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Abstract

The understanding of the principles underlying the structure of fermion masses and
mixing is one of the important open problems in present day research in particle physics.
One way to address this problem is by means of a symmetry principle, as it has been
often the case in particle physics. Several efforts have been spent in particular to un-
derstand lepton masses and mixing by means of flavour symmetries. The first part of
this thesis deals with the following problem: can an unbroken flavour symmetry provide
an approximate description of lepton masses and mixing in the symmetric limit? Even
though many models are available relying on specific flavour groups, a comprehensive
analysis along the above direction is missing. We provide a complete answer to this ques-
tion in two different cases of neutrino mass generation, from the Weinberg operator or
from the seesaw mechanism. We allow the symmetry group to be as general as possible.
We show that the pattern of lepton masses and mixing only depends on the dimension,
type (real, pseudoreal and complex) and equivalence of the irreducible components ( “ir-
rep decompositions”) of the flavour group representations. In other words, we will derive
relations between irrep decompositions and lepton mass patterns, and also between irrep
decompositions and possible structures of the PMNS matrix. As we will see, once the de-
composition of flavour group representation into irreducible components is specified, one
can write down the mass pattern and corresponding form of the mixing matrix without
knowing the explicit mass matrix.

First we assume that the light neutrino masses are generated by the Weinberg oper-
ator, and that the flavour symmetry directly constrains their mass matrix. Under this
assumption, we find that there are six viable cases which can account for the approximate
description of lepton masses and mixing in the symmetric limit. In all of these cases the
neutrino mass spectrum is either inverted hierarchical or the neutrino mass matrix is com-
pletely unconstrained (anarchy). In the context of SU(5) unification, only the anarchical
option is allowed. Therefore, if the present hint of a normal hierarchical spectrum were
confirmed, we would conclude (under the above assumption) that symmetry breaking
effects must play a primary role in the understanding of neutrino flavour observables.

Then, we consider the case in which light neutrino masses originate from the type I
seesaw mechanism and take into account also the transformation properties of the singlet
neutrinos under the flavour group. Such a “high-scale” is not always equivalent to the
previous “low-scale” analysis. We recover the conditions under which the equivalence of
the two analyses necessarily holds. When the two analyses are equivalent, the conclusions
obtained in the low-scale analysis hold. Otherwise, the high-scale analysis may provide
new results and a normal hierarchy of neutrino masses can be obtained in the symmetric
limit.

The last part of the thesis is devoted to the new measurements of the anomalous triple

gauge boson couplings in the electroweak sector. The goal is to find measurements leading
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to a large increase of the interference between the SM amplitude and the contributions
from C'P-even dimension six operators in the effective field theory. In particular, in order
to overcome non-interference, due to the helicity selection rule, between the amplitudes
of the SM and the operator Osy, in the tree level process of q¢ — VyVp, in which
Vr is transverse polarization state of weak gauge bosons, we propose two distributions
that will lead to a better accuracy. The first one is the angular distribution of the
interference cross section over the SM one, for the decay of two final state vector bosons.
The second one considers a beyond leading order effect from adding one hard jet in the
final state. Improvements compared to the traditional methods as well as LHC high
luminosity prospects will also be discussed.
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Chapter 1

General introduction

The past several decades have witnessed a tremendous success of the standard model
(SM) of particle physics. With the discovery of the Higgs boson at LHC in 2012, the
existence of the last missing building block of SM was confirmed: all SM predictions
have been successfully tested by a vast variety of experiments, with good accuracy and
agreement. Even though there is no doubt that the SM is one of the most successful and
powerful theory ever built, there is a wide consensus that it is not the ultimate theory of
everything for several reasons.

On the one hand, there are many experimental problems (hints), like neutrino mass,
dark matter, gravity, baryon asymmetry in the Universe, (gauge couplings and quantum
numbers unification, inflation), as well as some theoretical problems (puzzles), such as
the hierarchy problem, the naturalness problem, the strong CP problem, the cosmological
constant problem, (the flavour structure of the SM, the pattern of fermion masses and
mixing, the quantization of the electric charge), that cannot be explained by the SM. As
we know, the SM gauge principle governs all strong, weak and electromagnetic interactions
in terms of just three parameters, but the SM contains several other parameters that still
unexplained by the SM itself. This is particularly true in the Yukawa sector of the
SM Lagrangian which determines all matter interactions which give rise to the fermion
masses, mixing and their interactions with Higgs field. Can the Yukawa parameters be
understood in terms of more fundamental physics? Why there are such a big hierarchy
among fermion Yukawa couplings (more precisely fermion masses)? Why lepton mixing
is so different from quark mixing? An honest answer, at the moment, is we don’t know
why they appear as they do, but there can be following two possible rough expectations
to them:

e There might be undiscovered principle, like extension of the SM symmetries, that
explains the origin of all these seemingly free parameters and determine most of
them.

e Those free parameters are just accidental and Nature choose them as they are.
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2 Chapter 1. General introduction

The first possibility is obviously more appealing. Part of this thesis is devoted to its
study.

On the other hand, the SM is a low energy approximation of some UV theory. The
SM is a quantum field theory respecting a specific gauge symmetry, allowing to have a
spontaneous symmetry breaking, and satisfying the renormalizability condition. As an
effective field theory (EFT), it holds up to certain energy scale A, above which new physics
effects suppose to play a significant role. The null result from the new physics search in
LHC so far indicates that if a new physics interacts strongly with matter then there is wide
mass gap between the new physics scale and electroweak scale, which makes the treatment
of the SM as an effective field theory more robust. The power counting analysis indicates
that the effects of short distance physics is suppressed by the (E/A)P~* with D > 4 on
the low energy observables, and our ignorance of new physics can be parameterized by
the non-renormalizable operators of the EFT. If the scale is high enough A > FE then
the renormalizable part of the Lagrangian is a good approximation. If a theory like SM
written at the renormalizable level fails to explain a certain phenomenon, then we may
learn about the scale, at which the SM stops being a valid theory, by considering non-
renormalizable terms. A simple example of this is provided by neutrino masses, which
are zero by construction of the SM and can be generated by a dimension five operator,
the so called Weinberg operator [1], associated to the scale that can be as large as 10
GeV.

1.1 The standard model in a nutshell

The SM is a theory that describes three out of the four forces known in Nature, namely it
is the theory of strong, weak and electromagnetic interactions of all elementary particles
known up-to-date, and it does not account for the gravity. The SM is defined by the
following two ingredients:

(i) Symmetries and spontaneous symmetry breaking (SSB) :
The gauge group of the SM:

Gsm = SU3)e x SU(2), x U(1)y, (1.1)
that is spontaneously broken to the subgroup

(ii) The representations of fermions and scalars under the gauge group:
In the SM, there are five types of fermions, which are the quark doublet, the up
quark singlet, the down quark singlet, the lepton doublet and the lepton singlet,
denoted by

c c
4, Uy, di7 li7 €;

27

i=1,2,3 (1.3)



1.1. The standard model in a nutshell 3

respectively, and there is one scalar doublet
h = (ht, KT, (1.4)

Here the “singlet” and the “doublet” refer to SU(2),. Each of these fermions comes
in three families and their transformation properties under the representations of
Ggsu are given in table 1.1. The local gauge symmetries determines which vec-
tor bosons exist in Nature and how they transform under the Ggy. Note that we
are using Weyl spinor notation, all fermions are left-handed, even though the sub-

scripts are omitted, and their charge conjugated counterparts transform as a Dirac
conjugate of Right-handed fields 1f ~ 1g.

Fields (SU(3)c, SU(2)L)y Fields (SU(3)c, SU(2)L)y
1

¢ = (u;, d;)" (3,2)1/6 L= (v, e)” (1,2)_1)9
u; (;)7 1) 23 e5 (1,1),
dlc (3, 1)1/3 h (1,2)1/2
GM (87 1)0 Wu (173>0
B, (1,1)o

Table 1.1: The SM fields gauge quantum numbers.

Gauge invariance provides us with a set of constraints on the Lagrangian. Having a set
of charge assignments of the SM fields in table 1.1, all possible gauge invariant, of course
must first of all be Lorentz invariant, and the renormalizable terms in the Lagrangian
consisting of the SM fields and their covariant derivatives can be grouped into three pieces

*CSM = *Cgauge + ﬁﬂavour + 'CEWSB . (15)

Each of these parts are

| 1 ,
Egauge = Z wTW“D;ﬂb - Z Z VIWVH )
¥ %

1.6
—;Cﬂavour - ygufq]h + ygdquhc + ygefl]hc + h.c. , ( )

Lewss = (D,h) (D*h) + 12 (RTh) — A(hTh)?,
where

wZQi7uz¢7dfali7€§> V:GmVVi7Ba hc:ig2h*>
D, = 8, +ig,GT¥ +igW'T? 1 ig'B,Y (1.7)

Viw =0V, — 0V, +ig [V, Vo],

and traces in the gauge kinetic terms of non-abelian gauge fields with proper normalization
coefficients are understood. Even though all the SU(2)y, invariant contractions between
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two doublets are not written explicitly, one can easily recover them in a similar way, for
example, as the contraction between the ¢; and h, which is given by ¢,5q;,hs with r and s
doublet indices. In this Lagrangian all gauge fixing terms, a topological term and ghost
terms are omitted.

1.2 The effective approach

Searching for new physics in the past as well as present-day efforts to go Beyond Standard
Model (BSM) basically relies on the two main techniques: the direct detection of new
particles from the collider experiment, as in the latest example of Higgs boson discovery
at the LHC; or the scrutiny of the deviations from the standard model predictions in some
interaction channels, which is most often described by the EFT approach. The fact that
no new particle has been discovered at the LHC so far is sending us a hint of the existence
of a rather big mass gap between the electroweak scale and a new physics scale, if there
is a strong interaction between the new particles and the SM particles. This suggests
the EFT method is valid and very useful, at least, up to several TeV energy before a
new particle is discovered, so one of the our goals will be concentrated on the path going
beyond SM by EFT analysis. This is the model independent and very powerful way to
describe the effect of high energy theory on low energy observables in terms of the low
energy degrees of freedom only, even without knowing what are the new heavy fields and
which is the details of full high energy Lagrangian, as long as one is focusing on low
energy phenomena.

We will use the EFT method in two directions: on the one hand, the flavour structure
of the SM and in particular in the lepton sector, by describing neutrino masses through
the Weinberg effective operator. We will also discuss limits of this approach when applied
to flavour symmetries. On the other hand, we will use EFT approach to parameterize
possible deviations from the SM by focusing on the measurements of electroweak triple
gauge boson couplings.

Let us now see greater detail the basics of the effective approach. Consider a funda-
mental theory, whose Lagrangian £(y, ¢) depends on light and heavy degrees of freedom,
¢ and ¢ respectively. When we are working at low energy, £ < My = A, we can de-
scribe L(¢, ¢) by an effective Lagrangian Lrpr(@) = L (¢, ¢(¢)), where ¢(p) is obtained
by the heavy fields equations of motion. Lgpr(yp) is highly non-renormalizable and can

be expand in a series in the dimension of its operators:
¢ @
Lepr(9) = Lren(®) + D 2a-10i (9); (1.8)
>4 i

where Lo, (p) is the renormalizable part of the Lagrangian and the dimensionless ex-

pansion parameters C’i(d) are called Wilson coefficients. They can be fixed, once the UV
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theory is specified, by comparing a certain physical quantity computed in the UV the-
ory with that obtained from the EFT calculation. In case the fundamental theory is
not known, experimental identifications of C’i(d) gives a powerful hint about the physics
that generates the expansion, as it happened for the electroweak interactions of the SM,
hinted from the already known effective Fermi theory. The non-renormalizable part of
the Lagrangian accounts for the virtual effects of the exchange of heavy fields ¢. We can
retain only the operators up to a certain dimension, depending on the accuracy we want
to reach. From this Lagrangian one can see that the higher the dimension of an operator
Ogd), the more powerful the suppression of A in its coefficient. This means that lower
dimensional non-renormalizable operators are less suppressed and they can play a more
significant role in low energy phenomena than the higher dimensional ones.

What above can be applied to the SM, where the short distance physics effects on the
SM processes associated to heavier new physics can be effectively parameterized by adding
non-renormalizable operators, suppressed by the mass scales of new degrees of freedom, to
the SM Lagrangian. Such operators must be invariant under the SU(3)cxSU(2), xU(1)y
gauge transformations. The idea is then to consider the SM Lagrangian, plus suitable
non-renormalizable interactions, as the low energy limit of a theory assigned at some
high-scale A > v

L8, = L5+ L3, (1.9)

where L5 is the SM Lagrangian and LY} contains non-renormalizable operators involv-

ing the SM fields and invariants under the SM gauge transformations. The experimental
constraints on the coefficients in L} have to be taken into account when one tries to
construct a fundamental theory.

In the next sections we will deal with effective operators that are particularly relevant
experimentally, and so also for the construction of the theories beyond the SM.

Generally speaking , the efforts in this thesis attempt to address two broad questions
related to the rather different areas of research. First of all, we will find a general argument
to explain if lepton masses and mixing patterns can be approximately described in terms
of a flavour symmetry (together with symmetry breaking effects in the context of the
EFT description in terms of the Weinberg operator). We will provide a complete answer
to the following question: what are the flavour symmetries and their representations that
can give an approximate description of lepton masses and mixing? This question will be
studied in two cases: in the first case we will do low-scale analysis by assuming neutrino
masses are obtained from the Weinberg operator after electroweak symmetry breaking. In
the second case, we will assume that neutrino masses are originated from the type I seesaw
mechanism and take into account also the non-trivial transformation properties of singlet
neutrinos under the flavour group, and we will discuss the limits of the EFT approach in
this context. In the last part of the thesis, we direct our attention toward new physics
search at the LHC, by using EFT approach and giving proposals for how to make manifest
the new physics effects on the diboson production channels that get contributions from the
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triple gauge boson couplings. More specifically, we will investigate important features of
the amplitude, and provide a way to realize the interference between the amplitude of the
SM and that of CP-even dimension six operators generating anomalous triple gauge boson
couplings. And in the meanwhile we will corroborate our theoretical expectation from
the MadGraphb simulation. The simple reason of studying the dimension six operators
is because they are the less power suppressed non-renormalizable operators relevant for
these processes, as mentioned, there is only one dimension five operator allowed by the
SM gauge symmetries and it is discussed for the generation of neutrino masses in the first
part of the thesis. In the remaining part of this introductory chapter, we will cover some
background knowledge of fermion masses in SM and beyond, flavour symmetry approach

to understand fermion mass hierarchy and mixing, and a short introduction to SM as an
EFT.

1.3 Fermion masses and mixing from flavour

symmetry

This section is devoted to a brief introduction to the neutrino mass generation mech-
anism, a discussion of the fermion mass hierarchy and flavour mixing problem, and a
short chronological overview of the prototypical model buildings to explain fermion mass
hierarchy and mixing.

1.3.1 Neutrino mass generation mechanism

Neutrinos are strictly massless in the SM, but the oscillation experiments indicate that at
least two neutrinos have non-vanishing and all have non-degenerate masses. As known,
there is a unique dimension five operator and it does contribute to the neutrino masses,
the Weinberg operator [1]

%(Zih)(ljh), (1.10)

where ¢;; is a dimensionless coefficient and A is a mass scale associated to the degrees of
freedom integrated out. As usual, we are omitting SU(2) indices and understanding the
contraction l;.e,shs. This operator violates individual and total lepton numbers by two
units. Moreover, the operator in eq. (1.10) provides a mass term for the neutrino after
electroweak symmetry breaking. In fact, once the Higgs boson gets a non-trivial VEV
(h) = (0,v)", we will get the Majorana mass term (1/2)mY;v;v;, in which the neutrino
mass matrix is

my; = vc;; /A (1.11)

Note that, differently from the charged lepton sector, neutrino masses are suppressed by
an additional v/A factor, and therefore we can understand the smallness of the neutrino

masses in terms of the heaviness of the scale A at which the operators is generated and
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lepton number is violated. This approach is completely general as long as the new physics
accounting for neutrino masses lies above the EW scale (and the lowest order operator in
eq. (1.10) indeed dominates).

In the context of a bottom-up approach, let us study whether this unique dimension
five operator can be obtained from renormalizable interactions at the tree level. There
are two possible ways to connect external legs of the tree level Feynman diagrams by the

line of a new particle NV, shown as in the figure 1.1.

Figure 1.1: Possible mediators to generate Weinberg operator at tree level.

The possibility (1) requires the new heavy degree of freedom N couples to lepton
doublet and Higgs field in Lorentz invariant and Ggy-invariant way. To have Lorentz
invariant interaction N must be a fermion. Since [; and h are transforming as doublets
of SU(2), and 2 x 2 =1+ 3, N can be a either singlet or a triplet of SU(2). Obviously
N is a colour singlet and has zero hypercharge, so its quantum numbers can be either
(1,1)9 or (1,3)p under Gy in the notation (SU(3)c, SU(2)1,)y- An insertion of a field in
the first kind is called type I seesaw mechanism, which will be discussed in some details
below and as we will see in this case N is exactly v while the second option (1,3), for
N is called type III seesaw mechanism.

In the possibility (2), first of all, Lorentz invariance requires N to be a scalar. Moreover,
it is a colour singlet and has hypercharge Y = 1. As far as the SU(2) transformation is
concerned, N is in principle either a singlet or a triplet. The possibility of being singlet
is excluded because the one of the two vertex has a form e,4h,.hs N which is identically
zero. So N must have a quantum number (1, 3);. This is called the seesaw mechanism of
type IIL.

Let us now review in great detail the type I seesaw in the context of EFT. If Ggu
singlet neutrinos v{ are added to the SM, then Yukawa interactions for the neutrinos are

allowed, in the form
ygl/ﬂjh + h.c. . (1.12)

The later generate a neutrino Dirac mass term my = yyv after electroweak symmetry
breaking (EWSB). Now, this mass term is proportional to electroweak scale and thus, if
it was the only source of neutrino masses, it would be characterized by extremely small

couplings. While this is a logical possibility, it is possible to account for the smallness
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of neutrino masses by taking into account that in the presence of gauge singlets, we can
write an explicit mass term for them
1 Cc,,C mass

This is the only gauge invariant mass term allowed by the SM gauge symmetries and
it is not related to the Higgs mechanism and the EWSB scale. Singlet neutrino masses
can be arbitrarily large even in the limit v — 0, in which all the other particles’ masses
vanish. Let us suppose this is the case, M > v. We can then consider an effective field
theory below the scale M, in which the effect of the singlet neutrinos is described by the

presence of the non-renormalizable operators. Apart from the kinetic term, the terms in

which v¢ appear in the Lagrangian are

1
éMijVZ'CV; + ygyﬂjh + h.c. C L\iipe - (1.14)
The equation of motion from this Lagrangian, up to small correction from the kinetic
term, is
a‘c c N
oy = MiVi +yilih =0, (1.15)

leading to v¢ = —(M~'y™);;l;h. Plugging this back to the eq. (1.14) we end up with
eq. (1.10), where

Cij _
= (R M)y (1.16)

Combining eq. (1.16) with eq. (1.11) we will get neutrino mass in terms of the Dirac and
Majorana mass matrices, my and M,
v _ i

m.. = v

() A

2= —(myM tmy)i. (1.17)
This result holds at the tree level, and large logs from the computation of radiative cor-
rections may modify it. The proper way to address the problem is to use renormalization
group (RG) equation: first calculate ¢;;/A in eq. (1.16) at the high-scale, then use RG
equation to run the coefficient down to the electroweak scale, then keep running until m,,.
There we compute neutrino masses by plugging the runned coefficient into eq. (1.17).

The discussion above shows that singlet neutrinos, also called right-handed neutrinos,
are the particular example of high energy physics that leads to the operator in eq. (1.10).
Note that in the type I seesaw mechanism there could be arbitrary number of gauge
singlets v, but in order to generate the observed neutrino mass square differences they
have to be not less than two, which is necessary to obtain at least two neutrinos with
non-vanishing masses.

As it was pointed out before, this is not the only way to achieve Weinberg operator
by integrating out the heavy particles at the tree level. Similar procedures can be used
to obtain the expressions for the light neutrino masses in the context of the extension of
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SM with scalar triplets or fermion triplets.

1.3.2 The SM flavour puzzle

The terminology “flavour” in particle physics was proposed by Harald Fritzsch and Mur-
ray Gell-Mann in 1971 when they were trying different flavour of ice-cream in the Baskin-
Robbins ice-cream store in Pasadena [2]. Most probably they were inspired by the fact
that ice-cream has both colour and flavour and so do quarks, since the terminology was
first used in the context of the quark model of hadrons. Of course, leptons also come with
different flavours but not with colours, and flavour physics covers the properties of both
sets of fermions. Since then both quarks and leptons have been flavoured, and the flavour
has commonly used in particle physics community to refer to the copies of fermions which
have the same gauge quantum numbers under the SM gauge group. In some occasions it
is also interchangeably used as family.

It is apparent from the expression of the SM Lagrangian in eq. (1.5) that, in the absence
of flavour part, the Lagrangian possesses a global symmetry U(3)® x U(1) acting on the
SM matter fields as

q c u®, c c d® jc

)
L= UL, ¢ —USeS,  h—e®h,

ij ij =g

(1.18)

where U?, U, U% U', U are 3 x 3 unitary matrices and ay € R. These transformations
correspond to rotations in the flavour space. Thus, as far as only gauge interactions are
concerned, all fermions of a certain type are equivalent. What allows to tell the different
family is the Yukawa couplings. In fact, the flavour part of the Lagrangian explicitly
breaks U(3)® x U(1)g, and it is straightforward to show that this symmetry is broken to
a residual symmetry U(1)%. Of all these U(1) symmetries, one of them turns out to be
the one associated to the hypercharge, which is gauged. The others are called accidental
symmetries of the SM, which are identified with three individual lepton numbers L; and
a baryon number B. Neutrino masses, if arising from the eq. (1.10), represent a source
of breaking of total lepton number. So, the smallness of the neutrino masses is expected
to be the associated with the breaking of total lepton number, at high energy, by the five
dimensional operator.

Because of the breaking of U(3)° x U(1)g, the flavour degeneracy is lost, and specific
pattern of masses and mixing is generated. The peculiar pattern of fermion masses and
mixing originated from the breaking of U(3) symmetry is one of the long-standing puzzles
in the SM. Up to now, it still remains unsolved.

The SM contains thirteen dimensionless flavour parameters, which are nine quark
and charged lepton Yukawa couplings, and the three quark mixing angles and one CP-
violating phase in the Cabibbo—Kobayashi-Maskawa (CKM) matrix Voky. Once we add
neutrino masses to the SM, we would at least have another seven flavour parameters:
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three neutrino masses, three mixing angles, one CP-violating phase if neutrinos are Dirac
particle or there are three such phases if they are Majorana particle as predicted in our
EFT set-up. A full understanding of flavour in the SM therefore requires to unveil the
possible origins of at least twenty flavour parameters and of their values.

To illustrate the issue and its importance, let us see flavour part of the SM in more
details. According to the Higgs mechanism, all charged fermions acquire masses propor-
tional to their Yukawa couplings and to the Higgs vacuum expectation value (VEV) v,
that is my = vyy. All the flavour parameters in the quark sector have been measured
with very good accuracy, but for the purpose of this introduction it is enough to show

their orders of magnitudes as follows [3]

o~ 1, Yo ~107°, y, ~ 107,
o~ 107% ye~ 1074 ya~ 1077,
yr ~ 1072, y,~107" y.~107°
Vis| ~ 0.2, |Vy| ~0.04, |Viy| ~0.004, bcp ~ 1. (1.19)

There are only two of these parameters that are of O(1), one is the top-Yukawa coupling
and other is the CP-violating phase. All the other flavour parameters exhibit hierarchies
as their values span six orders of magnitudes.

As for the lepton sector, in the past when the SM was built, neutrinos were expected to
be massless particles due to the simple fact that right-handed neutrinos do not take part
in weak interaction and no experiment observed them; later on, in order to account for
the evidence from oscillation experiments, non-zero masses and a mismatch between their
flavour eigenstates and mass eigenstates needed to be introduced. Neutrino masses and
mixings add new features to the SM flavour puzzle. The accuracy in the determination
of flavour parameters in the leptonic sector is getting better with the progress of the big
experimental study.

One of the parameters that still needs to be determined has to do with the ordering
of the neutrino masses. The first two masses m; and msy are defined to be the ones
with the smallest squared mass difference, with m; < ms by definition. The third mass
mg either bigger or smaller than m;, ms. Correspondingly, if we denote Am?j = m? —

m3, m3; can have both signs. The sign of Am3, = m3 — m{ has not been fixed yet,

2

_ 2 -
Sm = |Am3,| has been determined

although the atmospheric mass square difference Am
by neutrino oscillation data. So there are two possible mass hierarchies: normal hierarchy
(or ordering) if mg > ms > my or inverted hierarchy if ms > m; > m3. Note that there
is a possibility of having quasi-degenerate spectrum that occurs when all three neutrino
masses are much larger than both solar and atmospheric mass square differences, namely
m? > Am?2 , Am2, . As we know, neutrino oscillation experiments cannot provide any

information about the absolute mass scale of the neutrinos. The neutrino mass scale

can be obtained at least in three different ways: from the end point of the beta decay
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spectrum, from the neutrinoless double 3 decay, and from cosmological observations.

The lepton mixing matrix Upyns is also known as Pontecorvo-Maki—-Nakagawa—Sakata
matrix (PMNS matrix). In the standard parameterization it is given by

Upnns = R(023)R(613, 0cp)R(612) ,

C12C13 $12€13 S1ze”"ocr (1.20)
_ ) 6 )
= | —S12C23 — €12523513€"°°Y 1223 — S12523513€"°CT S23C13 ;
i i
512823 — C12C23513€"°°Y  —C12523 — $12C23513€"°CY  CasCi3

where the part of Majorana phases Diag(e’!, e’@2 1) is neglected. The recent experimen-
tal data analyses have determined the absolute values of the mixing matrix elements at
30 level to be in the following ranges [4]

0.800 — 0.844 0.515 — 0.581 0.139 — 0.155
[Upnins| = | 0.229 — 0.516 0.438 — 0.699 0.614 — 0.790 | . (1.21)
0.249 — 0.528 0.462 — 0.715 0.595 — 0.776

The measured absolute values of the PMNS matrix entries appear to be all large with
the possible exception of the 13 element, which cannot be larger than 0.16. One of the
21 or 31 elements can be as small as 0.23, whereas all the other elements bound to be
larger than 0.43. Note that unitarity prevents the 21 and 31 elements to be both at
the lower (or upper) ends of their ranges. The current fits for the Dirac CP-violating
phase in leptonic sector prefer nearly-maximal CP-violating values [5], and the sum of
neutrino masses has an upper bound of 0.15¢V" at 95% C.L. from the recent cosmological
observation [6]. Overall, the pattern of the SM flavour parameters indeed looks peculiar.

While the SM gauge group and field content allow us to determined all gauge inter-
actions just by the three gauge couplings, there is no clear guidance to the form of the
Yukawa matrices that describing the SM Yukawa interactions. The conjecture that there
is indeed a structure in the flavour parameters is reinforced by considering the values of
the four SM parameters other than flavour parameters, namely the three gauge couplings

and the Higgs self-coupling at the electroweak scale, which are
gs~1, g~0.65, ¢ ~035 MN~0.13. (1.22)

Evidently, there is no big hierarchy among these parameters, unlike for the parameters in
eq (1.19). People often understand small couplings in connection to the small breaking
of a symmetry under which they are forced to vanish in the limit in which the symmetry
is restored. Many proposals have been put forward already along those lines. In the

following sections we will introduce some of them.
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1.3.3 A lesson from the quark sector

A pioneering work attempt to explain mass hierarchy and mixing parameters in the quark
sector has been done by C. D. Froggatt and H. B. Nielsen [7]. In their approach, all the
small dimensionless parameters such as the quark mass ratios and the CKM mixing angles
can be interpreted as powers of the breaking parameter of a global U(1) flavour symmetry,
without the need to assume widely hierarchical Yukawa couplings. Under this symmetry,
a Ggy-singlet scalar field ¢, which is called flavon, has non-zero charge and the SM
fermions as well as the Higgs field may also possess non-trivial charges. The flavon field
develops a VEV (p) and its effect can be parameterized by
()

= — 1 1.2
€ A<< , ( 3)

where A is a characteristic energy scale of new physics of flavour. In general, different
fermion flavours have different charge assignments. Omne can assign the flavon field a
negative unit of U(1) charge without loss of generality, as it is possible to rescale all
the other charges in the unit of the flavon charge. The flavour symmetry is sometimes
called horizontal symmetry in contrast to gauge symmetry which is thought as vertical
symmetry. The rule is that each term in the Lagrangian including the SM fields and
the flavon field should be invariant under the U(1)y horizontal symmetry. The effective
Yukawa couplings then become

Y = g )00
YD — Dl )00 (1.24)
Y;]E _ ygE\H(li)-l-H(e;)—H(hﬂ ’

where H(f) is the charge of the field f, and yg, yi?, yg are supposed to be of O(1). For
example, if we use following U(1)y charges for the SM fields

H(q) = Hu$) = H(eS) = 2;, = =(2,1,0)7,

‘ (1.25)
H(l) = H(d) = H(h) = 0.
This results in following parametric suppression of Yukawa couplings
e & €& e e 1
myox | € € €], mpx|e e 1],
e ¢ e e 1
(1.26)
e e ¢
mgxX | e € €
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The proportionality holds up to coefficients yg , yg , yg in front of the each matrix elements.

The diagonalization of these mass matrices implies the power suppression of up-type
quarks, down-type quarks and charged lepton masses according to

mt:mc:mu~1:62:e4,

mb:mszmd~1:6262,
mT:mu:mewlze:eQ,

|Vusl ~ €, |‘/Cb| ~ €, |Vub| ~ 627 5CP ~ ]-

(1.27)

An immediate observation at this point is that the chosen set of charges implies that
down-type quark and charged lepton mass ratios are the same, while the up-type quark
mass ratios approximately square of those. One may think this can explain quantitatively
the mass ratios of the up and down types of quarks with all coefficients y;; of their
mass matrix, but the charged lepton mass ratios need moderate hierarchies among those
couplings. This means that a different choice to the lepton doublet and singlet charges
may give better results, as we will see in the next section.

On the other hand, we can get ratios of charged fermion masses and values of quark
mixing parameters from the experimentally determined results [3]

Myt Me:my =~ 1:0.007:1.3x 1077,
my :mg :mg~1:0.023 : 0.001,
My imy, ime ~1:0.06:3x 1074,
[Vis| = 0.22, |Vip| ~0.04, |Vip| = 0.004, bcp ~ 1.2,

(1.28)

where the values of u, d and s quark masses are estimated from the MS scheme at a
renormalization scale of = 2 GeV.

By comparing the results from the Eq. (1.27) and Eq. (1.28), one can easily show
that for the € ~ 0.05 the mass ratios and mixing parameters from Froggatt - Nielsen
mechanism are roughly consistent with mass hierarchy realized in Nature.

There are also other options to reach viable result of quark mass ratios and mixing
parameters, for instance, we can choose other set of charges for quarks [8]

(H(q1), H(q2), H(gs)) = (3,2,0),
(H (uf), H(u3), H(ug)) = (4,2,0), (1.29)
(H(d7), H(d5), H(dg)) = (3,2,2),
and take value of € equal to the Wolfenstein parameter \. = sinf. = 0.22. This choice
can provide correct order of magnitude of quark mass ratios and of the modules of quark

mixing matrix elements.
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1.3.4 Flavour symmetry in the lepton sector

We have seen that neutrino masses are extremely small and the leptonic mixing is very
different from the mixing in the quark sector. A theory addressing the origin of the
flavour parameters must be able to account for such a diversity.

As we have seen, the Froggatt - Nielsen Mechanism discussed in section 1.3.3 can
approximately describe quark masses and mixing. This mechanism can be useful for
the leptonic sector as well. Let us assume that the neutrino masses originate from the
Weinberg operator. The relevant part of the Lagrangian is then

(& C CZ”
yLesl;he + j(zih)(zjh) + h.c. . (1.30)

A possible choice of charges is
(H(lh), H(l2), H(l3)) = (1,0,0),  (H(e}), H(e3), H(e5)) = (3,2,0), (1.31)

with the Higgs field invariant in this U(1)y flavour symmetry. After inserting appropriate
powers of flavon field in the terms in eq. (1.30) and replacing Higgs field by its VEV we
can read-off the form of charged lepton and neutrino mass matrix

¢ e & e € €
mp= 1€ €€ €|, m,=|e 1 1], (1.32)
e 1 1 e 1 1

where the coefficients vyf;- and v?¢;;/A in front of the each matrix entries are omitted.
Taking € = 0.22, one can approximately reproduce the mass ratios of charged leptons
in eq. (1.28). The 23 block of the neutrino mass matrix does not depend on € and it is
diagonalized by an O(1) rotation. And neutrino mass spectrum obtained from the mass
matrix in eq.(1.32) has one small mass that is of the order of €2, and the other two masses
are large compared to the first one. The observed value of the neutrino squared mass
differences therefore require a mild corrections, making an other two large masses to be
accidentally small.

If the Weinberg operator is generated from the type I seesaw mechanism, the above
ideas can be applied to high-scale Lagrangian. The relevant Lagrangian is now

1
,Cﬁavour =+ yl];[l/zcljh + éMisz'CV; + h.C. . (133)

One can assign following U(1)y charges to [; and vf

(H(ll)vHaQ)v H(l3)) = (1’ 070)7

(1.34)
(H(Vf)v H(VQC)7 H(”?f)) = (nhn?’ni’)) )

where ny,ns,n3 > 0, and impose invariance under the flavour symmetry to write the
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neutrino Yukawa matrix and the Majorana mass matrix of right-handed neutrinos in
terms of flavons.

Here we choose generic charges n; for the right-handed neutrino because the result does
not depend on that specific case, as discussed below. The invariant neutrino Yukawa and
mass matrices are

Y

yiév — yg}’ H(v§)+H(;)+H(h)

. . 1.35
(Mp)yj = My OTHO (1.35)
Any symmetric matrix M can always be diagonalized by a unitary rotation V'

M = V' Diag(M;, My, M3)V (1.36)

with My, My, M3 > 0. Therefore, the effective right-handed neutrino mass matrix can be

written as
My = Diag(e", €2, ")V Diag(M,, My, M)V Diag(e™, "2, €"). (1.37)
And Dirac mass matrix reads
my = YVv = Diag(e™, "2, ¢")y" Diag(e, 1,1) v. (1.38)

To obtain the light neutrino mass matrix, we combine the two above matrices in the

seesaw formula

m, = —mNM]glmN,
1 1 1 (1.39)

= — Di 1, 1)y"V' Diag(~——, —
iag(e, 1, 1)y iag( YRSV

W*yN Diag(e, 1,1) v?,
where the charges of right-handed neutrinos disappear. But there is an important caveat
to the previous conclusion which is one of the results of this thesis. The low-scale dis-
cussion of neutrino masses from the Weinberg operator is not always equivalent to the
high-scale discussion within the seesaw mechanism. This will become clear when we study
in detail the equivalent condition for the low- and high-scale analysis in chapter 3. Let M
be the common scale of the parameters My, M,, Ms, then we get a light neutrino mass

matrix
e € € 5
_ v 1.40)
m,=|€e 1 1 T (1.
e 1 1

The above equation holds up to order one coefficients in front of each entries. This
mass matrix requires an order one rotation to diagonalize the 23 block. This, in turn,
suggests that if we choose suitable charges of the lepton singlets ef in order to generate
the hierarchy of charged lepton masses and also to obtain an appropriate solar mixing
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angle, then this mechanism may satisfactorily explain the flavour puzzle in lepton sector.

