and it does contribute to the neutrino masses,

the Weinberg operator [1]
cij
2Λ

(lih)(ljh), (1.10)

where cij is a dimensionless coefficient and Λ is a mass scale associated to the degrees of

freedom integrated out. As usual, we are omitting SU(2) indices and understanding the

contraction lirεrshs. This operator violates individual and total lepton numbers by two

units. Moreover, the operator in eq. (1.10) provides a mass term for the neutrino after

electroweak symmetry breaking. In fact, once the Higgs boson gets a non-trivial VEV

〈h〉 = (0, v)T , we will get the Majorana mass term (1/2)mν
ijνiνj, in which the neutrino

mass matrix is

mν
ij = v2cij/Λ. (1.11)

Note that, differently from the charged lepton sector, neutrino masses are suppressed by

an additional v/Λ factor, and therefore we can understand the smallness of the neutrino

masses in terms of the heaviness of the scale Λ at which the operators is generated and
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lepton number is violated. This approach is completely general as long as the new physics

accounting for neutrino masses lies above the EW scale (and the lowest order operator in

eq. (1.10) indeed dominates).

In the context of a bottom-up approach, let us study whether this unique dimension

five operator can be obtained from renormalizable interactions at the tree level. There

are two possible ways to connect external legs of the tree level Feynman diagrams by the

line of a new particle N , shown as in the figure 1.1.

Figure 1.1: Possible mediators to generate Weinberg operator at tree level.

The possibility (1) requires the new heavy degree of freedom N couples to lepton

doublet and Higgs field in Lorentz invariant and GSM-invariant way. To have Lorentz

invariant interaction N must be a fermion. Since li and h are transforming as doublets

of SU(2), and 2× 2 = 1 + 3, N can be a either singlet or a triplet of SU(2). Obviously

N is a colour singlet and has zero hypercharge, so its quantum numbers can be either

(1, 1)0 or (1, 3)0 under GSM in the notation (SU(3)C, SU(2)L)Y. An insertion of a field in

the first kind is called type I seesaw mechanism, which will be discussed in some details

below and as we will see in this case N is exactly νc; while the second option (1, 3)0 for

N is called type III seesaw mechanism.

In the possibility (2), first of all, Lorentz invariance requiresN to be a scalar. Moreover,

it is a colour singlet and has hypercharge Y = 1. As far as the SU(2) transformation is

concerned, N is in principle either a singlet or a triplet. The possibility of being singlet

is excluded because the one of the two vertex has a form εrshrhsN which is identically

zero. So N must have a quantum number (1, 3)1. This is called the seesaw mechanism of

type II.

Let us now review in great detail the type I seesaw in the context of EFT. If GSM

singlet neutrinos νci are added to the SM, then Yukawa interactions for the neutrinos are

allowed, in the form

yNij ν
c
i ljh+ h.c. . (1.12)

The later generate a neutrino Dirac mass term mN = yNv after electroweak symmetry

breaking (EWSB). Now, this mass term is proportional to electroweak scale and thus, if

it was the only source of neutrino masses, it would be characterized by extremely small

couplings. While this is a logical possibility, it is possible to account for the smallness
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of neutrino masses by taking into account that in the presence of gauge singlets, we can

write an explicit mass term for them

1

2
Mijν

c
i ν

c
j ⊂ Lmass

SM+νc . (1.13)

This is the only gauge invariant mass term allowed by the SM gauge symmetries and

it is not related to the Higgs mechanism and the EWSB scale. Singlet neutrino masses

can be arbitrarily large even in the limit v → 0, in which all the other particles’ masses

vanish. Let us suppose this is the case, M � v. We can then consider an effective field

theory below the scale M , in which the effect of the singlet neutrinos is described by the

presence of the non-renormalizable operators. Apart from the kinetic term, the terms in

which νc appear in the Lagrangian are

1

2
Mijν

c
i ν

c
j + yNij ν

c
i ljh+ h.c. ⊂ Lren

SM+νc . (1.14)

The equation of motion from this Lagrangian, up to small correction from the kinetic

term, is
∂L
∂νci

= Mijν
c
j + yNij ljh = 0, (1.15)

leading to νci = −(M−1yN)ijljh. Plugging this back to the eq. (1.14) we end up with

eq. (1.10), where
cij
Λ

= −(yTNM
−1yN)ij . (1.16)

Combining eq. (1.16) with eq. (1.11) we will get neutrino mass in terms of the Dirac and

Majorana mass matrices, mN and M ,

mν
ij =

cij
Λ
v2 = −(mT

NM
−1mN)ij. (1.17)

This result holds at the tree level, and large logs from the computation of radiative cor-

rections may modify it. The proper way to address the problem is to use renormalization

group (RG) equation: first calculate cij/Λ in eq. (1.16) at the high-scale, then use RG

equation to run the coefficient down to the electroweak scale, then keep running until mν .

There we compute neutrino masses by plugging the runned coefficient into eq. (1.17).

The discussion above shows that singlet neutrinos, also called right-handed neutrinos,

are the particular example of high energy physics that leads to the operator in eq. (1.10).

Note that in the type I seesaw mechanism there could be arbitrary number of gauge

singlets νci , but in order to generate the observed neutrino mass square differences they

have to be not less than two, which is necessary to obtain at least two neutrinos with

non-vanishing masses.

As it was pointed out before, this is not the only way to achieve Weinberg operator

by integrating out the heavy particles at the tree level. Similar procedures can be used

to obtain the expressions for the light neutrino masses in the context of the extension of
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SM with scalar triplets or fermion triplets.

1.3.2 The SM flavour puzzle

The terminology “flavour” in particle physics was proposed by Harald Fritzsch and Mur-

ray Gell-Mann in 1971 when they were trying different flavour of ice-cream in the Baskin-

Robbins ice-cream store in Pasadena [2]. Most probably they were inspired by the fact

that ice-cream has both colour and flavour and so do quarks, since the terminology was

first used in the context of the quark model of hadrons. Of course, leptons also come with

different flavours but not with colours, and flavour physics covers the properties of both

sets of fermions. Since then both quarks and leptons have been flavoured, and the flavour

has commonly used in particle physics community to refer to the copies of fermions which

have the same gauge quantum numbers under the SM gauge group. In some occasions it

is also interchangeably used as family.

It is apparent from the expression of the SM Lagrangian in eq. (1.5) that, in the absence

of flavour part, the Lagrangian possesses a global symmetry U(3)5×U(1)H acting on the

SM matter fields as

qi → U q
ijqj, uci → Uuc

ij u
c
j, dci → Udc

ij d
c
j ,

li → U l
ijlj, eci → U ec

ij e
c
j, h→ eiαHh ,

(1.18)

where U q, Uuc , Udc , U l, U ec are 3×3 unitary matrices and αH ∈ R. These transformations

correspond to rotations in the flavour space. Thus, as far as only gauge interactions are

concerned, all fermions of a certain type are equivalent. What allows to tell the different

family is the Yukawa couplings. In fact, the flavour part of the Lagrangian explicitly

breaks U(3)5×U(1)H , and it is straightforward to show that this symmetry is broken to

a residual symmetry U(1)5. Of all these U(1) symmetries, one of them turns out to be

the one associated to the hypercharge, which is gauged. The others are called accidental

symmetries of the SM, which are identified with three individual lepton numbers Li and

a baryon number B. Neutrino masses, if arising from the eq. (1.10), represent a source

of breaking of total lepton number. So, the smallness of the neutrino masses is expected

to be the associated with the breaking of total lepton number, at high energy, by the five

dimensional operator.

Because of the breaking of U(3)5 × U(1)H , the flavour degeneracy is lost, and specific

pattern of masses and mixing is generated. The peculiar pattern of fermion masses and

mixing originated from the breaking of U(3)5 symmetry is one of the long-standing puzzles

in the SM. Up to now, it still remains unsolved.

The SM contains thirteen dimensionless flavour parameters, which are nine quark

and charged lepton Yukawa couplings, and the three quark mixing angles and one CP-

violating phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix VCKM. Once we add

neutrino masses to the SM, we would at least have another seven flavour parameters:
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three neutrino masses, three mixing angles, one CP-violating phase if neutrinos are Dirac

particle or there are three such phases if they are Majorana particle as predicted in our

EFT set-up. A full understanding of flavour in the SM therefore requires to unveil the

possible origins of at least twenty flavour parameters and of their values.

To illustrate the issue and its importance, let us see flavour part of the SM in more

details. According to the Higgs mechanism, all charged fermions acquire masses propor-

tional to their Yukawa couplings and to the Higgs vacuum expectation value (VEV) v,

that is mf = vyf . All the flavour parameters in the quark sector have been measured

with very good accuracy, but for the purpose of this introduction it is enough to show

their orders of magnitudes as follows [3]

yt ∼ 1, yc ∼ 10−3, yu ∼ 10−5,

yb ∼ 10−2, ys ∼ 10−4, yd ∼ 10−5,

yτ ∼ 10−2, yµ ∼ 10−4, ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δCP ∼ 1. (1.19)

There are only two of these parameters that are of O(1), one is the top-Yukawa coupling

and other is the CP-violating phase. All the other flavour parameters exhibit hierarchies

as their values span six orders of magnitudes.

As for the lepton sector, in the past when the SM was built, neutrinos were expected to

be massless particles due to the simple fact that right-handed neutrinos do not take part

in weak interaction and no experiment observed them; later on, in order to account for

the evidence from oscillation experiments, non-zero masses and a mismatch between their

flavour eigenstates and mass eigenstates needed to be introduced. Neutrino masses and

mixings add new features to the SM flavour puzzle. The accuracy in the determination

of flavour parameters in the leptonic sector is getting better with the progress of the big

experimental study.

One of the parameters that still needs to be determined has to do with the ordering

of the neutrino masses. The first two masses m1 and m2 are defined to be the ones

with the smallest squared mass difference, with m1 < m2 by definition. The third mass

m3 either bigger or smaller than m1, m2. Correspondingly, if we denote ∆m2
ij ≡ m2

i −
m2
j , m

2
31 can have both signs. The sign of ∆m2

31 = m2
3 − m2

1 has not been fixed yet,

although the atmospheric mass square difference ∆m2
atm = |∆m2

31| has been determined

by neutrino oscillation data. So there are two possible mass hierarchies: normal hierarchy

(or ordering) if m3 > m2 > m1 or inverted hierarchy if m2 > m1 > m3. Note that there

is a possibility of having quasi-degenerate spectrum that occurs when all three neutrino

masses are much larger than both solar and atmospheric mass square differences, namely

m2
i � ∆m2

� ,∆m
2
atm. As we know, neutrino oscillation experiments cannot provide any

information about the absolute mass scale of the neutrinos. The neutrino mass scale

can be obtained at least in three different ways: from the end point of the beta decay
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spectrum, from the neutrinoless double β decay, and from cosmological observations.

The lepton mixing matrix UPMNS is also known as Pontecorvo–Maki–Nakagawa–Sakata

matrix (PMNS matrix). In the standard parameterization it is given by

UPMNS = R(θ23)R(θ13, δCP)R(θ12) ,

=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 ,
(1.20)

where the part of Majorana phases Diag(eiα1 , eiα2 , 1) is neglected. The recent experimen-

tal data analyses have determined the absolute values of the mixing matrix elements at

3σ level to be in the following ranges [4]

|UPMNS| =

0.800→ 0.844 0.515→ 0.581 0.139→ 0.155

0.229→ 0.516 0.438→ 0.699 0.614→ 0.790

0.249→ 0.528 0.462→ 0.715 0.595→ 0.776

 . (1.21)

The measured absolute values of the PMNS matrix entries appear to be all large with

the possible exception of the 13 element, which cannot be larger than 0.16. One of the

21 or 31 elements can be as small as 0.23, whereas all the other elements bound to be

larger than 0.43. Note that unitarity prevents the 21 and 31 elements to be both at

the lower (or upper) ends of their ranges. The current fits for the Dirac CP-violating

phase in leptonic sector prefer nearly-maximal CP-violating values [5], and the sum of

neutrino masses has an upper bound of 0.15eV at 95% C.L. from the recent cosmological

observation [6]. Overall, the pattern of the SM flavour parameters indeed looks peculiar.

While the SM gauge group and field content allow us to determined all gauge inter-

actions just by the three gauge couplings, there is no clear guidance to the form of the

Yukawa matrices that describing the SM Yukawa interactions. The conjecture that there

is indeed a structure in the flavour parameters is reinforced by considering the values of

the four SM parameters other than flavour parameters, namely the three gauge couplings

and the Higgs self-coupling at the electroweak scale, which are

gs ' 1, g ' 0.65, g′ ' 0.35, λ ' 0.13 . (1.22)

Evidently, there is no big hierarchy among these parameters, unlike for the parameters in

eq (1.19). People often understand small couplings in connection to the small breaking

of a symmetry under which they are forced to vanish in the limit in which the symmetry

is restored. Many proposals have been put forward already along those lines. In the

following sections we will introduce some of them.
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1.3.3 A lesson from the quark sector

A pioneering work attempt to explain mass hierarchy and mixing parameters in the quark

sector has been done by C. D. Froggatt and H. B. Nielsen [7]. In their approach, all the

small dimensionless parameters such as the quark mass ratios and the CKM mixing angles

can be interpreted as powers of the breaking parameter of a global U(1) flavour symmetry,

without the need to assume widely hierarchical Yukawa couplings. Under this symmetry,

a GSM-singlet scalar field ϕ, which is called flavon, has non-zero charge and the SM

fermions as well as the Higgs field may also possess non-trivial charges. The flavon field

develops a VEV 〈ϕ〉 and its effect can be parameterized by

ε =
〈ϕ〉
Λ
� 1 , (1.23)

where Λ is a characteristic energy scale of new physics of flavour. In general, different

fermion flavours have different charge assignments. One can assign the flavon field a

negative unit of U(1) charge without loss of generality, as it is possible to rescale all

the other charges in the unit of the flavon charge. The flavour symmetry is sometimes

called horizontal symmetry in contrast to gauge symmetry which is thought as vertical

symmetry. The rule is that each term in the Lagrangian including the SM fields and

the flavon field should be invariant under the U(1)H horizontal symmetry. The effective

Yukawa couplings then become

Y U
ij = yUijε

|H(qi)+H(ucj)+H(h)| ,

Y D
ij = yDij ε

|H(qi)+H(dcj)−H(h)| ,

Y E
ij = yEijε

|H(li)+H(ecj)−H(h)| ,

(1.24)

where H(f) is the charge of the field f , and yUij , y
D
ij , y

E
ij are supposed to be of O(1). For

example, if we use following U(1)H charges for the SM fields

H(qi) = H(uci) = H(eci) = xi, x = (2, 1, 0)T ,

H(li) = H(dci) = H(h) = 0 .
(1.25)

This results in following parametric suppression of Yukawa couplings

mU ∝

ε4 ε3 ε2

ε3 ε2 ε

ε2 ε 1

 , mD ∝

ε2 ε 1

ε2 ε 1

ε2 ε 1

 ,

mE ∝

ε2 ε2 ε2

ε ε ε

1 1 1

 .

(1.26)
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The proportionality holds up to coefficients yUij , y
D
ij , y

E
ij in front of the each matrix elements.

The diagonalization of these mass matrices implies the power suppression of up-type

quarks, down-type quarks and charged lepton masses according to

mt : mc : mu ∼ 1 : ε2 : ε4 ,

mb : ms : md ∼ 1 : ε : ε2 ,

mτ : mµ : me ∼ 1 : ε : ε2 ,

|Vus| ∼ ε, |Vcb| ∼ ε, |Vub| ∼ ε2, δCP ∼ 1.

(1.27)

An immediate observation at this point is that the chosen set of charges implies that

down-type quark and charged lepton mass ratios are the same, while the up-type quark

mass ratios approximately square of those. One may think this can explain quantitatively

the mass ratios of the up and down types of quarks with all coefficients yij of their

mass matrix, but the charged lepton mass ratios need moderate hierarchies among those

couplings. This means that a different choice to the lepton doublet and singlet charges

may give better results, as we will see in the next section.

On the other hand, we can get ratios of charged fermion masses and values of quark

mixing parameters from the experimentally determined results [3]

mt : mc : mu ' 1 : 0.007 : 1.3× 10−5 ,

mb : ms : md ' 1 : 0.023 : 0.001 ,

mτ : mµ : me ' 1 : 0.06 : 3× 10−4 ,

|Vus| ' 0.22, |Vcb| ' 0.04, |Vub| ' 0.004, δCP ' 1.2 ,

(1.28)

where the values of u, d and s quark masses are estimated from the MS scheme at a

renormalization scale of µ = 2 GeV.

By comparing the results from the Eq. (1.27) and Eq. (1.28), one can easily show

that for the ε ∼ 0.05 the mass ratios and mixing parameters from Froggatt - Nielsen

mechanism are roughly consistent with mass hierarchy realized in Nature.

There are also other options to reach viable result of quark mass ratios and mixing

parameters, for instance, we can choose other set of charges for quarks [8]

(H(q1), H(q2), H(q3)) = (3, 2, 0) ,

(H(uc1), H(uc2), H(uc3)) = (4, 2, 0) ,

(H(dc1), H(dc2), H(dc3)) = (3, 2, 2) ,

(1.29)

and take value of ε equal to the Wolfenstein parameter λc = sin θc = 0.22. This choice

can provide correct order of magnitude of quark mass ratios and of the modules of quark

mixing matrix elements.
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1.3.4 Flavour symmetry in the lepton sector

We have seen that neutrino masses are extremely small and the leptonic mixing is very

different from the mixing in the quark sector. A theory addressing the origin of the

flavour parameters must be able to account for such a diversity.

As we have seen, the Froggatt - Nielsen Mechanism discussed in section 1.3.3 can

approximately describe quark masses and mixing. This mechanism can be useful for

the leptonic sector as well. Let us assume that the neutrino masses originate from the

Weinberg operator. The relevant part of the Lagrangian is then

yEije
c
i ljh

c +
cij
2Λ

(lih)(ljh) + h.c. . (1.30)

A possible choice of charges is

(H(l1), H(l2), H(l3)) = (1, 0, 0) , (H(ec1), H(ec2), H(ec3)) = (3, 2, 0) , (1.31)

with the Higgs field invariant in this U(1)H flavour symmetry. After inserting appropriate

powers of flavon field in the terms in eq. (1.30) and replacing Higgs field by its VEV we

can read-off the form of charged lepton and neutrino mass matrix

mE =

ε4 ε3 ε3

ε3 ε2 ε2

ε 1 1

 , mν =

ε2 ε ε

ε 1 1

ε 1 1

 , (1.32)

where the coefficients vyEij and v2cij/Λ in front of the each matrix entries are omitted.

Taking ε = 0.22, one can approximately reproduce the mass ratios of charged leptons

in eq. (1.28). The 23 block of the neutrino mass matrix does not depend on ε and it is

diagonalized by an O(1) rotation. And neutrino mass spectrum obtained from the mass

matrix in eq.(1.32) has one small mass that is of the order of ε2, and the other two masses

are large compared to the first one. The observed value of the neutrino squared mass

differences therefore require a mild corrections, making an other two large masses to be

accidentally small.

If the Weinberg operator is generated from the type I seesaw mechanism, the above

ideas can be applied to high-scale Lagrangian. The relevant Lagrangian is now

Lflavour + yNij ν
c
i ljh+

1

2
Mijν

c
i ν

c
j + h.c. . (1.33)

One can assign following U(1)H charges to li and νci

(H(l1), H(l2), H(l3)) = (1, 0, 0) ,

(H(νc1), H(νc2), H(νc3)) = (n1, n2, n3) ,
(1.34)

where n1, n2, n3 ≥ 0, and impose invariance under the flavour symmetry to write the
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neutrino Yukawa matrix and the Majorana mass matrix of right-handed neutrinos in

terms of flavons.

Here we choose generic charges ni for the right-handed neutrino because the result does

not depend on that specific case, as discussed below. The invariant neutrino Yukawa and

mass matrices are

Y N
ij = yNij ε

H(νci )+H(lj)+H(h) ,

(MR)ij = Mijε
H(νci )+H(νcj ) .

(1.35)

Any symmetric matrix M can always be diagonalized by a unitary rotation V

M = V T Diag(M1,M2,M3)V , (1.36)

with M1,M2,M3 ≥ 0. Therefore, the effective right-handed neutrino mass matrix can be

written as

MR = Diag(εn1 , εn2 , εn3)V T Diag(M1,M2,M3)V Diag(εn1 , εn2 , εn3) . (1.37)

And Dirac mass matrix reads

mN = Y Nv = Diag(εn1 , εn2 , εn3)yN Diag(ε, 1, 1) v . (1.38)

To obtain the light neutrino mass matrix, we combine the two above matrices in the

seesaw formula

mν = −mT
NM

−1
R mN ,

= −Diag(ε, 1, 1)yNV †Diag(
1

M1

,
1

M2

,
1

M3

)V ∗yN Diag(ε, 1, 1) v2 ,
(1.39)

where the charges of right-handed neutrinos disappear. But there is an important caveat

to the previous conclusion which is one of the results of this thesis. The low-scale dis-

cussion of neutrino masses from the Weinberg operator is not always equivalent to the

high-scale discussion within the seesaw mechanism. This will become clear when we study

in detail the equivalent condition for the low- and high-scale analysis in chapter 3. Let M

be the common scale of the parameters M1, M2, M3, then we get a light neutrino mass

matrix

mν =

ε2 ε ε

ε 1 1

ε 1 1

 v2

M
. (1.40)

The above equation holds up to order one coefficients in front of each entries. This

mass matrix requires an order one rotation to diagonalize the 23 block. This, in turn,

suggests that if we choose suitable charges of the lepton singlets eci in order to generate

the hierarchy of charged lepton masses and also to obtain an appropriate solar mixing
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angle, then this mechanism may satisfactorily explain the flavour puzzle in lepton sector.

What we have seen so far are the examples based on the abelian flavour symmetries,

but this is not the only possibility. There flavour symmetries have been proposed, such as,

an approximate non-abelian continuous flavour symmetries [9–13], non-abelian discrete

symmetries such as A4 [14–33], S4 [34–46], T ′ [47–52], A5 [53–55] and many others [56–

61]. Even thought the symmetry approach is nice and popular, it is not the only possible

one. There are several examples to explain observed fermion mass hierarchy and mixing

through other mechanisms, for instance, without any flavour symmetry [62, 63], fitting

the parameters of grand unified theory [64–66], localization of extra-dimension [67] and

loop corrections [68].

In the last decade, there has been very active research, driven by the experimental

data improvements about neutrino masses and mixing, attempting to find a theoretical

explanations for the lepton mass and mixing pattern via discrete flavour symmetries. In

this context the implementation of Froggatt - Nielsen mechanism goes along the following

line.

• Choose a suitable symmetry group and write their irreducible representations as

well as invariants from their tensor products.

• Assign SM leptons, Higgs fields and other extra fields of the model to the represen-

tations of the chosen flavour symmetry group.

• Write down all possible lowest order terms allowed by the symmetry. Once the

scalars like Higgs and flavons get certain VEVs the charged lepton and neutrino

mass matrices will have some specific patterns.

• Diagonalization of the mass matrices may provide hierarchies between the masses

and useful informations about mixing parameters. In particular, there could be

precise predictions for some of the parameters or for correlations among them.

• Most of the time, symmetry breaking effects are essential to obtain correct mass

hierarchies and the exact experimental values of the mixing parameters.

• If the flavour symmetry (with its spontaneous breaking) successfully describes the

lepton sector, one can attempt a generalization to the quark sector as well, bearing

in mind that the mismatch between the two rotations from up and down type of

quark sectors is small, namely Vu ≈ Vd so that VuV
†
d ∼ 1, whereas the imbalance

between two rotations Ue, Uν from the charged lepton and the neutrino sector is

rather large.

Although not directly relevant to this thesis work, in the following we will briefly

review the prototypical A4 model.
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1.3.5 An example of discrete flavour symmetry: A4 model

Discrete non-abelian groups are widely popular due in part to the possibility to obtain

precise prediction for some flavour parameters. The determination of the reactor an-

gle indicated that it is non-zero and sizable although small compared to the other two

mixing angles. Before θ13 6= 0 was known, the experimental data for the solar and at-

mospheric mixing angles were matched quite well with so called Tri-Bimaximal Mixing

(TBM) ansatz [69–73], which is defined by

θ12 = arcsin(1/
√

3), θ23 = −π/4, θ13 = 0 , (1.41)

or, alternatively, by

UTBM =


√

2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2


=

1√
3

1 1 1

1 ω2 ω

1 ω ω2


 0 1 0

1√
2

0 −i√
2

1√
2

0 i√
2

 ,

(1.42)

where ω = e2πi/3. It is easy to see from the structure of this mixing matrix that the

elements in the second and the third columns correspond to the tri-maximal and bi-

maximal mixing, respectively. In the charged lepton mass basis one can easily find the

general form of neutrino mass matrix with eigenvalues m1,m2,m3 ≥ 0 diagonalized by

UTBM

mν = UTBM Diag(m1,m2,m3)UT
TBM =

a b b

b a+ c b− c
b b− c a+ c

 , (1.43)

where

a =
1

3
(2m1 +m2) ,

b =
1

3
(m2 −m1) ,

c =
1

2
(m3 −m1) .

(1.44)
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An important observation is that the mass matrix in eq. (1.43) is invariant not only under

the 23 permutation P23 but also under the unitary rotation

STBM =
1

3

−1 2 2

2 −1 2

2 2 −1

 ,

mν = STTBMmνSTBM, mν = P T
23mνP23 .

(1.45)

The two transformations commute with each other, [P23, STBM] = 0, and S2
TBM = 1. The

above observations hint towards the existence of some discrete flavour symmetry in lepton

sector.

Even though the choice of a discrete group for the explanation of lepton masses and

mixing is not unique, the group A4 became popular for several reasons. First of all, it is

the smallest group, thus it is particularly economical, with three dimensional irreducible

representation. Moreover, it can explain observed neutrino mixing parameters although

not anymore in its simplest form. The group A4 is a symmetry group of regular tetrahe-

dron and is the even permutation group of four objects, as such it is a subgroup of S4 as

well as a subgroup of the continuous group SO(3). The presentation of A4 with its two

generators S and T is given by

A4 : 〈S, T |S2 = T 3 = (ST )3 = e〉. (1.46)

All of its 12 elements belong to 4 conjugacy classes

C1 : e

C2 : T, ST, TS, STS

C3 : T 2, ST 2, T 2S, TST

C4 : S, T 2ST, TST 2 .

(1.47)

This implies that A4 contains four inequivalent irreducible representations (irrep) with

multiplicity m1,m2,m3 for the representations in each dimensions, and satisfy

m1 + 4m2 + 9m3 = 12 ,

m1 +m2 +m3 = 4 .
(1.48)

This equation has a unique set of solutions, m1 = 3, m2 = 0 and m3 = 1, meaning that

A4 has three one-dimensional irreducible representations, 1, 1′ and 1′′, and one three-

dimensional irreducible representation 3. The corresponding matrix representation of the
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generators are

1 : S = 1 T = 1 (1.49)

1′ : S = 1 T = ei2π/3

1′′ : S = 1 T = ei4π/3

3 : S =

1 0 0

0 −1 0

0 0 −1

 , T =

0 1 0

0 0 1

1 0 0

 .

Note that there is an abuse of notation for S and T . These are, here, referring to the

unitary representations of the two generators but not to the generators anymore. From

those representations we can further notice that the irreps 1 and 3 are real representations

and 1′, 1′′ are complex conjugated representation of each other. One can see that the three-

dimensional representation is written in the basis where the generator S is represented

by diagonal matrix but T is not. In principle, one can find infinitely many equivalent

representations through basis transformation. Among them there is one interesting basis

where the representation of T is diagonal. The basis change is obtained by means of the

unitary rotation

V =
1√
3

1 1 1

1 ω2 ω

1 ω ω2

 , (1.50)

where ω ≡ ei2π/3 = (−1 + i
√

3)/2, obviously satisfying the relations ω2 = ω∗ and 1 +

ω + ω2 = 0. Going to the basis where the representation of T is diagonal has the

interesting feature that the representation of S coincides with the STBM in eq. (1.45), i.e.

V SV † = STBM and V TV † = Diag(1, ω, ω2). This is a good omen for A4 to be important

candidate of flavour group. As the physical quantities are the same in all equivalent

representations, we will continue our discussion in the original basis.

Having the specific representations of the group elements, we can find the tensor

product decomposition rules

1× 1′ = 1′, 1× 1′′ = 1′′,

1′ × 1′ = 1′′, 1′ × 1′′ = 1,

1′′ × 1′′ = 1′,

3× 3 = 1 + 1′ + 1′′ + 31 + 32 .

(1.51)

The product of two one-dimensional representation is easy to obtain. To see the form of

the each component representations in the decomposition of 3× 3 consider following two

triplets

a = (a1, a2, a3), b = (b1, b2, b3), (1.52)
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transforming under S and T in eq. (1.49) as S(a1, a2, a3) = (a1,−a2,−a3) and T (a1, a2, a3) =

(a2, a3, a1). The irreducible representations obtained from their product (ab) are

1 = a1b1 + a2b2 + a3b3

1′ = a1b1 + ω2a2b2 + ωa3b3 ,

1′′ = a1b1 + ωa2b2 + ω2a3b3 ,

31 ≡ (ab)1 = (a2b3, a3b1, a1b2) ,

32 ≡ (ab)2 = (a3b2, a1b3, a2b1).

(1.53)

Let us look at 31 as an example. From the transformation properties of the triplets a and

b one can easily see that

S : (a2b3, a3b1, a1b2) ≡ (x1, x2, x3)→ (a2b3,−a3b1,−a1b2) = (x1,−x2,−x3),

T : (a2b3, a3b1, a1b2) ≡ (x1, x2, x3)→ (a3b1, a1b2, a2b3) = (x2, x3, x1).
(1.54)

This is nothing but the transformation of a triplet under S and T . Therefore, (a2b3, a3b1, a1b2)

is a triplet under the group representation. Analogously for the representation 32.

Having found the group and its representation, now we come to next step of the recipe,

which is to assign fields to the different representations and to write down invariant terms

under A4. The following discussions are along the line of the model in [20]. This model

contains, on top of the SM leptons, two Higgs doublets hu, hd as well as two scalar triplets

ϕ, φ and a real scalar singlet ξ of A4. The scalar fields ϕ, φ and ξ are taken to be singlets

of standard model gauge group, they are necessary to the spontaneous breaking of A4.

Field assignments to representations of the flavour group A4 are as follows

l ∼ 3, eci ∼ 1, 1′′, 1′, hu, hd, ξ ∼ 1, ϕ, φ ∼ 3 (1.55)

The lowest order Lagrangian includes the following SM gauge invariant and A4-invariant

terms

L ⊃
∑
i

yi
Λ
eci(ϕl)hd +

c1

Λ2
ξ(lhulhu) +

c2

Λ2
φ(lhulhu) + h.c+ . . . , (1.56)

where the ellipsis refer to higher order terms in the expansion in (VEV/Λ), whose effects

are under control and can be made negligibly small. The terms obtained by the exchange

of ϕ ↔ φ or a missing term in (lhulhu) are prohibited by imposing an additional Z4

symmetry under which

l→ il , eci → −ieci , φ→ −φ , ξ → −ξ , (1.57)

all the other fields are invariant under this symmetry.
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The two Higgs doublets get VEVs 〈hu,d〉 = vu,d and the other scalar fields also develop

VEVs in the following form

〈ϕ〉 = (v, v, v)T ,

〈φ〉 = (v′, 0, 0)T ,

〈ξ〉 = u .

(1.58)

The possible origins of these VEV alignments have been investigated in the context of

extra dimension [20, 74] and super symmetry [26], we will not enter in those details here.

The charged lepton mass matrix is obtained from the first term in the Lagrangian∑
i

yi
Λ
eci(ϕl)hd =

y1

Λ
ec1(ϕ1l1 + ϕ2l2 + ϕ3l3)hd

+
y2

Λ
ec2(ϕ1l1 + ω2ϕ2l2 + ωϕ3l3)hd

+
y3

Λ
ec3(ϕ1l1 + ωϕ2l2 + ω2ϕ3l3)hd.

(1.59)

Once the scalar fields get VEVs we will have

(me)ije
c
iej =

y1vvd
Λ

ec1(e1 + e2 + e3)

+
y2vvd

Λ
ec2(e1 + ω2e2 + ωe3)

+
y3vvd

Λ
ec3(e1 + ωe2 + ω2e3),

(1.60)

from which the charged lepton mass matrix can be read off as

me =
vvd
Λ

y1 y1 y1

y2 ω2y2 ωy2

y3 ωy3 ω2y3

 . (1.61)

Doing a similar exercise for the second and third terms of the Lagrangian in eq. (1.56)

we can derive the neutrino mass matrix

mν =

a 0 0

0 a b

0 b a

 , (1.62)

where a = c1uv
2
u/Λ

2 and b = c2v
′v2
u/Λ

2. The charged lepton mass matrices can be

diagonalized by following rotations

Vec =

eiα1

eiα2

eiα3

 , Ve =
1√
3

1 1 1

1 ω2 ω

1 ω ω2

 , (1.63)
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where α1, α2, α3 are the phases of y1, y2, y3 respectively, in a such way that

me =

√
3vvd
Λ

V T
ec

|y1|
|y2|

|y3|

Ve. (1.64)

Note that Ve is the first term in the Tri-Bimaximal mixing matrix in eq. (1.42) and

that the values of the charged lepton masses are arbitrary, depending on the sizes of the

parameters yi. Thus there is no explanation of the charged lepton mass hierarchy. The

charged lepton mass spectrum is

(me,mµ,mτ ) =
(

(
√

3|y1|vvd)/Λ, (
√

3|y2|vvd)/Λ, (
√

3|y3|vvd)/Λ
)
, (1.65)

if |y1| < |y2| < |y3|. The neutrino mass matrix can be diagonalized by the rotation

Vν =

0 1√
2

1√
2

1 0 0

0 i√
2

−i√
2

 (1.66)

up to relative phases of the eigenvalues. This matrix is the Hermitian conjugate of the

second term in eq. (1.42), and the neutrino masses are given by

mν = V T
ν

a+ b

a

−a+ b

Vν . (1.67)

The PMNS matrix is

UPMNS = VeV
†
ν

=
1√
3

1 1 1

1 ω2 ω

1 ω ω2


 0 1 0

1√
2

0 −i√
2

1√
2

0 i√
2



=


√

2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 = UTBM.

(1.68)

The leading order predictions of A4 flavour symmetry in this model is exactly Tri-

Bimaximal mixing. The neutrino masses are predicted to be m1 = |a + b|, m2 = |a|,
m3 = | − a + b| and one can fix these parameters a and b according to the observed

solar and atmospheric mass square differences. As it was pointed out before, there is no

explanation of the charged lepton mass hierarchy. One can overcome this drawback by

introducing an additional flavour symmetry U(1)H and assigning, as usual, a negative
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unit of charge for the flavon field and non-zero charges only for the right-handed fields

H(ec) = 4, H(µc) = 2, H(τ c) = 0, (1.69)

and we have Yukawa couplings in terms of the flavon parameter ε

ye ≈ O(ε4), yµ ≈ O(ε2), yτ ≈ O(1). (1.70)

This result rather nicely agrees, if the flavon parameter ε has a value of Cabibbo angle,

with the observed charged lepton mass ratios. The discussions above have shown the

success of the A4 flavour model in describing observed lepton masses and mixing, but, of

course, it is not the only viable model of flavour symmetry. Moreover, possible origins of

the lepton masses and mixing from different flavour groups have been studied. To know

more about flavour symmetry models, the interested reader is referred to the excellent

review articles [75–79].

