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Abstract

In this thesis, navigation and search strategies are investigated from an optimal control
and statistical physics perspective.

In Ch. 1, a multi-agent decision making problem, a cooperative search game, is treated in
the framework of optimal control. It is shown that, surprisingly, phenomenological equations
that describe chemotaxis –including perfect adaptation and fold-change response– emerge as
the optimal solution, in a mean-field approximation, to this cooperative task. To our knowl-
edge, such an equivalence was never noticed before, and it provides an interesting functional
interpretation of chemotaxis. The content of this Chapter is available in Pezzotta et al.
Phys. Rev. E 98, 042401 (2018).

In Ch. 2, the dynamics of a statistical mechanical model (the Conformational Spread
model) –that accurately reproduces the dynamics of the flagellar motor switch in Escherichia
coli (E. coli)– is studied analytically by means of multi-scale techniques (decimation and av-
eraging), providing a cooperative binding model which effectively describe the locked-state
time distribution –ultimately determining the run-and-tumble behaviour of E. coli. Studies of
the dynamics of this model were previously limited to numerical simulations, and analytical
results were achieved only at equilibrium. This work has been published as a research article
in Pezzotta, et al. J. Stat. Mech. 023402 (2017).

In Ch. 3, we formulate a collective navigation task as an optimal control problem, in
which agents have an incentive to align their velocities. A multi-scale analysis (averaging
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and homogenization) is used for studying the optimally controlled dynamics in the over-
damped limit. The analytical solution of the effective equations at the steady state is given
in particular instances of the problem (two agents on a torus).

In Ch. 4, it is shown that the conditioning of Markov processes to lie within a confined
region of space can be regarded as an optimal search problem. As a case study, we analysed a
jump process conditioned to stay within an infinitely long cylindrical domain, and to go from
one end to the other. This example is inspired by the problem of sampling configurations
of polymers confined in nanochannels. This work has been published in Adorisio, et al.
J. Stat. Phys 170, 79-100 (2017), where more details can be found pertaining to the physics
of polymers.

https://link.springer.com/article/10.1007%2Fs10955-017-1911-y
https://link.springer.com/article/10.1007%2Fs10955-017-1911-y


Introduction and Outline

Traditionally, the discipline devoted to the study of animal behaviour is ethology, ele-
vated to the rank of science in the XX century by eminent figures like the 1973 Nobel Prize
winners Konrad Lorentz, Nikolaas Tinbergen and Karl von Frisch [1]. The main object of
ethology is the observation of the behaviour of animals in their natural context. For some
decades since its early days, the nature of ethology has been purely descriptive. The influence
of psychophysics –a discipline born in XIX century with the seminal works by Ernst Weber
and later on by Gustav Fechner [2]– began to gain prominence in ethology and contributed
to a paradigm shift in the way behaviour is studied. Ethology then started to be shaped into
a quantitative discipline, rooted in the physics of perception. The possibility of quantifying
sensory stimuli allows to perform constrained experiments in order to pinpoint causal rela-
tionships between perception and action.

The works of Burrhus Skinner in the 1930s [3], preceded by those of Ivan Pavlov [4]
and Edward Thorndike [5], paved the way towards a theory of behaviour in which memory
and rewarding signals are involved in learning, predicting, and hence acting, under the in-
fluence of sensory stimuli. To this picture, algorithmic structure was given by, notably, the
Rescorla–Wagner model, laying the basis for modern reinforcement learning theory [6], which
nowadays constitutes a research field in its own right.

The central role occupied by physics and computer science is what makes ethology a
modern subject. Physics has proved invaluable in uncovering the mechanisms subserving the
biology of the cell [7, 8] and the growth of organisms [9]. It may then provide insightful
tools in bridging perception and sensing to the actions that ultimately result in the observed
behaviour. The predictive power of theories and models stemming from the most traditional
fields of physics, together with the rapidly growing field of machine learning, may contribute
to unravel the complexity of behaviour.
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All the behaviours that involve orienting and moving in the environment can be ascribed
to the the general context of navigation. Search processes are the behaviours that we will be
discussing in this thesis, and that we look at from a physics perspective.

Connecting different levels of description

In 1976, Marr and Poggio [10] proposed a paradigmatic scheme in which three different levels
of analysis contribute, in a complementary way, to the understanding of biological systems.
Their thesis hinges upon examples coming from the study of the central nervous system,
and vision in particular, but extends to all realms of the biological sciences, and therefore
behaviour. This scheme is usually referred to as Marr’s levels of analysis. In this thesis, we
would like to fit navigation in all its complexity into this paradigm.

The first and highest level in the scheme of Marr is the computation level, dealing with the
nature of the problem that the biological agent is trying to solve. In the study of cognition
and behaviour, the abstract problem is referred to as the task or goal of the agent. For
instance, bacteria need to climb gradients of nutrients or escape noxious substances. This
task is essential for their survival. At the microscale, the ability to respond to chemical stimuli
and move under their influence, is called chemotaxis [11, 12]. In most situations, organisms
face complex environments, in which discerning what is the task that they need to perform
is a challenging problem. In the general context of navigation, though, the ultimate goals
are often clear: search for food, escape predators, find mates. What is seldom transparent,
is the environmental and physical conditions that the agents experience, which are also to
be taken into account at this level. Therefore, the computation level is the most difficult to
address in a quantitative way, and arguably, because of this, the most neglected.

The second and intermediate level in Marr’s scheme is the algorithmic level, which per-
tains to the possible strategies that solve an abstract computational problem. Here sits the
behaviour itself, meant as the decision-making rules that result in the observed phenomena.
For example, microorganisms integrate chemical signals in time and respond by controlling
their motion in ways that differ from species to species [13]. However, one algorithm which
is common to many species from bacteria, to insects and mammalian cells, is the fold-change
response to sensory stimuli [14, 15] –which encompasses adaptation and Weber–Fechner law.
This level, then, relates to the sequence of simple operations that an agent may perform in
order to solve a complex task. In a general navigation task, the set of operations include
perceiving sensory stimuli, processing them, and interpreting them to make decisions about
whether to move and where.

The lowest level of analysis, dealing with the microscopic mechanisms with which the
single operations are carried out, is the implementation level. Analysis of behaviour, here,
requires a detailed knowledge of the system that performs the operations. The biochemical
pathway that is responsible for the decision-making in most bacteria, for instance, is very well
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known, from the sensing to the motor control [16]. It is obvious that the precise instructions
in an algorithm are limited not only by the nature of the problem but also by the biophysical
hardware that the organism has at its disposal. Some bacteria perform runs and tumbles, like
E. coli [17, 18], while others alternate reversals and flicks, like V. alginolyticus [19]. Other
organisms, like the amoeba D. discoideum, move by elongating and contracting their body
in the direction of the gradient [20]. Figuring out how the microscopic hardware can operate
in order to produce actions, can provide arguments for the biological feasibility of algorithms
that solve abstract tasks.

In order to understand behaviour, it is necessary to answer questions at each level. How-
ever, there are logical and causal relations between the different levels, and investigation at
one level might inspire questions and possibly suggest explanations at another. One way of
proceeding –going from a higher to a lower level, or viceversa– may be found more conve-
nient than the other. When studying behaviour, though, the complexity of the biochemical
processes is often overwhelming and reconstructing the final goal of an agent from such mi-
croscopic details proves to be a daunting task. Already at a mechanistic level of description,
it is often exceedingly difficult to predict emerging properties of the many microscopic parts.
And even these mechanisms being comprehensively studied, it is often unclear how they fit
into a decision-making process.

In some instances, then, it may be more sensible to proceed with a top-down approach,
asking first what the nature of the task is. To do so, it is necessary to take into account the
ecological scaffold that restricts the sort of sensing and ranges of action of an organism. The
physics and the biochemical conditions experienced by an agent are key to understand its
behaviour. What are the length and time scales probed by an agent, and how do the laws of
physics look like at those scales? What is the sensory information available to an organism,
and how does that affect its behaviour? Answering these questions makes it possible to
understand what kind of tasks an organism needs to engage in. For instance, life at high and
low Reynolds numbers definitely takes very different forms [21]: a tapered body offers the big
cetaceans a great advantage in swimming long distances in the ocean, but is not necessarily
useful to the microbes in our gut; vision is undoubtedly important for the colourful fish of
the coral reefs, but not as much for the darker and smaller-eyed fish living in deep waters.

Searching for optimality

Focused primarily on search and navigation tasks, the main message of this thesis is that it
may be possible to explain behaviour in terms of optimality. In this picture, the behaviour
of an individual emerges as the optimization of an objective (or cost) function, subject to
the likely physical limits that it experiences. Looking for optimality principles is particularly
appealing from the point of view of evolution, as it can be argued that behaviour is shaped
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Fig. 1. Decision-making theory and optimization. Several optimization techniques can be used
in order to find optimal strategies for decision-making tasks. They depend, loosely speaking, on the
knowledge of the laws governing the environment and on the amount of information available to the
agent about the state of the environment. Special cases are those in which a model of the dynamics
is assumed to be known by the agent as well as the full configuration of the system. This is the realm
of optimal control and of MDP, where optimal solutions are calculated from the prediction of future
outcomes according to a known model of the dynamics. This is the limit dealt with in this thesis. An
extension of MDP to situations in which the agent can access only partially the state of the environment
is POMDP. All these approaches are model-based, in that they require the complete knowledge of the
laws of Nature. Another framework is RL, which does not assume knowledge of either the state of the
environment nor the model of its evolution.

the way it is by natural selection.
In this thesis, we formulate navigation and search tasks in precise mathematical terms

as control problems by defining utility functions representing the goal of the agents, and
then derive the strategies that maximize such utility. The approach which spans most of
this thesis is optimal control theory, a framework which is prominent in the mathematical
and engineering sciences [22–25]. Optimal control, as much as the well established theory
of stochastic optimization and dynamic programming, which were pioneered by Richard
Bellman, among others [26–29], constitutes the basis of other techniques to solve decision-
making problems. One of them is Reinforcement Learning (RL) [6, 30], based on the paradigm
of classical and operant conditioning [3–5]. The scope of RL is much broader and virtually
encompasses all possible decision-making problems, from those pertaining to the regime of
optimal control –where the agent is assumed to know everything about the state of the
world– to those in which partial information about the environment is accessible to the agent
(see Fig. 1). Beyond providing solutions to decision-making problems, RL –as it might be
obvious from the name– offers the algorithms for the learning process. Not only, then, one
might hope to draw conclusions about the optimality of the behaviours that one observes
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among living things, but also about the computations required to learn from experience. A
notable example is the dopamine circuit, which is seen to be the biological implementation of
temporal difference learning algorithms [31]. Therefore, RL is appealing for a twofold reason:
on one hand it may encompass, at an algorithmic level, the process of optimization carried
out by evolution (in the spirit of the so-called evolutionary algorithms [32]); on the other
hand, it might offer plausible arguments as to how naive biological agents become experienced
in performing tasks essential for their survival.

An RL approach allows to connect all possible levels in Marr’s scheme, and provides a
new perspective from which to look at behaviour. It is the case of many animals, due to their
short life span, to be required to perform some task at the first attempt in an efficient way. A
compelling example are male moths that manage to locate females far away using the highly
volatile pheromone signals without previous experiences [33]. The ability of behaving so
efficiently is shaped by evolutionary and developmental processes; while the moth searches
for its mate, then, it has to learn its position from sensory cues. Hence, learning occurs
(in different forms) at various time-scales, pertaining to evolution, development, and the
task itself. The ability to learn and flexibly adjust one’s strategies to diverse situations is
a common feature of all organisms. Understanding how learning takes place at different
time-scales may give invaluable insights on behaviour itself.

Towards synthetic biology and artificial intelligence

The scheme of Marr’s levels of analysis not only offers a paradigm shift in the study of bi-
ological systems, but also inspires possible directions towards the development of artificial
intelligence systems and synthetic biology. In recent years, the field of machine learning
and artificial intelligence has seen unprecedented progress, with contributions from scientists
working in very diverse fields. Machine learning techniques have proved to be invaluable
tools in the life sciences [34, 35], as well as in the understanding of fundamental problems
in particle physics [36] and astrophysics [37]. Such techniques that directly connect with
decision making problems are those in the reinforcement learning framework [6]. By incor-
porating the notion of learning from experience, not only are they particularly suited to
understand behaviour and learning in biological systems, but also raise the possibility of
designing intelligent machines [38–40].

One purpose of this thesis is to show that optimality, beyond potentially characterizing an
organizing principle in biology, can also be of considerable importance as a design principle
for artificial forms of intelligent systems.

Chemotaxis, an optimal search strategy

This thesis focuses primarily on what the optimum strategies are, rather than how they are
learned from experience. However, even in the framework of optimal control it is possible to
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address the question of how learning occurs.
In Chapter 1, we formulate a cooperative search game as an optimal control problem.

The objective of this collective task is that every individual in the group reaches the target
quickly, while paying a small price for energy expenditure and limiting the risk of collision
with other members. For large collectives (where mean-field provides a reasonable approxi-
mation, both for physical [41] and for game-theoretical [42] arguments) the optimal solution
turns out to be governed by the same equations that describe the motion of microorganisms
directed by chemical signals. A precise dictionary can be compiled with entries from decision-
making theory –such as costs for time, energy, collisions, optimal control, attitude towards
risk– and their biophysical correlates in chemotaxis –individual motility, collective migra-
tion, logarithmic sensing, degradation and consumption rates. In this exact correspondence,
chemicals are the media over which individuals share information about the environment.
The mathematical structure of the problem, and its equivalence with chemotaxis, suggests
biologically plausible ways to dynamically construct the optimal solution, i.e. to learn it.
On one hand, the result of Chapter 1 may shed light on the functional role of chemotaxis
in microorganisms, and on the other hand might inspire artificial intelligence algorithms for
solving, e.g. traffic problems.

A look into the molecular mechanisms

In one part of this thesis, navigation is looked at also at the implementation level. The case
study, which is presented in Chapter 2, is the mechanism at the basis of the chemotactic
behaviour of E. coli. Prokaryotic chemotaxis is based on very similar molecular machinery
across different species. A sensing apparatus, detecting molecules of attractants or repellents,
triggers a relay signal which eventually controls the motor output. The motor can operate
in two states, which are the rotation in the clockwise (CW) or counter-clockwise (CCW)
fashion. A flagellum, extending outside the cell, is attached to the motor and produces
motion similarly to a helix. The resulting type of motility (run and tumble [17], reverse and
flick [19], etc.) depends on the interaction between the flagella, the fluid and the shape of
the cell body of the bacterium. However, the motility ultimately depends on the frequency
with which the motors change their rotational states, from CW to CCW or viceversa. This
strategy results in a more persistent or more erratic motion that over long times leads to the
achievement of the final goal: climbing gradients of food or descending gradients of repellents.

Bacterial chemotaxis is very well understood at the molecular level, and an analysis of
these microscopic mechanisms may complete the quantitative explanation of the behaviours
that we observe. A common feature of all the cellular processes is the presence of widely
separated time scales. Conformational changes of proteins involved in signalling occur on µs
– ms, folding of proteins can take up to few seconds while the transcription and translation
processes may last for minutes [43]. This allows one to operate controlled approximations
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in order to work out the effective dynamics at the time scales relevant for the behaviour.
The framework of multi-scale analysis of Markov processes and dynamical systems is well
established in the mathematical and physical literature [44]. Decimation, averaging and
homogenization techniques lay on a solid mathematical ground [45] and find innumerable ap-
plications, from cell biology, to evolution, to the thermodynamics of mesoscopic systems [46].

Together with the theory of optimal control, the multi-scale analysis of Markov processes
constitutes the main technical ingredient of this thesis. In Chapter 2 these techniques allow
to map analytically the microscopic mechanisms into the actions –the average frequencies
of the CW/CCW switch. In Chapter 3 the same analytical tools are used in the study of
active particles which engage in a collective navigation task, formulated as an optimal control
problem.

An optimality perspective on collective behaviour

While many phenomenological descriptions proved useful in accounting for many collective
phenomena observed in Nature [47, 48], an explanation for their functional role is usually
not clear. To distil optimality principles in the behaviour of large collectives, i.e. understand
why a group provides benefits to the single individuals, is a fascinating issue to look at in the
context of decision-making. It is apparent that the group offers protection from predators
to its members [49]. Sometimes advantages are of physical nature [50]. In some cases it can
be argued that the collective is more accurate in performing estimates, an example of the
“wisdom of the crowds” which was noted by Sir Francis Galton [51]. Nicolas de Condorcet had
also realized, based on simple probabilistic arguments, that the group enhances the ability
of assessing the correctness of some statement, as the members of a jury do in Court [52].
These arguments suggest that some animals may prefer navigating in close contact in order
to share information about the environment more efficiently, and hence take decisions more
reliably [53].

In Chapter 3, we look at collective behaviours from the perspective of optimality, with
the same approach as in Chapter 1. We define a collective navigation task, in which the
agents pay a cost associated to the amount of force that they apply against the drag and
random forces of the environment as well as a cost for deviating from the direction of motion
of their neighbours. We derive the exact equations for the optimal control, and the resulting
dynamics is then analysed in the overdamped limit by means of averaging and homogenization
techniques. The resulting driven-diffusive process features a non-trivial relation between the
force and the noise term. The solution of the stationary state distribution for the simple
scenario of two agents on a torus exhibits an aggregation effect, and gives analytical support
to the findings from numerical approaches of similar models.
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Conditioning as an optimal search

Optimal control is useful in the physics of out-of-equilibrium systems, from the thermody-
namics of mesoscopic systems [54, 55] to quantum-state preparation [56]. In Chapter 4 we
show how an optimal control approach, such as the conditioning of Markov processes [57–59].
It is often a challenging problem to sample trajectories of Markov processes which have to
satisfy some hard constraints, e.g. being confined in a bounded region of space. A straight-
forward approach would be to generate trajectories according to some transition probability
and then retain only those satisfying the constraint. This strategy turns out to be very costly
from the computational standpoint, as the constraint might select only rare trajectories [60].
Another approach, pioneered by Doob [61], is to introduce an auxiliary process which imple-
ments the constraints in the dynamics, so that it reproduces all and only those trajectories
that would be selected by rejection.

In the last part of this thesis, Chapter 4, we regard the auxiliary (Doob-transformed)
process as an optimally controlled search process. Our case study is the conditioning of a
discrete-time process –which in free space performs jumps with an isotropic distribution– to
lie within a bounded region of space (a cylinder), which provides a simple model for polymers
under confinement [62, 63]. Under confinement, the walker biases its motion along the cylin-
der, avoiding jumps outside. We give an exact formula for this bias, which can be regarded
as a specific form of Gibbs exponential reweighting. We also study numerically the geometric
properties of the paths sampled with the optimally controlled transition probabilities, and
also offer some analytical quantification.

The content and the logic of this thesis is summarized in the following scheme.

Ch
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Cooperative Search Games

Individuals in a group often have to face complex situations which require concerted ac-
tions [64–66]. Among the various collective intelligence problems, here we focus our attention
on cooperative navigation tasks, where all agents share the common goal of locating a target
and reaching it in the most efficient way. For instance, a crowd may need to quickly escape
from an enclosed space while averting stampedes. Similarly, birds in a flock or fish in a school
try to reduce exposure to predators and avoid harmful collisions. In addition, individuals are
also confronted with the limits posed by the energetic costs of locomotion. The very same
kind of objectives and challenges lie at the heart of multi-agent autonomous robotics[67–70].

Intelligent agents should aim at acting optimally in these contexts. That is, they should
cooperate in order to minimize some cost function that compounds the many objectives at
play: short time for completing the task, small energy spent in the process, and reduced
damage by collisions. What is the optimal strategy? How universal is it across environments
and agents? How is information shared by agents? How is it translated into actions? Can the
optimal behavior be reliably and quickly learned by agents facing unknown environments?
Is the optimal strategy actually employed by living organisms?

In this Chapter we answer these questions by formulating the cooperative search game in
terms of stochastic optimal control. We first discuss how optimal solutions can be mapped
into quantum states of an interacting many-body system. Unfortunately, the exact solution
of this quantum problem is very difficult even in simple geometries. However, in the limit

9
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of very large collectives, a mean-field theory yields very simple and well-known effective
equations.

Indeed, the mean-field equations for optimal cooperative search turn out to be identical
to a long-known phenomenological model of chemotaxis, the celebrated Patlak–Keller–Segel
model [71, 72] with Weber–Fechner logarithmic response (see e.g. [14] for a general discus-
sion about fold-change detection). The chemical attractant can therefore be interpreted as
the medium that agents use to share information about the location of the target and the
density of individuals in the group. The biophysical processes by which the concentration
is altered, namely production, consumption and degradation, correspond to the actions of
writing information on the memory, erasing and forgetting, respectively. We show that there
is a dictionary that maps concepts from decision-making theory – strategies, desirability,
costs for control and for collisions, cost per time elapsed, attitude toward risk – into pre-
cise physico-chemical and biological correlates – concentration levels, diffusion coefficients,
degradation and consumption rates, chemotactic coefficients (see Table 1.1 for the detailed
analogy).

Decision making Chemotaxis

ζ Desirability s Chemoattractant concentration

D Uncontrolled dynamics D Random motility

u∗ Optimal control χ∇ log s Chemotactic drift with logarithmic sensing

γ
Weight for the cost of
control χ =

2D

(1− 2Dαγ)
Chemotactic coefficient

α Risk sensitivity

q Time cost rate Ds = D/ϵ Diffusion coefficient of chemoattractant

g Collision cost rate k = q
1− 2Dαγ

2Dγϵ
Degradation rate of chemoattractant

1/ϵ Learning rate β = g
1− 2Dαγ

2Dγϵ

Consumption rate of chemoattractant per
cell

Eq. (1.73) Hamilton-Jacobi-Bellman
equation Eq. (1.75) Patlak-Keller-Segel equations

Tab. 1.1. Spoiler for the impatient reader: a dictionary between optimal cooperative search and
chemotaxis. The table illustrates the correspondence between quantities in mean-field optimal control
and their counterparts in chemotaxis. See Sec. 1.3.
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1.1 Optimal control equations

Let us consider a group of N agents in d dimensions following the stochastic dynamics ∗

dX̄t

dt
= ū(X̄t) +

√
2D η̄(t) , (1.1)

where η̄ is a Gaussian white noise, with ⟨ηi,α(t)⟩ = 0 and ⟨ηi,α(t) ηj,β(t′)⟩ = δα,βδi,jδ(t − t′).
The region of space where the agents move contains some absorbing states which we call
target. The uncontrolled motility is D, which we choose to be constant. Notice that in this
case there is no ambiguity about the regularization, and Ito or Stratonovich conventions are
equivalent. The deterministic part in Eq. (1.1), ū, is the control, which is in the hands of the
agents. In general, the control depends on the positions of all the agents.

Fig. 1.1. Scheme of the cooperative search game for N = 2 agents. The agents are driven by
the controls u1 and u2, which depend on both their positions x1 and x2. They pay individual costs
associated with control and time expenditure, respectively with a rate γu2/2 and q (possibly position-
dependent), and a pairwise cost associated with the interaction – collision – with a rate proportional
to a Dirac-δ function. Optimal controls minimize the average cost (or an exponential average in the
risk-sensitive case).

At every instant, agent i pays a cost per unit time

ci = q(Xi)︸ ︷︷ ︸
time

+
γ

2
u2i︸ ︷︷ ︸

energy

+
g

2

∑
j ̸=i

δ(Xi −Xj)︸ ︷︷ ︸
collisions

. (1.2)

The cost features three contributions. The first one is the penalty for the time spent before
reaching the target. We denote the associated cost per unit time as q, which may in general

∗Symbols expressed with a bar indicate N -tuples whose index corresponds to the label of the agent; e.g.
x̄ ≡ {x1 . . . xN}. We will use the notation xi,α to indicate the spatial component α of the i-th agent position,
and similarly for any other d-dimensional variable related to each individual agent. As concerns the position
variables, we denote the random variables with a capital letter labelled by a superscript indicating time, X̄t,
while with the lower case we indicate the specific realization of the variable, x̄.



12

depend on the spatial location to account for spatial inhomogeneities. The second one is
the cost of control, that we take as γu2/2. This is reminiscent of the power dissipation due
to motion in a viscous medium, but can also be interpreted as the Kullback-Leibler (KL)
divergence [73] from a random strategy in the decision-making context [74]. Finally, the
last term arises from collisions. This combination of factors embodies the trade-offs between
different costs that lead to nontrivial solutions of the optimization problem: for instance, a
fast search and a low collision risk cannot be achieved without a consequent expenditure in
control cost. Every agent quits the game as soon as it reaches the target, and the cost that
it pays does not increase thereafter.