What we have seen so far are the examples based on the abelian flavour symmetries,
but this is not the only possibility. There flavour symmetries have been proposed, such as,
an approximate non-abelian continuous flavour symmetries [9-13], non-abelian discrete
symmetries such as Ay [14-33], Sy [34-46], T" [47-52], A5 [53-55] and many others [56—
61]. Even thought the symmetry approach is nice and popular, it is not the only possible
one. There are several examples to explain observed fermion mass hierarchy and mixing
through other mechanisms, for instance, without any flavour symmetry [62, 63], fitting
the parameters of grand unified theory [64-66], localization of extra-dimension [67] and
loop corrections [68].

In the last decade, there has been very active research, driven by the experimental
data improvements about neutrino masses and mixing, attempting to find a theoretical
explanations for the lepton mass and mixing pattern via discrete flavour symmetries. In
this context the implementation of Froggatt - Nielsen mechanism goes along the following
line.

e Choose a suitable symmetry group and write their irreducible representations as

well as invariants from their tensor products.

e Assign SM leptons, Higgs fields and other extra fields of the model to the represen-

tations of the chosen flavour symmetry group.

e Write down all possible lowest order terms allowed by the symmetry. Once the
scalars like Higgs and flavons get certain VEVs the charged lepton and neutrino

mass matrices will have some specific patterns.

e Diagonalization of the mass matrices may provide hierarchies between the masses
and useful informations about mixing parameters. In particular, there could be

precise predictions for some of the parameters or for correlations among them.

e Most of the time, symmetry breaking effects are essential to obtain correct mass

hierarchies and the exact experimental values of the mixing parameters.

o If the flavour symmetry (with its spontaneous breaking) successfully describes the
lepton sector, one can attempt a generalization to the quark sector as well, bearing
in mind that the mismatch between the two rotations from up and down type of
quark sectors is small, namely V,, = V; so that VquJf ~ 1, whereas the imbalance
between two rotations U., U, from the charged lepton and the neutrino sector is

rather large.

Although not directly relevant to this thesis work, in the following we will briefly

review the prototypical A, model.
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1.3.5 An example of discrete flavour symmetry: A, model

Discrete non-abelian groups are widely popular due in part to the possibility to obtain
precise prediction for some flavour parameters. The determination of the reactor an-
gle indicated that it is non-zero and sizable although small compared to the other two
mixing angles. Before 63 # 0 was known, the experimental data for the solar and at-
mospheric mixing angles were matched quite well with so called Tri-Bimaximal Mixing
(TBM) ansatz [69-73], which is defined by

015 = arcsin(1/v/3), Oy = —7/4, 013=0, (1.41)
or, alternatively, by
2 1
Ry S
=|_-1r 1 _ 1
V6 VB V2 (1.42)
1 1 1 0 1 0
L g =
1 w W? % e
2 V2

where w = €2™/3. It is easy to see from the structure of this mixing matrix that the
elements in the second and the third columns correspond to the tri-maximal and bi-
maximal mixing, respectively. In the charged lepton mass basis one can easily find the

general form of neutrino mass matrix with eigenvalues mq, mo, ms > 0 diagonalized by

Urm
a b b
m,, = Urpy Diag(my, mo, ms)Ulgy = | b a+c¢ b—c |, (1.43)
b b—c a-+c
where
1
a= §(2m1 +ma),
1
b= —(mg —ml), (144)

c=—(mg—my).

| — W
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An important observation is that the mass matrix in eq. (1.43) is invariant not only under

the 23 permutation P,3 but also under the unitary rotation

1 -1 2 2
StEM = 3 2 -1 21,
, o 4 (1.45)
m, = S%BMmVSTBMy m, = 27:>,m1/P23 .

The two transformations commute with each other, [Py, Stem] = 0, and S2gy; = 1. The
above observations hint towards the existence of some discrete flavour symmetry in lepton
sector.

Even though the choice of a discrete group for the explanation of lepton masses and
mixing is not unique, the group A, became popular for several reasons. First of all, it is
the smallest group, thus it is particularly economical, with three dimensional irreducible
representation. Moreover, it can explain observed neutrino mixing parameters although
not anymore in its simplest form. The group A, is a symmetry group of regular tetrahe-
dron and is the even permutation group of four objects, as such it is a subgroup of S, as
well as a subgroup of the continuous group SO(3). The presentation of A, with its two
generators S and 7' is given by

Ay o (S, T|S*=T°=(ST)® =e). (1.46)
All of its 12 elements belong to 4 conjugacy classes

Ci:e
Cy:T,ST,TS,STS
Cs: T2 ST, TS, TST
Cy:S,T*ST, TST?.

(1.47)

This implies that A4 contains four inequivalent irreducible representations (irrep) with

multiplicity my, ms, mg for the representations in each dimensions, and satisfy

mi + 4mse + 9mg = 12
! 2o (1.48)

m1+m2+m3:4.

This equation has a unique set of solutions, m; = 3, my = 0 and m3 = 1, meaning that
A, has three one-dimensional irreducible representations, 1, 1’ and 1”, and one three-

dimensional irreducible representation 3. The corresponding matrix representation of the
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generators are

1: S=1 T=1 (1.49)
I: S=1 T=e*/?
17: S=1 T=¢d/?
I 0 0 010
3: S=10 -1 0|, T=]001
0 0 -1 1 00

Note that there is an abuse of notation for S and T. These are, here, referring to the
unitary representations of the two generators but not to the generators anymore. From
those representations we can further notice that the irreps 1 and 3 are real representations
and 1/, 1” are complex conjugated representation of each other. One can see that the three-
dimensional representation is written in the basis where the generator S is represented
by diagonal matrix but 7" is not. In principle, one can find infinitely many equivalent
representations through basis transformation. Among them there is one interesting basis
where the representation of T' is diagonal. The basis change is obtained by means of the

unitary rotation

] 1 1 1
V=—]1 o w], (1.50)
V3 1 w w?

where w = ¢27/% = (=1 + iy/3)/2, obviously satisfying the relations w? = w* and 1 +
w+ w? = 0. Going to the basis where the representation of T' is diagonal has the
interesting feature that the representation of S coincides with the Stgy in eq. (1.45), i.e.
VSV = Sty and VTV = Diag(1,w,w?). This is a good omen for A, to be important
candidate of flavour group. As the physical quantities are the same in all equivalent
representations, we will continue our discussion in the original basis.

Having the specific representations of the group elements, we can find the tensor
product decomposition rules

I1x1'=1,1x1"=1",
U'x1=1"1x1"=1,
1//><1//:1/
3x3=1+1+1"43,+3,.

(1.51)

The product of two one-dimensional representation is easy to obtain. To see the form of
the each component representations in the decomposition of 3 x 3 consider following two
triplets

a = (a,as,as), b= (b1, bs,b3), (1.52)
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transforming under S and T in eq. (1.49) as S(a1, az, az) = (a1, —aq, —as) and T'(ay, as, a3) =

(ag, as,ar). The irreducible representations obtained from their product (ab) are

1 = a1by + azbs + asbs

1" = ayby + w?ashy + wasbs

1" = ayby + waghy + wasbs (1.53)
31 = (ab)1 = (azbs, azbi, arb2)

39 = (ab)a = (asby, a1bs, ashy).

Let us look at 3; as an example. From the transformation properties of the triplets a and

b one can easily see that

S (a2b37a3b17a1b2) = ($1,$2,l‘3) - (a/2b37 —asby, —(1152) = (951, —T2, —953)7 (1 54)
T (agbs,asby, ar1by) = (21,22, x3) — (azby, arbe, asbs) = (xq, 23, 21).

This is nothing but the transformation of a triplet under S and T'. Therefore, (asbs, asby, a1bs)
is a triplet under the group representation. Analogously for the representation 3,.

Having found the group and its representation, now we come to next step of the recipe,
which is to assign fields to the different representations and to write down invariant terms
under A,. The following discussions are along the line of the model in [20]. This model
contains, on top of the SM leptons, two Higgs doublets h,,, hy as well as two scalar triplets
v, ¢ and a real scalar singlet ¢ of A4. The scalar fields ¢, ¢ and & are taken to be singlets
of standard model gauge group, they are necessary to the spontaneous breaking of Aj.
Field assignments to representations of the flavour group A, are as follows

[~ 37 67,? ~ 17 1//7 1,7 hua hdag ~ 17 P, ¢ ~3 (155)

The lowest order Lagrangian includes the following SM gauge invariant and A,-invariant

terms

£5Y Lec(olha + % (halhy) + %gb(lhulhu) +het. .., (1.56)

where the ellipsis refer to higher order terms in the expansion in (VEV/A), whose effects
are under control and can be made negligibly small. The terms obtained by the exchange
of ¢ < ¢ or a missing term in (lh,lh,) are prohibited by imposing an additional Z,

symmetry under which
l_>Zl7 efﬁ_iegu ¢_>_¢7 €_>_€7 (157>

all the other fields are invariant under this symmetry.
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The two Higgs doublets get VEVs (h,, 4) = v, 4 and the other scalar fields also develop
VEVs in the following form

(o) = (v,v,v)"
<¢> = v/>070)T7 (158)
(€) =u

The possible origins of these VEV alignments have been investigated in the context of
extra dimension [20, 74] and super symmetry [26], we will not enter in those details here.
The charged lepton mass matrix is obtained from the first term in the Lagrangian

Z e %ei(%h + alo + p3l3)ha

+ %65(@1[1 + LUQQOQZQ + wg03l3)hd (159>

ygc

TG

s(p1ls + wpals +w 80313)hd-

Once the scalar fields get VEVs we will have

v
ylA dei(el + eg + e3)

()
%ec (61 + w262 + weg) (160)

VU
y3A deg(el + wey + wes),

(me)ijeie; =

_|_
from which the charged lepton mass matrix can be read off as

v N W hn

d

Me = T Y2 w2y2 WYz . (161)
ys wys w’ys

Doing a similar exercise for the second and third terms of the Lagrangian in eq. (1.56)

we can derive the neutrino mass matrix

a 0 0
m,=|0 a b, (1.62)
0 b a

where a = cjuv?/A? and b = cyv'v?/A?. The charged lepton mass matrices can be
diagonalized by following rotations

1 1 1
Ve = el , Vo=—11 w? w |, (1.63)
1 w w?

eiozg \/§
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where a1, ag, a3 are the phases of yq, y2, y3 respectively, in a such way that

V3uu Y1
Ve 2 Ve. (1.64)

|y3|

me =

Note that V, is the first term in the Tri-Bimaximal mixing matrix in eq. (1.42) and
that the values of the charged lepton masses are arbitrary, depending on the sizes of the
parameters y;. Thus there is no explanation of the charged lepton mass hierarchy. The
charged lepton mass spectrum is

(me,myme) = (VBlyalova) /A, (VBlyelvva) /A, (VBlyslova) /A) - (1.65)

if |y1] < |y2] < |ys|. The neutrino mass matrix can be diagonalized by the rotation

0 L L
V2 V2

Vo=11 0 0 (1.66)
0 G

up to relative phases of the eigenvalues. This matrix is the Hermitian conjugate of the

second term in eq. (1.42), and the neutrino masses are given by

a-+b
m, =V a V.. (1.67)
—a+b
The PMNS matrix is
Upnns = VeV
1 1 1 0 1 0
L PR I R
V2 V2
V3 1 w Ww? L i 1.68
2 V2 (1.68)
2 1
5 v
=|_1Xr 1 _1]=
V6 V3 V2
The leading order predictions of A, flavour symmetry in this model is exactly Tri-
Bimaximal mixing. The neutrino masses are predicted to be m; = |a + b|, ma = |al,
ms = | —a + b| and one can fix these parameters a and b according to the observed

solar and atmospheric mass square differences. As it was pointed out before, there is no
explanation of the charged lepton mass hierarchy. One can overcome this drawback by

introducing an additional flavour symmetry U(1)y and assigning, as usual, a negative
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unit of charge for the flavon field and non-zero charges only for the right-handed fields
H(e)=4, H(u%) =2, H(%) =0, (1.69)
and we have Yukawa couplings in terms of the flavon parameter e
v = O(Y), vy, =O(?), y,~0(1). (1.70)

This result rather nicely agrees, if the flavon parameter ¢ has a value of Cabibbo angle,
with the observed charged lepton mass ratios. The discussions above have shown the
success of the A, flavour model in describing observed lepton masses and mixing, but, of
course, it is not the only viable model of flavour symmetry. Moreover, possible origins of
the lepton masses and mixing from different flavour groups have been studied. To know
more about flavour symmetry models, the interested reader is referred to the excellent
review articles [75-79).

In this chapter we saw that flavour symmetry seems fruitful way to account for the
SM fermion mass hierarchy and mixing. Even thought this kind of symmetry argument
is appealing, but there is no solid bases to believe that this is the way that Nature has
chosen. As Richard P. Feynman said: “It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.”

1.4 The SM as an effective field theory from TeV

scale physics

As we have mentioned before, the EFT Lagrangian can be constructed from the SM
Lagrangian by adding non-renormalizable operators. Since the SM Lagrangian is already
well known, discussions in this section will be about the non-renormalizable part of the
EFT Lagrangian. At the beginning of this section there will be a brief review on the
non-renormalizable operators, regarding their classifications in each dimensions and their
generic properties related to the conservation/violation of the SM accidental symmetries.
Then, at the end, we will particularly focus on the triple gage boson couplings and
contributions of the relevant dimension six operators.

Let us now go back to the EFT approach and systematically analyses the possible
non-renormalizable operators appearing in the expansion in the Lagrangian. Starting
from the lowest order non-renormalizable operators, in the dimension five level there is
only one such an operator — Weinberg operator. As we already know, this operator
contributes to the neutrino mass generation, that was already discussed in section 1.3.
The next order involves dimension six operators which are suppressed by the second power
of new physics scale. In contrast to the only one dimension five operator, they emerge
in quite big number and give rise to very reach physical consequences. As we saw in the
section 1.3, the dimension five operator violates the lepton numbers, whereas the baryon
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number is still preserved. One might expect that dimension six operators may break both
B and L;. This is indeed the case.

We have seen that lepton number violation start to appear from the operator with
mass dimension > 5 and baryon number can be violated by the operator with dimension

¢

> 6. Now, one may wander “ is there any general condition relating the dimensions of
the operators to the conservation of both lepton and baryon number?”. The answer is
yes and is very simple: only the even dimensional operators can conserve both lepton
and baryon numbers [80]. Namely, having an even dimension is the necessary (but not
sufficient) condition to conserve both B and L;. The proof of the statement also rather
easy. Any operator, conserving both L; and B, must consist of SM fermion pairs, Higgs
field, covariant derivative and gauge field strength (in a suitable combinations of these

components) listed in table 1.2.

Basic blocks Lorentz indices SU(2) doublets Dimension ~ Sum
Yy, h.c. 0 1 3 4
Plota 1 2 3 6
Yeotapet 1 0 3 4
Yo, h.c. 2 1 3 6

h, b* 0 1 1 2
D, 1 0 1 2
By, G, W, 2 0 2 4
Effective operator even even D D-+even

Table 1.2: Basic building blocks of the operator conserving both lepton and baryon
numbers, 1 collectively denotes a left-handed SM fermions.

Constructing an effective operator from the ingredients in this table requires to have
even number of Lorentz indices to make invariants and also even number of SU(2) doublet
fields to have either singlet or triplet. Table 1.2 shows that each of these elementary pieces
have an even number in the sum of their Lorentz indices, SU(2) doublet fields and their
mass dimensions. Any effective operator built by the several copies of these constituents
will always end up having an even number in the sum and that is exactly equal to D plus
an even number. This means that dimension D of the effective operator must be even
too.

In summary, both lepton and baryon number conserving operators can only appear
in even dimensions, odd dimensional operators violate either lepton numbers or baryon
number or both. Note that this does not mean lepton (or baryon) number violating
operator presents only in odd dimensions, it can happen in the even dimensions as well.
If one aims at constructing an effective field theory extension of the SM that preserve

both lepton and baryon numbers, the Lagrangian in eq. (1.8) is reduced to

(20)
Lepr = Lsu+ Y Y o087 (1.71)

A
d>3 1
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After getting this general argument, the B and L; conserving dimension six operators
are in the focus of the next discussion. They have been extensively studied in the recent
literature [81-88]. There are several types of basis for the dimension six operators, but
physics is always basis independent and one can choose prefered basis according to the
convenience of addressing the targeted problem. The following discussions will stick to
the so called Wasrsaw basis in Ref. [86] which exhaustively classifies all 59 independent
dimension six baryon number conserving operators and 4 baryon number violating op-
erators that occur in four fermion interactions. All of these baryon number conserving
operators are divided into following 8 classes according to the field contents and number
of covariant derivatives

3 6 412 2 2
P M DR, B (1.72)
YOH®, YYE,H, vOHD, ()7,

where F,, = GA W! B

H’V’ MV’ MV

A=1,...8 1=1,2,3 and H is Higgs doublet. This refer-
ence basically updates Ref. [83] by performing detailed rederivation of the independent
operators and excluding the redundancies, and provides complete lists of operator basis,
with explicit flavour indices p,r, s, t, shown in table 1.3 and table 1.4.

H% and H*D?

3
Fy,

Y H?

Qo = FABCGGEPGSr
Qg = JAPCGMGBGEr
Quw = VKWW oW Kn

LK v J e K
QW =€ WM 1% Wp

Qu = (H'H)?
Quo= (H'H)O(HTH)
Qup = (H'D*H)" (H'D,H)

QeH = (HTH) (ZperH)

Qui = (H'H)(gpu, H)
Qan = (H'H)(Gyd, H)

F H? VOF, H Y H2D
Que = HHHGAGY  Quy = (lo™e,)o! HW!, O — (1D, H) (1,71,
Que = HHGALGY  Qup = (l,o"e,) HB,, () = (H'iD] H)(l,0""1,)
Quw = HHHW! Wi Q¢ = (g0 Tu,)H G4, Que = (H'iD, H)(e,7"e,)
Quiw = HHHWLW!™  Quy = (g0 u, )’ HWL, Q) = (H'i D, H)(g,7"a,)
Qup =H'HB,B"  Qup= (40" u)HB,, Q) = (H1iD! H)(g0'"q,)
Qus=H'HBLB"  Qua= (40" T*)HG}),  Qu. = (H'D, H)(@",)
Quwp = HIT'THW/!,B*  Quw = (g0"d,)oc’ H W], Qua = (HTi HM H)(d,y*d,)
Quivp = HIo!HWLB"  Qup = (q,0"d,)H By, Q#tua = i(H' D, H) (7" d, )
Table 1.3: List of independent dimension six operators, except for four fermion

interactions. Here H = io2H* and EW = %ewaﬁFO‘B . Flavour indices are omitted for

Q’s.
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(LL)(LL) (RR)(RR) (LL)(RR)
Qu = (Lyyulr) (") Qee = (Epuer)(Es7"€r) Qie = (Lpyulr) (€7 er)
Qqq = (@Yur) (@7 t) Quu = (Tpyuuy) (T uy) Q= (vaulr)(ﬁsyﬂut)
Qqq = (@74 (@7 7" ) Qdd = (dyyudr) (dsydy) Qua = (lyyulr) (dsydy)
= (LYl )(@7"a2) = (epyuer)(Usyur) Qqe = (@pu0r) (€7 er)
“”) = (LY 1) (@77 ) Qed (Epvuer) (dsydy) W = (Gea) @y u)
Q= (1 wur)( lidy) ® — (@ Ae) (@ T u,)
Qul = (@ T ) (A TAd) - Q) = (@ar)(diyd)
Q= (@7, T",) (A" T"d))
(LR)(RL) and (LR)(LR) Baryon number violating operators
Qiedg = (l]er)(cisqg) Qaug = €z, [(d)TCul] [(¢77)T ClY]
((IL)qd (qpuT)ejk(qsdt) Qaqu = € mejk [( )ch ] [(UZ)Tcet]
t(zi)qd = ( JTAu,,)ejk( STAdt) Qqgq = Ejnekm [( a, )chrk] [(QZ”“)TCZ?]
Qlega = (Ber)esn(tur) Qaun = €77 [(d2)TCuf] [(u])T Cey]
= (

e
(3) i;o'uuer)ejk (qi‘?o-#”ut)

lequ

Table 1.4: List of independent dimension six four fermion operators. Flavour indices
of ’s are omitted.

Phenomenology of the dimension six operators have been studied during the past
few decades [89-93], bounds on the Wilson coefficients were set by the several experi-
ments [94]. Nowadays, there is a quite big effort made by the LHC to find more accurate
bounds on coefficients of these operators [95-97]. In the chapter 4 we will discuss more
about the effects of dimension six operators on the SM triple weak gauge boson cou-
plings and give proposals to enhance the interference between the SM amplitude and
contribution from these operators.

To go further, a complete list of 20 independent dimension seven operator are pre-
sented in Ref. [98], all of these operators violate lepton number and 7 of them violate
baryon number as well, as this is the common feature of all odd dimensional operators.
Dimension seven operators also have very important phenomenological implications for
the new physics searches. For instance, they are very useful to study leptogenesis as well
as baryogenesis for understanding of the matter-antimatter asymmetry in the Universe,
which is not inside the scope of this thesis, though.

There have been many studies for finding the number of independent higher dimen-
sional operators. For example, dimension eight operators are discussed in Ref. [99], and
algorithm for the determination of the contents and non-redundant numbers of any higher

dimensional operators for general effective field theories can be found in [100-102]. Since
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the higher dimensional operators are more suppressed and have a little effect on low en-
ergy physics, in the chapter 4 we will focus only on some of the dimension six operators.
In particular, we discuss only about the CP-even dimension six operators that conserve
both baryon and lepton numbers. For this reason, we will skip the analysis for all the
other operators with dimensions higher than six.

1.4.1 Anomalous triple gauge boson couplings

Due to the non-abelian nature of the SM electroweak (EW) gauge symmetry, it is possible
to have three gauge boson interactions. The Lgauge part of the SM Lagrangian in eq. (1.6)
contains following three EW gauge boson interactions

AL = ig (WLWHW = — W WHWH 4+ W3 W W) | (1.73)
where

1
Wt =9,WE—-o,W, W= —W!FiWw?

o TRy " " \/5( w W) (1.74)
le, = 8HW5’ — 8VW3, W3 = cos OwZ, +sinbw A,

In

in which fy is a weak mixing angle. This Lagrangian provides the interaction vertex of
two W bosons with a Z or with a photon, i.e. WHtW~V with V = Z,~. In general, the
triple gauge coupling (TGC) of WTW ™V can be obtained from the following effective
Lagrangian [103]

Lrae/gwwy = ig) (WEWVF =W WHVE) + iy W, W,V 4 e W W Ve
gV e (Wﬁpw—) v, — gl wiw; <8“V” v a"w)
W 4 A W+W wye, 1.75

Here the SM gauge couplings are gww, = gsinfy = e and gwwz = gcos Oy, the field
strength is F,, = 0, F,—0, F, with F = W* V| dual field strength is V,, = +eupe VP and
wiro,w,; =wr0,W,;) - (9,W, )W, . There are 14 anomalous triple gauge couplings
(aTGCs) in total, among which 6 couplings g{', k1 and Ay conserve both parity (P) and
charge conjugation (C') while remaining 8 couplings violate either P or C. Comparing
two Lagrangians in eq. (1.74) and eq. (1.75) one can easily see that in the SM

o =ry =1 Ay =g =gl =Fkv =X\ =0. (1.76)
Invariance under the U(1)gy gauge symmetry requires g; = 1 and g/ = g7 = 0. Since
our future discussions related only to the C'P-conserving interactions, we are left with
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following five aTGCs
(59172, 5/47, 5%2, >"y7 )\2, (177)

where 091,z = g1z — 1 and 0k, z = Ky, 7z — 1.

If we want to parameterize the triple gauge boson interactions from the EFT La-
grangian that contains the C' P-conserving dimension six operators, a convenient basis of
the dimension six operators relevant for our future discussions is the SILH basis [85, 104],

in which the operators contributing to aTGCs are

Z.CWg iH“ v )
Ow = o7, (HTUD H> D'W,,,

w9

A (D*H)'o' (D" H)W!

o

(1.78)

Oyp = (D*H)Y(DYH)B,, ,

C3w g TUYAT] k
= = = .. W'"™W PM/ 1%
Oaw = 6M2, Cigk MW v o

where HTBMH = HY(D,H) — (D,H")H and D W, = 0,Wg, + gsabCW£W§p. The first
operator Oy, contributes to oblique parameter S [105, 106, its coefficient cy is tightly
constrained to be around 107 by EW precision measurements [94, 107-109], we can ne-
glect its effect in the first order approximation. There is following set of relations between

the aT'GCs in eq. (1.77) and Wilson coefficients of those dimension six operators [84]

2
591,2 = CHW/ COS ew,

2
(5:‘12 = CHW — tan QWcHB s

(1.79)
dky = caw + CHB ,
>\Z = )\'y = CGw ,
from which one can find following relation between 6¢g; z and drz,
8917z = 0Kz + tan® Ok, . (1.80)

So we have only three independent aTGCs conserving both C' and P. From above rela-
tions between the aTGCs and Wilson coefficients we can always translate experimental
bounds on the aTGCs to constraints on the corresponding dimension six operators. More
discussions about aTGC will be given in chapter 4.



Chapter 2

Flavour symmetries in the

symmetric limit

2.1 Introduction

As discussed, the origin of lepton masses and mixing is one of the open problems in the
particle physics. One of the most popular attempts at understanding the SM fermion
mass and mixing pattern makes use of flavour symmetry groups [7, 9, 10, 12, 63, 110
119]. The flavour symmetry G is spontaneously broken to a subgroup H (trivial if G is
completely broken). And the source of breaking is provided by the vacuum expectation
value (vev) of one or more scalar fields (“flavons”), which are singlets under the SM,
but transforming non-trivially under G. We write the charged lepton and neutrino mass

matrices, mg and m, , as a sum of two components

mg = mSEO) + mg)

(2.1)

my, = m,(jo) + m,(jl) ’

where mg), m'” are invariant under G, therefore survive in the limit in which the flavour

symmetry is unbroken, while mg), mY are generated after the symmetry breaking, so
they are invariant under H but not under G, and vanish in the symmetric limit. The
non-vanishing entries in m(b?), ml(,o) are often, and here, assumed to be of the same order,
according to the principle that flavour hierarchies should be accounted for by the flavour
model itself. The size of the corrections associated to the symmetry breaking effects is
assumed to be smaller than the values of m(EO) and mY (except, of course, the case of
these leading order terms vanish).

As the problem required, we have to distinguish two cases whether the leading order
pattern of lepton masses and mixings is completely determined by the flavour symmetry
alone or the symmetry breaking effects are necessary to be considered. Therefore, our

attention will be focused on following two separate scenarios.
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(0)

1. The symmetric form of the mass matrices, m’ and md

, provides an approximate

description of lepton flavour observables, in particular of the PMNS matrix; mg)

and m,(jl)

provide the moderate correction necessary for an accurate description. In
such a case, we can say that the leading order pattern of lepton masses and mixings

is accounted for by the flavour symmetry itself.

2. The symmetry breaking corrections are important even for an approximately correct
description of lepton flavour observables. That will appear in two ways: either the
size of corrections is turn out to be not smaller than the non-vanishing symmetric
terms, this can happen if m(g) or m,(,o) vanishes, in which case the PMNS matrix
is fully undetermined in the symmetric limit; or in the presence of an accidental
enhancement of the role of mg), mM 1
Having made the goal clear, we are going to provide a complete study of the first case

and, meanwhile, assessing the need to resort to the second possibility. More specifically,
we will obtain a complete characterisation of the flavour symmetry groups G (of any type)
and their representations on the SM leptons providing an approximate understanding of
lepton masses and mixing in the symmetric limit. Moreover, we will show that the results
can be extended to the second case as well, if some (non-trivial) hypotheses hold.

The first case has been extensively considered since the earliest attempts of under-
standing the pattern of fermion masses and mixings. As charged fermion masses show a
clear hierarchical structure, it is natural to account for the lightness of the first two fami-
lies in terms of small symmetry breaking effects. For instance, the symmetric limit could
allow the third family to acquire a mass but not the first two. The symmetric limit is
then close to what observed, with the small Yukawas associated to the lighter families ap-
proximated by zeros. Considering the quark sector, all the quarks except top and bottom
quarks can be massless in the symmetric limit and the CKM matrix is approximated by
the identity matrix. The lighter masses and the small CKM mixings are then generated
by small perturbations of the symmetric limit associated to the spontaneous breaking of
the flavour symmetry.

Does the above scheme apply to neutrino masses and mixings as well? While many
models have been proposed in which it does, but, as far as systematic analysis is con-
cerned, the charting all possibilities is missing. Given the large variety of possible cases,
it is not a priori obvious that a complete analysis can be carried out in an effective way
and would produce results that can be expressed in a concise form. Interestingly, this
turns out to be the case: the problem can be studied in full generality, admits a precise
mathematical formulation, and a complete and compact solution. While specific imple-

mentations of the full solution are well known, the analysis shows that the options we will

!This is the case for example if one of the neutrino masses obtained in the symmetric limit is acci-
dentally suppressed and ends up being of the same order of the smaller symmetry breaking corrections.
In such a case, the symmetric limit prediction for some of the lepton mixing angles can be drastically
modified, and actually determined, by the symmetry breaking effects [120-123].
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find are the only possible ones, thus providing a final answer to the above question. The
mathematical formulation of the problem, and the definition of “approximate description”
will be discussed in section 2.2.

As we will see, while the possibility that lepton flavour can be approximately under-
stood in terms of a symmetry principle alone is aesthetically appealing, future data might
disfavour it. In such a case, the symmetry breaking effects become essential for an under-
standing of lepton flavour. One can then wonder whether the knowledge of the symmetry
breaking pattern G — H can be sufficient, or the intricacies of the flavon spectrum, vevs,
and potential should be specified. The knowledge of the breaking patter is sufficient if
mg) or m vanishes in the symmetric limit and the corrections mg), m) are in the
most general form allowed by the residual symmetry H, with all their entries of the same
order. Under such a (non-trivial) hypothesis, it turns out that the techniques developed
to study the symmetric limit can be easily extended to study this case as well, and that
the conclusions do not change.

The analysis we perform is fully general in the assumptions that i) the light neutrino
masses are in Majorana form and ii) the symmetry arguments can be applied directly to
the light neutrino mass matrix (or to the Weinberg operator from which it originates).
The second assumption is relevant in the case in which the light neutrino mass matrix
arises from physics well above the electroweak scale, the prototypical case being the
integration of heavy singlet neutrinos in the context of the seesaw mechanism. In such
a case, the heavy degrees of freedom also transform under the flavour symmetry, and
a symmetric limit can be defined for their mass matrix as well. One can then wonder
whether the “low energy” analysis performed in terms of the light neutrino mass matrix
captures the features of the full analysis. This turns out to be true in some cases, but
not always, the necessary and sufficient condition of two analysis being equivalent puts
some non-trivial conditions on the representations of lepton doublet and singlets, which
will be thoroughly study in the next chapter.

The discussions in this chapter goes along the following order. Section 2.2 contains
the main result obtained from the general analysis, i.e. the classification of flavour groups
and representations leading to an approximate description of lepton masses and mixings.
Section 2.3 discusses the case in which either the neutrino or the charged lepton masses
all vanish in the symmetric limit, and lepton mixing is determined by symmetry breaking
effects. The additional constraints provided by grand-unification will be the subject of

section 2.4. Finally, in section 2.5 we draw conclusions of whole chapter.

2.2 Lepton masses and mixings in the symmetric
limit

In this section, we aim at providing a full characterisation of the flavour groups GG and their

representations on the leptons leading to an approximate description of lepton masses and
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mixings in the symmetric limit. We will proceed in two steps. First, in section 2.2.1, we
will list all representations leading to an approximate description of lepton masses (but
not necessarily of lepton mixing). Then, in section 2.2.2, we will select among them the
cases in which the PMNS matrix is also approximately realistic in the symmetric limit.
Meaning that all the entries, only exception may apply for the 13 element in the first
approximation, of the PMNS matrix must be non-vanishing in the symmetric limit, as
the magnitudes of all the other entries are in the range of order one and smallness of 13
entry can be generated from a correction.

First of all, we need to define which lepton mass and mixing patterns we consider an
approximate description of what observed and to give a precise mathematical formulation
of the problem of finding the groups and representations associated to those patterns.

The full list of charged lepton and neutrino mass patterns that we consider to be
close to what observed is in table 2.1. Let us illustrate the table by considering a few
examples. The case in which the three charged lepton masses are in the form (A,0,0)
can be considered to be close to what observed because of the smallness of the electron
and muon masses compared to the tau mass. Only a small correction to that pattern
is required in order to provide an accurate description of the charged lepton spectrum.
On the contrary, a pattern such as (A, A,0), for example, cannot be considered to be
close to what observed, as no pair of charged lepton masses are close to be degenerate.
The pattern (A, B,0) is in between. It can be considered close to what observed if A
and B are allowed to have different sizes, with B < A, or vice versa. But not if A
and B are assumed to be of the same order of magnitude, unless one entry is accidentally
suppressed with respect to the other. In the neutrino sector, a pattern in the form (a, 0, 0)
can be considered to be close to what observed, as only a small correction is required to
obtain a realistic normal hierarchical spectrum. The pattern (0, a, a) also provides a good
approximate description, as a small correction splitting the two degenerate eigenvalues is
only required to obtain a realistic inverted hierarchical spectrum. A normal hierarchical
spectrum is at present favoured by data [5, 124, 125], but we still retain the inverted
spectrum as a viable possibility.

All the entries in table 2.1 are assumed to be positive or zero. The last column of
the table corresponds to the possibility that the mass spectrum is fully determined by
symmetry breaking effects. Such cases will be considered in section 2.3. Here, we only
need to consider the cases in the first two columns. In the first column we list the cases
that can be considered as good leading order approximations even when all the non-zero
entries are of the same order of magnitude. The cases in the second column, on the
contrary, require some degree of hierarchy or degeneracy between the non-zero entries.
Such a distinction is more important for charged leptons than neutrinos. The hierarchy
among non-zero entries required in the charged lepton cases to account for the hierarchy
me < my, < m; is O(20) in the (4, B,0) case and O (200) in the (A, B,C) case. On
the other hand, in the neutrino case only milder hierarchies up to O (5) are required to
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, _ (fully undetermined
non-zero entries hierarchy among . .
. in the symmetric
of the same order non-zero entries limit)
charged (A, B,0)
leptons (4,0,0) (A, B,C) (0,0,0)
neutrinos
o (00,0
neutrinos (a,a,a) (a,b,0)
0,0,0
NH or TH (a,b,b) (a,b,c) (0,0,0)
neutrinos
o (0.0,0)

Table 2.1: Charged lepton and neutrino mass patterns in the symmetric limit.

account for Am2,/|Am3,] < 1 in the normal hierarchy case?. Such a mild hierarchy is
not too far from what can be considered to be of the same order. Therefore, we will only
care about the distinction between first and second column in the case of charged leptons.
In the case of neutrinos, we distinguish the cases leading (after taking into account small
symmetry breaking corrections) to a normal hierarchy (NH), an inverted hierarchy (IH),
or to any of the two depending on the sizes of the non-zero entries.

A pedantic remark on the patterns in table 2.1 (which however will play a role in the
following) concerns the fact that the pattern (a,b,0), for example, includes the case in
which b = a, as well as the case in which b = 0. We define a mass pattern to be “generic”
if all the entries that are allowed to be different from each other and non-zero are indeed
different from each other and non-zero.