In this chapter we saw that flavour symmetry seems fruitful way to account for the

SM fermion mass hierarchy and mixing. Even thought this kind of symmetry argument

is appealing, but there is no solid bases to believe that this is the way that Nature has

chosen. As Richard P. Feynman said: “It doesn’t matter how beautiful your theory is, it

doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.”

1.4 The SM as an effective field theory from TeV

scale physics

As we have mentioned before, the EFT Lagrangian can be constructed from the SM

Lagrangian by adding non-renormalizable operators. Since the SM Lagrangian is already

well known, discussions in this section will be about the non-renormalizable part of the

EFT Lagrangian. At the beginning of this section there will be a brief review on the

non-renormalizable operators, regarding their classifications in each dimensions and their

generic properties related to the conservation/violation of the SM accidental symmetries.

Then, at the end, we will particularly focus on the triple gage boson couplings and

contributions of the relevant dimension six operators.

Let us now go back to the EFT approach and systematically analyses the possible

non-renormalizable operators appearing in the expansion in the Lagrangian. Starting

from the lowest order non-renormalizable operators, in the dimension five level there is

only one such an operator — Weinberg operator. As we already know, this operator

contributes to the neutrino mass generation, that was already discussed in section 1.3.

The next order involves dimension six operators which are suppressed by the second power

of new physics scale. In contrast to the only one dimension five operator, they emerge

in quite big number and give rise to very reach physical consequences. As we saw in the

section 1.3, the dimension five operator violates the lepton numbers, whereas the baryon
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number is still preserved. One might expect that dimension six operators may break both

B and Li. This is indeed the case.

We have seen that lepton number violation start to appear from the operator with

mass dimension ≥ 5 and baryon number can be violated by the operator with dimension

≥ 6. Now, one may wander “ is there any general condition relating the dimensions of

the operators to the conservation of both lepton and baryon number?”. The answer is

yes and is very simple: only the even dimensional operators can conserve both lepton

and baryon numbers [80]. Namely, having an even dimension is the necessary (but not

sufficient) condition to conserve both B and Li. The proof of the statement also rather

easy. Any operator, conserving both Li and B, must consist of SM fermion pairs, Higgs

field, covariant derivative and gauge field strength (in a suitable combinations of these

components) listed in table 1.2.

Basic blocks Lorentz indices SU(2) doublets Dimension Sum

ψcψ, h.c. 0 1 3 4
ψ†σµψ 1 2 3 6
ψcσµψc† 1 0 3 4
ψcσµνψ, h.c. 2 1 3 6
h, h∗ 0 1 1 2
Dµ 1 0 1 2
Bµν , Gµν , W

a
µν 2 0 2 4

Effective operator even even D D+even

Table 1.2: Basic building blocks of the operator conserving both lepton and baryon
numbers, ψ collectively denotes a left-handed SM fermions.

Constructing an effective operator from the ingredients in this table requires to have

even number of Lorentz indices to make invariants and also even number of SU(2) doublet

fields to have either singlet or triplet. Table 1.2 shows that each of these elementary pieces

have an even number in the sum of their Lorentz indices, SU(2) doublet fields and their

mass dimensions. Any effective operator built by the several copies of these constituents

will always end up having an even number in the sum and that is exactly equal to D plus

an even number. This means that dimension D of the effective operator must be even

too.

In summary, both lepton and baryon number conserving operators can only appear

in even dimensions, odd dimensional operators violate either lepton numbers or baryon

number or both. Note that this does not mean lepton (or baryon) number violating

operator presents only in odd dimensions, it can happen in the even dimensions as well.

If one aims at constructing an effective field theory extension of the SM that preserve

both lepton and baryon numbers, the Lagrangian in eq. (1.8) is reduced to

LEFT = LSM +
∑
d≥3

∑
i

C
(2d)
i

Λ2d−4
O

(2d)
i . (1.71)
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After getting this general argument, the B and Li conserving dimension six operators

are in the focus of the next discussion. They have been extensively studied in the recent

literature [81–88]. There are several types of basis for the dimension six operators, but

physics is always basis independent and one can choose prefered basis according to the

convenience of addressing the targeted problem. The following discussions will stick to

the so called Wasrsaw basis in Ref. [86] which exhaustively classifies all 59 independent

dimension six baryon number conserving operators and 4 baryon number violating op-

erators that occur in four fermion interactions. All of these baryon number conserving

operators are divided into following 8 classes according to the field contents and number

of covariant derivatives

F 3
µν , H6, H4D2, F 2

µνH
2,

ψ̄ψH3, ψ̄ψFµνH, ψ̄ψH2D, (ψ̄ψ)2,
(1.72)

where Fµν = GA
µν ,W

I
µν , Bµν , A = 1, . . . 8, I = 1, 2, 3 and H is Higgs doublet. This refer-

ence basically updates Ref. [83] by performing detailed rederivation of the independent

operators and excluding the redundancies, and provides complete lists of operator basis,

with explicit flavour indices p, r, s, t, shown in table 1.3 and table 1.4.

F 3
µν H6 and H4D2 ψ̄ψH3

QG = fABCGAν
µ GBρ

ν GCµ
ρ QH = (H†H)3 QeH = (H†H)(l̄perH)

Q eG = fABCG̃Aν
µ GBρ

ν GCµ
ρ QH� = (H†H)�(H†H) QuH = (H†H)(q̄purH̃)

QW = εIJKW Iν
µ W Jρ

ν WKµ
ρ QHD =

(
H†DµH

)∗ (
H†DµH

)
QdH = (H†H)(q̄pdrH)

QfW = εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

F 2
µνH

2 ψ̄ψFµνH ψ̄ψH2D

QHG = H†H GA
µνG

Aµν QeW = (l̄pσ
µνer)σ

IHW I
µν Q

(1)
Hl = (H†i

↔
DµH)(l̄pγ

µlr)

QH eG = H†H G̃A
µνG

Aµν QeB = (l̄pσ
µνer)HBµν Q

(3)
Hl = (H†i

↔
D I
µ H)(l̄pσ

Iγµlr)

QHW = H†HW I
µνW

Iµν QuG = (q̄pσ
µνTAur)H̃ GA

µν QHe = (H†i
↔
DµH)(ēpγ

µer)

QHfW = H†H W̃ I
µνW

Iµν QuW = (q̄pσ
µνur)σ

IH̃ W I
µν Q

(1)
Hq = (H†i

↔
DµH)(q̄pγ

µqr)

QHB = H†H BµνB
µν QuB = (q̄pσ

µνur)H̃ Bµν Q
(3)
Hq = (H†i

↔
D I
µ H)(q̄pσ

Iγµqr)

QH eB = H†H B̃µνB
µν QdG = (q̄pσ

µνTAdr)H GA
µν QHu = (H†i

↔
DµH)(ūpγ

µur)

QHWB = H†τ IHW I
µνB

µν QdW = (q̄pσ
µνdr)σ

IHW I
µν QHd = (H†i

↔
DµH)(d̄pγ

µdr)

QHfWB = H†σIH W̃ I
µνB

µν QdB = (q̄pσ
µνdr)H Bµν QHud = i(H̃†DµH)(ūpγ

µdr)

Table 1.3: List of independent dimension six operators, except for four fermion
interactions. Here H̃ = iσ2H∗ and F̃µν = 1

2εµναβF
αβ. Flavour indices are omitted for

Q’s.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll = (l̄pγµlr)(l̄sγ
µlt) Qee = (ēpγµer)(ēsγ

µet) Qle = (l̄pγµlr)(ēsγ
µet)

Q
(1)
qq = (q̄pγµqr)(q̄sγ

µqt) Quu = (ūpγµur)(ūsγ
µut) Qlu = (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq = (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd = (d̄pγµdr)(d̄sγ

µdt) Qld = (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq = (l̄pγµlr)(q̄sγ

µqt) Qeu = (ēpγµer)(ūsγ
µut) Qqe = (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq = (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed = (ēpγµer)(d̄sγ

µdt) Q
(1)
qu = (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud = (ūpγµur)(d̄sγ

µdt) Q
(8)
qu = (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud = (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd = (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd = (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) Baryon number violating operators

Qledq = (l̄jper)(d̄sq
j
t ) Qduq = εαβγεjk

[
(dαp )TCuβr

] [
(qγjs )TClkt

]
Q

(1)
quqd = (q̄jpur)εjk(q̄

k
sdt) Qqqu = εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q
(8)
quqd = (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Qqqq = εαβγεjnεkm
[
(qαjp )TCqβkr

] [
(qγms )TClnt

]
Q

(1)
lequ = (l̄jper)εjk(q̄

k
sut) Qduu = εαβγ

[
(dαp )TCuβr

] [
(uγs )

TCet
]

Q
(3)
lequ = (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 1.4: List of independent dimension six four fermion operators. Flavour indices
of Q’s are omitted.

Phenomenology of the dimension six operators have been studied during the past

few decades [89–93], bounds on the Wilson coefficients were set by the several experi-

ments [94]. Nowadays, there is a quite big effort made by the LHC to find more accurate

bounds on coefficients of these operators [95–97]. In the chapter 4 we will discuss more

about the effects of dimension six operators on the SM triple weak gauge boson cou-

plings and give proposals to enhance the interference between the SM amplitude and

contribution from these operators.

To go further, a complete list of 20 independent dimension seven operator are pre-

sented in Ref. [98], all of these operators violate lepton number and 7 of them violate

baryon number as well, as this is the common feature of all odd dimensional operators.

Dimension seven operators also have very important phenomenological implications for

the new physics searches. For instance, they are very useful to study leptogenesis as well

as baryogenesis for understanding of the matter-antimatter asymmetry in the Universe,

which is not inside the scope of this thesis, though.

There have been many studies for finding the number of independent higher dimen-

sional operators. For example, dimension eight operators are discussed in Ref. [99], and

algorithm for the determination of the contents and non-redundant numbers of any higher

dimensional operators for general effective field theories can be found in [100–102]. Since
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the higher dimensional operators are more suppressed and have a little effect on low en-

ergy physics, in the chapter 4 we will focus only on some of the dimension six operators.

In particular, we discuss only about the CP-even dimension six operators that conserve

both baryon and lepton numbers. For this reason, we will skip the analysis for all the

other operators with dimensions higher than six.

1.4.1 Anomalous triple gauge boson couplings

Due to the non-abelian nature of the SM electroweak (EW) gauge symmetry, it is possible

to have three gauge boson interactions. The Lgauge part of the SM Lagrangian in eq. (1.6)

contains following three EW gauge boson interactions

∆L = ig
(
W+
µνW

3µW−ν −W−
µνW

3µW+ν +W 3
µνW

−µW+ν
)
, (1.73)

where

W±
µν = ∂µW

±
ν − ∂νW±

µ , W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ)

W 3
µν = ∂µW

3
ν − ∂νW 3

µ , W 3
µ = cos θWZµ + sin θWAµ,

(1.74)

in which θW is a weak mixing angle. This Lagrangian provides the interaction vertex of

two W bosons with a Z or with a photon, i.e. W+W−V with V = Z, γ. In general, the

triple gauge coupling (TGC) of W+W−V can be obtained from the following effective

Lagrangian [103]

LTGC/gWWV = igV1
(
W+
µνW

−νV µ −W−
µνW

+νV µ
)

+ iκVW
+
ν W

−
µ V

µν +
iλV
M2

W

W+
µνW

−ν
ρ V ρµ

+gV5 ε
µνρσ

(
W+
µ

↔
∂ ρW

−
ν

)
Vσ − gV4 W+

µ W
−
ν

(
∂µV ν + ∂νV µ

)
+iκ̃VW

+
µ W

−
ν Ṽ

µν +
iλ̃V
M2

W

W+
ρµW

−µ
ν Ṽ νρ . (1.75)

Here the SM gauge couplings are gWWγ = g sin θW = e and gWWZ = g cos θW , the field

strength is Fµν = ∂µFν−∂νFµ with F = W±, V , dual field strength is Ṽµν = 1
2
εµνρσV

ρσ and

W+
µ

↔
∂ ρW

−
ν = W+

µ (∂ρW
−
ν )− (∂ρW

+
µ )W−

ν . There are 14 anomalous triple gauge couplings

(aTGCs) in total, among which 6 couplings gV1 , κV and λV conserve both parity (P ) and

charge conjugation (C) while remaining 8 couplings violate either P or C. Comparing

two Lagrangians in eq. (1.74) and eq. (1.75) one can easily see that in the SM

gV1 = κV = 1, λV = gV4 = gV5 = κ̃V = λ̃V = 0. (1.76)

Invariance under the U(1)EM gauge symmetry requires gγ1 = 1 and gγ4 = gγ5 = 0. Since

our future discussions related only to the CP -conserving interactions, we are left with
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following five aTGCs

δg1,Z , δκγ , δκZ , λγ , λZ , (1.77)

where δg1,Z ≡ g1,Z − 1 and δκγ, Z ≡ κγ, Z − 1 .

If we want to parameterize the triple gauge boson interactions from the EFT La-

grangian that contains the CP -conserving dimension six operators, a convenient basis of

the dimension six operators relevant for our future discussions is the SILH basis [85, 104],

in which the operators contributing to aTGCs are

OW =
icW g

2M2
W

(
H†σi

↔
D
µ

H

)
DνW i

µν ,

OHW =
icHW g

M2
W

(DµH)†σi(DνH)W i
µν ,

OHB =
icHB g

′

M2
W

(DµH)†(DνH)Bµν ,

O3W =
c3W g

6M2
W

εijkW
i ν
µ W j ρ

ν W k µ
ρ ,

(1.78)

where H†
↔
DµH = H†(DµH) − (DµH

†)H and DµW
a
νρ ≡ ∂µW

a
νρ + gεabcW b

µW
c
νρ . The first

operator OW contributes to oblique parameter S [105, 106], its coefficient cW is tightly

constrained to be around 10−5 by EW precision measurements [94, 107–109], we can ne-

glect its effect in the first order approximation. There is following set of relations between

the aTGCs in eq. (1.77) and Wilson coefficients of those dimension six operators [84]

δg1,Z = cHW/ cos2 θW ,

δκZ = cHW − tan2 θW cHB ,

δκγ = cHW + cHB ,

λZ = λγ = c3W ,

(1.79)

from which one can find following relation between δg1,Z and δκZ,γ

δg1,Z = δκZ + tan2 θW δκγ . (1.80)

So we have only three independent aTGCs conserving both C and P . From above rela-

tions between the aTGCs and Wilson coefficients we can always translate experimental

bounds on the aTGCs to constraints on the corresponding dimension six operators. More

discussions about aTGC will be given in chapter 4.



Chapter 2

Flavour symmetries in the

symmetric limit

2.1 Introduction

As discussed, the origin of lepton masses and mixing is one of the open problems in the

particle physics. One of the most popular attempts at understanding the SM fermion

mass and mixing pattern makes use of flavour symmetry groups [7, 9, 10, 12, 63, 110–

119]. The flavour symmetry G is spontaneously broken to a subgroup H (trivial if G is

completely broken). And the source of breaking is provided by the vacuum expectation

value (vev) of one or more scalar fields (“flavons”), which are singlets under the SM,

but transforming non-trivially under G. We write the charged lepton and neutrino mass

matrices, mE and mν , as a sum of two components

mE = m
(0)
E +m

(1)
E

mν = m(0)
ν +m(1)

ν

, (2.1)

where m
(0)
E , m

(0)
ν are invariant under G, therefore survive in the limit in which the flavour

symmetry is unbroken, while m
(1)
E , m

(1)
ν are generated after the symmetry breaking, so

they are invariant under H but not under G, and vanish in the symmetric limit. The

non-vanishing entries in m
(0)
E , m

(0)
ν are often, and here, assumed to be of the same order,

according to the principle that flavour hierarchies should be accounted for by the flavour

model itself. The size of the corrections associated to the symmetry breaking effects is

assumed to be smaller than the values of m
(0)
E and m

(0)
ν (except, of course, the case of

these leading order terms vanish).

As the problem required, we have to distinguish two cases whether the leading order

pattern of lepton masses and mixings is completely determined by the flavour symmetry

alone or the symmetry breaking effects are necessary to be considered. Therefore, our

attention will be focused on following two separate scenarios.

29
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1. The symmetric form of the mass matrices, m
(0)
E and m

(0)
ν , provides an approximate

description of lepton flavour observables, in particular of the PMNS matrix; m
(1)
E

and m
(1)
ν provide the moderate correction necessary for an accurate description. In

such a case, we can say that the leading order pattern of lepton masses and mixings

is accounted for by the flavour symmetry itself.

2. The symmetry breaking corrections are important even for an approximately correct

description of lepton flavour observables. That will appear in two ways: either the

size of corrections is turn out to be not smaller than the non-vanishing symmetric

terms, this can happen if m
(0)
E or m

(0)
ν vanishes, in which case the PMNS matrix

is fully undetermined in the symmetric limit; or in the presence of an accidental

enhancement of the role of m
(1)
E , m

(1)
ν .1

Having made the goal clear, we are going to provide a complete study of the first case

and, meanwhile, assessing the need to resort to the second possibility. More specifically,

we will obtain a complete characterisation of the flavour symmetry groups G (of any type)

and their representations on the SM leptons providing an approximate understanding of

lepton masses and mixing in the symmetric limit. Moreover, we will show that the results

can be extended to the second case as well, if some (non-trivial) hypotheses hold.

The first case has been extensively considered since the earliest attempts of under-

standing the pattern of fermion masses and mixings. As charged fermion masses show a

clear hierarchical structure, it is natural to account for the lightness of the first two fami-

lies in terms of small symmetry breaking effects. For instance, the symmetric limit could

allow the third family to acquire a mass but not the first two. The symmetric limit is

then close to what observed, with the small Yukawas associated to the lighter families ap-

proximated by zeros. Considering the quark sector, all the quarks except top and bottom

quarks can be massless in the symmetric limit and the CKM matrix is approximated by

the identity matrix. The lighter masses and the small CKM mixings are then generated

by small perturbations of the symmetric limit associated to the spontaneous breaking of

the flavour symmetry.

Does the above scheme apply to neutrino masses and mixings as well? While many

models have been proposed in which it does, but, as far as systematic analysis is con-

cerned, the charting all possibilities is missing. Given the large variety of possible cases,

it is not a priori obvious that a complete analysis can be carried out in an effective way

and would produce results that can be expressed in a concise form. Interestingly, this

turns out to be the case: the problem can be studied in full generality, admits a precise

mathematical formulation, and a complete and compact solution. While specific imple-

mentations of the full solution are well known, the analysis shows that the options we will

1This is the case for example if one of the neutrino masses obtained in the symmetric limit is acci-
dentally suppressed and ends up being of the same order of the smaller symmetry breaking corrections.
In such a case, the symmetric limit prediction for some of the lepton mixing angles can be drastically
modified, and actually determined, by the symmetry breaking effects [120–123].
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find are the only possible ones, thus providing a final answer to the above question. The

mathematical formulation of the problem, and the definition of “approximate description”

will be discussed in section 2.2.

As we will see, while the possibility that lepton flavour can be approximately under-

stood in terms of a symmetry principle alone is aesthetically appealing, future data might

disfavour it. In such a case, the symmetry breaking effects become essential for an under-

standing of lepton flavour. One can then wonder whether the knowledge of the symmetry

breaking pattern G→ H can be sufficient, or the intricacies of the flavon spectrum, vevs,

and potential should be specified. The knowledge of the breaking patter is sufficient if

m
(0)
E or m

(0)
ν vanishes in the symmetric limit and the corrections m

(1)
E , m

(1)
ν are in the

most general form allowed by the residual symmetry H, with all their entries of the same

order. Under such a (non-trivial) hypothesis, it turns out that the techniques developed

to study the symmetric limit can be easily extended to study this case as well, and that

the conclusions do not change.

The analysis we perform is fully general in the assumptions that i) the light neutrino

masses are in Majorana form and ii) the symmetry arguments can be applied directly to

the light neutrino mass matrix (or to the Weinberg operator from which it originates).

The second assumption is relevant in the case in which the light neutrino mass matrix

arises from physics well above the electroweak scale, the prototypical case being the

integration of heavy singlet neutrinos in the context of the seesaw mechanism. In such

a case, the heavy degrees of freedom also transform under the flavour symmetry, and

a symmetric limit can be defined for their mass matrix as well. One can then wonder

whether the “low energy” analysis performed in terms of the light neutrino mass matrix

captures the features of the full analysis. This turns out to be true in some cases, but

not always, the necessary and sufficient condition of two analysis being equivalent puts

some non-trivial conditions on the representations of lepton doublet and singlets, which

will be thoroughly study in the next chapter.

The discussions in this chapter goes along the following order. Section 2.2 contains

the main result obtained from the general analysis, i.e. the classification of flavour groups

and representations leading to an approximate description of lepton masses and mixings.

Section 2.3 discusses the case in which either the neutrino or the charged lepton masses

all vanish in the symmetric limit, and lepton mixing is determined by symmetry breaking

effects. The additional constraints provided by grand-unification will be the subject of

section 2.4. Finally, in section 2.5 we draw conclusions of whole chapter.

2.2 Lepton masses and mixings in the symmetric

limit

In this section, we aim at providing a full characterisation of the flavour groupsG and their

representations on the leptons leading to an approximate description of lepton masses and
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mixings in the symmetric limit. We will proceed in two steps. First, in section 2.2.1, we

will list all representations leading to an approximate description of lepton masses (but

not necessarily of lepton mixing). Then, in section 2.2.2, we will select among them the

cases in which the PMNS matrix is also approximately realistic in the symmetric limit.

Meaning that all the entries, only exception may apply for the 13 element in the first

approximation, of the PMNS matrix must be non-vanishing in the symmetric limit, as

the magnitudes of all the other entries are in the range of order one and smallness of 13

entry can be generated from a correction.

First of all, we need to define which lepton mass and mixing patterns we consider an

approximate description of what observed and to give a precise mathematical formulation

of the problem of finding the groups and representations associated to those patterns.

The full list of charged lepton and neutrino mass patterns that we consider to be

close to what observed is in table 2.1. Let us illustrate the table by considering a few

examples. The case in which the three charged lepton masses are in the form (A, 0, 0)

can be considered to be close to what observed because of the smallness of the electron

and muon masses compared to the tau mass. Only a small correction to that pattern

is required in order to provide an accurate description of the charged lepton spectrum.

On the contrary, a pattern such as (A,A, 0), for example, cannot be considered to be

close to what observed, as no pair of charged lepton masses are close to be degenerate.

The pattern (A,B, 0) is in between. It can be considered close to what observed if A

and B are allowed to have different sizes, with B � A, or vice versa. But not if A

and B are assumed to be of the same order of magnitude, unless one entry is accidentally

suppressed with respect to the other. In the neutrino sector, a pattern in the form (a, 0, 0)

can be considered to be close to what observed, as only a small correction is required to

obtain a realistic normal hierarchical spectrum. The pattern (0, a, a) also provides a good

approximate description, as a small correction splitting the two degenerate eigenvalues is

only required to obtain a realistic inverted hierarchical spectrum. A normal hierarchical

spectrum is at present favoured by data [5, 124, 125], but we still retain the inverted

spectrum as a viable possibility.

All the entries in table 2.1 are assumed to be positive or zero. The last column of

the table corresponds to the possibility that the mass spectrum is fully determined by

symmetry breaking effects. Such cases will be considered in section 2.3. Here, we only

need to consider the cases in the first two columns. In the first column we list the cases

that can be considered as good leading order approximations even when all the non-zero

entries are of the same order of magnitude. The cases in the second column, on the

contrary, require some degree of hierarchy or degeneracy between the non-zero entries.

Such a distinction is more important for charged leptons than neutrinos. The hierarchy

among non-zero entries required in the charged lepton cases to account for the hierarchy

me � mµ � mτ is O (20) in the (A,B, 0) case and O (200) in the (A,B,C) case. On

the other hand, in the neutrino case only milder hierarchies up to O (5) are required to
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non-zero entries
of the same order

hierarchy among
non-zero entries

(fully undetermined
in the symmetric

limit)

charged
leptons

(A, 0, 0)
(A,B, 0)
(A,B,C)

(0, 0, 0)

neutrinos
NH

(a, 0, 0)

neutrinos
NH or IH

(a, a, a)
(a, b, b)

(a, b, 0)
(a, b, c)

(0, 0, 0)

neutrinos
IH

(0, a, a)

Table 2.1: Charged lepton and neutrino mass patterns in the symmetric limit.

account for ∆m2
12/|∆m2

23| � 1 in the normal hierarchy case2. Such a mild hierarchy is

not too far from what can be considered to be of the same order. Therefore, we will only

care about the distinction between first and second column in the case of charged leptons.

In the case of neutrinos, we distinguish the cases leading (after taking into account small

symmetry breaking corrections) to a normal hierarchy (NH), an inverted hierarchy (IH),

or to any of the two depending on the sizes of the non-zero entries.

A pedantic remark on the patterns in table 2.1 (which however will play a role in the

following) concerns the fact that the pattern (a, b, 0), for example, includes the case in

which b = a, as well as the case in which b = 0. We define a mass pattern to be “generic”

if all the entries that are allowed to be different from each other and non-zero are indeed

different from each other and non-zero.

As for the PMNS matrix, we will consider it to be close to what observed in the

symmetric limit if either i) none of its elements vanishes or ii) only the 13 element vanishes.

Indeed, all of the PMNS entries appear to be of order one, with the exception of the 13

element, |(UPMNS)13| ≈ 0.15. One of the 21 and 31 elements can be as small as about

0.25 if leptonic CP violation will turn out be small, unlike what the present fits seem to

suggest [4, 5, 126, 127]. All other elements are bound to be larger than 0.45 (3σ bounds

from [4]). As a consequence of the above definition, we will not consider PMNS matrices

corresponding to a single 2 × 2 transformation in the 12, 23, or 13 block, which would

require at least four matrix entries to vanish. In the case of PMNS matrices obtained

by the combination of two 2 × 2 transformations in different blocks, the PMNS matrix

contains one vanishing entry, which is located in the 13 entry if the two 2 × 2 rotations

are in the 23 and 12 block (in this order).

2For inverted hierarchy, a stronger accidental degeneracy is required. For example, in the (a, b, 0)
case, a/|b− a| = O (50) is required.
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Having specified the mass and mixing patterns that we consider viable in the symmetric

limit, we now want to characterise the flavour groups and representations leading to any

of those patterns. Let us then give first of all a precise formulation of the problem.

The flavour symmetry group G acts on the SM leptons li and eci through unitary

representations Ul and Uec respectively. Here ec ∼ eR denotes the conjugated of the

right-handed SM leptons (SU(2)L singlets with hypercharge Y = 1), and l = (ν, e)T

denotes the left-handed leptons (SU(2)L doublets with hypercharge Y = −1/2). With

this notation, all the fermion fields are left-handed, which will also turn out to be useful

when we will discuss grand-unification in section 2.4. The charged lepton and neutrino

mass matrices arise from the Yukawa and Weinberg operators respectively,

λEije
c
i ljh

∗,
cij
2Λ
liljhh, (2.2)

and are given by

mE = λEv, mν = c v2/Λ, (2.3)

where h is the Higgs field, v = |〈h〉|, and Lorentz-invariant contractions of fermion indices

are understood. Note the convention in which the singlet leptons appear first in the

Yukawa interaction. Note also that the action of G is the same on the two components

of li, νi and ei, as it is supposed to commute with the SM gauge transformations.

To get a conclusion for the most general case, the group G is assumed to be an

arbitrary. It can be continuous or discrete, simple or not, abelian or not, or arbitrary

combinations of the above. It is supposed to include all the relevant symmetries, including

those possibly used to force specific couplings of the flavons. We denote by Ul and Uec

its representations on the doublet and singlet leptons respectively. From the invariance

of the Yukawa and Weinberg operators, one finds that the lepton mass matrices mE, mν

are invariant if they satisfy

mE = UT
ec(g)mE Ul (g) mν = UT

l (g)mν Ul (g) ∀g ∈ G. (2.4)

In principle, the Higgs doublet h also have a non-trivial transformation property under

the flavour symmetry G, but in this minimal setup, considering only the SM particles,

we have one family of Higgs field and thus a possible transformation of h under G can be

reabsorbed in Ul and Uec .

We can now formulate the problem we want to address as follows. For each of the

3 × 6 = 18 combinations of charged lepton and neutrino mass patterns in table 2.1

(excluding the ones in the third column), we want to determine, or characterise, all

groups G and representations Ul, Uec corresponding to those mass patterns and leading

to a viable PMNS matrix. We say that the group and its representation “correspond to”

or “force” a given mass pattern if i) the eigenvalues3 of any pair of invariant matrices mE,

mν follow that mass pattern, and if ii) there exists at least a pair of invariant matrices

3Here and in the following we use “eigenvalues” to refer to the singular values of mE , mν .
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mE, mν such that the eigenvalues not only follow that mass pattern, but are also generic

(i.e. with all entries that are allowed to be different and non-zero being different and

non-zero). The second requirement is needed, as otherwise we could end up with groups

and representations corresponding to a different, more constrained, pattern.

Note that it is important to write the invariance condition for mE, as in eq. (2.4), and

not for m†EmE. In the latter case, the important role of Uec would be lost.

2.2.1 Accounting for lepton masses

In this section we characterise all the groups and representations that force each of the

18 combinations of charged lepton and neutrino mass patterns in the first two columns

of table 2.1. It turns out that it is possible to characterise them in terms of their de-

compositions into irreducible representations (“irreps”), and of the dimensionality, type

(complex, real, or pseudoreal), and equivalence of the irreducible components.

We remind that a representation is called “complex” if it is not equivalent to its

conjugated representation. A representation that is equivalent to its conjugated is called

“real” if it can be represented by real matrices and “pseudoreal” if it cannot. Pseudoreal

representations have even dimensions.

The full list of irrep decompositions corresponding to a given mass pattern is shown in

tables 2.2, 2.3. The first table only contains the charged lepton mass pattern that does

not require hierarchies among the non-zero entries, (A, 0, 0), while the second contains

the cases in which a hierarchy is necessary, following the classification in table 2.1. In the

rest of this section we will prove and illustrate the results in tables 2.2, 2.3.

In order to prove the results in the tables, we note that there is a close connection

between the mass patterns and the irrep decompositions, which we now illustrate. Since

the extension is straightforward and useful, let us consider the general case of n lepton

families. Let us choose a basis in flavour space in which the charged lepton mass matrix

is diagonal, mE = Diag(mE
1 . . .m

E
n ). In the symmetric limit, the mass eigenvalues are

assumed to follow one of the patterns in table 2.1, which means that a certain number of

them are assumed to be zero (possibly none) and that groups of non-zero masses may be

assumed to be degenerate. In full generality, the mass eigenvalues (for both the charged

leptons and neutrinos) can then be written in the form

(m1 . . .mn) = (

d0︷ ︸︸ ︷
0 . . . 0

d1︷ ︸︸ ︷
a1 . . . a1 . . .

dN︷ ︸︸ ︷
aN . . . aN ), (2.5)

corresponding to a group of d0 vanishing masses and N groups of degenerate masses,

with multiplicities d1 . . . dN . In the cases in tables 2.2, 2.3, there is at most one group

of degenerate eigenvalues in the neutrino sector, with multiplicity 2 or 3. The values of

a1 . . . aN can happen to vanish or to be equal to each other. This situation is not generic,
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though. In a generic set of mass eigenvalues, a1 . . . aN are non-zero and all different from

each other.

The results in tables 2.2, 2.3 are obtained using the following facts. Consider a given

mass pattern, in which charged lepton and neutrino masses are both in the form eq. (2.5)

(with different multiplicities dE0 . . . d
E
NE

, dν0 . . . d
ν
Nν

). Then:

• Each subspace in flavour space associated to (zero or non-zero) degenerate charged

lepton masses is invariant under both the representations Ul and Uec . We can then

call U l
0 . . . U

l
NE

and U ec

0 . . . U ec

NE
the representations on those subspaces.

• The representations corresponding to non-zero charged lepton masses, U l
1 . . . U

l
NE

and U ec

1 . . . U ec

NE
, are conjugated to each other and irreducible.

• The representations U l
0 and U ec

0 corresponding to the set of vanishing masses can

be reducible. None of the irreps on which U ec

0 decomposes is conjugated to any of

the irreps on which U l
0 decomposes.

The neutrino mass pattern gives further constraints on Ul:

• Each set of dν degenerate non-vanishing neutrino masses must correspond to either

a real irrep r = r̄ of dimension dν ; or to a pair of conjugated (Dirac) complex

irreps r + r̄ of total even dimension dν ; or to a pair of equivalent pseudoreal irreps

r + r with total dimension dν multiple of four (case hence not relevant with three

neutrinos).

• The remaining irreps in Ul must correspond to the vanishing neutrino masses, and

therefore their total dimension should be dν0. Moreover, none of them is real, none

of the complex ones is conjugated to any other, and none of the pseudoreal ones is

equivalent to any other.

To illustrate how the above remarks lead to the results in tables 2.2, 2.3, let us con-

sider a few examples. Let us first consider the mass pattern (A,B,C) for the charged

leptons and (a, b, c) for the neutrinos. As we have three different non-vanishing charged

lepton masses, Ul must decompose into 3 one-dimensional irreps and Uec into the three

conjugated ones. As we have three different non-vanishing neutrino masses, the three one-

dimensional representations in which Ul decomposes must be real. Depending on whether

the three real irreps are equivalent or not, we find the three cases listed in table 2.3. The

last case, corresponding to Ul ∼ Uec ∼ 1 + 1 + 1, is trivial. In fact, a real one-dimensional

representation can only take the values ±1. A 1 + 1 + 1 representation can then only be

trivial or an overall sign change, thus providing no constraint on mE, mν . A less trivial

example is (A, 0, 0) (charged leptons) and (a, b, b) (neutrinos). The charged lepton mass

pattern requires Ul to contain a one dimensional irrep corresponding to the non-vanishing

mass and a possibly reducible two-dimensional representation corresponding to the two

vanishing masses. The neutrino mass pattern requires a one dimensional real irrep, “1”,
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together with either a two dimensional real irrep, “2”, or the sum of a one dimensional

complex representation and its conjugated, “1 + 1”. We therefore have either Ul ∼ 1 + 2

or Ul ∼ 1 + 1 + 1. In the first case, the irrep “1” must correspond to the non-zero

charged lepton mass (the tau mass) and “2” must correspond to the two zero charged

lepton masses (electron and muon masses). The representation Uec must then be in the

form 1 + r, where r is a possibly reducible representation not equivalent to the irrep “2”.

In the second case, the irrep in Ul corresponding to the tau mass can either be the real

one or one of the complex ones (1, without loss of generality). The forms of Uec shown

in table 2.2 follows. As a final example, consider the case in which the three neutrino

masses are degenerate. The only possibility is that Ul be a three dimensional real irrep.

However, if that was the case, the three charged lepton masses would be forced to be

degenerate, which is not a viable mass pattern (unless the masses are all vanishing, a case

considered in section 2.3). There are therefore no possible groups and representations

realising such a case in the symmetric limit. All the other cases in tables 2.2, 2.3 can be

analysed in similar ways.