The goal of the agents is to find the set of controls ū for which the cost functional

C =
N∑
i=1

∫ Ti

0
dt

(
γ

2
ui(X̄

t, t)2 + hi(X̄
t)

)
(1.3)

is minimum, where
hi(X̄

t) = q(Xt
i ) +

g

2

∑
j ̸=i

δ
(
Xt

i −Xt
j

)
,

q > 0 and g > 0, γ > 0 and Ti is the exit time (first passage at the target) for the i-th agent.
The upper extreme of integration in time indicates that an agent stops contributing to the
total cost as soon as it reaches the target. The functional C is itself a random variable, and
we shall clarify later what we mean by its minimization. In the next sections we shall derive
the equations for optimal controllers that minimize different statistics of the cost functional
(1.3), referred to as risk-neutral and risk-sensitive controls. The first case is simpler and will
be described in detail in Sec. 1.1.1; the second, which is more general, will be worked out in
Sec. 1.1.2.

It is worth commenting on the choice of the cost for control. As already mentioned,
the quadratic form in the drift stems from the definition of the KL divergence from the
uncontrolled path measure P0 to the controlled one Pu. It is therefore the excess information
(relative entropy) that one needs to specify in order to describe the statistics of the controlled
paths given the knowledge of the statistics of the uncontrolled one. This is very interesting
because of its information-theoretical origin, and would deserve attention by itself. Indeed,
the KL cost is one of the several examples of entropy-based regularization schemes which
are the subject matter of very recent literature on control theory, optimization and notably
deep-learning [75, 76]. Among the possible entropy regularization schemes, the KL cost is
particularly handy in that it allows to cast the optimal control equations into a linear form,
as we will show in the following.

A comment about the optimization setup is also necessary. For the search game discussed
here, we are interested in a terminal-state setup, in which the cost C is accumulated until
all of the agents are absorbed at the target. In this setup there is no hard constraint on the
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arrival times, so the upper extreme of integration in time in Eq. (1.3) extends to infinity. In
this case, if the costs do not depend explicitly on time, the optimal control equations are
time independent. Another case is the finite-horizon setup, in which the objective of the
optimization is a functional of the cost accumulated over the fixed interval of time [0, T ],
denoted CT

0 ,

CT
0 =

N∑
i=1

∫ min{T,Ti}

0
dt

(
γ

2
ui(X̄

t, t)2 + hi(X̄
t)

)
, (1.4)

and the agents are conditioned to reach the target within such time window. In this case the
problem is generally time-dependent. One can recover the terminal-state setup in the limit
T → ∞ (i.e. no time constraint), so that we can write C = limT→∞CT

0 . Hence, for the sake
of generality, we shall derive the optimal control equations in the finite-horizon setup, and
we will implicitly set T → ∞ when specializing the results to the search game.

1.1.1 Risk-neutral case

In this section we describe the derivation of the optimal control equations for the risk-neutral
case. A risk-neutral controller is defined as the one that minimizes the mean cost, ⟨C⟩, where
C is the functional of the trajectories defined in Eq. (1.3):

F[ū] =
⟨
CT
0

⟩
=

∫ T

0
dt

∫
dNx

∑
i

(
γ

2
ui(x̄, t)

2 + hi(x̄)

)
P (x̄, t) , (1.5)

where P is the N -agent probability density distribution, which satisfies the Fokker–Planck
equation associated with Eq. (1.1). It is convenient to couch the minimization problem by
including the dynamics as a constraint and minimize the auxiliary functional

L[P, ū, Φ] = F +

∫ T

0
dt

∫
dNxΦ(x̄, t)

[
∂tP (x̄, t) +

∑
i

∇i ·
(
ui(x̄, t)P (x̄, t)−D∇iP (x̄, t)

)]
,

(1.6)
where Φ(x̄, t) is a Lagrange multiplier. This is an application of the so-called Pontryagin
minimum principle [22]. The condition of null variation of L with respect to Φ trivially
yields the Fokker–Planck equation for the N -particle density P . The variation of L with
respect to ui, at the saddle point,

δL

δui

∣∣∣∣
∗
=

(
γ u∗i −∇iΦ

)
P = 0 , (1.7)

gives the optimal control
u∗i (x̄, t) = γ−1∇iΦ(x̄, t) . (1.8)
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Finally, the variation with respect to P gives

δL

δP

∣∣∣∣
∗
= −∂tΦ+

∑
i

(
γ

2
(u∗i )

2 − u∗i · ∇iΦ−D∇2
iΦ+ hi

)
= 0 , (1.9)

which, together with Eq. (1.8), yields the Hamilton–Jacobi–Bellman (HJB) equation:

∂tΦ+
1

2γ

∑
i

(
∇iΦ

)2
+D

∑
i

∇2
iΦ =

∑
i

hi . (1.10)

The function Φ(x̄, t) has a very clear interpretation in the context of decision making. It is
the optimal value function at time t and in the state x̄, up to an additive constant: this is
(minus) the expected cost-to-go under the optimal control ū∗ when the system is conditioned
to be in state x̄ at time t, namely

Φ(x̄, t) ≡ −
⟨
CT
t

∣∣X̄t = x̄
⟩
∗ = −

∫ T

t
dt′

∫
dNx′

∑
i

(
γ

2
u∗i (x̄

′, t′)2 + hi(x̄
′)

)
P (x̄′, t′) , (1.11)

where P satisfies the Fokker–Planck equation with control ū∗ and has, as initial condition,

P (x̄′, t) = δN (x̄′ − x̄) .

Indeed, it can be directly verified that the r.h.s. of Eq. (1.11) satisfies the saddle-point equa-
tion (1.9).

The HJB equation, Eq. (1.10), is non-linear. However, it is possible express it in terms of
a function Z, related to Φ through the so-called Hopf–Cole transformation

Φ = 2Dγ logZ , (1.12)

for which it has a linear form

∂tZ +D
∑
i

∇2
iZ =

1

2Dγ

∑
i

hi Z . (1.13)

It ensues that the optimal control of the agent i is

u∗i = 2D∇i logZ . (1.14)

The function Z is known in decision-making theory as the desirability function and its inter-
pretation in terms of the optimal average cost is straightforward from Eq. (1.11):

Z(x̄, t) = e−⟨CT
t |X̄t=x̄⟩∗/2Dγ . (1.15)

It is then clear that the optimal control biases the motion of the agents towards configurations
with lower expected cost. Eq. (1.13) has to be supplemented by appropriate boundary
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conditions, that are discussed in the next subsection. Notice that the optimal controls for
the individual particles generally depends on the positions of all the N agents, because of
the interaction term. It is interesting, and perhaps surprising, that Eq. (1.13) is equivalent
to the imaginary time Schrödinger equation of a quantum-mechanical many-body system
of identical particles [77, 78]. In the infinite-horizon limit that we are interested in for the
cooperative search task defined at the beginning, i.e. a time-independent optimal control
problem, Eq. (1.13) becomes a stationary, zero-energy, Schrödinger equation. To the best of
our knowledge, an exact solution that satisfies the appropriate boundary conditions is not
known for a generic N , even for simple geometries. Moreover, a numerical approach appears
to be a daunting task already for three agents in a two-dimensional domain. Approximation
schemes are therefore very valuable in order to proceed further.

Boundary conditions

Let us assume that all the agents are inside the domain except one, which we choose to be
agent N without loss of generality, which sits at the target: X0

N = xN ∈ target. Since the
agent on the target is effectively out of the game, the average cost-to-go function is accounted
for by the agents in the internal part of the domain. Hence the desirability is a function of
those agents only †

Z(N)(x1 . . . xN−1, xN )
∣∣
xN∈target = Z(N−1)(x1 . . . xN−1) . (1.16)

More generally, if the agents 1 . . . i (up to relabeling) are not yet at the target, while the
others have already reached it, one has

Z(N)(x1 . . . xi, xi+1 . . . xN )
∣∣
xi+1...xN∈target = Z(i)(x1 . . . xi) , (1.17)

and for the problem with only one agent one has to impose

Z(1)(x)|x∈target = 1 . (1.18)

If there are boundaries forbidden to the agents, one must set Z = 0 if any of the agents lies
there (the agents receive an infinitely large penalty whenever they touch those boundaries).
If reflecting boundaries are present, the Neumann boundary condition (null orthogonal gra-
dient) is required with respect to the coordinates of the agents close to them:

n̂(xi) · ∇iZ
(N)(x1 . . . xN )

∣∣
xi∈ refl. boundary

= 0 , (1.19)

where n̂(xi) is the unit vector normal to the boundary at the position of agent i.
†For the sole purpose of illustrating the boundary conditions defining the many-particle optimal control

problem, we introduce the notation Z(n) to indicate the desirability function Z for the problem with n agents
(when Z is a function of n spatial variables).
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Fig. 1.2. Boundary conditions for 2 agents in 1D. Two agents on a line can be represented as a
process in a plane. If the target is at position L, then the two-dimensional domain is limited by a
square boundary (depicted in green). Such boundary is an absorbing state, and once reached, the two-
dimensional process is then restricted to it. The task ends when the corner (green dot) is reached (both
agents are at the target), where the desirability is 1. The boundary condition for Z on the semi-line
{x2 = L}, is given by the 1-agent desirability Z(x1); analogously, on {x1 = L} is Z(x2).

Eqs. (1.16) and (1.17) indicate that the boundary conditions are provided by the solution
of the problem with fewer agents (the simple case of two particles in a one-dimensional
domain is shown in Fig. 1.2). It ensues that in order to solve the cooperative search problem
with N agents, one needs to solve a hierarchy of N equations. This recursive structure
makes it seemingly impossible to solve analytically the optimal control equations even in
simple geometries, and approximation schemes are most valuable. We will see in Sec. 1.2 and
that a reasonable approximation that has deep roots in both statistical physics and game
theory can yield equations which are amenable to analytical calculations and have interesting
interpretations.

1.1.2 Risk-sensitive case

In a more general situation, it might be of interest to minimize a different statistics of the cost.
For example, one may wish to limit the effect of improbable but very expensive events by
means of a risk-averse strategy. In this section we present the derivation of the optimal control
equation for a risk-sensitive controller, of which the risk-neutral one represents nothing but
a special case.

A convenient way of incorporating the notion of risk in decision making is to introduce a
parameter α which exponentially weighs the fluctuations of the cost [79, 80]. In this setting



17

the objective functional to be minimized is

Fα =
1

α
log

⟨
eαC

T
0
⟩
=

1

α
logGα , (1.20)

where CT
0 is defined in Eq. (1.3). This choice ensures the invariance of the optimal control

under a global offset of the costs. Moreover, as presented in [80], we will show that under
this choice the optimal control equations in the risk-sensitive case are linearly solvable and
are equivalent to the risk-neutral ones, up to a change in the parameters. In this section
we only consider α > 0, so the problem is equivalent to the minimization of the functional
Gα = expαFα. It is easy to generalize the derivation for α < 0.

The parameter α defines the risk sensitivity of the optimal control problem: one recognizes
that in the limit α→ 0, Fα → F =

⟨
CT
0

⟩
, and the control problem is exactly the risk-neutral

one, discussed above; if α > 0 the optimal solution is the one that reduces the most the
fluctuations towards high values of the cost, and as a consequence corresponds to a risk-averse
strategy; finally, α < 0 corresponds to an optimization in which more weight is given to the
values of CT

0 which are smaller than average, therefore leading to risk-seeking strategies. The
limits α→ ∞ and α→ −∞ are referred to as min-max and min-min optimization problems,
respectively. We shall see that in the cooperative search example treated here, α is bound
from above, i.e. no control exists which can reduce fluctuations of the cost more than a
certain amount which is set by a critical value αmax.

We apply the Pontryagin principle to the minimization of the functional Gα. The defini-
tion of the cost functional Ct

0, Eq. (1.3), can be put in differential form as

dCt
0 =

∑
i

(
γ

2
ui(X̄

t, t)2 + hi(X̄
t)

)
dt ≡ c(X̄t) dt ,

and interpreted as an auxiliary process, whose evolution is determined by the dynamics of
X̄. The Fokker–Planck equation associated to this system of equations, which describes the
evolution of the probability density function p(x̄, C, t) for the process {X̄t, Ct

0}, is

∂tP + ∂C
(
C P

)
+
∑
i

∇i

(
ui P −D∇iP

)
= 0 (1.21)

The functional Gα = expαFα, is the average of expαCt
0 over all trajectories which have

arrived at x̄ at time t. It can be expressed as a linear functional of P ,

Gα =

∫
dNx dC P (x̄, C, T ) eαC ≡

∫
dNxGα(x̄, T ) . (1.22)

The function Gα(x̄, t) is the density of agents in the configuration x̄ at time t, reweighed by
an exponential function of the cost paid along their trajectories up to time t. The exponential
reweighing is similar in spirit to the multiplication by a Boltzmann factor. If one interprets
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the risk-neutral cost functional F as an energy function, then one can think of the objective
function Fα as a free-energy, where α plays the role of an inverse temperature. By multiplying
Eq. (1.21) by expαc and integrating over C, one recovers the forward Feynman–Kac equation
for Gα:

∂tGα +
∑
i

∇i ·
(
uiGα −D∇iGα

)
= α cGα . (1.23)

The Pontryagin principle is then applied to the minimization of the functional Fα subject
to the constraint imposed by Eq. (1.23). This is equivalent to perform the unconstrained
minimization of the Lagrange functional

Lα =

∫
dNxGα(x̄, T )︸ ︷︷ ︸

Gα

+

∫ T

0
dt

∫
dNxΨα(x̄, t)

[
∂tGα

+
∑
i

∇i ·
(
uiGα −D∇iGα

)
− α

∑
i

(γ
2
u2i + hi

)
Gα

]
.

(1.24)

At the saddle point, variation with respect to the control ui yields

δLα

δui

∣∣∣∣
∗
= −Gα

(
∇iΨα + αγ u∗iΨα

)
= 0 , (1.25)

so the optimal control is
u∗i = − 1

γα
∇i logΨα . (1.26)

The variation with respect to Gα gives

∂Lα

δGα

∣∣∣∣
∗
= δ(t−T )−∂tΨα−

∑
i

u∗i ·∇iΨα−D
∑
i

∇2
iΨα−α

∑
i

(γ
2
u∗i

2+hi

)
Ψα = 0 , (1.27)

which is the backward Feynman–Kac equation for the function Ψα, which can be interpreted
as

Ψα(x̄, t) ≡
⟨
eαC

T
t
∣∣X̄t = x̄

⟩
; (1.28)

the δ-function in time sets the condition at the final time, if a finite-horizon problem is
considered; in the terminal-state setup, T → ∞, and the final-time condition translates into
a boundary condition at the terminal states. Note that Φα ≡ −α−1 logΨα, plays the role of
the value, in that u∗i = γ−1∇iΦα. Indeed, in the limit α→ 0, Φα reduces to the (risk-neutral)
value function Φ ‡. We therefore identify Φα with the risk-sensitive value function [79, 81].

‡Ψα, as defined in Eq. (1.28), is the moment generating function for the statistics of the cost CT
t conditioned

to X̄t = x̄. When α → 0,

Φα = −α−1 logΨα → −∂Ψα

∂α

∣∣∣
α=0

= −⟨CT
t |X̄t = x̄⟩ ≡ Φ .
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The HJB equation for the risk-sensitive value function then is

∂tΦα = −
( 1

2γ
−Dα

)
︸ ︷︷ ︸

≡1/2γ̃

(∇iΦα)
2 −D

∑
i

∇2
iΦα +

∑
i

hi ; (1.29)

this equation has the same form as Eq. (1.10), where the parameter γ is replaced by γ̃ ≡
γ/(1 − 2Dαγ). In the same way as for the risk-neutral case, a linear version of the HJB
equation is obtained through the Hopf–Cole transformation

Zα = exp (Φα/2Dγ̃) (1.30)

to obtain
∂tZα +D

∑
i

∇2
iZα =

1

2Dγ̃

∑
i

hi Zα . (1.31)

The optimal control is hence obtained from Zα as

u∗i =
2Dγ̃

γ
∇i logZα . (1.32)

It is straightforward that for α = 0, the optimal control equations (1.31) and (1.32) exactly
reduce to the risk-neutral ones, respectively (1.13) and (1.14). As for the boundary conditions
for Eq. (1.31), the same considerations made for the risk-neutral case hold here: Eqs. (1.16)
and (1.17) are valid also in this case, with Z being replaced by Zα.

Exact solution for the 1D non-interacting case

In this section we show the exact analytic calculation for the non-interacting search in one di-
mension. The results also provide an approximation to the solution for the multi-dimensional
case at large distances from the target.

A single agent is initially at x on the real axis and the target is at the origin; the
generating function of the cost under the control u, G̃s(x) = ⟨exp(−sCT

0 )|X0 = x⟩, satisfies
the (stationary) Feynman–Kac equation

u G̃′
s +D G̃′′

s = s
(γ
2
u2 + q

)
G̃s , (1.33)

with boundary conditions G̃s(0) = 1 and G̃s(±∞) = 0 if s > 0 and G̃s(±∞) = +∞ if s < 0.
Assuming that the control is constant and pointing toward the origin §, u = −sign(x)U , with
U positive, one can easily find that Eq. (1.33) is solved by

G̃s = exp
{
β|x|

(
1−

√
1 + Γs

)}
, (1.34)

§We know from the exact solution that the optimal control in one dimension is constant: this follows from
the fact that the solution of the HJB equation D∇2Zα = q/(2Dγ̃)Zα with the boundary conditions specified
above is solved by Zα = exp{−[q/(2D2γ̃)]1/2|x|}, which produces u∗ = 2Dγ̃/γ∇ logZα = −sign(x)(2qγ̃)1/2/γ,
whose amplitude is independent of the coordinate x.
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where β = U/(2D) and Γ = 2D(γ + 2q/U2). We can indeed check that the optimal control
U∗ obtained from the one-dimensional HJB equation is the one which minimizes Fα|X0=x =

α−1 log G̃−α:

∂

∂U
Fα|X0=x =

∂

∂U

{
U |x|
2Dα

(
1−

√
1− 2Dα

(
γ +

2q

U2

))}
= 0 , (1.35)

solved by

U∗ =

√
2q

γ(1− 2Dαγ)
. (1.36)

The probability distribution of the cost CT
0 under the control U is found by applying the

inverse Laplace transform to Eq. (1.34),

p(c|X0 = x) =
1

2πi

∫ +i∞

−i∞
ds G̃s =

eβ|x|−c/Γ

β2x2Γ

1

2πi

∫ 0++i∞

0+−i∞
dt e−

√
tet c/(β

2x2Γ)

=
β|x|

√
Γ eβ|x|

2
√
π

c−3/2 e−(β2x2Γ)/(4c)−c/Γ , (1.37)

To obtain the second equality the change of variable t = (βx)2(1+Γs) has been made, while
in the last equality one makes use of Eq. (318) from Ref. [82]. The important remark is that
in Eq. (1.37) the right tail of the probability density of the cost has an exponential cutoff
with rate

1

Γ
=

1

2D(γ + 2q/U2)
<

1

2Dγ
= αmax . (1.38)

This result implies that, for any value of U , ⟨eαCT
0 ⟩ diverges when α > αmax. In particular,

in the limit α → α−
max, the functional ⟨eαCT

0 ⟩ diverges also for controls arbitrarily close to
the optimal one, for which Γ−1 = αmax.

Robustness of the optimal solution

The analytical solution in one dimension also allows to address the question about the robust-
ness of the cost against perturbations in the control away from optimality. For controls U
close to the optimal value U∗, the risk-sensitive cost Fα can be approximated by a quadratic
function,

Fα − F∗
α︸ ︷︷ ︸

δFα

≃ 1

2
F′′
α(U

∗)
(
U − U∗︸ ︷︷ ︸

δU

)2
.

In this approximation one can calculate the maximum tolerance on the control amplitude U ,
given an allowed level of suboptimality. Using the results from the previous subsection one
obtains

δFα

F∗
α

=
1

2(1− 2Dαγ)

(
δU

U∗

)2

=
χ

4D

(
δU

U∗

)2

(1.39)
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Fig. 1.3. Robustness of the optimal solution. The risk-sensitive cost function Fα is plotted as a
function of the control amplitude U , in a risk-neutral (solid blue), risk-averse (dashed red) and risk-
seeking (dashed-dotted green) situation. The parabolic approximation around the minimum is shown
for the risk-neutral case (dotted blue line). A deviation of the control from the optimum by a quantity
δU corresponds to an increase in the cost δF (in the parabolic approximation). These two quantities
are related by Eq. (1.39). Curves have been obtained with the same parameters as in Figs. 2 and 4 of
the main text.

(see also Fig. 1.3). In the risk-neutral case, a relative error in the choice of U∗ of 10% results
in a small increase of 0.5% for the total cost incurred. Risk-averse strategies tend to be
less tolerant to errors, while risk-seeking ones are more forgiving, in the sense specified by
Eq. (1.39). We also remark that for α > 0, the control amplitude is bound to be larger than
a minimum value Umin =

√
2Dαγ U∗, below which the risk-sensitive cost diverges.

1.1.3 Other forms for the cost of the control

The assumption that the cost for control is quadratic is particularly useful for two reasons.
First, as we already remarked, it has a direct interpretation in terms of entropy and distance
(Kullback–Leibler divergence) between ensembles of paths. Second, it has the property that
the optimal control problem is linearly solvable (through the Hopf–Cole transformation the
optimality equations can be cast into a linear form). Moreover, it has a physical interpreta-
tion, as the power dissipated while moving in a viscous medium. Obviously, this is not the
most general form for the control cost which can be physically motivated. One can use a
generic function of |u|. For instance, the control cost of the form η |u| corresponds, in the
low noise limit, to the minimization of the path length to the target.

Here we derive the optimal HJB equation for a target location problem with a single agent
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and in the risk neutral case, where the control cost has the form an extra contribution which
is linear in the control amplitude, η |u|. The minimization of the cost function constrained
by the dynamics given in Eq. (1.1) is translated to the unconstrained minimization of the
Lagrange functional

L[u, p, ϕ] =

∫ ∞

0
dt

∫
dx

(
γ

2
u(x, t)2 + η |u(x, t)|︸ ︷︷ ︸

control

+ q(x)︸︷︷︸
time

)
p(x, t)

+

∫ ∞

0
dt

∫
dxϕ(x, t)

(
∂tp+∇ ·

(
u p

)
−D∇2p

)
The stationarity with respect to u yields the equation for the optimal control

γ u∗ + η
u∗∣∣u∗∣∣ = ∇ϕ (1.40)

and with respect to p gives the optimality HJB equation

∂tϕ+D∇2ϕ+
1

2γ

∣∣∇ϕ∣∣2 − η
∣∣∇ϕ∣∣ = q − η2

2γ
. (1.41)

Through the Hopf–Cole transformation ϕ = 2Dγ logZ, the HJB equation becomes

∂tZ +D∇2Z + η
∣∣∇Z∣∣ = 1

2Dγ

(
q − η2

2γ

)
Z . (1.42)

The dynamics of the desirability (chemoattractant) Z acquires a ballistic contribution, such
that in addition to the diffusive motion it also propagates as a front.

This is a point that can be interesting to address in further developments of this work.
However, throughout this Chapter, we restrict the study to the case of a quadratic cost
function.

1.2 Mean-Field approximation

As previously noted, the Bellman equation (1.31), in the infinite-horizon case, becomes

−D
∑
i

∇2
iZα +

1

2Dγ̃

∑
i

hi Zα = 0 , (1.43)

equivalent to the stationary Schrödinger equation with zero energy for a quantum many-body
problem of N identical particles with short-range interaction. Guided by this interpretation,
and reckoning Eq. (1.43) to be impossible to solve with the boundary conditions discussed
above, we adopt a mean-field approximation scheme. Such an approach is often successful in
capturing the large-scale features of interacting systems [83]. We observe in passing that the
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mean-field approach that we take here is exactly equivalent to the game-theoretical notion
of cooperative mean-field games [42] which has been applied to crowd dynamics in a fast
evacuation scenario [84].

Mean-field solutions are in general suboptimal, since a certain amount of information is
discarded by the agents in the evaluation of the optimal action. However, if N is large and
the system is diluted enough, a mean-field approximation for Eq. (1.13) is expected to yield
an excellent approximation, as suggested by exact results in the closely related problem of a
confined, repulsive Bose gas [41].

In the mean-field approximation one assumes that the controls are identical and indepen-
dent, meaning

u∗i (x̄)
MF
= u(xi) . (1.44)

While in principle the control of agent i depends on the entire configuration of the multi-agent
system, the mean-field ansatz imposes that it actually depends only on the state of the agent
i itself; the interchangeability of the agents, due to their identical nature, requires that the
functional dependence of the control is irrespective of the label i. Consistently, the mean-
field ansatz implies that the costs for individual particles are independent and identically
distributed. Due to the formal similarity with the problem of finding the ground state of a
gas of interacting bosons, one can draw an analogy between the optimal control equations in
the mean-field approximation and the Gross–Pitaevski equations, as we are going to see.

We shall see in detail the derivation of the mean-field optimal control equations in the
next two sections.