As for the PMNS matrix, we will consider it to be close to what observed in the
symmetric limit if either i) none of its elements vanishes or ii) only the 13 element vanishes.
Indeed, all of the PMNS entries appear to be of order one, with the exception of the 13
element, |(Upmns)is| &~ 0.15. One of the 21 and 31 elements can be as small as about
0.25 if leptonic CP violation will turn out be small, unlike what the present fits seem to
suggest [4, 5, 126, 127]. All other elements are bound to be larger than 0.45 (3¢ bounds
from [4]). As a consequence of the above definition, we will not consider PMNS matrices
corresponding to a single 2 x 2 transformation in the 12, 23, or 13 block, which would
require at least four matrix entries to vanish. In the case of PMNS matrices obtained
by the combination of two 2 x 2 transformations in different blocks, the PMNS matrix
contains one vanishing entry, which is located in the 13 entry if the two 2 X 2 rotations
are in the 23 and 12 block (in this order).

2For inverted hierarchy, a stronger accidental degeneracy is required. For example, in the (a,b,0)
case, a/|b — a] = O (50) is required.
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Having specified the mass and mixing patterns that we consider viable in the symmetric
limit, we now want to characterise the flavour groups and representations leading to any
of those patterns. Let us then give first of all a precise formulation of the problem.

The flavour symmetry group G acts on the SM leptons [; and ef through unitary
representations U; and U, respectively. Here e ~ e denotes the conjugated of the
right-handed SM leptons (SU(2), singlets with hypercharge Y = 1), and | = (v,e)
denotes the left-handed leptons (SU(2); doublets with hypercharge ¥ = —1/2). With
this notation, all the fermion fields are left-handed, which will also turn out to be useful
when we will discuss grand-unification in section 2.4. The charged lepton and neutrino

mass matrices arise from the Yukawa and Weinberg operators respectively,

c * Cij
NS, 2—j\zizjhh, (2.2)
and are given by
mg = Agv, m, = cv?/A, (2.3)

where h is the Higgs field, v = |(h)|, and Lorentz-invariant contractions of fermion indices
are understood. Note the convention in which the singlet leptons appear first in the
Yukawa interaction. Note also that the action of GG is the same on the two components
of l;, v; and e;, as it is supposed to commute with the SM gauge transformations.

To get a conclusion for the most general case, the group G is assumed to be an
arbitrary. It can be continuous or discrete, simple or not, abelian or not, or arbitrary
combinations of the above. It is supposed to include all the relevant symmetries, including
those possibly used to force specific couplings of the flavons. We denote by U; and U..
its representations on the doublet and singlet leptons respectively. From the invariance
of the Yukawa and Weinberg operators, one finds that the lepton mass matrices mg, m,
are invariant if they satisfy

my=UL@)mU(9)  m,=Uf(g)m, U, (9) VgeG. (2.4)

€

In principle, the Higgs doublet h also have a non-trivial transformation property under
the flavour symmetry G, but in this minimal setup, considering only the SM particles,
we have one family of Higgs field and thus a possible transformation of h under GG can be
reabsorbed in U; and U,e.

We can now formulate the problem we want to address as follows. For each of the
3 x 6 = 18 combinations of charged lepton and neutrino mass patterns in table 2.1
(excluding the ones in the third column), we want to determine, or characterise, all
groups G and representations U;, U corresponding to those mass patterns and leading
to a viable PMNS matrix. We say that the group and its representation “correspond to”
or “force” a given mass pattern if i) the eigenvalues® of any pair of invariant matrices mg,

m,, follow that mass pattern, and if ii) there exists at least a pair of invariant matrices

3Here and in the following we use “eigenvalues” to refer to the singular values of mg, m,,.
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mg, m, such that the eigenvalues not only follow that mass pattern, but are also generic
(i.e. with all entries that are allowed to be different and non-zero being different and
non-zero). The second requirement is needed, as otherwise we could end up with groups
and representations corresponding to a different, more constrained, pattern.

Note that it is important to write the invariance condition for mg, as in eq. (2.4), and

not for mim,. In the latter case, the important role of U would be lost.

2.2.1 Accounting for lepton masses

In this section we characterise all the groups and representations that force each of the
18 combinations of charged lepton and neutrino mass patterns in the first two columns
of table 2.1. It turns out that it is possible to characterise them in terms of their de-
compositions into irreducible representations (“irreps”), and of the dimensionality, type
(complex, real, or pseudoreal), and equivalence of the irreducible components.

We remind that a representation is called “complex” if it is not equivalent to its
conjugated representation. A representation that is equivalent to its conjugated is called
“real” if it can be represented by real matrices and “pseudoreal” if it cannot. Pseudoreal
representations have even dimensions.

The full list of irrep decompositions corresponding to a given mass pattern is shown in
tables 2.2, 2.3. The first table only contains the charged lepton mass pattern that does
not require hierarchies among the non-zero entries, (A,0,0), while the second contains
the cases in which a hierarchy is necessary, following the classification in table 2.1. In the
rest of this section we will prove and illustrate the results in tables 2.2, 2.3.

In order to prove the results in the tables, we note that there is a close connection
between the mass patterns and the irrep decompositions, which we now illustrate. Since
the extension is straightforward and useful, let us consider the general case of n lepton
families. Let us choose a basis in flavour space in which the charged lepton mass matrix

is diagonal, my = Diag(m¥...mP). In the symmetric limit, the mass eigenvalues are
assumed to follow one of the patterns in table 2.1, which means that a certain number of
them are assumed to be zero (possibly none) and that groups of non-zero masses may be
assumed to be degenerate. In full generality, the mass eigenvalues (for both the charged

leptons and neutrinos) can then be written in the form

N —A—
(my...my)=(0...0 Gy...ar ... an...an), (2.5)

corresponding to a group of dy vanishing masses and N groups of degenerate masses,
with multiplicities d; ...dy. In the cases in tables 2.2, 2.3, there is at most one group
of degenerate eigenvalues in the neutrino sector, with multiplicity 2 or 3. The values of

ai . ..ay can happen to vanish or to be equal to each other. This situation is not generic,
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though. In a generic set of mass eigenvalues, a; ...ay are non-zero and all different from
each other.

The results in tables 2.2, 2.3 are obtained using the following facts. Consider a given
mass pattern, in which charged lepton and neutrino masses are both in the form eq. (2.5)
(with different multiplicities dff ...dy,, df ... d%; ). Then:

e Each subspace in flavour space associated to (zero or non-zero) degenerate charged
lepton masses is invariant under both the representations U; and U... We can then

call U} ... Uk, and U§ ... Ug, the representations on those subspaces.

e The representations corresponding to non-zero charged lepton masses, Ul ... UJZVE

and U ... UfVCE, are conjugated to each other and irreducible.

e The representations U} and U corresponding to the set of vanishing masses can
be reducible. None of the irreps on which U§" decomposes is conjugated to any of
the irreps on which U} decomposes.

The neutrino mass pattern gives further constraints on U;:

e Each set of d¥ degenerate non-vanishing neutrino masses must correspond to either
a real irrep r = 7 of dimension d”; or to a pair of conjugated (Dirac) complex
irreps r + 7 of total even dimension d”; or to a pair of equivalent pseudoreal irreps
r + 7 with total dimension d” multiple of four (case hence not relevant with three

neutrinos).

e The remaining irreps in U; must correspond to the vanishing neutrino masses, and
therefore their total dimension should be dj. Moreover, none of them is real, none
of the complex ones is conjugated to any other, and none of the pseudoreal ones is
equivalent to any other.

To illustrate how the above remarks lead to the results in tables 2.2, 2.3, let us con-
sider a few examples. Let us first consider the mass pattern (A, B, (') for the charged
leptons and (a, b, ¢) for the neutrinos. As we have three different non-vanishing charged
lepton masses, U; must decompose into 3 one-dimensional irreps and U, into the three
conjugated ones. As we have three different non-vanishing neutrino masses, the three one-
dimensional representations in which U; decomposes must be real. Depending on whether
the three real irreps are equivalent or not, we find the three cases listed in table 2.3. The
last case, corresponding to U; ~ U, ~ 1+ 141, is trivial. In fact, a real one-dimensional
representation can only take the values 1. A 14 1 + 1 representation can then only be
trivial or an overall sign change, thus providing no constraint on mg, m,. A less trivial
example is (A, 0,0) (charged leptons) and (a, b, b) (neutrinos). The charged lepton mass
pattern requires U; to contain a one dimensional irrep corresponding to the non-vanishing
mass and a possibly reducible two-dimensional representation corresponding to the two

vanishing masses. The neutrino mass pattern requires a one dimensional real irrep, “1”,
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together with either a two dimensional real irrep, “2”, or the sum of a one dimensional
complex representation and its conjugated, “1 + 1”. We therefore have either U; ~ 1 + 2
or Uy ~ 1+ 1+1. In the first case, the irrep “1” must correspond to the non-zero
charged lepton mass (the tau mass) and “2” must correspond to the two zero charged
lepton masses (electron and muon masses). The representation U, must then be in the
form 1+ 7, where r is a possibly reducible representation not equivalent to the irrep “2”.
In the second case, the irrep in U; corresponding to the tau mass can either be the real
one or one of the complex ones (1, without loss of generality). The forms of U shown
in table 2.2 follows. As a final example, consider the case in which the three neutrino
masses are degenerate. The only possibility is that U; be a three dimensional real irrep.
However, if that was the case, the three charged lepton masses would be forced to be
degenerate, which is not a viable mass pattern (unless the masses are all vanishing, a case
considered in section 2.3). There are therefore no possible groups and representations
realising such a case in the symmetric limit. All the other cases in tables 2.2, 2.3 can be
analysed in similar ways.

It is now evident that the results in tables 2.2, 2.3 depend on the flavour group G
and on its representations U;, U. on the leptons only through the structure of the de-
composition of U, U into irreducible components, and more precisely only on i) the
dimensions of the irreps (the numbers denoting them in the table), ii) the possible equiv-
alence or conjugation of the different components (conjugation is denoted by a bar over
the representation, inequivalent irreps are distinguished by primes), and iii) whether the
representation is complex/pseudoreal (boldface) or real (plain). The results show in par-
ticular that (mg) # 0, mi” # 0), i) the patterns with three degenerate non-vanishing
neutrinos in the symmetric limit cannot be forced by any flavour group; ii) dimension 3
irreps are not involved in forcing any of the mass patterns we considered; iii) dimension
2 irreps can be contained in U if, in the symmetric limit, m, = m, = 0; in U; if, in
addition to that, m,, = m,,; iv) pseudoreal irreps can only play a role in U if, in the

symmetric limit, m. = m, = 0; in U, if, in addition to that, m,, = m,, = 0.

2.2.2 Accounting for lepton mixings

We have found so far the possible irrep decompositions leading, in the symmetric limit,
to a reasonable approximation for the lepton masses. We now want to select those among
them that also lead to a reasonable approximation for the PMNS matrix. As we will see,
the form of the PMNS matrix only depends on the structure of the irrep decompositions,
and can be determined in terms of the latter with simple rules that do not require the
explicit construction of the mass matrices nor their diagonalization. We will present in

this section the results and leave the proofs to the appendix A.
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lepton masses decompositions of U; and Ul
(A00) (aaa) none
1 11 111 1 2
(A00) (abb) | _ _
I r21,1 1 rpI,1 1 r#£2
111 1 11 111 111 12
(A00) (Oaa) | _ L B B B
1217 T r211 T r211 1 731 T 742
1 1 1 1 11 111 1 11 1 2
(A00) (a00) o _ _ _ _ _
1 r217 T r217 1 rp1 I r211 1 rp2
1 1 1”7 1 1 1 17 1 1 1 11
(A00) (abe)
1 r21,1" 1 r211 U r21 1 r21
1 1 1 1 1 1 1 11 1 11
(A00) (abO) _ _ _
1 r21,1 1 r21,1 1 rp1 1 rp1,1

Table 2.2: Possible decompositions of U; (above) and Uge (below) into irreducible
components (part I). Each line corresponds to a combination of the charged lepton and
neutrino mass patterns in the first two columns of table 2.1. Only the charged lepton
pattern (A00), which does not require hierarchies among non-zero entries, is consid-
ered here. Irreps are denoted by their dimensions. Boldface fonts denote complex or
pseudoreal (if 2-dimensional) representations, regular fonts denote real representations.
Primes are used to distinguish inequivalent representations, and in the case of complex
representations 1’ is supposed to be different from both 1 and 1. “r” denotes a generic,
possibly reducible representation, different from or not including the specified irreps,
as indicated.

The form of the PMNS matrix Upyng associated to a given irrep decompositions of U,

and U in the symmetric limit, is
Upmns = HyP,VD'P; H . (2.6)

The contributions to Upyns on the right hand side have different origins and different
physical meanings. Each of them can be obtained without the need of writing explicitly
nor diagonalising the lepton mass matrices, with the following rules.

e First, it is useful to order the irreps in such a way that those in U;, U, that are
conjugated to each other appear last and in the same position in the list. This
way the vanishing charged lepton masses will appear first in the list of eigenvalues.
For example, in one of the cases in table 2.3, we could have U; = 1 + 1 + 1,
Ue = (r # 1) + 1+ 1. Correspondingly, we write a list of generic charged lepton
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lepton masses

decompositions of U; and U,

(ABC) (aaa) none
111
ABC bb _
(ABC) (abb) | | 1 |
111 111
(ABC) (0aa) | — _— —
1 11 1 11
117 1 11
(ABC) (a00) R —
11 v 111
117 1 1171 1 11
(ABC) (abe)
11 1 117 1 11
1 11 111
(ABC) (ab0) — —
1 1 1 111
(ABO) (aaa) none
111 111
(ABO) (abb) | — —
11 r#1 1 1 r#1
111 111 111 111
(ABO) (0Oaa) - - - - - - -
11747 1T r#1 1T 1 r#41 1 1 r#1
11 1 1 1 1 1 11 1 11
(ABO) (a00)| =~ — © _ -
1T r#47 1T r#1 11 r#1 11 r#1
111 117 11 1 11
(ABO) (abc)
11 r#1” 11 741 1 1741 11 r#£1
111 117 111 1 11
(ABO) (ab0) _ _ -
11 741 11 r#1 11741 11 r#1

Table 2.3: Possible decompositions of U; (above) and U,e (below) into irreducible com-
ponents (part II). Each line corresponds to a combination of the charged lepton and
neutrino mass patterns in the first two lines of table 2.1. The charged lepton patterns
(ABC) and (ABO) are considered here, which require hierarchies among the non-zero
entries. Irreps are denoted by their dimensions. Boldface fonts denote complex rep-
resentations, regular fonts denote real representations. Primes are used to distinguish
inequivalent representations, and in the case of complex representations 1’ is supposed
to be different from both 1 and 1. “r” denotes a generic, possibly reducible represen-

tation, different from or not including the specified irreps, as indicated.
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eigenvalues with the non-vanishing eigenvalues corresponding to the conjugated

representations. In the example above, the list would be (0, B, A).*

V' is a generic unitary transformation commuting with U;, with O (1) entries. Its
origin is associated to the presence of equivalent copies of the same irrep type in
the decomposition of U;. If all the irrep components are inequivalent, V' is trivial.
For example, if U; = 1+1+1, V is a 2 x 2 unitary transformation in the 12 block.

D is associated to the possible presence of a Dirac sub-structure in the neutrino mass
matrix, and it originates from the presence of complex conjugated irreps within the
decomposition of U;. In the three neutrino case, there are only two possibilities.
Either U; does not contain pairs of complex conjugated irreps, in which case D
is trivial, D;; = d;;. Or there is one pair of one-dimensional complex conjugated

representations, in the positions ¢ and j in the list of irreps, in which case D is a

1 1 1
ne (1) o

embedded in the ij block. The corresponding mass eigenvalues are degenerate (both

maximal 2 x 2 rotation,

positive due to the imaginary unit in Dy, contributing to the Majorana phases).
Correspondingly, we write the list of neutrino eigenvalues as follows. If a pair of
conjugated irreps is present in U; in the positions ¢ and j, we have two degenerate
non-vanishing eigenvalues in the corresponding positions. We then have a non-
vanishing eigenvalue in the position corresponding to each real representation. If
the real irrep has dimension d > 1, there will be d degenerate eigenvalues. Finally,
we have a vanishing eigenvalue corresponding to each unmatched complex repre-
sentation. In the previous example, with U; = 141+ 1, we can equivalently choose
the two conjugated representations to be the ones in the positions 77 = 23 or those
in the positions ij = 13. Such a choice will determine the positions ¢ and j of the
corresponding two degenerate neutrino masses in the list of eigenvalues (before the
reordering below). So if we choose ij = 23, we will have the 2 x 2 block in eq. (2.7)
embedded in the 23 block of the matrix D and the list of neutrino eigenvalues will
be in the form (Oaa).

The permutation matrices Pg and P, are associated to the possible need of reorder-
ing the list of eigenvalues. Indeed, the list of eigenvalues obtained with the above
rules is not necessarily in the standard ordering, required for a proper definition of
the PMNS matrix. In the example we have considered, the list of charged lepton
eigenvalues is (0, B, A). The masses are in standard ordering if B < A. On the
other hand, if B > A, the standard ordering is obtained by switching A and B. Cor-
respondingly, Pg is either the identity or a permutation matrix switching 2 < 3. As
for the neutrinos, the list of eigenvalues is in the form (0aa). The standard ordering

4Note that in the tables, for convenience, the three families appear in inverse order: (3,2,1).
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requires the two degenerate eigenvalues to be in the first two positions. Therefore,

P, is a permutation matrix moving the first entry in the third position.

e Finally, the role of H., H, is to take into account possible ambiguities in the def-
inition of the PMNS matrix in the symmetric limit. In the real world, all leptons
are non-degenerate and the PMNS matrix only has unphysical phase ambiguities,
which do not need to be taken into account. When considering the symmetric
limit, on the other hand, larger ambiguities can arise due to degenerate, possibly
vanishing, masses. In practice, Hg is a generic unitary transformation mixing the
massless charged leptons; and H, contains a generic unitary transformation mixing
the massless neutrinos and a generic orthogonal transformation mixing degenerate
massive neutrinos (it turns out, however, that the latter can be ignored if the de-
generacy is due to a Dirac structure, in which case it can be reabsorbed into a phase
redefinition of V). As discussed in the appendix A, the H., H, contributions to
the PMNS matrix have a different physical nature than the previous ones. They
are unphysical, and undetermined, in the symmetric limit. However, they become
physical (up to diagonal phases) after symmetry breaking effects split the degen-
erate mass eigenstates. Depending on the specific form of the symmetry breaking
effects, H, and H, can end up being large, small, or zero (unlike the previous contri-
butions, which are determined by the non-zero entries and are large in the absence
of accidental correlations [128]).

With the above rules, we can determine the form of the PMNS matrix associated to
each irrep pattern in tables 2.2, 2.3 and select the cases leading to a PMNS matrix with
no zeros or a zero in the 13 position. The results are illustrated in table 2.4.

As shown, there is a limited number of cases leading, in the symmetric limit, to lepton
observables close to what observed. Each case corresponds to a certain decomposition
of the flavour representations in terms of real and complex, equivalent and inequivalent
representations of given dimension. Each pattern may correspond to different flavour
groups and representations, provided that the decomposition of the representation on the
leptons follows that pattern. The allowed patterns contain one-dimensional irreps only.
Pseudoreal representations do not play a role.

Three out of the six cases in the table are partially trivial. Those are the cases in
which U; ~ 1+ 1+ 1, for which the representation on the lepton doublets is either the
identity representation or an overall sign change. In such a case, the neutrino mass matrix
is not constrained at all, and the neutrino masses and PMNS matrix are expected to be
completely generic. In particular, the relative smallness of |(Upmns)13| is accidental. We
are in the presence of “anarchical” neutrinos [129, 130]. The only constraints that can be
obtained are on the charged lepton masses, through the interplay of the trivial U; with a
non-trivial Uge.

The other three cases provide non-trivial constraints on neutrino masses and mix-

ings. An important result is that they all correspond to inverted neutrino hierarchy, and
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irreps masses | v hierarchy | Hg P VD P, H, UpnmnNs Zeros
111 (A00)
NH or IH \%4 Vv none
1 rp1 (abc)
111 A00
_ _ ( ) IH Hg Vos Diy H1E2V23D1_21 none (13)
1 r21,1 (Oaa)
111 (ABO)
NH or IH \%4 1% none
1 1 r#1 (abc)
111 (ABO) .
- TH Vs Dis Vas Dy 13
11 r#1 (Oaa)
111 ABC
( ) NH or IH \%4 Vv none
111 (abc)
111 (ABC) .,
o IH Pr Vas Dis PpVasDyy | 13,23,33
111 (Oaa)

Table 2.4: Irrep decompositions giving rise to a PMNS matrix with no zeros or a single
zero possibly in the 13 entry. The first column shows the decomposition of U; and Uee,
one above the other. Only real and complex irreps appear. The second column shows
the corresponding pattern of charged lepton and neutrino masses in the symmetric
limit, one above the other, and the third column contains the neutrino hierarchy type,
normal (NH) or inverted (IH). The individual contributions to the PMNS matrix are
then shown. A matrix with no further specification is generic (e.g. P denotes a generic
permutation, V' a generic unitary matrix). D;; denotes a /4 rotation in the generic
form in eq. (2.7) acting in the sector ¢j. If no information on a certain factor is given,
that factor is irrelevant (for example because diagonal or because it can be reabsorbed
in another factor). The presence and position of a zero in the PMNS matrix in the
symmetric limit is specified in the last column.

specifically to two degenerate and one vanishing neutrino mass in the symmetric limit.
Therefore, if the present hint favouring a normal hierarchy were confirmed, we would
conclude, within our assumptions, that either the flavour model is not predictive at all in
the neutrino sector, or the symmetric limit does not provide an approximate description
of lepton masses and mixings. In the latter case, we might have to resort to a caveat in
our assumptions (see conclusions) or to the case where all charged lepton or all neutrino
masses vanish in the symmetric limit (last column of table 2.1), and symmetry breaking
effects are crucial to understand even the basic features of lepton mixing.

Table 2.4 is divided in two parts. In the first part, the hierarchy of the charged lepton
masses is naturally accommodated by the vanishing of the two lighter masses in the
symmetric limit, in agreement with the principle that hierarchies should be explained by
the flavour model. In the second part, hierarchies not accounted for by the flavour theory
have to be invoked among the non-zero entries in order to account for the structure of
charged lepton masses. The second case in the first part of the table is special, as the
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size of the 13 element of the PMNS matrix is determined by the rotation H{, which is
not physical in the symmetric limit, and will be fixed by the symmetry breaking effects
generating the muon mass. Depending on the structure of those effects, the size of
(Upmns )13 can end up being large, small, or zero. Finally, note that since the parameters
entering all the mixing matrices in table 2.4 except D are generic, a specific value of a
mixing angle can be obtained only when the matrix D is involved. As the table shows,
D can only play a role in the 12 mixing, in agreement with earlier specific results [20].

In the next subsection, we shortly illustrate a few examples of specific flavour groups
and representations corresponding to the patterns in table 2.4.

2.2.3 Examples

The results above have been obtained without the need to specify the form of the lepton
mass matrices, as they directly followed from the structure of the irrep decompositions.
Moreover, there was no need to specify a flavour group or its representation on leptons,
as the results hold for any group, of any type, as long as the decompositions of its
representations have the structure shown in the tables. In the following, for completeness
and as proofs of existence, we will provide examples, in some cases well known, of explicit
realisations of the three cases in table 2.4 leading to a PMNS matrix with a (possible)
zero in the 13 position in the symmetric limit. All of them require a continuous or discrete
symmetry group G with a complex one-dimensional representation 1, and a representation
on the lepton doublets decomposing as U; =1+ 1 + 1.

U=141+4+1,Uec=1+(r21,1)

In this case, corresponding to the second row in table 2.4, the representation on the
lepton singlets decomposes into a copy of 1 and a (possibly reducible) two dimensional
representation r whose only requirement is not to contain either 1 or 1 (r could be for
example the trivial representation). In the symmetric limit, two charged leptons are forced
to be massless, which explains the suppression of the electron and muon mass compared
to the tau mass, and the neutrino spectrum turns out to be inverted hierarchical, with

msz = 0 and m; = my. With the notations used in table 2.4, we thus have
(m.,my,me) = (A4,0,0), (Mugs Moy, My, ) = (0, a,a). (2.8)

A non-vanishing value of m,.,m, must then be generated by the symmetry breaking
effects, which will also give mz < my = ma.

The PMNS matrix does not necessarily have a zero, as it is obtained from the com-
bination of 3 rotations: Vag, the O (1) rotation in the 23 sector commuting with Uj; a
maximal 12 rotation Dis associated with the Dirac substructure in m, forced by U;; and
a rotation HE, in the 12 sector, associated to the degeneracy of the first two charged
leptons and not determined in the symmetric limit. The latter is fixed by the symmetry
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breaking effects generating the muon and electron masses. If the H, is large, the PMNS
matrix is expected not to have any small entry. On the other hand, in the light of the
hierarchy m. < m,, one can expect H{s, and consequently (Upnns)is, to be relatively
small [131-142]. The PMNS matrix thus reads

E 1
Upmns = Hi5Va3 Dy =

P
P

?
x|, (2.9)
X

where X denotes a non-zero entry, not further constrained, and the size of the 13 entry
depends on HE, as discussed. The form of lepton mass matrices in the symmetric limit
is
X X
mg = ; my, = | X . (2.10)
X X X

It is easy to exhibit an example of a group GG and representations U;, U, with a decom-
position in irreps as above. An easy choice is G = U(1), with w € U(1) represented
by

U(w) = w , Uee(w) = WP : (2.11)

where p,q # +1. For example, one can choose p = ¢ = 0 (trivial representation). A
minimal possibility involving a discrete group is G = Z3, with the same representation
of w € Z3 and p = ¢ = 0 as the only possible choice. Any other discrete subgroup of
U(1), different from Z, would of course also work. It is also possible to realize this case
by using the one dimensional representations of non-abelian discrete groups, such as Ay
for example.

U=14+1+1,Uc=1+1+(r#1)

In this case, corresponding to the fourth row in table 2.4, the representation on the
lepton singlets decomposes into two copies of 1 and a one dimensional representation 7
inequivalent to 1. In the symmetric limit, one charged lepton is forced to be massless,
which explains the suppression of the electron mass compared to the muon and tau
masses, but not the hierarchy m, < m,, and the neutrino spectrum turns out to be
inverted hierarchical as before,

(m-,my,me) = (A, B,0), (Mg, Moy, My, ) = (0, a,a). (2.12)

The PMNS matrix contains a zero, unambiguously positioned in the 13 entry. It is
obtained from the combination of 2 rotations: Va3, the O (1) rotation in the 23 sector

commuting with U, and a maximal 12 rotation D;5. Unlike the previous case, the form
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of the PMNS matrix is determined in the symmetric limit up to phase ambiguities only.
The forms of the PMNS matrix and of the lepton mass matrices in the symmetric limit
are given by

X X 0
Upnins = Vs Dy = [ X X X |,
X X X
(2.13)
X X
mg = X X!, m,=|X
X X X

A simple implementation of this case can be obtained from the previous one by modifying
the way the group acts on p¢. For G = U(1), we can in fact represent w € U(1) by

w* w?

U(w) = w , Uee(w) = w* : (2.14)

where ¢ # 1, for example ¢ = 0. As before, abelian or non-abelian discrete groups can
also be used. For example, for the group G = Z3, ¢ = 0 and ¢ = 2 are the only possible
choices, and G = A, also works with its one dimensional representations.

U=1+14+1,U.=1+1+1

This case, corresponding to the sixth row in table 2.4, has a particularly well known
implementation: G = U(1) acting on leptons according to their L, + L, — L. charge [143—
148]. The disadvantage of this case is that, whatever is the implementation, none of the
charged lepton hierarchies, m. < m, < m,, is explained by the model. The neutrino
spectrum is inverted hierarchical, as before, and with the notations used in table 2.4 we
have

(m'ramuame) = (A7B7C)7 (ml/:s?mVQ?mVl) = (O,G,CI,). (215)

Another disadvantage is that the PMNS matrix does contain a zero, but the model
does not explain why it appears in the 13 entry, as in principle it could also appear in
the 23 or 33 entry. This is because the permutation Pg in eq. (2.6), sorting the charged
leptons in the standard order, is generic in this case. In other words, the symmetry does
force the eigenvalue positioned where the electron should be to be the lightest, and a
viable symmetric limit for the PMNS matrix is obtained only in that case, i.e. when the
smallest eigenvalue happens to correspond to the lepton transforming as 1 under U;. In

such a case, the PMNS matrix and the lepton mass matrices in the symmetric limit are
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in the form

X X 0
Upmns = PeVas Dy = | X X X |,
X X X
(2.16)
X X X
mg = X X!, m=|X
X X X

Examples of the viable flavour symmetries can easily be achieved by the similar way as
in the two cases discussed above.

In all of those three cases, U; is decomposed into three one-dimensional representations
and U, is not allowed to have a three-dimensional representation, but it can contain a
two dimensional representation when two lightest charged leptons are massless in the
symmetric limit. In fact, the very role of the two-dimensional representation is to for-
bid the masses of first two charged leptons through its interplay with the inequivalent
representation on the lepton doublets.

We can also consider other cases in which the PMNS matrix has no zero entry in
the symmetric limit and the relative smallness of the 13 element is accidental. In such
cases, the only purpose of the flavour symmetry might be to enforce the smallness of
the electron and possibly the muon mass, while allowing the form of PMNS matrix is
arbitrary (in these cases any 3 x 3 unitary matrix is allowed PMNS). As was shown
in table 2.4, these cases require three lepton doublets to be transformed under the same
real one-dimensional representation. So there are only two possibilities: either all the
lepton doublets are invariant under GG, or they transform with a Z, changing sign to all
of them. The tau lepton mass is always non-vanishing, other charged leptons (electron or
muon) have masses in the symmetric limit if lepton singlets transform in the same way as
the corresponding lepton doublets, they are massless when lepton singlets and doublets
transform differently.

2.3 Lepton mixing from symmetry breaking effects

We will now consider the cases in which all neutrinos or all charged lepton masses vanish
in the symmetric limit (mg) =0or my” =0 in eq. (2.1)), i.e. the cases associated to the
last column in table 2.1. In such cases, the sole knowledge of the flavour group and its
representation is not sufficient to account for any of the features of lepton mixing, as the
PMNS matrix is completely undetermined (unphysical) in the symmetric limit, with its
final form fully depending on the symmetry breaking effects.

As symmetry breaking effects are now central, let us consider not only the flavour
group G and its representations on the leptons, here denoted by U and U%, but also

the residual group H to which G is spontaneously broken, and its representations on
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leptons UfT and UZ

et

which are simply the restriction to H of UZ and US. If G is
fully broken, the residual group H only contains the identity, and its representations are
trivial. Symmetry breaking can take place in more than one step, G — H; — ... — H,,
associated to different scales. In such a case, our results will correspond to the first step
of the breaking chain, H = Hy, and the corresponding breaking effects will only provide a
leading order prediction for the lepton observables, as the contribution of the subsequent
steps may be needed to precisely fit them.

We want to characterise the forms of US and US and U and UX leading, once G
is broken (but H is not), to a pattern of lepton masses and mixing not far from what
observed.

Such a problem does not admit a general answer as simple as the one obtained in the
previous section. The reason is that the final pattern of lepton observables does not only
depend on G, H, UY, UM, but it also depends on the specific spectrum of flavons and
their vevs (and the scalar potentials determining the vevs). On the other hand, it turns
out that a simple answer can be obtained if the following (non-trivial) hypothesis holds:

the symmetry breaking corrections, mg), m(yl)

in eq. (2.1), have the most general form
allowed by the residual symmetry H, with all non-vanishing entries of the same order.
Needless to say, neither neutrino nor charged lepton masses should identically vanish after
symmetry breaking. In such a case, it turns out that the formalism developed and the
results obtained in the previous sections on the possible structures of U® can be simply
reinterpreted in terms of the possible structures of U, as we will see below.

The hypothesis we introduced is non-trivial. It amounts at assuming that the lepton
observables only depend on the symmetry breaking pattern G — H and not on the
specific breaking mechanism used. This is not the case in most models found in the
literature, in which the flavour structure is rather associated to the specific choice of the
flavon spectrum, to their coupling to the leptons, and to the form of their vevs. This is
the case for example in models where the residual symmetry H is different in the neutrino
and charged lepton sectors; and even in the case of U(1) models, in which H = {1}, all
entries are allowed by H, but they typically turn out to be of different sizes, depending on
how many powers of the flavons are needed to generated them. Still, the results we will
get under the above hypothesis are useful for a complete assessment of the importance of
a detailed knowledge of the symmetry breaking mechanism.

Let us motivate the result mentioned above. Suppose, as we do, that G is sponta-
neously broken to H, that either the charged lepton or the neutrino masses (not both)
vanish in the G-symmetric limit, and that, after spontaneous breaking, we obtain a mass
pattern close to what observed, i.e. in one of the forms listed in the first two columns
of table 2.1. The knowledge of the mass pattern after symmetry breaking allows us to
constrain U, The possible structures of the irrep decomposition of the representation
U are in fact listed, for each mass pattern, in tables 2.2, 2.3, where U; and U, should
now be interpreted as U and UX. The group G plays no role at this point. A further
constraint comes from the requirement that the PMNS be also close to what observed
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after symmetry breaking. In order to find the form of the PMNS matrix associated to a
given breaking pattern, we can proceed as in the appendix. We then find that the form of
the PMNS matrix again depends on U only, and its structure is still given by eq. (2.6),
with the form of each factor dictated by the same rules given in that section, where U,
and U, should now be interpreted as UfT and UX. The group G again plays no role.?
We conclude that the structure of the irrep decomposition of U must be one of those
in table 2.4, where once again U; and U, should be interpreted as Uf! and U, and the
mass pattern and PMNS matrix after symmetry breaking can only be in the forms shown
in that table.

The presence of an unbroken, G-symmetric phase played no role in constraining the
form of U, nor in determining the form of the PMNS matrix. On the other hand, it
can play a useful role in providing hierarchies among lepton masses, in particular within
the more hierarchical charged lepton masses. We have in fact now two scales available
in the sector, let us say the charged lepton one for definiteness, where the masses do not

vanish in the symmetric limit: the scale of the non-vanishing entries in mg), allowed by

G; and the lower scale of the non-vanishing entries in mg), allowed by H but not by G.
We can then use the ratio between those two scales to account for the hierarchy between
the tau and muon masses. Therefore, while in section 2.2.2 we focused only on the first
two lines in table 2.4, as in the other part of the table the needed hierarchies were not
accounted for, now all the first four lines are on the same footing. The hierarchy needed
between A and B in the cases in which the charged lepton masses are in the form (A, B, 0)
can in fact be provided by the two scales above. On the other hand, the last two lines,
corresponding to the (A, B, C') pattern, are still not on the same footing, as they require
two hierarchies to be explained.