It is now evident that the results in tables 2.2, 2.3 depend on the flavour group G

and on its representations Ul, Uec on the leptons only through the structure of the de-

composition of Ul, Uec into irreducible components, and more precisely only on i) the

dimensions of the irreps (the numbers denoting them in the table), ii) the possible equiv-

alence or conjugation of the different components (conjugation is denoted by a bar over

the representation, inequivalent irreps are distinguished by primes), and iii) whether the

representation is complex/pseudoreal (boldface) or real (plain). The results show in par-

ticular that (m
(0)
E 6= 0, m

(0)
ν 6= 0), i) the patterns with three degenerate non-vanishing

neutrinos in the symmetric limit cannot be forced by any flavour group; ii) dimension 3

irreps are not involved in forcing any of the mass patterns we considered; iii) dimension

2 irreps can be contained in Uec if, in the symmetric limit, me = mµ = 0; in Ul if, in

addition to that, mν1 = mν2 ; iv) pseudoreal irreps can only play a role in Uec if, in the

symmetric limit, me = mµ = 0; in Ul if, in addition to that, mν1 = mν2 = 0.

2.2.2 Accounting for lepton mixings

We have found so far the possible irrep decompositions leading, in the symmetric limit,

to a reasonable approximation for the lepton masses. We now want to select those among

them that also lead to a reasonable approximation for the PMNS matrix. As we will see,

the form of the PMNS matrix only depends on the structure of the irrep decompositions,

and can be determined in terms of the latter with simple rules that do not require the

explicit construction of the mass matrices nor their diagonalization. We will present in

this section the results and leave the proofs to the appendix A.
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lepton masses decompositions of Ul and Uec

(A00) (aaa) none

(A00) (abb)
1 1 1

1 r + 1,1

1 1 1

1 r + 1,1

1 2

1 r 6= 2

(A00) (0aa)
1 1′ 1

1 r + 1,1′

1′ 1 1

1
′
r + 1,1

1 1 1

1 r + 1,1

1 1 1

1 r + 1

1 2

1 r 6= 2

(A00) (a00)
1 1 1′

1 r + 1,1′

1 1′ 1

1 r + 1,1′

1 1 1

1 r + 1

1 1 1

1 r + 1,1

1 2

1 r + 2

(A00) (abc)
1 1′ 1′′

1 r + 1′, 1′′

1 1 1′

1 r + 1, 1′

1′ 1 1

1′ r + 1

1 1 1

1 r + 1

(A00) (ab0)
1 1′ 1

1 r + 1′,1

1 1′ 1

1 r + 1, 1′

1 1 1

1 r + 1

1 1 1

1 r + 1,1

Table 2.2: Possible decompositions of Ul (above) and Uec (below) into irreducible
components (part I). Each line corresponds to a combination of the charged lepton and
neutrino mass patterns in the first two columns of table 2.1. Only the charged lepton
pattern (A00), which does not require hierarchies among non-zero entries, is consid-
ered here. Irreps are denoted by their dimensions. Boldface fonts denote complex or
pseudoreal (if 2-dimensional) representations, regular fonts denote real representations.
Primes are used to distinguish inequivalent representations, and in the case of complex
representations 1′ is supposed to be different from both 1 and 1. “r” denotes a generic,
possibly reducible representation, different from or not including the specified irreps,
as indicated.

The form of the PMNS matrix UPMNS associated to a given irrep decompositions of Ul
and Uec in the symmetric limit, is

UPMNS = HEPEV D
−1P−1

ν H−1
ν . (2.6)

The contributions to UPMNS on the right hand side have different origins and different

physical meanings. Each of them can be obtained without the need of writing explicitly

nor diagonalising the lepton mass matrices, with the following rules.

• First, it is useful to order the irreps in such a way that those in Ul, Uec that are

conjugated to each other appear last and in the same position in the list. This

way the vanishing charged lepton masses will appear first in the list of eigenvalues.

For example, in one of the cases in table 2.3, we could have Ul = 1 + 1 + 1,

Uec = (r 6= 1) + 1 + 1. Correspondingly, we write a list of generic charged lepton
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lepton masses decompositions of Ul and Uec

(ABC) (aaa) none

(ABC) (abb)
1 1 1

1 1 1

(ABC) (0aa)
1 1′ 1

1 1′ 1

1 1 1

1 1 1

(ABC) (a00)
1 1 1′

1 1 1′
1 1 1

1 1 1

(ABC) (abc)
1 1′ 1′′

1 1′ 1′′
1 1 1′

1 1 1′
1 1 1

1 1 1

(ABC) (ab0)
1 1′ 1

1 1′ 1

1 1 1

1 1 1

(AB0) (aaa) none

(AB0) (abb)
1 1 1

1 1 r 6= 1

1 1 1

1 1 r 6= 1

(AB0) (0aa)
1 1 1′

1 1 r 6= 1′
1 1′ 1

1 1′ r 6= 1

1 1 1

1 1 r 6= 1

1 1 1

1 1 r 6= 1

(AB0) (a00)
1 1 1′

1 1 r 6= 1′
1 1′ 1

1 1′ r 6= 1

1 1 1

1 1 r 6= 1

1 1 1

1 1 r 6= 1

(AB0) (abc)
1 1′ 1′′

1 1′ r 6= 1′′
1 1 1′

1 1 r 6= 1′
1′ 1 1

1′ 1 r 6= 1

1 1 1

1 1 r 6= 1

(AB0) (ab0)
1 1′ 1

1 1′ r 6= 1

1 1 1′

1 1 r 6= 1′
1 1 1

1 1 r 6= 1

1 1 1

1 1 r 6= 1

Table 2.3: Possible decompositions of Ul (above) and Uec (below) into irreducible com-
ponents (part II). Each line corresponds to a combination of the charged lepton and
neutrino mass patterns in the first two lines of table 2.1. The charged lepton patterns
(ABC) and (AB0) are considered here, which require hierarchies among the non-zero
entries. Irreps are denoted by their dimensions. Boldface fonts denote complex rep-
resentations, regular fonts denote real representations. Primes are used to distinguish
inequivalent representations, and in the case of complex representations 1′ is supposed
to be different from both 1 and 1. “r” denotes a generic, possibly reducible represen-
tation, different from or not including the specified irreps, as indicated.
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eigenvalues with the non-vanishing eigenvalues corresponding to the conjugated

representations. In the example above, the list would be (0, B,A).4

• V is a generic unitary transformation commuting with Ul, with O (1) entries. Its

origin is associated to the presence of equivalent copies of the same irrep type in

the decomposition of Ul. If all the irrep components are inequivalent, V is trivial.

For example, if Ul = 1 + 1 + 1, V is a 2× 2 unitary transformation in the 12 block.

• D is associated to the possible presence of a Dirac sub-structure in the neutrino mass

matrix, and it originates from the presence of complex conjugated irreps within the

decomposition of Ul. In the three neutrino case, there are only two possibilities.

Either Ul does not contain pairs of complex conjugated irreps, in which case D

is trivial, Dij = δij. Or there is one pair of one-dimensional complex conjugated

representations, in the positions i and j in the list of irreps, in which case D is a

maximal 2× 2 rotation,

D2 =
1√
2

(
1 1

−i i

)
, (2.7)

embedded in the ij block. The corresponding mass eigenvalues are degenerate (both

positive due to the imaginary unit in D2, contributing to the Majorana phases).

Correspondingly, we write the list of neutrino eigenvalues as follows. If a pair of

conjugated irreps is present in Ul in the positions i and j, we have two degenerate

non-vanishing eigenvalues in the corresponding positions. We then have a non-

vanishing eigenvalue in the position corresponding to each real representation. If

the real irrep has dimension d > 1, there will be d degenerate eigenvalues. Finally,

we have a vanishing eigenvalue corresponding to each unmatched complex repre-

sentation. In the previous example, with Ul = 1+1+1, we can equivalently choose

the two conjugated representations to be the ones in the positions ij = 23 or those

in the positions ij = 13. Such a choice will determine the positions i and j of the

corresponding two degenerate neutrino masses in the list of eigenvalues (before the

reordering below). So if we choose ij = 23, we will have the 2× 2 block in eq. (2.7)

embedded in the 23 block of the matrix D and the list of neutrino eigenvalues will

be in the form (0aa).

• The permutation matrices PE and Pν are associated to the possible need of reorder-

ing the list of eigenvalues. Indeed, the list of eigenvalues obtained with the above

rules is not necessarily in the standard ordering, required for a proper definition of

the PMNS matrix. In the example we have considered, the list of charged lepton

eigenvalues is (0, B,A). The masses are in standard ordering if B < A. On the

other hand, if B > A, the standard ordering is obtained by switching A and B. Cor-

respondingly, PE is either the identity or a permutation matrix switching 2↔ 3. As

for the neutrinos, the list of eigenvalues is in the form (0aa). The standard ordering

4Note that in the tables, for convenience, the three families appear in inverse order: (3,2,1).
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requires the two degenerate eigenvalues to be in the first two positions. Therefore,

Pν is a permutation matrix moving the first entry in the third position.

• Finally, the role of He, Hν is to take into account possible ambiguities in the def-

inition of the PMNS matrix in the symmetric limit. In the real world, all leptons

are non-degenerate and the PMNS matrix only has unphysical phase ambiguities,

which do not need to be taken into account. When considering the symmetric

limit, on the other hand, larger ambiguities can arise due to degenerate, possibly

vanishing, masses. In practice, HE is a generic unitary transformation mixing the

massless charged leptons; and Hν contains a generic unitary transformation mixing

the massless neutrinos and a generic orthogonal transformation mixing degenerate

massive neutrinos (it turns out, however, that the latter can be ignored if the de-

generacy is due to a Dirac structure, in which case it can be reabsorbed into a phase

redefinition of V ). As discussed in the appendix A, the He, Hν contributions to

the PMNS matrix have a different physical nature than the previous ones. They

are unphysical, and undetermined, in the symmetric limit. However, they become

physical (up to diagonal phases) after symmetry breaking effects split the degen-

erate mass eigenstates. Depending on the specific form of the symmetry breaking

effects, He and Hν can end up being large, small, or zero (unlike the previous contri-

butions, which are determined by the non-zero entries and are large in the absence

of accidental correlations [128]).

With the above rules, we can determine the form of the PMNS matrix associated to

each irrep pattern in tables 2.2, 2.3 and select the cases leading to a PMNS matrix with

no zeros or a zero in the 13 position. The results are illustrated in table 2.4.

As shown, there is a limited number of cases leading, in the symmetric limit, to lepton

observables close to what observed. Each case corresponds to a certain decomposition

of the flavour representations in terms of real and complex, equivalent and inequivalent

representations of given dimension. Each pattern may correspond to different flavour

groups and representations, provided that the decomposition of the representation on the

leptons follows that pattern. The allowed patterns contain one-dimensional irreps only.

Pseudoreal representations do not play a role.

Three out of the six cases in the table are partially trivial. Those are the cases in

which Ul ∼ 1 + 1 + 1, for which the representation on the lepton doublets is either the

identity representation or an overall sign change. In such a case, the neutrino mass matrix

is not constrained at all, and the neutrino masses and PMNS matrix are expected to be

completely generic. In particular, the relative smallness of |(UPMNS)13| is accidental. We

are in the presence of “anarchical” neutrinos [129, 130]. The only constraints that can be

obtained are on the charged lepton masses, through the interplay of the trivial Ul with a

non-trivial Uec .

The other three cases provide non-trivial constraints on neutrino masses and mix-

ings. An important result is that they all correspond to inverted neutrino hierarchy, and
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irreps masses ν hierarchy HE PE V D Pν Hν UPMNS zeros

1 1 1

1 r + 1

(A00)

(abc)
NH or IH V V none

1 1 1

1 r + 1,1

(A00)

(0aa)
IH HE

12 V23 D12 HE
12V23D

−1
12 none (13)

1 1 1

1 1 r 6= 1

(AB0)

(abc)
NH or IH V V none

1 1 1

1 1 r 6= 1

(AB0)

(0aa)
IH V23 D12 V23D

−1
12 13

1 1 1

1 1 1

(ABC)

(abc)
NH or IH V V none

1 1 1

1 1 1

(ABC)

(0aa)
IH PE V23 D12 PEV23D

−1
12 13, 23, 33

Table 2.4: Irrep decompositions giving rise to a PMNS matrix with no zeros or a single
zero possibly in the 13 entry. The first column shows the decomposition of Ul and Uec ,
one above the other. Only real and complex irreps appear. The second column shows
the corresponding pattern of charged lepton and neutrino masses in the symmetric
limit, one above the other, and the third column contains the neutrino hierarchy type,
normal (NH) or inverted (IH). The individual contributions to the PMNS matrix are
then shown. A matrix with no further specification is generic (e.g. P denotes a generic
permutation, V a generic unitary matrix). Dij denotes a π/4 rotation in the generic
form in eq. (2.7) acting in the sector ij. If no information on a certain factor is given,
that factor is irrelevant (for example because diagonal or because it can be reabsorbed
in another factor). The presence and position of a zero in the PMNS matrix in the
symmetric limit is specified in the last column.

specifically to two degenerate and one vanishing neutrino mass in the symmetric limit.

Therefore, if the present hint favouring a normal hierarchy were confirmed, we would

conclude, within our assumptions, that either the flavour model is not predictive at all in

the neutrino sector, or the symmetric limit does not provide an approximate description

of lepton masses and mixings. In the latter case, we might have to resort to a caveat in

our assumptions (see conclusions) or to the case where all charged lepton or all neutrino

masses vanish in the symmetric limit (last column of table 2.1), and symmetry breaking

effects are crucial to understand even the basic features of lepton mixing.

Table 2.4 is divided in two parts. In the first part, the hierarchy of the charged lepton

masses is naturally accommodated by the vanishing of the two lighter masses in the

symmetric limit, in agreement with the principle that hierarchies should be explained by

the flavour model. In the second part, hierarchies not accounted for by the flavour theory

have to be invoked among the non-zero entries in order to account for the structure of

charged lepton masses. The second case in the first part of the table is special, as the
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size of the 13 element of the PMNS matrix is determined by the rotation HE
12, which is

not physical in the symmetric limit, and will be fixed by the symmetry breaking effects

generating the muon mass. Depending on the structure of those effects, the size of

(UPMNS)13 can end up being large, small, or zero. Finally, note that since the parameters

entering all the mixing matrices in table 2.4 except D are generic, a specific value of a

mixing angle can be obtained only when the matrix D is involved. As the table shows,

D can only play a role in the 12 mixing, in agreement with earlier specific results [20].

In the next subsection, we shortly illustrate a few examples of specific flavour groups

and representations corresponding to the patterns in table 2.4.

2.2.3 Examples

The results above have been obtained without the need to specify the form of the lepton

mass matrices, as they directly followed from the structure of the irrep decompositions.

Moreover, there was no need to specify a flavour group or its representation on leptons,

as the results hold for any group, of any type, as long as the decompositions of its

representations have the structure shown in the tables. In the following, for completeness

and as proofs of existence, we will provide examples, in some cases well known, of explicit

realisations of the three cases in table 2.4 leading to a PMNS matrix with a (possible)

zero in the 13 position in the symmetric limit. All of them require a continuous or discrete

symmetry group G with a complex one-dimensional representation 1, and a representation

on the lepton doublets decomposing as Ul = 1 + 1 + 1.

Ul = 1 + 1 + 1, Uec = 1 + (r + 1,1)

In this case, corresponding to the second row in table 2.4, the representation on the

lepton singlets decomposes into a copy of 1 and a (possibly reducible) two dimensional

representation r whose only requirement is not to contain either 1 or 1 (r could be for

example the trivial representation). In the symmetric limit, two charged leptons are forced

to be massless, which explains the suppression of the electron and muon mass compared

to the tau mass, and the neutrino spectrum turns out to be inverted hierarchical, with

m3 = 0 and m1 = m2. With the notations used in table 2.4, we thus have

(mτ ,mµ,me) = (A, 0, 0), (mν3 ,mν2 ,mν1) = (0, a, a). (2.8)

A non-vanishing value of me,mµ must then be generated by the symmetry breaking

effects, which will also give m3 � m1 ≈ m2.

The PMNS matrix does not necessarily have a zero, as it is obtained from the com-

bination of 3 rotations: V23, the O (1) rotation in the 23 sector commuting with Ul; a

maximal 12 rotation D12 associated with the Dirac substructure in mν forced by Ul; and

a rotation HE
12 in the 12 sector, associated to the degeneracy of the first two charged

leptons and not determined in the symmetric limit. The latter is fixed by the symmetry
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breaking effects generating the muon and electron masses. If the HE
12 is large, the PMNS

matrix is expected not to have any small entry. On the other hand, in the light of the

hierarchy me � mµ, one can expect HE
12, and consequently (UPMNS)13, to be relatively

small [131–142]. The PMNS matrix thus reads

UPMNS = HE
12V23D

−1
12 =

X X ?

X X X

X X X

 , (2.9)

where X denotes a non-zero entry, not further constrained, and the size of the 13 entry

depends on HE
12, as discussed. The form of lepton mass matrices in the symmetric limit

is

mE =


X X

 , mν =

 X X

X

X

 . (2.10)

It is easy to exhibit an example of a group G and representations Ul, Uec with a decom-

position in irreps as above. An easy choice is G = U(1), with ω ∈ U(1) represented

by

Ul(ω) =

ω∗ ω

ω

 , Uec(ω) =

ωq ωp

ω∗

 , (2.11)

where p, q 6= ±1. For example, one can choose p = q = 0 (trivial representation). A

minimal possibility involving a discrete group is G = Z3, with the same representation

of ω ∈ Z3 and p = q = 0 as the only possible choice. Any other discrete subgroup of

U(1), different from Z2 would of course also work. It is also possible to realize this case

by using the one dimensional representations of non-abelian discrete groups, such as A4

for example.

Ul = 1 + 1 + 1, Uec = 1 + 1 + (r 6= 1)

In this case, corresponding to the fourth row in table 2.4, the representation on the

lepton singlets decomposes into two copies of 1 and a one dimensional representation r

inequivalent to 1. In the symmetric limit, one charged lepton is forced to be massless,

which explains the suppression of the electron mass compared to the muon and tau

masses, but not the hierarchy mµ � mτ , and the neutrino spectrum turns out to be

inverted hierarchical as before,

(mτ ,mµ,me) = (A,B, 0), (mν3 ,mν2 ,mν1) = (0, a, a). (2.12)

The PMNS matrix contains a zero, unambiguously positioned in the 13 entry. It is

obtained from the combination of 2 rotations: V23, the O (1) rotation in the 23 sector

commuting with Ul, and a maximal 12 rotation D12. Unlike the previous case, the form
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of the PMNS matrix is determined in the symmetric limit up to phase ambiguities only.

The forms of the PMNS matrix and of the lepton mass matrices in the symmetric limit

are given by

UPMNS = V23D
−1
12 =

X X 0

X X X

X X X

 ,

mE =

 X X

X X

 , mν =

 X X

X

X

 .

(2.13)

A simple implementation of this case can be obtained from the previous one by modifying

the way the group acts on µc. For G = U(1), we can in fact represent ω ∈ U(1) by

Ul(ω) =

ω∗ ω

ω

 , Uec(ω) =

ωq ω∗

ω∗

 , (2.14)

where q 6= 1, for example q = 0. As before, abelian or non-abelian discrete groups can

also be used. For example, for the group G = Z3, q = 0 and q = 2 are the only possible

choices, and G = A4 also works with its one dimensional representations.

Ul = 1 + 1 + 1, Uec = 1 + 1 + 1

This case, corresponding to the sixth row in table 2.4, has a particularly well known

implementation: G = U(1) acting on leptons according to their Lτ +Lµ−Le charge [143–

148]. The disadvantage of this case is that, whatever is the implementation, none of the

charged lepton hierarchies, me � mµ � mτ , is explained by the model. The neutrino

spectrum is inverted hierarchical, as before, and with the notations used in table 2.4 we

have

(mτ ,mµ,me) = (A,B,C), (mν3 ,mν2 ,mν1) = (0, a, a). (2.15)

Another disadvantage is that the PMNS matrix does contain a zero, but the model

does not explain why it appears in the 13 entry, as in principle it could also appear in

the 23 or 33 entry. This is because the permutation PE in eq. (2.6), sorting the charged

leptons in the standard order, is generic in this case. In other words, the symmetry does

force the eigenvalue positioned where the electron should be to be the lightest, and a

viable symmetric limit for the PMNS matrix is obtained only in that case, i.e. when the

smallest eigenvalue happens to correspond to the lepton transforming as 1 under Ul. In

such a case, the PMNS matrix and the lepton mass matrices in the symmetric limit are
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in the form

UPMNS = PEV23D
−1
12 =

X X 0

X X X

X X X

 ,

mE =

X X X

X X

 , mν =

 X X

X

X

 .

(2.16)

Examples of the viable flavour symmetries can easily be achieved by the similar way as

in the two cases discussed above.

In all of those three cases, Ul is decomposed into three one-dimensional representations

and Uec is not allowed to have a three-dimensional representation, but it can contain a

two dimensional representation when two lightest charged leptons are massless in the

symmetric limit. In fact, the very role of the two-dimensional representation is to for-

bid the masses of first two charged leptons through its interplay with the inequivalent

representation on the lepton doublets.

We can also consider other cases in which the PMNS matrix has no zero entry in

the symmetric limit and the relative smallness of the 13 element is accidental. In such

cases, the only purpose of the flavour symmetry might be to enforce the smallness of

the electron and possibly the muon mass, while allowing the form of PMNS matrix is

arbitrary (in these cases any 3 × 3 unitary matrix is allowed PMNS). As was shown

in table 2.4, these cases require three lepton doublets to be transformed under the same

real one-dimensional representation. So there are only two possibilities: either all the

lepton doublets are invariant under G, or they transform with a Z2 changing sign to all

of them. The tau lepton mass is always non-vanishing, other charged leptons (electron or

muon) have masses in the symmetric limit if lepton singlets transform in the same way as

the corresponding lepton doublets, they are massless when lepton singlets and doublets

transform differently.

2.3 Lepton mixing from symmetry breaking effects

We will now consider the cases in which all neutrinos or all charged lepton masses vanish

in the symmetric limit (m
(0)
E = 0 or m

(0)
ν = 0 in eq. (2.1)), i.e. the cases associated to the

last column in table 2.1. In such cases, the sole knowledge of the flavour group and its

representation is not sufficient to account for any of the features of lepton mixing, as the

PMNS matrix is completely undetermined (unphysical) in the symmetric limit, with its

final form fully depending on the symmetry breaking effects.

As symmetry breaking effects are now central, let us consider not only the flavour

group G and its representations on the leptons, here denoted by UG
l and UG

ec , but also

the residual group H to which G is spontaneously broken, and its representations on
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leptons UH
l and UH

ec , which are simply the restriction to H of UG
l and UG

ec . If G is

fully broken, the residual group H only contains the identity, and its representations are

trivial. Symmetry breaking can take place in more than one step, G→ H1 → . . .→ Hn,

associated to different scales. In such a case, our results will correspond to the first step

of the breaking chain, H = H1, and the corresponding breaking effects will only provide a

leading order prediction for the lepton observables, as the contribution of the subsequent

steps may be needed to precisely fit them.

We want to characterise the forms of UG
l and UG

ec and UH
l and UH

ec leading, once G

is broken (but H is not), to a pattern of lepton masses and mixing not far from what

observed.

Such a problem does not admit a general answer as simple as the one obtained in the

previous section. The reason is that the final pattern of lepton observables does not only

depend on G, H, UG, UH , but it also depends on the specific spectrum of flavons and

their vevs (and the scalar potentials determining the vevs). On the other hand, it turns

out that a simple answer can be obtained if the following (non-trivial) hypothesis holds:

the symmetry breaking corrections, m
(1)
E , m

(1)
ν in eq. (2.1), have the most general form

allowed by the residual symmetry H, with all non-vanishing entries of the same order.

Needless to say, neither neutrino nor charged lepton masses should identically vanish after

symmetry breaking. In such a case, it turns out that the formalism developed and the

results obtained in the previous sections on the possible structures of UG can be simply

reinterpreted in terms of the possible structures of UH , as we will see below.

The hypothesis we introduced is non-trivial. It amounts at assuming that the lepton

observables only depend on the symmetry breaking pattern G → H and not on the

specific breaking mechanism used. This is not the case in most models found in the

literature, in which the flavour structure is rather associated to the specific choice of the

flavon spectrum, to their coupling to the leptons, and to the form of their vevs. This is

the case for example in models where the residual symmetry H is different in the neutrino

and charged lepton sectors; and even in the case of U(1) models, in which H = {1}, all

entries are allowed by H, but they typically turn out to be of different sizes, depending on

how many powers of the flavons are needed to generated them. Still, the results we will

get under the above hypothesis are useful for a complete assessment of the importance of

a detailed knowledge of the symmetry breaking mechanism.

Let us motivate the result mentioned above. Suppose, as we do, that G is sponta-

neously broken to H, that either the charged lepton or the neutrino masses (not both)

vanish in the G-symmetric limit, and that, after spontaneous breaking, we obtain a mass

pattern close to what observed, i.e. in one of the forms listed in the first two columns

of table 2.1. The knowledge of the mass pattern after symmetry breaking allows us to

constrain UH . The possible structures of the irrep decomposition of the representation

UH are in fact listed, for each mass pattern, in tables 2.2, 2.3, where Ul and Uec should

now be interpreted as UH
l and UH

ec . The group G plays no role at this point. A further

constraint comes from the requirement that the PMNS be also close to what observed
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after symmetry breaking. In order to find the form of the PMNS matrix associated to a

given breaking pattern, we can proceed as in the appendix. We then find that the form of

the PMNS matrix again depends on UH only, and its structure is still given by eq. (2.6),

with the form of each factor dictated by the same rules given in that section, where Ul
and Uec should now be interpreted as UH

l and UH
ec . The group G again plays no role.5

We conclude that the structure of the irrep decomposition of UH must be one of those

in table 2.4, where once again Ul and Uec should be interpreted as UH
l and UH

ec , and the

mass pattern and PMNS matrix after symmetry breaking can only be in the forms shown

in that table.

The presence of an unbroken, G-symmetric phase played no role in constraining the

form of UH , nor in determining the form of the PMNS matrix. On the other hand, it

can play a useful role in providing hierarchies among lepton masses, in particular within

the more hierarchical charged lepton masses. We have in fact now two scales available

in the sector, let us say the charged lepton one for definiteness, where the masses do not

vanish in the symmetric limit: the scale of the non-vanishing entries in m
(0)
E , allowed by

G; and the lower scale of the non-vanishing entries in m
(1)
E , allowed by H but not by G.

We can then use the ratio between those two scales to account for the hierarchy between

the tau and muon masses. Therefore, while in section 2.2.2 we focused only on the first

two lines in table 2.4, as in the other part of the table the needed hierarchies were not

accounted for, now all the first four lines are on the same footing. The hierarchy needed

between A and B in the cases in which the charged lepton masses are in the form (A,B, 0)

can in fact be provided by the two scales above. On the other hand, the last two lines,

corresponding to the (A,B,C) pattern, are still not on the same footing, as they require

two hierarchies to be explained.

Let us discuss in greater detail how the available hierarchy can enter the results in

table 2.4. Let us first explicitly list the possible mass patterns in the G-symmetric limit.

There are two cases. Either the neutrino masses all vanish, in which case the charged

lepton masses are in the form (A, 0, 0) (we discard (A,B, 0) and (A,B,C) at this level as

in the symmetric limit there is only one scale); or the charged lepton masses all vanish,

in which cases neutrino masses are in one of the forms (a, a, a), (a, b, b), (a, b, c), (0, a, a),

(a, b, 0), (a, 0, 0). Let us now switch on the symmetry breaking effects. The charged and

neutral lepton masses will then get additional contributions from m
(1)
E , m

(1)
ν , which we can

denote as proportional to a parameter ε. In the sector in which m(0) 6= 0, the ε parameter

5The only possible role of G is in the determination of Ve, Vν in eq. (A.11), obtained by the diago-
nalisation of mE,r, mν,r in eqs. (A.6,A.7,A.8), which now include symmetry breaking effects. In one of
the two matrices, say mE,r for definiteness, two scales now enter, the scale of m(0)

E and the scale of m(1)
ν

(while in the neutrino sector m(0)
ν = 0 and only one scale appears). In such a case Ve,r may not be a

generic matrix with O (1) entries, it could for example contain small mixing angles. On the other hand,
only one scale, that of m(1)

ν , enters mν,r, so that Vν,r is still a generic matrix with O (1) entries. As V is
the combination of Ve, and Vν , V will be also a generic matrix with O (1) entries, whatever is the form
of Ve.
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represents the ratio of the two scales, m(1) and m(0).6 In table 2.5 we show the lepton

mass patterns that can be obtained, together with a viable PMNS matrix, taking into

account the presence of the two scales. We discard the (A,B,C) charged lepton pattern

(last two lines in table 2.4) as it requires at least one unaccounted hierarchy. In table 2.5,

the lepton mass pattern in the G-symmetric limit can be obtained by setting ε = 0. The

corresponding irrep decompositions of UG are shown, as well as the irrep decomposition

of UH shaping the symmetry breaking corrections. We have checked that for each pair of

irrep decompositions of UG and UH in the table corresponding to the same mass pattern

there exists concrete examples of the groups G and H and of the representations of G,

UG
l and UG

ec , such that the decomposition of the latter under H reproduces the chosen

irrep decomposition of UH .

2.4 Constraints from unification

A theory of flavour should account for both lepton and quark masses. The results we

obtained provide constraints on the flavour group following from the observed pattern of

lepton masses and mixings. The quark sector can of course provide additional constraints.

In the context of unified theories, the two problems cannot be considered separately,

as quarks and leptons are unified in single irreps of the unified gauge group. For example,

in SU(5) theories, the lepton doublets li are unified with the down quark singlets dci in

anti-fundamental representations of SU(5), and the remaining fermions are unified into

antisymmetric representations of SU(5). If the action of the flavour group commutes

with SU(5), all fermions in the same SU(5) irrep should transform in the same way under

the flavour group, Udc = Ul and Uuc = Uq = Uec . This provides an unavoidable further

constraint on the flavour group and its representation. The constraint is even stronger if

all the fermions of a single family are unified into a spinorial representation of SO(10).

In this section we discuss the effect of such constraints on the previous results.

Let us first assume that the flavour group commutes with SU(5) and call U5, U10 its

representations on the SU(5) fermion multiplets. As we have seen, the requirement that

the prediction for lepton masses and mixings in the symmetric limit is close to what

observed restricts the possible choices of U5 = Ul and U10 = Uec . Table 2.4 summarises

the 6 possible forms of their decompositions. Let us now require that the quark masses

and mixings are also close what observed in the symmetric limit. By that we mean a

quark mass pattern in the form (A, 0, 0) or (A,B, 0) or (A,B,C) in both the up and

down quark sector, with the (A, 0, 0) pattern preferred, as the others require hierarchies

among the non-vanishing entries. As for the CKM matrix, let us first remind that the

CKM angles are all measured to be small, with the only possible exception of the Cabibbo

angle, corresponding to the 12 block of the CKM matrix. We then only consider the cases

6In principle the correction to the masses could be proportional to higher powers of ε, but it turns
out that this it not the case, under our hypotheses.
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masses hierarchy G irreps H irreps UPMNS zeros

(εA 0 0)

(a b c )
NH or IH

1 1 1

r + 1

1 1 1

1 r + 1
V none

(εA 0 0 )

(a b εc)
NH or IH

1 1 1

r + 1,1

1 1 1

1 r + 1
V none

(εA 0 0 )

(a εb εc)
NH

1 1 1

r + 1,1

1 1 1′

r + 1,1,1′

1 2

r + 1,2

1 1 1

1 r + 1
V none

(A 0 0)

(εa εb εc)
NH or IH

1 1 1

1 r + 1

1 1 1′

1 r + 1,1′

1′ 1 1

1′ r + 1

1 1′ 1′′

1 r + 1′,1′′

1 2

1 r 6= 2

1 1 1

1 r + 1
V none

(A 0 0)

(0 εa εa)
IH

1 1 1′

1 r + 1,1′

1 1′ 1′′

1 r + 1′,1′′

1 2

1 r 6= 2

1 1 1

1 r + 1,1
HE

12V23D
−1
12 none (13)

(εA 0 0)

(0 a a)
IH

1 1 1

r + 1,1

1′ 1 1

r + 1,1,1′

1 2

r + 1, 2

1 1 1

1 r + 1,1
HE

12V23D
−1
12 none (13)

(A εB 0)

(εa εb εc)
NH or IH

1 1 1

1 r + 1

1 1 1′

1 r + 1,1′

1′ 1 1

1′ r + 1

1 1′ 1′′

1 r + 1′,1′′

1 2

1 r 6= 2

1 1 1

1 1 r 6= 1
V none

(A εB 0)

(0 εa εa)
IH

1 1 1′

1 r + 1,1′

1 1′ 1′′

1 r + 1′,1′′

1 2

1 r 6= 2

1 1 1

1 1 r 6= 1
V23D

−1
12 13

Table 2.5: Lepton mass patterns that can be obtained starting from a symmetric
limit (ε = 0) in which either the neutrino or the charged lepton masses (but not both)
vanish. The corrections proportional to ε are induced by the spontaneous symmetry
breaking G → H, under the hypothesis introduced in section 2.3. The corresponding
irrep decompositions of UGl , UGec and of UHl , UHec leading to a viable form of the PMNS
matrix are also shown. As usual, boldface fonts denote complex or pseudoreal (if 2-
dimensional) irreps, primes are used to distinguish inequivalent representations, and in
the case of complex representations 1′ is supposed to be different from both 1 and 1.
The representations of G and H are of course different even if represented by the same
symbol. If ε is reabsorbed into the parameter it multiplies, the mass pattern correspond
to the ones in the first four lines of table 2.4 and the irrep decompositions of UHl , UHec
coincide with those shown in that table.



2.4. Constraints from unification 51

leading to a CKM matrix which is either diagonal or containing at most a non-trivial 12

block in the symmetric limit. It turns out that the only possible irrep decomposition

is U5̄ = 1 + 1 + 1, U10 = 1 + r + 1. This uniquely identifies the form of the lepton

spectrum in the symmetric limit, with vanishing electron and muon masses, (A, 0, 0), and

anarchical neutrino masses, (a, b, c), with a generic PMNS matrix. The structure of the

quark masses and mixings in the symmetric limit instead depends on the specific choice

of U10. This is shown in table 2.6, where the viable forms of U10 and the corresponding

mass and mixing patterns are listed. The down quark masses are in the same form as

(and are actually equal to) the charged lepton ones in the symmetric limit, as dictated

by SU(5). The CKM matrix has the form

VCKM = HUPUV P
−1
D H−1

D . (2.17)

The contributions to VCKM have similar origins as the corresponding ones in eq. (2.6).

As in the case of the PMNS matrix, each of them can be obtained without the need of

writing explicitly nor diagonalising the quark mass matrices, with analogous rules. The

form of the CKM matrix in terms of those contributions is also indicated in table 2.6.

Note the constant presence of an undetermined transformation in the 12 block, HD
12,

associated to the vanishing of the two lighter down quark masses in the symmetric limit.

As discussed, such undetermined transformations are fixed, up to diagonal phases, by

symmetry breaking effects, and they can end up contributing to the Cabibbo angle with

a zero, small, or large mixing angle. The patterns shown in the table are viable provided

that the permutations PU , PD do not modify the position of the heavy eigenvalue. The

Cabibbo angle is expected to be large (with the measured value accidentally smallish)

in the last case in table 2.6, where a physical V12 rotation appears, which will survive

symmetry breaking. In all the other cases, the Cabibbo angle can end up being large

or small, depending on the symmetry breaking effects. If the two light eigenvalues are

permuted, the Cabibbo angle receives a π/2 contribution, which needs to be (partially)

cancelled by other contributions.