1.2.1 Risk-neutral case

As a consequence of the assumption of identical and independent controls, Eq. (1.44), the
probability density function of the multi-agent system is factorizable into identical single-
agent density functions ρ,

P (x1 . . . xN ) =

N∏
i=1

ρ(xi) , (1.45)

provided that the initial positions of the N agents are independent. From the definition
of the desirability function (as the exponential of minus the average cost-to-go) and as a
straightforward consequence of Eq. (1.45), one finds that Z is factorized into single-agent
desirability functions ζ

Z(x1 . . . xN )
MF
=

N∏
i=1

ζ(xi) . (1.46)

The single-particle density ρ then satisfies

∂tρ+∇ · (u ρ) = D∇2ρ . (1.47)
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One can then replace the ansatz in Eqs. (1.44) and (1.45) in the cost functional F to obtain
the cost-per-particle functional

F̃ =

∫
dt

∫
dx

(
γ

2
u(x, t)2 + q(x) +

N − 1

2

∫
dy v(x, y)ρ(y, t)

)
ρ(x, t) . (1.48)

The mean-field optimal control equations follow by applying the Pontryagin principle to the
functional F̃ under the constraint (1.47), i.e. as the saddle point equations for the Lagrange
functional

L̃ = F̃ +

∫
dt

∫
dxϕ(x, t)

(
∂tρ+∇ · (u ρ)−D∇2ρ

)
, (1.49)

where variations have to be calculated with respect to the single particle functions u, ρ (and
ϕ, yielding the constraint). This leads to

δL̃

δu(x, t)

∣∣∣∣
∗
= ρ

(
γu∗ −∇ϕ

)
= 0 ⇒ u∗(x, t) = γ−1∇ϕ(x, t) , (1.50)

and

δL̃

δρ(x, t)

∣∣∣∣
∗
=
γ

2
u∗2 + hmf − ∂tϕ− u∗ · ∇ϕ−D∇2ϕ

= −∂tϕ− 1

2γ
(∇ϕ)2 −D∇2ϕ+ hmf = 0 , (1.51)

where hmf is the mean-field cost

hmf(x, t) = q(x) + (N − 1)

∫
dy v(x, y) ρ(y, t) . (1.52)

When v is a contact interaction potential, v(x, y) = g δ(x− y), one has

hmf = q + g (N − 1) ρ . (1.53)

By applying the Hopf–Cole transformation ϕ = 2Dγ log ζ, the optimal control is

u∗(x) = 2D∇ log ζ(x) , (1.54)

where ζ is the mean-field desirability introduced in Eq. (1.46), satisfying the HJB equation

∂tζ −D∇2ζ =
1

2Dγ
hmf ζ , (1.55)

which for contact potential reads

∂tζ −D∇2ζ =
1

2Dγ

(
q + g(N − 1)ρ

)
ζ . (1.56)
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Optimality of the cooperative solution

In a general multi-agent decision-making problem, optimality might require the agents to
split into two or more sub-populations playing different strategies. The mean-field approxi-
mation introduced above fails to represent such scenarios, in that the control is assumed to
be the same for all agents. However, we shall see in this section that the definition of the
task imposes that the best mean-field solution is indeed the cooperative one, expressed in
Eq. (1.44).

Let us assume that out of the total N agents, N1 are of one species and N2 = N − N1

are of a second species, with different control. We can, for the sake of generality, introduce
different collision costs depending on the species of the agents involved. Therefore, the cost
rate for an agent of species α colliding with an agent of species β is gαβ/2. The mean-field
costs incurred by individual agents of species 1 and 2 are

C1 = C̄1 +
1

2

∫
dt dt

[
g11(N1 − 1) ρ21 + g12(N −N1)ρ1 ρ2

]
, (1.57a)

C2 = C̄2 +
1

2

∫
dt dt

[
g21N1 ρ1 ρ2 + g22(N −N1 − 1)ρ22

]
, (1.57b)

where C̄α is the control and time cost for an agent of species α,

C̄α =

∫
dt dx ρα

(γα
2
u2α + qα

)
. (1.58)

The goal of each agent of species α is to maximize the cost Cα. We shall see that if the
collision costs do not depend on the species involved, i.e. gij = g, the best partition of the
system is a trivial one, i.e. either N1 = 0 or N1 = N .

One observes that C1 and C2 both have linear dependence on N1:
∂C1

∂N1
=
g

2

∫
dt dt

[
ρ21 − ρ1 ρ2

]
, (1.59a)

∂C2

∂N1
=
g

2

∫
dt dt

[
ρ1 ρ2 − ρ22

]
. (1.59b)

If C1 decreases with N1 and C2 increases with N1 (i.e. decreases with N2), or viceversa,
then the two species should coexist. Assuming ∂C1/∂N1 < 0 and ∂C2/∂N1 > 0 would imply

0 >
∂C1

∂N1
− ∂C2

∂N1
=
g

2

∫
dt dx

[
ρ1 − ρ2

]2
which is not possible. The same conclusion holds for ∂C1/∂N1 > 0 and ∂C2/∂N1 < 0.
Therefore, one must have both C1 and C2 decreasing (or increasing) functions of N1, which
makes it more desirable to have N1 → N (or N1 → 0) for both species. This proves by
reductio ad absurdum that the cooperative strategy is the best among mean-field solutions.
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1.2.2 Risk-sensitive case

We now derive the mean-field equation for the risk-sensitive case, in particular the risk-averse
one, α > 0 (easily extended to the risk-seeking one, α < 0). In this case, it is convenient to
write the evolution of the joint stochastic process of particle positions and individual costs
as the 2N coupled equations

dXt
i = ui

(
Xt

1, . . . X
t
N

)
dt+

√
2DdW t

i ,

dCt
i =

(γ
2
ui(X

t
1, . . . X

t
N , t)

2
+ q(Xt

i ) +
1

2

∑
j ̸=i

v(Xt
i , X

t
i )
)
dt ≡ ci

(
Xt

1, . . . X
t
N , t

)
dt ,

(1.60)

The multi-agent probability density function P , associated to Eqs. (1.60), is extended to
include the individual cost variables in addition to the positions and in the mean-field ansatz
P (x1, C1 . . . xN , CN , t) is factorized

P (x1, C1 . . . xN , CN , t)
MF
=

∏
i

p(xi, Ci, t) . (1.61)

Notice that the marginal probability density for the individual position x, is the single-agent
probability density function ρ(x, t) =

∫
dC p(x,C, t), introduced above. It follows that the

cost functional Gα also factorizes:

Gα =

∫
dx1 dC1 . . . dxN dCN P (x1, C1 . . . xN , CN , T ) e

α
∑

i Ci MF
=

(∫
dx dC p(x,C, T )eαC

)N

.

(1.62)
The Fokker–Planck equation associated with Eqs. (1.60) is

∂tP +
∑
i

∂Ci

(
ci(x̄, t)P

)
+
∑
i

∇i

(
ui P −D∇iP

)
= 0 , (1.63)

and can be marginalized to the single-particle one by integrating over all particles but one:

∂tp+∇ · (up) + ∂C

[(γ
2
u2 + q +

N − 1

2

∫
dx′ dC ′ v(x, x′)p(x′, C ′)

)
p

]
−D∇2p = 0 . (1.64)

The mean-field optimal control equations are then derived (applying Pontryagin principle)
as the saddle point equations of the functional

L̃α[u, p, χ] =

∫
dx dC p(x,C, T )eαC

+

∫
dx dC dt χα(x,C, t)

{
∂tp(x,C, t) +∇ · (u(x, t)p(x,C, t))−D∇2p(x,C, t)

+ ∂C

[(γ
2
u(x, t)2 + q(x) +

N − 1

2

∫
dx′ dC ′ v(x, x′)p(x′, C ′, t)

)
p(x,C, t)

]}
.

(1.65)
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The function χ is the Lagrange multiplier enforcing the constraint expressed by Eq. (1.64).
Stationarity with respect to the control yields

δL̃α

δu(x, t)

∣∣∣∣
∗
= −

∫
dC p(x,C, t)

[
∇χα(x,C, t) + γu(x, t)∂Cχα(x,C, t)

]
= 0 , (1.66)

and with respect to p gives

δL̃α

δp(x,C, t)

∣∣∣∣
∗
= eαC δ(t−T )−

(
∂tχα+u

∗ ·∇χα+D∇2χα+
(
γu∗2/2+hmf

)
∂Cχα

)
= 0 . (1.67)

The last one is the (backward) equation for the functional χα(x,C, t) =
⟨
expαCT

0

∣∣Xt =

x, Ct
0 = C

⟩
∗, where hmf is the mean-field cost Eq. (1.52).

hmf(x, t) = q(x) + (N − 1)

∫
dx′

∫
dC ′p(x′, C ′, t)︸ ︷︷ ︸

ρ(x′,t)

v(x, x′) . (1.68)

The δ-function at the final time sets the condition χα|t=T = eαC . Note that the function χα

can be expressed as

χα(x,C, t) =
⟨
eα(C

t
0+CT

t )
∣∣Xt = x, Ct

0 = C
⟩
∗ = eαC

⟨
eαC

T
t
∣∣Xt = x

⟩
∗ ≡ eαCψα(x, t) (1.69)

We therefore see that the optimal control can be written in terms of ψα(x, t)

u∗(x, t) =
1

γ
∇
(
− 1

α
logψα(x, t)

)
, (1.70)

i.e. as the gradient of the risk-sensitive (mean-field) value function ϕα = −α−1 logψα, which
satisfies the HJB equation

∂tϕα +
1

2γ̃

(
∇ϕα

)2
+D∇2ϕα = hmf , (1.71)

where we recall from the previous section that γ̃ = γ/(1−2Dαγ). The mean-field desirability
ζα = exp(ϕα/2Dγ̃) then satisfies the linear HJB equation

∂tζα +D∇2ζα =
1

2Dγ̃
hmf ζα . (1.72)

Perhaps surprisingly, also in the mean-field approximation, the HJB equation for the desir-
ability in the risk-sensitive case exhibit the same form as the risk-neutral one.
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1.3 The emergence of chemotaxis

In the last two sections we derived the optimal control equations for a cooperative search
task and approached them in an approximation scheme which takes the inspiration from the
theory of interacting quantum gases, as well as from game theory.

Our findings can be summarized as follows. In the terminal-state setup, which is relevant
for the search task studied here, the mean-field desirability ζ solves the Hamilton–Jacobi–
Bellman equation

D∇2ζ =
1

2Dγ̃

(
q + g(N − 1) ρ

)
ζ , (1.73)

where γ̃ = γ/(1−2Dαγ), for a risk-sensitivity parameter α and contact interaction potential
v(xi, xj) = g δd(xi − xj). The boundary conditions with which Eq. (1.73) is supplemented
follow from the interpretation of ζα in terms of the optimal cost-to-go, and are ζα = 1 at
the target, ζα = 0 at the forbidden boundaries as well as infinitely far from the target,
and ∇⊥ζα at the reflecting boundaries. The optimal control follows from the desirability as
u∗ = 2Dγ̃/γ∇ log ζα, and the single-agent density ρ then evolves according to the Fokker–
Planck equation

∂tρ+∇ ·
(
ρ u∗

)
= D∇2ρ . (1.74)

Remarkably, the set of equations (1.73) and (1.74) is identical to a limiting case of the
well-known Patlak–Keller–Segel equations, which was first introduced to model microbial
chemotaxis at the population level [71, 72]

∂tn+∇ · (χn∇ log s) = D∇2n ,

Ds∇2s− ks− βns = 0 .
(1.75)

Here n is the number density of microbes and s is the chemoattractant concentration. Com-
paring the Bellman equation Eq. (1.46) with the second row of Eq. (1.75) one sees that the
desirability ζ is proportional to the chemoattractant concentration c, to which agents respond
logarithmically – they sense only fold-changes in levels, in accord with the Weber–Fechner
law [14]. The chemotactic coefficient, measuring the strength of the response to the relative
gradients, is χ = 2Dγ̃/γ in this case. The chemoattractant is kept at constant concentra-
tion at the target, is degraded with rate k proportional to q/(2Dγ̃) and consumed at rate β
proportional to g/(2Dγ̃) per cell. We note in passing that perfect adaptation is an implicit
feature of Eqs. (1.73) and (1.74), in that there is no chemokinesis, i.e. the random motility
D does not depend on ζ.

Optimal cooperative search can then be realized by biophysical systems in which the
target emits a diffusible chemical cue in the environment. Agents can behave optimally by
responding to fold–changes of this signal and actively modifying it by consumption.
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Learning to search optimally: scouts, beacons and recruitment

It would be useful to extend this setting to the relevant case when the location of the target is
a priori unknown and the target does not spontaneously send out signals to facilitate the work
of the agents. In other words, we seek a way to include the process of discovery of the target’s
location and the successive construction of the solution to Eq. (1.46). As we show below, this
can be accomplished by adding a production term in the equation for concentration, which
is the analog of the process by which information is written on memory.

Our solution to the learning problem goes as follows. Initially, the concentration is set to a
constant everywhere in space. In the first part of the search process, agents wander at random
and the concentration decays as the chemoattractant evaporates and is consumed. As a result,
agents explore space away from their initial location. This is called the scouting process.
When agents eventually reach the target, they start the production of chemoattractant on
site, either releasing it themselves, e.g. in the form of a pheromone-like cue [85, 86], or
inducing its production by the target, which may happen in practice by triggering specific
gene expression [87] or by transforming it into attractive waste material. The net effect is that
a beacon signal is emitted from the target, and it leads to the recruitment of all other agents
towards it. A mathematically precise description of the process outlined above requires only
the addition of two terms to the optimality equation (1.46)

ϵ∂tζ︸︷︷︸
relaxation

−D∇2ζ +
1

2Dγ

(
q + g(N − 1)ρ

)
ζ = f(t)1target︸ ︷︷ ︸

production

, (1.76)

where f(t) =
∫ t
0 dt

′ ∫
target

ds · Jρ is the cumulated number of agents that have reached the
target up to time t, and Jρ = (2D∇ log ζ)ρ−D∇ρ is the spatial flux of agents. The indicator
function 1target specifies that production takes place only at the target. The relaxation term
is interpreted as a delay in writing information on memory, i.e. a learning rate. When
production and diffusion balance, the optimal solution, Eq. (1.46), is attained.

1.4 Applications

In this section we illustrate the learning dynamics at work in two examples of cooperative
search games. In the first example, we discuss the effect of risk sensitivity for agents searching
independently for a circular target. In this example the mean-field ansatz yields the exact
solution and can be calculated analytically. In a second example we show the behaviour of
the mean-field solution in a maze-escape task, and point out how the cooperative interactions
make the random search faster.



30

1.4.1 A model for bacterial predation

The first example features a circular target in an infinite two-dimensional domain and can be
thought of as a basic model for bacterial predation [87, 88]. One can think of the agents as
microbes whose target is a host cell that they are trying to infect. In this example we do not
include the costs for collision. Since the agents are independent at all times provided that
they are at the start, the mean-field equations are exact. In this simple geometry, it is possible
to find the analytical solution. This is a case study that can be useful in understanding the
effect of the time cost as well as the risk sensitivity.

Exact analytical solution

If the target has radius R and we choose the origin of the coordinate system to be its center,
the HJB equation in cylindrical coordinates reads

D

r
∂r

(
r∂rζα

)
− q

2Dγ̃
ζα = 0 , (1.77)

where the desirability ζα depends only on the radial coordinate, and, from previous sections,
γ̃ = γ/(1 − 2Dαγ). Given the connection of the desirability with the expected cost-to-go
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Fig. 1.4. Risk-sensitive cooperative predation. Probability density functions of the total cost per agent
under the optimal risk-neutral control (solid blue), risk-averse (α = 0.4, dashed red) and risk-seeking
(α = −0.4, dashed-dotted green). Other parameters are set as in Fig. 1.6. The same distributions are
plotted on linear scale in the inset. Positive values of α (optimal risk-aversive behavior) lead to steeper
exponential decay for large values of the cost while negative values (optimal risk-seeking behavior)
enhance fluctuations with lower-than-average cost, at the price of increasing the frequency of higher-
than-average fluctuations. The thin solid lines are the analytical estimates for the right tails, which can
be calculated in the one-dimensional case (see Sec.1.1.2).
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function, the boundary conditions (see Sec. 1.1.1) for Eq. (1.77) are ζ(r → ∞) = 0 and
ζ(R) = 1. The solution to this problem is

ζα(r) =
K0

(
r/λ

)
K0

(
R/λ

) , where λ =

√
2D2γ̃

q
, (1.78)

which yields the optimal control

u∗ =
2Dγ̃

γ
∇ log ζα = −

√
2γ̃q

γ

K1

(
r/λ

)
K0

(
r/λ

) êr , (1.79)

where Kν are the modified Bessel functions of second kind and êr ≡ x/r, i.e. the outward
unit vector pointing to x from the origin.
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Fig. 1.5. Risk-neutral vs Risk-sensitive. Two-dimensional histograms of time-expenditure and control
costs, from simulations of Eq. (1.1) with the mean-field control in Eq. (1.79), for the risk-averse,
risk-neutral and risk-seeking situation. The costs for time-expenditure and control are positively and
almost linearly correlated. The optimal control for the risk-neutral problem is such that control and
time-expenditure costs are very similar. Instead, the risk-averse optimal controller tends to pay more
on control (reducing possible dangerous fluctuations towards high values of the cost), whereas the
risk-seeking controller allows for large time-expenditure cost while reducing the control.

In Figs. 1.4 and 1.5 we see the effect of risk-sensitivity on the distribution of the costs,
obtained via numerical simulations of the exact optimal control, Eq. (1.79). In Fig. 1.4 we
compare the distribution of the total cost (sum of time and control costs) for different values
of the risk-sensitivity parameter α, other parameters being the same. We notice that increas-
ing risk-aversion (growing α) leads to steeper exponential decrease in the right tail of the
distribution. In Fig. 1.5, we look at the joint probability distribution of time and control cost,
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showing that they are highly correlated. One can see that the risk-sensitivity parameter sets
an imbalance between the control cost and the time-expenditure cost: risk-averse strategies
are prone to pay much more price on control than on time-expenditure, while for risk-neutral
strategies the difference is much less pronounced; risk-seeking controllers, instead, pay less
cost in control, confident of being driven to the target by the noise.

Testing the learning dynamics

In Fig. 1.6 we show results from the simulation of a large number of agents under the con-
trolled dynamics with drift from the numerical solution of Eq. (1.76), and compare them with
the uncontrolled dynamics. From visual inspection, the gain in the number of agents that
have reached the target is apparent. More quantitatively, the time average cost per agent as
a function of time (Panels c and d of Fig. 1.6), which is proportional to the number of agents
which have not reached the target at a given time, falls off exponentially for the controlled

Fig. 1.6. Optimal cooperative predation. Comparison between the uncontrolled a) and controlled
dynamics b), in the non-interacting case (g = 0). The agents are initially localized in a small region of
space and are required to reach the target (grey disk). They initially undergo unbiased diffusion during
the scouting phase and when some reach the target, the recruiting phase begins. The chemical cue is
emitted from the target and degraded at constant rate, resulting in a gradient (grey contour lines, in
logarithmic scale) which elicits a drift toward the target in all other agents. In these simulations the
parameters are: γ = 1, q = 10, D = 1, g = 0, ϵ = 0.1. c): Average cost rate for time (uncontrolled:
dashed orange line; controlled: solid blue line) and for control (dash-dotted blue line) The scouting phase
(S, shaded) and the recruiting (R) phase are dominated by time cost and by control cost, respectively.
d): Probability density function of the time to reach the target for controlled and uncontrolled agents
(color code as in c), compared to the case with optimal solution (without learning, green dashed line).
The distributions for the dynamics with are similar at small times, while at large times controlled agents
display an exponential decay against a −3/2 power law for uncontrolled ones. The learning agents
behave optimally after a delay due to the existence of a scouting phase.
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case while it exhibits a very slow decay for uncontrolled diffusion.

1.4.2 Escaping Villa Pisani

The second example is crowd evacuation from a complicated domain. Agents, initially local-
ized in the center of a maze, are required to find the exit with the minimal cost. The domain
in which we performed this numerical experiment is a reproduction of the historical maze in
the gardens of Villa Pisani (Stra, Italy). In this example, agents are introduced at the center
of the maze at a constant injection rate. In Fig. 1.7 we see the emergence of the phases of
scouting and recruitment, and eventually, we observe that the agents trace out the optimal
path to the exit. Notice that, during the scouting phase, the density of agents propagates as
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Fig. 1.7. Optimal crowd evacuation. Agents are injected at a constant rate at the center of the
maze and have to find the exit (on the right side of the maze), as quickly as possible while minimizing
collisions. The panels show a numerical simulation of Eqs. (1.54), (1.74) and (1.76). The desirability
(=concentration, see Table 1.1) is shown in the top panels, while the flux of agents Jρ is displayed in
the bottom panels. During scouting (left column), the population consumes the chemical, leading to
an outward-driven scouting process, faster than pure diffusion. Upon reaching the target, agents lay the
beacon signal and recruit those who lag behind to the target (middle column). Eventually, since agents
are continuously injected in this case, a stationary state is reached where agents track the optimal path
from the center to the exit (right column). The parameters are D = 1, γ = 1, ϵ = 10−1, q = 10 and
g(N − 1) = 100.
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a front with speed which is proportional to
√
N (see SI, Sec. 2.1.2) so that the collective is

much faster in finding the target than the single agent (which instead reaches it diffusively).

Effect of the collision cost: travelling wave solution of PKS in 1D

As noted in the main text, the optimal control equations in the mean-field approximation
are equivalent to the Patlak–Keller–Segel (PKS) equations with logaritmic response. In this
section we show that in the case where q = 0 (no time expenditure cost) it is possible to find
a travelling wave solution to the PKS equations in one dimension [89]. We shall see that the
combination g(N − 1) enters the definition of the travelling wave velocity.

In one dimension, the optimal control equations for q = 0 areD∂
2
xζ −

1

2Dγ

(
q + g(N − 1)ρ

)
ζ = 0 ,

∂tρ+ 2D∂x
(
ρ ∂xζ/ζ

)
−D∂2xρ = 0 .

(1.80)

We impose the boundary conditions ζ(−∞) = 0, ζ(+∞) = 1, ρ(−∞) = ρ∞ and ρ(+∞) = 0.
Such boundary conditions correspond to the situation in which a constant supply of agents is
provided very far on the left and the target is far on the right. The system admits a travelling
wave solution, ζ(x, t) = Z(x − ct) and ρ(x, t) = R(x − ct), with velocity c > 0. With this
ansatz, Eqs. (1.80) write DZ

′′ − g(N − 1)

2Dγ
RZ = 0 ,

− cR′ + 2D
(
RZ ′/Z

)′ −DR′′ = 0 ,

(1.81)

where the symbol ′ indicates the derivative with respect to the single variable z = x − ct.
The second equation in the system (1.81) can be straightforwardly integrated once and gives

R′ = (2Z ′/Z − κ)R+ β ,

where κ = c/D. If we impose the boundary conditions R|∞ = 0 and R′|∞ = 0, the integration
constant β vanishes. One further integration gives

logR = 2 logZ − κz + α ⇒ R(z) = Ae−κz Z(z)2 .

By replacing this solution into the first equation of the system (1.81), and by defining Z(z) =
eκz/2χ(z)

Dχ′′ + cχ′ +
1

2D

(c2
2

− g(N − 1)

γ
Aχ2

)
χ = 0 , (1.82)

which is the traveling-wave form of the Fisher–Kolmogorov–Petrovski–Pisounov (FKPP)
equation with cubic nonlinearity,

∂tu = D∂2xu+ r u(1− u2) .
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Notice that R = Aχ2, and therefore the boundary conditions for χ follow from the ones for
ρ. From the stability condition c2/2− g(N − 1)Aχ2(−∞)/γ = 0, it follows that the speed of
the wave front is

c =

√
2ρ∞
γ

g(N − 1) . (1.83)

The number of agents therefore influences the speed at which the agent density profile prop-
agates: more agents consume the chemoattractant more rapidly, hence giving rise to the
steepest gradients of its concentration ζ, in turn yielding a stronger drift..

1.5 Discussion

We have shown how the problem of finding the optimal solution to a cooperative search game
can be solved by agents which produce and consume a diffusible chemical cue, establishing a
close correspondence between notions from decision-making theory and biophysical properties
of chemotactic microorganisms. What are the implications of our results?

From the standpoint of search theory, our findings provide a solid theoretical rationale
for the many solution inspired by chemotaxis, from computational [90–92], to biological [93,
94] and physico-chemical ones [95, 96]. At the practical level, we offer explicit expressions for
the optimal choice of the parameters that appear in these biomimetic approaches, allowing to
shortcut the painstaking procedure of parameter tuning. When the exact optimal values are
difficult to realize in practice, as it may happen for real biological or physico-chemical systems,
our analysis permits to evaluate the impact of the suboptimal choice on the performance
of the search method. Conversely, from the viewpoint of chemotaxis, we remark that the
dictionary in Table 1.1 can also be read in reverse, which allows to solve the inverse problem
of retrieving the decision-making parameters from biophysical observations. Indeed, from the
experimental knowledge of the effective microbial diffusivity D, the chemotactic coefficient χ,
the chemoattractant diffusivity Ds, the degradation rate k and consumption rate β, one can
invert the equations in Table 1.1 and extract the values of α, γ, q and g to within an overall,
irrelevant multiplicative factor. For example, bacterial chemotaxis experiments (Fig. 6 in
Ref. [97]) give χ/D ≈ 12, which translates into 2Dαγ ≈ 5/6. This value is very close to
the upper limit for risk aversion, suggesting that bacteria try to minimize the impact of
unfavorable fluctuations – a conclusion that has also been reached by other means [98].