Let us discuss in greater detail how the available hierarchy can enter the results in
table 2.4. Let us first explicitly list the possible mass patterns in the G-symmetric limit.
There are two cases. Either the neutrino masses all vanish, in which case the charged
lepton masses are in the form (A4, 0,0) (we discard (A4, B,0) and (A, B, C) at this level as
in the symmetric limit there is only one scale); or the charged lepton masses all vanish,
in which cases neutrino masses are in one of the forms (a, a,a), (a,b,b), (a,b,c), (0,a,a),
(a,b,0), (a,0,0). Let us now switch on the symmetry breaking effects. The charged and
neutral lepton masses will then get additional contributions from mg), ml(,l)7 which we can

denote as proportional to a parameter e. In the sector in which m(®) # 0, the e parameter

5The only possible role of G is in the determination of V,, V,, in eq. (A.11), obtained by the diago-
nalisation of mg -, m,, in eqs. (A.6,A.7,A.8), which now include symmetry breaking effects. In one of

the two matrices, say mg , for definiteness, two scales now enter, the scale of mg) and the scale of m(yl)
(while in the neutrino sector ml(,o) = 0 and only one scale appears). In such a case V., may not be a

generic matrix with O (1) entries, it could for example contain small mixing angles. On the other hand,
only one scale, that of m,(,l)7 enters m, ., so that V, . is still a generic matrix with O (1) entries. As V' is
the combination of V., and V,,, V will be also a generic matrix with O (1) entries, whatever is the form

of V,.
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represents the ratio of the two scales, m™® and m®.5 In table 2.5 we show the lepton
mass patterns that can be obtained, together with a viable PMNS matrix, taking into
account the presence of the two scales. We discard the (A, B, C') charged lepton pattern
(last two lines in table 2.4) as it requires at least one unaccounted hierarchy. In table 2.5,
the lepton mass pattern in the G-symmetric limit can be obtained by setting e = 0. The
corresponding irrep decompositions of U¢ are shown, as well as the irrep decomposition
of UM shaping the symmetry breaking corrections. We have checked that for each pair of
irrep decompositions of UY and U¥ in the table corresponding to the same mass pattern
there exists concrete examples of the groups G and H and of the representations of G,
Uf and U&

ecr

such that the decomposition of the latter under H reproduces the chosen

irrep decomposition of U%.

2.4 Constraints from unification

A theory of flavour should account for both lepton and quark masses. The results we
obtained provide constraints on the flavour group following from the observed pattern of
lepton masses and mixings. The quark sector can of course provide additional constraints.

In the context of unified theories, the two problems cannot be considered separately,
as quarks and leptons are unified in single irreps of the unified gauge group. For example,
in SU(5) theories, the lepton doublets /; are unified with the down quark singlets d§ in
anti-fundamental representations of SU(5), and the remaining fermions are unified into
antisymmetric representations of SU(5). If the action of the flavour group commutes
with SU(5), all fermions in the same SU(5) irrep should transform in the same way under
the flavour group, Uze = U; and U,e = Uy = U,e. This provides an unavoidable further
constraint on the flavour group and its representation. The constraint is even stronger if
all the fermions of a single family are unified into a spinorial representation of SO(10).
In this section we discuss the effect of such constraints on the previous results.

Let us first assume that the flavour group commutes with SU(5) and call Uz, Uy its
representations on the SU(5) fermion multiplets. As we have seen, the requirement that
the prediction for lepton masses and mixings in the symmetric limit is close to what
observed restricts the possible choices of Us = U; and Uyg = U,e. Table 2.4 summarises
the 6 possible forms of their decompositions. Let us now require that the quark masses
and mixings are also close what observed in the symmetric limit. By that we mean a
quark mass pattern in the form (A,0,0) or (A, B,0) or (A, B,C) in both the up and
down quark sector, with the (A, 0,0) pattern preferred, as the others require hierarchies
among the non-vanishing entries. As for the CKM matrix, let us first remind that the
CKM angles are all measured to be small, with the only possible exception of the Cabibbo
angle, corresponding to the 12 block of the CKM matrix. We then only consider the cases

In principle the correction to the masses could be proportional to higher powers of €, but it turns
out that this it not the case, under our hypotheses.



50 Chapter 2. Flavour symmetries in the symmetric limit

masses hierarchy G irreps H irreps Upnins Z€eros
(eA00) 111 111
NH or TH %4 none
(a bc) r21 1 r21
(eA00) 111 111
NH or ITH %4 none
(a b ec) r21,1 1 rpl
(eA00) 111 11 1 1 2 111
NH \%4 none
(a b ec) r?21,1 r21,1,17 r21,2 1 rp1
111 1171 1 11
A00 1r21 121,17 1 r21 11 1
( ) NH or IH ;é 2 2 %4 none
(ca eb ec) 11 17 1 2 1 r21

(A00) 11 11 1 12 111 o
H _ _ _ H{Va3Dyy | none (13)
(0 eaea) 1 721 1 1 Tzl’,l” 1 r#2 1 7"21,1
(eA00) 111 1V 11 12 111 o
IH _ o _ H{, Va3 D15 | none (13)
(0 aa) r21,1 r2111 r21,2 1 r211
111 111 1 11
AeB 0 1 r21 121,17 1 r21 111
(Ae ) NH or IH A ? ? Vv none
(€a €b ec) 11 1 1 2 11 r#1
1 r2117 1 r#2
(AeB0) - 11 v 11 1 12 111 oDt N
_ o - _ - 23
(0 €a ca) I r2T7 T rpT7 T 042 |11 r#1 v

Table 2.5: Lepton mass patterns that can be obtained starting from a symmetric
limit (e = 0) in which either the neutrino or the charged lepton masses (but not both)
vanish. The corrections proportional to € are induced by the spontaneous symmetry
breaking G — H, under the hypothesis introduced in section 2.3. The corresponding
irrep decompositions of U, US and of UZH , U leading to a viable form of the PMNS
matrix are also shown. As usual, boldface fonts denote complex or pseudoreal (if 2-
dimensional) irreps, primes are used to distinguish inequivalent representations, and in
the case of complex representations 1’ is supposed to be different from both 1 and 1.
The representations of G and H are of course different even if represented by the same
symbol. If € is reabsorbed into the parameter it multiplies, the mass pattern correspond
to the ones in the first four lines of table 2.4 and the irrep decompositions of UlH , Ul
coincide with those shown in that table.
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leading to a CKM matrix which is either diagonal or containing at most a non-trivial 12
block in the symmetric limit. It turns out that the only possible irrep decomposition
isUs =14+1+1, Uy =1+r 2 1. This uniquely identifies the form of the lepton
spectrum in the symmetric limit, with vanishing electron and muon masses, (A, 0,0), and
anarchical neutrino masses, (a, b, ¢), with a generic PMNS matrix. The structure of the
quark masses and mixings in the symmetric limit instead depends on the specific choice
of Uyg. This is shown in table 2.6, where the viable forms of U,y and the corresponding
mass and mixing patterns are listed. The down quark masses are in the same form as
(and are actually equal to) the charged lepton ones in the symmetric limit, as dictated
by SU(5). The CKM matrix has the form

Vexm = Hy P,V Py H' (2.17)

The contributions to Veky have similar origins as the corresponding ones in eq. (2.6).
As in the case of the PMNS matrix, each of them can be obtained without the need of
writing explicitly nor diagonalising the quark mass matrices, with analogous rules. The
form of the CKM matrix in terms of those contributions is also indicated in table 2.6.
Note the constant presence of an undetermined transformation in the 12 block, HE,
associated to the vanishing of the two lighter down quark masses in the symmetric limit.
As discussed, such undetermined transformations are fixed, up to diagonal phases, by
symmetry breaking effects, and they can end up contributing to the Cabibbo angle with
a zero, small, or large mixing angle. The patterns shown in the table are viable provided
that the permutations Py, Pp do not modify the position of the heavy eigenvalue. The
Cabibbo angle is expected to be large (with the measured value accidentally smallish)
in the last case in table 2.6, where a physical Vi, rotation appears, which will survive
symmetry breaking. In all the other cases, the Cabibbo angle can end up being large
or small, depending on the symmetry breaking effects. If the two light eigenvalues are
permuted, the Cabibbo angle receives a m/2 contribution, which needs to be (partially)
cancelled by other contributions.

If all the fermions of a single family are unified into a dimension 16 spinorial represen-
tation of SO(10) commuting with the flavour group, the constraints on the flavour group
representation are even stronger, and no solution can be found. In such a case we would
have in fact Ujg = Ug = Uyp. The symmetric limit is a good approximation in the lepton
sector only if Ujg is trivial. Such a possibility however leads to a generic CKM matrix
with O (1) angles, which we do not consider a viable leading order approximation in the

symmetric limit.
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Us =11 1) masses Vekm Upmns
Vo= 11 00y, (400)
Up=1 1 1 P PloagasT | v
o1 o (D00)y (abec),
10 —
A00 A0 0 B
Uo=1 11 (400)p (400)s PLHR™ |V
(DEO)y (abec),
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Table 2.6: Possible forms of SU(5) unified flavour representations. Uz is trivial in
all cases. The form of fermion masses and of the CKM and PMNS matrices, in the
notations of eq. (2.17), corresponding to viable choices are shown. The lepton mass
pattern and PMNS matrix are all in the same form, as they all correspond to the case
in the first line of table 2.4. P35 is either the identity permutation or the switch of 2
and 3.

2.5 Conclusions

We provided a complete answer to the following general question: what are the flavour
groups, of any type, and representations providing, in the symmetric limit, an approxi-
mate description of lepton (fermion) masses and mixings?

The assumption we made is quite general: the light neutrinos are of Majorana type,
and the symmetry arguments can be applied directly to their mass matrix. Despite the
generality of the problem, the complete answer is simple and has an important corollary:
either the flavour symmetry does not constrain at all the neutrino mass matrix (anarchy),
or the neutrinos have an inverted hierarchical spectrum. Therefore, if the present hint of
a normal hierarchical spectrum were confirmed, we would conclude that, under the above
assumption, flavour models leading to an approximate description of lepton masses and
mixings in the symmetric limit are not able to account for any of the neutrino flavour
observables, and symmetry breaking effects must play a primary role in their understand-
ing. Such a conclusion is further strengthened in the case in which the representation of
the flavour group commutes with the standard representation of a SU(5) grand unified
gauge group. In the latter case, not even the options leading to an inverted hierarchical
spectrum are available, and the only option is anarchy. In the case of SO(10), there are
no solutions.
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The main caveat to the previous conclusion is the assumption that the light neutrinos
are of Majorana type, and that the symmetry arguments can be applied directly to their
mass matrix. The origin of Majorana neutrino masses most likely resides at high scales,
where additional relevant degrees of freedom (singlet neutrinos for example) might live.
In such a case, the flavour symmetry acts on the high-scale degrees of freedom as well.
The low-energy analysis turns out to be often equivalent to the high-scale analysis, but
not always. Such a caveat will be studied in the next chapter.

The possibility to provide a simple systematic answer to the above general question is
based on the following result: the structure of lepton masses and mixings only depends
on the flavour group and representations through the structure of their decomposition in
irreducible components, and in particular only through the dimension, type (complex or
real or pseudoreal), and equivalence of those components. We found that there are only
six viable structures, listed in table 2.4. All of them contain only one-dimensional real or
complex representations.

In passing, we developed a simple technique to determine the form of the lepton masses
and mixings directly from the structure of the decomposition in irreducible representa-
tions, without the need to specify, nor to diagonalise, the lepton mass matrices. We
also noted that it is important to write the invariance condition in terms of the charged
lepton mass matrix mg and not of mTEm 5, otherwise the important role of the flavour
representation on singlet leptons would be lost.

As our results and assumptions imply that an understanding of the flavour observ-
ables of normal hierarchical neutrinos must rely on symmetry breaking effects, we also
consider the possibility that the neutrino or the charged lepton mass matrix vanishes in
the symmetric limit. With a simple extension of the previous techniques, we proved that
the sole knowledge of the symmetry breaking pattern, i.e. of the residual unbroken group,
is not sufficient to get a better understanding of the flavour observables: the sources of
flavour breaking and of their vacuum expectation values need to be specified.



Chapter 3

Flavour symmetries in the context of

the seesaw mechanism

In chapter 2 we have studied neutrino masses and mixing by assuming that the neutrinos
are Majorana particles and that the flavour symmetries directly put constrains on their
mass matrix originated from the Weinberg operator. In this chapter we will consider the
possibility that the Weinberg operator originates from a type I seesaw mechanism, and
we address two issues. These are the constraints on lepton mixing one obtains (in the
symmetric limit) in terms of the Weinberg operator equivalent to those one obtains in
terms of the corresponding seesaw Lagrangian. As it will turn out that the two analyses,
in terms of the Weinberg operator and seesaw Lagrangian, are not equivalent, we will

extend analysis in chapter 2 to the case of a seesaw Lagrangian.

3.1 Introduction

In this chapter we will assume that the Weinberg operator originates, at a tree level,
from the type I seesaw mechanism. We will show that discussing the neutrino masses and
mixings from the high-scale origin of type I seesaw mechanism is not always equivalent to
the low-scale results that we got in in the previous chapter. So there are two inequivalent
flavour symmetry discussions of neutrino masses and mixing depending on whether the
flavour symmetry is assumed to act on the Lagrangian with Weinberg operator or on
the corresponding seesaw Lagrangian. Hereafter we call them as low- and high-scale
analyses, respectively. Now that there are two different analyses, it is important to
study under which condition they become inequivalent, since equivalent case reproduces
the results we already know in previous chapter. As we will see, inequivalence happen
in two cases depending on whether or not the singlet neutrino mass matrix is singular
in the symmetric limit. If the singlet neutrino mass matrix is non-singular, there is a
condition of the flavour group representations on lepton doublets and neutrino singlets
that if this condition holds then the high-scale analysis reproduces the low-scale results,
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otherwise we may get different results in the high-scale analysis. If the singlet neutrino
mass matrix is singular in the symmetric limit, the flavour symmetry G forces some of the
singlet neutrinos to have a vanishing mass in this limit and we cannot apply the seesaw
formula in the symmetric limit, so symmetry breaking effects are needed to produce non-
zero masses for them. We suppose that masses from the symmetry breaking effects are
smaller than the non-zero masses in the symmetric limit but they are much bigger than
EW scale.

Let us suppose that flavour symmetry G is spontaneously broken to the subgroup H.
In the G-symmetric limit the mass matrix of the singlet neutrino is M and that of the
light neutrinos is m. They will get corrections M) and mS" after G is broken to H. At
the same time, Dirac mass matrix m§3) in the symmetric limit also gets a correction m%)
after the symmetry breaking. Therefore, the neutrino mass matrices after the symmetry
breaking become

M=MO 4 pm

m, = m,(jo) + m,(}),

(

where M) m§3) and m\") are invariant under G, while M m J&) and m%"

are invariant
under H but not under G so they must vanish in the symmetric limit. As was in the
low-scale analysis, we assume that mass matrix entries in the G-symmetric limit have
the same orders of magnitude due to the requirement that flavour symmetry model itself
must generate the mass hierarchy without imposing it by hand. The corrections obtained
after the symmetry breaking are assumed to be smaller than the ones surviving in the
symmetric limit, and their relative sizes are related to the two flavour symmetry scales
of G and H.

An interesting feature of discussing the case in which the singlet neutrino mass matrix is
forced to be singular by the flavour symmetry is that the light neutrino mass hierarchy can
be generated in this way. For instance, let us say one of the singlet neutrino has vanishing
mass in the G-symmetric limit, then one may expect that one of the light neutrino has a
large mass compared to the other two in this limit. So the flavour symmetry predicts light
neutrino masses are in the normal hierarchy. In one of the our forthcoming discussions we
will see that this is indeed the case. This is nothing but right-handed neutrino dominance
scheme [149-154]. An important feature here compared to the right-handed neutrino
dominance is that the dominant contribution of the singlet neutrino arises naturally from
the symmetry breaking effect without need to make such an assumption.

The work in this chapter is organized as follows: in section 3.2 we classify flavour
group representations in both low- and high-scale analyses and find conditions to high-
scale analysis provide same/different neutrino mass and mixing patterns compared to
the low-scale discussion. Section 3.3 contains discussions for the case in which some of

the singlet neutrinos have vanishing masses in the symmetric limit. Then, the complete
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results captured by high-scale analysis, for the case of singlet neutrino mass matrix is
non-singular, will be presented in section 3.4. After that, in section 3.5 there will be
an investigation for the fermion masses and mixing from the GUT constraints on top of
the conditions of flavour symmetry. Finally, section 3.6 contains our conclusions for this
chapter.

3.2 Flavour symmetries in the low- and high-scale

analyses

3.2.1 Flavour group representations and lepton mass matrices

Before staring to identify flavour groups and their representations for the viable patterns
of neutrino masses in the context of the type I seesaw mechanism, it is important to give
precise definitions for the two kinds of flavour symmetry approaches describing neutrino
masses and mixing. We already called them as low- and high-scale analyses. The former
refers to the description of the neutrino masses in the EW scale without considering the
contribution from the heavy singlet neutrinos, while the latter takes into account the
effect of these heavy degrees of freedom appearing in seesaw Lagrangian. The low-scale
analysis is basically the way used in Ref. [155], in which we have assumed that neutrino
masses are described by means of the SM effective Lagrangian and that only the lowest
dimensional operator (the Weinberg operator) is relevant. The EW scale description of
lepton flavour is then provided by the following Lagrangian:

— Ly = yEeliht + %liljhh +he. (3.2)
where we used a Weyl spinor notation, [; = (14, ¢;)7 denotes the lepton doublets of SU(2),
e¢ are the charged lepton singlets of SU(2)r, h is the SM Higgs doublet, and the Yukawa
interactions are written in the right-left convention. The splitting of the coefficient of the
Weinberg operator into the dimensionless numbers ¢;; and a new physics scale A with the
constant factor 2 is of course arbitrary. The flavour index runs over 3 families of /; and
ef, 1 =1,2,3, but we can generalize to the case of n lepton families. The charged lepton
and light neutrino mass matrices obtained from eq. (3.2) are

mg = Ygv, m, = cv?/A, (3.3)

where v = |[(h)| &~ 174 GeV.

We will consider the low-scale (EW scale) representations Uy, of a generic flavour group
G, commuting with the SM gauge transformations, acts on the lepton doublet and singlet
fields in following way

gEG:{ L9l (3.4)

e; — Ur(9)ije
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The Higgs field could in principle also transform under the Uy, but its transformation
can, without loss of generality, be reabsorbed in the transformations of /; and €.

Apparently, the low-scale Lagrangian £y, in eq. (3.2) is invariant under Uy, if and only
if the coefficients of each terms are invariant under the flavour group representations

yr = Ui (9) ye UL (9),
C

A

L opC o (3.5)
UL(9) KUL(9)7 Vge G,
or equivalently iff charged lepton and neutrino mass matrices are invariant under the
flavour symmetry

mp = Ug(9)"'me UL(g),

(3.6)
my = UlL(Q)TmV Ui(g)a VgeG.

This means that the low-scale invariance of the Lagrangian implies the existence of
invariant charged lepton and neutrino mass matrix under the flavour symmetry, or vice
versa. So one can study the structure of the lepton mass matrix by imposing the flavour
symmetry to this low-scale Lagrangian. But in general the flavour symmetry is spon-
taneously broken through the vacuum expectation value of one or more scalar fields —
flavons. Then lepton mass matrices will get contributions from the symmetry breaking
effects. Therefore, discussions for the flavour symmetry contains both effects from the
symmetric limit and symmetry breaking mechanism.

For the high-scale description, as a specific example of high-scale origin of the effec-
tive Lagrangian in eq. (3.2), we will consider a type I seesaw Lagrangian with n singlet
neutrinos v¢, a = 1...n. The high-scale analysis of lepton flavour is then provided by
the following Lagrangian:

E cj p* N, e Map . .

— Lg = Njeilih™ + A valih + — Valh +h.c., (3.7)
where the eigenvalues' of M are all supposed to be much heavier than the EW scale
(and in particular non-vanishing). The charged lepton and light neutrino mass matrices
obtained from eq. (3.7) are

mg = Agv , my, = —(Ayv) T MY (Ayv) = —my M 'myy (3.8)

where we denoted Dirac mass matrix as my = vAy.
We will say that L, is the low-scale limit of Ly if £}, is obtained at the tree level from
Ly by integrating out the singlet neutrinos, i.e.

Ye = A (3.9)

'Here and below we will use “eigenvalues” to refer to singular values.
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and
c

1= “AEM Ty, (3.10)
or equivalently if they give rise to the same charged lepton and light neutrino mass
matrices.

The high-scale representations Uy of G on the full set of lepton fields, including the
singlet neutrinos, are considered to be commuting with the SM gauge transformations

and they transform lepton fields as

L — Uy (9)isl;

g€ G:3 ef — Ug(g)ije (3.11)

¢
G

Ve = Un(9)ay

As in the case of low-scale analysis, in this case we are considering only one family of
Higgs doublet so under the flavour group representation Uy the Higgs field at most gets

a sign change or a phase shift, which can be reabsorbed into the transformations of [;,

c
79

e, and v$, without loss of generality. The representation Uy of G on [;, €

79

vg trivially
corresponds to a representation Uy on [;, ¢ (UL = U, Uf = Ug), which we call the
“low-scale limit” of high-scale representation Uy.

Imposing the flavour symmetry on the high-scale Lagrangian Ly requires that its

invariant under the representation Uy if and only if following conditions hold

Ae = U5 (9)" e Uy (g),
Ay =Uj(9)" Av Ug(9), (3.12)
M =Uf(9)"MUL(9), Vge@,

or equivalently it is a necessary and sufficient to have invariant mass matrices

mp = U (9)"me Uy (g),
my = Uf(9) "my Ul (9), (3.13)
M =Uj(9)"MUy(g), VYgeG.

So the flavour symmetry shapes the form of all those mass matrices in the symmetric
limit. Once the flavour symmetry is spontaneously broken, all the mass matrices above
will get contributions from the symmetry breaking effect. And full mass matrix become
a sum of two components from the symmetric limit and the symmetry breaking effect.
To give a concise definition of equivalence in the symmetric limit of the high-scale
flavour symmetry and its low-scale limit in the next section, and also for later purposes,
we will separate any unitary and finite dimensional representation U of the group G into
two parts (with a possibility that one of them can be empty): a vectorlike part and a
fully chiral part. The vectorlike part of U refers to the set of irreducible representations
(irreps) that consists of either real or pairs of complex conjugated irreps or of equivalent
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pseudoreal irreps; the fully chiral part of U is a set of irreps that does not contain, by
definition, any real irreps, nor pairs of complex conjugated irreps, nor pairs of equivalent
pseudoreal irreps. From the definition above one can easily find that vectorlike part Uy of
the representation U is equivalent to its complex conjugated representation Uj. Meaning
that Uy and U are related by a unitary similarity transformation, and it contains an
even number (e.g. zero) of pseudoreal irreps of each dimension appearing inside the irrep
decomposition; while in the fully chiral part, say U;, of U none of its sub-representations
is equivalent to their conjugate, except possibly a single pseudoreal irrep of each type.

Let us see these two parts of the representation from the example of following two irrep
decompositions: U =1+1+1and U =1+ 1+ 1, where 1 and 1 stand for any real and
complex one dimensional representation respectively, and having a bar means conjugated
representation. According to our definition, vectorlike part of the first example is 1 and
fully chiral part of it is 1 4+ 1, the second example contains vectorlike part 1 + 1 and
fully chiral part 1. In a similar way, one can separate an irrep decomposition of any n
dimensional representation into these two parts (in some cases it is possible to have one
of the two parts empty).

After having decomposition of U into vectorlike and fully chiral representations, U =
Uy + Uy, we will have following important relations between the irrep decomposition and
Weyl fermion mass matrix m (which is complex and symmetric) invariant under U, i.e.

m = U"(g)mU(g) for Vg € G :

e U is vectorlike if and only if there exists a non-singular invariant mass matrix for

those fermions.

e U is fully chiral if and only if an invariant mass matrix for those fermions necessarily

vanishes.

e In case there are both vectorlike and fully chiral parts of U, we can redefine fermions
through a unitary transformation (if necessary) and choose the decomposition of U
in irreps in such a way that each irrep acts on a separate subset of fermions. Then
Uy and U; can be chosen in such a way that each of them groups together the set of
those irreps. In this way one can split mass matrix m into the non-singular block
corresponding to Uy and zero blocks for the rest of the representation.

The first two properties are very easy to verify, so we will skip to explain them and say
some words about the last one. When U has both non-empty vectorlike part Uy and fully
chiral part U; there are two possible situations can occur: either none of the irreps in U
is contained in Uy or some of the irreps in U; are also contained in Uy. In the first case
the mass matrix is automatically a direct some of the non-singular block corresponding
to Uy and the zero block corresponding to U;. If there are same types of irreps in U
and Uy, the decomposition is not unique anymore, but the number of equivalent irreps
of each given type contained in U, and U; does not depend on the decomposition. So
the total number of irreps in Uy and in U; does not change. This situation appears only
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for the complex and pseudoreal irreps, as all real irreps are belong to Uy. Each types
of overlapped irreps between Uy and U; with their complex conjugates (or a equivalent
counterparts in case of pseudoreal irreps) restricts the corresponding part of the mass
matrix in a rectangular block. The rectangular block can be brought into upper or lower
triangular block by unitary rotations, commuting with these irreps, among the several
copies of the same type of representations. Once we are done this for the all rectangular
blocks and redefine fields accordingly, the mass matrix ends up being the direct some of
non-singular square blocks and all the rest is zero. According to which copies of the same
type of irreps correspond to non-singular block or zero block we can easily separate those
repeated irreps into vectorlike part or fully chiral part of the representation. Since in this
case there is at least one row or one column of the whole mass matrix is zero so it has a
zero determinant and thus it is a singular matrix.

We can illustrate this argument by looking at our previous example, U = 1 + 1 + 1.
In this example there is a common 1 in both vectorlike and fully chiral parts of the
representation. It is not priory obvious to choose which one of the 1 is in the vectorlike
part and other in the fully chiral part, but it is for sure that each of these two parts
must contain one of the two 1. The Weyl fermion mass matrix m invariant under this
representation has a rectangular block (z y 0) in the third row (and its transpose in
the third column). We can rotate the first two neutrinos transforming under 1 in order
to set x = 0, without spoiling their transformations under 1. Note that any 12 block
rotation clearly commutes with the corresponding 1+1 irrep part of U. Once we are done
with this rotation, the mass matrix becomes 23 block matrix with the same non-zero off
diagonal entries in this block. Given that the 23 block is non-singular, we will choose last
two irreps 1 + 1, corresponding to this block, into the vectorlike part and remaining 1
belongs to fully chiral part.

Having a relation between the two parts of the irrep decompositions and form of the
mass matrix, we can conclude that necessary and sufficient condition to have invariant
non-singular Majorana mass matrix is that the flavour representation U does not contain
fully chiral part in its irrep decompositions. So the invariant Majorana mass matrix being

non-singular indicates there is vectorlike representation U and vice versa.

3.2.2 Equivalence of two analyses in the symmetric limit

We would like to discuss whether the low- and high-scale studies of flavour symmetries
in the symmetric limit are equivalent; i.e. whether, in the light of the fact that flavour
observables only depend on the low-scale effective Lagrangian, the low-scale analysis
captures all the possibilities covered by the one at high-scale. As we will see, in the
symmetric limit, the low-scale analysis is covered by the low-scale limit of high-scale
analysis, but not all high-scale results are captured by the low-scale analysis.

First of all, we have to note an important caveat. In order for the effective theory
description to work, what need to be heavier than the EW scale are the heavy singlet
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neutrino masses after the symmetry breaking effects are taken into account. As was
pointed out before, the singlet neutrino mass matrix M = M© + M® in which M©
is the part invariant under G, satisfying eq. (3.13), and M (1) accounts for the symmetry
breaking effects. It is conceivable that one or more heavy singlet neutrino masses vanish
in the symmetric limit and they are generated after the symmetry breaking is taken into
account. In such a case, M(© is singular, but M is not. Note that while the masses
generated by symmetry breaking effects are small compared to the other heavy masses,
they can still be much heavier than the EW scale, so that all the eigenvalues of M can be
much heavier than the EW scale. Suppose that this is indeed the case, then the effective
theory description given by eq. (3.10) still holds once the symmetry breaking effects are
considered; but it does not hold in the symmetric limit, in which M becomes singular.
In order for the low-scale description of the flavour theory to have a chance to be equivalent
to the high-scale one in the symmetric limit, the heavy singlet neutrino mass matrix must
then be allowed to be non-singular in the symmetric limit. So the singlet neutrino mass
matrix being non-singular is a necessary condition to the low- and high-scale analyses
become equivalent.

On the other hand, as it will be shown below, even if singlet neutrino mass matrix is
non-singular in the symmetric limit, the low-scale analysis still is not always equivalent
to the high-scale analysis, unless the further condition on the representations is satisfied.

With what above in mind, and in order to formulate the problem we aim at addressing
in a precise way, we define the equivalence in the symmetric limit of a high-scale flavour
symmetries and their low-scale limits as follows. Let us suppose that Uy and Uy are
high- and low-scale representations, respectively, of the flavour group G, and Uy, is the
low-scale limit of Uy. We say that Uy and Uy, are equivalent in the symmetric limit if

following two conditions are simultaneously satisfied.

1. Uy is vectorlike, i.e. there exists a non-singular Up-invariant singlet neutrino mass

matrix M (otherwise the second equation in eq. (3.8) can never be written).

2. For each m, invariant under Uj, there exist a my and a non-singular M invariant
under Uy such that m, = —m% M~'my,.

Note that the converse of the second point is always true: given mpg, my and M (non-
singular) invariant under Uy (thus satisfy conditions in eq. (3.13)), the matrices mg and
m, = —m% M~'m, are always invariant under U, that is a low-scale limit of Uy.

After having definition of the equivalence between Uy and Uy, the problem of the
equivalence of the high- and low-scale discussions of flavour symmetries in the symmetric

limit can then be formulated as follows:

e [s the low-scale limit U}, of a high-scale representation Uy always equivalent to Uy

in the symmetric limit?

e Does an equivalent high-scale representation Uy of a flavour group G always exist
for any given low-scale representations Uy, as a low-scale limit?
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The second question has a positive answer: for a given low-scale representation Uy there
is always a equivalent high-scale representation Uy such that Uy, is a low-scale limit of Ug.
However, the low-scale representations do not cover all the possibilities arising at high-
scale, i.e. there exist high-scale representations whose low-scale limit is not equivalent
to high-scale representation Uy in the symmetric limit. The necessary and sufficient
condition for the low-scale limit Uy, of Uy to be equivalent in the symmetric limit to Uy
is the following: i) UY is vectorlike and ii) UY contains vectorlike part of U!. The proof
of this statement is given in appendix B. Clearly, the first condition requires non-singular
singlet neutrino mass matrix and the second one puts further constraints on the irrep
patterns.

As an example of a high-scale flavour symmetry is not equivalent to its low-scale limit
in the symmetric limit, let us consider the case in which G = U(1) and the high-scale
representation is defined by the following lepton charges: (1,0,0) for the [;, (1,—1,0) for
the v¢ and (1,1,0) for the ef [156]. The high-scale flavour symmetry constrains mg, my,
M to be in the following form

0 0 0 0 0 0 X 0
0 0|, my=|X 0 0|, M=|X 0 0|, (3.14)
X X 0 X X 0 0 X

3
=
|
o o o

where no special relation is enforced among the non-vanishing entries denoted by X
(except Mys = My1). The neutrino mass matrix from high-scale analysis is in the form of

0 0 0
m, = —mﬁ MﬁlmN =10 agbg a2b3 . (315)

0 (Zgbg &363

It is rank one matrix so there is only one neutrino has non-zero mass. On the other hand,

the low-scale symmetry, acting only on /; and ef, constrains mg and m,, to be in the form

o O O

0 0 0 0
0 0|, m= x x|, (3.16)
X X X X

3

=

I
o o o

here also no special relation (such as an accidental vanishing of 23 block determinant)
is imposed among the non-vanishing entries of m,, denoted by X, except m{, = m¥;.
Therefore, m,, is allowed to have rank 2, in which case it cannot be obtained within the
high-scale theory. This implies that high- and low-scale versions of the flavour symmetry
arguments are not equivalent. This happened due to the fact that the vectorlike part
of U' is not contained in U”. In this example irrep decompositions of the high-scale
representations are U, =1+1+1, U4 =1+1+1and U5 =1+ 1 + 1. The vectorlike
part of U! is in fact the ones acting trivially on I, and I3, which have charge zero, and
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that are not entirely contained in U”, as only one trivial (charge zero) representation has
contained in U".

If, on the other hand, UY is vectorlike and contains Ut,, then low-scale discussion
does capture the results of the high-scale analysis in the symmetric limit. So there are
two important cases in which the low-scale discussion of a flavour symmetry does not
reproduce the results obtained at high-scale, not even in the symmetric limit: a) when

UY is not vectorlike, b) when UY does not contain vectorlike part of U!.

3.2.3 The high-scale flavour symmetry forcing a given pattern

of lepton masses and mixing

In chapter 2 we have considered the problem of finding all possible flavour groups and
their representations leading to an approximate description of lepton masses and mixings
in the symmetric limit. We have found a complete solution of the problem based on a
low-scale analysis. We can now use the results in section 3.2.2 to extend the analysis to
a high-scale theory, more precisely for a type I see-saw theory. Our study will include
two cases, the high- and low-scale analyses are equivalent or inequivalent. We will be
interested more in the latter case where high-scale study is not equivalent to the low-
scale limit, as the equivalent case just reproduces the results we already had in chapter 2.
The possible low-scale flavour groups and their representations forcing each of the mass
patterns in table 2.1 together with a viable form of PMNS in eq. (3.17) are given in
table 2.4. All of these representations are characterized in terms of the structures of the
decompositions of Ul and U§ in irrep components, only differences now in the high-scale
analysis will be the singlet neutrino representations, containing the vectorlike part of the
lepton doublet representations, are taken into account.

As a reminder for the our setup, the lepton flavour pattern providing (according to our
subjective definition) an approximate description of the measured flavour observables are
those in which the charged lepton and light neutrino masses are in one of the forms in
the first two columns of table 2.1 and in which the PMNS matrix has one of the following

two forms

X X 0 X X X
UPMNS = X X X or UPMNS == X X X 5 (317)
X X X X X X

where X denotes a generic non-zero entry, for at least one choice of the mass eigenstates.
This specification is necessary when two or more masses are degenerate in the approximate
description.

We have said that the low-scale representation U, of the flavour group G forces the
flavour pattern associated to one of the mass patterns in table 2.1 if following two con-
ditions hold: i) for each £, as in eq. (3.2), invariant under Uy, the lepton masses are in
the form specified by that mass pattern; and the PMNS matrix is in one of the two forms
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in eq. (3.17) for at least one choice of the mass eigenstates.? ii) There exists a £;, as in
eq. (3.2), invariant under Uy, such that the lepton masses are in the form specified by the
mass pattern; and the PMNS matrix is in one of the two forms in eq. (3.17) for at least
one choice of the mass eigenstates.

We call the lepton mass and mixing patterns are generic iff all the masses allowed to be
different from each other and non-zero are indeed different from each other and non-zero;
and all entries of PMNS matrix allowed to be non-zero are indeed non-zero.

In the previous chapter we have done full characterization of all possible flavour sym-
metry and their representations in the low-scale analysis. Now we are going to solve the
same problem in the case of a flavour symmetry constraining the high-scale theory in
eq. (3.7). In other words, we would like to find all possible high-scale flavour groups and
their representations forcing each of the charged lepton and neutrino mass patterns in
the first two columns of table 2.1 and the form of PMNS matrix in eq. (3.17). During the
work of finding irrep decompositions of flavour groups, we use the results in section 3.2.2
to reduce the high-scale problem to the low-scale problem when they are equivalent, and
to find the full list of cases not captured by the low-scale analysis when they are not
equivalent.

In order to give a definition of the problem in high-scale theory, it is better to start with
defining when a high-scale representation Uy is said to force a certain flavour pattern in
the symmetric limit. Here again we encounter the same caveat discussed in section 3.2.2,
though: one or more of the heavy singlet masses might vanish in the symmetric limit and
be generated only once symmetry breaking is taken into account. So we need to treat
such a case, in which M is singular in the symmetric limit, separately. There will be
detailed discussions for that case in section 3.3. For the time being, let us only consider
the cases of high-scale representations for which M is allowed to be non-singular in the
symmetric limit. We can then introduce the following definition. We say that the high-
scale representation Uy of the flavour group G forces the flavour pattern associated to
one of the mass patterns in table 2.1 if:

e Uy is vectorlike so that a non-singular invariant mass term exists for the heavy

singlet neutrinos.

e For each Ly as in eq. (3.7), invariant under Uy, with non-singular M, the light
lepton masses are in the form specified by that mass pattern; and the PMNS matrix

is in one of the two forms in eq. (3.17) for at least one choice of the mass eigenstates.

e There exists a Ly as in eq. (3.7), invariant under Uy, such that M is non-singular;
the light lepton masses are in the form specified by the mass pattern and generic;
and there is a viable form of PMNS matrix, for at least one choice of mass pattern,
as in eq. (3.17) and all of its non-zero entries are generic.