If all the fermions of a single family are unified into a dimension 16 spinorial represen-

tation of SO(10) commuting with the flavour group, the constraints on the flavour group

representation are even stronger, and no solution can be found. In such a case we would

have in fact U16 ≡ U5 = U10. The symmetric limit is a good approximation in the lepton

sector only if U16 is trivial. Such a possibility however leads to a generic CKM matrix

with O (1) angles, which we do not consider a viable leading order approximation in the

symmetric limit.
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(U5̄ = 1 1 1) masses VCKM UPMNS

U10 = 1 1 1

U10 = 1 1 1′

U10 = 1 2

(A 0 0 )D

(D 0 0 )U

(A 0 0 )E

(a b c )ν
HU

12H
D
12
−1

V

U10 = 1 1′ 1
(A 0 0 )D

(DE 0 )U

(A 0 0 )E

(a b c )ν
PU

2↔3H
D
12
−1

V

U10 = 1 1 1
(A 0 0 )D

(DEF )U

(A 0 0 )E

(a b c )ν
PUH

D
12
−1

V

U10 = 1 1′ 1′′
(A 0 0 )D

(DEF )U

(A 0 0 )E

(a b c )ν
PUH

D
12
−1

V

U10 = 1 1′ 1′
(A 0 0 )D

(DEF )U

(A 0 0 )E

(a b c )ν
PUV12H

D
12
−1

V

Table 2.6: Possible forms of SU(5) unified flavour representations. U5 is trivial in
all cases. The form of fermion masses and of the CKM and PMNS matrices, in the
notations of eq. (2.17), corresponding to viable choices are shown. The lepton mass
pattern and PMNS matrix are all in the same form, as they all correspond to the case
in the first line of table 2.4. P2↔3 is either the identity permutation or the switch of 2
and 3.

2.5 Conclusions

We provided a complete answer to the following general question: what are the flavour

groups, of any type, and representations providing, in the symmetric limit, an approxi-

mate description of lepton (fermion) masses and mixings?

The assumption we made is quite general: the light neutrinos are of Majorana type,

and the symmetry arguments can be applied directly to their mass matrix. Despite the

generality of the problem, the complete answer is simple and has an important corollary:

either the flavour symmetry does not constrain at all the neutrino mass matrix (anarchy),

or the neutrinos have an inverted hierarchical spectrum. Therefore, if the present hint of

a normal hierarchical spectrum were confirmed, we would conclude that, under the above

assumption, flavour models leading to an approximate description of lepton masses and

mixings in the symmetric limit are not able to account for any of the neutrino flavour

observables, and symmetry breaking effects must play a primary role in their understand-

ing. Such a conclusion is further strengthened in the case in which the representation of

the flavour group commutes with the standard representation of a SU(5) grand unified

gauge group. In the latter case, not even the options leading to an inverted hierarchical

spectrum are available, and the only option is anarchy. In the case of SO(10), there are

no solutions.
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The main caveat to the previous conclusion is the assumption that the light neutrinos

are of Majorana type, and that the symmetry arguments can be applied directly to their

mass matrix. The origin of Majorana neutrino masses most likely resides at high scales,

where additional relevant degrees of freedom (singlet neutrinos for example) might live.

In such a case, the flavour symmetry acts on the high-scale degrees of freedom as well.

The low-energy analysis turns out to be often equivalent to the high-scale analysis, but

not always. Such a caveat will be studied in the next chapter.

The possibility to provide a simple systematic answer to the above general question is

based on the following result: the structure of lepton masses and mixings only depends

on the flavour group and representations through the structure of their decomposition in

irreducible components, and in particular only through the dimension, type (complex or

real or pseudoreal), and equivalence of those components. We found that there are only

six viable structures, listed in table 2.4. All of them contain only one-dimensional real or

complex representations.

In passing, we developed a simple technique to determine the form of the lepton masses

and mixings directly from the structure of the decomposition in irreducible representa-

tions, without the need to specify, nor to diagonalise, the lepton mass matrices. We

also noted that it is important to write the invariance condition in terms of the charged

lepton mass matrix mE and not of m†EmE, otherwise the important role of the flavour

representation on singlet leptons would be lost.

As our results and assumptions imply that an understanding of the flavour observ-

ables of normal hierarchical neutrinos must rely on symmetry breaking effects, we also

consider the possibility that the neutrino or the charged lepton mass matrix vanishes in

the symmetric limit. With a simple extension of the previous techniques, we proved that

the sole knowledge of the symmetry breaking pattern, i.e. of the residual unbroken group,

is not sufficient to get a better understanding of the flavour observables: the sources of

flavour breaking and of their vacuum expectation values need to be specified.



Chapter 3

Flavour symmetries in the context of

the seesaw mechanism

In chapter 2 we have studied neutrino masses and mixing by assuming that the neutrinos

are Majorana particles and that the flavour symmetries directly put constrains on their

mass matrix originated from the Weinberg operator. In this chapter we will consider the

possibility that the Weinberg operator originates from a type I seesaw mechanism, and

we address two issues. These are the constraints on lepton mixing one obtains (in the

symmetric limit) in terms of the Weinberg operator equivalent to those one obtains in

terms of the corresponding seesaw Lagrangian. As it will turn out that the two analyses,

in terms of the Weinberg operator and seesaw Lagrangian, are not equivalent, we will

extend analysis in chapter 2 to the case of a seesaw Lagrangian.

3.1 Introduction

In this chapter we will assume that the Weinberg operator originates, at a tree level,

from the type I seesaw mechanism. We will show that discussing the neutrino masses and

mixings from the high-scale origin of type I seesaw mechanism is not always equivalent to

the low-scale results that we got in in the previous chapter. So there are two inequivalent

flavour symmetry discussions of neutrino masses and mixing depending on whether the

flavour symmetry is assumed to act on the Lagrangian with Weinberg operator or on

the corresponding seesaw Lagrangian. Hereafter we call them as low- and high-scale

analyses, respectively. Now that there are two different analyses, it is important to

study under which condition they become inequivalent, since equivalent case reproduces

the results we already know in previous chapter. As we will see, inequivalence happen

in two cases depending on whether or not the singlet neutrino mass matrix is singular

in the symmetric limit. If the singlet neutrino mass matrix is non-singular, there is a

condition of the flavour group representations on lepton doublets and neutrino singlets

that if this condition holds then the high-scale analysis reproduces the low-scale results,

54
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otherwise we may get different results in the high-scale analysis. If the singlet neutrino

mass matrix is singular in the symmetric limit, the flavour symmetry G forces some of the

singlet neutrinos to have a vanishing mass in this limit and we cannot apply the seesaw

formula in the symmetric limit, so symmetry breaking effects are needed to produce non-

zero masses for them. We suppose that masses from the symmetry breaking effects are

smaller than the non-zero masses in the symmetric limit but they are much bigger than

EW scale.

Let us suppose that flavour symmetry G is spontaneously broken to the subgroup H.

In the G-symmetric limit the mass matrix of the singlet neutrino is M (0) and that of the

light neutrinos is m
(0)
ν . They will get corrections M (1) and m

(1)
ν after G is broken to H. At

the same time, Dirac mass matrix m
(0)
N in the symmetric limit also gets a correction m

(1)
N

after the symmetry breaking. Therefore, the neutrino mass matrices after the symmetry

breaking become

M = M (0) +M (1),

mN = m
(0)
N +m

(1)
N ,

mν = m(0)
ν +m(1)

ν ,

(3.1)

where M (0), m
(0)
N and m

(0)
ν are invariant under G, while M (1), m

(1)
N and m

(1)
ν are invariant

under H but not under G so they must vanish in the symmetric limit. As was in the

low-scale analysis, we assume that mass matrix entries in the G-symmetric limit have

the same orders of magnitude due to the requirement that flavour symmetry model itself

must generate the mass hierarchy without imposing it by hand. The corrections obtained

after the symmetry breaking are assumed to be smaller than the ones surviving in the

symmetric limit, and their relative sizes are related to the two flavour symmetry scales

of G and H.

An interesting feature of discussing the case in which the singlet neutrino mass matrix is

forced to be singular by the flavour symmetry is that the light neutrino mass hierarchy can

be generated in this way. For instance, let us say one of the singlet neutrino has vanishing

mass in the G-symmetric limit, then one may expect that one of the light neutrino has a

large mass compared to the other two in this limit. So the flavour symmetry predicts light

neutrino masses are in the normal hierarchy. In one of the our forthcoming discussions we

will see that this is indeed the case. This is nothing but right-handed neutrino dominance

scheme [149–154]. An important feature here compared to the right-handed neutrino

dominance is that the dominant contribution of the singlet neutrino arises naturally from

the symmetry breaking effect without need to make such an assumption.

The work in this chapter is organized as follows: in section 3.2 we classify flavour

group representations in both low- and high-scale analyses and find conditions to high-

scale analysis provide same/different neutrino mass and mixing patterns compared to

the low-scale discussion. Section 3.3 contains discussions for the case in which some of

the singlet neutrinos have vanishing masses in the symmetric limit. Then, the complete
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results captured by high-scale analysis, for the case of singlet neutrino mass matrix is

non-singular, will be presented in section 3.4. After that, in section 3.5 there will be

an investigation for the fermion masses and mixing from the GUT constraints on top of

the conditions of flavour symmetry. Finally, section 3.6 contains our conclusions for this

chapter.

3.2 Flavour symmetries in the low- and high-scale

analyses

3.2.1 Flavour group representations and lepton mass matrices

Before staring to identify flavour groups and their representations for the viable patterns

of neutrino masses in the context of the type I seesaw mechanism, it is important to give

precise definitions for the two kinds of flavour symmetry approaches describing neutrino

masses and mixing. We already called them as low- and high-scale analyses. The former

refers to the description of the neutrino masses in the EW scale without considering the

contribution from the heavy singlet neutrinos, while the latter takes into account the

effect of these heavy degrees of freedom appearing in seesaw Lagrangian. The low-scale

analysis is basically the way used in Ref. [155], in which we have assumed that neutrino

masses are described by means of the SM effective Lagrangian and that only the lowest

dimensional operator (the Weinberg operator) is relevant. The EW scale description of

lepton flavour is then provided by the following Lagrangian:

− LL = yEije
c
i ljh

∗ +
cij
2Λ
liljhh+ h.c. , (3.2)

where we used a Weyl spinor notation, li = (νi, ei)
T denotes the lepton doublets of SU(2)L,

eci are the charged lepton singlets of SU(2)L, h is the SM Higgs doublet, and the Yukawa

interactions are written in the right-left convention. The splitting of the coefficient of the

Weinberg operator into the dimensionless numbers cij and a new physics scale Λ with the

constant factor 2 is of course arbitrary. The flavour index runs over 3 families of li and

eci , i = 1, 2, 3, but we can generalize to the case of n lepton families. The charged lepton

and light neutrino mass matrices obtained from eq. (3.2) are

mE = yEv, mν = c v2/Λ, (3.3)

where v = |〈h〉| ≈ 174 GeV.

We will consider the low-scale (EW scale) representations UL of a generic flavour group

G, commuting with the SM gauge transformations, acts on the lepton doublet and singlet

fields in following way

g ∈ G :

{
li → U l

L(g)ijlj

eci → U e
L(g)ije

c
j

. (3.4)
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The Higgs field could in principle also transform under the UL, but its transformation

can, without loss of generality, be reabsorbed in the transformations of li and eci .

Apparently, the low-scale Lagrangian LL in eq. (3.2) is invariant under UL if and only

if the coefficients of each terms are invariant under the flavour group representations

yE = U e
L(g)TyE U

l
L(g),

c

Λ
= U l

L(g)T
c

Λ
U l
L(g), ∀g ∈ G ,

(3.5)

or equivalently iff charged lepton and neutrino mass matrices are invariant under the

flavour symmetry
mE = U e

L(g)TmE U
l
L(g),

mν = U l
L(g)Tmν U

l
L(g), ∀g ∈ G .

(3.6)

This means that the low-scale invariance of the Lagrangian implies the existence of

invariant charged lepton and neutrino mass matrix under the flavour symmetry, or vice

versa. So one can study the structure of the lepton mass matrix by imposing the flavour

symmetry to this low-scale Lagrangian. But in general the flavour symmetry is spon-

taneously broken through the vacuum expectation value of one or more scalar fields —

flavons. Then lepton mass matrices will get contributions from the symmetry breaking

effects. Therefore, discussions for the flavour symmetry contains both effects from the

symmetric limit and symmetry breaking mechanism.

For the high-scale description, as a specific example of high-scale origin of the effec-

tive Lagrangian in eq. (3.2), we will consider a type I seesaw Lagrangian with n singlet

neutrinos νca, a = 1 . . . n. The high-scale analysis of lepton flavour is then provided by

the following Lagrangian:

− LH = λEije
c
i ljh

∗ + λNajν
c
aljh+

Mab

2
νcaν

c
b + h.c. , (3.7)

where the eigenvalues1 of M are all supposed to be much heavier than the EW scale

(and in particular non-vanishing). The charged lepton and light neutrino mass matrices

obtained from eq. (3.7) are

mE = λEv , mν = −(λNv)TM−1(λNv) = −mT
N M

−1mN , (3.8)

where we denoted Dirac mass matrix as mN ≡ vλN .

We will say that LL is the low-scale limit of LH if LL is obtained at the tree level from

LH by integrating out the singlet neutrinos, i.e.

yE = λE (3.9)

1Here and below we will use “eigenvalues” to refer to singular values.
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and
c

Λ
= −λTNM−1λN , (3.10)

or equivalently if they give rise to the same charged lepton and light neutrino mass

matrices.

The high-scale representations UH of G on the full set of lepton fields, including the

singlet neutrinos, are considered to be commuting with the SM gauge transformations

and they transform lepton fields as

g ∈ G :


li → U l

H(g)ijlj

eci → U e
H(g)ije

c
j

νca → Uν
H(g)abν

c
b

. (3.11)

As in the case of low-scale analysis, in this case we are considering only one family of

Higgs doublet so under the flavour group representation UH the Higgs field at most gets

a sign change or a phase shift, which can be reabsorbed into the transformations of li,

eci , and νca, without loss of generality. The representation UH of G on li, e
c
i , ν

c
a trivially

corresponds to a representation UL on li, e
c
i (U l

L = U l
H , U e

L = U e
H), which we call the

“low-scale limit” of high-scale representation UH .

Imposing the flavour symmetry on the high-scale Lagrangian LH requires that its

invariant under the representation UH if and only if following conditions hold

λE = U e
H(g)TλE U

l
H(g),

λN = Uν
H(g)TλN U

l
H(g),

M = Uν
H(g)TM U ν

H(g), ∀g ∈ G ,

(3.12)

or equivalently it is a necessary and sufficient to have invariant mass matrices

mE = U e
H(g)TmE U

l
H(g),

mN = Uν
H(g)TmN U

l
H(g),

M = Uν
H(g)TM U ν

H(g), ∀g ∈ G .

(3.13)

So the flavour symmetry shapes the form of all those mass matrices in the symmetric

limit. Once the flavour symmetry is spontaneously broken, all the mass matrices above

will get contributions from the symmetry breaking effect. And full mass matrix become

a sum of two components from the symmetric limit and the symmetry breaking effect.

To give a concise definition of equivalence in the symmetric limit of the high-scale

flavour symmetry and its low-scale limit in the next section, and also for later purposes,

we will separate any unitary and finite dimensional representation U of the group G into

two parts (with a possibility that one of them can be empty): a vectorlike part and a

fully chiral part. The vectorlike part of U refers to the set of irreducible representations

(irreps) that consists of either real or pairs of complex conjugated irreps or of equivalent
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pseudoreal irreps; the fully chiral part of U is a set of irreps that does not contain, by

definition, any real irreps, nor pairs of complex conjugated irreps, nor pairs of equivalent

pseudoreal irreps. From the definition above one can easily find that vectorlike part U0 of

the representation U is equivalent to its complex conjugated representation U∗0 . Meaning

that U0 and U∗0 are related by a unitary similarity transformation, and it contains an

even number (e.g. zero) of pseudoreal irreps of each dimension appearing inside the irrep

decomposition; while in the fully chiral part, say U1, of U none of its sub-representations

is equivalent to their conjugate, except possibly a single pseudoreal irrep of each type.

Let us see these two parts of the representation from the example of following two irrep

decompositions: U = 1 + 1 + 1 and U = 1 + 1 + 1̄, where 1 and 1 stand for any real and

complex one dimensional representation respectively, and having a bar means conjugated

representation. According to our definition, vectorlike part of the first example is 1 and

fully chiral part of it is 1 + 1, the second example contains vectorlike part 1 + 1̄ and

fully chiral part 1. In a similar way, one can separate an irrep decomposition of any n

dimensional representation into these two parts (in some cases it is possible to have one

of the two parts empty).

After having decomposition of U into vectorlike and fully chiral representations, U =

U0 +U1, we will have following important relations between the irrep decomposition and

Weyl fermion mass matrix m (which is complex and symmetric) invariant under U , i.e.

m = UT (g)mU(g) for ∀g ∈ G :

• U is vectorlike if and only if there exists a non-singular invariant mass matrix for

those fermions.

• U is fully chiral if and only if an invariant mass matrix for those fermions necessarily

vanishes.

• In case there are both vectorlike and fully chiral parts of U , we can redefine fermions

through a unitary transformation (if necessary) and choose the decomposition of U

in irreps in such a way that each irrep acts on a separate subset of fermions. Then

U0 and U1 can be chosen in such a way that each of them groups together the set of

those irreps. In this way one can split mass matrix m into the non-singular block

corresponding to U0 and zero blocks for the rest of the representation.

The first two properties are very easy to verify, so we will skip to explain them and say

some words about the last one. When U has both non-empty vectorlike part U0 and fully

chiral part U1 there are two possible situations can occur: either none of the irreps in U1

is contained in U0 or some of the irreps in U1 are also contained in U0. In the first case

the mass matrix is automatically a direct some of the non-singular block corresponding

to U0 and the zero block corresponding to U1. If there are same types of irreps in U0

and U1, the decomposition is not unique anymore, but the number of equivalent irreps

of each given type contained in U0 and U1 does not depend on the decomposition. So

the total number of irreps in U0 and in U1 does not change. This situation appears only
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for the complex and pseudoreal irreps, as all real irreps are belong to U0. Each types

of overlapped irreps between U0 and U1 with their complex conjugates (or a equivalent

counterparts in case of pseudoreal irreps) restricts the corresponding part of the mass

matrix in a rectangular block. The rectangular block can be brought into upper or lower

triangular block by unitary rotations, commuting with these irreps, among the several

copies of the same type of representations. Once we are done this for the all rectangular

blocks and redefine fields accordingly, the mass matrix ends up being the direct some of

non-singular square blocks and all the rest is zero. According to which copies of the same

type of irreps correspond to non-singular block or zero block we can easily separate those

repeated irreps into vectorlike part or fully chiral part of the representation. Since in this

case there is at least one row or one column of the whole mass matrix is zero so it has a

zero determinant and thus it is a singular matrix.

We can illustrate this argument by looking at our previous example, U = 1 + 1 + 1̄.

In this example there is a common 1 in both vectorlike and fully chiral parts of the

representation. It is not priory obvious to choose which one of the 1 is in the vectorlike

part and other in the fully chiral part, but it is for sure that each of these two parts

must contain one of the two 1. The Weyl fermion mass matrix m invariant under this

representation has a rectangular block (x y 0) in the third row (and its transpose in

the third column). We can rotate the first two neutrinos transforming under 1 in order

to set x = 0, without spoiling their transformations under 1. Note that any 12 block

rotation clearly commutes with the corresponding 1+1 irrep part of U . Once we are done

with this rotation, the mass matrix becomes 23 block matrix with the same non-zero off

diagonal entries in this block. Given that the 23 block is non-singular, we will choose last

two irreps 1 + 1̄, corresponding to this block, into the vectorlike part and remaining 1

belongs to fully chiral part.

Having a relation between the two parts of the irrep decompositions and form of the

mass matrix, we can conclude that necessary and sufficient condition to have invariant

non-singular Majorana mass matrix is that the flavour representation U does not contain

fully chiral part in its irrep decompositions. So the invariant Majorana mass matrix being

non-singular indicates there is vectorlike representation U and vice versa.

3.2.2 Equivalence of two analyses in the symmetric limit

We would like to discuss whether the low- and high-scale studies of flavour symmetries

in the symmetric limit are equivalent; i.e. whether, in the light of the fact that flavour

observables only depend on the low-scale effective Lagrangian, the low-scale analysis

captures all the possibilities covered by the one at high-scale. As we will see, in the

symmetric limit, the low-scale analysis is covered by the low-scale limit of high-scale

analysis, but not all high-scale results are captured by the low-scale analysis.

First of all, we have to note an important caveat. In order for the effective theory

description to work, what need to be heavier than the EW scale are the heavy singlet
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neutrino masses after the symmetry breaking effects are taken into account. As was

pointed out before, the singlet neutrino mass matrix M = M (0) + M (1) in which M (0)

is the part invariant under G, satisfying eq. (3.13), and M (1) accounts for the symmetry

breaking effects. It is conceivable that one or more heavy singlet neutrino masses vanish

in the symmetric limit and they are generated after the symmetry breaking is taken into

account. In such a case, M (0) is singular, but M is not. Note that while the masses

generated by symmetry breaking effects are small compared to the other heavy masses,

they can still be much heavier than the EW scale, so that all the eigenvalues of M can be

much heavier than the EW scale. Suppose that this is indeed the case, then the effective

theory description given by eq. (3.10) still holds once the symmetry breaking effects are

considered; but it does not hold in the symmetric limit, in which M (0) becomes singular.

In order for the low-scale description of the flavour theory to have a chance to be equivalent

to the high-scale one in the symmetric limit, the heavy singlet neutrino mass matrix must

then be allowed to be non-singular in the symmetric limit. So the singlet neutrino mass

matrix being non-singular is a necessary condition to the low- and high-scale analyses

become equivalent.

On the other hand, as it will be shown below, even if singlet neutrino mass matrix is

non-singular in the symmetric limit, the low-scale analysis still is not always equivalent

to the high-scale analysis, unless the further condition on the representations is satisfied.

With what above in mind, and in order to formulate the problem we aim at addressing

in a precise way, we define the equivalence in the symmetric limit of a high-scale flavour

symmetries and their low-scale limits as follows. Let us suppose that UH and UL are

high- and low-scale representations, respectively, of the flavour group G, and UL is the

low-scale limit of UH . We say that UH and UL are equivalent in the symmetric limit if

following two conditions are simultaneously satisfied.

1. Uν
H is vectorlike, i.e. there exists a non-singular Uν

H-invariant singlet neutrino mass

matrix M (otherwise the second equation in eq. (3.8) can never be written).

2. For each mν invariant under UL, there exist a mN and a non-singular M invariant

under UH such that mν = −mT
N M

−1mN .

Note that the converse of the second point is always true: given mE, mN and M (non-

singular) invariant under UH (thus satisfy conditions in eq. (3.13)), the matrices mE and

mν = −mT
N M

−1mN are always invariant under UL that is a low-scale limit of UH .

After having definition of the equivalence between UH and UL, the problem of the

equivalence of the high- and low-scale discussions of flavour symmetries in the symmetric

limit can then be formulated as follows:

• Is the low-scale limit UL of a high-scale representation UH always equivalent to UH
in the symmetric limit?

• Does an equivalent high-scale representation UH of a flavour group G always exist

for any given low-scale representations UL as a low-scale limit?
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The second question has a positive answer: for a given low-scale representation UL there

is always a equivalent high-scale representation UH such that UL is a low-scale limit of UH .

However, the low-scale representations do not cover all the possibilities arising at high-

scale, i.e. there exist high-scale representations whose low-scale limit is not equivalent

to high-scale representation UH in the symmetric limit. The necessary and sufficient

condition for the low-scale limit UL of UH to be equivalent in the symmetric limit to UH
is the following: i) Uν

H is vectorlike and ii) Uν
H contains vectorlike part of U l

L. The proof

of this statement is given in appendix B. Clearly, the first condition requires non-singular

singlet neutrino mass matrix and the second one puts further constraints on the irrep

patterns.

As an example of a high-scale flavour symmetry is not equivalent to its low-scale limit

in the symmetric limit, let us consider the case in which G = U(1) and the high-scale

representation is defined by the following lepton charges: (1, 0, 0) for the li, (1,−1, 0) for

the νci and (1, 1, 0) for the eci [156]. The high-scale flavour symmetry constrains mE, mN ,

M to be in the following form

mE =

0 0 0

0 0 0

0 X X

 , mN =

 0 0 0

X 0 0

0 X X

 , M =

 0 X 0

X 0 0

0 0 X

 , (3.14)

where no special relation is enforced among the non-vanishing entries denoted by X

(except M12 = M21). The neutrino mass matrix from high-scale analysis is in the form of

mν = −mT
N M

−1mN =

0 0 0

0 a2b2 a2b3

0 a3b2 a3b3

 . (3.15)

It is rank one matrix so there is only one neutrino has non-zero mass. On the other hand,

the low-scale symmetry, acting only on li and eci , constrains mE and mν to be in the form

mE =

0 0 0

0 0 0

0 X X

 , mν =

0 0 0

0 X X

0 X X

 , (3.16)

here also no special relation (such as an accidental vanishing of 23 block determinant)

is imposed among the non-vanishing entries of mν , denoted by X, except mν
12 = mν

21.

Therefore, mν is allowed to have rank 2, in which case it cannot be obtained within the

high-scale theory. This implies that high- and low-scale versions of the flavour symmetry

arguments are not equivalent. This happened due to the fact that the vectorlike part

of U l is not contained in Uν . In this example irrep decompositions of the high-scale

representations are U l
H = 1 + 1 + 1, Uν

H = 1 + 1̄ + 1 and U e
H = 1 + 1 + 1. The vectorlike

part of U l is in fact the ones acting trivially on l2 and l3, which have charge zero, and
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that are not entirely contained in Uν , as only one trivial (charge zero) representation has

contained in Uν .

If, on the other hand, Uν
H is vectorlike and contains U l

L0, then low-scale discussion

does capture the results of the high-scale analysis in the symmetric limit. So there are

two important cases in which the low-scale discussion of a flavour symmetry does not

reproduce the results obtained at high-scale, not even in the symmetric limit: a) when

Uν
H is not vectorlike, b) when Uν

H does not contain vectorlike part of U l
L.

3.2.3 The high-scale flavour symmetry forcing a given pattern

of lepton masses and mixing

In chapter 2 we have considered the problem of finding all possible flavour groups and

their representations leading to an approximate description of lepton masses and mixings

in the symmetric limit. We have found a complete solution of the problem based on a

low-scale analysis. We can now use the results in section 3.2.2 to extend the analysis to

a high-scale theory, more precisely for a type I see-saw theory. Our study will include

two cases, the high- and low-scale analyses are equivalent or inequivalent. We will be

interested more in the latter case where high-scale study is not equivalent to the low-

scale limit, as the equivalent case just reproduces the results we already had in chapter 2.

The possible low-scale flavour groups and their representations forcing each of the mass

patterns in table 2.1 together with a viable form of PMNS in eq. (3.17) are given in

table 2.4. All of these representations are characterized in terms of the structures of the

decompositions of U l
L and U e

L in irrep components, only differences now in the high-scale

analysis will be the singlet neutrino representations, containing the vectorlike part of the

lepton doublet representations, are taken into account.

As a reminder for the our setup, the lepton flavour pattern providing (according to our

subjective definition) an approximate description of the measured flavour observables are

those in which the charged lepton and light neutrino masses are in one of the forms in

the first two columns of table 2.1 and in which the PMNS matrix has one of the following

two forms

UPMNS =

X X 0

X X X

X X X

 or UPMNS =

X X X

X X X

X X X

 , (3.17)

where X denotes a generic non-zero entry, for at least one choice of the mass eigenstates.

This specification is necessary when two or more masses are degenerate in the approximate

description.

We have said that the low-scale representation UL of the flavour group G forces the

flavour pattern associated to one of the mass patterns in table 2.1 if following two con-

ditions hold: i) for each LL as in eq. (3.2), invariant under UL, the lepton masses are in

the form specified by that mass pattern; and the PMNS matrix is in one of the two forms
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in eq. (3.17) for at least one choice of the mass eigenstates.2 ii) There exists a LL as in

eq. (3.2), invariant under UL, such that the lepton masses are in the form specified by the

mass pattern; and the PMNS matrix is in one of the two forms in eq. (3.17) for at least

one choice of the mass eigenstates.

We call the lepton mass and mixing patterns are generic iff all the masses allowed to be

different from each other and non-zero are indeed different from each other and non-zero;

and all entries of PMNS matrix allowed to be non-zero are indeed non-zero.

In the previous chapter we have done full characterization of all possible flavour sym-

metry and their representations in the low-scale analysis. Now we are going to solve the

same problem in the case of a flavour symmetry constraining the high-scale theory in

eq. (3.7). In other words, we would like to find all possible high-scale flavour groups and

their representations forcing each of the charged lepton and neutrino mass patterns in

the first two columns of table 2.1 and the form of PMNS matrix in eq. (3.17). During the

work of finding irrep decompositions of flavour groups, we use the results in section 3.2.2

to reduce the high-scale problem to the low-scale problem when they are equivalent, and

to find the full list of cases not captured by the low-scale analysis when they are not

equivalent.

In order to give a definition of the problem in high-scale theory, it is better to start with

defining when a high-scale representation UH is said to force a certain flavour pattern in

the symmetric limit. Here again we encounter the same caveat discussed in section 3.2.2,

though: one or more of the heavy singlet masses might vanish in the symmetric limit and

be generated only once symmetry breaking is taken into account. So we need to treat

such a case, in which M is singular in the symmetric limit, separately. There will be

detailed discussions for that case in section 3.3. For the time being, let us only consider

the cases of high-scale representations for which M is allowed to be non-singular in the

symmetric limit. We can then introduce the following definition. We say that the high-

scale representation UH of the flavour group G forces the flavour pattern associated to

one of the mass patterns in table 2.1 if:

• UH is vectorlike so that a non-singular invariant mass term exists for the heavy

singlet neutrinos.

• For each LH as in eq. (3.7), invariant under UH , with non-singular M , the light

lepton masses are in the form specified by that mass pattern; and the PMNS matrix

is in one of the two forms in eq. (3.17) for at least one choice of the mass eigenstates.

• There exists a LH as in eq. (3.7), invariant under UH , such that M is non-singular;

the light lepton masses are in the form specified by the mass pattern and generic;

and there is a viable form of PMNS matrix, for at least one choice of mass pattern,

as in eq. (3.17) and all of its non-zero entries are generic.

2The second requirement is trivial here, as every PMNS matrix is in the second form in eq. (3.17).
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As emphasized before, we aim at a complete classification of the flavour groups G and

their high-scale representations UH leading, in the symmetric limit, to a given flavour

pattern. Since the flavour observables only depend on the low-scale effective Lagrangian,

we first of all wonder whether the low-scale analysis might capture all the possibilities

covered by the high-scale analysis, at least in the case in which M is allowed to be

non-singular in the symmetric limit. If that was the case, we could use the results

obtained for the low-scale representations to characterize the high-scale ones: the high-

scale representations forcing a given pattern would be those whose low-scale limit is given

in table 2.4. This turns out to be possible when the low- and high-scale representations

are equivalent in the symmetric limit, but not when they are inequivalent. The interesting

cases will appear either Uν
H does not contain the vectorlike part of U l

H or M is singular

in the symmetric limit due to Uν
H not being vectorlike.

The equivalent conditions for the low- and high-scale analyses forcing the same pattern

is analogous to the conditions for the representations in two analyses being equivalent.

Given a certain flavour pattern, there is always exists a high-scale representation UH
forcing the same pattern for every low-scale representation UL forcing that pattern. And

the necessary and sufficient condition to high-scale representation and its low-scale limit

force same patterns is Uν
H have to be vectorlike and it contains the vectorlike part of the

U l
H . The proof of this statement can be found in appendix B.

We then conclude that there are two important cases in which the low-scale analysis

fails in characterizing the high-scale flavour symmetries forcing a certain flavour patter

in the symmetric limit:

1. When Uν
H is not vectorlike.

2. When Uν
H does not contain the vectorlike part of U l

H .

We will discuss above two cases in sections 3.3 and 3.4, respectively.

3.3 Analysis for M is singular in the symmetric

limit

Let us now focus on the case in which M is singular in the symmetric limit. This is the

case iff Uν
H is not vectorlike, i.e. iff in the decomposition of Uν

H into a vectorlike and fully

chiral part, Uν
H = (Uν

H)0 + (Uν
H)1, the fully chiral part (U ν

H)1 is not empty.

We would like to provide a complete classification of the flavour groups G and their

high-scale representations UH leading, in the symmetric limit, to a given flavour pattern.

However, the flavour pattern is not even defined now in the symmetric limit, as M is

singular and the effective theory approach leading to eqs. (3.8, 3.10) does not apply in

the symmetric limit. In the realistic limit in which symmetry breaking effects are present,

all singlet neutrino masses are non-vanishing by hypothesis, and much larger than the
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EW scale, so that the effective theory approach can be applied. But not in the symmetric

limit, when the symmetry breaking effects are switched off.

In order to obtain an intuition of how a flavour pattern in the symmetric limit can be

defined even when some of the singlet neutrino masses vanish, let us start from the case

in which singlet neutrino mass matrix becomes non-singular after the symmetry breaking

effects are considered. The light neutrino masses are inversely proportional to the singlet

neutrino masses. Therefore, we expect some of the light neutrino masses to grow and

diverge when we take the symmetric limit.3 In comparison, the mass of the neutrinos

whose mass does not diverge in the symmetric limit is hierarchically smaller, with the

ratio of masses set by the size of symmetry breaking effects. In the symmetric limit we

can then consider the latter masses to vanish and only those that formally diverge to be

non-zero. The non-zero masses (if more than one) could be hierarchical, as their relative

size depends on the detailed structure of symmetry breaking effects.

The main points in this section are the following: we will consider the same neutrino

mass patterns that we have discussed before, i.e. those in the first two columns of table 2.1,

but now i) the non-vanishing entries are supposed to correspond to light neutrino masses

diverging in the symmetric limit, and the zero entries are supposed to correspond to light

neutrino masses that are finite or vanishing in the symmetric limit and ii) hierarchies

among the non-zero entries are allowed (and determined by symmetry breaking effects).

We said above that we expect some of the light neutrino masses to grow and diverge

when we take the symmetric limit. Whether some of the light neutrino masses indeed

diverge in the symmetric limit, and how many, actually depends on the interplay between

the singlet neutrino mass matrix and the Dirac neutrino mass matrix. In order to see

how, let us recover an expression for the potentially divergent part of the light neutrino

mass matrix.

Let us denote by M (0) the singlet neutrino mass matrix in the symmetric limit and by

M (1) the symmetry breaking corrections, so that the full singlet neutrino mass matrix is

M = M (0)+M (1). Analogously, let mN = m
(0)
N +m

(1)
N be the corresponding decomposition

of the Dirac neutrino mass matrix into the symmetric (m
(0)
N ) and symmetry breaking

(m
(1)
N ) components.

Without loss of generality, we can order the singlet neutrino irreps in such a way

that the first n0 neutrinos form the vectorlike component (Uν
H)0 of the singlet neutrino

representation and the remaining n1 = n− n0 neutrinos form the fully chiral component

3Actually, no divergence ever arise. When the symmetry breaking effects are gradually switched off,
and the singlet neutrino mass vanishing in the symmetric limit decreases. At some point, it approaches,
and crosses, the EW scale threshold. When the singlet neutrino mass becomes comparable to the Dirac
mass induced by EWSB through its neutrino Yukawa coupling, the effective approach, and the see-saw
formula, do not apply anymore. The Dirac mass contribution eventually dominates and the singlet
neutrino forms a Dirac neutrino pair with the active neutrino paired by the Dirac mass term.
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(Uν
H)1. The singlet mass matrices then have a corresponding block decomposition

M =


M00 M01

M10 M11

 , M (0) =


M

(0)
00 0

0 0

 , M (1) =


M

(1)
00 M

(1)
01

M
(1)
10 M

(1)
11

 .