Our results open many questions and directions for further research. Among them, ex-
tending the present analysis to cooperative Markov games [99] would allow to address prob-
lems of traffic control on arbitrary networks, for example, as well as many problems of
cooperative resource allocation and transfer [100]. What will be the equivalent of chemical
communication in these contexts? Another exciting direction to investigate is the realm
of non-cooperative games and ecology: will optimal strategies and population dynamics be
shaped by chemical signalling in this case as well?
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2

From Conformational Spread to Allosteric
and Cooperative Binding models

of E. coli flagellar motor

In the previous Chapter we saw that chemotaxis emerges as the optimal solution of a
collective decision making problem. Chemotaxis is then the algorithm that microbes are able
to implement in order to navigate their environment, searching for food or escaping from
noxious chemicals. In this Chapter we address the issue of how chemotaxis works at the
molecular level, looking at it from a statistical mechanical perspective.

Escherichia coli (E. coli) is one of the model organisms for studying bacterial chemo-
taxis [18]. Thanks to its flagella, activated by bi-directional rotary motors, E. coli is able
to move towards more favorable environments by optimally alternating runs and tumbles,
which approximately consist of straight lines and random “turns”, respectively.

The biochemical mechanisms underlying the chemotactic response of E. coli are well un-
derstood at the molecular level [16]. A sensing apparatus is devoted to detecting information
about the environment, by measuring the concentration of chemicals (generally called, in this
context, chemoeffectors). The arrangement and functioning of the receptors present on the
E. coli’s cellular membrane have been extensively investigated also from the theoretical point
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of view (see, e.g. [101, 102]). The information collected by the receptors is transduced to
the flagellar motors through the “messenger molecule” CheY. The cytoplasmic concentration
of its phosphorylated form CheY-P varies according to the activity of the membrane recep-
tors. The CheY-P molecule then acts as a regulator of the activity of the flagella by binding
to their motors. These are constituted by rings of Fli molecules, arranged in units called
protomers. Motors are biased by the Fli occupancies to rotate counterclockwise (CCW) or
clockwise (CW). When all the motors are in the CCW state, flagella form a bundle which
propels the cell in a forward run; if at least one motor is in the CW state instead, the bundle
splits apart and the cell tumbles.

Such a mechanism is an example of allosteric (or indirect) regulation, where the activity
of protein complexes changes collectively upon independent binding of external molecules.
The original model which encodes the concept of cooperativity in indirect regulation is the
one proposed by Monod, Wyman and Changeux (MWC), commonly known as concerted
model [103, 104].

Shortly after the paper by Monod, Wyman and Changeux, Eigen realized that the con-
certed model can be extended in order to offer a more graded interplay between the interac-
tions within allosteric complexes and their binding affinities [105]. When the interactions are
local, this generalized model takes the name of conformational spread model (see Sec. 2.1)
and is nowadays understood in a statistical mechanical framework in the light of the ferro-
magnetic Ising model, to which it is formally equivalent [101, 106].

These allosteric models have found application in bacterial chemotaxis. In Ref. [107], the
authors showed how the MWC model is able to reproduce the activity of the flagellar motor
of E. coli as a function of the concentration of cytoplasmic CheY-P. [107]. In this paper, the
authors recognized that the balance between the different CheY-P affinity in the two activity
states and the size of the motor protein complex was essential in explaining the observed
cooperative behaviour of the switch. The MWC model turned out to be particularly suitable
for describing the flagellar switch of E. coli, in that it accounts for the correct degree of
cooperativity with a proper choice of the parameters.

The conformational spread model has been applied to bacterial chemotaxis, both for the
membrane receptors [101, 106] and for the flagellar rotary motors [108]. By means of a
simulation of its associated Glauber dynamics [109], a numerical test of the conformational
spread model against the experimental measurement of the rotation speed of the flagella has
been performed [110]. Such analysis showed an excellent agreement between experiments and
numerical simulations regarding several aspects of the dynamics, such as the switching time
distribution at fixed values of the cytoplasmic CheY-P concentration and the sensitivity of
the switch upon small variation of CheY-P. A more detailed numerical analysis of the model
followed up [111], in which also other dynamical properties of the conformational spread
model were quantified (like the locked-state behaviour, namely, the time spent by the motor
in a rotational state between two consecutive switches) and a more precise estimation of the
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parameters of the model which best fit the experimental results was given.

From the analytical point of view, one major obstacle to the study of the conformational
spread model resides in the large number of states. The one-dimensional nature of the
ring allows nonetheless for an exact calculation of its partition function at equilibrium via
the transfer matrix method [112]. However, no analytical treatment of the non-equilibrium
behaviour of the model has ever been attempted, to our knowledge.

In this Chapter we present an analytical derivation of the non-equilibrium properties of
the conformational spread as a model of the flagellar switch. Our analysis hinges upon the
presence of a hierarchy of widely separated time scales, as confirmed by experiments. Due
to the strong interaction between the protomers, the coarsening of activity domains in the
ring is much faster than the nucleation of a domain, i.e. the transitions away from the state
of all active or all inactive protomers. This allows the treatment of the whole motor as
an allosteric switch in two different activity states (CW and CCW), essentially described
by the MWC model. The nucleation of a domain is in turn much more frequent than the
binding/unbinding of a CheY-P molecule by one protomer, which makes it possible to operate
a quasi-static approximation for the number of bound CheY-P and get a description of the
slow binding dynamics, to which the activity is slaved. This separation of time scales allows
us to reduce the complexity of the full conformational spread dynamics by progressively
averaging the faster degrees of freedom and obtain, in the end, an effective cooperative
model which captures the relevant features of the flagellar switch on the slowest time scales.
The effective rates of the emergent “coarse-grained” cooperative binding model are expressed
in terms of the rates of the original “microscopic” conformational spread model. In short,
the rationale of our approach can be schematically summarized as follows:

Conformational
Spread

Concerted
(MWC) Model

Cooperative
Binding

Strong

coupling

Slow binding

& fast switch

The Chapter is structured as follows: in Sec. 2.1 we present the conformational spread
model, outlining its equilibrium properties and introducing the dynamics (satisfying detailed
balance) which is relevant for our study and is the object of our multiscale analysis; in
Sec. 2.2 we show that, in our experimentally justified assumptions, it is possible to reduce
the conformational spread to the concerted MWC model; a further time-scale separation is
the subject matter of Sec. 2.3, resulting in a cooperative binding model (formally, a birth-
and-death process with site-dependent rates) that is compared with experiments in Sec. 2.4.
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2.1 Conformational Spread Model

The ring of proteins forming the motor of the E. coli flagella has been shown to be very well
described by the conformational spread model [106, 108, 110]. This model consists in N

identical units, or protomers, each of which can appear in two different states, active (A) or
inactive (I): a protomer in the active state increases the probability of CW rotation of the
motor, and of CCW rotation in the inactive state (see Fig. 2.1). Moreover, each protomer

CCW CW

Fli molecules

CheY-P

Fig. 2.1. The flagellar motor. The Fli molecules are depicted in white (inactive state, I) and red (active
state, A), while the grey spots represent the CheY-P regulator. The motor rotates counterclockwise
when most of the protomers are in the inactive state (left) and clockwise otherwise (right).

can also bind a ligand, corresponding to the CheY-P chemotactic regulator: we refer to the
protomer as in the bound (B) state when a ligand is attached to it, or unbound (U) otherwise.
Therefore, the single protomers can be in 4 different states, corresponding to all the possible
activity and binding configurations.

The state diagram of a single protomer is depicted in Fig. 2.2: the A state is energetically
more favorable than the I state when a ligand is bound and vice versa. This property
ensures that this is a good model for allosteric regulation. Namely, a bias in the activity of
the motor depends on the number of bound CheY-P molecules: at fixed high concentration
of cytoplasmic CheY-P (denoted by c) the motor will most probably spin clockwise. The
state of the full system is specified by the sequence s = {(α1, ℓ1), . . . (αN , ℓN )}, where the
subscripts label the N protomers, α indicates the activity state A or I, and ℓ stands for the
binding state B (ℓ = 1) or U (ℓ = 0): hence, the number of possible configurations of the
ring with N protomers is (2× 2)N .

In addition, the protomers are coupled via a nearest neighbour interaction, which depends
on their activity states only: in particular, the energy is lowered by a quantity J when the
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neighbouring protomers are in the same activity state A or I. It turns out that the activity of
the ring (fraction of active protomers) is more sensitive to small variations of concentration
of ligands in the interacting case than in a system of N independent protomers. Therefore,
the coupling is an essential ingredient which enhances the sensitivity of the whole complex.

εA

εI

εI − ε
(I)
b − µ

εA − ε
(A)
b − µ

` = 0

` = 1

E
ne

rg
y

J/2

−J/2

ActiveInactive
(CW)(CCW) Coupling

Fig. 2.2. State diagram and couplings in the Conformational Spread Model. On the left, the
energy levels of the single protomer states: the active (CW) configuration is energetically favorable in
the unbound case (ℓ = 0), while the inactive (CCW) has lower energy when in the bound case (ℓ = 1);
the binding regulates the activity of the protomers. The notation and the general scheme has been
borrowed from [104]. On the right, the coupling energy: the “ferromagnetic” coupling (independent of
ℓ) accounts for the high sensitivity of the response of the ring upon binding.

The conformational spread model is very reminiscent of the Ising model. In fact, if
one associates to each protomer a spin variable σi taking value +1 when the protomer is
active (αi = A), or −1 when it is inactive (αi = I), one can represent the states of the
system as s = {(σi, ℓi)}Ni=1 and the equilibrium properties of the model are determined by
the Hamiltonian

H = −J
2

∑
⟨i, j⟩

σi σj −
∑
i

h(σi, ℓi) , (2.1)

where J is a positive constant and h is the single-protomer contribution, reproducing the
energy diagram in Fig. 2.2,

h(σ, ℓ) =
1

2

[
εI − εA−(ε

(I)
b − ε

(A)
b )ℓ

]
σ

− 1

2

[
εI + εA − (εAb + εIb + 2µ)ℓ

]
.

The one in Eq. (2.1) is an Ising Hamiltonian with ferromagnetic coupling J , where h plays
the role of an external local magnetic field, set by the occupation ℓ; in Eq. (2.2), µ is the
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chemical potential, determined by the concentration of CheY-P, c, by

µ = µ0 +
1

β
ln

c

c0
, (2.2)

where µ0 and c0 are reference chemical potential and concentration, respectively. Hereafter,
the notation σ and α will be used interchangeably, according to the situation. The partition
function Z =

∑
exp(−βH(s)) (where β = 1/kBT is the inverse temperature and the sum is

done over the 4N possible states of the ring of protomers) has been calculated exactly via
transfer matrix approach [112]. The analytic results found therein fit very well the experi-
mental curves [16] of the ligand occupancy (average fraction of bound protomers) and the
activity (fraction of protomers in the A state) as a function of the concentration of CheY-P.

If on one hand the equilibrium properties of the conformational spread model are exactly
known, on the other hand a full-fledged analytic treatment of the stochastic dynamics of this
model seems difficult. In the definition of the conformational spread model given above, there
is no prescription about the dynamics. A natural choice which satisfies detailed balance is
the Glauber-like [109] Markovian dynamics, used in numerical simulations of this model in
Refs. [110, 111]. In such prescription, the process {St}t which accounts for the kinetics of the
conformational spread model is governed by the master (Kolmogorov) equation

∂

∂t
P (s, t) =

∑
s′

[
P (s′, t)K(s′ → s)− P (s, t)K(s→ s′)

]
, (2.3)

where P (s, t) = Prob{St = s} and K are the rates defined as

K(s→ s′) =

{
ωf

1− γ

(
1− γ σi

σi+1 + σi−1

2

)
eβ h(−σi, ℓi) δσ′

i,−σi
δℓ′i, ℓi

+ ωs e
β h(σi, 1−ℓi) δσ′

i, σi
δℓ′i, 1−ℓi

} ∏
j ̸=i

δσ′
j , σj

δℓ′j , ℓj ,
(2.4)

where the product of Kronecker δ indicates that the rates K only involve one protomer
at a time. Each term in Eq. (2.4) is obtained from detailed balance up to multiplicative
factors ωf and ωs: these constants account for typical time scales of the flipping and binding
process, respectively. The constant γ in the spin-flip contribution is set by the strength of
the coupling, γ = tanh(β J). For a system made of a one protomer (or for a single protomer
in absence of interaction, γ = 0), according to Eq. (2.4), we define the constants ka and ki as
the rates for activation and inactivation with ℓ = 0,

ka = ωf e
−βεA , and ki = ωf e

−βεI ; (2.5)

their counterparts for ℓ = 1 are

ka
c

KA
d

and ki
c

KI
d

. (2.6)
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Fig. 2.3. Single-protomer dynamics. Contributions to the transition rates K(i) from the single-
body term in the Hamiltonian (2.1): vertical arrows are labeled by the rates of activation/inactivation;
horizontal arrows by the binding/unbinding ones.

The rates of binding and unbinding are respectively given by

c kαb =
c

Kα
d

ωs e
−βεα and kαu = ωs e

−βεα , (2.7)

when it is in the activity state α. The ratio between the rate constants kαu/kαb is the dissoci-
ation constant of the binding process, Kα

d :

Kα
d =

kαu
kαb

= c0 e
−β(ε

(α)
b +µ0) . (2.8)

The dynamics of a single isolated protomer is depicted in Fig. 2.3. The ratios of the rate
constants kαu,b and ki,a are determined by the equilibrium statistics, while their specific values
affect the kinetics.

It is worth noticing that the binding/unbinding rates at one protomer only depend on the
state of the protomer itself and no other protomer in the ring: this assumption of independent
binding is typical of allosteric models.

Deriving an exact solution for the conditional probability P (s, t|s0, 0) by directly attacking
the Kolmogorov equation (2.3) is far from being an easy task. However, as experiments
show [110], in the flagellar motor regulation mechanism of E. coli it is possible to identify
a hierarchy of widely separated time scales. This opens up the possibility of operating a
reduction of the set of states by gradually integrating out/decimating fast degrees of freedom,
operating a quasi-stationary approximation: the time scale of the slow degrees of freedom is
much longer than the time needed for the fast variables to relax to a stationary distribution;
hence, the fast degrees of freedom enter the slow dynamics only through quantities averaged
over such stationary distribution (conditioned to the state of the slow variables) [44–46].
The application of such techniques to the study of the allosteric regulation of the motor of
E. coli will be the subject of the following sections. The approximation scheme is depicted in
Fig. 2.4.
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Fig. 2.4. Time-scale separation in the Conformational Spread Model. Graphic representation of
the time-scale separation scheme. Short-lived transient states containing domain walls are decimated
in a first time-scale separation, leading from the Conformational Spread to the MWC model, while the
binding dynamics is kept frozen. Then, over the binding time scales the activity states are averaged
out, resulting into a cooperative binding model.

2.2 From the Conformational Spread to the MWC model

In the present problem, the fastest degrees of freedom are associated with the spin-activity
variables: the (concerted) conformational transition between CW and CCW state is much
faster than the time scale for binding/unbinding of CheY-P, respectively occurring on typical
times of 10−3 s and 10−1 s. In the associated Glauber dynamics in Eq. (2.4), this can be
encoded in the limit ωf ≫ ωb.

Furthermore, it can be seen that the coarsening dynamics of the spin-activity variables
occurs over time scales much shorter than the typical time interval between two successive
nucleations of an activity domain, the latter setting the frequency of the switch from CW
to CCW and vice versa, while the binding {ℓi} is fixed. This is due to the strong coupling
between the neighbouring protomers, βJ ≫ 1, or equivalently, γ → 1. In this limit, the
transition rates away from the fully aligned configurations (all σi equal) are of order ωf/(1−
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γ), while all other spin transitions are much slower, with typical rate ωf ≪ ωf/(1− γ).
The discussion of this latter time-scale separation is the subject matter of this section:

it will be shown that the strong coupling limit amounts to considering the conformational
spread model effectively equivalent to the Monod–Wyman–Changeux model, on the time
scale of the switch. At the time scales typical of these fast processes, the binding state {ℓi}
enters via a quenched external field term, playing a parametric role in determining the quasi-
stationary distribution towards which the activity states relax. The slow binding dynamics
will be discussed in the next section.

The role of the coupling

The ferromagnetic coupling in the conformational spread model is an essential ingredient
which accounts for high sensitivity of the motor to the variation of concentration of CheY-
P, due to the resulting cooperative response. The implementation of a large coupling J is
suggested by the experimental determination of this high sensitivity, quantified by a Hill
coefficient ∼ 10. As pointed out in [111], though, the estimation of the Hill coefficient does
not impose severe constraints on the parameters of the model, especially on J ; in fact, the
numerical simulations performed therein show that the sensitivity depends more strongly
on the activation energy of the single protomer (εA,I) than on the cooperativity. However,
combining the experimental knowledge of the Hill coefficient with the information about other
quantities, such as the mean locked state time and the mean switch time, Ma et al. [111] were
able to provide a very precise estimation of J , which is ∼ 4.5 kBT . For such value of J the
formation of domain walls is strongly disfavored. At equilibrium, in fact, the ratio between
the probability of configurations with 2m domains and the probability of a coherent one can
be estimated as (see Ref. [108])

P (2m)

P (0)
≃

(
N

2m

)
exp(−2mβJ) , (2.9)

where the binomial factor counts all possible ways of dividing N protomers into 2m domains;
for N = 30 ≫ 1, the limit P (2m) ≪ P (0) corresponds to

βJ > log N ∼ 3.5 = βJ∗ , (2.10)

satisfied by the estimate of J performed in [111]. The stationary equilibrium configuration,
at fixed binding states {ℓi}, is therefore concentrated only on the two states with all the
protomers in the same state. From a dynamical point of view, this means that states with
one or several domain walls are just short-lived transients between coherent states: as soon
as a domain is nucleated inside a coherent configuration, it either immediately expands to
invade the whole ring or is suddenly absorbed, typically much before another nucleation
occurs.
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Decimation of fast variables

To realize the fast “emptying” of configurations with several domain walls, it is necessary
to analyse the structure of the transition rate matrix K(s → s′), when the limits of the
time-scale separation (ωs ≪ ωf ≪ ωf/(1− γ)) are concerned.

In the limit γ → 1, in fact, the non-vanishing entries of the matrix K, at frozen binding
{ℓi}, are either of order ωf/(1 − γ), or of order ωf : the latter rates (slow) are defined for
transitions consisting in a nucleation of a domain, i.e. creation of pairs of domain walls, and
are denoded by Ks; the former (fast) are defined for all other transitions, i.e. motion and
destruction of domain walls, and are denoted by Kf . We can therefore write K = Kf +Ks,
with

Kf (s→ s′) = K(s→ s′) (1− δσ1... σN ) ∼
ωf

1− γ
, (2.11)

and
Ks(s→ s′) = K(s→ s′) δσ1... σN ∼ ωf , (2.12)

where K are defined in Eq. (2.4), and δσ1... σN indicates that the spin-activity variables in s

have all the same value. One notices that the coherent configurations (all protomers active or
inactive) are the only absorbing states of the fast process, since in such cases the entries of Kf

vanish. The dynamics specified by Kf forbids the creation of pairs of domain walls and only
allows translation or absorption of domain walls. As a result, the fast dynamics leads to one or
the other coherent configuration with a typical rate ∼ ωf/(1−γ). As an explicative example,
the case of N = 4 is depicted in Fig. 2.5. On a time scale set by 1/ωf , the nucleation of an
activity domain can occur. In the coherent activity configurations, the process involving
the spin-activity variables has slow rates Ks. It is then possible to apply the standard
techniques of time-scale separation [44–46], eliminating incoherent activity configurations
from the dynamics at time scales comparable with 1/ωf or longer. The net effect of the
fast coarsening dynamics is included in an effective way into rates, denoted by Kc, which
provide the description of the dynamics at the nucleation time scale: a concerted transition
between the two coherent configurations I (all protomers inactive, σi = −1) and A (all active,
σi = 1), besides slow binding processes. In this model, the N -protomer complex can be in
2 different activity states, each of which present in 2N binding configurations (2 for each
protomer): therefore, the model contains 2 × 2N states, and corresponds to the concerted
allosteric model of Monod, Wyman and Changeux (MWC) [103, 104].

The structure of the state diagram of the MWC model with its rates Kc is depicted in
Fig. 2.6. In App. A.1, the decimation procedure leading from the conformational spread to
the MWC model, in the case of N = 2 has been worked out exactly. In general, the rate of
a concerted switch from the activity state α = I (or A) to α′ = A (or I) is

Kc(α→ α′, {ℓi}) =
N∑
j=1

Ks(α→ α(j), {ℓi})P (j)
abs(α

′) , (2.13)
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Fig. 2.5. Fast coarsening dynamics. Schematic representation of the fast rates of single-spin flipping
Kf for a system of 4 protomers. Grey boxes correspond to the states; periodic boundary conditions are
understood. Arrows are drawn between two states (or groups of states) for which Kf is non vanishing
for some i. In particular: reversible transitions are allowed between states with equal number of domain
walls; transitions to states with less domain walls are irreversible. Starting from any state, the dynamics
leads to one of the coherent configurations in a time ∼ (1− γ)ωf

−1 [see Eqs. (2.4) and (2.11)]; such
states are the only two activity states in the MWC allosteric model.

where α(j) denotes the state where all the spins but the j-th are in the state α, and P (j)
abs(α

′)

is the probability of absorption in the state α′ conditioned to the initial state α(j).
A direct analytic derivation of the rates Kc (or the probabilities P

(j)
abs) for a generic

N -protomer ring can be extremely complicated. However, in the time-scale separation as-
sumptions, the fast dynamics after the nucleation of an activity domain from a coherent state
reaches one of its 2 absorbing states before another nucleation could possibly occur. This
means that a calculation of the effective activity switching rates in the MWC model, does
not require to include all the incoherent states, but only those with just two domain walls:
the coarsening process can be seen as the expansion or contraction of the domain which has
been nucleated. The nucleated domain can either expand until it invades the whole ring
(complete switch), or be “absorbed” back (failed attempts).

Since the detailed balance is still respected by the rates in the decimated dynamics, all
their pairwise ratios are fixed by the equilibrium distribution. Hence, since the equilibrium
distribution of the MWC model is known from the Hamiltonian (2.1) (where the coupling
part is just a constant term), it is sufficient to determine only one effective rate Kc exactly. In
the case where ℓi = 0 for all protomers, one is able to calculate the rate of switching from the
I to the A state, by mapping the coarsening process into a simple birth and death process,
the random variable being the size of the domain with active protomers (see App. A.1).

Regarding the binding process, the rate Kc is just the binding/unbinding contribution in
the rates K, defined in Eq. (2.4).
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Kc(A → I, {`i})

Kc(I → A, {`i})

Kc(A → I, {`′i})

Kc(I → A, {`′i})

{`i}
{`′j 6=i = `j ,

`′i = 1− `i}

Kc(`i → `′i, A)

Kc(`′i → `i, A)

Kc(`i → `′i, I)

Kc(`′i → `i, I)

Fig. 2.6. Dynamics of the MWC model. The figure contains only a small portion of the model,
corresponding to two possible binding states, {ℓi} and {ℓ′i} (differing only by the occupation of the
protomer at the bottom of the ring). The spin-activity variables of the ring of protomers are involved in
a fast concerted transition (solid arrows), with rates Kc depending on the occupation {ℓi} in a highly
non trivial way. The transitions between different binding configuration is slow (dashed arrows); only one
of the possible binding/unbinding transitions is explicitly represented, while the others are symbolically
indicated by unlabeled arrows.

Although the dynamics of the MWC model depends on the detailed binding configuration
{ℓi} in a highly non-trivial way, the equilibrium distribution depends on the total occupancy
l =

∑
ℓi only,

Peq(I, l) =

(
c

KI
d

)l

(Nl )(
1+ c

KI
d

)N

+L−1

(
1+ c

KA
d

)N , (2.14)

Peq(A, l) =
L−1

(
c

KA
d

)l

(Nl )(
1+ c

KI
d

)N

+L−1

(
1+ c

KA
d

)N , (2.15)

where L is called allosteric constant of the N -protomer MWC molecule,

L =

(
ki
ka

)N

= eβ (εA−εI)N . (2.16)

There is an important comment to be made about the equilibrium distribution of the
MWC model, in particular about the marginal probability for the active state, defined as the
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activity of the MWC molecule,

Peq(A) =
∑N

l=0 Peq(l, A) =
1

1+L

(
KA

d
KI

d

)N(
c+KI

d
c+KA

d

)N . (2.17)

In our problem, this corresponds to the CW bias of the flagellar motor, which is a function of
the CheY-P concentration c. In order for the MWC molecule to be a good allosteric switch, it
needs to be almost certainly active for high enough concentration c and, vice versa, inactive
when c is low:

Peq(A) ∼


[1 + L]−1 → 0 for c→ 0[
1 + L−1

(
KA

d

KI
d

)N
]−1

→ 1 for c→ ∞
.