2The second requirement is trivial here, as every PMNS matrix is in the second form in eq. (3.17).
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As emphasized before, we aim at a complete classification of the flavour groups G and
their high-scale representations Ug leading, in the symmetric limit, to a given flavour
pattern. Since the flavour observables only depend on the low-scale effective Lagrangian,
we first of all wonder whether the low-scale analysis might capture all the possibilities
covered by the high-scale analysis, at least in the case in which M is allowed to be
non-singular in the symmetric limit. If that was the case, we could use the results
obtained for the low-scale representations to characterize the high-scale ones: the high-
scale representations forcing a given pattern would be those whose low-scale limit is given
in table 2.4. This turns out to be possible when the low- and high-scale representations
are equivalent in the symmetric limit, but not when they are inequivalent. The interesting
cases will appear either U¥% does not contain the vectorlike part of Ul or M is singular
in the symmetric limit due to Uj; not being vectorlike.

The equivalent conditions for the low- and high-scale analyses forcing the same pattern
is analogous to the conditions for the representations in two analyses being equivalent.
Given a certain flavour pattern, there is always exists a high-scale representation Upy
forcing the same pattern for every low-scale representation Uy, forcing that pattern. And
the necessary and sufficient condition to high-scale representation and its low-scale limit
force same patterns is Uy, have to be vectorlike and it contains the vectorlike part of the
Ul,. The proof of this statement can be found in appendix B.

We then conclude that there are two important cases in which the low-scale analysis
fails in characterizing the high-scale flavour symmetries forcing a certain flavour patter

in the symmetric limit:
1. When Uf is not vectorlike.
2. When U% does not contain the vectorlike part of Ul.

We will discuss above two cases in sections 3.3 and 3.4, respectively.

3.3 Analysis for M is singular in the symmetric
limit

Let us now focus on the case in which M is singular in the symmetric limit. This is the
case ift U}, is not vectorlike, i.e. iff in the decomposition of U}, into a vectorlike and fully
chiral part, U}, = (Uf;)o + (U} )1, the fully chiral part (U};); is not empty.

We would like to provide a complete classification of the flavour groups G' and their
high-scale representations Uy leading, in the symmetric limit, to a given flavour pattern.
However, the flavour pattern is not even defined now in the symmetric limit, as M is
singular and the effective theory approach leading to eqgs. (3.8, 3.10) does not apply in
the symmetric limit. In the realistic limit in which symmetry breaking effects are present,

all singlet neutrino masses are non-vanishing by hypothesis, and much larger than the
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EW scale, so that the effective theory approach can be applied. But not in the symmetric
limit, when the symmetry breaking effects are switched off.

In order to obtain an intuition of how a flavour pattern in the symmetric limit can be
defined even when some of the singlet neutrino masses vanish, let us start from the case
in which singlet neutrino mass matrix becomes non-singular after the symmetry breaking
effects are considered. The light neutrino masses are inversely proportional to the singlet
neutrino masses. Therefore, we expect some of the light neutrino masses to grow and
diverge when we take the symmetric limit.®> In comparison, the mass of the neutrinos
whose mass does not diverge in the symmetric limit is hierarchically smaller, with the
ratio of masses set by the size of symmetry breaking effects. In the symmetric limit we
can then consider the latter masses to vanish and only those that formally diverge to be
non-zero. The non-zero masses (if more than one) could be hierarchical, as their relative
size depends on the detailed structure of symmetry breaking effects.

The main points in this section are the following: we will consider the same neutrino
mass patterns that we have discussed before, i.e. those in the first two columns of table 2.1,
but now i) the non-vanishing entries are supposed to correspond to light neutrino masses
diverging in the symmetric limit, and the zero entries are supposed to correspond to light
neutrino masses that are finite or vanishing in the symmetric limit and ii) hierarchies
among the non-zero entries are allowed (and determined by symmetry breaking effects).

We said above that we expect some of the light neutrino masses to grow and diverge
when we take the symmetric limit. Whether some of the light neutrino masses indeed
diverge in the symmetric limit, and how many, actually depends on the interplay between
the singlet neutrino mass matrix and the Dirac neutrino mass matrix. In order to see
how, let us recover an expression for the potentially divergent part of the light neutrino
mass matrix.

Let us denote by M(® the singlet neutrino mass matrix in the symmetric limit and by
M@ the symmetry breaking corrections, so that the full singlet neutrino mass matrix is
M = MO 4+ MO Analogously, let my = m§3) +m§\}) be the corresponding decomposition
of the Dirac neutrino mass matrix into the symmetric (mg\?)) and symmetry breaking
(m%)) components.

Without loss of generality, we can order the singlet neutrino irreps in such a way
that the first ny neutrinos form the vectorlike component (Uy;)o of the singlet neutrino

representation and the remaining n; = n — ng neutrinos form the fully chiral component

3 Actually, no divergence ever arise. When the symmetry breaking effects are gradually switched off,
and the singlet neutrino mass vanishing in the symmetric limit decreases. At some point, it approaches,
and crosses, the EW scale threshold. When the singlet neutrino mass becomes comparable to the Dirac
mass induced by EWSB through its neutrino Yukawa coupling, the effective approach, and the see-saw
formula, do not apply anymore. The Dirac mass contribution eventually dominates and the singlet
neutrino forms a Dirac neutrino pair with the active neutrino paired by the Dirac mass term.
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(U%)1. The singlet mass matrices then have a corresponding block decomposition

Moo | Mo Még) 0 M(g(l)) M(%)
M = : MO — : MO =
10 11 0 0 10 11
(3.18)

Correspondingly, the Dirac mass matrices have a decomposition into a ny x n block of
mpyo and a nq X n block of my1,

(0) (1)
Mo . M ) Mg
my=|—————1, mg\,) = 7(0) , mg\,) = 7( | . (3.19)
1
Mmn1 My My

Because of the presence of vanishing blocks in M(® the light neutrino mass matrix is
potentially dominated by the exchange of the last n; singlet neutrinos. A perturbative
expression for the light neutrino mass matrix, in the small M) approximation can be
obtained by means of effective field theory by integrating out the singlet neutrinos in two
steps: the first ng heavier ones first and subsequently the remaining n; lighter ones. We
then get

- -1
= my, % [ (M) ] + mi [ M) mie, (3.20)

where
—1 ~ —1
Mmy1 = M1 — Mfé)Még) mno , My, = Mlq) - M1((1))M(§8) M(%) . (3.21)

The first term in eq. (3.20) contains the part that is potentially divergent in the limit in
which symmetry breaking effects vanish, while the second term is certainly finite. As the
maximum rank of myq is ny, we can have at most n; divergent light neutrino masses.

We can now ask the question: is the exact number of divergent light neutrino masses
independent of the symmetry breaking effects? The answer depends on the structure of
the flavour representations UX and Uf?. In order to see that, let us further split the first
term in eq. (3.20) in two parts:

v b

— [T [Mi) " ) = m 4+ min (3.22)
where m® = —[m\W)7[M11] [m{)]. Let r < ny be the rank of m?). In the symmetric

limit, the first term, m:°, gives rise to r divergent light masses and n — r vanishing light

masses. If the rank of mg\o,)l is maximal, r = n;, then the number of divergent light

masses is n; and does not depend on symmetry breaking effects. Moreover, m>° gives
the leading order approximation of m, in the symmetric limit. If on the other hand the

rank of m§3)1 is less than maximal, r < ny, r light masses will diverge. Whether the
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remaining ng — r potentially divergent masses do indeed diverge depends however on the
interplay of the symmetry breaking effects in mi"d. The number of divergent light masses
then depends on symmetry breaking effects. We can conclude that the condition for the
number of divergent light neutrino masses not to depend on symmetry breaking effects
is that the rank of m§3)1 is maximal. It is easy to see that this is the case if and only if
the representation on the singlet neutrinos associated to mg\?)l, i.e. the fully chiral part of
the singlet neutrino representation (Uf!);, is contained in the complex conjugate of the
representation on lepton doublets: (UH)r C Uf.

All in all, when the singlet neutrino mass matrix M is singular we have two cases: all
light neutrino masses corresponding to the chiral part of the singlet neutrino representa-
tions divergent if (UH); C UH, otherwise the light neutrino mass are partially divergent
(or not divergent at all) in the symmetric limit. We will study these cases in the following

two sections.

3.3.1 M is singular in the symmetric limit and (UX); ¢ U

In such a case, the mass pattern depends on symmetry breaking effects, as a number of
potentially divergent masses rely on how many irreps in chiral part of U are contained
in the complex conjugate of U and also on the specific way of symmetry breaking. For

this reason, we do not investigate it further.

3.3.2 M is singular in the symmetric limit and (UY); C UX

When all the complex conjugated irreps of the chiral part of U are included in U/, the
mass pattern is independent of the structure of symmetry breaking effects (as long as the
non-zero entries are allowed to be hierarchical). The neutrino mass pattern contains as
many non-zero masses as the dimension of the fully chiral part of the singlet neutrino
representation (U);. The matrix m in eq. (3.22) gives the leading order approximation

of m,, in the symmetric limit:
m, = m;° + subleading corrections. (3.23)

Without loss of generality, we can choose a basis for the lepton doublets such that the last
ny leptons are invariant under U and they transform with the conjugated representation
U7

Let us now discuss whether a definite prediction for the structure of the PMNS matrix
in the symmetric limit is possible and, in such a case, provide a complete classification
of the flavour groups and high-scale representations leading to a viable flavour pattern in
the symmetric limit.

By using the results in [155], it is possible to show that the n; X n matrix m§8>1 can be

brought in a block form by means of a unitary n x n transformation V,, commuting with
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UH:

mi) = ( 0 m§8§ )VV : (3.24)

~ (0) . . . . . . . .
where mg\,)l is a ny X n; G-invariant matrix. The matrix V), is generic, meaning that any

unitary matrix V,, can be obtained from eq. (3.24) for an appropriate invariant m§3)1 We

then have
0 0
0 0
me = VI o o V, = (H,V,)" a (H,V,) ,
~ O 17T =171~ (0 .
O | =y My [y 0
CLn1
(3.25)
where
a1
H, = and — [RO]7MG R0) = AT H, . (3.26)
CLm

with H, unitary matrix.

Eq. (3.25) leads to a full diagonalization of the neutrino mass matrix (m;°) in the
symmetric limit in terms of the unitary matrix H,V,. In order to identify the neutrino
contribution to the PMNS matrix, we still need to identify further ingredients. First, we
should take into account a possible permutation P, needed to take the neutrino masses in
standard ordering. Then, we should note that the mass eigenstates associated to the first
no neutrinos are undefined in the limit in which eq. (3.25) holds. The mass eigenstates
are determined by the corrections to eq. (3.25) splitting the values of the first ny neutrino
masses. While in the low-scale analysis such corrections are determined by symmetry
breaking effects, here the corrections are provided by the second term in eq. (3.20), which
does not depend on symmetry breaking. The diagonalization of the upper ny x ng block
of the neutrino mass matrix will then provide an additional component Uy to the neutrino
contribution to the PMNS matrix acting only on the first ng neutrino. The determination
of the structure of such a contribution follows the rules described in the section 3.4.2.

Now let us apply this general discussion for the case of singlet neutrino mass matrix
has one vanishing eigenvalue. According to the relation between the mass matrix and the
irrep pattern we know that the singlet neutrino representation has one-dimensional fully
chiral part and two-dimensional vectorlike part. Obviously, the one-dimensional fully
chiral part is nothing but a one-dimensional complex representation, so the structure of

the representation is Uj; = r + 1, where 7 is vectorlike part, possibly reducible, and has
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a form in one of the following options:

2, 1+1, 1+1, 1"+7, 1+1. (3.27)

In order to have one divergent light neutrino mass in the symmetric limit, lepton
doublet representation Ul must contain 1. So it has a from U}, = 1 + s, where the rep-
resentation s can be reducible and no any constraints on it. Concerning the components
of Upmns, we can read V, in eq. eq. (3.24) from the condition that it commutes with
UY, or it is equivalently fixed by number of 1 in U%. If we neglect the symmetric limit
correction to light neutrino masses then first two masses are zero thus H, is always a 12
block unitary rotation. The irrep decompositions for the viable patterns of masses and
mixings are listed in table 3.1, results are shown in a way of comparing the low- and high-
scale analysis. The light neutrino mass spectrum in high-scale analysis is in the normal
ordering, since one of the neutrino mass from symmetry breaking is much larger than
other two. Non-zero charged lepton masses depend on the number of conjugated irrep
pairs between the U; and U... In the high-scale analysis, results in the first three rows
are analogous to each other, this is because the irrep decompositions of U.. are similar,
possible irrep patterns of Uy is the same and the way of irrep conjugation between the
UL and U§ is also the same. So the high-scale analysis for the one row can simply be
extended to the other two. But, notice that, the results in these three rows from the
low-scale analysis are different. More precisely, there are different forms of the Upyns
such as, apart from being viable, the 33 element is forced to be zero or the Upyns is just
a 2 x 2 block matrix. In the high-scale analysis, structures of the PMNS matrix in all
cases contains a unitary rotation HY, due to the block of two zero neutrino masses, which
will be fixed by the symmetric limit. To have viable mixing matrix in this case, the H{,
must be a large rotation, where as the Hf, if it appears, requires to be a small rotation
in order to have a small 13 element. One may notice that the HE, and HY, are now, in
the high-scale analysis, determined by the symmetric limit not by the symmetry breaking
effect, which is in contrast to the determination of these two components in the low-scale
analysis. In case the Hf, component becomes a big rotation, then the smallness of 13
element turns out to be accidental. In the last row of the table, the only advantage of the
high-scale analysis compared to the low-scale version is that the neutrino mass spectrum
is predicted to be in the normal hierarchy, although the form of PMNS is undetermined
as in the case of low-scale result.

One can go further to the next step by discussing the singlet neutrinos are forced to
have two vanishing masses in the symmetric limit. The results for this case are given in
the table 3.2. There is no prediction for the neutrino mass hierarchy, as the relative size
of two non-zero masses are not determined. The PMNS matrix in the high-scale analysis
can have a small 13 element if Hf, is a small rotation and neutrino masses are in the
inverted hierarchy, otherwise there is no guarantee to have a small 13 entry. Allowed
forms of the PMNS matrix in the low-scale results are arbitrary due to the vanishing
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neutrino masses in the symmetric limit.

The last case with three zero singlet neutrino masses in the symmetric limit is less
interesting, that is because of the fact that both heavy and light neutrino masses are
determined by symmetry breaking effects and there is no prediction for the light neutrino
mass hierarchy.

3.4 Analysis for M is non-singular in the symmetric
limit

The work in this section covers a complete characterization of the flavour group repre-
sentations for two cases depending on the low- and high-scale analyses are equivalent or

not. In the following we will discuss each of them in turn.

3.4.1 M is non-singular and (U), C U in the symmetric limit

As we already know from the equivalence of two analyses, the results of previous chap-
ter can provide a complete classification of the flavour groups G and their high-scale
representations Uy (when M is non-singular in the symmetric limit and U}, contains the
vectorlike part of Ul;) leading, in the symmetric limit, to a given flavour pattern. In other
words, we know that the flavour pattern forced by Uy is the same as the flavour pattern
forced by its low-scale limit Uj. Therefore, we can use the results obtained in [155] for
the high-scale representations forcing a given flavour pattern. We concluded that Ugy
forces the flavour pattern associated to a given mass pattern in table 2.1 iff the irrep
decomposition of U, and U§, appears in table 2.4 corresponding to that mass pattern.
Regarding the irrep patterns of the singlet neutrino representation Uy, it is required to be
vectorlike and must contain the vectorlike part of Ul;. According to the irrep patterns of
UL, in this table, we can easily see that conditions on U can uniquely determine its irrep
decomposition. For example, from the irrep decomposition of U, = 1+ 1 + 1, we know
that the singlet neutrino irrep pattern is Uy; = 1+ 1 + 1. In the high-scale result light
neutrino mass hierarchy is not determined, which is the same as what we get in the low-
scale analysis. In the case of Ul = 1 + 1 + 1, singlet neutrino representation must have
the form Uy =1+ 1+ 1. This results in the inverted hierarchy of light neutrino masses
in the high-scale analysis, that is also the same in the low-scale limit. When these two
analysis become equivalent, all possible irrep decompositions of the high scale analysis,
providing viable patterns of lepton masses and mixing, are shown in the table 3.3. Due
to the equivalence, discussions in the low-scale analysis can also apply to the high-scale
results.
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. . high-scale analysis low-scale analysis
Ug Uy U mg
my | He Pe V. H, | Upuns my; |Hg Pg V. D B, H,| Upuns
s21,1 +1 (00A) [ (00«)| HE Vas  HY, | none (13) || (00 a) | HE Va3 Py, 33
rl (14141 [s£1 141 | (0BA) | (00a) Vs Hby| 13 | (00a) Vas v 2 % 2
1+1+1 (CBA)|(00a) Ps Ve HY | 13,23,33 || (00a) Py Vi v 2 % 2
s21,1 +1 (00A) [(00«)| HE Vs  HY, | none (13) || (a a 0) | HE Vaos D none (13)
r+1]14+1+1 |s#1 +14+1| (0B A) |(00a) Vo HY, 13 (aa0) Vos D1 13
1+1+1 (CBA|00a) Ps Vi HY | 13.23,33 || (aa0) Py Vay Dis 13,23, 33
s21,177 41 | (00A4) |(00a«)|HE Vos  HY, | none (13) || (0 0 0) Vv Vv
r+1|(174+1+1[s#£17 +14+1| (0B A) | (00a) Vas  HY, 13 (000) 1% %
T+1+1 (CBA)|(00a) Pgp Vas  HY, | 13,23,33 || (000) 1% vV
sp1 +1 00A) |(00a) Vi Uses || (000) v v
r+1|1+1+1 [s£1 +14+1 | (0B A) | (00a) Vi Uss | (000) % %
1+1+1 (CBA|(00a) Vi Usxs | (000) v v

Table 3.1: Summary of the results from the case in which one singlet neutrino having a vanishing mass in the symmetric limit.
Representation r is vectorlike and possibly reducible, and V = 5<u . P;_.j denotes any permutation such that o(i) = j, while P
denotes the switch of ¢ and j or the identity permutation. Pg is a generic permutation.
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irreps masses | v hierarchy UpnMNs Zeros
111

1 r21 ((1223)) NH or IH v none
111

111

17211 ((6123)) H HEVy3Diy | none (13)
1 11

11

11 r#1 (AB0) NH or IH V none
111 (abe)

111

11 r#1 ((AOGBGO)) IH VasDi5 13

1 11

1 11

1 11 (1(4;23) NH or IH Vv none

1 11

111

111 <é5$> TH PEV23D1’21 13,23,33
111

Table 3.3: Possible high-scale irrep decompositions giving rise to viable masses and
mixing patterns when M is non-singular and low- and high-scale analyses are equiv-
alent. The first column shows the decomposition of Ullq, Uf and Uy, in this order
from above to below. Irreps are denoted by their dimensions. Boldface fonts denote
complex representations, regular fonts denote real representations. Primes are used
to distinguish inequivalent representations, and in the case of complex representations
1’ is supposed to be different from both 1 and 1. “r” denotes a generic, possibly re-
ducible representation, different from or not including the specified irreps, as indicated.
No pseudoreal irreps appear. The second column shows the corresponding pattern of
charged lepton and neutrino masses in the symmetric limit, one above the other, and
the third is the neutrino hierarchy type, normal (NH) or inverted (IH). The structure
of the PMNS matrix is then shown. A matrix with no further specification is generic
(e.g. P denotes a generic permutation, V' a generic unitary matrix). D;; denotes a
/4 rotation acting in the sector ij. The presence and position of a zero in the PMNS
matrix in the symmetric limit is specified in the last column.

3.4.2 M is non-singular and (U};)y € U} in the symmetric limit

Now we will work out the case where the singlet neutrino mass matrix is non-singular in
the symmetric limit and the high-scale analysis is not equivalent to its low-scale limit.
The results from the inequivalent cases are listed in the table 3.4, which is organized in
a way of comparing the mass spectrum and mixing matrix from two different analyses.
In all of these cases both neutrino mass spectrum and mixing patterns are different
compared to the low-scale analysis, while charged lepton mass spectrum is the same in
both analyses. The former is because of the condition (U)o € U, and that is expected
from our discussions in previous section. The latter is due to the same choice of irrep
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patterns for the U; and U, in both analysis. It deserves to emphasis that all masses and
mixing patterns can be obtained without knowing the explicit form of mass matrices.
The irrep patterns are enough to provide mass spectrum and components of the PMNS
matrix from the following simple rules: V' commutes with doublet representation, D takes
care of Dirac sub-structure, non-trivial H,, and Hg arise from the degenerate neutrino
masses and two vanishing charged lepton masses respectively, and the permutations P,
bring the neutrino and charged lepton masses into the standard ordering. The number
of non-zero masses in the light neutrino mass spectrum depends on the rank of the Dirac
mass matrix, as the singlet neutrino Majorana mass matrix has a full rank. In addition,
the number of non-vanishing neutrino masses is same as the number of irreps in U}
conjugated (equivalent) to the irreps in Ul;, unless there is an accidental cancellation in
the determinant of the non-zero block.

One can see that, from the first two irrep decompositions in table 3.4, neutrino masses
are predicted to be in the normal hierarchy, all of the PMNS matrix elements are non-zero
and smallness of the 13 element depends on the symmetry breaking effects. Namely, in
order to have a form of the PMNS matrix close to the observed pattern, first of all, HY,
must be a large rotation. Then, the situation depends on the form of Hf; determined
from the symmetry breaking: if it becomes a small rotation then there will be a zero in
13 position, otherwise the smallness of the 13 element is not guaranteed. While in the
low-scale analysis, the neutrino mass hierarchy is not fixed in the symmetric limit since it
depends on the relative sizes of the non-vanishing masses, and PMNS matrix is not in the
viable form. In both analyses only the tau lepton has a non-vanishing mass and electron
and muon masses are zero in the symmetric limit, so the symmetry breaking effects must
be needed to generate masses for the two light charged leptons and also provide mass
hierarchy among them.

In the fifth and the sixth irrep decompositions, the flavour symmetry in the high-scale
analysis predicts normal hierarchy of the light neutrino mass and also unambiguously
fixes a zero in the 13 element of the PMNS matrix in the symmetric limit. In order for
the other PMNS matrix elements agree with the experimental data, the large HY, rotation
must be obtained from the symmetry breaking effects. While in the low-scale results there
is no definite hierarchy of neutrino masses, as a consequence of the differences between
the non-zero masses are not fixed by the flavour symmetry. Furthermore, there is no
explanation for the smallness of the muon mass compared to the tau mass, and form of
the PMNS matrix is just a 2 x 2 block rotation in the symmetric limit which is far from
being viable.

The ninth and the tenth irrep decompositions for the high-scale analysis provide normal
hierarchy of the neutrino masses, but the charged lepton mass hierarchy is not predicted
by the symmetry. And it is not obvious to have a zero fixed for the 13 element of
the PMNS matrix, as the position of the zero elements depends on the permutation of
charged lepton masses. The results from the low-scale analysis are not so appealing, that
is because not only the charged lepton and neutrino mass hierarchies are not predicted
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at all but also the PMNS is a 2 x 2 unitary block rotation which is obviously not close to
the observed pattern.

Finally, all the remaining irrep decompositions do not constrain the form of the PMNS
matrix in both high- and low-scale analyses, that is mainly because the diagonalization
of charged lepton mass matrix requires a generic 3 x 3 unitary matrix, although there are
some cases provide normal hierarchy of the neutrino masses or explain the smallness of
electron and muon masses compared to tau lepton mass.

In short, the nice result we can get from this table is that cases with PMNS matrix
having a viable form in the high-scale analysis but not in the low-scale analysis predict
normal hierarchy of the neutrino mass, which is being preferred by current oscillation

data around 3o level [5].

3.5 The high-scale flavour symmetry in GUT

Our discussions so far have focused only on flavour symmetry of the lepton sector. But
there is no reason to prevent flavour symmetry acting on the quark sector as well. A
complete and successful flavour theory must take both leptons and quarks into consid-
eration, and give an acceptable solution for the puzzle of observed fermion masses and
mixing patterns. As we know, the SM gauge symmetry is an intra-family symmetry, in
the sense that it treats the corresponding fermions of different families in a same way and
does not mix the fermions in different families. While the flavour symmetry is an inter
family symmetry, it does transform non-trivially the leptons (or quarks) of different fam-
ilies and can combine them into a single multiplet. If we imagine every SM fermion with
two indices — the fist is family index and the second is gauge group index — then five
different types of fermions in the SM can be described solely by their quantum numbers
under the flavour symmetry and gauge symmetry regardless of which family they belong
to. In this case the flavour symmetry acts horizontally on the row index while gauge
symmetry acts vertically on the column index.

More interesting situation will appear when we discuss the problem in the context
of the Grand Unified Theories (GUTSs) together with a flavour symmetry, as there is a
complementary role of the gauge symmetry, unifying the fermions of same family but
with different flavours, and flavour symmetry, acting on the different fermion families.
For instance, in the context of SU(5) GUT and flavour group G, we have three fermion
multiplets of SU(5) gauge group (d¢ and [; are in anti-fundamental representation 5; ug,
¢; and € are in the anti-symmetric decuplet representation 10; and v{ are in the singlet)
and each of them can transform in the different representations of G. We assume that
actions of the gauge and the flavour group representations can commute each other and
that fermions in each SU(5) multiplets belong to the same representation of the group G.
Further more, when we discuss flavour symmetry in the context of SO(10) GUT, there

will be more constraints on the representations of the flavour group. This is because, in
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high-scale low-scale

irreps masses Upnmns ZeToS masses Upnmns Zeros
117

1 rp1,1 (A(())(())) HEVysHY,' | none (13) (Ago) HEVys Pt | 31, 32, 33
1 s 2 17 1/ (CL ) (a’ C)

1 11

1 r21,1 <(A88)) HEVysHY, " | none (13) ((Ag((]))) HEVasPY | 31, 33
1 sp1 ¢ ¢

111

1 rp1 (A00) vV none (400) 1% none
1 sp1 (00) (abc)

1 1 1

1 rp1 (A00) V none (400) 1% none
11 521 (ab0) (abc)

1 11

11 r#1 (AB0) Vs HY, ' 13 (ABO) Vs P! 4 zeros
L sBL (a00) (abe)

11 1

= ABO 1 ABO 1

1 1 r#1 ((aOO)) Vas HY, 13 ((abO)) Vas Py 4 4 zeros
1 s ;é 1

1 11

1 1 r#1 (ABO) Vv none (ABO) V none
1 s71 (a00) (abe)

1 11

1 1 r#1 (AB0) Vv none (AB0) V none
11 s£1 (ab0) (abc)

1 11

1 1 1 (ABC) ]3,13‘/2311]1”;1 13, 23, 33 (ABC) PpVos Pt 4 zeros
L sBL (a00) (abc)

1 11

111 (’(4%’;) PpVpsHY, ' | 13, 23, 33 (‘(455 ) PpVasP s | 4 zeros
1 sp1 ¢ ¢

11 1

111 (ABC) V none (ABC) \%4 none
1 sl (a00) (abe)

111

1 11 (ABC) V none (ABC) V none
L1 v (ab0) (abc)

Table 3.4: Summary table for the case in which M is non-singular and low- and
high-scale analyses are not equivalent. In the first column irrep patterns of U}{, Uy
and Uy, are in the successive order of one below the other. The sub-representations
r and s can be reducible, and the representation s is required to be vectorlike. F;..;
denotes the transposition of ¢ and j or the identity permutation. Matrix with no further
specification is generic (e.g. Pp and P, imply generic permutations, and V' is a generic
3 X 3 unitary matrix).
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this case, the fermions in each family are unified into a single multiplet of dimension 16
spinorial representation of the gauge group SO(10) and all fermions in this multiplet are
considered to transform under the same representation of the flavour group G. In a word,
in these flavour symmetric GUT scenarios fermion masses and mixing get more stringent
constraints than the ones discussing the flavour and gauge symmetries separately.

When we put GUT constraints on the flavour group representations obtained in the
previous sections, there may be some flavour group irrep decompositions accounting for
the viable mass and mixing patterns in both lepton and quark sectors. It will be interest-
ing if we can explain the observed lepton and quark masses and mixing simultaneously
in the context of GUT flavour symmetry. Before discussing the flavour symmetries of the
quark sector we need to remind what are the definitions of the viable quark mass and
mixing patterns. As was pointed out in section 2.4, we say both up- and down-type quark
mass patterns are viable iff they belong to one of theses three forms (A,0,0), (A, B,0),
(A, B, C) and no degenerate non-zero masses are allowed. As for the viable form of CKM
matrix, only the diagonal form or at most 12 block rotations are considered to be viable,
since all the other quark mixing angles are smaller than 3° except Cabibbo angle which
is as big as 13°. Each components of the CKM matrix is given by eq. (2.17), they have
similar origins as the components of the PMNS matrix.

In what follows, we will start discussing the SU(5) GUT flavour symmetry. As stated
before, all fermions in the same SU(5) multiplets are supposed to transform under the
same representation of the flavour group, i.e Us = Uge = Uj, Uyg = Uye = Uy = Uee and
U, = U,. Given that we have already found the irrep decompositions for the viable lepton
mass patterns and mixings, it is easy to sort out the irrep decompositions of Uz, Uy and
U; from the known forms of U;, U, and U,. Imposing the further constraints of viable
quark mass and mixing patterns in the symmetric limit selects the results in table 3.5 for
the case where M has one vanishing eigenvalue, and table 3.6 summarizes the results for
the case in which M has two vanishing eigenvalues. The results in table 3.7 are obtained
from the case where the singlet neutrino mass matrix M is non-singular and the low- and
high-scale analyses become equivalent. Moreover, tables 3.8 and 3.9 show the results for
the case of M is non-singular and the low- and high-scale analyses are inequivalent.

In table 3.5 all of the neutrino mass patterns are in the normal hierarchy, which is
the consequence of singlet neutrino mass matrix having one vanishing eigenvalue in the
symmetric limit. The charged lepton and down quark mass patterns are always the same,
and it is the common feature also in all the other tables. This comes from the fact that
both /; and df transform under Uz and both ¢; and ef transform under U;y. Having such
a relation between the representations of leptons and quarks, forms of the invariant mass
matrices mg and mp are transpose of each other. This, in turn, implies that those two
mass matrices have same rank in general, so the number of non-zero eigenvalues are always
the same. Furthermore, as we can see, all the mass patterns appeared in down-type quark
sector are constrained by the interplay between the representations Us and Uyg, while the
up-type quark mass patterns are determined by Ujy only. The first three rows in table 3.5
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provide analogous results for the fermion mass patterns and forms of the CKM and PMNS
matrices, this is due to the fact that not only the structure of irrep patterns are similar
but also the derivations of the mass and mixing patterns are the same. The CKM matrix
associate to the all irrep patterns has two main forms depending on whether or not it
contains Vis. If there is no Vi, form of the Voky is determined by the permutation
ordering the non-vanishing masses of the up-type quarks and by the HE from symmetry
breaking effect. Only when the combination of these two components provides a diagonal
matrix or a small 12 block rotation, then the CKM matrix can accommodate observed
quark mixing parameters in the leading order approximation. If, on the other hand,
there is a Vj5 contribution, which will remain as it is even after the symmetry breaking,
in order to have a realistic mixing matrix we expect Vj, to be close to the rotation of
the Cabibbo angle. In case this expectation is realized, the viable form of Vg can be
obtained when the permutations play trivial role and symmetry breaking fixes Hy p to
be diagonal matrix. As for the form of Upyng, there are two possible cases, either all
of its entries are non-zero or there is a zero in the 13 position depending on the Hp, in
the symmetric limit. It is possible to have a viable pattern of the Upyns and a zero in
its 13 element if H, becomes a big rotation whereas Hg becomes a small rotation in the
symmetric limit. Otherwise, the smallness of the 13 elements is accidental.

Analysis of the results in table 3.6 is basically similar to that in table 3.5, main
differences in table 3.6 can be seen from the following two points: there is no definite
hierarchy of the neutrino masses, and smallness of (Upyns )13 is accidental in all the irrep
decompositions.

The results in table 3.7 coincide with the table 2.6, since the low- and high-scale
analyses are equivalent. As the discussions of mass patterns and mixings are same as
in table 2.6, we will not repeat them here.

Tables 3.8 and 3.9 provide irrep decompositions, mass patterns and form of the mixing
matrices when M is non-singular and the low- and high-scale analyses are not equivalent.
Both types of hierarchies for the neutrino masses are allowed, and all possible mass
patterns appeared in the charged fermion mass spectrum. As a general feature, all the
charged lepton and down-type quark mass patterns are always the same, because of the
reason stated before. Quark mixing matrix has two kinds of forms with and without
Vig. If these is no Vi in the Vioky, then quark mixing pattern depends on the symmetry
breaking effects up to the permutation matrix of non-zero masses, while the forms of
the Voxwm with Vis require that Vs is close to the rotation of Cabibbo angle. As for the
Upmns, the first two irrep decompositions in table 3.8 can contain small 13 element if the
rotation HL, corresponding to vanishing masses of electron and muon, is small whereas
the rotation HY, is big, otherwise it is not obvious to have a small 13 element. Irrep
decompositions in the next-to-last row of table 3.9 unambiguously fixes the 13 element
of PMNS matrix to be zero while the last row of the table shows that Upyng has a zero
in any position of its third column, depending on the permutation for the charged lepton

masses.
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Masses
Uy Us Uro Vexm Upmns
mp mu mg my

+141|(00d (DEF) (00A4) (00a)| Py/HE" none (13)

N P 1'+1 +7i (00d) 0ODE) (00A) (00a) PQZBH{;‘; none (13)
1+1+1 | (00d) (0DE) (00A4) (00a)|Pl VioHE none (13)
1+1+1 |(def) (00D) (ABC) (00a)| HYV,P," | 13,23,33
1+141 [(00d) (DEF) (00A4) (00a)| PyHL" none (13)

e Tlie1at 1'+1 +7i (00d) (0DE) (00A) (00a) PgHgHg*_l none (13)
1+1+1 [(00d) (0DE) (00A4) (00a)|PY ViuHE ' | none (13)
1+1+41 |(def) (0DE) (ABC) (00a)| PYViaPy' | 13,23,33
1+141 [(00d) (DEF) (00A4) (00a)| PyHB"

_ 1'+14+1|(00d (0DE) (00A) (00 PY_ gE™!

r 4 1 1/ 4 1 + 1 B ( ) ( ) ( ) ( (1) 23 1271 none (13)
1”74+1+1/(00d) (0DE) (00A) (00a)| PY,HB
1+1+1 [(00d) (0DE) (00A4) (00a)|PY VisHY ™
1+1+1 [ (00d) (DEF) (00A) (00a)| PyHBL" Vixs

r+1{14+14+1{14+1+1[(00d) (ODE) (004 (00a)| PY HE' Vas
1+1+1 [(00d) (0DE) (00A4) (00a)|PY ViuHY™ Vixs

Table 3.5: Possible forms of SU(5) unified flavour representations for the case of one
singlet neutrino having a vanishing mass in the symmetric limit. Representation r is
vectorlike and possibly reducible. Form of the fermion masses and of the CKM and
PMNS matrices corresponding to viable choices are shown. Neutrino mass pattern and
PMNS matrix are obtained from the high-scale results. P»..3 is either the identity
permutation or the switch of 2 and 3.