(3.18)

Correspondingly, the Dirac mass matrices have a decomposition into a n0 × n block of

mN0 and a n1 × n block of mN1,

mN =


mN0

mN1

 , m
(0)
N =


m

(0)
N0

m
(0)
N1

 , m
(1)
N =


m

(1)
N0

m
(1)
N1

 . (3.19)

Because of the presence of vanishing blocks in M (0), the light neutrino mass matrix is

potentially dominated by the exchange of the last n1 singlet neutrinos. A perturbative

expression for the light neutrino mass matrix, in the small M (1) approximation can be

obtained by means of effective field theory by integrating out the singlet neutrinos in two

steps: the first n0 heavier ones first and subsequently the remaining n1 lighter ones. We

then get

−mν ≈ [m̃N1]T [M̃11]−1[m̃N1] +mT
N0

[
M

(0)
00

]−1

mN0, (3.20)

where

m̃N1 = mN1 −M (1)
10 M

(0)
00

−1
mN0 , M̃11 = M

(1)
11 −M (1)

10 M
(0)
00

−1
M

(1)
01 . (3.21)

The first term in eq. (3.20) contains the part that is potentially divergent in the limit in

which symmetry breaking effects vanish, while the second term is certainly finite. As the

maximum rank of m̃N1 is n1, we can have at most n1 divergent light neutrino masses.

We can now ask the question: is the exact number of divergent light neutrino masses

independent of the symmetry breaking effects? The answer depends on the structure of

the flavour representations UH
ν and UH

l . In order to see that, let us further split the first

term in eq. (3.20) in two parts:

− [m̃N1]T [M̃11]−1[m̃N1] = m∞ν +mind
ν , (3.22)

where m∞ν = −[m
(0)
N1]T [M̃11]−1[m

(0)
N1]. Let r ≤ n1 be the rank of m

(0)
N1. In the symmetric

limit, the first term, m∞ν , gives rise to r divergent light masses and n− r vanishing light

masses. If the rank of m
(0)
N1 is maximal, r = n1, then the number of divergent light

masses is n1 and does not depend on symmetry breaking effects. Moreover, m∞ν gives

the leading order approximation of mν in the symmetric limit. If on the other hand the

rank of m
(0)
N1 is less than maximal, r < n1, r light masses will diverge. Whether the
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remaining n0− r potentially divergent masses do indeed diverge depends however on the

interplay of the symmetry breaking effects in mind
ν . The number of divergent light masses

then depends on symmetry breaking effects. We can conclude that the condition for the

number of divergent light neutrino masses not to depend on symmetry breaking effects

is that the rank of m
(0)
N1 is maximal. It is easy to see that this is the case if and only if

the representation on the singlet neutrinos associated to m
(0)
N1, i.e. the fully chiral part of

the singlet neutrino representation (UH
ν )1, is contained in the complex conjugate of the

representation on lepton doublets: (UH
ν )∗1 ⊆ UH

l .

All in all, when the singlet neutrino mass matrix M is singular we have two cases: all

light neutrino masses corresponding to the chiral part of the singlet neutrino representa-

tions divergent if (UH
ν )∗1 ⊆ UH

l , otherwise the light neutrino mass are partially divergent

(or not divergent at all) in the symmetric limit. We will study these cases in the following

two sections.

3.3.1 M is singular in the symmetric limit and (UH
ν )∗1 * UH

l

In such a case, the mass pattern depends on symmetry breaking effects, as a number of

potentially divergent masses rely on how many irreps in chiral part of UH
ν are contained

in the complex conjugate of UH
l and also on the specific way of symmetry breaking. For

this reason, we do not investigate it further.

3.3.2 M is singular in the symmetric limit and (UH
ν )∗1 ⊆ UH

l

When all the complex conjugated irreps of the chiral part of UH
ν are included in UH

l , the

mass pattern is independent of the structure of symmetry breaking effects (as long as the

non-zero entries are allowed to be hierarchical). The neutrino mass pattern contains as

many non-zero masses as the dimension of the fully chiral part of the singlet neutrino

representation (UH
ν )1. The matrix m∞ν in eq. (3.22) gives the leading order approximation

of mν in the symmetric limit:

mν = m∞ν + subleading corrections. (3.23)

Without loss of generality, we can choose a basis for the lepton doublets such that the last

n1 leptons are invariant under UH
l and they transform with the conjugated representation

(UH
ν )∗1.

Let us now discuss whether a definite prediction for the structure of the PMNS matrix

in the symmetric limit is possible and, in such a case, provide a complete classification

of the flavour groups and high-scale representations leading to a viable flavour pattern in

the symmetric limit.

By using the results in [155], it is possible to show that the n1×n matrix m
(0)
N1 can be

brought in a block form by means of a unitary n× n transformation Vν commuting with
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UH
l :

m
(0)
N1 =

(
0 m̃

(0)
N1

)
Vν , (3.24)

where m̃
(0)
N1 is a n1 × n1 G-invariant matrix. The matrix Vν is generic, meaning that any

unitary matrix Vν can be obtained from eq. (3.24) for an appropriate invariant m
(0)
N1. We

then have

m∞ν = V T
ν


0 0

0 −[m̃
(0)
N1]

TM̃−1
11 [m̃

(0)
N1]

Vν = (HνVν)
T


0 0

0

a1

. . .

an1

 (HνVν) ,

(3.25)

where

Hν =


1 0

0 H̃ν

 and − [m̃
(0)
N1]TM̃−1

11 [m̃
(0)
N1] = H̃T

ν


a1

. . .

an1


H̃ν , (3.26)

with H̃ν unitary matrix.

Eq. (3.25) leads to a full diagonalization of the neutrino mass matrix (m∞ν ) in the

symmetric limit in terms of the unitary matrix HνVν . In order to identify the neutrino

contribution to the PMNS matrix, we still need to identify further ingredients. First, we

should take into account a possible permutation Pν needed to take the neutrino masses in

standard ordering. Then, we should note that the mass eigenstates associated to the first

n0 neutrinos are undefined in the limit in which eq. (3.25) holds. The mass eigenstates

are determined by the corrections to eq. (3.25) splitting the values of the first n0 neutrino

masses. While in the low-scale analysis such corrections are determined by symmetry

breaking effects, here the corrections are provided by the second term in eq. (3.20), which

does not depend on symmetry breaking. The diagonalization of the upper n0 × n0 block

of the neutrino mass matrix will then provide an additional component U0 to the neutrino

contribution to the PMNS matrix acting only on the first n0 neutrino. The determination

of the structure of such a contribution follows the rules described in the section 3.4.2.

Now let us apply this general discussion for the case of singlet neutrino mass matrix

has one vanishing eigenvalue. According to the relation between the mass matrix and the

irrep pattern we know that the singlet neutrino representation has one-dimensional fully

chiral part and two-dimensional vectorlike part. Obviously, the one-dimensional fully

chiral part is nothing but a one-dimensional complex representation, so the structure of

the representation is Uν
H = r + 1, where r is vectorlike part, possibly reducible, and has
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a form in one of the following options:

2, 1 + 1, 1 + 1′, 1′ + 1′, 1 + 1̄. (3.27)

In order to have one divergent light neutrino mass in the symmetric limit, lepton

doublet representation U l
H must contain 1̄. So it has a from U l

H = 1̄ + s, where the rep-

resentation s can be reducible and no any constraints on it. Concerning the components

of UPMNS, we can read Vν in eq. eq. (3.24) from the condition that it commutes with

Uν
H , or it is equivalently fixed by number of 1̄ in Uν

H . If we neglect the symmetric limit

correction to light neutrino masses then first two masses are zero thus Hν is always a 12

block unitary rotation. The irrep decompositions for the viable patterns of masses and

mixings are listed in table 3.1, results are shown in a way of comparing the low- and high-

scale analysis. The light neutrino mass spectrum in high-scale analysis is in the normal

ordering, since one of the neutrino mass from symmetry breaking is much larger than

other two. Non-zero charged lepton masses depend on the number of conjugated irrep

pairs between the Ul and Uec . In the high-scale analysis, results in the first three rows

are analogous to each other, this is because the irrep decompositions of Uec are similar,

possible irrep patterns of Uν
H is the same and the way of irrep conjugation between the

U l
H and U ec

H is also the same. So the high-scale analysis for the one row can simply be

extended to the other two. But, notice that, the results in these three rows from the

low-scale analysis are different. More precisely, there are different forms of the UPMNS

such as, apart from being viable, the 33 element is forced to be zero or the UPMNS is just

a 2 × 2 block matrix. In the high-scale analysis, structures of the PMNS matrix in all

cases contains a unitary rotation Hν
12 due to the block of two zero neutrino masses, which

will be fixed by the symmetric limit. To have viable mixing matrix in this case, the Hν
12

must be a large rotation, where as the HE
12, if it appears, requires to be a small rotation

in order to have a small 13 element. One may notice that the HE
12 and Hν

12 are now, in

the high-scale analysis, determined by the symmetric limit not by the symmetry breaking

effect, which is in contrast to the determination of these two components in the low-scale

analysis. In case the HE
12 component becomes a big rotation, then the smallness of 13

element turns out to be accidental. In the last row of the table, the only advantage of the

high-scale analysis compared to the low-scale version is that the neutrino mass spectrum

is predicted to be in the normal hierarchy, although the form of PMNS is undetermined

as in the case of low-scale result.

One can go further to the next step by discussing the singlet neutrinos are forced to

have two vanishing masses in the symmetric limit. The results for this case are given in

the table 3.2. There is no prediction for the neutrino mass hierarchy, as the relative size

of two non-zero masses are not determined. The PMNS matrix in the high-scale analysis

can have a small 13 element if HE
12 is a small rotation and neutrino masses are in the

inverted hierarchy, otherwise there is no guarantee to have a small 13 entry. Allowed

forms of the PMNS matrix in the low-scale results are arbitrary due to the vanishing
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neutrino masses in the symmetric limit.

The last case with three zero singlet neutrino masses in the symmetric limit is less

interesting, that is because of the fact that both heavy and light neutrino masses are

determined by symmetry breaking effects and there is no prediction for the light neutrino

mass hierarchy.

3.4 Analysis for M is non-singular in the symmetric

limit

The work in this section covers a complete characterization of the flavour group repre-

sentations for two cases depending on the low- and high-scale analyses are equivalent or

not. In the following we will discuss each of them in turn.

3.4.1 M is non-singular and (U l
H)0 ⊆ U ν

H in the symmetric limit

As we already know from the equivalence of two analyses, the results of previous chap-

ter can provide a complete classification of the flavour groups G and their high-scale

representations UH (when M is non-singular in the symmetric limit and Uν
H contains the

vectorlike part of U l
H) leading, in the symmetric limit, to a given flavour pattern. In other

words, we know that the flavour pattern forced by UH is the same as the flavour pattern

forced by its low-scale limit UL. Therefore, we can use the results obtained in [155] for

the high-scale representations forcing a given flavour pattern. We concluded that UH
forces the flavour pattern associated to a given mass pattern in table 2.1 iff the irrep

decomposition of U l
H and U e

H appears in table 2.4 corresponding to that mass pattern.

Regarding the irrep patterns of the singlet neutrino representation Uν
H , it is required to be

vectorlike and must contain the vectorlike part of U l
H . According to the irrep patterns of

U l
H in this table, we can easily see that conditions on Uν

H can uniquely determine its irrep

decomposition. For example, from the irrep decomposition of U l
H = 1 + 1 + 1, we know

that the singlet neutrino irrep pattern is Uν
H = 1 + 1 + 1. In the high-scale result light

neutrino mass hierarchy is not determined, which is the same as what we get in the low-

scale analysis. In the case of U l
H = 1 + 1 + 1, singlet neutrino representation must have

the form Uν
H = 1 + 1 + 1. This results in the inverted hierarchy of light neutrino masses

in the high-scale analysis, that is also the same in the low-scale limit. When these two

analysis become equivalent, all possible irrep decompositions of the high scale analysis,

providing viable patterns of lepton masses and mixing, are shown in the table 3.3. Due

to the equivalence, discussions in the low-scale analysis can also apply to the high-scale

results.
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irreps masses ν hierarchy UPMNS zeros

1 1 1
1 r + 1
1 1 1

(A00)
(abc)

NH or IH V none

1 1 1
1 r + 1,1
1 1̄ 1

(A00)
(0aa)

IH HE
12V23D

−1
12 none (13)

1 1 1
1 1 r 6= 1
1 1 1

(AB0)
(abc)

NH or IH V none

1 1 1
1 1 r 6= 1
1 1̄ 1

(AB0)
(0aa)

IH V23D
−1
12 13

1 1 1
1 1 1
1 1 1

(ABC)
(abc)

NH or IH V none

1 1 1
1 1 1
1 1̄ 1

(ABC)
(0aa)

IH PEV23D
−1
12 13, 23, 33

Table 3.3: Possible high-scale irrep decompositions giving rise to viable masses and
mixing patterns when M is non-singular and low- and high-scale analyses are equiv-
alent. The first column shows the decomposition of U lH , U eH and UνH , in this order
from above to below. Irreps are denoted by their dimensions. Boldface fonts denote
complex representations, regular fonts denote real representations. Primes are used
to distinguish inequivalent representations, and in the case of complex representations
1′ is supposed to be different from both 1 and 1. “r” denotes a generic, possibly re-
ducible representation, different from or not including the specified irreps, as indicated.
No pseudoreal irreps appear. The second column shows the corresponding pattern of
charged lepton and neutrino masses in the symmetric limit, one above the other, and
the third is the neutrino hierarchy type, normal (NH) or inverted (IH). The structure
of the PMNS matrix is then shown. A matrix with no further specification is generic
(e.g. P denotes a generic permutation, V a generic unitary matrix). Dij denotes a
π/4 rotation acting in the sector ij. The presence and position of a zero in the PMNS
matrix in the symmetric limit is specified in the last column.

3.4.2 M is non-singular and (U l
H)0 * U ν

H in the symmetric limit

Now we will work out the case where the singlet neutrino mass matrix is non-singular in

the symmetric limit and the high-scale analysis is not equivalent to its low-scale limit.

The results from the inequivalent cases are listed in the table 3.4, which is organized in

a way of comparing the mass spectrum and mixing matrix from two different analyses.

In all of these cases both neutrino mass spectrum and mixing patterns are different

compared to the low-scale analysis, while charged lepton mass spectrum is the same in

both analyses. The former is because of the condition (U l
H)0 * U ν

H , and that is expected

from our discussions in previous section. The latter is due to the same choice of irrep
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patterns for the Ul and Ue in both analysis. It deserves to emphasis that all masses and

mixing patterns can be obtained without knowing the explicit form of mass matrices.

The irrep patterns are enough to provide mass spectrum and components of the PMNS

matrix from the following simple rules: V commutes with doublet representation, D takes

care of Dirac sub-structure, non-trivial Hν and HE arise from the degenerate neutrino

masses and two vanishing charged lepton masses respectively, and the permutations Pν,E
bring the neutrino and charged lepton masses into the standard ordering. The number

of non-zero masses in the light neutrino mass spectrum depends on the rank of the Dirac

mass matrix, as the singlet neutrino Majorana mass matrix has a full rank. In addition,

the number of non-vanishing neutrino masses is same as the number of irreps in Uν
H

conjugated (equivalent) to the irreps in U l
H , unless there is an accidental cancellation in

the determinant of the non-zero block.

One can see that, from the first two irrep decompositions in table 3.4, neutrino masses

are predicted to be in the normal hierarchy, all of the PMNS matrix elements are non-zero

and smallness of the 13 element depends on the symmetry breaking effects. Namely, in

order to have a form of the PMNS matrix close to the observed pattern, first of all, Hν
12

must be a large rotation. Then, the situation depends on the form of HE
12 determined

from the symmetry breaking: if it becomes a small rotation then there will be a zero in

13 position, otherwise the smallness of the 13 element is not guaranteed. While in the

low-scale analysis, the neutrino mass hierarchy is not fixed in the symmetric limit since it

depends on the relative sizes of the non-vanishing masses, and PMNS matrix is not in the

viable form. In both analyses only the tau lepton has a non-vanishing mass and electron

and muon masses are zero in the symmetric limit, so the symmetry breaking effects must

be needed to generate masses for the two light charged leptons and also provide mass

hierarchy among them.

In the fifth and the sixth irrep decompositions, the flavour symmetry in the high-scale

analysis predicts normal hierarchy of the light neutrino mass and also unambiguously

fixes a zero in the 13 element of the PMNS matrix in the symmetric limit. In order for

the other PMNS matrix elements agree with the experimental data, the large Hν
12 rotation

must be obtained from the symmetry breaking effects. While in the low-scale results there

is no definite hierarchy of neutrino masses, as a consequence of the differences between

the non-zero masses are not fixed by the flavour symmetry. Furthermore, there is no

explanation for the smallness of the muon mass compared to the tau mass, and form of

the PMNS matrix is just a 2× 2 block rotation in the symmetric limit which is far from

being viable.

The ninth and the tenth irrep decompositions for the high-scale analysis provide normal

hierarchy of the neutrino masses, but the charged lepton mass hierarchy is not predicted

by the symmetry. And it is not obvious to have a zero fixed for the 13 element of

the PMNS matrix, as the position of the zero elements depends on the permutation of

charged lepton masses. The results from the low-scale analysis are not so appealing, that

is because not only the charged lepton and neutrino mass hierarchies are not predicted
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at all but also the PMNS is a 2× 2 unitary block rotation which is obviously not close to

the observed pattern.

Finally, all the remaining irrep decompositions do not constrain the form of the PMNS

matrix in both high- and low-scale analyses, that is mainly because the diagonalization

of charged lepton mass matrix requires a generic 3×3 unitary matrix, although there are

some cases provide normal hierarchy of the neutrino masses or explain the smallness of

electron and muon masses compared to tau lepton mass.

In short, the nice result we can get from this table is that cases with PMNS matrix

having a viable form in the high-scale analysis but not in the low-scale analysis predict

normal hierarchy of the neutrino mass, which is being preferred by current oscillation

data around 3σ level [5].

3.5 The high-scale flavour symmetry in GUT

Our discussions so far have focused only on flavour symmetry of the lepton sector. But

there is no reason to prevent flavour symmetry acting on the quark sector as well. A

complete and successful flavour theory must take both leptons and quarks into consid-

eration, and give an acceptable solution for the puzzle of observed fermion masses and

mixing patterns. As we know, the SM gauge symmetry is an intra-family symmetry, in

the sense that it treats the corresponding fermions of different families in a same way and

does not mix the fermions in different families. While the flavour symmetry is an inter

family symmetry, it does transform non-trivially the leptons (or quarks) of different fam-

ilies and can combine them into a single multiplet. If we imagine every SM fermion with

two indices — the fist is family index and the second is gauge group index — then five

different types of fermions in the SM can be described solely by their quantum numbers

under the flavour symmetry and gauge symmetry regardless of which family they belong

to. In this case the flavour symmetry acts horizontally on the row index while gauge

symmetry acts vertically on the column index.

More interesting situation will appear when we discuss the problem in the context

of the Grand Unified Theories (GUTs) together with a flavour symmetry, as there is a

complementary role of the gauge symmetry, unifying the fermions of same family but

with different flavours, and flavour symmetry, acting on the different fermion families.

For instance, in the context of SU(5) GUT and flavour group G, we have three fermion

multiplets of SU(5) gauge group (dci and li are in anti-fundamental representation 5̄; uci ,

qi and eci are in the anti-symmetric decuplet representation 10; and νci are in the singlet)

and each of them can transform in the different representations of G. We assume that

actions of the gauge and the flavour group representations can commute each other and

that fermions in each SU(5) multiplets belong to the same representation of the group G.

Further more, when we discuss flavour symmetry in the context of SO(10) GUT, there

will be more constraints on the representations of the flavour group. This is because, in
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high-scale low-scale

irreps masses UPMNS zeros masses UPMNS zeros

1 1 1′

1 r + 1, 1′

1 s + 1, 1′

(A00)
(a00)

HE
12V23H

ν−1

12 none (13)
(A00)
(abc)

HE
12V23P

−1
ν 31, 32, 33

1 1 1
1 r + 1,1
1 s + 1

(A00)
(a00)

HE
12V23H

ν−1

12 none (13)
(A00)
(ab0)

HE
12V23P

ν−1

1↔3 31, 33

1 1 1
1 r + 1
1 s + 1

(A00)
(a00)

V none
(A00)
(abc)

V none

1 1 1
1 r + 1
1 1 s 6= 1

(A00)
(ab0)

V none
(A00)
(abc)

V none

1 1 1′

1 1 r 6= 1′

1 s + 1, 1′

(AB0)
(a00)

V23H
ν−1

12 13
(AB0)
(abc)

V23P
−1
ν 4 zeros

1 1 1
1 1 r 6= 1
1 s + 1

(AB0)
(a00)

V23H
ν−1

12 13
(AB0)
(ab0)

V23P
ν−1

1↔3 4 zeros

1 1 1
1 1 r 6= 1
1 s + 1

(AB0)
(a00)

V none
(AB0)
(abc)

V none

1 1 1
1 1 r 6= 1
1 1 s 6= 1

(AB0)
(ab0)

V none
(AB0)
(abc)

V none

1 1 1′

1 1 1′

1 s + 1, 1′

(ABC)
(a00)

PEV23H
ν−1

12 13, 23, 33
(ABC)
(abc)

PEV23P
−1
ν 4 zeros

1 1 1
1 1 1
1 s + 1

(ABC)
(a00)

PEV23H
ν−1

12 13, 23, 33
(ABC)
(ab0)

PEV23P
ν−1

1↔3 4 zeros

1 1 1
1 1 1
1 s + 1

(ABC)
(a00)

V none
(ABC)
(abc)

V none

1 1 1
1 1 1
1 1 1′

(ABC)
(ab0)

V none
(ABC)
(abc)

V none

Table 3.4: Summary table for the case in which M is non-singular and low- and
high-scale analyses are not equivalent. In the first column irrep patterns of U lH , U eH
and UνH are in the successive order of one below the other. The sub-representations
r and s can be reducible, and the representation s is required to be vectorlike. Pi↔j
denotes the transposition of i and j or the identity permutation. Matrix with no further
specification is generic (e.g. PE and Pν imply generic permutations, and V is a generic
3× 3 unitary matrix).
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this case, the fermions in each family are unified into a single multiplet of dimension 16

spinorial representation of the gauge group SO(10) and all fermions in this multiplet are

considered to transform under the same representation of the flavour group G. In a word,

in these flavour symmetric GUT scenarios fermion masses and mixing get more stringent

constraints than the ones discussing the flavour and gauge symmetries separately.

When we put GUT constraints on the flavour group representations obtained in the

previous sections, there may be some flavour group irrep decompositions accounting for

the viable mass and mixing patterns in both lepton and quark sectors. It will be interest-

ing if we can explain the observed lepton and quark masses and mixing simultaneously

in the context of GUT flavour symmetry. Before discussing the flavour symmetries of the

quark sector we need to remind what are the definitions of the viable quark mass and

mixing patterns. As was pointed out in section 2.4, we say both up- and down-type quark

mass patterns are viable iff they belong to one of theses three forms (A, 0, 0), (A,B, 0),

(A,B,C) and no degenerate non-zero masses are allowed. As for the viable form of CKM

matrix, only the diagonal form or at most 12 block rotations are considered to be viable,

since all the other quark mixing angles are smaller than 3◦ except Cabibbo angle which

is as big as 13◦. Each components of the CKM matrix is given by eq. (2.17), they have

similar origins as the components of the PMNS matrix.

In what follows, we will start discussing the SU(5) GUT flavour symmetry. As stated

before, all fermions in the same SU(5) multiplets are supposed to transform under the

same representation of the flavour group, i.e U5̄ = Udc = Ul, U10 = Uuc = Uq = Uec and

U1 = Uν . Given that we have already found the irrep decompositions for the viable lepton

mass patterns and mixings, it is easy to sort out the irrep decompositions of U5̄, U10 and

U1 from the known forms of Ul, Uec and Uν . Imposing the further constraints of viable

quark mass and mixing patterns in the symmetric limit selects the results in table 3.5 for

the case where M has one vanishing eigenvalue, and table 3.6 summarizes the results for

the case in which M has two vanishing eigenvalues. The results in table 3.7 are obtained

from the case where the singlet neutrino mass matrix M is non-singular and the low- and

high-scale analyses become equivalent. Moreover, tables 3.8 and 3.9 show the results for

the case of M is non-singular and the low- and high-scale analyses are inequivalent.

In table 3.5 all of the neutrino mass patterns are in the normal hierarchy, which is

the consequence of singlet neutrino mass matrix having one vanishing eigenvalue in the

symmetric limit. The charged lepton and down quark mass patterns are always the same,

and it is the common feature also in all the other tables. This comes from the fact that

both li and dci transform under U5̄ and both qi and eci transform under U10. Having such

a relation between the representations of leptons and quarks, forms of the invariant mass

matrices mE and mD are transpose of each other. This, in turn, implies that those two

mass matrices have same rank in general, so the number of non-zero eigenvalues are always

the same. Furthermore, as we can see, all the mass patterns appeared in down-type quark

sector are constrained by the interplay between the representations U5̄ and U10, while the

up-type quark mass patterns are determined by U10 only. The first three rows in table 3.5



3.5. The high-scale flavour symmetry in GUT 79

provide analogous results for the fermion mass patterns and forms of the CKM and PMNS

matrices, this is due to the fact that not only the structure of irrep patterns are similar

but also the derivations of the mass and mixing patterns are the same. The CKM matrix

associate to the all irrep patterns has two main forms depending on whether or not it

contains V12. If there is no V12, form of the VCKM is determined by the permutation

ordering the non-vanishing masses of the up-type quarks and by the HD
12 from symmetry

breaking effect. Only when the combination of these two components provides a diagonal

matrix or a small 12 block rotation, then the CKM matrix can accommodate observed

quark mixing parameters in the leading order approximation. If, on the other hand,

there is a V12 contribution, which will remain as it is even after the symmetry breaking,

in order to have a realistic mixing matrix we expect V12 to be close to the rotation of

the Cabibbo angle. In case this expectation is realized, the viable form of VCKM can be

obtained when the permutations play trivial role and symmetry breaking fixes HU,D to

be diagonal matrix. As for the form of UPMNS, there are two possible cases, either all

of its entries are non-zero or there is a zero in the 13 position depending on the HE,ν in

the symmetric limit. It is possible to have a viable pattern of the UPMNS and a zero in

its 13 element if Hν becomes a big rotation whereas HE becomes a small rotation in the

symmetric limit. Otherwise, the smallness of the 13 elements is accidental.

Analysis of the results in table 3.6 is basically similar to that in table 3.5, main

differences in table 3.6 can be seen from the following two points: there is no definite

hierarchy of the neutrino masses, and smallness of (UPMNS)13 is accidental in all the irrep

decompositions.

The results in table 3.7 coincide with the table 2.6, since the low- and high-scale

analyses are equivalent. As the discussions of mass patterns and mixings are same as

in table 2.6, we will not repeat them here.

Tables 3.8 and 3.9 provide irrep decompositions, mass patterns and form of the mixing

matrices when M is non-singular and the low- and high-scale analyses are not equivalent.

Both types of hierarchies for the neutrino masses are allowed, and all possible mass

patterns appeared in the charged fermion mass spectrum. As a general feature, all the

charged lepton and down-type quark mass patterns are always the same, because of the

reason stated before. Quark mixing matrix has two kinds of forms with and without

V12. If these is no V12 in the VCKM, then quark mixing pattern depends on the symmetry

breaking effects up to the permutation matrix of non-zero masses, while the forms of

the VCKM with V12 require that V12 is close to the rotation of Cabibbo angle. As for the

UPMNS, the first two irrep decompositions in table 3.8 can contain small 13 element if the

rotation HE
12, corresponding to vanishing masses of electron and muon, is small whereas

the rotation Hν
12 is big, otherwise it is not obvious to have a small 13 element. Irrep

decompositions in the next-to-last row of table 3.9 unambiguously fixes the 13 element

of PMNS matrix to be zero while the last row of the table shows that UPMNS has a zero

in any position of its third column, depending on the permutation for the charged lepton

masses.



80 Chapter 3. Flavour symmetries in the context of the seesaw mechanism

U1 U5̄ U10

Masses
VCKM UPMNS

mD mU mE mν

r + 1̄ 1 + 1 + 1

1′ + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12 none (13)

1′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12 none (13)

1 + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3V12H

D−1

12 none (13)

1 + 1̄ + 1̄ (d e f) (0 0 D) (A B C) (0 0 a) HU
12V12P

−1
D 13, 23, 33

r + 1̄ 1̄ + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12 none (13)

1′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12 none (13)

1 + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3V12H

D−1

12 none (13)

1 + 1̄ + 1̄ (d e f) (0 D E) (A B C) (0 0 a) PU
2↔3V12P

−1
D 13, 23, 33

r + 1̄ 1′ + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

none (13)
1′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU

2↔3H
D−1

12

1′′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12

1 + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3V12H

D−1

12

r + 1̄ 1 + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12 V3×3

1′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12 V3×3

1 + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3V12H

D−1

12 V3×3

Table 3.5: Possible forms of SU(5) unified flavour representations for the case of one
singlet neutrino having a vanishing mass in the symmetric limit. Representation r is
vectorlike and possibly reducible. Form of the fermion masses and of the CKM and
PMNS matrices corresponding to viable choices are shown. Neutrino mass pattern and
PMNS matrix are obtained from the high-scale results. P2↔3 is either the identity
permutation or the switch of 2 and 3.

If we discuss flavour symmetry in the context of SO(10) GUT, flavour group represen-

tations are very strongly constrained. There is no any flavour group for the description

of viable fermion mass and mixing patterns in the symmetric limit. The reason behind

this conclusion is that there is no irrep patterns to satisfy U16 ≡ U1 = U5̄ = U10 and lead

to the viable structures of the CKM and PMNS matrices in either case, where the low-

and high-scale analyses are equivalent or inequivalent.

3.6 Conclusions and remarks

The main goal of our work in this chapter is to give complete and precise answers to

the following two important questions: i) Are the low- and high-scale analyses always

equivalent? If not, what are the conditions to be so? ii) Can high-scale flavour symmetry

provide approximate description of lepton masses and mixings in the symmetric limit?



3.6. Conclusions and remarks 81

U1 U5̄ U10

Masses
VCKM UPMNS

mD mU mE mν

1 + 1̄ + 1′ 1 + 1 + 1′

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 a b) PUH
D−1

12

none
1′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 a b) PU

2↔3H
D−1

12

1′′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 a b) PU
2↔3H

D−1

12

1 + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 a b) PU
2↔3V12H

D−1

12

1 + 1̄ + 1̄ 1 + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 a b) PUH
D−1

12

V3×31′ + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 a b) PU
2↔3H

D−1

12

1 + 1 + 1̄ (0 0 d) (0 D E) (0 0 A) (0 a b) PU
2↔3V12H

D−1

12

Table 3.6: Possible forms of SU(5) unified flavour representations for the case of two
singlet neutrinos having vanishing masses in the symmetric limit. Form of the fermion
masses and of the CKM and PMNS matrices corresponding to viable choices are shown.
Neutrino mass pattern and PMNS matrix are obtained from the high-scale results. P2↔3

is either the identity permutation or the switch of 2 and 3.

U1 and U5̄ U10

Masses
VCKM UPMNS

mD mU mE mν

1 + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (a b c) PUH
D−1

12

V3×3

1 + 1′ + 1′′ (0 0 d) (D E F ) (0 0 A) (a b c) PUH
D−1

12

1 + 1′ + 1′ (0 0 d) (D E F ) (0 0 A) (a b c) PUV12H
D−1

12

1 + 1′ + 1 (0 0 d) (0 D E) (0 0 A) (a b c) PU
2↔3H

D−1

12

1 + 2 (0 0 d) (0 0 D) (0 0 A) (a b c) HU
12H

D−1

12

1 + 1 + 1′ (0 0 d) (0 0 D) (0 0 A) (a b c) HU
12H

D−1

12

1 + 1 + 1 (0 0 d) (0 0 D) (0 0 A) (a b c) HU
12H

D−1

12

Table 3.7: Possible forms of SU(5) unified flavour representations for the case where
the singlet neutrino mass matrix is non-singular in the symmetric limit as well as low-
and high-scale analyses are equivalent. Form of the fermion masses and of the CKM
and PMNS matrices corresponding to viable choices are shown. Neutrino mass pattern
and PMNS matrix are obtained from the high-scale results. P2↔3 is either the identity
permutation or the switch of 2 and 3.
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U1 U5̄ U10

Masses
VCKM UPMNS

mD mU mE mν

1 + r + 1, 1′ 1 + 1 + 1′

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

none (13)

1 + 1′′ + 1′′′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

1 + 1′′ + 1′′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUV12H
D−1

12

1 + 1′′ + 1 (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12

1 + 2 (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1 + 1′ (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1 + 1 (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + r + 1 1 + 1 + 1

1 + 1′ + 1′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

none (13)

1 + 1′ + 1′′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

1 + 1′ + 1′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUV12H
D−1

12

1 + 1′ + 1 (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12

1 + 1′ + 1′ (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12

1 + 2 (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1 + 1′ (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1 + 1 (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1′ + 1′′ (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1′ + 1′ (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + r + 1 1 + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

V3×3

1 + 1′ + 1′′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUH
D−1

12

1 + 1′ + 1′ (0 0 d) (D E F ) (0 0 A) (0 0 a) PUV12H
D−1

12

1 + 1′ + 1 (0 0 d) (0 D E) (0 0 A) (0 0 a) PU
2↔3H

D−1

12

1 + 2 (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1 + 1′ (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

1 + 1 + 1 (0 0 d) (0 0 D) (0 0 A) (0 0 a) HU
12H

D−1

12

Table 3.8: (Part 1) Possible forms of SU(5) unified flavour representations for the case
in which singlet neutrino mass matrix is non-singular in the symmetric limit (as well
as low- and high-scale analyses are not equivalent). Representation r is vectorlike and
possibly reducible. Form of the fermion masses and of the CKM and PMNS matrices
corresponding to viable choices are shown. Neutrino mass pattern and PMNS matrix
are obtained from the high-scale results. P2↔3 is either the identity permutation or the
switch of 2 and 3.
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U1 U5̄ U10

Masses
VCKM UPMNS

mD mU mE mν

1 + 1 + r 6= 1 1 + 1 + 1

1 + 1 + 1̄ (0 0 d) (D E F ) (0 0 A) (0 a b) PUH
D−1

12

V3×3

1 + 1′ + 1′′ (0 0 d) (D E F ) (0 0 A) (0 a b) PUH
D−1

12

1 + 1′ + 1′ (0 0 d) (D E F ) (0 0 A) (0 a b) PUV12H
D−1

12

1 + 1′ + 1 (0 0 d) (0 D E) (0 0 A) (0 a b) PU
2↔3H

D−1

12

1 + 2 (0 0 d) (0 0 D) (0 0 A) (0 a b) HU
12H

D−1

12

1 + 1 + 1′ (0 0 d) (0 0 D) (0 0 A) (0 a b) HU
12H

D−1

12

1 + 1 + 1 (0 0 d) (0 0 D) (0 0 A) (0 a b) HU
12H

D−1

12

1 + r + 1, 1′ 1 + 1 + 1′ 1 + 1 + 1′′ (0 d e) (D E F ) (0 A B) (0 0 a) PUV12P
D−1

13

1 + r + 1, 1′ 1 + 1 + 1′ 1 + 1 + 1′ (d e f) (D E F ) (A B C) (0 0 a) PUV12P
D−1

13, 23, 33

Table 3.9: (Part 2) Possible forms of SU(5) unified flavour representations for the case
in which singlet neutrino mass matrix is non-singular in the symmetric limit (as well
as low- and high-scale analyses are not equivalent). Representation r is vectorlike and
possibly reducible. Form of the fermion masses and of the CKM and PMNS matrices
corresponding to viable choices are shown. Neutrino mass pattern and PMNS matrix
are obtained from the high-scale results. P2↔3 is either the identity permutation or the
switch of 2 and 3.