These limits impose the following constraints:

1 ≪ L≪
(
KI

d

KA
d

)N

. (2.18)

Since the single protomer has higher ligand affinity (smaller dissociation constant Kd) when
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Fig. 2.7. Activity and mean Fli occupancy at equilibrium. Analytic results for Peq(A) (solid blue line)
and mean Fli relative occupancy ⟨l⟩/N (dashed red line) as a function of the CheY-P concentration, c.
The dots are the experimental results presented in Ref.[18]. Here we chose the dissociation constants
to be KA

d = 1.84µM and KI
d = 5.52µM , respectively, while the allosteric constant has been set to be

L = 107. The plot shows the effect of allostery: the activity response is much more sensitive than the
binding to changes of concentration of CheY-P.

in the active state than in the inactive one, it is required that KA
d < KI

d . From this last
relation one realizes that the number of protomers sets the sensitivity of the switch: since
KI

d > KA
d , the larger N , the larger the r.h.s of the condition given by Eq. (2.18). Incidentally,

depending on environmental stimuli E. coli is able to regulate the number of protomers of
the flagellar motor [113–115].
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2.3 From MWC to a cooperative binding model

As we already said at the beginning of Sec. 2.2, the binding is much slower than the switching
dynamics. We can assume that on the time scale at which one of the protomers binds or
releases a CheY-P (set by a typical time τb ∼ 10−1 s), the activity of the ring safely reaches
the equilibrium configuration, conditioned to the (quasi-static) value of l:

Peq(I|l) =
Peq(l,I)
Peq(l)

=
Peq(l,I)

Peq(l,I)+Peq(l,A) =
1

1+L−1

(
KI

d
KA

d

)l , (2.19)

Peq(A|l) =
Peq(l,A)
Peq(l)

=
Peq(l,A)

Peq(l,I)+Peq(l,A) =
1

1+L

(
KA

d
KI

d

)l . (2.20)

Then, on time scales comparable to (or larger than) τb, the relevant dynamics is essentially
the slow binding/unbinding one, while the fast activation/inactivation dynamics is averaged
over the equilibrium conditional probabilities in Eqs. (2.19) and (2.20), to give the effective
rates K̄ for the variable l:

K̄(l → l′) =
∑

α∈{I,A}

Peq(α|l)K(l → l′, α→ α) . (2.21)

This averaging procedure is guaranteed to give an effective dynamics of the slow variables
which still enjoys the Markov property. The effective binding/unbinding rates of the whole
allosteric complex are, in fact,

K̄(l → l + 1) = (N − l) c k̄
(l)
b ≡ bl ,

K̄(l → l − 1) = l k̄(l)u ≡ ul ,
(2.22)

where

k̄
(l)
b,u =

kAb,u

1 + L
(
KA

d

KI
d

)l
+

kIb,u

1 + L−1
(

KI
d

KA
d

)l
, (2.23)

depending only on the current value of l.
A comment about the range of validity of this result is in order: for the time-scale sepa-

ration to hold, the rates K̄ must be small enough to guarantee that the binding/unbinding
process is still much slower than the activation/inactivation. In particular, this implies that
the concentration of ligands in the environment c cannot be exceedingly large; then, in the
time-scale separation approximation, we keep ourselves far from this regime.

The reduced system is also a Markov process, governed by the following master equation:

∂tPt(l) = bl−1 Pt(l − 1) + ul+1 Pt(l + 1)− [bl + ul] Pt(l) . (2.24)
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The process hence obtained is a birth-and-death process, restricted on the set of integers
between l = 0 and l = N . These extremes are reflecting boundary states. This dynamics
eventually leads to the equilibrium state Peq(l), easily calculated by marginalizing the joint
probability distribution Peq(α, l), given in Eqs. (2.14) and (2.15):

Peq(l) = Peq(A, l) + Peq(I, l) . (2.25)

Albeit much reduced, this model still encodes a lot of information about the actual
dynamics of the switch. Indeed, the flagellar motor switch is triggered by the number of
ligands bound to the allosteric complex. In the next section we present some numerical
analysis of the dynamical properties of the effective cooperative binding model obtained
above.

2.4 Dynamics of the effective cooperative binding model

In this Section we analyze the case of a motor constituted by N = 30 Fli molecules. The
allosteric constant L and the dissociation constants KA

d and KI
d have been chosen consistently

with Ref. [18] and works cited therein: L = 107, KA
d = 1.84 µM and KI

d = 5.52 µM ;
these values provide a qualitatively good fit of the activity as a function of the CheY-P
concentration c (see Fig. 2.7). With this choice of the parameters, we can easily see that the
bound in Eq. (2.18) is safely satisfied, so that the motor displays a switch behaviour, manifest
in the response curve in Fig. 2.7. One also notices that the motor operates within a range
of concentration c roughly between KA

d and KI
d . The maximum sensitivity is found around

a value c∗, which correspond to a CheY-P concentration such that the CW (active) and the
CCW (inactive) states occur with equal probabilities at equilibrium.

As already remarked above, the specific values of the rate constants kαb,u are irrelevant
for the equilibrium properties of the model, but they determine the characteristic time scale
for the motor switch. Out of these four constants, only two are actually independent, since
we already defined their ratios KA

d = kAu /k
A
b and analogously KI

d = kIu/k
I
b . Then, the

dynamics of the cooperative binding model can be specified only the parameters kIb and kAb ;
the qualitative behaviour is determined only by their ratio, while their specific values gives
information about the overall time scale (of the binding process). Here, we set kAb = 2.8 s−1

and kIb = 5.0 s−1, consistently with those recommended by Bai et al. [110].
As previously discussed, the cooperative binding model obtained so far must provide an

accurate description of the statistics of slow observables, namely those which vary over time
scales typical of the binding process or longer. From experimental results, it is clear that
the mean–locked state time (i.e. the time in which the motor stays in a certain rotational
state between two consecutive switches) is such an observable; we show, indeed, that the
cooperative binding model captures very well its statistics.
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Fig. 2.8. Motor switch ruled by the cooperative binding. On the left, the probability of the CW
state conditioned on the Fli occupancy; for values of l fixed in the shaded regions, the motor is in the
CW or CCW state with 95% probability. On the right, average occupancy as a function of the CW
bias: the dashed line corresponds to the unconditional average (see also Fig. 2.7) while the solid lines
represent the averages conditioned to the CW state (red), l̄A, and CCW state (blue), l̄I . The values
of l̄A and l̄I lie in the respective 95%-confidence intervals, with a CW bias between ≃ 0.1 and ≃ 0.9.
The locked–state time can be interpreted as the first passage time between l̄A and l̄I in the cooperative
binding model.

Let us denote by l̄I and l̄A the averages of the occupancy l conditioned, respectively, to
the inactive state (CCW) and active state (CW). One can see that the probability of the CW
state is very close to unity if the Fli occupancy is conditioned to l̄A, and almost vanishing
when conditioned to l̄I (Fig. 2.8). Therefore, since the fast activity variables are slaved to
the slow binding ones, we can state that a good measure of the locked–state time is the first
passage time between l̄A and l̄I .

Let us then study the first arrival time at l̄ from a generic state k. If we denote by fk the
probability density function of this time interval, its moment generating function

gk(λ) =

∫ ∞

0
dτ e−λ τ fk(τ) , (2.26)

satisfies ∑
l

gl(λ) (Ml,k − λ δl,k) = −δk, l̄ , (2.27)

where M is the generator of the process in which absorbing conditions have been put at
l̄. From Eq. (2.27), we can derive the equation for the mean first passage time at l̄, using
⟨τk⟩ = g′k(λ)|λ=0: ∑

l

⟨τl⟩Ml,k = −1 . (2.28)

Exact results are obtained by inverting Eq. (2.28) and are shown in Fig. 2.9, with k = l̄i and
l̄ = l̄a, and vice versa, for several values of the bias Peq(A).
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Fig. 2.9. Statistics of the locked–state time. On the left, average locked–state time in the CCW
state (blue line and circles) and CW state (red line and squares): the points are experimental (lighter
color) and numerical (darker color) results from [110]; the lines are the theoretical results from the
cooperative binding model, estimated as the first passage time at l̄a conditioned to l̄i at t = 0 (mean
CCW time, blue), and vice versa (mean CW time, red). On the right, probability distribution of the
first passage time at l̄a from l̄i in the unbiased case: the solid blue line is the exact result found as
the inverse Laplace transform of the generating function obtained by solving Eq. (2.27); the dashed red
line is the exponential distribution with the same average. See for comparison the experimental and
numerical results in Refs.[110, 111].

We also extract the probability density by solving Eq. (2.27) and numerically performing
the inverse Laplace transform. The resulting distribution is very similar to the experimental
and numerical results presented in [110] and [111], confirming that the effective cooperative
binding model gives an excellent description of the motor kinetics.

2.5 Discussion

In this work we pursued an analytic approach to the description of the dynamics of the
conformational spread model, a phenomenological model that reproduces the allosteric regu-
lation of the flagellar motor in E. coli. Our analysis was based on the existence of a hierarchy
of widely separated time scales in the biochemistry of the E. coli’s motor. Namely, over
the time-scale of transitions between CW and CCW states in the Fli molecules (protomers,
constituents of the flagellar motor) incoherent states are very short-lived, and only coherent
states of activity are sufficiently long-lived. In such a limit we have reduced the conforma-
tional spread to the well known Monod–Wyman–Changeux model. For a motor with N = 30

protomers, this approximation amounts to reducing the number of states in the model from
4N ∼ 1018 to 2N+1 ∼ 109.

Moreover, the binding of CheY-P to the Fli molecules occurs much less frequently than the
switch from the completely active to inactive state, allowing to average out the fast activity
states under quasi-stationary Fli occupancy (number of CheY-P bound to the motor). This
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allowed to reduce the number of states further and get a cooperative binding model containing
only N + 1 = 31 states, the possible values of the overall occupancy. The resulting Markov
process is a birth-and-death process which can be studied semi-analytically, with virtually
no computational cost.

This effective model for the slow variables is able to capture the dynamics of observables
varying on time scales of 10−1 s or longer. Two of such observables are the CW and CCW
locked-state time, which correspond to the duration of tumbles and runs, respectively, with
time scales typically of the order of seconds. We showed that our model reproduces the
statistics of the locked state time and is in extremely good quantitative agreement with ex-
perimental measurements. This is particularly important, because it quantitatively connects
the hardware mechanisms to the way choices are made by E. coli in order to navigate, i.e. to
run or to tumble.

In perspective, our approach could be extended to include the even slower kinetics of mo-
tor remodeling. Indeed, it is known that over time scales much longer than the binding times
(typically minutes), E. coli is also able to modify the flagellar motors by changing the number
of Fli molecules, i.e. the protomers [113, 114]. This mechanism provides an adaptation layer
at the output and restores the sensitivity of the motor when CheY-P concentration are kept
off the dynamic range for a long time [115].
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Active particles with alignment costs

Animals often engage in tasks that involve the cooperation of all the individuals in the
group [64, 65] It is arguably the case that, for instance, some species of birds gain some
advantage in navigating in flocks. The same must hold true for the schools of fish, or herds of
sheep. Undoubtedly, the group offers protection from the attacks of predators [49]. Perhaps,
for fish, the benefit is of hydrodynamic origin, as animals experience less drag forces by
swimming in the wake of their companions [50, 116].

Collective phenomena akin to flocking are ubiquitous in the animal and microbial world,
at both large and microscopic scales. Coherent motions are observed in bacterial suspen-
sions [117] as well as in tissues during developmental processes [118].

The mechanisms used to coordinate and make decisions constitute a fascinating subject
of investigation and have been at the center of many recent studies. Most prominent among
theoretical approaches to flocking are agent-based models, a prototypical example of which is
the celebrated Vicsek model [119]. The appealing feature of these models is the minimalistic
nature of the dynamics and the interactions among the agents, which nevertheless result in
non-trivial collective motions [120, 121]. However, despite the simple behavioural rules, it is
generally impossible to predict the dynamics of agent-based models, and their investigation
is limited to numerical approaches. Alternative approaches are inspired by the similarity
of collective phenomena with the physics of gases and fluids. For example, hydrodynamic
descriptions prove to be useful in capturing large-scale features of group dynamics [122, 123].

55
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In some instances, analytical tools borrowed from the tradition of statistical physics and
critical phenomena have helped to gain insights about the nature of the interactions and
their roles in collective decision-making [124, 125].

In the context of animal behaviour, it is interesting to understand whether non-trivial
collective dynamics can emerge as a consequence of an underlying optimality principle. Be-
havioural rules are then interpreted as the strategies that the individuals in a group can
implement at an algorithmic level in order to solve an optimization task.

In this Chapter, in the same spirit as in Ch. 1, we formulate a collective task in the
framework of optimal stochastic control. The goal of the agents is to navigate the environ-
ment while keeping their orientation close to that of their neighbours, and their strategy (the
control) is included as a deterministic self-driving force. We derive the exact equations for
the optimal control, and the resulting dynamics is then analysed in the overdamped limit.
The resulting driven-diffusive process features a non-trivial relation between the force and
the noise. While the case of an arbitrary number of agents still escapes, to our knowledge,
a full-fledged analytical treatment, we were able to show that for two agents in a compact
translational invariant domain (torus), this dynamics exhibits aggregation. This result cor-
roborates numerical findings in the Vicsek model, and is worth investigating further.

3.1 Optimally controlled Langevin–Kramers dynamics

Let us study a system constituted of N agents moving in space with velocities evolving
according to the (controlled) Ornstein–Uhlenbeck process ∗,

dXi = Vi dt ,

mdVi = fi(X̄, V̄ ) dt− γVi dt+
√

2kBTγ dBi .
(3.1)

The variable Xi defines the position of agent i, moving with an instantaneous velocity Vi
which changes in time under the effect of a deterministic force fi (control), a drag force
with friction coefficient γ and a stochastic force arising from the thermal fluctuations of the
medium at temperature T . The constants kB andm are, respectively, the Boltzmann constant
and the mass of the agents. If one fixes a unit of length L0 and a reference temperature T0,
Eq. (3.1) can be written in terms of dimensionless variables by mappingX 7→ L0X, T 7→ T0 T ,
V 7→

√
kBT0/mV , t 7→ t0 t = (L0/V0)t, t 7→ ϵ−1(kBT/L0)f , γ 7→ ϵ(m/t0)γ, hence obtaining

dX̄ = V̄ dt

dV̄ = ϵ−1f̄(X̄, V̄ ) dt− ϵ−1γV̄ dt+ ϵ−1/2
√

2Dv dW̄
(3.2)

∗The notation ·̄ indicates Nd-tuples, where N is the number of agents and d is the dimension of the space
they move into. For instance, v̄ = (v1,1 . . . v1,d, v2,1 . . . vN,1 . . . vN,d), regarded as an element of RN ⊗ Rd (the
first index is the label for the particle, and the second of the spatial component. If only one index is specified,
e.g. vi, that indicates the d-tuple pertaining to particle i.
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where Dv = Tγ (in the new units) and W̃ is a standard Gaussian white noise. The quantity
ϵ is a dimensionless parameter which sets the relative timescale between the dynamics of
the (adimensional) positions X and velocities V . When ϵ ≪ 1, the dynamics of V is much
faster than that of X: this is the overdamped limit of the Langevin–Kramers dynamics,
corresponding to the case of large friction coefficient γ and/or small mass m in Eq. (3.1).

The cost per unit time (rate) paid by agent i is

ci = ϵ−1 η

2
fi(X̄, V̄ )2 +

ϵ−1

4

∑
j

k
(
Xi −Xj

) ∣∣Vi − Vj
∣∣2 + ϵ qi(X̄) . (3.3)

The first term is the cost for control, originating as the Kullback–Leibler divergence from the
uncontrolled to the controlled Langevin–Kramers path measures [73, 74]. The second term
is a cost for the velocity variables, favouring alignment of their directions. The third and last
term, is a generic cost for the spatial variables: it can account for any kind of positional cost
(e.g. a confinement) and/or interaction “potential” (e.g. penalizing collisions). Notice that,
in the limit ϵ≪ 1, the alignment interaction is at the leading order in the cost, and that the
function k, defined to be a positive, monotonically decreasing function of the distance between
agents, varies over length-scales of order 1, and is approximately constant for arbitrarily small
distances, as depicted in Fig. 3.1. The same dependence on the spatial variables is assumed
for the positional cost q. This particular scaling form of the costs and of the variables upon
taking the overdamped limit has been chosen so that the fast part of the control provides
local alignment of the velocity variables, while a slow part enters the effective dynamics of
the large-scale variables. We rigorously show this in the next sections.

The optimal control f̄∗, is the one that minimizes the expectation value of the sum of the

Fig. 3.1. Alignment interaction. The interaction kernel only depends on the distance between agents,
and it possesses a typical length λ ∼ 1. It is maximum at short distances, and it decreases monotonically
for increasing distance. The optimally controlled dynamics is expected to have spatial domains of size
λ in which velocities are positively correlated.
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cumulated costs over time

Ft =
⟨∑

i

∫ ∞

t
dt ci

⟩
=

∫ ∞

t
dt

∫
dNx dNv

[
ϵ−1 η

2
f̄(x̄, v̄)2

+
ϵ−1

4

∑
i,j

k
(
xi − xj

) ∣∣vi − vj
∣∣2 + ϵ q(x̄)

]
P (x̄, v̄, t) , (3.4)

where P is the N -particle probability density function associated to the dynamics in Eq. (3.2),
and where q =

∑
i qi.

Optimal control equations

The constrained minimization of the cost functional (3.4) can be performed by invoking the
Pontryagin minimum principle [22], and translated into the unconstrained minimization of

L[f̄, P,Φ, µ] = Ft +

∫ ∞

t
dt

∫
dNx dNvΦ(x̄, v̄, t)

[
∂tP + v̄⊤∇x̄P

+ ϵ−1∇⊤
v̄

(
f̄ P − γ v̄ P

)
− ϵ−1Dv ∇2

v̄P
]
+ µ

(
1−

∫
dNx dNvP

)
. (3.5)

The saddle point condition with respect to Φ and µ trivially yields the Fokker–Planck equa-
tion for P and its normalization while the ones with respect to f̄ and the density function P
give

f̄∗ =
1

η
∇v̄Φ (3.6)

and

∂tΦ+ v̄⊤∇x̄Φ+ ϵ−1

[
Dv∇2

v̄Φ+
1

2η

∣∣∇v̄Φ
∣∣2 − γ v̄⊤∇v̄Φ

]
= ϵ−1 1

8Dvη

∑
i,j

k(xi − xj)|vi − vj |2 + ϵ q(x̄)− µ . (3.7)

One can check that the function Φ is the value function, defined as (minus) the expected
cost-to-go from a given initial condition in the position-velocity space:

Φ(x̄, v̄, t) = −
⟨∑

i

∫ T

t
dt′ ci

∣∣∣X̄t = x̄, V̄t = v̄
⟩
. (3.8)

Through the Hopf–Cole transformation Φ = 2Dvη logZ, the system reads

f̄∗ = 2Dv∇v̄ logZ (3.9)
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with

∂tZ + v̄⊤∇x̄Z + ϵ−1
[
Dv∇2

v̄ − γ v̄⊤∇v̄

]
Z

=

(
ϵ−1 1

8Dvη

∑
i,j

k(xi − xj)|vi − vj |2 + ϵ
q(x̄)

2Dvη
− µ

2Dvη

)
Z . (3.10)

The function Z is the so-called desirability. Notice that the optimal control f̄∗ is a gradient
in velocity space of a single function of all positions and velocities of the N agents.

3.2 Multi-scale analysis in the overdamped limit

When the friction is high, or alternatively, the mass of the agents is very small, inertia plays a
very weak role compared to the stochastic forces due to thermal fluctuations. This situation
is recovered, in the adimensional version of the Langevin–Kramers dynamics in Eq. (3.2), in
the limit ϵ ≪ 1. In this case the dynamics of the velocities is much faster –by a factor ϵ−1–
than the dynamics of the spatial variables.

When a system is characterized by widely separated length and time scales, it is convenient
to introduce the auxiliary variables that “live” at each characteristic scale [44]. If we fix a
reference time scale O(1), processes with a time resolution O(ϵ) is suitably described by
the auxiliary variable tf = ϵ−1t; similarly, processes varying on much longer time scales,
e.g. O(ϵ−1), require the more natural time variable ts = ϵ t. Time derivatives are replaced,
accordingly, as ∂t 7→ ϵ−1∂tf + ∂t + ϵ∂ts . The introduction of the auxiliary variables is just a
clever mathematical trick to change the unit with which time is measured.

In the system discussed in this Chapter, the velocity variables have a well defined time
scale which is O(ϵ), and the relevant time variable is tf . Spatial variables, instead, live at
order 1 or higher. However, we shall see that it is not necessary to explicitly introduce
variables at length-scales O(ϵ−1) as only x̄ is relevant in this case.

In this section we derive the effective equations of the slow dynamics. The rationale of
this calculation is the following. First one finds the stationary state of the fast process, in
the assumption that the other variables are slowly changing over this time scale and have a
smooth behaviour at the associated typical length scales. Then the average dynamics of the
slow variables x̄ is computed by integrating out the fast variables v̄. This is the so-called
averaging procedure. It can be regarded as a generalization of the law of large numbers
for stochastic processes, in which the value of the process at a given time is replaced by its
ensemble average. The presence of a hierarchy of widely separate time scales allows one to
replace the ensemble average by the time average over an interval t ± τ , with ϵ ≪ τ ≪ 1.
Finally, we study the fluctuations of the averaged process, occurring at the time scales of
order ϵ−1. This step is referred to as homogenization. It is equivalent to the central limit
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theorem for stochastic processes, accounting for the fluctuations of the mean around the
average in the Gaussian approximation.

Here we deal with an optimization problem at the equilibrium state, i.e. in the average
setup [74]. Therefore, the time derivatives will be omitted. By introducing the auxiliary
variables, the (tilted) generator of the full process, L, is expressed as an expansion in the
time-scale separation parameter ϵ, and the HJB equation for the desirability Z reads(

L+ µ̃
)
Z ≡

(
ϵ−1M + L0 + ϵ L1 + µ̃

)
Z = 0 , (3.11)

where

M = Dv∇2
v̄ − γ v̄⊤∇v̄ −

1

8Dvη

∑
i,j

k
(
xi − xj

)
|vi − vj |2 ,

L0 = v̄⊤∇x̄ ,

L1 = − 1

2Dvη
q(x̄) ,

which are all operators of order 1. The leading term in Eq. (3.11) is the one involving the
fastest-varying variables, i.e. the velocities. The sub-leading terms, give a contribution of
order ϵ and ϵ2 with respect to the leading one. Therefore, it is sensible to look for a solution
of Eq. (3.11) in the form of an expansion,

Z = Z(0)(v̄, x̄) + ϵ Z(1)(x̄) + ϵ2 Z(2)(x̄) . . . , (3.12)

in which all the functions Z(l) are of order 1. The leading contribution is regarded as a
function of the fastest variables v̄ only, parametrically depending on the slower variables x̄.
Similarly, the sub-leading terms only depend on the variables changing on longer scales. An
equivalent expansion is consistently assumed for the eigenvalue µ̃,

µ̃ = µf (x̄) + ϵ µ(0) + ϵ(2)µ(1) + . . . . (3.13)

The leading and subleading terms in the expansion depend on the variables “living” at slower
timescales. Indeed, they correspond to the largest eigenvalues of the tilted generators at the
corresponding orders, and are calculated conditioned on the slower variables. The dynamics
at every order is slaved to the one occurring at slower timescales.

The ansatz (3.12) and (3.13) are then replaced in Eq. (3.11), which provides an equation
to be solved term by term in the ϵ-expansion.

Order ϵ−1, equilibration of the fast dynamics. The equation at the leading order
is the Bellman equation for the optimal control of the Ornstein–Uhlenbeck process on the
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velocity variables, in which the pairwise alignment cost depends parametrically on the relative
distances. The particular case in which the alignment cost is independent on the positions
of the agents is described in detail in App. A.2. If all the agents lie within a region of
linear size ≪ 1, hence much shorter than the scale over which the interaction kernel k varies
substantially, then the velocities of the agents relax to exactly the stationary state derived
in App. A.2. However, we assume that the density of agents is spread over large scales, and
the interaction will discern among agents close to or far from each other.

