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1 Introduction

Spontaneous symmetry breaking (SSB) is a cornerstone concept in a variety of systems,

from field theory and particle physics to statistical mechanics and interacting lattice models.

The study of the occurrence of SSB plays a crucial role in the theory of phase transitions

and in the characterization of ordered phases and it highlights the interplay between SSB

and the dimensionality of the system: this interplay is customarily expressed by defining

the lower critical dimension dL as the dimension for which SSB cannot occur at finite

temperature [1].

A celebrated exact result connecting SSB and dimensionality is provided by the

Mermin-Wagner theorem [2–4]. According to the Mermin-Wagner theorem a continuous

symmetry cannot be spontaneously broken in two dimensions: dL = 2. This theorem has

been formulated for classical systems [2] and then extended to quantum systems [3, 4]. For

magnetic systems with continuous symmetry it rules out the possibility of having a non-

vanishing magnetization at finite temperature in two dimensions, and for 2d interacting

Bose gases predicts that no Bose-Einstein condensation occurs at finite temperature [3] (for

Bose gases this result has been extended to zero temperature [5]). As well known, even

though the Mermin-Wagner theorem rules out SSB and the existence of a local order pa-

rameter in two dimensions, nonetheless the Berezinskii-Kosterlitz-Thouless transition may

yet occur for the U(1) symmetry and it signaled by the algebraic behaviour of correlation

functions in the low temperature phase [6].

The Mermin-Wagner theorem for the O(N)-symmetric scalar field theory states that

for N ≥ 2 in two dimensions no SSB occurs. Although originally formulated in integer

dimensions, this result was later extended to graphs with fractional dimension [7, 8]: in
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this way one can explicitly show that for N ≥ 2 there is no SSB for d ≤ 2, with d

being real, while SSB occurs for d > 2 [9]. In [10] the study of how O(N) universality

classes depends continuously on the dimension d (and as well on N), in particular for

2 < d < 3, was recently presented. The Ising model, i.e. the N = 1 case, is different from

O(N) models with continuous symmetry (N ≥ 2) because the symmetry is discrete: in

two dimensions it notoriously has a finite temperature phase transition [11] and it can be

shown that this happens for d ≥ 2 with d real [12]. The large N -limit of O(N) models is

also interesting because for N → ∞ it is equivalent to the spherical model [13], which is

exactly solvable [14].

The O(N) model represents then an ideal playground to study the interplay of SSB

and dimensionality and to test whether (and how) the appearance of SSB depends on the

approximation schemes. A powerful method used to consider the phase structure of a

model, and consequently to study the appearance of SSB, is the functional renormaliza-

tion group (FRG) method [15–23]. The O(N) model has extensively studied using FRG

approaches: as relevant for our purposes, we mention it was used to study as a function

of dimension critical exponents of O(N) models [10, 24, 25] and to investigate truncation

effects and the regulator-dependence of the FRG equation [26–37], while a FRG study of

the critical exponents of the Ising model for d < 2 was presented in [24]. The study of

single-particle quantum mechanics can be seen as a “low-dimensional” statistical mechanics

model: FRG studies addressed double well potential and quantum tunneling [38, 39] and

quartic anharmonic oscillators [40].

In the FRG framework one has to solve an integro-differential equation valid for func-

tionals which is usually handled resorting to approximations. It is in general of great im-

portance to know “how good” are the used approximations and to test them against exact

results. An approximation commonly used is the Local Potential Approximation (LPA), in

which the wave-function renormalization and higher derivative terms in the effective action

are discarded, resulting in a vanishing anomalous dimension [16–23]. Furthermore, one of-

ten treats LPA introducing further approximations via the introduction of a finite number

of couplings, defined as the Taylor coefficient of an expansion of the potential around the

zero (or the minimum) of the field, and studying their renormalization group (RG) flow.