The answer to the first question is no, these two analyses are not equivalent. Although

for a given mass and mixing pattern forced by a low-scale analysis there is always a high-

scale analysis exist to provide same mass and mixing patters, the low-scale analysis cannot

cover all the possibilities in the high-scale discussion. A necessary and sufficient condition

to these two analyses become equivalent is that the singlet neutrino representation must

be vectorlike and it contains vectorlike part of the lepton doublet representation. The

answer to the second question is yes, present hint for the normal hierarchy of the neutrino

masses can be account for by the high-scale analysis when it is not equivalent to low-

scale study. As we know already from the previous chapter, the low-scale result describes

neutrino masses either in the inverted hierarchy or in the anarchical (unconstrained)

pattern in the symmetric limit, this description can also appear in the high-scale analysis

when it become equivalent to the low-scale analysis.

The answers of those questions are based on a very general assumption of the flavour

group, a specific mechanism to the neutrino mass generation and our definitions of the

viable masses and mixing patterns. There is no restriction on the flavour symmetry, they

can be any type. We simply extend SM by considering the singlet neutrinos, and assume

that neutrino masses are generated from the type I seesaw mechanism. Our definition

for the viable lepton masses and mixings are given in table 2.1 and in eq. (3.17). From

these three basic assumptions, we provide thorough identification of the all possible irrep

decompositions on lepton doublet, lepton singlet and neutrino singlet. Regarding the
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flavour groups, if all the irreps, that can account for the viable mass and mixing patterns,

are contained in the possible irreps of a certain group representation then that group can

be considered as applicable flavour symmetry group.

To obtain those conclusive answers, we have started our discussion by defining the low-

and high-scale analyses of flavour observables according to the two different descriptions

of the neutrino masses, either from the Weinberg operator or from the type I seesaw

mechanism. Then we provide equivalence condition of these two analyses for the general

case of n family. The equivalence condition states that two analyses provide same mass

and mixing patterns if and only if i) the representation of the singlet neutrinos is vectorlike

and ii) it contains the vectorlike part of the lepton doublet representation. Since we

already have had complete classifications of the low-scale analysis in chapter 2, our main

interest in this chapter is to find full characterization of flavour group representations for

the inequivalent scenarios. Inequivalence happens in two cases, when the singlet neutrino

mass matrix is singular or non-singular in the symmetric limit. Both case are discussed

separately and results are given by the relations between the irrep patterns and forms of

the lepton masses and mixings in the symmetric limit, without knowing the explicit form

of the mass matrices.

The results for the cases in which the singlet neutrino mass matrix has one or two

vanishing eigenvalues are give in table 3.1 and table 3.2, respectively. In the former case

light neutrino masses are predicted to be in the normal hierarchy, while the latter case

allows both hierarchies to appear. Comparing the results from the high- and the low-scale

discussions, there are two main features deserve to emphasize. Firstly, in the viable cases

of the low-scale analysis neutrino masses are allowed either in inverted hierarchy or forced

to be all vanishing, while in the high-scale analysis all the mass patterns are in the normal

hierarchy, which is slightly preferred by the current oscillation data. Secondly, some cases

where the forms of the PMNS matrix were not viable or undetermined in the low-scale

analysis now turn out to have a viable mixing patterns in the high-scale result. This

means that there are more possibilities of the flavour group representations to provide

approximate description of the lepton masses and mixings in the high-scale analysis than

the low-scale limit.

The table 3.4 summarizes the inequivalent results when all the singlet neutrino masses

are non-zero in the symmetric limit. Here, two interesting outcomes catch our attention,

first one is related to the neutrino mass spectrum and other one is about the form of the

PMNS matrix. In the high-scale analysis there is no anarchical neutrino mass spectrum

which appeared in the low-scale analysis. Structures of the PMNS matrix in the low-scale

analysis with a zero in the third row or with 4 zero entries now become viable in the high-

scale analysis; moreover, the 13 element is fixed to be zero (or that can be obtained from

the trivial permutation of charged lepton masses) in the symmetric limit, or a symmetry

breaking effect can explain the smallness of the 13 element.

In the last part of the work we investigate the possibilities of explaining both lepton

and quark flavour observables in the context of grand unified theories such as SU(5) and
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SO(10). Imposing the non-trivial assumption that the flavour and the gauge group rep-

resentations commute each other and that the fermions in a same gauge group multiplet

transform under the same representation of the flavour symmetry, we have obtained in-

equivalent results of the high-scale analysis shown in tables 3.5, 3.6, 3.8, 3.9 for the SU(5)

GUT; and there is no solution in the context of the SO(10) GUT. Clearly, there are more

possibilities to achieve viable fermion masses and mixing in the high-scale analysis in the

context of GUT compared to that in the low-scale analysis. Notice that all of the mixing

patterns in those viable cases rely on the specific structures of the permutation matrices,

HU,D
12 and V12, some of which are determined by the symmetry breaking effects.

Even though the high-scale analysis can provide a possibility to approximate descrip-

tion of fermion masses and mixings in the symmetric limit, the symmetry breaking effect

cannot be absent for the accurate description of SM flavour observables. So it is important

to study the problem by considering cumulative contributions from the symmetric limit

as well as the symmetry breaking effects that depend not only on the breaking source but

also on the chosen way of symmetry breaking.



Chapter 4

Novel measurements of anomalous

triple gauge couplings for the LHC

4.1 Introduction

The Standard Model (SM) of particle physics is our best model describing the innermost

layer of matter. It has been verified in uncountable experiments spanning a wide range

of energies. The Higgs discovery [157, 158] was the icing on the cake of more than forty

decades of experiments confirming every testable prediction of the SM. Now, the most

important goal of the LHC is the quest for new physics, either in the form of deviations

from the SM predictions or as new degrees of freedom in direct searches.

ATLAS and CMS have performed many dedicated searches of Beyond the Standard

Model (BSM) theories [159]. All such investigations have led to null results. Before

the run of these experiments it was widely acknowledged that the confirmation of the

SM and nothing more is a logical possibility. At the same time though there are many

theoretically appealing BSM extensions that seem to make sense. Thus, why nature is

not making use of them? is a very pressing question that should have an answer. In order

to make progress towards answering this question we can envision two possible strategies:

more clever model building – which may require a paradigm change with respect to

conventional views; or to understand in detail the real pressure that the LHC is imposing

on the BSMs. This work deals with a particular example in the second direction.

The experimental results suggest that there is at least a moderate mass gap between

the electroweak scale mW and the new physics scale Λ. Given this situation it is very

convenient to parametrize possible deviations from the SM in an EFT approach. This

consists in viewing the SM as the leading interactions of an effective Lagrangian and incor-

porate BSM deviations in a perturbative expansion in powers of SM fields or derivatives

Dµ over the proper power of Λ,

Leff = LSM + L6 + · · · , (4.1)

86
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where ellipses denote terms of order 1/Λ3 and higher. Given the uncertainty of the current

situation we will take a skeptical point of view on the particular UV physics leading to

(4.1) and thus only assume the SM gauge symmetries. Then, up to the dimension five

Weinberg operator ∼ ΨLΨLHH, the leading deviation from the SM consists in operators

of dimension six,

L6 =
∑
i

ciOi

Λ2
. (4.2)

The dimensionless coefficients ci are the Wilson coefficients, which we assume to be per-

turbative but otherwise arbitrary. The operators appearing in (4.2) were exhaustively

listed in chapter 1, see also [83, 86]. The advent of the LHC, especially after the Higgs

discovery, has triggered an abundant number of works on interpreting the LHC searches

as limits on effective field theory deformations of the SM. It is very interesting to find

better ways to measure the SM EFT. This is in fact the purpose of this chapter, which

focuses on diboson production WZ/WW at the LHC and how it can be used to constrain

the deformations from the SM due to the triple gauge couplings (TGCs) in L6.

In the SM the TGCs are fixed by the gauge symmetry and included in the gauge

kinetic term,

ig
(
W+µνW−

µ W
3
ν −W−µνW+

µ W
3
ν +W 3µνW+

µ W
−
ν

)
, (4.3)

where W 3
ν = cθ Zν +sθ Aν is a linear combination of the Z and photon vector bosons, and

θ is the Weinberg angle. The interaction in (4.3) is written in the unitary gauge, so that

the vector boson fields describe both longitudinal and transverse polarizations. There

are only two types of CP-even anomalous triple gauge couplings (aTGCs) deviating from

(4.3). The first one consists in deforming (4.3) away from the SM point

L1st
aTGC = ig cθ δg1,Z ZνW

+µνW−
µ + h.c.+ ig (cθ δκZ Z

µν + sθ δκγ A
µν)W+

µ W
−
ν . (4.4)

Modifications of the coupling W+µνW−
µ Aν is forbidden by electromagnetic gauge invari-

ance and the relation δκZ = δg1,Z − tan2 θδκγ is satisfied if only dimension six operators

are considered. The other type of deformations are obtained by adding extra derivatives

on (4.3). This translates into higher powers of momentum in the amplitudes. In an

expansion in powers of momentum, the leading such deformation is

L2nd
aTGC = λZ

ig

m2
W

W+µ2
µ1

W−µ3
µ2

W 3µ1
µ3

. (4.5)

The study of the triplet of deformations {δg1,Z , δκZ , λZ} is a classic test of the SM with a

long history starting with the works [103, 160] and continued by [84, 161–163]. 1 Famously,

the interactions in (4.4, 4.5) were bounded with percent level accuracy at the LEP-2

1See for example [93, 164–171] for recent TGC and EFT analyses.
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experiment [94]:

λZ ∈ [−0.059, 0.017] , δg1,Z ∈ [−0.054, 0.021] , δκZ ∈ [−0.074, 0.051] , (4.6)

at 95% confidence level.

At the LHC, we would like to exploit the energy growth of (4.4, 4.5) to put stronger

bounds on TGCs. However it is well known that some of the TGC contributions have an

additional suppression factor at high energy. In particular the leading energy contribution

coming from the λZ TGC does not interfere with SM for any 2 → 2 process, which

makes its measurements difficult at LHC. This is consequence of helicity selection rules

[89, 164, 172], and the result is valid at leading order (LO). The main point of our work in

this chapter is to find ways to overcome this suppression. We propose two measurements

that enhance the interference of the λZ-BSM amplitude with the SM contribution. Our

ideas will lead to a better measurement of aTGC at LHC.

This chapter is organized as follows: in section 4.2 we review the basic physics asso-

ciated to the TGC. Then, in section 4.3 we propose two new variables to improve the

accuracy. In section 4.4 we discuss the challenges of the EFT measurements at the LHC.

Then in sections 4.5 and 4.6 we discuss our methodology and the results. We conclude

and comment on future directions in section 4.7.

4.2 Features of TGC mediated amplitudes

In this section we review simple facts of the diboson production at the LHC. This will

allow us to spot measurements that have not been exploited yet and will lead to better

sensitivity on the TGCs.

Diboson production at the LHC is dominated by the 2 → 2 process qq̄ → WW/WZ.

To neatly expose the leading energy growth of this probability amplitudes we use the

Goldstone equivalence theorem. Namely, we work with the parametrization where the

transverse gauge-bosons are massless and the would-be Goldstone bosons in the Higgs

doublet describe the longitudinal components of the W±/Z gauge bosons. For definiteness

of the notation,

LSM = (DµH)†DµH + Lgauge + Lψ + V (H) , (4.7)

where the DµH = (∂µ − ig′Y Bµ − igT aW a
µ )H, with T the SU(2)L generators, Y = 1/2

and HT = (
√

2i G+, v+h+ iG0)/
√

2. As usual, the pure gauge sector is given by the field

strengths Lgauge = −1
4
W a
µνW

µν
a − 1

4
BµνB

µν− 1
4
GAµνG

Aµν , the piece Lψ involves the Kinetic

terms for the fermions and the Yukawa interactions, and V (H) = −m2|H|2 + λ|H|4. We

recall that Goldstone’s equivalence theorem,
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W+
L

=

G+

×
(
1 +O(m2

W /E2)
)

states that to get the leading large energy behavior of the amplitudes with massive gauge

bosons in the final state, we can identify in (4.7) the transverse and longitudinal compo-

nents of the physical gauge bosons as

{W+
L , W

+
T } = {G+, (W 1 − iW 2)/

√
2} , (4.8)

{ZL, ZT} = {G0/
√

2, cos θwW3 − sin θw B} , (4.9)

where cos θw = g/
√
g′2 + g2 is the cosine of the Weinberg angle. With this basic result

in mind, we proceed to discuss the energy growth of diboson production.

4.2.1 Energy growth

With the parametrization in (4.7) and the identifications in eqs. (4.8, 4.9), the SM triple

gauge couplings arise from

trWµνW
µν ⊃ ∂VTVTVT , (4.10)

(DµH)†DµH ⊃ ∂VLVTVL + vVTVTVL , (4.11)

where we have neglected SM coupling constants as well as O(1) numerical factors. In

eqs. (4.10, 4.11) we have also suppressed the Lorentz index contractions and denoted by

V either the W or Z vector boson. A one line calculation shows that the above TGC

lead to s-channel amplitudes with the leading energy growth

M (
qq̄ → VTW

+
T

) ∼ E0 ,

M (
qq̄ → VLW

+
L

) ∼ E0 , (4.12)

M (
qq̄ → VTW

+
L /VLW

+
T

) ∼ v

E
,

where E is the center of mass energy of the diboson system. The same asymptotic

behavior is found for W−Z final states. In (4.12) we are working in the limit of massless

light quarks, so that these only couple to the transverse gauge bosons, and we neglected

subleading log(E) terms from loop corrections. The process qq̄ → VTWT is also mediated

by t,u-channel diagrams that have the same energy growth as the s-channel in (4.12).

Next we discuss the energy growth of tree-level amplitudes involving one insertion

of the anomalous TGCs {δg1,Z , δκZ , λZ}, defined in (4.4, 4.5). For this purpose, it is
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convenient to parametrize them in terms of the following dimension six operators,

OHB = ig′(DµH)†DνHBµν ,

OHW = ig(DµH)†σaDνHW a
µν , (4.13)

O3W =
g

3!
εabcW

a ν
µ W b ρ

ν W c µ
ρ ,

which map onto the triplet {δg1,Z , δκZ , λZ} as follows

λZ =
m2
W

Λ2
c3W , δg1,Z =

m2
Z

Λ2
cHW , δκZ =

m2
W

Λ2

(
cHW − tan2 θcHB

)
. (4.14)

In principle one could use other sets of operators to parametrize deviations in the physics

of qq̄ → WW/WZ production. However, it is important to realize that after taking into

account the constraints from LEP-1, the main possible deviations in diboson production

are due to modifications on the SM triple gauge vertices [173, 174]. 2 See also [93] where

this result is studied using different bases of dimension six operators.

The operators in (4.13) include the following TGCs

OHB ⊃ ∂WL∂ZT∂WL + vWT∂ZT∂WL + v2WT∂ZTWT + . . . , (4.15)

OHW ⊃ ∂VL∂VT∂VL + vVT∂VT∂VL + v2VT∂VTVT + . . . , (4.16)

O3W ⊃ ∂VT∂VT∂VT + . . . , (4.17)

where ellipses denote interactions that either involve a photon or are not of the triple gauge

type. Note that in (4.15)-(4.17) we have neglected SM couplings as well as numerical O(1)

factors. At large energies the leading processes mediated by the interactions in (4.15)-

(4.17) are

M (
qq̄ → W−

LW
+
L

) ∼ E2/Λ2 cHB + E2/Λ2 cHW

∼ E2/m2
W δg1,Z + E2/m2

W δκZ , (4.18)

M (
qq̄ → ZLW

+
L

) ∼ E2/Λ2 cHW = E2/m2
Z δg1,Z , (4.19)

M (
qq̄ → VTW

+
T

) ∼ E2/Λ2 c3W = E2/m2
W λZ , (4.20)

where we used (4.14) and omitted constant factors in front of the TGCs. The same

leading energy growth is found by replacing W− ↔ W+ in the final state of (4.19).

Interestingly, δκZ/cHB contributes at the order of E2 only to the process (4.18). The

leading contribution of δκZ to qq̄ → WZ appears for the polarizationsM (
qq̄ → ZTW

+
L

)
2Note that the commonly used SILH basis, apart from the operators of (4.13), also includes a further

operator contributing to the aTGC: OW = DµW ν
µ HDνH + h.c.. For our purposes though, it is enough

to use (4.13) in order to capture the high energy behavior. Our results will be presented in terms of
{δg1,Z , δκZ , λZ}, which can be mapped into any other basis.
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and scales as ∼ vE/Λ2. This follows from the fact that at leading order in energy only

the transverse polarization of the Z boson enters in OHB.

Next we discuss the generic properties of the production cross sections in the presence

of these BSM amplitudes.

4.2.2 Accuracy obstruction

In general, the 2→ 2 scattering cross section in the presence of irrelevant operators scales

as

σ(qq̄ → V V ) ∼ g4
SM

E2

[
1 +

BSM6× SM︷ ︸︸ ︷
ci
E2

Λ2
+

BSM6
2︷ ︸︸ ︷

c2
i

E4

Λ4
+ . . .

]
,

(4.21)

where the first factor g4
SM/E

2 accounts for the energy flux of the initial quarks, and we

have omitted numerical factors. In (4.21) we explicitly indicated dimension six squared

and SM-dimension six interference terms, and ellipses stand for higher order corrections

from operators of dimensions ≥ 8. 3 However, the operator O3W (i.e. the λZ deformation)

is special because the interference between the SM amplitude M (
qq̄ → VTW

+
T

) ∼ E0 in

(4.12) and M (
qq̄ → VTW

+
T

) ∼ c3WE
2 in (4.20) is suppressed and the scaling of the

BSM6 × SM piece is softer. This is a consequence of the helicity selection rules [172] as

we will now review. 4

The non-interference of the diboson production amplitude through O3W and the SM

can be understood by first taking the limit where the masses of the electroweak gauge

bosons are zero, namely we focus on transverse polarizations only. In this limit the

amplitude of tree-level SM process qq̄ → V V is only non-zero if the transverse helicities

of the vector boson are opposite (±,∓). 5 At the same time though, the operator O3W in

(4.13) leads to a triple gauge vertex where all three gauge bosons have the same helicity,

so the amplitude of the process qq̄ → V V containing O3W vertex is non-zero only if

the transverse helicities of the vector boson are same (±,±). Therefore, there is no

interference between two amplitudes, as either SM or O3W amplitude is vanishing for a

given pair of transverse helicities of final state vector bosons. One way to understand

this result is to look at the helicity structure of three point vertices of the SM and O3W .

The Lorentz symmetry, dimensional analysis and special kinematics of the three particle

interaction completely fix the structure of three-point amplitude and provide relation

3Note that operators of dimension 7 necessarily violate either baryon or lepton number. We assume
the scale of such symmetry violation to be very large and therefore irrelevant for diboson physics at the
LHC.

4See [89] for a pioneering discussion of this effect in the context of QCD.
5More generally, this follows from the Maximally Helicity Violation (MHV) helicity selection rules,

see for instance [175].



92 Chapter 4. Novel measurements of anomalous triple gauge couplings for the LHC

between the modulus of total helicity and dimension of the coupling g,

|
3∑
i=1

hi| = 1− [g] (4.22)

where [g] denotes mass dimension of the coupling of the three point interactions. The SM

triple gauge coupling is dimensionless so the total helicity is ±1, this means two gauge

boson has opposite helicity with respect to the third one. While coefficient of the operator

O3W has mass dimension −2, thus total helicity of the amplitude is ±3. This, in turn,

implies that all three gauge bosons have same helicity. When we compute the amplitudes

of the process qq̄ → V V , non-zero SM amplitudes contain two final state gauge bosons

with opposite helicities, while in the O3W amplitudes all final state gauge bosons have

same helicity. Another quick way to check this result is to write the field strength in terms

of spinor indices Wαα̇ββ̇ = Wµνσ
µ
αα̇σ

ν
ββ̇

= wαβ ε̄α̇β̇ + w̄α̇β̇εαβ, where as usual the tensors ε

and ε̄ are used to raise α and α̇ indices, respectively. O3W in (4.13) can be written terms

of the w/w̄ fields is given as

O3W ∝ w β
α w

γ
β w

α
γ + w̄ β̇

α̇ w̄
γ̇

β̇
w̄ α̇
γ̇ . (4.23)

Each antisymmetric tensor field w and w̄ are the self-dual and anti-self-dual parts of the

field strength, they can create a massless particle carrying helicity +1 and −1 respectively,

and, therefore, diboson production through (4.23) leads to vector bosons with helicity

(±,±). Thus, at tree level we have that

qq̄ −→ VT±VT∓ (in the SM) , (4.24)

qq̄ −→ VT±VT± (with O3W insertion) . (4.25)

Since the final diboson states in (4.24, 4.25) are different, there is no interference between

both amplitudes. This statement is exactly true in the massless limit. However, two mass

insertions mW∂µG
+W−µ, mZ∂µG

0Zµ can be used to flip the helicity of the final states,

leading to a non-zero interference between (4.24, 4.25). Flipping the helicity costs a factor

m2
W/E

2. Then, the leading cross section for diboson production in the limit E � mW is

given by,

σ(qq̄ → VTVT ) ∼ g4
SM

E2

[
1 + c3W

m2
V

Λ2
+ c2

3W

E4

Λ4

]
. (4.26)

The important point to notice is that the second term of (4.26) has a suppressed energy

scaling with respect to the general expectation in (4.21).

This behavior makes EFT consistent measurements of the c3W difficult. Indeed, at the

level of the dimension six operators the signal from the O3W will be subdominant com-

pared to the contributions of the other TGCs, which will require further disentanglement

of the transverse and longitudinal final state polarizations. But even more, assuming an
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ideal separation of the longitudinal polarizations we need to remain in the EFT valid-

ity range, namely in the parameter space where the contributions from the dimension

eight operators can be safely ignored. For the process qq̄ → VTVT the dimension eight

contribution to the cross section can be schematically written as

∆σdim=8(qq̄ → VTVT ) ∼ g4
SM

E2

[ BSM8×SM︷ ︸︸ ︷
c8
E4

Λ4
+

BSM8
2︷ ︸︸ ︷

c2
8

E8

Λ8
+ . . .

]
.

(4.27)

Note that the BSM8×SM piece scales as the BSM2
6 contribution, E4/Λ4. Where we have

assumed that there is a interference between the SM and the new physics contributions

at the level of the dimension eight operators. For the process qq̄ → VTVT this is indeed

the case, consider for instance

gDνW στWντD
µWµσ ∼ Dα̇αωαβω̄α̇γ̇D

γ̇σωβσ −Dα
γ̇ ω̄

β̇γ̇ωαγD
σ
β̇
ωγσ +Dα

γ̇ω
βγωαγD

σ̇
β ω̄

γ̇
σ̇ + . . . ,

(4.28)

where ellipses denote terms with helicity configurations other than∼ ωωω̄; or the operator

g2 (q̄γρq)WρνD
µW ν

µ ∼ qαq̄β̇w
β
α D

α̇
β w̄

β̇
α̇ + . . . , (4.29)

written in terms of spinor indices. The latter operator is a contact interaction contributing

to qq̄ → V Z while (4.28) is a modification of the TGC – of the second type according to

the discussion around (4.4 - 4.5). Note that both of them lead to final state bosons of

helicities (±,∓), like in the SM.

Then the truncation at the dimension six level (4.26) is valid if only 6

max

(
c3W

m2
V

Λ2
, c2

3W

E4

Λ4

)
> max

(
c8
E4

Λ4
, c2

8

E8

Λ8

)
. (4.30)

Suppose we will be able get rid of the interference suppression, then this condition is

replaced by

max

(
c3W

E2

Λ2
, c2

3W

E4

Λ4

)
> max

(
c8
E4

Λ4
, c2

8

E8

Λ8

)
, (4.31)

which is less restrictive if c3WE
2/Λ2 < 1 (given that at LHC E > mV ).

Another advantage of having a large interference term is that it leads to the better

measurement of the sign of the Wilson coefficient, otherwise very weakly constrained.

The importance of the improvement in (4.31) depends on the actual values of the Wilson

coefficients or in other words on the UV completions of the given EFT. To make this

discussion more concrete we present a few examples in the next subsection.

6We are assuming that contributions of operators of dimension higher than eight are even smaller.
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4.2.3 Power-counting examples

The strength of the Wilson couplings can be estimated by a given set of power-counting

rules characterizing a possible UV completion. Power-counting schemes are useful to

incorporate particular biases towards the kind of BSM physics we would like to prove.

This is a perfectly legitimate strategy and very much the point of using an Effective Field

Theory approach, allowing to parametrize altogether broad classes of models. Particular

examples are weakly coupled renormalizable UV completions, Minimal Flavour Violation

(MFV) [176], the Strongly Interacting Light Higgs (SILH) [85], flavour universal BSM

physics (see e.g. [177]), etc. The power-counting schemes commonly used are imposed

through arguments based on the symmetries or dynamics of the Action, such that possi-

ble radiative corrections violating the assumed power-counting scheme are kept small or

understood.

For example, we may assume that the UV completion is a renormalizable and weakly

coupled QFT. Then, the power-counting consist in classifying those operators that are

loop generated v.s. those that are generated at tree-level [173, 178]. The latter are

expected to be bigger because the former are suppressed by 1/(16π2) factors. Then, for

example if we have heavy vector-like fermions, we expect

c3W ∼ O(1)× g2/(4π)2 , c(4.28) ∼ O(1)× g2/(4π)2 , (4.32)

where c(4.28) refers to the Wilson coefficient of the dimension eight operator in (4.28); the

contribution to c(4.29) has a stronger loop suppression. This setup is somewhat pessimistic

since the extra loop suppression makes it hard to prove c3W with the LHC sensitivity. In

any case, improvement from (4.30) to (4.31) is

E2 < ΛmW −→ E < Λ . (4.33)

As an other power-counting instance, one may envision a scheme where for each extra-

field strength that we add to the dimension four SM Lagrangian we pay a factor g∗ . 4π.

With this power-counting we obtain

c3W ∼ g∗/g , c(4.28) ∼ g∗/g , c(4.29) ∼ g∗g/(16π2) , (4.34)

where the 1/g factor is due to the normalization of O3W in (4.13). This power counting,

called pure Remedios, was introduced in [179]. 7 This power-counting is more optimistic

regarding possible LHC signals since g∗ can be naturally large. However, in this scenario

7In a nutshell, the construction is based on the following observation. Consider the SM effective
Lagrangian LEFT = LHiggs + Lψ + Λ4

g2∗
L(F̂µν/Λ2, ∂µ/Λ), where the gauge-field strengths F̂µν are not

canonically normalized and we view L as a functional that we expand in inverse powers of Λ. Then, it
is technically natural to set g∗ � g in LEFT because as g → 0 the SU(2)L gauge symmetry acting on
LEFT is deformed into SU(2)global

L o U(1)3
gauge – we refer to [179] for details.
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there is no improvement from (4.30) to (4.31), and in both cases we find

E < Λ . (4.35)

Lastly we will discuss one scale one coupling power-counting [85], which predicts

c3W ∼ c(4.28) .
g∗
g
, c(4.29) .

g2
∗
g2
. (4.36)

In this case the improvement from (4.30) to (4.31) would be

E <

(
gΛ2m2

W

g∗

)1/4

−→ E < Λ

√
g

g∗
. (4.37)

To conclude this subsection we would like to remind the reader that EFT validity

discussion needs some assumptions on power-counting (see for a recent discussion [180]).

In the rest of this chapter though, we do not commit to any of the aforementioned power-

counting rules. We only assume perturbative, but otherwise arbitrary, Wilson coefficients.

4.2.4 Numerical cross-check

In figure 4.1 we show the results of a MadGraph5 [181] simulation, using the EWdim6 [80]

model 8 , for the process pp→ VW . The parametric dependence of the cross section on

the TGCs is given by

σqq̄→VW = σSM + δ σint + δ2 σBSM2 , with δ = {δg1,Z , δκZ , λZ} , (4.38)

In figure 4.1 we plot σint/σSM (top) and σBSM2/σSM (bottom) for different anomalous

TGCs as a function of the invariant mass mVW of the VW final state system. Note that

in this ratios the g4
SM/E

4 factor in (4.21) cancels and we can read the scaling as a function

of the energy from (4.12) and (4.18 – 4.20).

The top plot of figure 4.1 shows the energy scaling of σint/σSM. The red and purple

lines confirm the quadratic growth expected from the δg1,Z and δκZ contribution in (4.18)

for the process qq̄ → W−
LW

+
L . The dashed green line depicts an energy dependence of

the cross section ratio σint/σSM when only the aTGC δκZ is switch on, the curve shows

no growth as a function of the energy, this confirms the discussion of (4.12) and (4.19).

Namely, that for the final state ZW , the leading energy growth is only mediated by δg1,Z

(blue line) but not by δκZ (dashed green line). Lastly, on the same plot we show that

σint/σSM mediated by λZ has no energy growth, as there is no interference with SM,

confirming (4.26). This later measurement comes from WW production, but a similar

result for λZ is obtained for WZ production.

8Note that our definition in (4.13) differs from the one of [80].
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Figure 4.1: Results from a MadGraph5 simulation of the pp→ VW process mediated
by anomalous TGCs, see the main text. The error bars of both plots due to statistical
errors is within the width of the plotted lines. We multiplied the line σint/σSM of δκZ
from WW by ×(−5) for illustrative reasons.

In the bottom panel of figure 4.1, we show the energy dependence of σBSM2/σSM, con-

firming the theoretical expectations. Namely, we find that for VW production the factor

σBSM2/σSM mediated by λZ and δg1,Z scale with the same power E4. Then, regarding δκZ
the amplitude grows as E2 for WZ production while it scales as E4 for W+W− produc-

tion — this is the expectation from the squared amplitude |M (
qq̄ → ZTW

+
L /ZLW

+
T

) |2 ∼
v2E2δκ2

Z , see text after (4.20).

4.3 Solutions to the non-interference obstruction

In the previous section we showed that for the 2→ 2 processes the interference between

O3W and the SM is suppressed. In this section we will present two ways to overcome this
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suppression. For simplicity reasons in the remaining part of this chapter we will consider

the case when only λZ deformation is present and the other anomalous TGCs are set to

zero.

4.3.1 Angular distributions

The first way of enhancing the interference term is by noting that in reality we are not

looking at the 2 → 2 process but at 2 → 4, i.e. vector bosons decay into fermions

qq̄ → VW → 4ψ. Let us consider the differential cross section for the production of the

polarized particles WT+l−l̄+
9, differential cross section for the Z decay process is given

by

dσ(qq̄ → WT+l−l̄+)

dLIPS
=

1

2s

∣∣∣∑i(MSM
qq̄→WT+

Zi
+MBSM

qq̄→WT+
Zi

)MZi→l− l̄+

∣∣∣2
(k2
Z −m2

Z)2 +m2
ZΓ2

Z

, (4.39)

where sum runs over intermediate Z polarizations and dLIPS ≡ (2π)4δ4(
∑
pi − pf )∏

i d
3pi/ (2Ei(2π)3) is the Lorentz Invariant differential Phase Space (LIPS). We have

factored out a Z-boson propagator, inputting the fact that all Z polarizations have the

same mass and width. It is well known that at LHC SM process is dominated by the

transverse polarizations [163], so for simplicity let us ignore the contributions from the in-

termediate longitudinal ZL bosons. Then in the narrow width approximation the leading

contribution to the interference, i.e. the cross term SM× BSM in (4.39) is given by:

π

2s

δ(s−m2
Z)

ΓZmZ

MSM
qq̄→WT+

ZT−

(
MBSM

qq̄→WT+
ZT+

)∗
MZT−→l− l̄+

M∗
ZT+
→l− l̄+ + h.c. . (4.40)

The interference cross section in (4.40) scales with the function MZT−→l− l̄+
M∗

ZT+
→l− l̄+ .

This in turn is modulated by the azimuthal angle φZ between the plane defined by the Z

decay leptons and the scattering plane (formed by collision axis and Z(W ) bosons), see

figure 4.2. It is straightforward to compute (4.40), leading to

dσint(qq̄ → W+l−l̄+)

dφZ
∝ cos(2φZ) . (4.41)

The derivation of (4.41) is analogous if we consider the decay of the W gauge bo-

son. Therefore, the differential interference term for the process qq̄ → VW → 4ψ is

unsuppressed and modulated as

dσint(qq̄ → WZ → 4ψ)

dφZ dφW
∝ cos(2φZ) + cos(2φW ), (4.42)

9 Similar ideas where proposed recently for the Wγ final state [182].
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Figure 4.2: Angles for 2→ 4 scattering

where φW,Z are the corresponding azimuthal angles. Eqs.(4.41, 4.42) are one of our main

results. Namely, we would like to take advantage of the modulation of the interference

term to prove the anomalous triple gauge coupling λZ . Due to the two 2φi arguments

in (4.42) the asymmetry is not washed out by the ambiguity in the direction of quark-

antiquark initial state.

Similarly there is an effect of interference between the intermediate SM amplitude

MSM
qq̄→WLZL

of longitudinal vector bosons and the BSM amplitudeMBSM
qq̄→WTZT

with trans-

verse vector bosons. The form of the modulation is different from (4.42) and is

dσint(qq̄ → WZ → 4ψ)

dφZ dφW
∝ cos (φW + φZ) . (4.43)

This later effect of modulation, however, cancels out upon integration on φW and the

direction of quark-antiquark initial states.

Note that, naively, if the vector bosons are produced on-shell one would expect that

vector bosons with different helicity contributions should not interfere (or be suppressed

by their width) even if we look at the decay products. Namely, one may expect that

the interference is further suppressed than the case in which same 2→ 4 amplitude was

mediated by a 2→ 2 sub-process qq̄ → VW that does lead to a cross section containing

an interference term. However, this is not true, due to the basic fact that the both

helicities have the poles of the propagators at exactly the same energies. Note that in the

hypothetical case where the 2→ 2 process MBSM
qq̄→W+Z−

∼ E2/Λ2 was not suppressed, we

would had gotten an analogous ΓZ/mZ → 0 limit in (4.40) where the amplitude would

be instead controlled by the azimuthal angle of the function MZT−→l− l̄+
M∗

ZT−→l− l̄+
(no

modulation in φi in this case), but otherwise the energy growth would be the same.

We have performed a MadGraph5 numerical simulation to test our theoretical expecta-

tions. The results shown in figure 4.3. In the top plot we show the interference differential
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Figure 4.3: Top: Differential interference cross section over SM one as a function
of the azimuthal angles φW,Z for the events with W − Z invariant mass mWZ ∈
[700, 800]GeV . Bottom: same quantity as a function of the mWZ binned according in
the four bins defined in the top plot.

cross section over the SM cross section as a function of φZ and φW . 10 The shape of the

function is as predicted by (4.42). This suggests that we should bin the events into four

categories depending on whether φi ∈ [π/4, 3π/4]. The results are shown on the bottom

plot of figure 4.3. The upper red line and the lower blue line correspond to the categories

with φW,Z ∈ [0, π/4]∪ [3π/4, π] and φW,Z ∈ [π/4, 3π/4]. We can see that there is a strong

cancellation between these two contributions, however individually both of them grow

with energy. So binning in azimuthal angles will increase dramatically the sensitivity to

the interference.