If we discuss flavour symmetry in the context of SO(10) GUT, flavour group represen-
tations are very strongly constrained. There is no any flavour group for the description
of viable fermion mass and mixing patterns in the symmetric limit. The reason behind
this conclusion is that there is no irrep patterns to satisty Uyg = U; = Uz = Uy and lead
to the viable structures of the CKM and PMNS matrices in either case, where the low-

and high-scale analyses are equivalent or inequivalent.

3.6 Conclusions and remarks

The main goal of our work in this chapter is to give complete and precise answers to
the following two important questions: i) Are the low- and high-scale analyses always
equivalent? If not, what are the conditions to be so? ii) Can high-scale flavour symmetry

provide approximate description of lepton masses and mixings in the symmetric limit?
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Masses
U Us Uio Vokm Upnins
mp my mg my
14141 |(00d) (DEF) (00A) (0ab)| PyHY"
/ 1 U D1
I +i+T 14147 1—|—1+1_ (00d) (ODE) (00A) (0ab) PQ(_,?)HH_1 Hone
1”7+1+1|{(00d (0DE) (00A) (0ab)| PJ . HE
1+1+1 [(00d) (0DE) (004) (0ab)| PV Vi,HE
1+1+1 [(00d) (DEF) (00A4) (0ab)| Py/HE
14141 (14141 |1'4+1+1[(00d) (0DE) (00A) (0ab)| PY HB " | Vi
1+1+1 [(00d) (0DE) (004) (0ab)| PY Vi,HE™
Table 3.6: Possible forms of SU(5) unified flavour representations for the case of two
singlet neutrinos having vanishing masses in the symmetric limit. Form of the fermion
masses and of the CKM and PMNS matrices corresponding to viable choices are shown.
Neutrino mass pattern and PMNS matrix are obtained from the high-scale results. Ps.,3
is either the identity permutation or the switch of 2 and 3.
Masses
U, and Us Uio Vekum Upnns
mp my mg my
14141 [(00d) (DEF) (00A) (abe)| PyHEL
1+1+1"[(00d) (DEF) (00A) (abe)| PyHE
1+1+1|(00d (DEF) (00A) (abe)| PyViHY
14141 [141741 |(00d) (0DE) (00A) (abe)| PLLHD " | Vixs
142 (00d) (00D) (00A) (abe)| HLHD™
14141 [(00d) (00D) (00A) (abe)| HYLHD™
1+1+1 [ (00d) (00D) (00A) (abe)| HLHD

Table 3.7: Possible forms of SU(5) unified flavour representations for the case where
the singlet neutrino mass matrix is non-singular in the symmetric limit as well as low-
and high-scale analyses are equivalent. Form of the fermion masses and of the CKM
and PMNS matrices corresponding to viable choices are shown. Neutrino mass pattern
and PMNS matrix are obtained from the high-scale results. Ps.,3 is either the identity
permutation or the switch of 2 and 3.
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Uy Us Uio Masses Vexm Upmns
mp my mg my

1+14+1 |(00d) (DEF) (00A) (00a)| PyHB
1+1”7417|(00d) (DEF) (00A) (00a)| PyHB
1+174+1" | (00d) (DEF) (00A) (00a)| PyVigHY™

14r 2LV |[14+141 141”41 [(00d) (0DE) (00A4) (00a)| PY HL™" |none (13)
1+2 (00d) (00D) (00A) (00a)| HLHE
1+141 |(00d) (00D) (00A) (00a)| HLHE
1+14+1 |(00d) (00D) (00A) (00a)| HLHE
141471 |(00d) (DEF) (00A) (00a)| PyHB
1+1'+1” |(00d) (DEF) (00A) (00a)| PyHB
1+1+1 | (00d) (DEF) (00A) (00a)|P,VieHE™
1+1+1 |(00d) (0ODE) (00A) (00a)| PY HY"

Lirp1 1141 1+1'+1 | (00d) (0ODE) (00A) (00a) PQIL,BHIDQ_‘; none (13)
1+2 (00d) (00D) (00A) (00a)| HLHE
1+1+1 |(00d) (00D) (00A4) (00a)| HLHD
1+1+1 |(00d) (00D) (00A4) (00a)| HLHD
1+1'+17|(00d) (00D) (00A4) (00a)| HLHD
1+1'+1 | (00d) (00D) (00A) (00a)| HLHD™
1+1+1 |(00d) (DEF) (00A) (00a)| PyHE"
1+1+1" | (00d) (DEF) (00A4) (00a)| PyHL™"
1+1+1 | (00d) (DEF) (00A4) (00a)|PyVi,HY™

1+r21 |1+1+1|1+1+1 |((00d) (0DE) (00A) (00a)| PY ,HE™ Vaxs
1+2 (00d) (00D) (00A) (00a)| HLHE
1+1+1 |(00d) (00D) (00A4) (00a)| HLHD™
1+1+1 |(00d) (00D) (00A4) (00a)| HLHD

Table 3.8: (Part 1) Possible forms of SU(5) unified flavour representations for the case
in which singlet neutrino mass matrix is non-singular in the symmetric limit (as well
as low- and high-scale analyses are not equivalent). Representation r is vectorlike and
possibly reducible. Form of the fermion masses and of the CKM and PMNS matrices
corresponding to viable choices are shown. Neutrino mass pattern and PMNS matrix
are obtained from the high-scale results. Ps..3 is either the identity permutation or the
switch of 2 and 3.
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Uy Us Uso Masses Vexum Upmns
mp my mg my

1+14+1 |(00d) (DEF) (00A) (0ab)| PyHL'

1+1+1"|(00d) (DEF) (00A) (0ab)| PyHL'

1+1+1 | (00d) (DEF) (00A) (0ab)|PyVip,HY"
I+1+47#1|1+14+1 |141+1 |(00d) (0ODE) (00A4) (0ab)| PYHE" | Vi

142 (00d) (00D) (004) (0ab)| HLHE

1+1+1 [(00d) (00D) (00A) (0ab)| HLHE

1+1+1 [(00d) (00D) (00A) (0ab)| HYLHED
1+r21,1 |[1+1+1V|14+1+1" [(0de) (DEF) (0AB) (00a)| PyVisPP" 13
1+7r21,1 |[14+14+1[1+1+1 |(def) (DEF) (ABC) (00a)| P/Vi,PP | 13,23,33

Table 3.9: (Part 2) Possible forms of SU(5) unified flavour representations for the case
in which singlet neutrino mass matrix is non-singular in the symmetric limit (as well
as low- and high-scale analyses are not equivalent). Representation r is vectorlike and
possibly reducible. Form of the fermion masses and of the CKM and PMNS matrices
corresponding to viable choices are shown. Neutrino mass pattern and PMNS matrix
are obtained from the high-scale results. P..3 is either the identity permutation or the
switch of 2 and 3.

The answer to the first question is no, these two analyses are not equivalent. Although
for a given mass and mixing pattern forced by a low-scale analysis there is always a high-
scale analysis exist to provide same mass and mixing patters, the low-scale analysis cannot
cover all the possibilities in the high-scale discussion. A necessary and sufficient condition
to these two analyses become equivalent is that the singlet neutrino representation must
be vectorlike and it contains vectorlike part of the lepton doublet representation. The
answer to the second question is yes, present hint for the normal hierarchy of the neutrino
masses can be account for by the high-scale analysis when it is not equivalent to low-
scale study. As we know already from the previous chapter, the low-scale result describes
neutrino masses either in the inverted hierarchy or in the anarchical (unconstrained)
pattern in the symmetric limit, this description can also appear in the high-scale analysis
when it become equivalent to the low-scale analysis.

The answers of those questions are based on a very general assumption of the flavour
group, a specific mechanism to the neutrino mass generation and our definitions of the
viable masses and mixing patterns. There is no restriction on the flavour symmetry, they
can be any type. We simply extend SM by considering the singlet neutrinos, and assume
that neutrino masses are generated from the type I seesaw mechanism. Our definition
for the viable lepton masses and mixings are given in table 2.1 and in eq. (3.17). From
these three basic assumptions, we provide thorough identification of the all possible irrep

decompositions on lepton doublet, lepton singlet and neutrino singlet. Regarding the
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flavour groups, if all the irreps, that can account for the viable mass and mixing patterns,
are contained in the possible irreps of a certain group representation then that group can
be considered as applicable flavour symmetry group.

To obtain those conclusive answers, we have started our discussion by defining the low-
and high-scale analyses of flavour observables according to the two different descriptions
of the neutrino masses, either from the Weinberg operator or from the type I seesaw
mechanism. Then we provide equivalence condition of these two analyses for the general
case of n family. The equivalence condition states that two analyses provide same mass
and mixing patterns if and only if i) the representation of the singlet neutrinos is vectorlike
and ii) it contains the vectorlike part of the lepton doublet representation. Since we
already have had complete classifications of the low-scale analysis in chapter 2, our main
interest in this chapter is to find full characterization of flavour group representations for
the inequivalent scenarios. Inequivalence happens in two cases, when the singlet neutrino
mass matrix is singular or non-singular in the symmetric limit. Both case are discussed
separately and results are given by the relations between the irrep patterns and forms of
the lepton masses and mixings in the symmetric limit, without knowing the explicit form
of the mass matrices.

The results for the cases in which the singlet neutrino mass matrix has one or two
vanishing eigenvalues are give in table 3.1 and table 3.2, respectively. In the former case
light neutrino masses are predicted to be in the normal hierarchy, while the latter case
allows both hierarchies to appear. Comparing the results from the high- and the low-scale
discussions, there are two main features deserve to emphasize. Firstly, in the viable cases
of the low-scale analysis neutrino masses are allowed either in inverted hierarchy or forced
to be all vanishing, while in the high-scale analysis all the mass patterns are in the normal
hierarchy, which is slightly preferred by the current oscillation data. Secondly, some cases
where the forms of the PMNS matrix were not viable or undetermined in the low-scale
analysis now turn out to have a viable mixing patterns in the high-scale result. This
means that there are more possibilities of the flavour group representations to provide
approximate description of the lepton masses and mixings in the high-scale analysis than
the low-scale limit.

The table 3.4 summarizes the inequivalent results when all the singlet neutrino masses
are non-zero in the symmetric limit. Here, two interesting outcomes catch our attention,
first one is related to the neutrino mass spectrum and other one is about the form of the
PMNS matrix. In the high-scale analysis there is no anarchical neutrino mass spectrum
which appeared in the low-scale analysis. Structures of the PMNS matrix in the low-scale
analysis with a zero in the third row or with 4 zero entries now become viable in the high-
scale analysis; moreover, the 13 element is fixed to be zero (or that can be obtained from
the trivial permutation of charged lepton masses) in the symmetric limit, or a symmetry
breaking effect can explain the smallness of the 13 element.

In the last part of the work we investigate the possibilities of explaining both lepton
and quark flavour observables in the context of grand unified theories such as SU(5) and
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SO(10). Imposing the non-trivial assumption that the flavour and the gauge group rep-
resentations commute each other and that the fermions in a same gauge group multiplet
transform under the same representation of the flavour symmetry, we have obtained in-
equivalent results of the high-scale analysis shown in tables 3.5, 3.6, 3.8, 3.9 for the SU(5)
GUT; and there is no solution in the context of the SO(10) GUT. Clearly, there are more
possibilities to achieve viable fermion masses and mixing in the high-scale analysis in the
context of GUT compared to that in the low-scale analysis. Notice that all of the mixing
patterns in those viable cases rely on the specific structures of the permutation matrices,
H 1U2’D and Vi, some of which are determined by the symmetry breaking effects.

Even though the high-scale analysis can provide a possibility to approximate descrip-
tion of fermion masses and mixings in the symmetric limit, the symmetry breaking effect
cannot be absent for the accurate description of SM flavour observables. So it is important
to study the problem by considering cumulative contributions from the symmetric limit
as well as the symmetry breaking effects that depend not only on the breaking source but

also on the chosen way of symmetry breaking.



Chapter 4

Novel measurements of anomalous

triple gauge couplings for the LHC

4.1 Introduction

The Standard Model (SM) of particle physics is our best model describing the innermost
layer of matter. It has been verified in uncountable experiments spanning a wide range
of energies. The Higgs discovery [157, 158] was the icing on the cake of more than forty
decades of experiments confirming every testable prediction of the SM. Now, the most
important goal of the LHC is the quest for new physics, either in the form of deviations
from the SM predictions or as new degrees of freedom in direct searches.

ATLAS and CMS have performed many dedicated searches of Beyond the Standard
Model (BSM) theories [159]. All such investigations have led to null results. Before
the run of these experiments it was widely acknowledged that the confirmation of the
SM and nothing more is a logical possibility. At the same time though there are many
theoretically appealing BSM extensions that seem to make sense. Thus, why nature is
not making use of them? is a very pressing question that should have an answer. In order
to make progress towards answering this question we can envision two possible strategies:
more clever model building — which may require a paradigm change with respect to
conventional views; or to understand in detail the real pressure that the LHC is imposing
on the BSMs. This work deals with a particular example in the second direction.

The experimental results suggest that there is at least a moderate mass gap between
the electroweak scale my, and the new physics scale A. Given this situation it is very
convenient to parametrize possible deviations from the SM in an EFT approach. This
consists in viewing the SM as the leading interactions of an effective Lagrangian and incor-
porate BSM deviations in a perturbative expansion in powers of SM fields or derivatives
D,, over the proper power of A,

Leg=Lsm+ Lo+, (4.1)

86
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where ellipses denote terms of order 1/A® and higher. Given the uncertainty of the current
situation we will take a skeptical point of view on the particular UV physics leading to
(4.1) and thus only assume the SM gauge symmetries. Then, up to the dimension five
Weinberg operator ~ W, W, HH, the leading deviation from the SM consists in operators
of dimension six,

¢;O;

EG - ' A2l . (42)

The dimensionless coefficients ¢; are the Wilson coefficients, which we assume to be per-
turbative but otherwise arbitrary. The operators appearing in (4.2) were exhaustively
listed in chapter 1, see also [83, 86]. The advent of the LHC, especially after the Higgs
discovery, has triggered an abundant number of works on interpreting the LHC searches
as limits on effective field theory deformations of the SM. It is very interesting to find
better ways to measure the SM EFT. This is in fact the purpose of this chapter, which
focuses on diboson production WZ/WW at the LHC and how it can be used to constrain
the deformations from the SM due to the triple gauge couplings (TGCs) in L.

In the SM the TGCs are fixed by the gauge symmetry and included in the gauge
kinetic term,

ig (WHHWoW) — W WWEW, + WAHW W) | (4.3)

where W3 = ¢y 7, + sy A, is a linear combination of the Z and photon vector bosons, and
0 is the Weinberg angle. The interaction in (4.3) is written in the unitary gauge, so that
the vector boson fields describe both longitudinal and transverse polarizations. There
are only two types of CP-even anomalous triple gauge couplings (aTGCs) deviating from
(4.3). The first one consists in deforming (4.3) away from the SM point

rl

a

Yoo =19¢e 091 7 ZZ,WJ““'W; + h.c. +ig (co 0kz Z" + 590k, A“”)W:W; . (4.4)

Modifications of the coupling W*# W A, is forbidden by electromagnetic gauge invari-
ance and the relation drz = d¢1 z — tan® 00k, is satisfied if only dimension six operators
are considered. The other type of deformations are obtained by adding extra derivatives
on (4.3). This translates into higher powers of momentum in the amplitudes. In an

expansion in powers of momentum, the leading such deformation is
2nd Zg — 3
Lo = A2 1o WL W LW (4.5)

The study of the triplet of deformations {dg1 z,0kz, Az} is a classic test of the SM with a
long history starting with the works [103, 160] and continued by [84, 161-163]. ' Famously,
the interactions in (4.4, 4.5) were bounded with percent level accuracy at the LEP-2

1See for example [93, 164-171] for recent TGC and EFT analyses.
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experiment [94]:
Az € [-0.059,0.017] , g1z € [~0.054,0.021] , dky € [-0.074,0.051] ,  (4.6)

at 95% confidence level.

At the LHC, we would like to exploit the energy growth of (4.4, 4.5) to put stronger
bounds on TGCs. However it is well known that some of the TGC contributions have an
additional suppression factor at high energy. In particular the leading energy contribution
coming from the Ay TGC does not interfere with SM for any 2 — 2 process, which
makes its measurements difficult at LHC. This is consequence of helicity selection rules
[89, 164, 172], and the result is valid at leading order (LO). The main point of our work in
this chapter is to find ways to overcome this suppression. We propose two measurements
that enhance the interference of the Az-BSM amplitude with the SM contribution. Our
ideas will lead to a better measurement of aTGC at LHC.

This chapter is organized as follows: in section 4.2 we review the basic physics asso-
ciated to the TGC. Then, in section 4.3 we propose two new variables to improve the
accuracy. In section 4.4 we discuss the challenges of the EFT measurements at the LHC.
Then in sections 4.5 and 4.6 we discuss our methodology and the results. We conclude

and comment on future directions in section 4.7.

4.2 Features of TGC mediated amplitudes

In this section we review simple facts of the diboson production at the LHC. This will
allow us to spot measurements that have not been exploited yet and will lead to better
sensitivity on the TGCs.

Diboson production at the LHC is dominated by the 2 — 2 process q¢ — WW /W Z.
To neatly expose the leading energy growth of this probability amplitudes we use the
Goldstone equivalence theorem. Namely, we work with the parametrization where the
transverse gauge-bosons are massless and the would-be Goldstone bosons in the Higgs
doublet describe the longitudinal components of the W= /Z gauge bosons. For definiteness
of the notation,

Lsn = (D H)'DFH + Lyauge + Ly + V(H), (4.7)

where the D,H = (0, — ig'Y B, — igT*W¢)H, with T' the SU(2)., generators, Y = 1/2
and H” = (v/2i Gt v +h+iGy)/v/2. As usual, the pure gauge sector is given by the field
strengths Lgauge = —%WS,/W;“’ - %LBMVBMV_ Z—llG AWGA“” , the piece L, involves the Kinetic
terms for the fermions and the Yukawa interactions, and V(H) = —m?| H|* + A\|H|*. We
recall that Goldstone’s equivalence theorem,
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Wi G+

= X (1 + O(mﬁ//EQ))

states that to get the leading large energy behavior of the amplitudes with massive gauge
bosons in the final state, we can identify in (4.7) the transverse and longitudinal compo-
nents of the physical gauge bosons as

Wi, Wi = {ar, (W' —iw?)/v2}, (4.8)
{Zy, Zpy = {Go/V?2, cos0,Ws —sinb, B}, (4.9)

where cos8, = g/\/g"* + g? is the cosine of the Weinberg angle. With this basic result
in mind, we proceed to discuss the energy growth of diboson production.

4.2.1 Energy growth

With the parametrization in (4.7) and the identifications in eqs. (4.8, 4.9), the SM triple

gauge couplings arise from

tYW/WWIW D) 8VTVTVT, (410)

(D H)Y'D'H > 0ViViVy + oVeVyVy (4.11)

where we have neglected SM coupling constants as well as O(1) numerical factors. In
egs. (4.10, 4.11) we have also suppressed the Lorentz index contractions and denoted by
V' either the W or Z vector boson. A one line calculation shows that the above TGC
lead to s-channel amplitudes with the leading energy growth

M (qq — VeWf) ~ E° |
M (qq — VW) ~E° | (4.12)
v

M (g — VW VW) ~ 7.

where E is the center of mass energy of the diboson system. The same asymptotic

behavior is found for W~ Z final states. In (4.12) we are working in the limit of massless

light quarks, so that these only couple to the transverse gauge bosons, and we neglected

subleading log(E) terms from loop corrections. The process q§ — VyWrr is also mediated

by t,u-channel diagrams that have the same energy growth as the s-channel in (4.12).
Next we discuss the energy growth of tree-level amplitudes involving one insertion

of the anomalous TGCs {0g1 z,0kz, Az}, defined in (4.4, 4.5). For this purpose, it is
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convenient to parametrize them in terms of the following dimension six operators,

Oup =ig (D*H)'D"HB

Qs

Onw =ig(D"H)'0*D"HWY, (4.13)
Oy = Sieac W WL Wik
which map onto the triplet {0g; z, 0kz, Az} as follows
m? m% m?
>\Z = A—I;VC;;W s 59172 = FCHW s (SKJZ = A—I;V (CHW — tan2 QCHB) . (414)

In principle one could use other sets of operators to parametrize deviations in the physics
of q¢ — WW/W Z production. However, it is important to realize that after taking into
account the constraints from LEP-1, the main possible deviations in diboson production
are due to modifications on the SM triple gauge vertices [173, 174]. ? See also [93] where
this result is studied using different bases of dimension six operators.

The operators in (4.13) include the following TGCs

Oy D GWLGZTGWL + UWTaZTGWL + UZWTaZTWT + ..., (415)
OHW oD OV oVypOVy + vVpoVeoVy + UszaVTVT + ..., (416)
OSW D 8VT6VT8VT + ..., (417)

where ellipses denote interactions that either involve a photon or are not of the triple gauge
type. Note that in (4.15)-(4.17) we have neglected SM couplings as well as numerical O(1)
factors. At large energies the leading processes mediated by the interactions in (4.15)-
(4.17) are

M (qq — Wi W]) ~ E*/A? cyp + E*/A? caw

~ E*/myy 6917+ E*/miy Ok (4.18)
M (qq — ZLW]) ~ E*/N? cuw = E*/m% 6g1.7 (4.19)
M (qq — VeWF) ~ E*/A° csw = E*/mj, Az, (4.20)

where we used (4.14) and omitted constant factors in front of the TGCs. The same
leading energy growth is found by replacing W~ < W™ in the final state of (4.19).
Interestingly, 0rz/cyp contributes at the order of E? only to the process (4.18). The
leading contribution of dxy to q¢ — W Z appears for the polarizations M (q(j — ZeW )

2Note that the commonly used SILH basis, apart from the operators of (4.13), also includes a further
operator contributing to the aTGC: Ow = D*W,"HD, H + h.c.. For our purposes though, it is enough
to use (4.13) in order to capture the high energy behavior. Our results will be presented in terms of
{691.2z, 0kz , Az}, which can be mapped into any other basis.
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and scales as ~ vE/A?. This follows from the fact that at leading order in energy only
the transverse polarization of the Z boson enters in Ogp.

Next we discuss the generic properties of the production cross sections in the presence
of these BSM amplitudes.

4.2.2 Accuracy obstruction

In general, the 2 — 2 scattering cross section in the presence of irrelevant operators scales
as

BSMG X SM BSM(;Q

g E? Bt (4.21)

where the first factor gg,;/E? accounts for the energy flux of the initial quarks, and we
have omitted numerical factors. In (4.21) we explicitly indicated dimension six squared
and SM-dimension six interference terms, and ellipses stand for higher order corrections
from operators of dimensions > 8. 3 However, the operator Osyy (i.e. the Az deformation)
is special because the interference between the SM amplitude M (qq‘ — VWi ) ~ EY in
(4.12) and M (qq — VeW;) ~ cswE? in (4.20) is suppressed and the scaling of the
BSM; x SM piece is softer. This is a consequence of the helicity selection rules [172] as
we will now review. 4

The non-interference of the diboson production amplitude through Osy, and the SM
can be understood by first taking the limit where the masses of the electroweak gauge
bosons are zero, namely we focus on transverse polarizations only. In this limit the
amplitude of tree-level SM process qg — V'V is only non-zero if the transverse helicities
of the vector boson are opposite (£, F). ° At the same time though, the operator Osy in
(4.13) leads to a triple gauge vertex where all three gauge bosons have the same helicity,
so the amplitude of the process q¢ — V'V containing O3y vertex is non-zero only if
the transverse helicities of the vector boson are same (+,4). Therefore, there is no
interference between two amplitudes, as either SM or O3y, amplitude is vanishing for a
given pair of transverse helicities of final state vector bosons. One way to understand
this result is to look at the helicity structure of three point vertices of the SM and Osyy.
The Lorentz symmetry, dimensional analysis and special kinematics of the three particle
interaction completely fix the structure of three-point amplitude and provide relation

3Note that operators of dimension 7 necessarily violate either baryon or lepton number. We assume
the scale of such symmetry violation to be very large and therefore irrelevant for diboson physics at the
LHC.

4See [89] for a pioneering discussion of this effect in the context of QCD.

®More generally, this follows from the Maximally Helicity Violation (MHV) helicity selection rules,
see for instance [175].
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between the modulus of total helicity and dimension of the coupling g,

> bl =1l (1.22)

where [¢g] denotes mass dimension of the coupling of the three point interactions. The SM
triple gauge coupling is dimensionless so the total helicity is £1, this means two gauge
boson has opposite helicity with respect to the third one. While coefficient of the operator
O3y has mass dimension —2, thus total helicity of the amplitude is +3. This, in turn,
implies that all three gauge bosons have same helicity. When we compute the amplitudes
of the process q¢ — V'V, non-zero SM amplitudes contain two final state gauge bosons
with opposite helicities, while in the Osy amplitudes all final state gauge bosons have
same helicity. Another quick way to check this result is to write the field strength in terms
of spinor indices W55 = WWUZ@U;B = Wap€sp + Wsz€ap, Where as usual the tensors e
and € are used to raise @ and «& indices, respectively. Osp in (4.13) can be written terms

of the w/w fields is given as

O3y x waﬁwﬁvwﬂ/‘” + ij;wf . (4.23)
Each antisymmetric tensor field w and w are the self-dual and anti-self-dual parts of the
field strength, they can create a massless particle carrying helicity +1 and —1 respectively,
and, therefore, diboson production through (4.23) leads to vector bosons with helicity

(4, £). Thus, at tree level we have that

qq — VvTi VTJF (111 the SM) , (424)
qq¢ — Vr V. (with Oy insertion). (4.25)

Since the final diboson states in (4.24, 4.25) are different, there is no interference between
both amplitudes. This statement is exactly true in the massless limit. However, two mass
insertions my 9,GTW ™, mz0,G°Z* can be used to flip the helicity of the final states,
leading to a non-zero interference between (4.24, 4.25). Flipping the helicity costs a factor
mi,/E?. Then, the leading cross section for diboson production in the limit £ > my, is
given by,

4 2 4
93 m E
T | ew et

The important point to notice is that the second term of (4.26) has a suppressed energy

o(qq — VrVr) ~ (4.26)

scaling with respect to the general expectation in (4.21).

This behavior makes EFT consistent measurements of the c3y difficult. Indeed, at the
level of the dimension six operators the signal from the Osy will be subdominant com-
pared to the contributions of the other TGCs, which will require further disentanglement

of the transverse and longitudinal final state polarizations. But even more, assuming an
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ideal separation of the longitudinal polarizations we need to remain in the EFT valid-
ity range, namely in the parameter space where the contributions from the dimension
eight operators can be safely ignored. For the process q¢ — VyVr the dimension eight
contribution to the cross section can be schematically written as

BSMgx SM  BSMyg?

95 E* B (4.27)
Ao dim=s(qq — VrVr) ~ Fl;d Cs 71 —|—C§F +...].

Note that the BSMg x SM piece scales as the BSM; contribution, £*/A*. Where we have
assumed that there is a interference between the SM and the new physics contributions
at the level of the dimension eight operators. For the process q¢ — VyVp this is indeed
the case, consider for instance

gD W Wy D*Wyy ~ D* w5063 DVl — DS woy DJw] + DSwPwa, DG + ...,
(4.28)
where ellipses denote terms with helicity configurations other than ~ www; or the operator

7 (@ Q)W D"WY ~ ¢*gswDfw + ... (4.29)

written in terms of spinor indices. The latter operator is a contact interaction contributing
to q¢ — V Z while (4.28) is a modification of the TGC — of the second type according to
the discussion around (4.4 - 4.5). Note that both of them lead to final state bosons of
helicities (&, F), like in the SM.

Then the truncation at the dimension six level (4.26) is valid if only °
m? E* E* LE®
max (CgWA—;/, ngp) > max (Cgm, CgF) . (430)

Suppose we will be able get rid of the interference suppression, then this condition is
replaced by

B2, E* Bt L EB
max | Caw 4, Gy | > Max | G5, G | (4.31)

which is less restrictive if ey E?/A? < 1 (given that at LHC E > my).

Another advantage of having a large interference term is that it leads to the better
measurement of the sign of the Wilson coefficient, otherwise very weakly constrained.
The importance of the improvement in (4.31) depends on the actual values of the Wilson
coefficients or in other words on the UV completions of the given EFT. To make this

discussion more concrete we present a few examples in the next subsection.

6We are assuming that contributions of operators of dimension higher than eight are even smaller.
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4.2.3 Power-counting examples

The strength of the Wilson couplings can be estimated by a given set of power-counting
rules characterizing a possible UV completion. Power-counting schemes are useful to
incorporate particular biases towards the kind of BSM physics we would like to prove.
This is a perfectly legitimate strategy and very much the point of using an Effective Field
Theory approach, allowing to parametrize altogether broad classes of models. Particular
examples are weakly coupled renormalizable UV completions, Minimal Flavour Violation
(MFV) [176], the Strongly Interacting Light Higgs (SILH) [85], flavour universal BSM
physics (see e.g. [177]), etc. The power-counting schemes commonly used are imposed
through arguments based on the symmetries or dynamics of the Action, such that possi-
ble radiative corrections violating the assumed power-counting scheme are kept small or
understood.

For example, we may assume that the UV completion is a renormalizable and weakly
coupled QFT. Then, the power-counting consist in classifying those operators that are
loop generated v.s. those that are generated at tree-level [173, 178]. The latter are
expected to be bigger because the former are suppressed by 1/(167?) factors. Then, for

example if we have heavy vector-like fermions, we expect
caw ~ O(1) x g*/(4m)* | sy ~ O(1) x g*/(4)?, (4.32)

where ¢(4.28) refers to the Wilson coefficient of the dimension eight operator in (4.28); the
contribution to c(4.29) has a stronger loop suppression. This setup is somewhat pessimistic
since the extra loop suppression makes it hard to prove csy with the LHC sensitivity. In
any case, improvement from (4.30) to (4.31) is

E* < Amy — E<A. (4.33)

As an other power-counting instance, one may envision a scheme where for each extra-
field strength that we add to the dimension four SM Lagrangian we pay a factor g, < 4.

~Y

With this power-counting we obtain

Caw ~ g*/g ; C(4.28) ™ g*/g, C(4.29) ~ g*g/(167T2), (434)

where the 1/g factor is due to the normalization of Osy in (4.13). This power counting,
called pure Remedios, was introduced in [179]. © This power-counting is more optimistic
regarding possible LHC signals since g, can be naturally large. However, in this scenario

"In a nutshell, the construction is based on the following observation. Consider the SM effective
Lagrangian Lrgpr = Liges + Ly + ’g\—glj(lﬂe’w,/Az,8H/A)7 where the gauge-field strengths F;w are not
canonically normalized and we view L as a functional that we expand in inverse powers of A. Then, it
is technically natural to set g. > g in Lgpr because as g — 0 the SU(2);, gauge symmetry acting on

Lpr is deformed into SU(2)8°" U(1)3,uge — we refer to [179] for details.
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there is no improvement from (4.30) to (4.31), and in both cases we find
E<A. (4.35)
Lastly we will discuss one scale one coupling power-counting [85], which predicts

Gx g
C3w ™~ C(4.28) ,S g, €(4.29) ,S —. (4‘36)

* N

Q

In this case the improvement from (4.30) to (4.31) would be

2,2 \ 1/4
E< <M) — E<A L. (4.37)
g* g*

To conclude this subsection we would like to remind the reader that EFT validity
discussion needs some assumptions on power-counting (see for a recent discussion [180]).
In the rest of this chapter though, we do not commit to any of the aforementioned power-
counting rules. We only assume perturbative, but otherwise arbitrary, Wilson coefficients.

4.2.4 Numerical cross-check

In figure 4.1 we show the results of a MadGraph5 [181] simulation, using the EWdim6 [80]
model 8 , for the process pp — VW. The parametric dependence of the cross section on
the TGCs is given by

O'quVW = OsM —+ 60'int =+ (52 UBSM2 N Wlth (5 = {(5g172, 5/‘432, )\2}, (438)

In figure 4.1 we plot oiy/osm (top) and opgyz/osm (bottom) for different anomalous
TGCs as a function of the invariant mass myy of the VW final state system. Note that
in this ratios the gd,;/FE* factor in (4.21) cancels and we can read the scaling as a function
of the energy from (4.12) and (4.18 — 4.20).

The top plot of figure 4.1 shows the energy scaling of oy, /osm. The red and purple
lines confirm the quadratic growth expected from the d¢; z and dx contribution in (4.18)
for the process g7 — W, W, . The dashed green line depicts an energy dependence of
the cross section ratio oy, /osy when only the aTGC dky is switch on, the curve shows
no growth as a function of the energy, this confirms the discussion of (4.12) and (4.19).
Namely, that for the final state ZW, the leading energy growth is only mediated by dg; 2
(blue line) but not by dry (dashed green line). Lastly, on the same plot we show that
oimt/osm mediated by Az has no energy growth, as there is no interference with SM,
confirming (4.26). This later measurement comes from WW production, but a similar

result for Az is obtained for WZ production.

8Note that our definition in (4.13) differs from the one of [80].
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Figure 4.1: Results from a MadGraphb simulation of the pp — VW process mediated
by anomalous TGCs, see the main text. The error bars of both plots due to statistical
errors is within the width of the plotted lines. We multiplied the line iyt /osm of dkz
from WW by x(—5) for illustrative reasons.

In the bottom panel of figure 4.1, we show the energy dependence of opqy2/0sm, con-
firming the theoretical expectations. Namely, we find that for VW production the factor
opsmz/osm mediated by Az and dg; z scale with the same power E*. Then, regarding dr
the amplitude grows as E? for W Z production while it scales as £* for W+ W~ produc-
tion — this is the expectation from the squared amplitude |M (¢q — ZrW; /Z W) |? ~
v2E?0K%, see text after (4.20).

4.3 Solutions to the non-interference obstruction

In the previous section we showed that for the 2 — 2 processes the interference between

O3y and the SM is suppressed. In this section we will present two ways to overcome this
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suppression. For simplicity reasons in the remaining part of this chapter we will consider
the case when only Az deformation is present and the other anomalous TGCs are set to
Zero.

4.3.1 Angular distributions

The first way of enhancing the interference term is by noting that in reality we are not
looking at the 2 — 2 process but at 2 — 4, i.e. vector bosons decay into fermions
qq — VW — 44). Let us consider the differential cross section for the production of the

polarized particles Wy, I_[, °, differential cross section for the Z decay process is given

by

2
_ S S _
do(qq — W, 1_1,) 1 |2Megtwn, 2+ MggSwy, 2) Mz,

=2 4,
dLIPS 2s (K2 —mZ)? + mil2 ) (4.39)

where sum runs over intermediate Z polarizations and dLIPS = (2m)**(Y.pi — py)
[T, @p:i/ (2E;(27)?) is the Lorentz Invariant differential Phase Space (LIPS). We have
factored out a Z-boson propagator, inputting the fact that all Z polarizations have the
same mass and width. It is well known that at LHC SM process is dominated by the
transverse polarizations [163], so for simplicity let us ignore the contributions from the in-
termediate longitudinal Z; bosons. Then in the narrow width approximation the leading
contribution to the interference, i.e. the cross term SM x BSM in (4.39) is given by:

7 0(s —m%)

L 2 Vs (MEMy ) My i M +he.  (440)

2s Tymy 9q—Wr, Z1_ qq—Wr, Zr, Zr, —l-ly

The interference cross section in (4.40) scales with the function My, _; M7 I,
_ Ll

This in turn is modulated by the azimuthal angle ¢, between the plane defined by the Z

decay leptons and the scattering plane (formed by collision axis and Z(W) bosons), see

figure 4.2. Tt is straightforward to compute (4.40), leading to

doni(9q — Wil 1y)
doz

x cos(2¢yz) . (4.41)

The derivation of (4.41) is analogous if we consider the decay of the W gauge bo-
son. Therefore, the differential interference term for the process q¢ — VW — 44 is
unsuppressed and modulated as

doin(q@ — WZ — 41)
dopz dow

9 Similar ideas where proposed recently for the W~ final state [182].

x cos(2¢z) + cos(20w), (4.42)
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Figure 4.2: Angles for 2 — 4 scattering

where ¢y 7 are the corresponding azimuthal angles. Eqs.(4.41, 4.42) are one of our main
results. Namely, we would like to take advantage of the modulation of the interference
term to prove the anomalous triple gauge coupling A\z. Due to the two 2¢; arguments
in (4.42) the asymmetry is not washed out by the ambiguity in the direction of quark-
antiquark initial state.