The leading contribution to the desirability, Z(0), is the right eigenvector corresponding
to the largest eigenvalue of the operator M ,

M Z(0) + µf Z
(0) = 0 . (3.14)

The fast generator M features a transport term in the velocity variables which makes it
non-Hermitian. However, via the transformation Z(0) = exp( γ

4Dv
v̄⊤v̄)Ψ, Eq. (3.14) is cast

into the smallest eigenvalue problem of a Hermitian operator H, †

H Ψ =
(γ
2
Nd+ µf

)
Ψ , H = −Dv∇2

v̄ +
γ2

4Dv
v̄⊤

(
Q(x̄)⊗ Id

)
v̄ , (3.15)

where Q(x̄) is the N ×N matrix with entries

Qi,j =


1 + N−1

γ2η
κ if i = j ,

− 1
γ2η

k(xi − xj) if i ̸= j .

in which κ is the value of the interaction kernel k at very short distances, κ = limx→0 k(x).
We recognize H to be the Hamiltonian operator for a (Nd)-dimensional harmonic oscillator
in the velocity variables with potential defined by the quadratic form Q(x̄) ⊗ Id. Then, the
HJB equation (3.15) is equivalent to the ground-state problem of this harmonic oscillator,
given by the Gaussian function

Z(0)(v̄, x̄) = z(x̄) exp

{
− γ

4Dv
v̄⊤

((
Q1/2(x̄)− IN

)
⊗ Id

)
v̄

}
, (3.16)

where z is an arbitrary function of the slow variables only. For simplicity of notation, we
do not explicitly indicate the dependence of Q on the slow variables x̄; similarly, we denote
ki,j = k(xi − xj).

†If A is an N ×N matrix and B a d× d one, the matrix expressed as the Kronecker product A⊗B acts
on a vector v̄ as [(

A⊗B
)
v̄
]
i,α

≡
∑
j,β

Ai,j Bα,βvj,β .
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The derivation of the average process requires calculating the corresponding left eigen-
vector ℓ of the generator of the fast dynamics M ,

M † ℓ = Dv∇2
v̄ℓ+ γ∇⊤

v̄

(
ℓ v̄

)
− 1

8Dvη

∑
i,j

ki,j |vi − vj |2 ℓ = −µf ℓ . (3.17)

By expressing ℓ = exp(− γ
4Dv

v̄⊤v̄) Ψ̃, one finds that Ψ̃ satisfies the same eigenvalue equation
as Ψ. Therefore, the solution Ψ̃ is the same as Ψ and

ℓ(v̄, x̄) ∝ exp

{
− γ

4Dv
v̄⊤

((
Q1/2 + IN

)
⊗ Id

)
v̄

}
. (3.18)

The proportionality constant is conveniently chosen such that

ℓ Z(0) = Ψ̃Ψ z = w(v̄|x̄) z

=

(
detQ1/2

)d/2(
2πDv/γ

)Nd/2
exp

{
− 1

2Dv/γ

∑
i,j

v̄⊤
(
Q1/2 ⊗ Id

)
v̄

}
z(x̄) (3.19)

i.e. the product of left and right eigenvectors equals the corresponding local (Maxwellian)
equilibrium distribution for the velocity variables, w(v), with

∫
dv̄ w(v̄) = 1, times an arbi-

trary function of the slow variables only, z. This function is determined by the dynamics at
higher orders, which we are going to see in the following.

Order ϵ0, solution at the intermediate timescales. At next-to-leading order, the equa-
tion to solve for the correction Z(1) is

−
(
M + µf

)
Z(1) = v̄⊤∇x̄Z

(0) + µ(0)Z(0) , (3.20)

where Z(0) is given from the calculation at the previous order. Formally, one needs to invert
the operator (M + µf ). However, this operator is not invertible, as we calculated Z(0) as its
right null vector. In order to solve Eq. (3.20), one needs to specify a condition on the terms on
the right hand side. This solvability condition, referred to as the Fredholm alternative, states
that the solution must be looked for in the subspace orthogonal to the kernel of the operator
on the left hand side, i.e. Z(0). Therefore, it is obtained by projecting Eq. (3.20) onto the
left null vector of (M + µf ), practically done by multiplying by ℓ and integrating over the
velocity variables. From Eq. (3.19) one notices that this procedure is equivalent to averaging
Eq. (3.20) over the local equilibrium distribution for v̄, conditioned on the quenched variables
x̄, w(v̄|x̄). Since w has vanishing average, the solvability condition reads µ(0) = 0, and Z(1)

solves
−
(
M + µf

)
Z(1) = v̄⊤∇x̄Z

(0) . (3.21)
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Notice that, for a generic operator f ,

−
(
M + µf

)
f Z(0) =

[
−Dv∇2

v̄f + γ v̄⊤
(
Q1/2 ⊗ Id

)
∇v̄f

]
Z(0) ≡

(
Lf

)
Z(0) . (3.22)

Hence, by writing Z(1) = f(v̄)Z(0), Eq. (3.21) is equivalent to

(Lf)z = v̄⊤∇x̄z . (3.23)

We recognize that the operator L is the generator of the Ornstein–Uhlenbeck process with
a friction tensor Γ = γ

(
Q1/2 ⊗ Id

)
, and its eigenfunctions are Hermite polynomials in the

velocities along the eigenvectors of Γ. Linear functions are therefore eigenvectors of L, and
the ansatz

f(v̄) = v̄⊤A ,

solves Eq. (3.23) for
A =

1

γ

(
Q−1/2 ⊗ Id

)
∇x̄ log z . (3.24)

Then, at the next-to-leading order in the perturbation expansion, the solution of the HJB
equation in the overdamped limit is

Z ≃
(
1 +

ϵ

γ
v̄⊤

(
Q−1/2 ⊗ Id

)
∇x̄ log z

)
Z(0) . (3.25)

Notice that the solvability condition provides the effective dynamics of the variables x̄, oc-
curring on time scales of order 1. However, it turns out that such dynamics is trivial, i.e. no
dynamics occurs on these time scales in this particular case. The effective dynamics takes
place at longer time scales O(ϵ−1), and this requires to proceed to the analysis of the second
order in the ϵ expansion of the HJB equation.

Order ϵ, effective slow dynamics. At this order, we need to solve

−
(
M + µ̃

)
Z(2) = v̄⊤∇x̄Z

(1) +
1

2Dvη
q(x̄)Z(0) + µ(1)Z(0) . (3.26)

As it was described above, one needs to invoke the Fredholm alternative in order to solve
this equation for the second order correction Z(2). Here, the solvability condition becomes
the effective HJB equation for the desirability z,

1

γ

⟨
v̄⊤∇x̄

((
Q−1/2 ⊗ Id

)
∇x̄z

)⟩
− q(x̄) z + µ(1)z = 0 . (3.27)

Written explicitly in components, the first term in Eq. (3.27) is
1

γ

∑
i,α

⟨
vi,α ∂xi,α

∑
j,β

vj,β
∑
k,σ

(
Q

−1/2
j,k δβ,σ

)
∂xk,σ

z
⟩
=

1

γ

∑
i,j,k

∑
α,β

⟨vi,αvj,β⟩︸ ︷︷ ︸
Dv
γ

Q
−1/2
j,i δβ,α

∂xi,α Q
−1/2
j,k ∂xk,β

z

=
Dv

γ2

∑
i,α

∑
j

Q
−1/2
i,j ∂xj,α︸ ︷︷ ︸

∑
k

Q
−1/2
i,k ∂xk,α︸ ︷︷ ︸ z .
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The effective HJB equation for the desirability z for the slow variables is then, in a more
compact notation,

− Dv

γ2
[(
Q−1/2 ⊗ Id

)
∇x̄

]⊤(
Q−1/2 ⊗ Id

)
∇x̄z + q(x̄) z = µ(1)z . (3.28)

The optimal control f̄ is

f̄ = 2Dv ∇v̄

[
logZ(0) + log

(
1 + ϵ

Z(1)

Z(0)
+ . . .

)]
≃ −γ

((
Q1/2 − IN

)
⊗ Id

)
v̄ + ϵ

2Dv

γ

(
Q−1/2 ⊗ Id

)
∇x̄ log z .

Then the dynamics of the optimally controlled system, at the first order approximation in ϵ

for Z, is
dX̄ = V̄ dt ,

dV̄ = −ϵ−1 γ
(
Q1/2 ⊗ Id

)
V̄ dt+

2Dv

γ

(
Q−1/2 ⊗ Id

)
∇x̄ log z dt+

√
2Dv dW̄

t .
(3.29)

The probability density function p for this process satisfies the (backward) Kolmogorov
(Fokker–Planck) equation

∂tp+ ϵ−1
[
Dv∇2

v̄p− γv̄⊤
(
Q1/2 ⊗ Id

)
∇v̄p

]
+ v̄⊤∇x̄p+

2Dv

γ
(∇x̄ log z)

(
Q−1/2 ⊗ Id

)
∇v̄p = 0 . (3.30)

By applying the multi-scale analysis to this equation ‡, we see that the effective equation for
the slow variables is

∂tp+ 2D
[(
Q−1(x̄)⊗ Id

)
∇x̄ log z

]⊤∇x̄p

+D
[(
Q−1/2 ⊗ Id

)
∇x̄

]⊤(
Q−1/2 ⊗ Id

)
∇x̄p = 0 , (3.31)

where D = Dv/γ is a typical spatial diffusivity constant. Equation (3.31) is the backward
Fokker–Planck equation associated to the drift diffusion process

dX̄ = 2D
(
Q−1(X̄)⊗ Id

)
∇x̄ log z dt+

√
2D

(
Q−1/2 ⊗ Id

)
◦ dW̄ t , (3.32a)

‡The calculations are the same as for the HJB equation. An ansatz in the form p = p(0) + ϵp(1) + . . .

is used, as well as auxiliary variables tf = ϵ−1t, ts = ϵt, x̄f = ϵ−1x̄ and x̄s = ϵ x̄ are introduced. p(0) is
constant in the fast variables, and the corrensponding left eigenvector is the local equilibrium distribution for
the Ornstein–Uhlenbeck process with friction tensor Γ = γ

(
Q1/2 ⊗ Id

)
. The calculations at the lower orders

are exactly the same.
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or, in components

dXi,α = 2D
∑
j

Q−1
i,j (X̄)∂xj,α log z dt+

√
2D

∑
j

Q
−1/2
i,j (X̄) ◦ dW t

j,α , (3.32b)

which is understood in the sense of Stratonovich. Notice that the noise term in the backward
Fokker–Planck equation can also be written as

D
∑
i,α

∑
j

Q
−1/2
i,j ∂xj,α

∑
k

Q
−1/2
i,k ∂xk,α

p

=
∑
α

∑
i,j

Q−1
i,j ∂xi,α∂xj,αp+

∑
i,α

(∑
k,j

Q
−1/2
k,j ∂xj,αQ

−1/2
k,i

)
∂xi,αp ,

arising naturally from the Ito stochastic equation

dXi,α = 2D
∑
j

Q−1
i,j (X̄)∂xj,α log z dt

+D
(∑

k,j

Q
−1/2
k,j ∂xj,αQ

−1/2
k,i

)
dt+

√
2D

∑
j

Q
−1/2
i,j (X̄) dW t

j,α . (3.33)

The Ito stochastic dynamics features a spurious drift term which is due to the inhomogeneity
of the noise. In general, this spurious drift is very difficult to calculate, since it involves the
explicit calculation of the derivative of Q−1/2 for any configuration of the positions of the N
agents. However, some explicit results can be worked out for N = 2.

2-agents dynamics

The spurious drift term has a simple expression when N = 2. Indeed, one can see by direct
diagonalization of the matrix Q that its eigenvalues are

λ1 ≡ λmin(x̄) = 1 +
1

γ2η

(
κ− k(|x1 − x2|)

)
,

λ2 ≡ λmax(x̄) = 1 +
1

γ2η

(
κ+ k(|x1 − x2|)

)
,

with corresponding (normalized) eigenvectors

r(1) =
( 1√

2
,

1√
2

)⊤
,

r(2) =
(
− 1√

2
,

1√
2

)⊤
.

The orthogonal matrix R = (r(1), r(2))⊤, such that Q = R⊤ diag(λ1, λ2)R, does not depend
on the coordinates of the two agents, and the calculation of the derivative of Q−1/2 boils



66

down to the calculation of the derivatives of the eigenvalues λ1,2. The spurious drift can be
calculated to be∑

j,k

Q
−1/2
k,j ∂xj,αQ

−1/2
k,i =

1

2
(−1)i∂x2,αλ

−1
2 =

1

2
∂xi,α

[
1 +

1

γ2η

(
κ+ k(|x1 − x2|)

)]−1
,

obtained explicitly from the spectral decomposition of the matrix Q. The fact that ∂x1,αλl =

−∂x2,αλl, and that ∂xj,αλ1 = −∂xj,αλ2 is used in the derivation of the formula for the spurious
drift, and is simply a consequence of the symmetry properties of the alignment interaction
kernel k. We note in passing that this drift term is a gradient of a scalar function of the
position of the two agents.

For the 2-agent system we can provide closed formulas for the stationary distribution.
In order to do this, we convert the backward Fokker–Planck equation, Eq. (3.31), into its
forward counterpart, and seek for the stationary limit, ∂tp = 0. The forward FP equation
writes

∂tp+D
∑
i,α

∂xi,α

∑
j

Q−1
i,j

[
2p∂xj,α log z − ∂xj,αp

+
1

2
p∂xj,α log

[
1 +

1

γ2η

(
κ+ k(|x1 − x2|)

)]]
= 0 , (3.34)

where the identity∑
k,l

Q
1/2
j,k ∂xl,α

Q
−1/2
l,k = −1

2
∂xj,α log

[
1 +

1

γ2η

(
κ+ k(|x1 − x2|)

)]
has been used, obtained in a similar way as for the spurious drift. The equilibrium solution
is found by integrating once the stationary equation (3.34), and solving it explicitly:

peq(x1, x2) ∝ λ1/2max z
2 =

[
1 +

1

γ2η

(
κ+ k(|x1 − x2|)

)]1/2
z2 , (3.35)

where z is the solution of the HJB equation (3.28). If the agents move on a torus (2-
dimensional domain with periodic boundary conditions), and q = 0, i.e. no confinement or
any inter-particle positional interaction is present, the solution of Eq. (3.28) is constant. It is
interesting to notice that, if the kernel k is a positive and monotonically decreasing function
of the distance, as we assumed to be the case, the equilibrium distribution is a decreasing
function of the relative distance between the two agents. At very long time-scales, then, the
request to minimize a cost favouring alignment of the velocities results, in the overdamped
limit, in a net aggregation of the agents. This result corroborates the findings in numerical
investigations of agent-based Vicsek-like models, where aggregation is found as an effect of
the dynamics over long times. Here, we derive it analytically in the case of Langevin particles,
as a consequence of an optimization procedure.
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3.3 Discussion and perspective

In this Chapter we showed that a model of persistent random walk (the Langevin-Kramers
dynamics) allows for aggregation when it optimizes a cost function with an alignment term.
This result is obtained in the overdamped limit by studying the system of optimality equations
(Hamilton–Jacobi–Bellman and Fokker–Planck) by means of averaging and homogenization
techniques. The analytic solution of the overdamped optimally controlled dynamics is found
only in the case of two agents on a torus.

In perspective, this preliminary result may be extended to more general scenarios, e.g.
with spatial confinement and/or featuring more than two agents. The calculation of the
stationary state distribution for a generic N seems a daunting task, because it involves the
diagonalization of the N ×N matrix Q, which contains all agent-agent distances. However,
since the statistics of the matrix Q is determined by the spatial distribution of agents, it
might be possible to exploit results from random matrix theory [126] to calculate, in a self-
consistent way, the stationary state also in this case. Another possibility is that, with a
suitable choice of the interaction kernel k, the solution of the Bellman equation and of the
stationary Fokker–Planck equation might be found to have a formal connection with models
in statistical physics, where exact results could shed light on some general principles [127–
129]. Moreover, it is interesting to investigate the possible analogies with existing physical
models of ferromagnetic liquids, e.g. spin fluids [130], and gain insights from these systems.
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4

Exact and efficient sampling
of constrained random walks

Generating constrained walks by means of stochastic techniques is generally computa-
tionally challenging [60]. This is readily illustrated by considering the inherent inefficiency of
simple resampling strategies. In such approaches one could, in principle, generate by Monte
Carlo or other schemes, a large ensemble of unrestricted walks and then reject a posteriori
those violating the constraints. This naive strategy is bound to incur in a rejection rate that
increases exponentially fast with the walk length.

A different approach was pioneered by Doob [131] for diffusive processes and recently
revisited in the physics literature, see e.g. [57–59, 132]. In short, this method is based
on the observation that any constrained random walk is exactly equivalent to an auxiliary
unconstrained one, via a suitable reweighting of the transition probability. Clearly, the
unconstrained version of the original process is typically much more amenable than the
former to computational, and even analytical treatment.

In this Chapter, we show how it is possible to represent the unconstrained auxiliary
process as an optimal search problem. We illustrate our approach with the example of a
persistent walk confined inside a cylinder and forced to reach one of its ends. The searcher
pays a cost proportional to the time spent outside of the cylinder. By finding the search
strategy that minimizes this cost function –vanishing at optimality– one is assured that all

69
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the trajectories generated lie within the cylinder. For this problem, the exact expression of
the transition probability for the jumps can be obtained analytically. We also devise an exact
sampling algorithm with very low rejection rate for these transition probabilities.

This method allows one to generate walks with arbitrarily large contour length and thus
characterize different regimes (such as the transition from weak to strong confinement, i.e.
different limits of the ratio between the persistence length and the radius of the cylinder)
that are otherwise difficult to access when the length becomes asymptotically large. We show
numerical simulations of these confined random walks performed by means of our algorithm
and we characterize analytically and numerically some of the geometric properties of these
walks relevant to the physics of polymers [62, 63, 133].

4.1 Optimal control representation of a confined walk

In this section we are going to formulate the problem of sampling a random walk confined
in a bounded region of space as a optimal search process. We derive general equations for
arbitrary geometries and will eventually specialize (and solve) them for the case of a discrete-
time process with exponentially distributed jumps confined in an infinitely long cylinder. This
example is a random walk which can be seen as a simple model of polymers with a given
persistence length.

Let us consider a searcher whose motion is described by a discrete-time Markov process Xt

with transition probabilities p(x′|x), so that the probability of a path {x1 . . . xT }, conditioned
on an initial state x0, is written as

P(x1, . . . xT |x0) = p(x1|x0) p(x2|x1) . . . p(xT |xT−1) . (4.1)

The transition probabilities p(x′|x) determine the time evolution of the probability vector ρt
(i.e. the 1-point pdf of the variable X) through the (forward) Kolmogorov equation

ρt(x) =
∑
x′

ρt−1(x
′)p(x|x′) . (4.2)

We refer to this as the uncontrolled process. This serves as a reference process, i.e. as the
model describing the random searcher in absence of constraints.

Let us imagine that the reference process Xt lives in S ⊆ Rd, and that a portion of such
a domain is a target T, which is absorbing. Let us also assume that the random walker
is allowed to occupy a portion of the total space, R ⊂ S, while trying to reach the target.
Anywhere which is not inside R or T is forbidden to the searcher.

Imposing hard constraints on the reference process is equivalent –at the level of the
ensemble of paths– to constructing an auxiliary process (or a controlled one) that satisfies
such constraints in probability. It is possible to represent the auxiliary process as the one
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that minimizes a cost functional of the trajectory. We shall see that when such a functional
is local in time, i.e. is an additive Markov process, the controlled process can be expressed
as a reweighting of the reference one.

We then define a Markov process X(u)
t with transition probabilities u(x′|x), that we refer

to as the controlled process, so that the probability of the same path writes, analogously to
Eq. (4.1),

Pu(x1, . . . xT |x0) = u(x1|x0)u(x2|x1) . . . u(xT |xT−1) . (4.3)

The probability vector, under this process, evolves in time according to

ρt(x) =
∑
x′

ρt−1(x
′)u(x|x′) . (4.4)

Notice that, although it is not included in the notation, the transition probabilities of the
auxiliary process might also depend explicitly on time.

A way of incorporating the hard constraint of staying inside the region R while reaching
the target T is to include the notion of running cost, which is paid by the searcher only when
it falls outside R or T,

q(x) =


0 if x ∈ R

−r if x ∈ T

c otherwise .

(4.5)

The positive quantity r is a terminal reward that the walker receives when it reaches the
target. The searcher accumulates these costs along its trajectory, until it reaches the target,
paying a total cost

C =
T−1∑
t=0

q(Xt+1) = c× (# of steps outside R) − r , (4.6)

where T is the first passage time at T. Notice that the terminal reward constitutes just a
constant shift in the cost function, if we consider only trajectories that arrive at the target.
We assume here that the initial condition is inside the domain R. It is clear that a searcher
that reaches T by paying a vanishing cost (minus the reward r) is one that necessarily satisfies
the constraint. This searcher is characterized as the controlled process X(u)

t which minimizes
the cost functional

C = ⟨C⟩u =
∞∑
t=0

∑
x∈S

q(x) pt+1(x) =
∞∑
t=0

∑
x,x′∈S

q(x′)u(x′|x) ρt(x) , (4.7)

where ⟨·⟩u denotes the average over the ensemble of paths with probability given by Eq. (4.3),
so ρt here denotes the probability distribution at time t of the controlled process. We conven-
tionally assign a cost for the final point of each transition. The calculation can be generalized
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to a cost function of the form
∑

t f(Xt, Xt+1). Hereafter it is implied that the domain over
which we perform the summation over values of the process is S.

It is convenient, for a reason that we shall see later, to introduce a different cost functional
that includes a regularization term which is proportional to the Kullback–Leibler divergence
from the path measure of the reference (uncontrolled) process to the path measure of the
auxiliary (controlled) process:

F = C+ ϵDKL

(
Pu

∥∥P)
= C+ ϵ

∞∑
t=1

∑
x

ρt(x)DKL

(
u(·|x)

∥∥p(·|x))
=

∞∑
t=1

∑
x,x′

(
q(x′) + ϵ log

u(x′|x)
p(x′|x)︸ ︷︷ ︸

ct(x′,x)

)
u(x′|x) ρt(x) , (4.8)

where ρt is constrained by the dynamics determined by the transition probabilities u. The last
equality in Eq. (4.8) shows that the KL regularization can be incorporated into the running
“cost” ct(xt+1, xt), as an additional on-line fluctuating entropy term, which, on average,
penalizes search strategies u that are far from the reference one. The KL divergence is indeed
a convex functional of u which vanishes only if u is equal to p everywhere. The parameter
ϵ sets a trade-off between the control cost and the cost that represents the constraint, C.
Then, it is intuitive that the hard constraint is realized in the limit ϵ → 0. However, this
regularization is convenient in that it makes the optimal control problem globally convex and
linearly solvable [74, 80, 134]. This problem then is a generalization of the diffusive case
discussed in Chapter 1.

We can derive the optimal control equations by applying the Pontryagin minimum prin-
ciple [22]. This is equivalent to the unconstrained minimization of the Lagrange functional

L[u, p, ϕ, λ] = F +
∑
t

∑
x′

ϕt(x
′)
(
pt+1(x

′)−
∑
x

u(x′|x) ρt(x)
)

+
∑
t

∑
x

λt(x)ρt(x)
(∑

x′

u(x′|x)− 1
)
, (4.9)

where the arrival time at the target is not constrained. The two extra terms impose the
constraints of the dynamics: null variations with respect to λt impose the normalization of
the transition probability u, while the one with respect to ϕt gives the (forward) Kolmogorov
equation for the probability ρt. In principle, the controlled transition probability u might
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depend explicitly on t. The variations with respect to u and p give:

∂L

∂u(x′|x)

∣∣∣∣
∗
= ρt(x)

[
ϵ
(
log

u(x′|x)
p(x′|x)

+ 1
)
+ q(x′) + λt(x)− ϕt(x

′)

]
= 0 , (4.10)

∂L

∂ρt(x)

∣∣∣∣
∗
=

∑
x′

u(x′|x)
[
ϵ log

u(x′|x)
p(x′|x)

+ q(x′)− ϕt(x
′) + ϕt−1(x)

]
= 0 . (4.11)

Multiplying the first by u(x′|x) and summing over x′, and then comparing with the second
equation, yields ϵ+ λ(x) = ϕt−1(x). This fixes the form of the optimal controller u∗(x′|x) to
be

u∗(x′|x) = p(x′|x) e−q(x′)/ϵ e[ϕt(x′)−ϕt−1(x)]/ϵ . (4.12)

The normalization condition for u∗(·|x) is the Hamilton–Jacobi–Bellman equation

eϕt−1(x)/ϵ =
∑
x′

p(x′|x) e−q(x′)/ϵ eϕt(x′)/ϵ . (4.13)

If we define Zt(x) = expϕt(x)/ϵ, Eq. (4.13) is cast into a linear equation

Zt−1(x) =
∑
x′

p(x′|x) e−q(x′)/ϵ Zt(x
′) , (4.14)

and
u∗(x′|x) = Zt+1(x

′)

Zt(x)
e−q(x′)/ϵ p(x′|x) . (4.15)

These equations are generally time-dependent. When no constraint is imposed on the time
of arrival at the target T, as in the problem formulated here as well as for the search game of
Ch. 1, the optimal strategy is time-independent, so Eqs. (4.14) and (4.15) can be written as

Z(x) =
∑
x′

p(x′|x) e−q(x′)/ϵ Z(x′) ,

u∗(x′|x) = Z(x′)

Z(x)
e−q(x′)/ϵ p(x′|x) .