10Note that the SM contribution also has a modulation due to the interference between the amplitudes
with different intermediate gauge bosons polarizations. However, this effect is suppressed compared to
the constant term.
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4.3.2 Going beyond leading order

The non-interference of SM × BSM in diboson production through λZ in the 2 → 2

process applies at tree-level only. Higher order corrections, either in the form of loops or

radiation, overcome the interference suppression and lead to a SM × BSM cross section

piece that does grow with energy. This was first noticed in the context of QCD for the

gluon operator ∼ G ν
µ G

ρ
ν G

µ
ρ [89]. Here we apply this idea to the electroweak sector.

The corrections from the virtual gluon will introduce the BSM-SM interference, however

this effect will be suppressed by ∼ αs
4π

compared to the angular modulation discussed

in the previous section. Another possibility is to consider 2 → 3 processes, namely the

production of the pair of the electroweak bosons with a hard QCD jet V V + j .Then

using Eq. (4.23) the BSM amplitudes have following helicity configuration,

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

where the gluon g can take any polarization. In the SM the same process has necessarily

the helicity configuration

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

i.e. it can not be of the Maximally Helicity Violating type. Thus, the extra gluon

radiation helps in sucking helicity allowing the same final state process as in V V + j

mediated by O3W . We find this simple observation interesting, since the requirement

of extra radiation qualitatively changes the cross section behavior and provides a better

handle on the interference terms. Note also that the solution we are advocating in this

section is complementary to the analysis presented in the section 4.3.1, in addition to the

binning in the azimuthal angle we just require an extra hard jet.

Remember that the interference effect becomes small both in the soft and collinear jet

limits [89]. This is expected since interfering SM amplitudes A(qq̄ → VT±VT±g∓) cannot

be generated from ASM(qq̄ → V V ) by splitting quark(anti-quark) line into q(q̄)→ q(q̄)g.

So there will be no usual soft and collinear singularities corresponding to the poles of the

splitting functions, which we have checked by explicit calculation. Then the interference

term in these limits, even if growing with energy, will be completely buried inside the SM

contribution.
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We cross-check the theoretical expectations with a MadGraph5 simulation. In figure 4.4

we plot the ratio σint/σSM for diboson production as a function of the invariant mass

mWZ , making various requirements on the extra gluon. In blue we ask for no extra

radiation which corresponds to the non-interference effect discussed in figure 4.1. In red

and pink we require a hard gluon which takes a significant fraction of the diboson phase-

space, mWZ/10 and mWZ/5 respectively. Importantly, the simulation shows the expected

energy growth of the interference term. On the other hand, the purple curve does not

show a steady growth of the energy. This is also expected since that curve is obtained

by imposing a fixed lower cut on the jet pT . As the energy of the diboson is increased

the extra jet becomes relatively soft and the energy growth is lost. We find by numerical

simulations (see figure 4.4) that we need to require something like pTj &
mWZ

5
to have

a quadratic growth with energy. Error bars are due to the statistical treatment of the

Monte Carlo (MC) simulation – we regard them as small enough to convey our point.
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Figure 4.4: σint/σSM as a function of mWZ for the process pp → WZ (blue) and
the process pp → VW + j, with pTj > mWZ/5 (pink), pTj > mWZ/10 (red), and
pTj > 100 GeV (purple).

4.4 EFT validity

So far we were presenting the observables particularly sensitive to the SM×BSM interfer-

ence term. However this is not enough to ensure the validity of the EFT interpretation

of diboson production at the LHC. The convergence of the EFT expansion is controlled

by the ratio of the invariant mass of the diboson system over the new physics scale and

thus mVW/Λ � 1 should be satisfied. However at the LHC it is hard to keep mVW/Λ

fixed. First, the precise collision energy is unknown and not fixed, leading to an impre-

cise knowledge of mVW from event to event. Secondly and more importantly, in many

instances experimentalists only reconstruct the visible decay products. Namely, the W−Z



102 Chapter 4. Novel measurements of anomalous triple gauge couplings for the LHC

5%

10%

20%

50%

500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

mWZ
T [GeV]

Q
[G
eV

]

Figure 4.5: We show, for the process qq̄ → WZ with λZ turned on, the leakage as a
function of mT

WZ , see main text for the definition.

transverse mass

mT
WZ =

√
(EW

T + EZ
T )2 − (pWx + pZx )2 − (pWy + pZy )2 , (4.44)

in the WZ production or the (visible) dilepton invariant mass

mll =
√

(pl− + pl+)2 , (4.45)

of the WW decay products. The invariant mass mVW of the diboson system is always

greater or equal the visible invariant masses mVW ≥ mll, m
T
WZ . This implies that binning

and cutting the distributions in terms of variables mll or mT
WZ does not allow to ensure

mVW/Λ � 1. As an illustration of this point, in figure 4.5 we show the leakage. This

is defined as the percentage of the number of events in a given mT
WZ (or mll) bin with

invariant mass mVW larger than a certain scale Q. In equations,

Leakage =
Ni(mVW > Q)

Ni

× 100% , (4.46)

where Ni is the total number of events in the given mT
WZ (or mll) bin. For instance, the

red line in the bin mT
WZ ∈ [1500, 2000] GeV is interpreted as follows. Of all the events in

that bin, 50% of them have an invariant mass mWZ & 1800 GeV. These numbers were

calculated using only the σBSM2 term of the cross section, see (4.38), which is the term

giving the largest leakage.

Naively, we can use the information in figure 4.5 to set consistent bounds on the EFT.

For example, if we require Λ = 2 TeV and the precision of the measurement . O(1)×5%

we should keep the transverse mass bins only up to 1.5 TeV. This would work under the

assumption that the leakage calculated using the dimension six operator squared provides
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a conservative estimate compared to the full UV complete model, namely that we do not

have a very large number of events for some value of invariant mass M∗ > 2 TeV. This

assumption is for example spoiled in the presence of the narrow Bright-Wigner resonances

and the calculation with dimension six operators underestimates the cross section and

leakage by the factor of

σfull

σd=6
∼ πΛ2

Γ2
, (4.47)

which becomes very large for narrow resonances (Λ, Γ are the mass and the width of

the resonance). At the same time in the more strongly coupled theories (4.47) is only of

order one O(1). Thus, under the assumption σfull/σd=6 . O(1), we can use the figure 4.5

to find the correspondence between the transverse and invariant mass cut-offs once the

precision of the measurement is specified.

The leakage can be made arbitrarily small by simply assuming a large enough value of

Λ in the EFT interpretation. Then there is obviously no danger of narrow Breit-Wigner

peaks, since the new particles would be too heavy to be produced at LHC. However,

this is somewhat dissatisfying because then LHC sensitivities only allow to prove Wilson

coefficients that are on the verge of non-perturbativity, in order to compensate the large

value of Λ. For instance in [183] bounds on the TGCs Wilson coefficients are of order

ci . [−2.5, 2.5] 11, with the cut-off Λ = 1TeV. This is done by analyzing the whole

range of mT
VW ≈ [50, 650] GeV, and thus we expect large number of the events to have

invariant masses mVW & 1 TeV. Then for the proper EFT interpretation we should set

Λ & 2 TeV, thus implying that the bound gets loosened roughly as ci . [−2.5, 2.5] −→
ci . 4×[−2.5, 2.5], which pushes the EFT even further on the verge of non-perturbativity.

Next we will discuss another possible approach to perform a consistent EFT analysis.

It allows to lower the cut-off Λ and hence be sensitive to somewhat less exotic theories,

at least when the statistics is enlarged in the upcoming future.

4.4.1 Dealing with the leakage of high invariant mass events

The idea consists in comparing the observed cross section with the new physics expecta-

tion only in the constrained phase space satisfying the EFT validity requirements. This

approach was originally suggested for the Dark Matter searches at LHC [184] and later ap-

plied for the anomalous TGCs measurements [164]. Next we discuss our implementation

of these ideas.

In the standard analysis, for every bin say in mT
WZ ∈ [mT

1 ,m
T
2 ], one would compare the

observed number of events nobs with the theory prediction Mth, which in our case reads

Mth = nSM + n1c3W + nBSM2c2
3W , (4.48)

11We have rescaled the bounds of [183] to our normalization in (4.13).
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where nSM is the SM prediction, and n1, nBSM2 come from the σint and σBSM2 pieces in

(4.38). In practice this comparison can be done by evaluating the likelihood on a given

bin by a Poisson distribution p(nobs|Mth) = 1
nobs!

e−MthMnobs
th . Note however that if we took

this procedure we would be comparing Mth with nobs for events where the formula Mth

is not valid unless the new physics scale Λ is very large – see the discussion of figure 4.5.

Instead, what we will do is to compare the observed number of events with the quantity

Nth, which we define as follows:

Nth =

{
Ñth if Ñth > nSM

nSM otherwise
, (4.49)

where we define Ñth = ñSM + ñ1c3W + ñBSM2c2
3W with ñi is defined as ni|minv<ΛMC

, i.e. we

restrict the expected number of events in the EFT to have invariant mass mWZ (or mWW )

below certain fixed cut-off scale ΛMC. 12 Thus, in practice the likelihood is modeled by

p(nobs|Nth) = 1
nobs!

e−NthNnobs
th .

The key question is whether the bounds obtained using (4.49) lead to more conservative

estimates than the ones which could come from the knowledge of full theory. The number

of events in the full theory is

Nfull theory = Ñth + [Nfull theory]minv>ΛMC
, (4.50)

where we approximated the theory below ΛMC by the EFT expansion. Note that both

terms in (4.50) are positive. Then, the bounds from (4.49) are conservative only if

|nSM −Nth| ≤ |nSM −Nfull theory| , (4.51)

condition that is always fulfilled with our definition of Nth in (4.49).

Finally, let us note that in Ref. [164] the choice of the theory is Nth = nSM + ñ1c3W +

ñBSM2c2
3W , instead of (4.49). This amounts to modifying the BSM amplitudes by the

“form factor”

MBSM →MBSM × θ(ΛMC −minv) , (4.52)

where the θ(x) is the Heaviside step function or any close function behaves like (1+

e−α[ΛMC−minv ]/minv)−1 with α � 1 13. Then, equation (4.51) is fulfilled only if one as-

sumes that the deviations from the SM below and above ΛMC are of the same sign,

sign(∆σBSM)|minv>ΛMC
= sign(∆σBSM)|minv<ΛMC

. Or in terms of the variables in (4.49)

sign(Nfull theory − nSM − ñ1c3W − ñBSM2c2
3W ) = sign(ñ1c3W + ñBSM2c2

3W ) . (4.53)

12We are distinguishing the assumed cut-off scale ΛMC set in the MC simulation from the true value
of Λ in the SM EFT, which is of course an unknown constant of nature. Also note that ΛMC is analog
to the scale Q introduced in (4.46).

13Note though that such function is not analytic in Λ−1
MC.
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Note that this condition is trivially satisfied when BSM2 dominates the cross section,

however it is not true once interference term is of the same size [164].

At last we would like to comment about the procedure in the experimental study [96].

There, a different form-factor for the new physics contribution is used

MBSM →MBSM × 1(
1 +

m2
inv

Λ2
MC

)2 . (4.54)

The different form factors would lead to identical results for ΛMC � minv, but there will

be order one differences for the events with invariant mass close to the cut-off ΛMC . Also,

note that while the UV assumptions are very clear when using (4.52) they are somewhat

more obscure in (4.54). The reason being that the fall-off of the form factor in (4.54) is

not steep enough and its validity requires some discussion or assumptions on the leakage

along the lines we did at around (4.47).

4.5 Details of the collider simulation and statistical

procedure

In this section we explain our procedure for estimating the improvements of the LHC

sensitivity due to the differential distributions proposed in the section 4.3. We have

decided to look at the cleanest decay channel in the pair production of the vector bosons,

namely the process pp → W±Z → lllν. In our analysis we have followed the signal

selection procedure presented in the experimental work [96]. For the signal simulation we

have used MadGraph5 [181] with the model EWdim6 [80] at LO 14. The results are reported

for the 14 TeV LHC collision energy and two benchmark luminosities, 300 and 3000 fb−1.

We have checked that our partonic level simulation reproduces the acceptance at the

particle level AWZ = 0.39, for the experimental analysis at 8 TeV [96]; it is defined as the

ratio of the fiducial to the total cross section

σtotW±Z =
σfidW±Z→l′νll
BWBZAWZ

. (4.55)

The fiducial cross section is defined as

σfidW±Z→l′νll =
Ndata −Nbkg

LCWZ

×
(

1− Nτ

Nall

)
, (4.56)

14 One can perform the complete NLO study of the anomalous TGC using the model EWdim6NLO by
C. Degrande. In our study however we have decided to ignore the effects of the virtual gluon, which
we believe to be phenomenologically less important (see discussion in section 4.3.2). For other QCD
advances in SM and BSM calculations of the weak boson pair production see [185–190]
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where the factor CWZ simulates the detector efficiency CWZ = Nparticle
events /N

detector
events ≈ 0.6

[96], and we approximate it to be flavour universal. In eq. (4.55) Bi denote the corre-

sponding branching fractions; while the factor Nτ/Ntotal in eq. (4.56) is the contribution

of the leptons from τ decays which [96] estimated to be of ∼ 4% and thus we will ignore

it. L is the integrated Luminosity, below we report results for L = 300 fb−1 and 3 ab−1.

We bin all the events according to their transverse mass mT
WZ , and transverse momen-

tum of the jet pTj . In particular pTj is binned as

pTj = [0, 100], [100, 300], [300, 500], [500,∞] GeV . (4.57)

For the events with pTj < 100 GeV we also bin the azimuthal angle φZ into two categories

φZ ∈ [π/4, 3/4π] and φZ ∈ [0, π/4] ∪ [3π/4, π] . (4.58)

The azimuthal angle φZ is defined here as an angle between the plane spanned by Z

boson decay leptons and the plane formed by the collision axis and the Z boson. For

the higher pTj bins we have checked that the binning in azimuthal angle results in little

improvement of the bounds. The reason being that the modulation effect becomes sub-

dominant compared to energy growth due to additional hard jet.

For each bin defined above we calculate the cross section in the presence of the c3W

deformation according to the formulas (4.48) and (4.49). The coefficients nSM , nBSM2 are

calculated by switching off BSM and SM contributions respectively. For the interference

term n1 this is not possible, since as it is shown in our analysis there are phase space

regions where this contribution has the opposite signs. So in order to avoid any issues

with the negative values of cross section we have fitted it while keeping both SM and BSM

contributions. This procedure generically can lead to large errors on the determination

of the n1 coefficient. These errors were kept under control by performing a large enough

number of simulations and iteratively choosing for the fit the values of c3W maximizing

the interference term.

We have performed the analysis for for three values of the invariant mass cut-off

ΛMC = 1, 1.5, 2 TeV . (4.59)

These are reasonable choices in view of the current direct exclusion bounds.

In order to reduce the fitting time we have used partonic level simulation to determine

the coefficients in the eqs. (4.48, 4.49). For the bin pTj ∈ [0, 100] GeV we sum partonic

level simulations with 0 jet and 1 jet with pTj ∈ [20, 100] GeV. We have checked that for the

SM input this approximation agrees well with the results obtained with Madgraph/Pythia

[191] interface with showering and jet matching. One may worry whether emission of a

QCD jet can spoil the azimuthal angle modulation, however we have checked that even

for relatively hard jets pTj . 100 GeV angular modulation remains an important effect.

This makes our partonic simulation results robust.
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For the backgrounds we have followed closely the results in [96], where it was shown

that the dominant background for the anomalous TGCs is the SM W,Z boson production.

The second most important background comes from the misidentified leptons ∼ 12% and

ZZ final state ∼ 7% and the contribution of the tt̄ is at percent level. Since most of

these backgrounds come from the qq̄ initial state (except for tt̄ which is small) at 14

TeV we expect a very similar situation. In our study we have decided to consider only

the SM weak boson production as a background, the other contributions will provide an

additional increase of the background by ∼ 20% and the relaxations of the bounds by

∼ 10%, which we ignore in our study. For systematic uncertainties we use the results in

[96], where it was reported that the dominant errors come from the muon and electron

identification efficiencies and it was estimated to be at the level of 2.4%. The statistical

analysis is done using the Bayesian approach, where systematic errors are estimated using

one nuisance parameter ξ, normally distributed

p(Nth|nobs) ∝
∫
dξe−ξNth (ξNth)nobs exp

[
−(ξ − 1)2

2σ2
syst

]
. (4.60)

4.6 Results

We present our bounds on c3W/Λ
2 in table 4.1. We report LHC prospects for 300 fb−1

as well as for 3 ab−1 luminosity (Lumi.) values. Exclusive (Excl.) bounds are obtained

according to the method described in section 4.5, binning in φZ and pTj , while inclusive

(Incl.) corresponds to no binning in φZ and pTj ≤ 100 GeV. The total leakage in the

various bins of mT
WZ is . 5% for each value of Q; such bins are selected using figure 4.5. 15

The bounds of the rows Excl./Incl., linear are obtained by including only the linear

terms in c3W in BSM piece of cross section. In the linear analysis, values of the Wilson

coefficient |c3W | & 3 lead to negative number of events. Nevertheless, such values lie

outside the credibility intervals of the fit. In order to avoid this issue for arbitrary values

of c3W during the scan we have used the following modification of (4.48)

Mth = (nSM + c3Wn1)× θ(nSM + c3Wn1), (4.61)

where the θ is the usual step function. Generically, this later procedure is of course in-

consistent. However, comparing linear v.s. non-linear gives a sense of how much sensitive

are the bounds to the quadratic piece term BSM2
6 in the cross section (4.21). In this

respect, note that the exclusive analysis sensitivity to the linear terms has drastically

increased compared to the inclusive one. For instance, the gain from the second to the

first row is very mild, implying that the bound is mostly proving the interference term.

Instead, the bounds from the third to the fourth row drastically relax implying that the

15The scale Q is roughly equal to the Monte-Carlo cut-off ΛMC , but see the discussion of figure 4.5
and table 4.2.
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Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]
95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1
Excl., linear [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27] [-2.17,2.17] [-1.37,1.37] [-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5
Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2
Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17]

Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

Table 4.1: Exclusive (Excl.) bounds on c3W /Λ2 × TeV2 are obtain according to the
method described in section 4.5, binning in φZ and pTj . Inclusive (Incl.): no binning
and jet veto at pTj ≤ 100 GeV. The bounds of the rows Excl./Incl., linear are obtained
by including only the linear terms in c3W BSM cross section. The total leakage in the
various bins of mT

WZ is . 5% for each value of Q.

consistent bound of the third row is giving a lot of power to the quadratic pieces in c2
3W .

This comparison illustrates the improvement from the differential distributions versus the

inclusive analyses. Of course such a gain is always expected. However, in this case the

improvement is dramatic because, as explained in section 4.3, the interference terms of

the differential cross section have a qualitatively different behavior, namely they grow

with the center of mass diboson energy.

This radical increase towards the sensitivity of the interference term is illustrated in

figure 4.6. There, we have injected a signal corresponding to the c3W/Λ
2 = 0.3 TeV−2.

The red and black curves are posterior probabilities with ΛMC = 2 TeV and corresponding

to inclusive and exclusive analysis respectively (by inclusive we mean only binning in mT
WZ

and ignoring high pTj bins). The curves are obtained by requiring the leakage to be . 5%

as done in table 4.1, (shaded grey area indicates the 95% credibility intervals for the

exclusive analysis). We can clearly see that our variables will be able to access the sign of

the c3W Wilson coefficient otherwise hidden from the inclusive searches. Inspired by the

figure 4.3 we can see that the following asymmetry variable turns out to be very sensitive

to the new physics contribution:

RφZ =
NφZ∈[π/4,3π/4] −NφZ∈[0,π/4]∪[3π/4,π]

NφZ∈[π/4,3π/4] +NφZ∈[0,π/4]∪[3π/4,π]

. (4.62)
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Figure 4.6: Posterior probability for the inclusive and exclusive analysis after 3 ab−1

at LHC, see details in the main text.

Indeed, we have checked that the SM contribution partially cancels, making RφZ partic-

ularly sensitive to new physics contributions.

We would like to comment for what kind of theories our bounds are relevant. We

can see that at most we are getting towards the constraint c3W/Λ
2 . 0.2/TeV2. Weakly

coupled renormalizable theories lead to the Wilson coefficients which are at least order

of magnitude smaller (4.32), unless we are dealing with abnormally large multiplicities

of new electroweak states just above the LHC reach. At the same time more strongly

coupled theories can lead to the larger values of Wilson coefficients in the ball park of

the LHC precision.

Table 4.1 and figure 4.6 are our main final results. We find that LHC at 3ab−1(300fb−1)

will be able to constrain the λZ aTGC coupling to be

λZ ∈ [−0.0014, 0.0016] ([−0.0029, 0.0034]) (4.63)

for the 95% posterior probability interval for ΛMC = 2 TeV. Results for the other values

of ΛMC can be trivially deduced from the table 4.1).

For the sake of completeness we also compare in table 4.2 the bounds on the Wilson

coefficient obtained using the methods discussed in the section 4.4. We can see that all

methods lead to results in the same ball park. Even though, the method of (4.49) does not

make any assumption on the nature of UV completion, the sensitivity to the interference

term is a bit worse than in the other two methods.

4.7 Conclusions and outlook

We have discussed the prospects of the measurements of the c3W Wilson coefficient (λZ
TGC) at LHC. This parameter was considered to be particularly difficult to test at hadron
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Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]
95% CL 68% CL 95% CL 68% CL

Same as table 4.1 [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1Use of (4.49) [-1.59,1.55] [-1.05,1.01] [-1.17,1.06] [-0.72,0.66]

Method of [164] [-0.88,0.88] [-0.50,0.50] [-0.41,0.40] [-0.22,0.22]

Same as table 4.1 [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5Use of (4.49) [-0.74,0.79] [-0.48,0.50] [-0.51,0.52] [-0.34,0.30]

Method of [164] [-0.55,0.60] [-0.32,0.35] [-0.26,0.29] [-0.15,0.16]

Same as table 4.1 [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2Use of (4.49) [-0.49,0.53] [-0.30,0.34] [-0.30,0.33] [-0.20,0.20]

Method of [164] [-0.43,0.47] [-0.24,0.27] [-0.20,0.23] [-0.12,0.13]

Table 4.2: Comparison of different methods.

colliders due to the suppressed interference effects. In our study we have shown that this

suppression is not the case once the differential distributions are considered. In particular

we have shown that this suppression can be overcome by studying the angular modulation

in azimuthal angles in eq. (4.42). Independently of this modulation we have shown that

requiring an additional hard QCD jet leads to the energy growth of the interference

between the SM and BSM contributions.

Looking at the cleanest pp → WZ → lllν channel we have estimated the impor-

tance of these observables for the LHC by calculating the prospects on the bounds at

300 fb−1(3 ab−1), at 14 TeV LHC. Our simplified analysis by no means can be consid-

ered a complete experimental study, however the most important and robust results are

the relative improvements of the measurements due to the angular modulations and the

hard QCD jet distributions. We have also discussed the challenges of the consistent EFT

analysis for the TGC measurements at LHC.

The improvements in determination of λZ due to the differential distributions turn out

to be of the order of 15−25% depending on the assumptions on EFT cut-off. Even though

this gain in precision does not seem to be very big, the sensitivity to the interference term

is significantly increased (factor of ∼ 3− 4), which makes the EFT expansion less model

dependent as well as provides a handle on the sign of the Wilson coefficient. Of course it is

not a novelty that the differential distributions improve the accuracy of the measurements.

However in this case the improvement is particularly significant due to the energy growth

of the differential interference term.

In the future it would be interesting to use the differential distributions proposed

to perform a global EFT analysis in order to find the best variables to distinguish be-

tween not only BSM and SM but also between different BSM contributions. Very similar

azimuthal angle modulation will appear every time there are amplitudes with different
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polarizations of the intermediate gauge bosons. These ideas will be explored in the future

for the measurements of the other aTGCs.

It will be also interesting to study the azimuthal angle modulation for other 2 → 2

processes that are otherwise suppressed by the helicity selection rules, like for example

VTVT → VL,TVL,T . On the collider side, studies of the other decay channels as well as

full inclusion of the NLO effects will be very important.



Chapter 5

Summary and conclusions

The work in this thesis consists of two main parts, general analysis of the possible flavour

symmetries and their representations accounting for the approximate description of lepton

masses and mixing in the symmetric limit and proposals for the better measurements of

anomalous triple gauge boson couplings at LHC.

The first part of the thesis provides a complete answer to the general question: what

are flavour symmetry group (of any type) and their representations providing approxi-

mate description of lepton masses and mixing in the symmetric limit? The answer of this

question depends on two different assumptions on the description of neutrino masses, i.e.

the neutrino masses are generated from the Weinberg operator or from the type I seesaw

mechanism. Despite the generality of the question, the complete answer is rather simple.

Under the first assumption we considered neutrinos are of Majorana type, and flavour

symmetry constrains directly the form of neutrino mass matrix. In this case, we found six

possible irrep decompositions of flavour symmetries (shown in table 2.4) and all of which

lead to neutrino mass spectrum either in inverted hierarchy or unconstrained (anarchy)

in the symmetric limit. Therefore, if the present hint of normal hierarchy were confirmed,

then we conclude that, under our assumption, flavour symmetries leading to the approxi-

mate description of lepton masses and mixing in symmetric limit are not able to account

for neutrino masses and mixing, and symmetry breaking must play primary role in their

understanding. This conclusion is further strengthen in the context of SU(5) and SO(10)

grand unified theories, in case their representations commute with the representation of

flavour symmetry.

The conclusion above relies on our assumptions that neutrino masses originated from

the Weinberg operator in the electroweak scale and symmetry arguments directly apply

to neutrino mass matrix. It is also important to take into account the light neutrino

mass generation from the physics well above the electroweak scale. The prototypical

example of this kind is the seesaw mechanism with heavy singlet neutrinos. In this case

the singlet neutrinos can also transform non-trivially under the flavour symmetry and

their mass matrix gets constraints as well. So now one natural question arises: does

112



Chapter 5. Summary and conclusions 113

the low-scale analysis always capture the features of the high-scale analysis or not? We

find this is not always the case. The necessary and sufficient condition to they become

equivalent is that the singlet neutrino representation must be vectorlike and it contains

vectorlike part of the lepton double representation. When these two analysis become

equivalent the conclusions in low-scale analysis can also apply to the high scale discussion,

otherwise the high-scale analysis provides new outcome. There are two cases where the

inequivalence can occur. We have investigated each of them separately base on the fact

that if the singlet neutrino mass matrix is singular or not. We have obtained complete

set of predictions from the high-scale analysis in the symmetric limit for the inequivalent

cases, and found that there are indeed some flavour group representations allow to have

normal hierarchy of neutrino masses. Therefore, even if the current hints for the normal

hierarchy get confirmed from the future experimental data, the flavour symmetry still

can provide approximate description of lepton masses and mixing in the symmetric limit.

To conclude, the current status of the neutrino masses and mixing can be approximately

described by the high-scale analysis of the flavour symmetry when it is not equivalent to

the low-scale limit. Otherwise, the symmetry breaking effects must play a leading role in

determining the observed lepton masses and mixing.

In the last part of the thesis, we have proposed two measurements to overcome the

suppression of interference between SM amplitude and that of the operator O3W in the

EFT extension of SM. The first measurement is an angular modulation property of the

interference term with respect to the azimuthal angle of the final state leptons. The

theoretical expectation is given in eq.(4.42) and numerical simulation result is shown in

figure 4.3. The second measurements is the energy growth of the interference due to an

additional hard jet, which is shown in figure 4.4. We provide prospective bounds on the

Wilson coefficient of the operator O3W and also on the corresponding anomalous triple

gauge coupling, by looking at the cleanest channel pp → WZ → lllν and using two lu-

minosities 300 fb−1 and 3 ab−1 at 14 TeV LHC. As a final comment, the important and

robust results from our analysis are the relative improvements of the measurements due

to the angular modulation and the hard jet distribution, but this does not mean we com-

pleted full experimental study. In the future it will be interesting to apply our proposal

to perform global EFT analysis in order to distinguish different BSM contributions in a

certain process.



Appendix A

Proof of the results in section 2.2

In this appendix, we find the general form of the PMNS matrix associated to a generic

decomposition of Ul and Uec in irreducible components. We consider the general case of

n families.

Let us first introduce a few notations. The irreducible components of Ul are of different,

possible inequivalent types. A given irrep type “r”, of dimension dr, can appear in the

decomposition of Ul more than once. We denote with nr the number of times it appears.

Analogously, ncr is the number of times the irrep r appears in the decomposition of Uec .

Given a lepton doublet li, we can then associate three labels to it. We can denote

by r the type of irrep to which li belongs. As each type of representation may appear

more than once in the decomposition of Ul, we can denote by k the occurrence to which

li belongs (1 ≤ k ≤ nr). Finally, as the irrep r may have dimension larger than 1, we

can denote by a the position of the lepton li within its irrep multiplet (1 ≤ a ≤ dr).

All in all, the lepton li is identified by its “irrep coordinates” (r, k, a). Such coordinates

can be used as an alternative labeling of the lepton doublets li (and of its components

ei, νi). The generic lepton doublet will in this case be denoted by lrka. Clearly, there is a

correspondence between the two possible labeling, the one by 1 ≤ i ≤ n and the one by

rka, defined by

li = lrka . (A.1)

Analogous coordinates (r, k, a) can be used to identify the lepton singlets eci . The

irreps r found in the decomposition of Uec can be different than the ones found in Ul, and

their multiplicities in the decompositions can also be different.

We can, and will, choose a flavour basis for the leptons li and eci , and the mappings

between the “i” and the “(rka)” indices, as follows.

• Each irrep of type r acts on a set of subsequent leptons (li0 . . . li0+dr), forming a

certain occurrence k0 of the irrep type r, (li0 . . . li0+dr) = (lrk01 . . . lrk0dr).

• As stated in section 2.2.1, non-vanishing charged lepton masses correspond to con-

jugated irreps in the decompositions of Ul and Uec . Consider then the copies
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k = 1 . . . nr of a certain irrep type r in Ul and the copies h = 1 . . . ncr̄ of the

conjugated representation r̄ in Uec (r̄ = r if r is real or pseudoreal). Only a number

min(nr, n
c
r̄) of them can be paired to get possibly non-vanishing masses, while all

the residual unpaired leptons are forced to be massless. We assume that the lep-

tons lrka and ecr̄ka occupy the same positions in the lists l1 . . . ln and ec1 . . . e
c
n, for all

k ≤ min(nr, n
c
r̄). Tables 2.2, 2.3 use such a convention.

• All irreps of type r are represented by the same dr × dr unitary matrix Ur on the

corresponding leptons: lrka → U r
ablrkb, e

c
rka → (U r̄

ab)
∗ecrkb.

1 If r is real, the matrix U

is real; if r is complex, Ur̄ = (Ur)
∗; if r is pseudoreal, ω Ur = U∗r ω, where

ω =


0 1

−1 0
. . .

0 1

−1 0

 , (A.2)

is a dr×dr antisymmetric block matrix and dr is even for pseudoreal representations.

Having set up the necessary notations, we are now ready to discuss the structure of

the lepton mass matrices in the above basis. A non-zero entry mE
ij 6= 0 paring the leptons

eci and ej is allowed only when the irrep to which eci and lj belong are conjugated, say r

and r respectively. If r or r̄ appear more than once in the decomposition of Ul or Uec , the

non-zero entries form a rectangular block, of size ncr̄×nr, whose entries we can denote by

mE,r
kh . If the irrep r has dimension dr > 1, mE,r

kh is the common diagonal element for all

the leptons in the corresponding multiplet. Such a structure becomes transparent when

the mass matrices are written in terms of the irrep coordinates. Indeed, the invariance

under G forces the charged lepton mass matrix to be in the form

mE
rka,shb = δrsδabm

E,r
kh . (A.3)

Conversely, any charged lepton mass matrix in that form is of course invariant. Analo-

gously, the form of the neutrino mass matrix is

mν
rka,shb =


δrsδabm

ν,r
kh if r, s both complex (mν,r generic)

δrsδabm
ν,r
kh if r, s both real (mν,r symmetric)

δrsωabm
ν,r
kh if r, s both pseudoreal (mν,r antisymmetric)

0 if r, s of different type

(A.4)

1In practice: if r is real or complex, it has the same action on lepton doublets and singlets, as
(U r̄ab)

∗ = Urab; if r is pseudoreal, it acts on the singlets in the conjugated (but equivalent) way, as
(U r̄ab)

∗ = (Urab)
∗.
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Note that the entries mν,r
kh appear in off diagonal positions, unless the representation

r is real. This is of course because of the Majorana nature of the neutrino mass matrix.

Diagonal entries are allowed in the symmetric limit only when the representation to which

the corresponding lepton belongs is real.

Note also that pseudoreal representations are only marginally relevant in the three

neutrino case. As the dimension of pseudoreal representations is even, there is room for

at most one pseudoreal irrep in that case. Moreover, if one two-dimensional pseudoreal

representation appears in Ul, the two rows and columns of the neutrino mass matrix

corresponding to that representation vanish, as mν,r in eq. (A.4) is a 1× 1 antisymmetric

matrix, so that mν,r = 0. Still, we will stick in the following for completeness to the n

neutrino case and to the full treatment of the pseudoreal case.

The PMNS matrix arises from the diagonalisation of mE
ij and mν

ij in eqs. (A.3,A.4). It

is made of four types of contributions, each with a different physical origin:

1. A core contribution V associated to the presence of equivalent irreps in the lepton

doublet representation Ul.

2. A contribution D associated to the possible presence of Dirac structures in mν and

providing maximal mixing.

3. Permutations P associated to the requirement that charged lepton and neutrino

masses need to be in a standard ordering.

4. “Unphysical” contributions H associated to the arbitrariness in the choice of the

basis in flavour space for degenerate leptons.

Let us see how such contributions arise from the diagonalisation of mE and mν .

A.1 V

The first contribution V to the PMNS matrix is a unitary matrix commuting with Ul.

Such a unitary matrix V mixes lepton multiplets belonging to identical irreps and is non-

trivial only if the decomposition Ul contains more than one copy of the same irrep. All

possible forms of V compatible with the previous requirements can be obtained.

In order to show how V arises, we observe that mν , mE can be diagonalised, up to

Dirac structures in the neutrino sector (we will see below what this means) by unitary

transformations of the charged leptons and neutrinos νi, ei, e
c
i commuting with the action

of G,
ν ′rka = V ν,r

kh νrha

e′rka = V e,r
kh erha

ec ′rka = V ec,r
kh ecrha.

(A.5)
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V ν,r, V e,r, V ec,r are squared matrices and V ν,r, V e,r have the same dimension nr. They

mix full equivalent multiplets (they do not act on the index a) and are non-trivial in the

presence of more than one copy of the representation r. The above transformations can

be chosen to diagonalise each of the blocks in eqs. (A.3,A.4) as follows.