Similarly there is an effect of interference between the intermediate SM amplitude
MS;LWL 7z, of longitudinal vector bosons and the BSM amplitude MquS_l\f[WT 7, With trans-
verse vector bosons. The form of the modulation is different from (4.42) and is

doint(q@ — WZ — 4)
doz dow

x cos (pw + ¢z) . (4.43)

This later effect of modulation, however, cancels out upon integration on ¢y and the
direction of quark-antiquark initial states.

Note that, naively, if the vector bosons are produced on-shell one would expect that
vector bosons with different helicity contributions should not interfere (or be suppressed
by their width) even if we look at the decay products. Namely, one may expect that
the interference is further suppressed than the case in which same 2 — 4 amplitude was
mediated by a 2 — 2 sub-process q¢ — VW that does lead to a cross section containing
an interference term. However, this is not true, due to the basic fact that the both

helicities have the poles of the propagators at exactly the same energies. Note that in the

BSM

GG We . ™ E?/A? was not suppressed, we

hypothetical case where the 2 — 2 process M
would had gotten an analogous I'y/mz — 0 limit in (4.40) where the amplitude would

*

Zr —I_14 (no

be instead controlled by the azimuthal angle of the function My, _; 7,
modulation in ¢; in this case), but otherwise the energy growth would be the same.
We have performed a MadGraph5 numerical simulation to test our theoretical expecta-

tions. The results shown in figure 4.3. In the top plot we show the interference differential
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Figure 4.3: Top: Differential interference cross section over SM one as a function
of the azimuthal angles ¢y 7 for the events with W — Z invariant mass myz €
[700, 800]GeV. Bottom: same quantity as a function of the myyz binned according in
the four bins defined in the top plot.

cross section over the SM cross section as a function of ¢, and ¢y . ° The shape of the
function is as predicted by (4.42). This suggests that we should bin the events into four
categories depending on whether ¢; € [7/4,3mw/4]. The results are shown on the bottom
plot of figure 4.3. The upper red line and the lower blue line correspond to the categories
with ¢w.z € [0,7/4]U[37/4, 7| and ¢w,z € [7/4,37/4]. We can see that there is a strong
cancellation between these two contributions, however individually both of them grow

with energy. So binning in azimuthal angles will increase dramatically the sensitivity to

the

interference.

0Note that the SM contribution also has a modulation due to the interference between the amplitudes
with different intermediate gauge bosons polarizations. However, this effect is suppressed compared to
the constant term.
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4.3.2 Going beyond leading order

The non-interference of SM x BSM in diboson production through Az in the 2 — 2
process applies at tree-level only. Higher order corrections, either in the form of loops or
radiation, overcome the interference suppression and lead to a SM x BSM cross section
piece that does grow with energy. This was first noticed in the context of QCD for the
gluon operator ~ G /G ,/G /' [89]. Here we apply this idea to the electroweak sector.
The corrections from the virtual gluon will introduce the BSM-SM interference, however
this effect will be suppressed by ~ ¢ compared to the angular modulation discussed
in the previous section. Another possibility is to consider 2 — 3 processes, namely the
production of the pair of the electroweak bosons with a hard QCD jet VV + j .Then

using Eq. (4.23) the BSM amplitudes have following helicity configuration,

—> Vr,

NV,

—— 0000000000

9+

where the gluon g can take any polarization. In the SM the same process has necessarily

the helicity configuration

—— NN

—"VVVV NV,

i.e. it can not be of the Maximally Helicity Violating type. Thus, the extra gluon
radiation helps in sucking helicity allowing the same final state process as in V'V + j
mediated by Osp,. We find this simple observation interesting, since the requirement
of extra radiation qualitatively changes the cross section behavior and provides a better
handle on the interference terms. Note also that the solution we are advocating in this
section is complementary to the analysis presented in the section 4.3.1, in addition to the
binning in the azimuthal angle we just require an extra hard jet.

Remember that the interference effect becomes small both in the soft and collinear jet
limits [89]. This is expected since interfering SM amplitudes A(qq — Vi, Vi, g+) cannot
be generated from Agy/(qqg — V'V') by splitting quark(anti-quark) line into ¢(gq) — ¢(q)g.
So there will be no usual soft and collinear singularities corresponding to the poles of the
splitting functions, which we have checked by explicit calculation. Then the interference
term in these limits, even if growing with energy, will be completely buried inside the SM

contribution.
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We cross-check the theoretical expectations with a MadGraph5 simulation. In figure 4.4
we plot the ratio oy, /osym for diboson production as a function of the invariant mass
mwz, making various requirements on the extra gluon. In blue we ask for no extra
radiation which corresponds to the non-interference effect discussed in figure 4.1. In red
and pink we require a hard gluon which takes a significant fraction of the diboson phase-
space, my z/10 and my /5 respectively. Importantly, the simulation shows the expected
energy growth of the interference term. On the other hand, the purple curve does not
show a steady growth of the energy. This is also expected since that curve is obtained
by imposing a fixed lower cut on the jet p’. As the energy of the diboson is increased
the extra jet becomes relatively soft and the energy growth is lost. We find by numerical
simulations (see figure 4.4) that we need to require something like p]T 2 ™2 to have
a quadratic growth with energy. Error bars are due to the statistical treatment of the
Monte Carlo (MC) simulation — we regard them as small enough to convey our point.
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Figure 4.4: oy /osm as a function of myyz for the process pp — WZ (blue) and
the process pp — VW + j, with pjT > mwz/5 (pink), pJT > myz/10 (red), and
p? > 100 GeV (purple).

4.4 EFT validity

So far we were presenting the observables particularly sensitive to the SMxBSM interfer-
ence term. However this is not enough to ensure the validity of the EFT interpretation
of diboson production at the LHC. The convergence of the EFT expansion is controlled
by the ratio of the invariant mass of the diboson system over the new physics scale and
thus myw /A < 1 should be satisfied. However at the LHC it is hard to keep myyw /A
fixed. First, the precise collision energy is unknown and not fixed, leading to an impre-
cise knowledge of myy from event to event. Secondly and more importantly, in many
instances experimentalists only reconstruct the visible decay products. Namely, the W —Z2
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Figure 4.5: We show, for the process ¢q¢ — WZ with Az turned on, the leakage as a
function of m%{/ », see main text for the definition.

transverse mass

My =\ (BY + Bf)2 — (0 + p2)? — (0l +p2)2, (4.44)
in the WZ production or the (visible) dilepton invariant mass

my =/ (pi- +pi+)?, (4.45)

of the WW decay products. The invariant mass myy of the diboson system is always
greater or equal the visible invariant masses myy > my;, m¥k,,. This implies that binning
and cutting the distributions in terms of variables my; or m?,, does not allow to ensure
myw /A < 1. As an illustration of this point, in figure 4.5 we show the leakage. This
is defined as the percentage of the number of events in a given m,, (or my) bin with

invariant mass myy larger than a certain scale (). In equations,

Ni(myw > Q)
N;

Leakage = x 100%, (4.46)
where N; is the total number of events in the given m¥,, (or my) bin. For instance, the
red line in the bin m¥,, € [1500,2000] GeV is interpreted as follows. Of all the events in
that bin, 50% of them have an invariant mass my z = 1800 GeV. These numbers were
calculated using only the opgy2 term of the cross section, see (4.38), which is the term
giving the largest leakage.

Naively, we can use the information in figure 4.5 to set consistent bounds on the EFT.
For example, if we require A = 2 TeV and the precision of the measurement < O(1) x 5%
we should keep the transverse mass bins only up to 1.5 TeV. This would work under the
assumption that the leakage calculated using the dimension six operator squared provides
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a conservative estimate compared to the full UV complete model, namely that we do not
have a very large number of events for some value of invariant mass M, > 2 TeV. This
assumption is for example spoiled in the presence of the narrow Bright-Wigner resonances
and the calculation with dimension six operators underestimates the cross section and
leakage by the factor of

O.full 7.[.A2

O—d:6 ~ F, (447)

which becomes very large for narrow resonances (A, I' are the mass and the width of
the resonance). At the same time in the more strongly coupled theories (4.47) is only of
order one O(1). Thus, under the assumption o/ /a?=¢ < O(1), we can use the figure 4.5
to find the correspondence between the transverse and invariant mass cut-offs once the
precision of the measurement is specified.

The leakage can be made arbitrarily small by simply assuming a large enough value of
A in the EFT interpretation. Then there is obviously no danger of narrow Breit-Wigner
peaks, since the new particles would be too heavy to be produced at LHC. However,
this is somewhat dissatisfying because then LHC sensitivities only allow to prove Wilson
coefficients that are on the verge of non-perturbativity, in order to compensate the large
value of A. For instance in [183] bounds on the TGCs Wilson coefficients are of order
ci < [-2.5,2.5] 1) with the cut-off A = 1TeV. This is done by analyzing the whole
range of miy, ~ [50,650] GeV, and thus we expect large number of the events to have
invariant masses myw 2 1 TeV. Then for the proper EFT interpretation we should set
A 2 2 TeV, thus implying that the bound gets loosened roughly as ¢; < [-2.5,2.5] —
¢; S 4x[—2.5,2.5], which pushes the EFT even further on the verge of non-perturbativity.

Next we will discuss another possible approach to perform a consistent EF'T analysis.
It allows to lower the cut-off A and hence be sensitive to somewhat less exotic theories,
at least when the statistics is enlarged in the upcoming future.

4.4.1 Dealing with the leakage of high invariant mass events

The idea consists in comparing the observed cross section with the new physics expecta-
tion only in the constrained phase space satisfying the EFT validity requirements. This
approach was originally suggested for the Dark Matter searches at LHC [184] and later ap-
plied for the anomalous TGCs measurements [164]. Next we discuss our implementation
of these ideas.

In the standard analysis, for every bin say in mi;, € [m!, ml], one would compare the

observed number of events ng,s with the theory prediction My, which in our case reads

My, = nsm + nicaw + nBSMzc?,)W , (4.48)

'We have rescaled the bounds of [183] to our normalization in (4.13).
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where ngy is the SM prediction, and ny, nggye come from the oy, and opgy2 pieces in
(4.38). In practice this comparison can be done by evaluating the likelihood on a given
bin by a Poisson distribution p(neps| M) = nolbs! e~ Mm Mo Note however that if we took
this procedure we would be comparing M, with n,s for events where the formula M,

is not valid unless the new physics scale A is very large — see the discussion of figure 4.5.
Instead, what we will do is to compare the observed number of events with the quantity
Ny, which we define as follows:

(4.49)

N Nth lf Nth > nSM
h = .
! ngym  otherwise

T~ ~ ~ 2 . ~ . .
where we define Ny, = nign + nicaw + Nipgyz sy With n; is defined as n;)m,,, <Ay, 1.6 We

restrict the expected number of events in the EFT to have invariant mass my 7 (or myw )
below certain fixed cut-off scale Ayc. 2 Thus, in practice the likelihood is modeled by

p(”obs’Nth) = nolbsl e_NthNt"}llobs )

The key question is whether the bounds obtained using (4.49) lead to more conservative

estimates than the ones which could come from the knowledge of full theory. The number

of events in the full theory is

Nrall theory = Nth + [Ntull theory] (4.50)

Minv>Aprro

where we approximated the theory below A,;c by the EFT expansion. Note that both
terms in (4.50) are positive. Then, the bounds from (4.49) are conservative only if

|ngm — Nen| < [nsar — Niull theory] (4.51)

condition that is always fulfilled with our definition of Ny, in (4.49).

Finally, let us note that in Ref. [164] the choice of the theory is Ny, = ngy + nicaw +
NpsmzCay, instead of (4.49). This amounts to modifying the BSM amplitudes by the
“form factor”

Mpsy — Mpsy X 0(Avc — Miny) (4.52)

where the 0(x) is the Heaviside step function or any close function behaves like (1+
e~ Ave—minul/mins) =1 with o > 1 '3, Then, equation (4.51) is fulfilled only if one as-
sumes that the deviations from the SM below and above A,;¢ are of the same sign,

Sign(AJBSM)

miny>Aare = SIEN(ATBIM ) Imine<nre- Or in terms of the variables in (4.49)

. ~ ~ 2 . ~ ~ 2
sign (Neull theory — NsM — M Caw — Npem2Cay) = Sign(Rgcsw + NpgavCay) - (4.53)

12\We are distinguishing the assumed cut-off scale Ayrc set in the MC simulation from the true value
of A in the SM EFT, which is of course an unknown constant of nature. Also note that Ayic is analog
to the scale @ introduced in (4.46).

3Note though that such function is not analytic in Alfdlc.
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Note that this condition is trivially satisfied when BSM? dominates the cross section,
however it is not true once interference term is of the same size [164].

At last we would like to comment about the procedure in the experimental study [96].
There, a different form-factor for the new physics contribution is used

1
Mpsy — Mpsu X ————— - (4.54)

m2, )2
(1 _|_ Aznu)

MC

The different form factors would lead to identical results for Ao > myy,,, but there will
be order one differences for the events with invariant mass close to the cut-off Ay;o. Also,
note that while the UV assumptions are very clear when using (4.52) they are somewhat
more obscure in (4.54). The reason being that the fall-off of the form factor in (4.54) is
not steep enough and its validity requires some discussion or assumptions on the leakage
along the lines we did at around (4.47).

4.5 Details of the collider simulation and statistical

procedure

In this section we explain our procedure for estimating the improvements of the LHC
sensitivity due to the differential distributions proposed in the section 4.3. We have
decided to look at the cleanest decay channel in the pair production of the vector bosons,
namely the process pp — W*Z — lllv. In our analysis we have followed the signal
selection procedure presented in the experimental work [96]. For the signal simulation we
have used MadGraph5 [181] with the model EWdim6 [80] at LO **. The results are reported
for the 14 TeV LHC collision energy and two benchmark luminosities, 300 and 3000 fb~*.

We have checked that our partonic level simulation reproduces the acceptance at the
particle level Ay 7 = 0.39, for the experimental analysis at 8 TeV [96]; it is defined as the
ratio of the fiducial to the total cross section

fid

tot Ow=+z—1vl
= el 4.55
UWiZ BWBZAWZ ( )

The fiducial cross section is defined as

; Naata — N, N.
fid __ 4Vdata bk T
Ow+z o = L CWZ ? X (1 - N ll> ) (456)

4 One can perform the complete NLO study of the anomalous TGC using the model EWdim6NLO by
C. Degrande. In our study however we have decided to ignore the effects of the virtual gluon, which
we believe to be phenomenologically less important (see discussion in section 4.3.2). For other QCD
advances in SM and BSM calculations of the weak boson pair production see [185-190]
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where the factor Cyyz simulates the detector efficiency Cyy, = NPtice jydetector () 6
[96], and we approximate it to be flavour universal. In eq. (4.55) B; denote the corre-
sponding branching fractions; while the factor N;/Niar in eq. (4.56) is the contribution
of the leptons from 7 decays which [96] estimated to be of ~ 4% and thus we will ignore
it. £ is the integrated Luminosity, below we report results for £ =300 fb™* and 3 ab™'.

We bin all the events according to their transverse mass my;,,, and transverse momen-

tum of the jet pj. In particular p; is binned as
pJT = [0, 100], [100, 300], [300,500], [500, cc] GeV . (4.57)
For the events with p]T < 100 GeV we also bin the azimuthal angle ¢, into two categories
¢z € [r/4,3/4n] and ¢y € [0, 7/4] U [3w/4, 7] . (4.58)

The azimuthal angle ¢ is defined here as an angle between the plane spanned by Z
boson decay leptons and the plane formed by the collision axis and the Z boson. For
the higher p;*-F bins we have checked that the binning in azimuthal angle results in little
improvement of the bounds. The reason being that the modulation effect becomes sub-
dominant compared to energy growth due to additional hard jet.

For each bin defined above we calculate the cross section in the presence of the c3py
deformation according to the formulas (4.48) and (4.49). The coefficients ngys, npsyz are
calculated by switching off BSM and SM contributions respectively. For the interference
term nq this is not possible, since as it is shown in our analysis there are phase space
regions where this contribution has the opposite signs. So in order to avoid any issues
with the negative values of cross section we have fitted it while keeping both SM and BSM
contributions. This procedure generically can lead to large errors on the determination
of the ny coefficient. These errors were kept under control by performing a large enough
number of simulations and iteratively choosing for the fit the values of c3y maximizing
the interference term.

We have performed the analysis for for three values of the invariant mass cut-off
Avc =1, 15,2 TeV . (4.59)

These are reasonable choices in view of the current direct exclusion bounds.

In order to reduce the fitting time we have used partonic level simulation to determine
the coefficients in the eqs. (4.48, 4.49). For the bin pjT € [0,100] GeV we sum partonic
level simulations with 0 jet and 1 jet with p!" € [20, 100] GeV. We have checked that for the
SM input this approximation agrees well with the results obtained with Madgraph/Pythia
[191] interface with showering and jet matching. One may worry whether emission of a
QCD jet can spoil the azimuthal angle modulation, however we have checked that even
for relatively hard jets pjT < 100 GeV angular modulation remains an important effect.

This makes our partonic simulation results robust.



4.6. Results 107

For the backgrounds we have followed closely the results in [96], where it was shown
that the dominant background for the anomalous TGCs is the SM W, Z boson production.
The second most important background comes from the misidentified leptons ~ 12% and
77 final state ~ 7% and the contribution of the tf is at percent level. Since most of
these backgrounds come from the ¢g initial state (except for ¢f which is small) at 14
TeV we expect a very similar situation. In our study we have decided to consider only
the SM weak boson production as a background, the other contributions will provide an
additional increase of the background by ~ 20% and the relaxations of the bounds by
~ 10%, which we ignore in our study. For systematic uncertainties we use the results in
[96], where it was reported that the dominant errors come from the muon and electron
identification efficiencies and it was estimated to be at the level of 2.4%. The statistical
analysis is done using the Bayesian approach, where systematic errors are estimated using
one nuisance parameter £, normally distributed

_1)2
P(Nin[1obs) o /dge_sNth (Nom)"™ " exp {_(620—21)} : (4.60)
syst

4.6 Results

We present our bounds on cgy /A? in table 4.1. We report LHC prospects for 300 fb™!
as well as for 3 ab™! luminosity (Lumi.) values. Exclusive (Excl.) bounds are obtained
according to the method described in section 4.5, binning in ¢, and p;‘»F, while inclusive
(Incl.) corresponds to no binning in ¢, and pjT < 100 GeV. The total leakage in the
various bins of mb;, is < 5% for each value of @; such bins are selected using figure 4.5. 1

The bounds of the rows Ezcl./Incl., linear are obtained by including only the linear
terms in c3y in BSM piece of cross section. In the linear analysis, values of the Wilson
coefficient |csw| 2 3 lead to negative number of events. Nevertheless, such values lie
outside the credibility intervals of the fit. In order to avoid this issue for arbitrary values

of ¢y during the scan we have used the following modification of (4.48)
My, = (nsm + cawna) X 0(nsm + cawna), (4.61)

where the 0 is the usual step function. Generically, this later procedure is of course in-
consistent. However, comparing linear v.s. non-linear gives a sense of how much sensitive
are the bounds to the quadratic piece term BSMZ in the cross section (4.21). In this
respect, note that the exclusive analysis sensitivity to the linear terms has drastically
increased compared to the inclusive one. For instance, the gain from the second to the
first row is very mild, implying that the bound is mostly proving the interference term.
Instead, the bounds from the third to the fourth row drastically relax implying that the

15The scale @ is roughly equal to the Monte-Carlo cut-off Ay;c, but see the discussion of figure 4.5
and table 4.2.
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Lumi. 300 fb™* Lumi. 3000 fb™" 0 [TeV]
95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

Excl., linear ~ [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24] .
Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27) [-2.17,2.17] [-1.37,1.37] ]-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20] L5
Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17] 5
Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

Table 4.1: Exclusive (Excl.) bounds on c3;7/A% x TeV? are obtain according to the
method described in section 4.5, binning in ¢z and pjT. Inclusive (Incl.): no binning

and jet veto at p;r < 100 GeV. The bounds of the rows Ezcl./Incl., linear are obtained
by including only the linear terms in csyy BSM cross section. The total leakage in the
various bins of m{,, is < 5% for each value of Q.

consistent bound of the third row is giving a lot of power to the quadratic pieces in c3y .
This comparison illustrates the improvement from the differential distributions versus the
inclusive analyses. Of course such a gain is always expected. However, in this case the
improvement is dramatic because, as explained in section 4.3, the interference terms of
the differential cross section have a qualitatively different behavior, namely they grow
with the center of mass diboson energy.

This radical increase towards the sensitivity of the interference term is illustrated in
figure 4.6. There, we have injected a signal corresponding to the csy /A% = 0.3 TeV 2.
The red and black curves are posterior probabilities with Ay;c = 2 TeV and corresponding
to inclusive and exclusive analysis respectively (by inclusive we mean only binning in mi, ,
and ignoring high p? bins). The curves are obtained by requiring the leakage to be < 5%
as done in table 4.1, (shaded grey area indicates the 95% credibility intervals for the
exclusive analysis). We can clearly see that our variables will be able to access the sign of
the c3py Wilson coefficient otherwise hidden from the inclusive searches. Inspired by the
figure 4.3 we can see that the following asymmetry variable turns out to be very sensitive
to the new physics contribution:

R Noetr/asr/a) — Noyelon/a0r/47)
¢ .

- (4.62
“ N, eir/a3m/a) T No,elo,r/403r/4,7] )
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Figure 4.6: Posterior probability for the inclusive and exclusive analysis after 3 ab™!
at LHC, see details in the main text.

Indeed, we have checked that the SM contribution partially cancels, making R, partic-
ularly sensitive to new physics contributions.

We would like to comment for what kind of theories our bounds are relevant. We
can see that at most we are getting towards the constraint csp/A? < 0.2/TeV?. Weakly
coupled renormalizable theories lead to the Wilson coefficients which are at least order
of magnitude smaller (4.32), unless we are dealing with abnormally large multiplicities
of new electroweak states just above the LHC reach. At the same time more strongly
coupled theories can lead to the larger values of Wilson coefficients in the ball park of
the LHC precision.

Table 4.1 and figure 4.6 are our main final results. We find that LHC at 3ab™—!(300fb~1)
will be able to constrain the Az aTGC coupling to be

Az € [~0.0014,0.0016] ([—0.0029,0.0034]) (4.63)

for the 95% posterior probability interval for Ay, = 2 TeV. Results for the other values
of Ape can be trivially deduced from the table 4.1).

For the sake of completeness we also compare in table 4.2 the bounds on the Wilson
coefficient obtained using the methods discussed in the section 4.4. We can see that all
methods lead to results in the same ball park. Even though, the method of (4.49) does not
make any assumption on the nature of UV completion, the sensitivity to the interference
term is a bit worse than in the other two methods.

4.7 Conclusions and outlook

We have discussed the prospects of the measurements of the cgy Wilson coefficient (Az
TGC) at LHC. This parameter was considered to be particularly difficult to test at hadron
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Lumi. 300 fb~" Lumi. 3000 fb~" Q [TeV]
95% CL 68% CL 95% CL 68% CL
Same as table 4.1 [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]
Use of (4.49) [-1.59,1.55] [-1.05,1.01] [-1.17,1.06] [-0.72,0.66] 1
Method of [164] [-0.88,0.88]  [-0.50,0.50] [-0.41,0.40] [-0.22,0.22]
Same as table 4.1 [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]
Use of (4.49) [-0.74,0.79]  [-0.48,0.50] [-0.51,0.52] [-0.34,0.30] 1.5
Method of [164] [-0.55,0.60] [-0.32,0.35] [-0.26,0.29] [-0.15,0.16]
Same as table 4.1 [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]
Use of (4.49) -0.49,0.53]  [-0.30,0.34] [-0.30,0.33] [-0.20,0.20] 2
Method of [164] -0.43,0.47]  [-0.24,0.27] [-0.20,0.23] [-0.12,0.13]

Table 4.2: Comparison of different methods.

colliders due to the suppressed interference effects. In our study we have shown that this
suppression is not the case once the differential distributions are considered. In particular
we have shown that this suppression can be overcome by studying the angular modulation
in azimuthal angles in eq. (4.42). Independently of this modulation we have shown that
requiring an additional hard QCD jet leads to the energy growth of the interference
between the SM and BSM contributions.

Looking at the cleanest pp — WZ — lllv channel we have estimated the impor-
tance of these observables for the LHC by calculating the prospects on the bounds at
300 fb~1(3 ab™1), at 14 TeV LHC. Our simplified analysis by no means can be consid-
ered a complete experimental study, however the most important and robust results are
the relative improvements of the measurements due to the angular modulations and the
hard QCD jet distributions. We have also discussed the challenges of the consistent EFT
analysis for the TGC measurements at LHC.

The improvements in determination of Az due to the differential distributions turn out
to be of the order of 15—25% depending on the assumptions on EFT cut-off. Even though
this gain in precision does not seem to be very big, the sensitivity to the interference term
is significantly increased (factor of ~ 3 — 4), which makes the EFT expansion less model
dependent as well as provides a handle on the sign of the Wilson coefficient. Of course it is
not a novelty that the differential distributions improve the accuracy of the measurements.
However in this case the improvement is particularly significant due to the energy growth
of the differential interference term.

In the future it would be interesting to use the differential distributions proposed
to perform a global EFT analysis in order to find the best variables to distinguish be-
tween not only BSM and SM but also between different BSM contributions. Very similar
azimuthal angle modulation will appear every time there are amplitudes with different
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polarizations of the intermediate gauge bosons. These ideas will be explored in the future
for the measurements of the other aTGCs.

It will be also interesting to study the azimuthal angle modulation for other 2 — 2
processes that are otherwise suppressed by the helicity selection rules, like for example
VrVr — Vi Vi . On the collider side, studies of the other decay channels as well as
full inclusion of the NLO effects will be very important.



Chapter 5

Summary and conclusions

The work in this thesis consists of two main parts, general analysis of the possible flavour
symmetries and their representations accounting for the approximate description of lepton
masses and mixing in the symmetric limit and proposals for the better measurements of
anomalous triple gauge boson couplings at LHC.

The first part of the thesis provides a complete answer to the general question: what
are flavour symmetry group (of any type) and their representations providing approxi-
mate description of lepton masses and mixing in the symmetric limit? The answer of this
question depends on two different assumptions on the description of neutrino masses, i.e.
the neutrino masses are generated from the Weinberg operator or from the type I seesaw
mechanism. Despite the generality of the question, the complete answer is rather simple.
Under the first assumption we considered neutrinos are of Majorana type, and flavour
symmetry constrains directly the form of neutrino mass matrix. In this case, we found six
possible irrep decompositions of flavour symmetries (shown in table 2.4) and all of which
lead to neutrino mass spectrum either in inverted hierarchy or unconstrained (anarchy)
in the symmetric limit. Therefore, if the present hint of normal hierarchy were confirmed,
then we conclude that, under our assumption, flavour symmetries leading to the approxi-
mate description of lepton masses and mixing in symmetric limit are not able to account
for neutrino masses and mixing, and symmetry breaking must play primary role in their
understanding. This conclusion is further strengthen in the context of SU(5) and SO(10)
grand unified theories, in case their representations commute with the representation of
flavour symmetry.

The conclusion above relies on our assumptions that neutrino masses originated from
the Weinberg operator in the electroweak scale and symmetry arguments directly apply
to neutrino mass matrix. It is also important to take into account the light neutrino
mass generation from the physics well above the electroweak scale. The prototypical
example of this kind is the seesaw mechanism with heavy singlet neutrinos. In this case
the singlet neutrinos can also transform non-trivially under the flavour symmetry and

their mass matrix gets constraints as well. So now one natural question arises: does
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the low-scale analysis always capture the features of the high-scale analysis or not? We
find this is not always the case. The necessary and sufficient condition to they become
equivalent is that the singlet neutrino representation must be vectorlike and it contains
vectorlike part of the lepton double representation. When these two analysis become
equivalent the conclusions in low-scale analysis can also apply to the high scale discussion,
otherwise the high-scale analysis provides new outcome. There are two cases where the
inequivalence can occur. We have investigated each of them separately base on the fact
that if the singlet neutrino mass matrix is singular or not. We have obtained complete
set of predictions from the high-scale analysis in the symmetric limit for the inequivalent
cases, and found that there are indeed some flavour group representations allow to have
normal hierarchy of neutrino masses. Therefore, even if the current hints for the normal
hierarchy get confirmed from the future experimental data, the flavour symmetry still
can provide approximate description of lepton masses and mixing in the symmetric limit.
To conclude, the current status of the neutrino masses and mixing can be approximately
described by the high-scale analysis of the flavour symmetry when it is not equivalent to
the low-scale limit. Otherwise, the symmetry breaking effects must play a leading role in
determining the observed lepton masses and mixing.

In the last part of the thesis, we have proposed two measurements to overcome the
suppression of interference between SM amplitude and that of the operator Osp in the
EFT extension of SM. The first measurement is an angular modulation property of the
interference term with respect to the azimuthal angle of the final state leptons. The
theoretical expectation is given in eq.(4.42) and numerical simulation result is shown in
figure 4.3. The second measurements is the energy growth of the interference due to an
additional hard jet, which is shown in figure 4.4. We provide prospective bounds on the
Wilson coefficient of the operator Osy, and also on the corresponding anomalous triple
gauge coupling, by looking at the cleanest channel pp — WZ — [llv and using two lu-
minosities 300 fb~! and 3 ab™! at 14 TeV LHC. As a final comment, the important and
robust results from our analysis are the relative improvements of the measurements due
to the angular modulation and the hard jet distribution, but this does not mean we com-
pleted full experimental study. In the future it will be interesting to apply our proposal
to perform global EFT analysis in order to distinguish different BSM contributions in a

certain process.



Appendix A

Proof of the results in section 2.2

In this appendix, we find the general form of the PMNS matrix associated to a generic
decomposition of U; and U in irreducible components. We consider the general case of
n families.

Let us first introduce a few notations. The irreducible components of U; are of different,
possible inequivalent types. A given irrep type “r”, of dimension d,, can appear in the
decomposition of U; more than once. We denote with n, the number of times it appears.
Analogously, n¢ is the number of times the irrep r appears in the decomposition of U.e..

Given a lepton doublet /;, we can then associate three labels to it. We can denote
by r the type of irrep to which [; belongs. As each type of representation may appear
more than once in the decomposition of U;, we can denote by k the occurrence to which
l; belongs (1 < k < n,). Finally, as the irrep » may have dimension larger than 1, we
can denote by a the position of the lepton [; within its irrep multiplet (1 < a < d,.).
All in all, the lepton [; is identified by its “irrep coordinates” (r, k,a). Such coordinates
can be used as an alternative labeling of the lepton doublets /; (and of its components
ei, v;). The generic lepton doublet will in this case be denoted by l,4,. Clearly, there is a
correspondence between the two possible labeling, the one by 1 < ¢ < n and the one by
rka, defined by

li = liga - (A.1)

Analogous coordinates (7, k,a) can be used to identify the lepton singlets ef. The
irreps r found in the decomposition of U, can be different than the ones found in U;, and
their multiplicities in the decompositions can also be different.

We can, and will, choose a flavour basis for the leptons /; and ef, and the mappings
between the “/” and the “(rka)” indices, as follows.

e Each irrep of type r acts on a set of subsequent leptons (I;, . ..lj,+a4,.), forming a

certain occurrence kg of the irrep type 7, (li, ... lig+d,) = (Lrko1 - - - Lrkod, )-

e As stated in section 2.2.1, non-vanishing charged lepton masses correspond to con-
jugated irreps in the decompositions of U; and U.. Consider then the copies
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k = 1...n, of a certain irrep type r in U; and the copies h = 1...n¢ of the
conjugated representation 7 in U (7 = 7 if 7 is real or pseudoreal). Only a number
min(n,., n¢) of them can be paired to get possibly non-vanishing masses, while all
the residual unpaired leptons are forced to be massless. We assume that the lep-
tons Ik, and ef,;, occupy the same positions in the lists [; .../, and e ... €], for all
k < min(n,,n$). Tables 2.2, 2.3 use such a convention.

e All irreps of type r are represented by the same d, X d, unitary matrix U, on the
corresponding leptons: l1q — Ulylp, €6, — (U5 )*eSy,. b If 7 is real, the matrix U

is real; if r is complex, Uy = (U,)*; if r is pseudoreal, w U, = U} w, where

0 1
-1 0

0 1
-1 0

is a d, X d, antisymmetric block matrix and d,. is even for pseudoreal representations.

Having set up the necessary notations, we are now ready to discuss the structure of
the lepton mass matrices in the above basis. A non-zero entry mZ ~ # 0 paring the leptons
e and e; is allowed only when the irrep to which ef and [; belong are conjugated, say r
and T respectively. If r or 7 appear more than once in the decomposition of U; or U, the
non—zero entries form a rectangular block, of size ng x n,, whose entries we can denote by
mkh If the irrep r has dimension d, > 1, mk,f is the common diagonal element for all
the leptons in the corresponding multiplet. Such a structure becomes transparent when
the mass matrices are written in terms of the irrep coordinates. Indeed, the invariance

under G forces the charged lepton mass matrix to be in the form

mfka,shb 57"55017 mkh (A?))

Conversely, any charged lepton mass matrix in that form is of course invariant. Analo-
gously, the form of the neutrino mass matrix is

d7s0apmy,  if 7, s both complex (m"" generic)
, Ors0apmyy  if 7, s both real (m"”" symmetric) (A1)
m = )
rha,sh Srswapmyy, if 7, s both pseudoreal (m”" antisymmetric)

0 if r, s of different type

In practice: if r is real or complex, it has the same action on lepton doublets and singlets, as
(Un)* = UL, if r is pseudoreal, it acts on the singlets in the conjugated (but equivalent) way, as
(Uap)™ = (Ugy)"-
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Note that the entries mj, appear in off diagonal positions, unless the representation
r is real. This is of course because of the Majorana nature of the neutrino mass matrix.
Diagonal entries are allowed in the symmetric limit only when the representation to which
the corresponding lepton belongs is real.

Note also that pseudoreal representations are only marginally relevant in the three
neutrino case. As the dimension of pseudoreal representations is even, there is room for
at most one pseudoreal irrep in that case. Moreover, if one two-dimensional pseudoreal
representation appears in U, the two rows and columns of the neutrino mass matrix
corresponding to that representation vanish, as m"" in eq. (A.4) is a 1 x 1 antisymmetric
matrix, so that m*" = 0. Still, we will stick in the following for completeness to the n
neutrino case and to the full treatment of the pseudoreal case.