(4.16)

As we already noted, the hard constraint of being inside R until reaching the target is
satisfied by setting ϵ → 0. In this limit, according to the definition of the cost in Eq. (4.5),
the exponential factor in the linear HJB equation is

lim
ϵ→0

e−q(x)/ϵ =

{
+∞ if x ∈ T

IR(x) otherwise ,

where IR is the indicator function of the allowed region R.
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It is important to note that the choice of the reference process, i.e. the uncontrolled one
with transition probabilities p(x′|x), is completely arbitrary, and is solely determined on the
basis of physical arguments (for instance, in the problem we deal with in this Chapter, we
would like it to represent a polymer with given persistence length). Indeed, it only matters
when ϵ is finite. In such cases the cost for control would be traded-off with the cost for being
outside the allowed domain, and this would “soften” the constraint.

Other cost functions

The cost functional C as defined in Eq. (4.7), is only a convenient choice in this case. Other
forms of the cost can be used for this conditioning problem, yielding the same optimal
control equations. We have seen in Ch. 1 that the “risk-sensitive” cost functional Fα =

α−1 log⟨expα(C+“reg.”)⟩u, where “reg” stands for a regularizing cost for control, can also be
solved linearly. As shown in [80, 134], for this more general form of the cost, the regularization
which makes the optimal control equations linearly solvable is the Renyi divergence, that
recovers the KL divergence in the limit α→ 0,

D1+α

(
u(·|x)∥p(·|x)

)
=

1

α
log

∑
x′

u(x′|x)1+α p(x′|x)−α −→
α→0

DKL(u(·|x)∥p(·|x)) . (4.17)

The difference between KL and Renyi divergence is apparent only in discrete-time or discrete-
state processes, while in the diffusive limit the two converge to the same functional.

4.1.1 Conditioning as reweighting

Another way of constructing an auxiliary process that satisfies the hard constraint represented
by the conditioning is the reweighting of the transition probabilities. Perhaps, this is more
natural if one thinks of a naive rejection algorithm in which the full trajectory is discarded
whenever a jump is taken outside the allowed region. This can be formally done by assigning
vanishing probability to jumps ending outside R.

The probability of a path {x1 . . . xT } under the reweighted transition probability q can
be written as

Q(x1, . . . xT |x0) =
1

ZT (x0)

T∏
t=1

p(xt|xt−1) IR(xt) , (4.18)

where ZT is a normalization factor. Notice that it satisfies a recursive relation, which has
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the form of a (backward) Feynman-Kac equation

ZT (x0) =
∑

{xi}Ti=1

T∏
t=1

p(xt|xt−1) IR(xt)

=
∑
x1

p(xt|x0) IR(x1)
∑

{xi}Ti=2

T∏
t=1

p(xt|xt−1) IR(xt)

=
∑
x1

p(xt|x0) IR(x1)ZT−1(x1) . (4.19)

In the limit T → ∞, relevant to the terminal-state setup, Eq. (4.19) becomes the stationary
equation (4.16) and the path probability Q can be written as the telescopic product

Q(x1, . . . xT |x0) =
T∏
t=1

p(xt|xt−1) IR(xt)
Z(xt)

Z(xt−1)
, (4.20)

i.e. the probability of a path generated by the Markov process with transition probabilities

q(x′|x) = p(x′|x) IR(x′)
Z(x′)

Z(x)
. (4.21)

These are exactly the same as the optimal control transition probability u∗, so Q = Pu∗ .

4.2 Constraining a jump process inside a cylindrical channel

In some cases Eq. (4.16) can be solved analytically, providing a very effective method to
sample configurations that would otherwise be exceedingly rare in an unbiased sampling
procedure. One such instance is when the confining region is a cylinder. In Fig. 4.1 we
report a scheme of the conditioning problem and some trajectories for different confining
regimes. We note here that a straightforward rejection scheme would be extremely costly in
generating constrained trajectories under strong confinement, such as those in panels c and
d in Fig. 4.1.

Besides being amenable to extensive characterization within the aforementioned frame-
work, this system was chosen for its connection with polymer chains inside nano-channels.

4.2.1 Exact solution for exponentially distributed jumps

In this paragraph we show explicitly how to solve Eq. (4.16) (in the limit ϵ → 0) when the
domain R is a cylindrical channel of radius R parallel to the z axis, with axial length 2H,
and the terminal domain to be at one of its two extremes along z:

R =
{
x, y, z

∣∣ ρ =
√
x2 + y2 ≤ R, |z| < H

}
,

T =
{
x, y, z

∣∣ ρ =
√
x2 + y2 ≤ R, z > H

} (4.22)
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(see Fig. 4.1). For this problem, the Hamilton–Jacobi–Bellman equation (4.16) reads

Z(x̄) =

∫
R

d3x′ p(x̄′|x̄)Z(x̄′) (4.23)

from which the transition probability for the auxiliary process writes

u∗(x̄′|x̄) = p(x̄′|x̄) IR(x̄′)
Z(x̄′)

Z(x̄)
. (4.24)

The exact results can be obtained in the limit of an infinitely long cylinder, H → ∞.
Let us consider the following reference (uncontrolled) process

p(x′ |x) = m2

4π

e−m |x̄′−x̄|

4π |x̄′ − x̄|
, (4.25)

Fig. 4.1. Scheme of the conditioning problem and qualitative features of the sample paths. a) The
domain in which walks are confined is a cylinder R with radius R and longitudinal extension 2H. The
target that the walks have to reach, denoted by T, is the continuation of the cylinder on one of its sides.
All the remaining part of the 3-dimensional space, is forbidden to the searcher. Below are depicted some
sample trajectories in different confinement regimes: b) weak, c) intermediate, and d) strong. Different
confinements yield different scaling regimes of geometric quantities, such as end-to-end distance, when
looking at a sub-portion of a given number of jumps (see text). Also, density fluctuations, highlighted
in panel c), are interesting and can be quantified analytically.
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where x̄ ≡ (x, y, z) indicates the position vector in R3, and the notation | · | indicates the
Euclidean norm. The parameter m controls the mean length of a jump,

ℓf ≡ ⟨ |xt+1 − xt| ⟩p = 2/m . (4.26)

We note in passing that the discrete-time process with transition probabilities given by
Eq. (4.25) can be obtained by considering a three-dimensional diffusion process with co-
efficient D and sampling it at random time intervals distributed exponentially with mean
τ = 1/(Dm2),

p(x̄′ | x̄) =
∫ ∞

0

dt

τ
e−

t
τ
e−

(x̄′−x̄)2

4Dt

(2πD t)3/2
. (4.27)

Expressing the free propagator of the Brownian motion in Fourier space and integrating over
time yields

p(x̄′ | x̄) =
∫

d3k

(2π)3
m2

k2 +m2
e−i k̄·(x̄′−x̄) , (4.28)

which is the Fourier representation of Eq. (4.25) (see Fig. 4.2).
As noted in the previous section, the particular form of the free transition probability p

is not important in the conditioning scheme, as long as it contains the necessary ingredients
of the physical system that one wants to describe. In our example, the only requirement of

Fig. 4.2. Exponential jumps as a coarse-grained Brownian walk. The reference process with transition
probabilities p(x̄′|x̄) (red line), with mean jump-length ℓf , is depicted in red. This process can be thought
of as a coarse graining of the unbiased diffusion process with diffusivity constant D, represented in grey.
Such coarse-graining is done by sampling a point on the diffusive trajectory every interval of time
distributed exponentially with average τ = 1/(Dm2) = ℓ2f/(4D).
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the free process is to have a characteristic length which can be attributed to the persistence
of the polymer. The particular choice (4.25) for the transition probability p(x̄′ | x̄) presents
the advantage of satisfying

(∇2 −m2) p(x̄′ | x̄) = −m2 δ(x̄′ − x̄) , (4.29)

where δ is the Dirac delta function. Thus, applying the differential operator ∇2 − m2 to
Eq. (4.23) gives

(∇2 −m2)Z(x̄) = −m2

∫
R

d3x′ δ(x̄′ − x̄)Z(x̄′) ,

that leads to the system of equations ∇2 Z(x̄) = 0 for x̄ in R(
∇2 −m2

)
Z(x̄) = 0 elsewhere.

(4.30)

In cylindrical coordinates the problem is separable in the longitudinal variable z and the
polar variables (θ, ρ), and the general solution of Eq.(4.30) reads

Z(x̄) =

A exp(λz) J0
(
λρ

)
for x̄ in R

B exp(λz)K0

(√
m2 − λ2 ρ

)
elsewhere,

(4.31)

where A and B are real constants, and λ is the unique solution of the eigenvalue equation
associated to Eq. (4.23),

λJ1(λR)K0

(√
m2 − λ2R

)
=

√
m2 − λ2 J0(λR)K1

(√
m2 − λ2R

)
.

(4.32)

Here Kν are the modified Bessel functions of the second kind. The function ϕ(x̄) = ϵ logZ(x̄)

is the optimal value function for the search problem, defined as (minus) the expected cost-to-
go conditioned on the starting point x̄. Therefore, when starting from the terminal region T,
the walker receives a positive reward and hence Z → ∞ for ϵ→ 0, which selects the growing
exponential in the longitudinal variable for the solution of Eq. (4.30). Combining Eqs. (4.24)
and (4.31) gives

u∗(x̄′|x̄) = p(x̄′|x̄) eλ(z′−z) J0(λρ
′)

J0(λρ)
Θ(R− ρ′) , (4.33)

where J0 is the Bessel function of the first kind of order 0, and Θ is the Heaviside theta func-
tion, representing the indicator function of the infinitely long cylinder in polar coordinates.
According to Eq. (4.33), λ−1 can be seen as a confinement-dependent length controlling the
size distribution of the jumps in the positive z-direction: larger values of λ−1 will reflect in
larger longitudinal jumps on average.
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The knowledge of the transition probability (4.33) allows for a direct sampling of the
constrained walk. With this method, the complexity of generating trajectories is independent
of the strength of the confinement, and grows linearly with the number of jumps. This allows
us to produce large samples of confined trajectories without rejections. This is especially
useful in the strong confinement limit (see Fig. 4.1), when the channel diameter is much
smaller than the jumps of the unconstrained process. In this case, virtually all free trajectories
would violate the constraints. Figure 4.1 displays three realizations of the walk, when the
reference jump length of the unconstrained walk, ℓf , increases with respect to the cylinder
radius R, i.e. from weak to strong confinement.

4.2.2 Continuum limit

In the continuum limit lf/R → 0, the process becomes a controlled Brownian motion for
which an analytical description is affordable. The effect of confining a Wiener process in the
cylindrical channel R is subsumed by an additional drift term, ū(x̄), which we refer to as the
control. The Langevin equation for the walker thus reads

dx̄

dt
= ū(x̄) +

√
2D η̄t , (4.34)

where each component of η̄t is an independent white noise. Following the same derivation as
in Sec. 1.1.1 and 4.1, one can see that the optimal control is

ū∗(x̄) = 2D∇ logZ(x̄) , (4.35)

where Z satisfies the linear version of the HJB equation (inside the cylinder R), which in this
case is the Laplace equation

∇2Z = 0 ,

supplemented with Dirichlet boundary conditions everywhere but at the interface with the
target T, where it has a finite positive value. Indeed, this corresponds to the HJB equation
for the optimal search process with no running cost, but terminal state reward. In the limit
of an infinitely long cylinder H/R→ ∞, the solution of the HJB equation is

Z(x̄) ≡ Z(ρ, z) ∝ eλz J0(λ ρ) , (4.36)

where λ = z0,1/R, with z0,1 being the smallest zero of the Bessel function J0. We then find
that the drift ū(x̄) is only a function of the radial coordinate and takes the form

ū(ρ) = 2Dλ êz − 2Dλ
J1(λ ρ)

J0(λ ρ)
êρ , (4.37)

where êz and êρ are, respectively, the unit vector pointing longitudinally to the cylinder
towards the target and the outward radial unit vector. A complete derivation of the optimal
control, Eq. (4.37), is presented in App. A.3.
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Density fluctuation along the cylinder . In the continuum limit it is also possible
to calculate analytically the statistics of the local density along the cylindrical channel,
calculated as the number of jumps counted within a longitudinal section of the cylinder,
[z0, z0 + ∆]. Due to translational invariance of the process along the cylinder, we can shift
the origin of the coordinate system so that z0 = 0. For a diffusive process, this is given by
the residence time in such interval, defined as

ϕ∆ =

∫ ∞

0
dt I∆(zt) , (4.38)

where I∆ is the indicator function of [0,∆]. If ∆ ≫ R, one expects that the counting
statistics is approximately a Poisson distribution, with average given by the ∆/(2Dλ), i.e.
the length by the average “velocity”, the fluctuations from the homogeneous configurations
being unlikely. Conversely, if ∆ ≪ R, the same average is expected, but deviations from the
homogeneous situation are large. Note that in the continuum limit the drift in the z direction
and the one in the radial direction are decoupled, so the statistics of ϕ∆ is determined by
the longitudinal drift only. In our estimates of ϕ∆, we are interested only in the case z0 < 0,
since we assume that the initial condition is infinitely far on the right, so that at z = 0

the process has equilibrated on the transverse direction. In App. A.3 it is shown that the
generating function for ϕ∆ is

G∆(s, z0 < 0) =
⟨
e−sϕ∆

∣∣z0, t = 0
⟩
=

4λα e∆(α+λ)

(α+ λ)2 e2∆α − (λ− α)2
, (4.39)

where we denote α ≡ α(s) =
√
λ2 + s/D. Note that G∆ can be written in the scaling form

G∆(s) = g̃(∆2s/D, ∆λ), where g̃ is

g̃(u, v) =
4v

√
u+ v2 e∆(

√
u+v2+v)(√

u+ v2 + v
)2
e2

√
u+v2 −

(
λ−

√
u+ v2

)2 .

In particular, the diffusion constant D can be absorbed in the scaling variable u. Hence it
follows that the probability density of the residence time ϕ∆, denoted F∆(ϕ∆), is given by
the inverse Laplace transform

F∆(ϕ∆) =
D

∆2
f̃

(
Dϕ∆
∆2

, ∆λ

)
, (4.40)

where f̃ is the inverse Laplace transform of g̃ with respect to its first variable.
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Numerical method

As the transition probability (4.33) is invariant under translation along the z-axis, the dis-
tribution of the walker positions in the transverse direction reaches a stationary state:

Pst(ρ, θ) =
ρ J2

0 (λρ)

π R2 [J2
0 (λR) + J2

1 (λR)]
, (4.41)

that verifies, for all ρ < R,∫ R

0
dρ′

∫ 2π

0
dθ′ u∗(ρ, θ | ρ′, θ′)Pst(ρ

′, θ′) = Pst(ρ, θ) ,

where ∫ 2π

0
dθ′u∗(ρ, θ | ρ′, θ′) =

∫ +∞

−∞
dz

∫ 2π

0
dθ′ u∗(ρ, θ, z | ρ′, θ′, 0) ,

= m2 J0(λρ)

J0(λρ′)

I0(cλρ
′)K0(cλρ) if ρ > ρ′

I0(cλρ)K0(cλρ
′) else.

The first point of the path, with arbitrary z coordinate, is sampled from Pst. The angular
variable θ is trivially extracted from the uniform distribution in [−π, π], while the sampling
of ρ can be done via inverse transform sampling ∗. The cumulative distribution function for
the marginal Pst(ρ) is ∫ r

0
dρPst(ρ) =

r J1(λr)

RJ1(λR)

and the inversion can be done numerically with standard (Newton) root finding methods.
We then generate confined trajectories using sampling jumps according to the distribution

in Eq. (4.33). It is convenient to introduce the instrumental probability distribution

f(x̄′|x̄) = m2 e−m |x̄′−x̄|

4π |x̄′ − x̄|C(x̄)
eλ(z

′−z) Iρ′<R , (4.42)

where C(x̄) ≡ C(ρ) = m2
(
1 − cλRI0(cλρ)K1(cλR)

)
/c2λ, obviously related to the controlled

transition probability by a multiplicative factor, u(x̄′|x̄) = f(x̄′|x̄)C(ρ)J0(λρ′)/J0(λρ). It
is possible to sample from the distribution in Eq. (4.42), by means of the inverse transform

∗If u is a random number extracted uniformly in [0, 1), if f is a probability density function and F the
corresponding cumulative distribution function, the integral equation

u =

∫ y

−∞
dx f(x) = F (y)

has a unique solution y = F−1(u) ∼ f(·).
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method, and then use the rejection in order to correct for the extra factor. For all x̄′ and
x̄ in the cylinder, u∗(x̄′ | x̄) ≤ k f(x̄′ | x̄), where k = C(ρ)/J0(λρ), which sets the rejection
threshold to J0(λρ

′) ∈ [0, 1]. This threshold decreases when the walk gets closer to the
boundaries (ρ′ → R), where it is vanishingly small in the diffusion limit (λR → z0,1). In
practice, then, once the next proposed position x̄′ is sampled from f(·| x̄), it is accepted with
probability J0(λρ′).

We here present an algorithm for sampling a three-dimensional variable x̄′ ∼ f(·|x̄), which
is entirely based on the inverse transform method. Using the change of variables

ℓ = |x̄′ − x̄| ,

ξ =
z′ − z

ℓ
∈ [−1, 1] ,

tanφ =
y′ − y

x′ − x
, φ ∈ [−π, π] ,

(4.43)

we can rewrite the measure of the jump as

f(x̄′|x̄) d3x′ = Iℓ<ℓ∗
m2 e−mℓ+λ ℓ ξ

4π C(ρ)
ℓdℓ dξ dφ , (4.44)

where ℓ∗(x̄, ξ, φ) is the maximum length that a walker starting from x̄ can travel within the
cylinder in the direction given by (ξ, φ):

ℓ∗ =
b(x̄, φ)

f(φ |x̄)

with b(x̄, φ) =
√
R2 − ρ2 sin2(φ− θ)− ρ cos(φ− θ). It is convenient to write the probability

density f(·|x̄) as

f(ℓ, ξ, φ |x̄) = f(ℓ | ξ, φ, x̄) f(ξ |φ, x̄) f(φ | x̄)

where
f(φ | x̄) =

∫ +∞

0
dℓ ℓ2

∫ 1

−1
dξ f(ℓ, ξ, φ |x̄) ,

f(ξ |φ, x̄) = 1

f(φ |x̄)

∫ +∞

0
dℓ ℓ2 f(ℓ, ξ, φ |x̄) ,

f(ℓ | ξ, φ, x̄) = ℓ2 f(ℓ, ξ, φ |x̄)
f(ξ |φ, x̄) f(φ |x̄)

.

Starting from x̄, we thus sample first the angle φ from

f(φ|x̄) = m2

2π c2λC(ρ)

[
1− cλ b(x̄, φ)K1

(
cλb(φ)

)]
, (4.45)
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then, given the angle φ, we obtain ξ from the pdf

f(ξ |φ) = m2

4π C(ρ) f(φ)

1− e−(m−λξ)ℓ∗[1 + (m− λξ)ℓ∗]

(m− λξ)2
.

For both φ and ξ we invert the cumulative distribution numerically. Notice that having
to proceed numerically does not pose any computational issue, since the distributions have
compact support, φ ∈ [−π, π] and ξ ∈ [0, 1]. Finally, ℓ is sampled from

f(ℓ | ξ, φ) = (m− λ ξ)2 ℓ e−(m−λξ)ℓ Iℓ≤ℓ∗

1− e−(m−λξ)ℓ∗ [1 + (m− λξ)ℓ∗]
, (4.46)

which we recognize to be a truncated Gamma distribution. Its generating function can be
inverted by means of the negative branch of the Lambert function, W−1.

4.3 Monte Carlo simulations of polymer confinement

We simulated trajectories produced by the optimal control probabilities u∗(x′|x), with the
algorithm just described. Each trajectory, containing a given number of jumps N , can be
thought of as the portion of a polymer that extends from one end to the other end of the
infinite cylinder. We have generated 104 realizations of the random walk confined in an
infinite cylinder, and considered subportions of N = 104 bonds, for different values of the
average jump length of the free polymer, ranging from ℓf = 9 · 10−5R to ℓf = 3R.
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Fig. 4.3. End-to-end distance versus contour length. Each colored curve is an average over 104

realizations of the walk with a fixed value of the parameter ℓf at varying total length of the polymer
(N = 1 to N = 104 jumps). The black dots represent the end-to-end distance while varying ℓf , at
fixed number of jumps N = 104. On the right, the same curves are plotted against a properly rescaled
contour length.
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We investigated the behavior of several observables that have a straightforward inter-
pretation in the language of polymer physics: the mean extension of the polymer along the
z-axis, Lz = ⟨zN − z⟩, the end-to-end distance Ree =

√
⟨∥x̄N − x̄∥2⟩ and the contour length

L = ⟨
∑N−1

i=0 ∥x̄t+1 − x̄t∥ ⟩. (see e.g. [135–137]). For details, see the published paper [138].
Three distinct regimes are observed, as seen Fig. 4.1. We talk about weak confinement,

when the average bond length ℓc of the constrained walk is still comparable to the free one,
and Ree ≪ R. In this regime the metric properties of the chain are only slightly perturbed
with respect to the free case. Intermediate confinement is realized when the average bond
length is still small relative to the cylinder diameter but the end-to-end distance is comparable
or larger, ℓc ∼ ℓf ≪ R ≲ Ree. The walk is under strong confinement when the chain
is affected even at the scale of individual bonds, ℓc ≫ ℓf ≃ R. These situations can be
identified respectively as the bulk, the de Gennes, and the Odijk regimes known from polymer
physics [62, 63].

In Fig. 4.3 we show the scaling behaviour of the end-to-end distance versus the contour
length. The blue and green curves correspond to the weak confinement case, the red ones are
for the strong confinement while the yellow and orange ones (and the black circles) explore
the intermediate confinement regime. The emergence of two different scaling regimes becomes
evident upon rescaling the chain contour length, L→ λL/m, which produces a nearly exact
collapse of the data.

In the left panel of Fig. 4.4 we show the deviation of the average length ℓc from the
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Fig. 4.4. Jump length and longitudinal extension under confinement. On the left, numerical values
of the ratio beetwen the mean jump length ℓc of the confined walker and the free jump size as a function
of the parameter 2R/ℓf . For ℓf ≪ 2R, ℓc is essentially equal to the free jump size ℓf (dashed line),
whereas for ℓf ≳ 2R it increases exponentially fast. On the right, numerical values of the extension
Lz/L as a function of the effective channel size 2R/ℓc. Each value of Lz and L is obtained over 104

realizations of the walk with fixed parameter ℓf .



85

average length ℓf in the free case as a function of the strength of the confinement 2R/ℓf .
Under weak confinement ℓf ≪ R, ℓc is essentially equal to the mean length ℓf of the bonds
for the free polymer, whereas under strong confinement ℓf ≳ R, ℓc increases exponentially
fast ℓc/R ∼ 4(R/ℓf )

3 exp[(ℓf/R)
2]. This behavior signals the appearance of long stretches of

nearly linear polymer configurations in the limit of strong confinement when the free average
bond length ℓf exceeds the channel radius R. Another customary way to present results
on the elongation statistics is given in the right panel of Figure 4.4. It displays Lz/L for
different values of 2R/ℓc, i.e. upon varying the strength of confinement. We observe two
main regimes, for 2R/ℓc smaller or larger than 1.

Fluctuations in the density of jumps along the channel

Visual inspection of the confined paths (see Fig. 4.1) suggests that they are not homoge-
neously dense along the channel but rather feature an alternation of densely and sparsely
occupied regions. To quantify this effect, we considered a measure of the variations of the
local density of jumps along the channel. This is defined as the number of jumps that fall
inside a cylindrical region of width ∆ along the z-axis, corresponding to the variable ϕ∆
introduced above. Fig. 4.5 clearly highlights the presence of local inhomogeneities in the
distribution. In fact, the shape of the right tail suggests that in the confined process there is
a higher probability to have regions with higher than average number of points. The loca-
tion of the peak of the distribution also shows that less dense regions are more likely in the
confined case. As detailed in Appendix A.3 the shape of these distributions is well captured
by the diffusive optimally controlled process.

low-density

high-density

Fig. 4.5. Inhomogeneity of the local density. The probability density for n̂ = (ϕ̂∆ − ⟨ϕ̂∆⟩)/σ∆ in
the homogeneous case (Poisson distribution, black curve) and for ∆ = 0.3R (blue curve) in the case
ℓf/R = 4.511 · 10−2. The encircled regions highlight inhomogeneities in the density of jumps. The
right tail indicates the presence of regions with higher density of points and the peak at negative values
stems from the presence of regions with lower density of points. Plots for different values of ∆ and
comparison with analytical results are shown in App. A.3.
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4.4 Conclusions and perspectives

In this Chapter, a general framework based on optimal stochastic control for the exact and
efficient generation of constrained random walks has been proposed. The formalism can
be applied to all Markov processes. In general, one has to solve numerically the linear
equation (4.16) and use its solution to obtain the transition probability for the constrained
process which can then be directly sampled by any suitable technique. Sometimes it is
possible to obtain the exact transition probability and gain exceptional numerical efficiency.