In the case of charged lepton blocks, we have

mE,r = V T
ec,r̄m

diag
E,r Ve,r . (A.6)

As for the neutrino blocks, we need to treat the pseudoreal case differently. In the case

of real or complex representations, we have

mν,r = V T
ν,r̄m

diag
ν,r Vν,r . (A.7)

If r is real, mν,r is a symmetric complex matrix, and eq. (A.7) gives its diagonalisation

in terms of a single unitary transformation Vν,r. If r is complex, the block is in general

rectangular, mν,r̄ = mT
ν,r, and eq. (A.7) gives the diagonalisation of both in terms of two

independent complex matrices Vν,r and Vν,r̄ of dimension nr and nr̄ respectively. When the

matrices mdiag
E,r ,m

diag
ν,r above are rectangular, we conventionally choose the non-vanishing

eigenvalues to appear on the diagonal starting from the lower-right corner. For example,

if there are more columns than rows

mdiag =

0 · · · 0 X 0
. . .

0 · · · 0 0 X

 ,

where X denotes the position of the eigenvalues. Eqs. (A.6) and (A.7) define Ve,r (Vν,r)

for each irrep type r found in the decomposition of Ul, provided that r̄ is also found in

the decomposition of Uec (Ul), so that the block to be diagonalised exists. If this is not

the case, we define Ve,r (Vν,r) to be the identity matrix.

Let us now consider the special case of a neutrino block corresponding to a pseudoreal

representation r. In such a case, mν,r is a square, nr × nr antisymmetric matrix. It can

be reduced to the following “pseudo-diagonal” form

mν,r = V T
ν,rm

ps-diag
ν,r Vν,r , (mps-diag

ν,r )kh = mν,r
k ωkh , mν,r

2κ = mν,r
2κ−1 ≥ 0 . (A.8)

The matrix ω can now have even or odd dimension, depending on the number of copies

nr of the irrep r. If nr is odd, ω is the restriction to the first nr rows and columns of a

matrix ω of larger even dimension, which means that it is in the form in eq. (A.2), with

the addition of one extra vanishing row and column. The matrix mps-diag
ν,r is therefore an



118 Appendix A. Proof of the results in section 2.2

antisymmetric block diagonal matrix, with subsequent 2× 2 blocks in the form(
0 mν,r

k

−mν,r
k 0

)
,

possibly followed by a singly vanishing diagonal entry if nr is odd. Therefore, the pseu-

doreal irreps are now paired in couples (12), (34), . . . , (2κ − 1, 2κ), . . . , each associated

to degenerate masses, with a possibly unpaired last irrep (if the total number is odd)

associated to a zero mass.

All in all, we have

mE = V T
ec m

diag
E Ve , mν = V T

ν ms-diag
ν Vν , (A.9)

where

V ν
ij = δr̄sδabV

ν,s
kh V e

ij = δr̄sδabV
e,s
kh V ec

ij = δr̄sδabV
ec,s
kh , (A.10)

and i↔ (rka) and j ↔ (shb), as defined by eq. (A.1). Clearly, Ve and Vν commute with

Ul. We can now define

V = Ve V
†
ν , (A.11)

which represents the core contribution to the PMNS matrix and also commutes with Ul.

Eq. (A.9) brings the charged lepton mass matrix in diagonal form,

(mdiag
E )ij = δrsδkhδabm

E,r
h . (A.12)

The eigenvalues do lie on the diagonal because of the assumptions we made on the ordering

of the charged leptons. The leptons e′rka get mass mE,r
k by pairing with ec ′r̄ka. If the

multiplet has dimension dr > 1, all the leptons in the multiplets end up being degenerate.

As the number of representations of type r acting on the lepton doublets, labeled by

k = 1 . . . nr, and the number of representations of type r̄ acting on the lepton singlets,

labeled by k = 1 . . . ncr̄, can be different, only the first k = 1 . . .min(nr, n
c
r) pairs get

a possibly non-zero mass, while all residual unpaired charged leptons are forced to be

massless.

Eq. (A.9) brings the neutrino mass matrix in a “semi-diagonal” form,

(ms-diag
ν )ij =


δrsδkhδabm

ν,r
k if neither r nor s is pseudoreal

δrsωkhωabm
ν,r
k if both r and s are pseudoreal

0 otherwise

, (A.13)

where again mν,r
2κ−1 = mν,r

2κ in the pseudoreal case (κ integer).

All neutrinos ν ′rka corresponding to real representations r get a diagonal (Majorana)

mass term mν,r
k by pairing to themselves. If the representation has dimension dr > 1, all

neutrinos in the multiplets are degenerate. The neutrinos ν ′rka corresponding to complex
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representations r get a Dirac mass term mν,r
k = mν,r̄

k by pairing to the neutrinos in ν ′rka
in the conjugated representation r̄k. If dr > 1, all the neutrinos in the two conjugated

multiplets are degenerate. As the number of representations of type r, labeled by k =

1 . . . nr, and the number of representations of type r̄, labeled by k = 1 . . . nr̄, can be

different, only the first k = 1 . . .min(nr, nr̄) pairs get a possibly non-zero mass, while all

residual unpaired neutrinos are forced to be massless. Finally, in the case of pseudoreal

representations, the two pairs of neutrinos ν ′r,2κ,2α, ν ′r,2κ−1,2α−1 and ν ′r,2κ,2α−1, ν ′r,2κ−1,2α

both get a Dirac mass term, both with mass mν,r
2κ = mν,r

2κ−1. If dr > 1, all the neutrinos in

the two paired multiplets k = 2κ and k = 2κ− 1 are degenerate. For nr odd, two spare

neutrinos are massless.

To summarize, ms-diag
ν is not necessarily diagonal because of the possible presence of

Dirac structures associated to paired conjugated and pseudoreal representations, and its

non-vanishing entries can be found:

• In all the diagonal positions ms-diag
rka,rka corresponding to real irreps r, providing a

Majorana mass term for the neutrino ν ′rka.

• In symmetric off-diagonal positions, ms-diag
r̄ka,rka = ms-diag

rka,r̄ka, corresponding to complex

representations r and k ≤ min(nr, nr̄), providing a Dirac mass term to the conju-

gated neutrinos ν ′rka and ν ′r̄ka.

• In symmetric off-diagonal positionsms-diag
r(2κ)(2α),r,(2κ−1)(2α−1) = ms-diag

r(2κ−1)(2α−1),r(2κ)(2α) =

−ms-diag
r(2κ)(2α−1),r(2κ−1)(2α) = −ms-diag

r(2κ−1)(2α),r(2κ)(2α−1), corresponding to pseudoreal rep-

resentations r and κ = 1 . . . bnr/2c, α = 1 . . . dr/2.

A.2 D

In order to complete the diagonalisation of the lepton mass matrices, we need to diag-

onalise the Dirac structures in ms-diag
ν . This is how the contribution D to the PMNS

matrix, containing a maximal mixing transformation for each Dirac structure, arises.

As discussed in the previous subsection, the semi-diagonal matrix ms-diag
ν contains a

diagonal block corresponding to the neutrinos νrka in real irreps r; a 2 × 2 Dirac block

corresponding to neutrinos in paired conjugated complex representations νrka and νr̄ka,

k = 1 . . .min(nr, nr̄); a trivially diagonal vanishing block corresponding to neutrinos in

unpaired complex representations νrka, k > min(nr, nr̄); a trivially diagonal vanishing

block corresponding to the neutrinos νrnra in the last copy of the pseudoreal irrep r, if nr
is odd (and in particular if there is only one copy of r); if there are at least two copies of

r, a 4× 4 Dirac block corresponding to the four neutrinos ν ′r,2κ−1,2α−1, ν ′r,2κ,2α, ν ′r,2κ−1,2α,

ν ′r,2κ,2α−1. The matrix ms-diag
ν can then be diagonalised by diagonalising the above Dirac

blocks as follows.
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As seen, there are two types of Dirac blocks, associated to complex conjugated and to

pseudoreal irreps respectively (only the former are relevant to the three neutrino case, as

the latter arises only in the presence of at least four neutrinos).

In the case of a Dirac block associated to the neutrinos νrka and νr̄ka in conjugated

complex irreps, and for k = 1 . . .min(nr, nr̄), a = 1 . . . dr, the block has the form(
0 mν,r

k

mν,r
k 0

)
, (A.14)

where mν,r
k ≥ 0 (mν,r

k = mν,r̄
k ). Its diagonalisation is trivial(

0 mν,r
k

mν,r
k 0

)
= DT

2

(
mν,r
k 0

0 mν,r
k

)
D2 , D2 =

1√
2

(
1 1

−i i

)
. (A.15)

The unitary matrix D2 corresponds to a maximal rotation by an angle π/4, together with

a phase redefinition by the imaginary unit i, needed to make the diagonal entries positive.

Such a Majorana phase is physical, but it plays a negligible role in oscillation experiments.

The matrix D2 is defined up to a phase, meaning that we could have equivalently used

the following form of D2,

1√
2

(
eiθ e−iθ

∓ieiθ ±ie−iθ
)
. (A.16)

The phase θ corresponds to the freedom to perform a O(2) transformation on the two

degenerate neutrino mass eigenstates, and can be reabsorbed in a phase redefinition of

Vν . The sign is unphysical.

In the case of a Dirac block associated to the two paired pseudoreal irreps 2κ − 1

and 2κ (κ = 1 . . . bnr/2c) and involving the four neutrinos ν ′r,2κ−1,2α−1, ν ′r,2κ,2α, ν ′r,2κ−1,2α,

ν ′r,2κ,2α−1 (rows and columns of the matrix below ordered accordingly), the block has the

form
0 mν,r

2k

mν,r
2k 0

0 −mν,r
2k

−mν,r
2k 0

 =


D2

iD2


T 

mν,r
2k

mν,r
2k

mν,r
2k

mν,r
2k




D2

iD2

 ,

(A.17)

where mν,r
2κ ≥ 0 (mν,r

2κ = mν,r
2κ−1).

Based on what above, we can define unitary matrix D to be the product of the (com-

muting) 2 × 2 transformations D2 acting on neutrinos in paired complex or pseudoreal

representations. The matrix D will therefore be diagonal in the block corresponding to

the neutrinos in real irreps and in the block corresponding to the neutrinos in unpaired

complex or pseudoreal representations; it will contain an instance of the matrix D2 in each
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2 × 2 block corresponding to neutrinos νrka and νr̄ka in paired conjugated complex rep-

resentations, k = 1 . . .min(nr, nr̄); and it will contain an instance of D2 and iD2 in each

pair of 2 × 2 blocks corresponding to the neutrinos (ν ′r,2κ−1,2α−1, ν ′r,2κ,2α) and (ν ′r,2κ−1,2α,

ν ′r,2κ,2α−1) respectively, in paired pseudoreal representations, κ = 1 . . . bnr/2c.
As a consequence, the semi-diagonal matrix ms-diag

ν is diagonalised as follows

ms-diag
ν = DTmdiag

ν D , (A.18)

where mdiag
ν is diagonal, with degenerate eigenvalues in the positions corresponding to

neutrinos in paired complex conjugated or pseudoreal representations.

A.3 P

What above provides a full diagonalisation of the lepton mass matrix in terms of the

unitary transformations Ve, Vec and (DVν):

mE = V T
ec m

diag
E Ve , mν = (DVν)

T mdiag
ν (DVν ). (A.19)

We are therefore close to identifying the PMNS matrix. In order to do that, we should

take into account the fact that the order of the rows and columns of the PMNS matrix is

defined by a standard ordering of the leptons. In the case of charged leptons, the standard

ordering coincides with the mass ordering, me1 ≤ . . . ≤ men . In the three neutrino case,

the standard ordering for neutrinos defines the mass eigenstates ν1 and ν2 to be the two

ones closer in terms of squared mass difference, with ν1 being the lightest of the two.

In order to find the PMNS matrix, we should then permute the lepton mass eigenstates

in order to have them in the standard ordering. This is achieved by two permutation

matrices PE and Pν ,

mdiag
E = P T

Em
diag,so
E PE , mdiag

ν = P T
ν m

diag,so
ν Pν , (A.20)

where “so” stands for “standard ordering”.

A few comments are in order. We are considering here the symmetric limit. On

the other hand, the standard ordering is defined on the physical masses, which also get

contributions from symmetry breaking effects. However, in the assumption we made that

symmetry breaking effects are small, the ordering is not affected by symmetry breaking

effects.

An exception to the latter argument arises in the presence of degenerate eigenvalues

(vanishing or not). Which linear combination of the corresponding leptons will end up

being the lighter or heavier crucially depends in this case on the symmetry breaking

effects. This type of ambiguity will be taken into account by the H matrix defined in the

next subsection, so that no permutation needs to be introduced.
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As an example in which a physical permutation is involved is when the charged lepton

spectrum ends up being (me3 ,me2 ,me1) = (0, 0, A) instead of (me3 ,me2 ,me1) = (A, 0, 0).

In such a case a permutation PE
1→3 moving the first lepton in the last position is necessary

(such a permutation is defined up to a further permutation of the first two elements, but

the latter does not need to be taken into account). In such a case, the permutation

only depends on the mass pattern and not on the specific values of the non-zero entries.

A physical permutation is also needed when the mass ordering depends on the specific

values of the non-zero entries, for example if (me3 ,me2 ,me1) = (A,B, 0). In the latter

case, no permutation is needed if B < A, whereas a 2 ↔ 3 permutation is needed when

B > A. In such a case, the permutation is not defined by the mass pattern alone.

It is possible and useful to choose the ordering of leptons (and of their irreps) to start

with in such a way to minimize the permutations needed.

A.4 H

We have now brought the lepton mass matrices in diagonal form, with the leptons in

standard ordering

mE = (PEVec)
T mdiag,so

E (PEVe ), mν = (PνDVν)
T mdiag,so

ν (Pν DVν ). (A.21)

A final point has to be taken into account in order to write the most general form of

the PMNS matrix: the latter is not uniquely defined. This is because of the ambiguities

associated to the definition of the mass eigenstates. The role of the unitary matrices H

is to take into account such ambiguities.

In the real world case in which all the lepton masses are non-degenerate, the ambi-

guity is only associated to unphysical phases. It is well known, for example, that the

most general form of the CKM matrix contains five unphysical phases associated to the

possibility to redefine the phases of up and down quarks, without modifying the diagonal

form of the mass matrices. In the approximate world described by the symmetric limit,

on the other hand, the ambiguity can be non-trivial, owing to the possible presence of

degenerate, possibly vanishing, masses. It is then important to take into account such

contributions, as they become physical when symmetry breaking effects, removing the

degeneracy, are considered.

The ambiguity affecting the definition of the PMNS matrix is associated to the uni-

tary transformations Hν , He, Hec leaving the diagonal form of the lepton mass matrices

invariant, i.e. such that

mdiag,so
E = HT

ecm
diag,so
E He , mdiag,so

ν = HT
ν m

diag,so
ν Hν . (A.22)

As only He (and not Hec) enters the PMNS matrix, we are interested in the most general

form of He for which a proper Hec exists satisfying eq. (A.22). This taken into account,
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He and Hν are characterised by

He(m
diag,so
E )2 = (mdiag,so

E )2He, mdiag,so
ν = HT

ν m
diag,so
ν Hν . (A.23)

In the previous equation, the eigenvalues in mdiag,so
E , mdiag,so

ν are supposed to be non-

generic. We remind that our analysis focuses on a given mass pattern in table 2.1, and

that a set of eigenvalues in a certain pattern is generic if all the entries that are allowed

to be different and non-zero are indeed different and non-zero. The possible forms of

He, Hν then only depend on the mass pattern being considered. Consider for example

a mass pattern in which the mass eigenvalues are in the form in eq. (2.5), where the

degeneracies are dE0 . . . d
E
NE

for the charged leptons and dν0 . . . d
ν
Nν

for the neutrinos (the

vanishing entries do not necessarily need to appear first, but let us for simplicity assume

that this is the case). Then He and Hν have the form

He = BDiag(U0, U1, . . . UNE) , Hν = BDiag(U ′0, R1, . . . RNν ) , (A.24)

where Ui ∈ U(dEi ), U ′0 ∈ U(dν0) are unitary matrices and Ri ∈ O(dνi ) are real orthogonal

matrices. In eq. (A.24), BDiag denotes a block diagonal matrix, with the diagonal blocks

specified as arguments.

The He, Hν contributions to the PMNS matrix have a different physical nature than

the previous ones. The previous contributions are known, once the entries of the mass

matrices in the symmetric limit are known. Barring special correlations, they correspond

to large mixing if all the non-vanishing entries in the symmetric mass matrices are of

the same order. On the contrary, He and Hν are unphysical, and undetermined, in the

symmetric limit. However, they become physical (up to diagonal phases) after symmetry

breaking effects split the degenerate mass eigenstates. By taking He and Hν into account,

we then make sure that the PMNS matrix after symmetry breaking is close to the one

described by eq. (2.6) in the symmetric limit, for some values of He, Hν . Depending on

the specific form of the symmetry breaking effects, He and Hν can end up being be large,

small, or zero.

A.5 The PMNS matrix

By combining everything above, we find that the PMNS matrix is in the form in eq. (2.6).

That equation may contain some redundancy. The form of V may have an undetermined

component that can be parameterized by He or Hν . This happens for example when V

is in principle non-trivial because of the presence of multiple copies of the same irrep,

but those irreps correspond to massless leptons. We then choose V to be the identity

on the massless leptons and encode the undetermined component in He, Hν . Another

redundancy appear in the case of Dirac structures, in which the diagonal neutrino mass

matrix ends up having two degenerate eigenvalues. By definition, Hν then contains a
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2 × 2 orthogonal rotation. However, as discussed in appendix A.2, that rotation can be

reabsorbed in a phase redefinition of V . We will therefore not include it in Hν .



Appendix B

The low- and high-scale analyses

equivalence condition

B.1 Conditions for the low- and high-scale

representations become equivalent

In this part of the appendix we will provide proofs of the conditions under which the low-

and high-scale representations become equivalent.

First of all, let us see the following relation between the low- and high-scale represen-

tations of the flavour group. Suppose that we are considering n family of singlet neutrinos

and of other leptons. For a given low-scale representation UL of a flavour group G there

exists a high-scale representation UH of G such that i) UL is the low-scale limit of UH
and ii) UH and UL are equivalent in the symmetric limit.

In order to prove that above statement is correct, we have to show an existence of

the high-scale representations UH for every low-scale representation UL such that UL is

low-scale limit of UH and it is equivalent to UH in the symmetric limit.

As was explained before, we can write the leptons in a basis such that U l
L decomposed

into irreps each acting on a separate set of leptons, and then collect those irreps into

the first group forming a vectorlike sub-representation U l
L0 of U l

L and the second group

forming a fully chiral sub-representation U l
L1. For convenience, we can order the lepton

doublets li in such a way that U l
L0 acts on the first n0 of leptons and U l

L1 acts on the last

n1 = n−n0 of them. If the first or the second group (corresponding to vectorlike or fully

chiral part) is empty, then n0 = 0 or n1 = 0. We can define the high-scale representation

a follows: we take U l
H = U l

L, Uν
H = (U l

L0)∗ + id, where id is the trivial representation

acting on the singlet neutrinos in the same position as those on which U l
L1 acts, and of

course we choose U e
H = U e

L. Clearly, UL is the low-scale limit of UH . To complete the

proof of the statement above, in the following we will show that UL is equivalent to UH .

125
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It is easy to see that the first condition in definition of UH and UL to be equivalent

holds. As the U l
L0 is vectorlike, (U l

L0)∗ is also vectorlike, and Uν
H = (U l

L0)∗ + id is a sum

of two vectorlike parts thus it is vectorlike.

Now let us prove that the second condition in definition of the UH and UL to be

equivalent is also satisfied. In other words, for each mν invariant under U l
L, we have

to show that there exist mN , M invariant under UH , with M non-singular, such that

mν = −mT
N M

−1mN . We construct mN and M in terms of mν as follows. First of all, we

observe that for a given mν we can order the fermions in such a way that not only U l
L0 acts

on the first n0 of them, but also mν has a block decomposition mν = BDiag(m̄, 0), where

the first block matrix m̄ is non-singular and it has dimension n̄ ≤ n0, and the first group of

n̄ leptons form a sub-representation of U l
L0. We can then define mN = BDiag(v1n̄, 0n−n̄)

and M = −BDiag(v2m̄−1, M1n−n̄), where v is the electroweak scale, a constant M � v,

and 1n−n̄ is an identity matrix. By this way we can make all the eigenvalues of M

much heavier than the EW scale, since all the eigenvalues of mν are much smaller than

v. Moreover, M is apparently non-singular because m̄ is non-singular and M 6= 0.

It is easy to see that M and mN are invariant under the UH defined above and that

−mT
N M

−1mN = mν . This verifies the second condition and also concludes the proof

of whole statement: all the low-scale representations UL of a flavour group G are the

low-scale limit of an equivalent (in the symmetric limit) high-scale representation UH .

As we know from the example in section 3.2.2 that low-scale discussion of the flavour

symmetry does not capture all possible results obtained from the high-scale. Then, under

which conditions low-scale limit UL of a high-scale representation UH is always equivalent

to UH in the symmetric limit? The answer of this question is as follows: the low-scale

limit UL is equivalent to UH if and only if Uν
H is vectorlike and Uν

H contains vectorlike

part of U l
L.

In order to prove this is indeed a necessary and sufficient condition for general case of

n family, let us suppose that UH is a high-scale representation of G and UL is a low-scale

limit, and U l
L = U l

L0 +U l
L1 is a splitting of U l

L into a vectorlike and fully chiral part. Then

we will prove following two statements separately:

1. if UL is equivalent to UH , then Uν
H is vectorlike and Uν

H contains U l
L0.

2. if Uν
H is vectorlike and Uν

H contains U l
L0, then UL is equivalent to UH .

Let us start with the proof of first statement. If UL is equivalent to UH , then Uν
H is

vectorlike (from the their equivalence condition). So we just need to prove Uν
H contains

U l
L0. If U l

L0 is empty, the statement is true, as in such a case Uν
H trivially contains U l

L0.

If U l
L0 is not empty, we can choose a basis for the lepton doublets in which U l

L0 acts

on the first n0 ≥ 1 doublets and U l
L1 on the subsequent n1 = n − n0 doublets. As

U l
L0 is vectorlike, there exists a dimension n0 non-singular matrix m0 invariant under

U l
L0. The matrix mν = BDiag(m0,0n1) is then invariant under U l

L. Given that UL is

equivalent to UH , there exist mN , M invariant under UH , with M non-singular, such that
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mν = −mT
N M

−1mN . Considering the n×n0 submatrix m̂N made of the first n0 columns

of mN , we have m0 = −m̂T
N M

−1m̂N . Since m0 is non-singular, m̂N must have rank n0.

It is then possible to choose a basis for the singlet neutrinos νi such that m̂N is in the

upper triangular form, with non-vanishing diagonal entries. It is now straightforward to

show that the singlet neutrinos facing lepton doublets in a given irrep component of U l
L0

transform in the conjugated irrep. It then follows that the restriction of Uν
H on the first

n0 singlet neutrinos is precisely (U l
L0)∗ ∼ U l

L0. Therefore, Uν
H contains U l

L0.

The proof of the second statement requires to show UL is equivalent to UH , by using

the fact that Uν
H is vectorlike and that Uν

H contains U l
L0. Since Uν

H being vectorlike is

already given, we only need to prove that for each mν invariant under UL there exist a

mN and a non-singular M invariant under UH such that mν = −mT
N M

−1mN .

For the invariant mass matrix mν under UL, we can choose a basis for the lepton

doublets such that: U l
L decomposes into irreps each acting on a separate set of leptons; a

first (possibly empty) group of irrep, which will be associated to the non-singular part of

mν , corresponds to the first n̄ doublets and also to the sub-representation Ū l
L; a second

(possibly empty) group of irreps corresponds to the next ¯̄n doublets and to the sub-

representation ¯̄U l
L. Putting together these two groups of irrep forms the representation

U l
L0 = Ū l

L + ¯̄U l
L acting on the first n0 = n̄ + ¯̄n leptons, which is vectorlike while the

restriction U l
L1 of U l

L to the remaining n1 = n−n0 leptons is instead fully chiral. Therefore,

the form of the mass matrix is mν = BDiag(m̄,0¯̄n,0n1), with m̄ non-singular. Note that

Ū l
L is vectorlike, as m̄ is invariant and non-singular. Then ¯̄U l

L is also vectorlike, as both

U l
L0 and Ū l

L are. For the reason that Uν
H contains U l

L0 by hypothesis, we can choose

a basis for the neutrino singlets such that the first n0 singlet neutrinos transform with

(U l
L0)∗ ∼ U l

L0. The remaining n − n0 singlets will transform with the restriction Uν
H1 of

Uν
H to them (under which they are invariant). Note that Uν

H1 is vectorlike, as (U l
L0)∗ is

vectorlike and Uν
H = (U l

L0)∗ + Uν
H1 is also vectorlike.

We can now construct mN and M as follows. As Uν
H1 is vectorlike, there exists a

non-singular n1×n1 symmetric matrix M1 invariant under Uν
H1. We can choose the latter

in such a way that all its eigenvalues are much heavier than the EW scale. Since ¯̄U l
L is

vectorlike, there exists a non-singular symmetric matrix ¯̄m invariant under ¯̄U l
L. We can

find a non-singular ¯̄m in such a way that all of its eigenvalues are much smaller than

the EW scale. After that, we define M = BDiag(v2m̄−1, v2 ¯̄m−1,M1). Finally, we define

mN = BDiag(v1n̄,0¯̄n,0n1).

It is now straightforward to show that: all the eigenvalues of M are much heavier

than the EW scale, M is invariant under Uν
H , mN is invariant under UH and mν =

−mT
N M

−1mN .



128 Appendix B. The low- and high-scale analyses equivalence condition

B.2 The low- and high-scale analyses forcing the

same flavour pattern

In this section we will find general condition for the n family case of the low- and high-scale

analyses forcing the same pattern in the symmetric limit.

To begin with, let us see that for a certain flavour pattern, each low-scale representation

UL forcing that pattern is the low-scale limit of a high-scale representation UH forcing the

same pattern. In order to achieve this purpose, we will consider a given flavour pattern,

i.e. a mass pattern in table 2.1 and a PMNS matrix as in eq. (3.17), and a low-scale

representation UL forcing that pattern. Then we will demonstrate that there exists a

high-scale representation UH forcing the same pattern.

From the discussion in section B.1 we know that there always exists a high-scale

representation UH having UL as low-scale limit and equivalent to UL in the symmetric

limit. So now it is enough to show that UH forces the same flavour pattern as UL. To see

UH forces the same pattern as UL, we need to verify three conditions, in the definition of

high-scale representation forcing a given pattern, are satisfied.

The first condition is satisfied because UH is equivalent to UL in the symmetric limit

and Uν
H is then vectorlike by the definition of equivalence between the UH and UL.

In order to verify the second condition, we should show that for a given LH as in

eq. (3.7), invariant under UH , with non-singular M , lepton masses and mixings are in the

specified flavour pattern. Our starting point here is that the Lagrangian LH is invariant

under UH , with non-singularM , andmE andmN , M are the corresponding mass matrices,

as given by eq. (3.8). The flavour pattern associated to UH is nothing but the flavour

pattern associated to mE and mν = −mT
N M

−1mN . On the other hand, mE and mν turn

out to be invariant under UL (see a comment below the definition of UH and UL equivalent

in chapter 3). The flavour pattern associated to mE, mν is then the given pattern, as UL
by hypothesis forces that pattern.

In order to verify the third condition, we should exhibit that there exists a LH as

in eq. (3.7), invariant under UH , with non-singular M , such that the lepton masses and

mixings are in the given flavour pattern and generic (i.e. with all masses allowed to be

non-zeros and different indeed non-zero and different, and with all the PMNS entries

allowed to be non-zero indeed non-zero in at least one flavour basis, except possibly the

13 entry). Let us consider a high-scale representation UH such that UL is the low-scale

limit of UH and it is equivalent to UH in the symmetric limit. The existence of such

a representation is guaranteed by the existence of the UH for every UL and they are

equivalent, which is discussed in beginning of the section B.1. Regarding the mν , mE

invariant under UL and giving masses and mixings in the given pattern, and generic, their

existence are guaranteed by the hypothesis that UL forces the given pattern. Now because

of the equivalence of UH and UL, there is a mN and a non-singular M (besides the mE

we already have) invariant under UH such that mν = −mT
N M

−1mN , and a corresponding
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high-scale Lagrangian LH invariant under UH . The lepton masses and mixings associated

to LH , being the one associated to mE and mν , are then indeed in the given flavour

pattern and generic. So these arguments conclude whole statement, for a certain flavour

pattern each low-scale representation UL forcing that pattern is the low-scale limit of a

high-scale representation UH forcing the same pattern.

Now we will close this section by discussing the necessary and sufficient condition for

low-scale limit UL forces same pattern as UH . The low-scale limit UL forces same pattern

as UH if and only if these two representations are equivalent in the symmetric limit. In

order to show this is indeed a necessary and sufficient condition we will prove following

two statements one by one:

1. if UL is equivalent to UH in the symmetric limit, then UL forces the same pattern

as UH .

2. if UL forces the same pattern as UH , then UL is equivalent to UH .

Let us start with the first statement, in order to conclude UL forces the same pattern

as UH by using the fact that UL is equivalent to UH in the symmetric limit, we have to

confirm two conditions, which are in the definition of low-scale representations forcing a

given flavour pattern, are satisfied. The proofs of these two conditions are given in the

following two paragraphs.

In order to verify the first condition, we need to show that for any given low-scale

Lagrangian LL as in eq. (3.2) invariant under UL, the lepton masses and mixings induced

by LL are also in the pattern forced by UH . As LL is invariant under UL, the corresponding

mν and mE are invariant under UL. So what needs to be proven in the second step is

the associated masses and mixing follow the pattern forced by UH . Knowing that UL
is equivalent to UH , there exist invariant mN , M (besides the mE we already have),

with M is non-singular, and a corresponding Lagrangian LH is invariant under UH , such

that mν = −mT
N M

−1mN . As the high-scale representation UH forces the given pattern,

associated masses and mixings follow that pattern. And those are also the masses and

mixings associated to mE, mν , which follow the pattern forced by UH .

In order to verify the second condition, we need to show that there exists a LL as in

eq. (3.2), invariant under UL, such that the lepton masses and mixings are in the pattern

forced by UH , and generic. Since UH forces the given pattern, there exists a LH as in

eq. (3.7), invariant under UH , such that M is non-singular and the lepton masses and

mixings are in the given pattern, and generic. If LL is a low-scale limit of LH , then LL is

invariant under UL. The lepton masses and mixings induced by LL are the same as those

induced by LH and are, therefore, in the flavour pattern forced by UH , and generic.

On the other hand, for the proof of the second statement, we will rely on the given

condition (UL forces the same pattern as UH). In order to conclude that UL is equivalent

to UH , we will follow a following strategy: we will prove i) Uν
H is vectorlike and ii)

Uν
H contains the vectorlike part of U l

L, then using the statement in section B.1 — the
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existence of UH for every UL as a low-scale limit and they are equivalent — we derive UL
is equivalent to UH .

It is very easy to get Uν
H is vectorlike, that just follows from the definition of forcing

a pattern at high-scale. Now we have to prove that Uν
H contains the vectorlike part of

U l
L. Suppose that n̄ is the number of neutrino masses allowed to be non-vanishing in the

symmetric limit in the chosen pattern, and that n0 is the dimension of the vectorlike part

U l
L0 of U l

L. From the fact that U l
L0 acts on the first n0 fermions in the non-singular block

of the mass matrix and that UL also forces the chosen pattern, we conclude n̄ = n0. Let

us now choose a mN and a non-singular M , invariant under UH , with lepton masses and

mixing in a generic pattern. Their existence is guaranteed by the definition of forcing a

pattern at high-scale. Then mν = −mT
N M

−1mN is invariant under U l
L and has n0 non-

vanishing eigenvalues. According to the relation between structure of the mass matrix and

two parts (vectorlike and fully chiral part) of the representation, and taking into account

that n̄ = n0, we will choose a basis for the lepton doublets such that: U l
L decomposes

into irreps each acting on a separate set of leptons, a first group of irrep forms the

representation U l
L0 while the remaining ones form U l

L1, so mν = BDiag(m0,0n−n0) with

non-singular m0 block. Now we will proceed as the argument in section B.1. Considering

the n×n0 submatrix m̂N made of the first n0 columns ofmN , we havem0 = −m̂T
N M

−1m̂N .

Since m0 is non-singular, m̂N must have rank n0. It is then possible to choose a basis for

the singlet neutrinos νi such that mN0 is in upper triangular form, with non-vanishing

diagonal entries. It is now straightforward to show that the singlet neutrinos facing lepton

doublets in a given irrep component of U l
L0 transform in the conjugated irrep. So it follows

that the restriction of Uν
H on the first n0 singlet neutrinos is precisely (U l

L0)∗ ∼ U l
L0,

therefore Uν
H contains U l

L0. With this conclusion we have reached to the end of the proof.

So the necessary and sufficient condition to the low-scale limit UL forcing the same flavour

pattern as UH is that these two representations are equivalent in the symmetric limit.

From this condition we can say that there are two and only two important cases in which

the low-scale analysis fails in characterizing the high-scale flavour symmetries that forcing

a certain flavour pattern in the symmetric limit:

• When Uν
H is not vectorlike.

• When Uν
H does not contain the vectorlike part of U l

H .

Detailed discussions of these two inequivalent cases can be found in chapter 3.



Appendix C

Further details of the bounds on c3W

In this appendix we compare the relative importance of the various differential observ-

ables on the constraints on c3W/Λ
2. The results for 300(3000) fb−1 are presented in the

table C.1. The labels Excl./Incl. linear have exactly the same meaning as in the table 4.1

. No φZ binning stands for binning only pTj and No pTj binning stands for using only the

information in pTj ∈ [0, 100]GeV category and the angular binning. We can see that both

binning pTj and φZ lead to the increase of sensitivity of the interference term with the

later being stronger. Table C.1 is generated using the leakage . 5% for various Q values.

The procedure of [164] leads roughly to the same results and the method of eq. (4.49)

shows lower sensitivity on the interference term. Bin by bin information about the SM

and BSM contributions can be available by request.
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Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]
95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1

Excl., linear [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

No φZ binning [-1.19,1.20] [-0.69,0.70] [-0.57,0.57] [-0.32,0.31]

No φZ binning, linear [-2.28,2.22] [-1.15,1.14] [-0.74,0.73] [-0.38,0.38]

No pTj binning [-1.14,1.17] [-0.64,0.67] [-0.50,0.51] [-0.27,0.27]

No pTj binning, linear [-1.80,1.81] [-0.91,0.92] [-0.57,0.57] [-0.29,0.29]

Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27] [-2.17,2.17] [-1.37,1.37] [-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5

Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

No φZ binning [-0.75,0.82] [-0.43,0.49] [-0.37,0.43] [-0.21,0.25]

No φZ binning, linear [-2.02,1.95] [-1.02,1.00] [-0.65,0.64] [-0.33,0.33]

No pTj binning [-0.73,0.80] [-0.41,0.49] [-0.34,0.38] [-0.19,0.20]

No φZ binning., linear [-1.43,1.40] [-0.72,0.71] [-0.45,0.45] [-0.23,0.23]

Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2

Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17]

No φZ binning [-0.50,0.56] [-0.28,0.34] [-0.25,0.30] [-0.14,0.18]

No φZ binning, linear [-1.84,1.73] [-0.92,0.89] [-0.59,0.58] [-0.30,0.30]

No pTj binning [-0.49,0.55] [-0.28,0.32] [-0.23,0.27] [-0.13,0.15]

No pTj binning, linear [-1.18,1.12] [-0.60,0.58] [-0.37,0.37] [-0.19,0.19]

Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

Table C.1: Bounds on c3W /Λ2×TeV2. The total leakage in the various bins of mT
WZ

is . 5%.
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