The PMNS matrix arises from the diagonalisation of mf; and my; in egs. (A3,A4). It
is made of four types of contributions, each with a different physical origin:

1. A core contribution V associated to the presence of equivalent irreps in the lepton
doublet representation Uj.

2. A contribution D associated to the possible presence of Dirac structures in m” and

providing maximal mixing.

3. Permutations P associated to the requirement that charged lepton and neutrino
masses need to be in a standard ordering.

4. “Unphysical” contributions H associated to the arbitrariness in the choice of the
basis in flavour space for degenerate leptons.

Let us see how such contributions arise from the diagonalisation of mg and m,,.

Al V

The first contribution V' to the PMNS matrix is a unitary matrix commuting with U;.
Such a unitary matrix V' mixes lepton multiplets belonging to identical irreps and is non-
trivial only if the decomposition U; contains more than one copy of the same irrep. All
possible forms of V' compatible with the previous requirements can be obtained.

In order to show how V arises, we observe that m,, mg can be diagonalised, up to
Dirac structures in the neutrino sector (we will see below what this means) by unitary

transformations of the charged leptons and neutrinos v;, e;, ef commuting with the action

of G,

! sy
Vika = th Vrha

!/

erk‘a = Vkelferha (A5)

c/ e‘r ¢

€rka = Vin Crha
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Vur o ver Ve are squared matrices and V¥, V" have the same dimension n,. They
mix full equivalent multiplets (they do not act on the index a) and are non-trivial in the
presence of more than one copy of the representation . The above transformations can
be chosen to diagonalise each of the blocks in eqs. (A.3,A.4) as follows.
In the case of charged lepton blocks, we have
mp, = Vit my ¥V, .. (A.6)
As for the neutrino blocks, we need to treat the pseudoreal case differently. In the case

of real or complex representations, we have
o T diag
ml/ﬂ‘ - Vl/,? mu,r Vl/,r : (A7>

If r is real, m,, is a symmetric complex matrix, and eq. (A.7) gives its diagonalisation
in terms of a single unitary transformation V,,,. If  is complex, the block is in general
rectangular, m,, . = mf,r, and eq. (A.7) gives the diagonalisation of both in terms of two
independent complex matrices V,,, and V,, 7 of dimension n, and n; respectively. When the

matrices mg S, mdiae

o o

above are rectangular, we conventionally choose the non-vanishing
eigenvalues to appear on the diagonal starting from the lower-right corner. For example,
if there are more columns than rows

mdiag —

where X denotes the position of the eigenvalues. Eqgs. (A.6) and (A.7) define V,, (V)
for each irrep type r found in the decomposition of U;, provided that 7 is also found in
the decomposition of U, (U)), so that the block to be diagonalised exists. If this is not
the case, we define V., (V,,,) to be the identity matrix.

Let us now consider the special case of a neutrino block corresponding to a pseudoreal
representation r. In such a case, m,, is a square, n, X n, antisymmetric matrix. It can
be reduced to the following “pseudo-diagonal” form

_ T ps-diag
ml’ﬂ' - vzz,r mu,r v

v,r

(mEy ), = i Wi, mgl =mil > 0. (A.8)

The matrix w can now have even or odd dimension, depending on the number of copies
n, of the irrep r. If n, is odd, w is the restriction to the first n, rows and columns of a
matrix w of larger even dimension, which means that it is in the form in eq. (A.2), with

the addition of one extra vanishing row and column. The matrix mP*4#¢ is therefore an



118 Appendix A. Proof of the results in section 2.2

antisymmetric block diagonal matrix, with subsequent 2 x 2 blocks in the form

0 my"
-m;" 0 ’

possibly followed by a singly vanishing diagonal entry if n, is odd. Therefore, the pseu-
doreal irreps are now paired in couples (12), (34), ..., (2k — 1,2k), ..., each associated
to degenerate masses, with a possibly unpaired last irrep (if the total number is odd)
associated to a zero mass.
All in all, we have
mg = VImiey m, = VI msdiaey (A.9)

where

‘/z_lyl == 57735abvky};s ‘/;j - 6Fs(sab‘/]:];s %;c = 57—135(117‘/]:;787 <A10>

and i < (rka) and j < (shb), as defined by eq. (A.1). Clearly, V. and V,, commute with
U;. We can now define
V=VVl, (A.11)

which represents the core contribution to the PMNS matrix and also commutes with Uj.

Eq. (A.9) brings the charged lepton mass matrix in diagonal form,
(deiag)ij = 5?55kh5abmf’r . (A.12)

The eigenvalues do lie on the diagonal because of the assumptions we made on the ordering

/

ke g€t mass mkE’r by pairing with e¢, . If the

of the charged leptons. The leptons e o
multiplet has dimension d, > 1, all the leptons in the multiplets end up being degenerate.
As the number of representations of type r acting on the lepton doublets, labeled by
k = 1...n,, and the number of representations of type 7 acting on the lepton singlets,
labeled by & = 1...n¢, can be different, only the first & = 1...min(n,,nS) pairs get
a possibly non-zero mass, while all residual unpaired charged leptons are forced to be
massless.

Eq. (A.9) brings the neutrino mass matrix in a “semi-diagonal” form,

O7s0kndapm,”  if neither 7 nor s is pseudoreal
(msdiee),. = drswrnwapmy,  if both r and s are pseudoreal |, (A.13)

0 otherwise

where again ms, ; = ms. in the pseudoreal case (x integer).
All neutrinos v/, corresponding to real representations r get a diagonal (Majorana)
mass term m," by pairing to themselves. If the representation has dimension d, > 1, all

neutrinos in the multiplets are degenerate. The neutrinos v/

' COrTesponding to complex
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representations r get a Dirac mass term m;" = mZ’F by pairing to the neutrinos in 12,
in the conjugated representation rk. If d, > 1, all the neutrinos in the two conjugated
multiplets are degenerate. As the number of representations of type r, labeled by k& =
1...n,, and the number of representations of type 7, labeled by £k = 1...ns can be
different, only the first £ = 1...min(n,,n;) pairs get a possibly non-zero mass, while all
residual unpaired neutrinos are forced to be massless. Finally, in the case of pseudoreal
representations, the two pairs of neutrinos v, 5, 005 Vs 1901 04 V) 9000 15 Vyos 124
both get a Dirac mass term, both with mass ms, = ms,_,. If d, > 1, all the neutrinos in
the two paired multiplets £ = 2k and k = 2k — 1 are degenerate. For n, odd, two spare
neutrinos are massless.

To summarize, m*48 is not necessarily diagonal because of the possible presence of
Dirac structures associated to paired conjugated and pseudoreal representations, and its
non-vanishing entries can be found:

s-diag

karka COTTesponding to real irreps 7, providing a

e In all the diagonal positions m

Majorana mass term for the neutrino v/,,.

s-diag s-diag

rarka = Mokarka, cOrresponding to complex

e In symmetric off-diagonal positions, m
representations r and k < min(n,,n;), providing a Dirac mass term to the conju-

3 / /
gated neutrinos v,,, and v,,.

s-diag . ms-diag -
r(2k)(2a),r,(26—1)(2a—1) — """r(2k—1)(2a—1),r(2k)(2a)

corresponding to pseudoreal rep-

e In symmetric off-diagonal positions m

s-diag . _ms—diag
r(2k)(2a—1),r(2k—1)(2a)) — r(26—1)(2a),r(2k)(2a—1)’

resentations r and Kk =1...|n, /2], a=1...d,/2.

A2 D

In order to complete the diagonalisation of the lepton mass matrices, we need to diag-
onalise the Dirac structures in m$%8, This is how the contribution D to the PMNS

matrix, containing a maximal mixing transformation for each Dirac structure, arises.

s-diag

> contains a

As discussed in the previous subsection, the semi-diagonal matrix m
diagonal block corresponding to the neutrinos v,,, in real irreps r; a 2 x 2 Dirac block
corresponding to neutrinos in paired conjugated complex representations v, and Vs,
k = 1...min(n,,ns); a trivially diagonal vanishing block corresponding to neutrinos in
unpaired complex representations v, k > min(n,, n;); a trivially diagonal vanishing
block corresponding to the neutrinos v,., , in the last copy of the pseudoreal irrep r, if n,
is odd (and in particular if there is only one copy of r); if there are at least two copies of

I//

r, a 4 x 4 Dirac block corresponding to the four neutrinos v/ o, 941, ¥, 91200

/
T,2K,200
/

Vyok2a—1- Lhe matrix mS 498 can then be diagonalised by diagonalising the above Dirac

blocks as follows.
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As seen, there are two types of Dirac blocks, associated to complex conjugated and to
pseudoreal irreps respectively (only the former are relevant to the three neutrino case, as
the latter arises only in the presence of at least four neutrinos).

In the case of a Dirac block associated to the neutrinos v, and vz, in conjugated
complex irreps, and for k = 1...min(n,,n:), a = 1...d,, the block has the form

( 0 m’f’) , (A.14)
my 0

where m;" > 0 (m}" = m;"). Its diagonalisation is trivial

0 m’ v 1 (11
oMy =pr (™ Y VD, Dy=— | . (A.15)
m, 0 0 my V2 \—i i

The unitary matrix Dy corresponds to a maximal rotation by an angle 7/4, together with
a phase redefinition by the imaginary unit 7, needed to make the diagonal entries positive.
Such a Majorana phase is physical, but it plays a negligible role in oscillation experiments.
The matrix Dy is defined up to a phase, meaning that we could have equivalently used

1 ei@ e—i@
— . I A.16
V2 (ZFieZO iie"9> ( )

The phase 6 corresponds to the freedom to perform a O(2) transformation on the two

the following form of D,

degenerate neutrino mass eigenstates, and can be reabsorbed in a phase redefinition of
V,,. The sign is unphysical.

In the case of a Dirac block associated to the two paired pseudoreal irreps 2k — 1
and 2k (k= 1...[n,/2]) and involving the four neutrinos v, 5. 1 9015 V220> Vr2n—1.20>

V) or.90—1 (rows and columns of the matrix below ordered accordingly), the block has the

form
0 m-" T mvr
2k 2k
vre) D2 v,r D2
M), - Mok
0 _ml/,r - mum
2k . 2k .
—mlT 0 ZDQ myr ZDQ
2k 2k
17)

where mg. >0 (msy, =mg._ ).

Based on what above, we can define unitary matrix D to be the product of the (com-
muting) 2 x 2 transformations Dy acting on neutrinos in paired complex or pseudoreal
representations. The matrix D will therefore be diagonal in the block corresponding to
the neutrinos in real irreps and in the block corresponding to the neutrinos in unpaired

complex or pseudoreal representations; it will contain an instance of the matrix Dy in each
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2 x 2 block corresponding to neutrinos vk, and vy, in paired conjugated complex rep-
resentations, k = 1...min(n,, n;); and it will contain an instance of Dy and iD5 in each

pair of 2 x 2 blocks corresponding to the neutrinos (v}.o, 19,1, Vr.9x.24) and (v,

r2k—1,2a0
V) or.20—1) Tespectively, in paired pseudoreal representations, k = 1...[n,/2].

As a consequence, the semi-diagonal matrix m$%28 is diagonalised as follows
s-dia; T, . dia
m;, " = D m;,"*eD | (A.18)

where mdi#8 is diagonal, with degenerate eigenvalues in the positions corresponding to
neutrinos in paired complex conjugated or pseudoreal representations.

A3 P

What above provides a full diagonalisation of the lepton mass matrix in terms of the
unitary transformations V., V.. and (DV,):

mp =VEImEEy  m, = (DV,)T mi®e (DV ). (A.19)

We are therefore close to identifying the PMNS matrix. In order to do that, we should
take into account the fact that the order of the rows and columns of the PMNS matrix is
defined by a standard ordering of the leptons. In the case of charged leptons, the standard
ordering coincides with the mass ordering, m., < ... < m,,. In the three neutrino case,
the standard ordering for neutrinos defines the mass eigenstates v, and 1, to be the two
ones closer in terms of squared mass difference, with 14, being the lightest of the two.
In order to find the PMNS matrix, we should then permute the lepton mass eigenstates
in order to have them in the standard ordering. This is achieved by two permutation
matrices Pg and P,

diag _  pT, _diag,so diag __ pT, diag,so
mp > = Pymyp " Py, m* = P, m, P, (A.20)

where “so” stands for “standard ordering”.

A few comments are in order. We are considering here the symmetric limit. On
the other hand, the standard ordering is defined on the physical masses, which also get
contributions from symmetry breaking effects. However, in the assumption we made that
symmetry breaking effects are small, the ordering is not affected by symmetry breaking
effects.

An exception to the latter argument arises in the presence of degenerate eigenvalues
(vanishing or not). Which linear combination of the corresponding leptons will end up
being the lighter or heavier crucially depends in this case on the symmetry breaking
effects. This type of ambiguity will be taken into account by the H matrix defined in the
next subsection, so that no permutation needs to be introduced.
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As an example in which a physical permutation is involved is when the charged lepton
spectrum ends up being (M., Me,, Me, ) = (0,0, A) instead of (Mme,, Mey, me, ) = (A,0,0).
In such a case a permutation P ; moving the first lepton in the last position is necessary
(such a permutation is defined up to a further permutation of the first two elements, but
the latter does not need to be taken into account). In such a case, the permutation
only depends on the mass pattern and not on the specific values of the non-zero entries.
A physical permutation is also needed when the mass ordering depends on the specific
values of the non-zero entries, for example if (me,, Me,, me,) = (A, B,0). In the latter
case, no permutation is needed if B < A, whereas a 2 « 3 permutation is needed when
B > A. In such a case, the permutation is not defined by the mass pattern alone.

It is possible and useful to choose the ordering of leptons (and of their irreps) to start

with in such a way to minimize the permutations needed.

A4 H

We have now brought the lepton mass matrices in diagonal form, with the leptons in

standard ordering
mp = (PpVee)T m&*®% (PgV, ),  m, = (P,DV,)T mdae= (p DV ). (A.21)

A final point has to be taken into account in order to write the most general form of
the PMNS matrix: the latter is not uniquely defined. This is because of the ambiguities
associated to the definition of the mass eigenstates. The role of the unitary matrices H
is to take into account such ambiguities.

In the real world case in which all the lepton masses are non-degenerate, the ambi-
guity is only associated to unphysical phases. It is well known, for example, that the
most general form of the CKM matrix contains five unphysical phases associated to the
possibility to redefine the phases of up and down quarks, without modifying the diagonal
form of the mass matrices. In the approximate world described by the symmetric limit,
on the other hand, the ambiguity can be non-trivial, owing to the possible presence of
degenerate, possibly vanishing, masses. It is then important to take into account such
contributions, as they become physical when symmetry breaking effects, removing the
degeneracy, are considered.

The ambiguity affecting the definition of the PMNS matrix is associated to the uni-
tary transformations H,, H., H.. leaving the diagonal form of the lepton mass matrices
invariant, i.e. such that

diag,so __ T _ diag,so diag,so __ T,  diag,so
my o = H,emyp ®H, | ms, = H, m,*®*H, . (A.22)

As only H. (and not H..) enters the PMNS matrix, we are interested in the most general
form of H, for which a proper H.. exists satisfying eq. (A.22). This taken into account,
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H,. and H, are characterised by

He (m%iag,SO)Z _ (m%iag,SO)2He’ mlcjiiag,so _ Hg’mgiag,soHy ) <A23)

In the previous equation, the eigenvalues in m@a*®* mdieese are supposed to be non-
generic. We remind that our analysis focuses on a given mass pattern in table 2.1, and
that a set of eigenvalues in a certain pattern is generic if all the entries that are allowed
to be different and non-zero are indeed different and non-zero. The possible forms of
H., H, then only depend on the mass pattern being considered. Consider for example
a mass pattern in which the mass eigenvalues are in the form in eq. (2.5), where the
degeneracies are df .. .dﬁE for the charged leptons and dj ...d%, for the neutrinos (the
vanishing entries do not necessarily need to appear first, but let us for simplicity assume

that this is the case). Then H, and H, have the form
H. = BDiag(Uy, Uy, ... Uny) , H, = BDiag(U}, Ry, ... Ry,) , (A.24)

where U; € U(dF), U} € U(dy) are unitary matrices and R; € O(d¥) are real orthogonal
matrices. In eq. (A.24), BDiag denotes a block diagonal matrix, with the diagonal blocks
specified as arguments.

The H,., H, contributions to the PMNS matrix have a different physical nature than
the previous ones. The previous contributions are known, once the entries of the mass
matrices in the symmetric limit are known. Barring special correlations, they correspond
to large mixing if all the non-vanishing entries in the symmetric mass matrices are of
the same order. On the contrary, H, and H, are unphysical, and undetermined, in the
symmetric limit. However, they become physical (up to diagonal phases) after symmetry
breaking effects split the degenerate mass eigenstates. By taking H, and H, into account,
we then make sure that the PMNS matrix after symmetry breaking is close to the one
described by eq. (2.6) in the symmetric limit, for some values of H,, H,. Depending on
the specific form of the symmetry breaking effects, H, and H, can end up being be large,
small, or zero.

A.5 The PMNS matrix

By combining everything above, we find that the PMNS matrix is in the form in eq. (2.6).
That equation may contain some redundancy. The form of V' may have an undetermined
component that can be parameterized by H, or H,. This happens for example when V'
is in principle non-trivial because of the presence of multiple copies of the same irrep,
but those irreps correspond to massless leptons. We then choose V' to be the identity
on the massless leptons and encode the undetermined component in H., H,. Another
redundancy appear in the case of Dirac structures, in which the diagonal neutrino mass
matrix ends up having two degenerate eigenvalues. By definition, H, then contains a
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2 x 2 orthogonal rotation. However, as discussed in appendix A.2, that rotation can be

reabsorbed in a phase redefinition of V. We will therefore not include it in H,,.



Appendix B

The low- and high-scale analyses

equivalence condition

B.1 Conditions for the low- and high-scale

representations become equivalent

In this part of the appendix we will provide proofs of the conditions under which the low-
and high-scale representations become equivalent.

First of all, let us see the following relation between the low- and high-scale represen-
tations of the flavour group. Suppose that we are considering n family of singlet neutrinos
and of other leptons. For a given low-scale representation Uy, of a flavour group G there
exists a high-scale representation Uy of G such that i) Uy is the low-scale limit of Uy
and ii) Uy and Uy, are equivalent in the symmetric limit.

In order to prove that above statement is correct, we have to show an existence of
the high-scale representations Uy for every low-scale representation Uy, such that U, is
low-scale limit of Uy and it is equivalent to Uy in the symmetric limit.

As was explained before, we can write the leptons in a basis such that UL decomposed
into irreps each acting on a separate set of leptons, and then collect those irreps into
the first group forming a vectorlike sub-representation Ut of Ut and the second group
forming a fully chiral sub-representation Ul,. For convenience, we can order the lepton
doublets [; in such a way that Ul acts on the first ng of leptons and U, acts on the last
ny = n —ng of them. If the first or the second group (corresponding to vectorlike or fully
chiral part) is empty, then ny = 0 or n; = 0. We can define the high-scale representation
a follows: we take Uy = UL, U4 = (UL,)* + id, where id is the trivial representation
acting on the singlet neutrinos in the same position as those on which U}, acts, and of
course we choose Up; = Uf. Clearly, Uy is the low-scale limit of Uy. To complete the

proof of the statement above, in the following we will show that Uy, is equivalent to Up.
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It is easy to see that the first condition in definition of Uy and U to be equivalent
holds. As the Ul is vectorlike, (UL,)* is also vectorlike, and UY = (UL,)* +id is a sum
of two vectorlike parts thus it is vectorlike.

Now let us prove that the second condition in definition of the Uy and Up to be
equivalent is also satisfied. In other words, for each m, invariant under Ul, we have
to show that there exist my, M invariant under Uy, with M non-singular, such that
m, = —mX M~'m,. We construct my and M in terms of m,, as follows. First of all, we
observe that for a given m,, we can order the fermions in such a way that not only Ut acts
on the first ng of them, but also m,, has a block decomposition m, = BDiag(m, 0), where
the first block matrix m is non-singular and it has dimension n < ng, and the first group of
n leptons form a sub-representation of Ut,. We can then define my = BDiag(v1s, 0,,_5)
and M = — BDiag(v¥*m ™!, M1,_5), where v is the electroweak scale, a constant M >> v,
and 1, 5 is an identity matrix. By this way we can make all the eigenvalues of M
much heavier than the EW scale, since all the eigenvalues of m, are much smaller than
v. Moreover, M is apparently non-singular because m is non-singular and M # 0.
It is easy to see that M and my are invariant under the Uy defined above and that
—mk M~'my = m,. This verifies the second condition and also concludes the proof
of whole statement: all the low-scale representations Uy, of a flavour group G are the
low-scale limit of an equivalent (in the symmetric limit) high-scale representation Uy.

As we know from the example in section 3.2.2 that low-scale discussion of the flavour
symmetry does not capture all possible results obtained from the high-scale. Then, under
which conditions low-scale limit U}, of a high-scale representation Uy is always equivalent
to Uy in the symmetric limit? The answer of this question is as follows: the low-scale
limit Uy, is equivalent to Uy if and only if U}, is vectorlike and Uy, contains vectorlike
part of UL.

In order to prove this is indeed a necessary and sufficient condition for general case of
n family, let us suppose that Uy is a high-scale representation of G and Uy, is a low-scale
limit, and UL = UL+ U}, is a splitting of U' into a vectorlike and fully chiral part. Then

we will prove following two statements separately:

1. if Uy, is equivalent to Ug, then UY is vectorlike and U¥% contains Ut,,.
2. if UY is vectorlike and UY contains UL, then Uy, is equivalent to Uy.

Let us start with the proof of first statement. If U is equivalent to Uy, then Uy is
vectorlike (from the their equivalence condition). So we just need to prove Uy, contains
UL,. If U, is empty, the statement is true, as in such a case UY trivially contains Ut,,.
If UL, is not empty, we can choose a basis for the lepton doublets in which U!, acts
on the first ng > 1 doublets and U}, on the subsequent n; = n — ng doublets. As
UL, is vectorlike, there exists a dimension ng non-singular matrix mg invariant under
Ul,. The matrix m, = BDiag(my,0,,) is then invariant under U.L. Given that Uy, is
equivalent to Uy, there exist my, M invariant under Uy, with M non-singular, such that
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m, = —m% M~tm ~- Considering the n x ny submatrix my made of the first ny columns
of my, we have mg = —m% M =Y. Since mq is non-singular, My must have rank ny.
It is then possible to choose a basis for the singlet neutrinos v; such that my is in the
upper triangular form, with non-vanishing diagonal entries. It is now straightforward to
show that the singlet neutrinos facing lepton doublets in a given irrep component of Ut,
transform in the conjugated irrep. It then follows that the restriction of Uf; on the first
no singlet neutrinos is precisely (Ul,)* ~ Ut,. Therefore, UY contains U',.

The proof of the second statement requires to show Uy, is equivalent to Uy, by using
the fact that UY is vectorlike and that U% contains U',. Since UY being vectorlike is
already given, we only need to prove that for each m, invariant under U there exist a
my and a non-singular M invariant under Uy such that m, = —m% M~tm,.

For the invariant mass matrix m, under U, we can choose a basis for the lepton
doublets such that: UL decomposes into irreps each acting on a separate set of leptons; a
first (possibly empty) group of irrep, which will be associated to the non-singular part of
m,,, corresponds to the first i doublets and also to the sub-representation U'; a second
(possibly empty) group of irreps corresponds to the next n doublets and to the sub-
representation U L. Putting together these two groups of irrep forms the representation
Ul, = UL + U L acting on the first ng = n + 7 leptons, which is vectorlike while the
restriction U?, of U! to the remaining n; = n—ny leptons is instead fully chiral. Therefore,
the form of the mass matrix is m,, = BDiag(m, 05, 0,,, ), with m non-singular. Note that
Ul is vectorlike, as m is invariant and non-singular. Then U L is also vectorlike, as both
UL, and UL are. For the reason that UY contains Ul, by hypothesis, we can choose
a basis for the neutrino singlets such that the first ny singlet neutrinos transform with
(ULy)* ~ Ul,. The remaining n — ng singlets will transform with the restriction U%, of
U% to them (under which they are invariant). Note that UY, is vectorlike, as (UL,)* is
vectorlike and UY = (UL,)* + UY, is also vectorlike.

We can now construct my and M as follows. As U}, is vectorlike, there exists a
non-singular n; X ny symmetric matrix M; invariant under Uj;;. We can choose the latter
in such a way that all its eigenvalues are much heavier than the EW scale. Since 5113 is
vectorlike, there exists a non-singular symmetric matrix m invariant under U L. We can
find a non-singular m in such a way that all of its eigenvalues are much smaller than
the EW scale. After that, we define M = BDiag(v?m !, v*m~!, M;). Finally, we define
my = BDiag(v1;,0z,0,,).

It is now straightforward to show that: all the eigenvalues of M are much heavier
than the EW scale, M is invariant under Ujf, my is invariant under Uy and m, =
—mi M~tmy,.
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B.2 The low- and high-scale analyses forcing the

same flavour pattern

In this section we will find general condition for the n family case of the low- and high-scale
analyses forcing the same pattern in the symmetric limit.

To begin with, let us see that for a certain flavour pattern, each low-scale representation
Uy forcing that pattern is the low-scale limit of a high-scale representation Uy forcing the
same pattern. In order to achieve this purpose, we will consider a given flavour pattern,
i.e. a mass pattern in table 2.1 and a PMNS matrix as in eq. (3.17), and a low-scale
representation Uy, forcing that pattern. Then we will demonstrate that there exists a
high-scale representation Uy forcing the same pattern.

From the discussion in section B.1 we know that there always exists a high-scale
representation Uy having Uy as low-scale limit and equivalent to Uy in the symmetric
limit. So now it is enough to show that Uy forces the same flavour pattern as Ur. To see
Uy forces the same pattern as Uy, we need to verify three conditions, in the definition of
high-scale representation forcing a given pattern, are satisfied.

The first condition is satisfied because Uy is equivalent to Uy in the symmetric limit
and U}, is then vectorlike by the definition of equivalence between the Uy and Uy,

In order to verify the second condition, we should show that for a given Ly as in
eq. (3.7), invariant under Uy, with non-singular M, lepton masses and mixings are in the
specified flavour pattern. Our starting point here is that the Lagrangian Ly is invariant
under Uy, with non-singular M, and mg and my, M are the corresponding mass matrices,
as given by eq. (3.8). The flavour pattern associated to Uy is nothing but the flavour
pattern associated to mg and m, = —m% M~'my. On the other hand, mg and m, turn
out to be invariant under U}, (see a comment below the definition of Uy and U}, equivalent
in chapter 3). The flavour pattern associated to mg, m, is then the given pattern, as Uy,
by hypothesis forces that pattern.

In order to verify the third condition, we should exhibit that there exists a Ly as
in eq. (3.7), invariant under Uy, with non-singular M, such that the lepton masses and
mixings are in the given flavour pattern and generic (i.e. with all masses allowed to be
non-zeros and different indeed non-zero and different, and with all the PMNS entries
allowed to be non-zero indeed non-zero in at least one flavour basis, except possibly the
13 entry). Let us consider a high-scale representation Uy such that Uy is the low-scale
limit of Uy and it is equivalent to Uy in the symmetric limit. The existence of such
a representation is guaranteed by the existence of the Uy for every Uy and they are
equivalent, which is discussed in beginning of the section B.1. Regarding the m,, mg
invariant under Uy, and giving masses and mixings in the given pattern, and generic, their
existence are guaranteed by the hypothesis that Uy, forces the given pattern. Now because
of the equivalence of Uy and Uy, there is a my and a non-singular M (besides the mpg

we already have) invariant under Uy such that m, = —mk M~'m,,, and a corresponding
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high-scale Lagrangian Ly invariant under Uy. The lepton masses and mixings associated
to Ly, being the one associated to mg and m,, are then indeed in the given flavour
pattern and generic. So these arguments conclude whole statement, for a certain flavour
pattern each low-scale representation Uy, forcing that pattern is the low-scale limit of a
high-scale representation Uy forcing the same pattern.

Now we will close this section by discussing the necessary and sufficient condition for
low-scale limit Uy, forces same pattern as Uy. The low-scale limit Uy, forces same pattern
as Uy if and only if these two representations are equivalent in the symmetric limit. In
order to show this is indeed a necessary and sufficient condition we will prove following

two statements one by one:

1. if Uy, is equivalent to Uy in the symmetric limit, then Uj, forces the same pattern
as Ug.

2. if Uy, forces the same pattern as Uy, then Uy, is equivalent to Ugy.

Let us start with the first statement, in order to conclude Uy, forces the same pattern
as Uy by using the fact that Uy is equivalent to Uy in the symmetric limit, we have to
confirm two conditions, which are in the definition of low-scale representations forcing a
given flavour pattern, are satisfied. The proofs of these two conditions are given in the
following two paragraphs.

In order to verify the first condition, we need to show that for any given low-scale
Lagrangian Ly, as in eq. (3.2) invariant under Uy, the lepton masses and mixings induced
by L}, are also in the pattern forced by Uy. As L is invariant under Uy, the corresponding
m, and mpg are invariant under U;. So what needs to be proven in the second step is
the associated masses and mixing follow the pattern forced by Uy. Knowing that Up,
is equivalent to Uy, there exist invariant my, M (besides the mpg we already have),
with M is non-singular, and a corresponding Lagrangian Ly is invariant under Uy, such
that m, = —m% M~'m,. As the high-scale representation Uy forces the given pattern,
associated masses and mixings follow that pattern. And those are also the masses and
mixings associated to mg, m,, which follow the pattern forced by Up.

In order to verify the second condition, we need to show that there exists a L as in
eq. (3.2), invariant under Uy, such that the lepton masses and mixings are in the pattern
forced by Uy, and generic. Since Uy forces the given pattern, there exists a Ly as in
eq. (3.7), invariant under Uy, such that M is non-singular and the lepton masses and
mixings are in the given pattern, and generic. If £ is a low-scale limit of Ly, then £ is
invariant under Uy. The lepton masses and mixings induced by £ are the same as those
induced by Ly and are, therefore, in the flavour pattern forced by Uy, and generic.

On the other hand, for the proof of the second statement, we will rely on the given
condition (Uy, forces the same pattern as Ug). In order to conclude that Uy, is equivalent
to Uy, we will follow a following strategy: we will prove i) U}, is vectorlike and ii)
UY contains the vectorlike part of U, then using the statement in section B.1 — the
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existence of Uy for every Uy as a low-scale limit and they are equivalent — we derive U,
is equivalent to Uyg.

It is very easy to get Uy is vectorlike, that just follows from the definition of forcing
a pattern at high-scale. Now we have to prove that Uj; contains the vectorlike part of
Ul. Suppose that 7 is the number of neutrino masses allowed to be non-vanishing in the
symmetric limit in the chosen pattern, and that ng is the dimension of the vectorlike part
UL, of Ul. From the fact that Ul acts on the first ny fermions in the non-singular block
of the mass matrix and that Uy, also forces the chosen pattern, we conclude n = ng. Let
us now choose a my and a non-singular M, invariant under Uy, with lepton masses and
mixing in a generic pattern. Their existence is guaranteed by the definition of forcing a
pattern at high-scale. Then m, = —mX% M ~'m; is invariant under U! and has ng non-
vanishing eigenvalues. According to the relation between structure of the mass matrix and
two parts (vectorlike and fully chiral part) of the representation, and taking into account
that 7 = ng, we will choose a basis for the lepton doublets such that: Ul decomposes
into irreps each acting on a separate set of leptons, a first group of irrep forms the
representation U, while the remaining ones form U!,, so m, = BDiag(mqg, 0,_,,) with
non-singular mg block. Now we will proceed as the argument in section B.1. Considering
the nxng submatrix 7y made of the first ng columns of my, we have mg = —m% M 11y
Since my is non-singular, my must have rank ng. It is then possible to choose a basis for
the singlet neutrinos v; such that myyq is in upper triangular form, with non-vanishing
diagonal entries. It is now straightforward to show that the singlet neutrinos facing lepton
doublets in a given irrep component of Ut transform in the conjugated irrep. So it follows
that the restriction of UY% on the first ng singlet neutrinos is precisely (Ul,)* ~ UL,
therefore U, contains U',. With this conclusion we have reached to the end of the proof.
So the necessary and sufficient condition to the low-scale limit Uy, forcing the same flavour
pattern as Uy is that these two representations are equivalent in the symmetric limit.
From this condition we can say that there are two and only two important cases in which
the low-scale analysis fails in characterizing the high-scale flavour symmetries that forcing

a certain flavour pattern in the symmetric limit:

e When Uy, is not vectorlike.

e When UY does not contain the vectorlike part of Ul;.

Detailed discussions of these two inequivalent cases can be found in chapter 3.



Appendix C

Further details of the bounds on c3yy

In this appendix we compare the relative importance of the various differential observ-
ables on the constraints on ¢z /A% The results for 300(3000) fb~! are presented in the
table C.1. The labels Ezcl. /Incl. linear have exactly the same meaning as in the table 4.1
. No ¢z binning stands for binning only p;‘»F and No pjT binning stands for using only the
information in p]T € [0,100]GeV category and the angular binning. We can see that both
binning pJT and ¢z lead to the increase of sensitivity of the interference term with the
later being stronger. Table C.1 is generated using the leakage < 5% for various ) values.
The procedure of [164] leads roughly to the same results and the method of eq. (4.49)
shows lower sensitivity on the interference term. Bin by bin information about the SM

and BSM contributions can be available by request.
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Lumi. 300 fb~" Lumi. 3000 fb™" Q [TeV]
95% CL 68% CL 95% CL 68% CL

Excl. [1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

Excl., linear 150,149 [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

No ¢ binning 1.19,1.20] [-0.69,0.70] [-0.57,0.57] [-0.32,0.31]

No ¢ binning, linear  [-2.28,2.22] [-1.15,1.14] [-0.74,0.73] [-0.38,0.38] ]
No p] binning [-1.14,1.17] [-0.64,0.67] [-0.50,0.51] [-0.27,0.27]

No pj binning, linear ~ [-1.80,1.81] [-0.91,0.92] [-0.57,0.57] [-0.29,0.29]

Incl. -1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27) [-2.17,2.17] [-1.37,1.37] ]-0.70,0.70]

Excl. 0.69,0.78] [-0.39,045] [-0.31,0.35] [-0.17,0.18]

Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

No ¢ binning 0.75,0.82] [-0.43,0.49] [-0.37,0.43] [0.21,0.25]

No ¢z binning, linear  [-2.02,1.95] [-1.02,1.00] [-0.65,0.64] [-0.33,0.33] 15
No p! binning -0.73,0.80] [-0.41,0.49] [-0.34,0.38] [-0.19,0.20] |
No ¢ binning., linear [-1.43,1.40] [-0.72,0.71] [-0.45,0.45] [-0.23,0.23]

Incl. 0.79,0.85] [0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear 3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [0.47,0.54] [0.27,0.31]] [0.22,0.26] [-0.12,0.14]

Excl., linear [1.03,0.99] [-0.52,0.51] [0.33,0.32] [-0.17,0.17]

No ¢ binning -0.50,0.56] [-0.28,0.34] [-0.25,0.30] [-0.14,0.1§]

No ¢z binning, linear  [-1.84,1.73] [-0.92,0.89] [-0.59,0.58] [-0.30,0.30] 5
No p! binning 0.49,0.55] [0.28,0.32] [-0.23,0.27] [0.13,0.15]

No pJ binning, linear ~ [-1.18,1.12] [-0.60,0.58] [-0.37,0.37] [-0.19,0.19]

Incl. 0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear -3.55,3.41] [1.79,1.75] [-1.12,1.11] [-0.57,0.57]

Table C.1: Bounds on c3p /A% x TeV?2. The total leakage in the various bins of mr‘{,;, 7

is < 5%.
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