Here, we have applied this method to a discrete-time process constrained inside a cylin-
drical region. Such a system was inspired by the classical problem of polymer chains confined
inside nano-channels. For the minimalistic process considered here, we have shown that the
proposed strategy based on optimal control offers an effective way of implementing confining
constraints that would otherwise make the problem intractable with simple rejection-based
sampling strategies.

A possible extension of this work is to look at self-avoiding paths, which provide more
realistic models of polymers. This problem can be cast into an optimal control problem of
the same kind as the one discussed in Ch. 1: each point on the path would be regarded as
a walker that minimizes a cost function –a reasonable one could account for inter-particle
distance. If exact or reasonably approximate solutions could be worked out, this approach
would provide an efficient tool for simulations of macromolecules.



Appendices

A.1 Decimation of the fast coarsening dynamics
in the Conformational Spread

In this appendix we show that the decimation of the short-living incoherent states in the
Glauber-like dynamics of conformational spread model leads to the MWC model, in which
the rates generally depend on the full binding state {ℓi}Ni=1 (kept frozen at this step). Nev-
ertheless, the equilibrium properties of the resulting Markovian model only depend on the
global variable l =

∑
ℓi.

For the sake of simplicity, we will describe in detail the case ofN = 2. In the case of generic
N , and in the limit of large coupling, we compute exactly the probability of completion of
the switch after the nucleation of one domain, when all the protomers are unbound (ℓi = 0):
this provides information about the overall time scale of the concerted switching process; the
switching rates in presence of a generic occupation can be then obtained from this by means
of the detailed balance condition.

Coarsening with 2 protomers

At frozen binding, the dynamics of the activity variables is equivalent to the one of N spins
with nearest-neighbour ferromagnetic interaction with strength J , subjected to a “magnetic
field” given by Eq. (2.2):

β h(σi, ℓi) = hi σ − λi , (A.1)
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where

hi =
β

2

[
εI − εA − (ε

(I)
b − ε

(A)
b )ℓi

]
, λi =

β

2

[
εI + εA − (εAb + εIb + 2µ)ℓi

]
. (A.2)

According to Eq. (2.4), and to the considerations given in Sec. 2.2, neglecting the binding
dynamics, we can decompose the full matrix of the rates K, when γ → 1, as the sum the fast
contribution Kf ,

Kf = ωf
1 + γ

1− γ



0 eh2−λ2 eh1−λ1 0

0 0 0 0

0 0 0 0

0 e−h1−λ1 e−h2−λ2 0


, (A.3)

and a slow part Ks,

Ks = ωf



0 0 0 0

e−h2−λ2 0 0 eh1−λ1

e−h1−λ1 0 0 eh2−λ2

0 0 0 0


, (A.4)

where the row and the column index respectively correspond to the final and initial state,
labelled as in Fig. 6. We notice that the fast dynamics has two absorbing states, which
are the equilibrium configurations in the time-scale separation limit: these states are the
coherent configurations, namely those with all the protomers in the same activity state (all
spins aligned).

On the slow time scales (much longer than the coarsening process but much shorter
than the binding), we can calculate effective rates of passing from one coherent state to the
other, given by Eq. (2.13). These rates are limited by the rate of flipping one spin from the
starting coherent configuration: this is the slow process, since such transition costs an energy
∼ J ≫ β. The rates are then affected by the probabilities that, once this flip has occurred,
the process reaches the other coherent state and is not absorbed back in the starting coherent
state: such probabilities are completely determined by the fast dynamics. The difficulty in
calculating such probability stems from the fact that, for a generic number of protomers
N , a huge number of paths contributes, with amplitudes strongly dependent on the binding
configuration {ℓi}. The general way of proceeding is presented in Refs.[44–46].

In the simple example where N = 2, there are only two paths which give contribution
to the concerted transition: the flip of the first spin followed by the flip of the second one,
or the flip of the second followed by the flip of the first one. Summing up the rates of these
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Fig. 6. Time-scale separation in the dynamics of the spin-activity variable. Solid and dashed
arrows respectively indicate fast and slow transition rates. Numbers within circles are labelling of the
states. Configurations with anti-parallel spins are quickly emptied, and coherent configurations are rarely
escaped (they are absorbing state for the fast dynamics). In the case of N = 2 protomers reproduced
here, there are two paths joining one coherent configuration and the other.

possible channels yields the effective rates of the concerted switch †:

Kc(I → A) = Ks(↓↓→↑↓)
Kf (↑↓→↑↑)

Kf (↑↓→↓↓) +Kf (↑↓→↑↑)
(A.5)

+Ks(↓↓→↓↑)
Kf (↓↑→↑↑)

Kf (↓↑→↑↑) +Kf (↓↑→↓↓)
, (A.6)

and

Kc(A→ I) = Ks(↑↑→↓↑)
Kf (↓↑→↓↓)

Kf (↓↑→↑↑) +Kf (↓↑→↓↓)
(A.7)

+Ks(↑↑→↑↓)
Kf (↑↓→↓↓)

Kf (↑↓→↓↓) +Kf (↑↓→↑↑)
. (A.8)

By substituting Eqs. (2.11) and (2.12) into these expressions, we find

Kc(A→ I, {ℓi}) = ωf

{
e−h1−λ1

1 + eh1+h2−λ1+λ2
+

e−h2−λ2

1 + eh1+h2+λ1−λ2

}
(A.9)

†The parametric dependence of the rates on the binding state {ℓi} is understood, but not made explicit
in the notation.
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and

Kc(I → A, {ℓi}) = ωf

{
eh1−λ1

1 + e−(h1+h2)−λ1+λ2
+

eh2−λ2

1 + e−(h1+h2)+λ1−λ2

}
. (A.10)

Even in this simple case with 2 protomers, the first time-scale separation yields effective rates
which depend on the full binding state in a non trivial way, and not only on the sum l =

∑
ℓi.

However, being detailed balance preserved by the coarse-graining procedure, we have

Kc(A→ I, {ℓi})
Kc(I → A, {ℓi})

=
Peq(I|{ℓi})
Peq(A|{ℓi})

= e−2(h1+h2) , (A.11)

consistently with the general formula ‡

Peq(σ|{ℓi}) =
1

Z({ℓi})
eσ

∑
i hi , (A.12)

which gives the Boltzmann weights according to the Hamiltonian (2.1) restricted to the
coherent configuration (in which case the coupling term is a constant contribution cancelled
by the normalization Z). From Eq. (A.1), it is obvious that such Boltzmann weights only
depend on the global occupancy l =

∑
ℓi.

N-protomer, completely unbound case

In the general case with N protomers, all unbound §, we are able to map the coarsening
process into a simple birth–and–death process which, in the limit γ → 1, has site-independent
rates. First of all, as we remarked in the main text, because of the time-scale separation,
the fast coarsening process does not involve any state but the coherent (which are the long-
living states) and the ones with only two domain walls. Then, the coarsening is simply
a motion of the domain walls, namely an expansion or contraction of the domain which
has been nucleated, until one of the coherent states is reached. The expansion/contraction
of this domain can happen by a flip of a spin at its right or left border: if the protomer
occupancy ℓ is the same for all sites, it is not important at which side of the domain the
expansion/contraction occurs. Therefore, we can label the states visited by the coarsening
process just by the number of protomers in the, e.g., active state (spin up), denoted by n: far
from the absorbing states n = 0 and n = N , the rate of increasing or decreasing the number
of active protomers is twice the rate of moving a domain wall; the absorption rates from the
state n = 1 and n = N − 1, are the rates of absorbing the two domain walls. The process is
schematically represented here,

‡The spin variable σ in this expression corresponds to the spin-activity variable of the whole coherent
system.

§In general, with all the protomers with the same occupancy.
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0 1 . . . n n+ 1 . . . N − 1 N

N ωf e
h

ωf
1+γ
1−γ e−h

2ωf

1−γ eh

2ωf

1−γ e−h

ωf
1+γ
1−γ eh

ωf e
−h

where the (reduced) magnetic field h is the value of hi given by Eq. (A.2) specified to ℓi = 0,
so

h =
β

2
(εI − εA) .

Such (negative) value is responsible for the downward alignment of the spin-activity variables,
namely favouring the inactive state. The solid arrows represent the fast rates, while the
dashed ones are the slow rates of nucleation of one domain.

In the strong-coupling limit, γ → 1, and all the fast rates are asymptotically equal;
the coarsening dynamics is then formally described by a birth-and-death process with site-
independent rates, defined on the integer numbers between 0 and N , i.e. as asymmetric
random walk with absorbing boundary conditions. The probability of being absorbed in the
state N , starting from the state 1, is easily calculated to be

Pabs(N | 1) = eh (N−1) sinhh

sinhNh
. (A.13)

Once multiplied by the slow exit rate from 0 to 1, this gives the effective rate of switching
from the inactive to the active state, in absence of ligands:

Kc(I → A, {ℓi = 0}) = N ωf e
hN sinhh

sinhNh
= N ωf L

−1/2 sinhh

sinhNh
, (A.14)

where L is the allosteric constant of the N -protomers MWC molecule, defined in the main
text as L = (ki/ka)

N = expNβ(εA − εI). Similarly, for the opposite switch, one has

Kc(A→ I, {ℓi = 0}) = N ωf e
−hN sinhh

sinhNh
= N ωf L

1/2 sinhh

sinhNh
. (A.15)

These rates are exact up to a correction of order 1 − γ, which is exponentially small in the
coupling βJ (see Sec. 2.1). We notice that the ratio between these switching rates is the
allosteric constant L, as expected from the detailed balance condition and from the Hamilto-
nian (2.1). The one in Eq. (A.14), or, alternatively, Eq. (A.15), is the overall frequency scale
of the switching dynamics in the MWC model. All the other switching rates are found from
these ones by applying the detailed balance condition.

A.2 Optimal control of the Ornstein-Uhlenbeck process

Let us consider N controlled Ornstein–Uhlenbeck processes

mdVi =
(
fi − γ Vi

)
dt+

√
2kBTγdW

t
i , (A.16)
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where m is the mass of the particle, fi is the control (force) on the i-th particle’s velocity, γ
is the friction coefficient and T is the temperature (Einstein relation). In order to simplify
the notation, we express all the quantities in units in which m = 1, and we write

dVi =
(
fi − γ Vi

)
dt+

√
2DvdW

t
i , (A.17)

where Dv is a “diffusion” coefficient for the velocity. Every agent pays a cost per unit time

ci(v̄) =
η

2
fi

2 +
κ

4

∑
j

|vj − vi|2 : (A.18)

the first term is proportional to the (rate of) Kullback–Leibler divergence of the controlled
path measure from the uncontrolled one, therefore measuring a cost of control in terms of
relative entropy; the second term is a velocity-dependent anisotropic term, which favours
alignment of all the velocities.

Optimal control equations

At any time t, the vector of controls f̄ is chosen to minimize the cost functional

Ft =
⟨∑

i

∫ ∞

t
dt ci

⟩
=

∫ ∞

t
dt

∫
dNv

[η
2
f̄2 − κ

2

∑
i,j

|vj − vi|2
]
P (v̄, t)

=

∫ ∞

t
dt

∫
dNv

[η
2
f̄⊤f̄ +

κ

2
v̄⊤

((
NIN − U

)
⊗ Id

)
v̄
]
P (v̄, t) ,

(A.19)

(U is the N ×N matrix with all entries equal to 1) over the stationary state distribution P of
the process in Eq. (A.17), and therefore satisfying the (forward) Kolmogorov (Fokker–Planck)
equation

∂tP +∇⊤
(
P
(
f̄ − γ v̄

))
= Dv∇2P . (A.20)

This constrained minimization problem corresponds to the unconstrained optimization prob-
lem of the functional

L[f̄, P,Φ, µ] = Ft +

∫ ∞

t
dt

∫
dNvΦ(v̄, t)

[
∂tP +∇⊤

(
P
(
f̄ − γ v̄

))
−Dv∇2P

]
− µ

(
1−

∫
dNv P

)
(A.21)

where Φ and µ are Lagrange multipliers enforcing the constraints, respectively, of the dynam-
ics and the normalization of P . The optimality equations are found by seeking for stationary
points of the functional L. This is a formulation of the so-called Pontryagin minimum prin-
ciple.
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Null variation with respect to Φ trivially yields the dynamics of P , and the one with
respect to µ gives the normalization condition. Stationarity with respect to f̄ and P yield
the expression for the optimal control,

f̄∗ =
1

η
∇Φ (A.22)

(in components f∗i,α = η−1∂vi,αΦ), and the HJB equation for Φ,

��∂tΦ+Dv∇Φ+
1

2η

∣∣∇Φ
∣∣2 − γv̄⊤∇Φ− κ

2
v̄⊤

((
NIN − U

)
⊗ Id

)
v̄ + µ = 0 . (A.23)

where the time derivative of Φ is neglected because we require optimality at the steady state
(for t→ −∞). The HJB equation can be cast into a linear form by means of the Hopf–Cole
transformation, Φ = 2Dvη logZ:

−Dv∇2Z + γv̄⊤∇Z +
κ

4Dvη
v̄⊤

((
NIN − U

)
⊗ Id

)
v̄ Z = µ̃Z (A.24)

where µ̃ = µ/2Dvη, and then
f̄∗ = 2Dv∇ logZ . (A.25)

By substituting Z = exp
(
γv̄⊤v̄/4Dv

)
Ψ, the HJB equation (A.24) reads

−Dv∇2Ψ+
γ

4Dv
v̄⊤

(
Q⊗ Id

)
v̄Ψ =

(γ
2
N d+ µ̃

)
Ψ , (A.26)

where

Qi,j =

{
1 + (N − 1) κ

γ2η
if i = j ,

− κ
γ2η

if i ̸= j .

Notice that in terms of the function Ψ the control is

f̄∗ = γ v̄ + 2Dv∇ logΨ ,

hence the dynamics of V̄ is

dV̄ = 2Dv∇ logΨ dt+
√
2DvdW

t
i

Exact solution for the stationary state

The optimization problem is reduced to finding the eigenvector corresponding to the smallest
eigenvalue of the operator H, formally equivalent to the quantum-mechanical Hamiltonian
of N d-dimensional coupled harmonic oscillators with frequencies determined by the matrix
Q⊗ Id. The ground state of this quantum-mechanical problem is

Ψ = exp

{
− γ

4Dv
v̄⊤

(
Q1/2 ⊗ Id

)
v̄

}
, (A.27)
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where Q1/2 is the matrix such that
(
Q1/2

)2
= Q. The corresponding eigenvalue is such that

µ̃ =
γ

2

(
tr
(
Q1/2 ⊗ Id

)
−N d

)
=
γ d

2

(
trQ1/2 −N

)
. (A.28)

The matrix Q can be written as

Q = (1 +Na)IN − aU with a =
κ

γ2η
,

where U is the N ×N matrix with all entries equal to 1. Then the eigenvectors of Q are the
same as those of U, and the eigenvalues λ are related to those of U, λU , by

λ = 1 + a(N − λU ) .

The matrix U is N times the projector onto the space spanned by the vector r(1) = (1, . . . 1)⊤.
Therefore, its eigenvalues are N , with multiplicity 1 and corresponding eigenvector r(1), and
0 with multiplicity N − 1 and corresponding eigenvectors lying in the space orthogonal to
r(1):

λmin = 1 → r(1) = (1/
√
N, . . . 1/

√
N)⊤ ,

λmax = 1 +
κN

γ2η
→ r(2), . . . r(N) ∈ {r(1)}⊥ .

(A.29)

If R is the N × N orthonormal matrix whose rows are the eigenvectors of Q, an arbitrary
power 1/s of the matrix Q can be calculated as

Qs = R⊤ · diag
(
λsmin, λ

s
max, . . . λ

s
max︸ ︷︷ ︸

N−1

)
·R .

By means of the orthogonality relations

(R⊤R)i,j =
∑
k

r
(k)
i r

(k)
j = δi,j and (RR⊤)i,j =

∑
k

r
(i)
k r

(j)
k = r(i) · r(j) = δi,j

and by using the explicit expression for r(1), one can show that

Qs
i,j =

1

N

(
λsmin − λsmax

)
+ δi,j λ

s
max .

The components of the controls along the eigenvectors are

γ v −


γ v along the softest modes,

γ
[
1 + κN

γ2η

]1/2
v otherwise,

which lead to an anisotropic Ornstein–Uhlenbeck process with different frictions along dif-
ferent normal modes. Notice that when the particles are all moving in the same direction,
they are uncontrolled.
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The eigenvectors of the matrix Q⊗Id are r(i)⊗ê(α) (where ê(α) is the canonical basis vector
in a d-dimensional space). One notices that the softest modes of the harmonic potential (in
the direction of the eigenvectors corresponding to λmin) are characterized by all the particles
oscillating coherently in the same direction. Therefore, large oscillations characterize these
modes, while for the orthogonal ones they are much smaller.

The Fokker–Planck equation (A.20) becomes

∂tP +∇⊤(P (2Dv∇ logΨ)
)
= Dv∇2P (A.30)

from which one can see that the equilibrium distribution is

Peq(v̄) ≡ w(v̄) ∝ Ψ2(v̄) = exp

{
− γ

2Dv
v̄⊤

(
Q−1/2 ⊗ Id

)
v̄

}
. (A.31)

The covariance between the components α and β of the velocities of particles i and j, at
equilibrium, is given by

⟨vi,αvj,β⟩w =
Dv

γ
Q

−1/2
i,j δα,β , (A.32)

where

Q
−1/2
i,j =


1
N

[
1 + N−1√

1+Nκ/γ2η

]
if i = j ,

1
N

[
1− 1√

1+Nκ/γ2η

]
otherwise .

(A.33)

It is important to notice that, for large number of agents, the variance of the velocity of each
agent is ∼ N−1/2, much larger than the covariance between the velocities of different agents,
scaling like ∼ N−1.

A.3 Brownian searcher in an infinitely long cylinder

In this appendix we offer the exact solution for the optimal control of a diffusive searcher
which is constrained to move in the cylinder R and reach the target T. In the diffusive limit,
it is also possible to study analytically the statistics of some observables. One which is of
interest to quantify density fluctuations is the residence time in a longitudinal segment of the
cylinder, for which we can derive the exact moment generating function.

Exact solution of the optimal control equations

Following the same calculations as in Sec. 4.1, in which the reference process is an unbiased
random walk with diffusion constant D, and the controlled process features an additional
drift term, u(x̄),

dx̄

dt
= ū(x̄) dt+

√
2D η̄(t)
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The cylinder has a radius R and in the z direction it extends from −H to H. We impose the
following boundary conditions for the Laplace equation:

Z(R, θ, z) = 0 = Z(ρ, θ, −H)

Z(ρ, θ, H) = 1

The equation is separable and, looking for a solution of the kind Z(ρ, θ, z) = P (ρ)Θ(θ) ζ(z),
it can be written as the following equivalent system of coupled ordinary differential equation:

ζ ′′(z) = λ2 ζ(z),

Θ′′(θ) = −µ2Θ(θ),

ρ2P ′′(ρ) + ρP ′(ρ) + (λ2ρ2 − µ2)P (ρ) = 0,

where here λ and µ are real parameters. The solution to the equation for ζ which satisfies
the Dirichlet boundary conditions on the left end of the cylinder is

ζ(z) = const× sinh[λ(z +H)]

The equation for Θ satisfying the rotational invariance about the longitudinal axis of the
cylinder selects the value µ = 0 and is just a constant:

Θ(θ) = const

Finally, the solution for P is the regular Bessel function of first kind of order zero:

P (ρ) = const× J0(λ ρ)

the allowed values of λ are all and only those for which P (R) = 0, so λn = z0,n/R, where we
denote by z0,n the n-th zero of J0(x).
Therefore, the solution of the Laplace equation in the cylindrical geometry specified above
is, dropping the θ dependence,

Z(ρ, z) =

∞∑
n=1

cn sinh[z0,n (z +H)/R] J0(z0,nρ/R)

The vanishing conditions at ρ = R and z = −H is already implemented in the solution, while
the boundary condition Z|z=H = 1 fixes the coefficients cn as the solution of

∞∑
n=1

c̃n J0(z0,nx) ≡
∞∑
n=1

c̃n J0,n(x) = 1 ∀ x =
ρ

R
∈ [0, 1)
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Fig. 7. The ratio between the coefficients of the first subleading term and the leading one against
the length of the cylinder L = 2H, in logarithmic scale: the suppression of the subleading terms is
exponential in L.

where c̃n = cn sinh[2 a z0,n/R].
The set {J0,n(x)}∞n=1 is a basis of the set of function in the interval [0, 1) and they are

mutually orthogonal therein with respect to the measure dµ(x) = x dx ¶:∫ 1

0
dxx J0,n(x) J0,m(x) =

J1(z0,n)
2

2
δm,n

The coefficients c̃n are therefore found to be the (properly normalized) inner products between
the function f(x) = 1 and J0,n(x) within [0, 1):

c̃n =
2

J1(z0,n)2

∫ 1

0
dxx J0,n(x) =

2

J1(z0,n) z0,n

so that the full solution Z of the Laplace equation is

Z(ρ, z) =

∞∑
n=1

2

J1(z0,n) z0,n

sinh[z0,n (z +H)/R]

sinh[2H z0,n /R]
J0(z0,nρ/R)

In the limit H/R→ ∞ (infinite cylinder) with finite z, only the first term of the expansion
can be retained:

Z(ρ, z) ∝ exp(z0,1 z/R) J0(z0,1 ρ/R)

The drift in the effective Langevin dynamics of the conditioned Brownian motion is then

u∗(ρ, z) = 2D∇ logZ(ρ, z) = 2Dλ ez − 2Dλ
J1(z0,1ρ/R)

J0(z0,1ρ/R)
eρ,

where λ = z0,1/R.
¶For m ̸= n one can use Gradshteyn–Ryzhik, 6.521, to check the orthogonality condition; for m = n one

can integrate twice by parts using d(xJ1(x))/dx = xJ0(x).
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Density fluctuations

To study the density of beads along the cylinder, we focus on the evolution of the driven
Brownian walker (see Sec. 4.2.2) along the z-axis, described by the stochastic process:

dzt = 2Dλ dt+
√
2D dWt (A.34)

where dWt is the standard Wiener process. As described in Sec. 4.2.2 the first term is the
drift along the z-axis due to confinement. Consider now the interval [0, ∆] along the z-axis,
we define the residence time of the walker therein as

ϕ∆ =

∫ ∞

0
dt I∆(zt) , (A.35)

where I∆ is the characteristic function of [0, ∆], equal to 1 within the interval and 0 otherwise.
In general, ϕ∆ is a random variable, whose statistics depends on the initial conditions of the
process. Its moment generating function is defined as

G∆(s, z0) =
⟨
e−sϕ∆

∣∣∣ z0⟩ (A.36)

and satisfies the stationary Feynman–Kac equation

2Dλ
∂G∆

∂z0
+D

∂2G∆

∂z20
= s I∆(z0) . (A.37)

In Eq. (A.36), the average is taken with respect to the measure of the paths generated by the
dynamics in Eq. (A.34). The drift in Eq. (A.34), that drives the process towards increasing
values of zt, fixes the boundary conditions of G∆(s, z0):

G∆(s, z0) −→
z0→+∞

1 , as ϕ∆ → 0

G∆(s, z0) −→
z0→−∞

const(s) .
(A.38)

The general solution of Eq. (A.37) then reads

G∆(s, z0) =


Al e

−2λ z0 +Bl for z0 < 0

e−λz0(A+e
αx0 −A−e

−α z0) for z0 ∈ [0,∆]

Ar e
−2λ z0 +Br for z0 > ∆

where α =
√
λ2 + s/D and the Ai and Bi are constants with respect to z0. The conditions

of Eq. (A.38) then set

Al = 0 and Br = 1 . (A.39)

The four other constants are uniquely determined by imposing continuity and differentiability
of G∆ at z0 = 0 and z0 = ∆. Note that, for z0 < 0, G∆(s, z0) doesn’t depend on z0, and
thus, the statistics of ϕ∆ are independent of the specific value of z0.
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Fig. 8. Density fluctuations along the channel, diffusive approximation. Probability density functions
of the rescaled residence time ϕ̂∆ = (ϕ∆ − ⟨ϕ∆⟩)/σϕ∆ for decreasing values of ∆ (colored curves) in
the case ℓf/R = 4.511 · 10−2, compared with the homogeneous case (Poisson distribution with the
same average, black curve). As discussed in the main text the peak and the tail of each curve highlight
inhomogeneities in the system. The right tail indicates the presence of regions with higher density of
points and the peak at negative values stems from the presence of regions with lower density of points.
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