In this paper our goal is two-fold: i) from one side we aim at discussing what level of

approximation is needed to reproduce the Mermin-Wagner theorem and to show that no

SSB occurs for d ≤ 2 with d real and N ≥ 2, ii) from the other we intend to investigate

how truncation affects the occurrence or non-occurrence of SSB comparing/contrasting the

obtained findings with the exact prediction of the Mermin-Wagner theorem. Our findings

for systems with continuous symmetry can be summarized as follows:

i) LPA, when treated exactly, is enough to reproduce the Mermin-Wagner theorem;

ii) defining the couplings as the coefficients of a Taylor expansion of the effective poten-

tial centered in the zero, we have that, for any finite number of couplings in LPA,

SSB appears also when it should not (i.e., for d ≤ 2 and N ≥ 2), and the corre-

sponding (spurious) Wilson-Fisher fixed points lie on the line defined by vanishing

mass beta functions. On the other hand using a Taylor expansion of the potential
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around the minimum we can recover Mermin-Wagner theorem even for finite number

of couplings.

For the Ising model (N = 1) the SSB occurs for d > 2, again in agreement with exact

results. We will also discuss in detail the limit N →∞ (the spherical model), where LPA

provides exact results for the critical exponents, due to vanishing anomalous dimension

(the question of exactness of large N LPA equation was raised in [41] and discussed in

detail in [42]).

The paper is organized as follows: after introducing in section 2 the FRG treatment

for the O(N) model in dimension d, in section 3 we discuss for a general value of N

the occurrence of SSB in LPA when a finite number of couplings is used, we discuss the

expansion of the effective potential around the zero field; results for the Taylor expansion

around the minimum are also presented. The limit N → ∞ is discussed in section 4,

while an LPA treatment of the appearance of SSB without truncations is presented in

section 5. Our conclusions are presented in section 6, while in appendix A we collect useful

informations on the regulator functions used in the main text and in appendix B we provide

an alternative argument to show the validity of the Mermin-Wagner theorem at LPA level.

2 Functional renormalization group for the O(N) model

In the framework of the Kadanoff-Wilson RG approach [15] the differential RG transfor-

mations are realized via a blocking construction consisting in the successive elimination

of the degrees of freedom which lie above the running momentum cutoff k. Consequently,

the effective theory defined by the blocked action contains quantum fluctuations whose

frequencies are smaller than the momentum cutoff [43–45]. This procedure generates the

functional RG flow equation (Wetterich equation) for the effective action Γk[φ]:

k∂kΓk[φ] =
1

2
Tr
[
k∂kRk/(Γ

(2)
k [φ] +Rk)

]
,

where Γ
(2)
k [φ] denotes the second functional derivative of the effective action. Rk is a

properly chosen infrared (IR) regulator function which fulfills a few basic constraints to

ensure that Γk approaches the bare action in the UV limit (k → Λ) and the full quantum

effective action in the IR limit (k → 0): details are reported in appendix A, where we also

discuss the more commonly used regulators for O(N) model and a more general choice

able to recover all major types of regulators used in literature [46]. Since RG equations

are functional partial differential equations, it is not possible to solve them in general and

approximations are required. The approximated RG flow depends on the choice of the

regulator function R and the physical results could become scheme-dependent.

One of the commonly used systematic approximations is the truncated derivative ex-

pansion where the effective action is expanded in powers of the derivative of the field

Γk[φ] =

∫
x

[
Uk(φ) + Zk(φ)

1

2
(∂µφ)2 + . . .

]
.

In LPA, the higher derivative terms are neglected and the wave-function renormalization

is set equal to a constant, i.e. Zk ≡ 1. The solution of the RG equations sometimes
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requires further approximations: e.g., in case of the O(N) symmetric scalar field theory

the potential can be expanded in powers of the field variable around zero (with a truncation

at the power NCUT).

By using the dimensionless potential, uk ≡ k−dUk, and dimensionless variables, the

Taylor expansion of the potential around zero reads as

uk(φ) =

NCUT∑
n=1

1

(2n)!
gn(k)φ2n. (2.1)

It is convenient to introduce a field variable ρ = (1/2)φ2 then the Taylor expanded potential

reads as

uk(ρ) =

NCUT∑
n=1

1

n!
λn(k) ρn. (2.2)

As we can see the scale-dependence is encoded in the dimensionless coupling constants,

which are related to each other as gn(k)/(2n− 1)!! = λn(k).

In LPA one obtains the following flow equation for the effective potential for the d-

dimensional O(N) model

∂tu = (d− 2)ρu′ − du+
(N − 1)Ad

1 + u′
+

Ad
1 + u′ + 2ρu′′

,

Ad =
1

2d+1

1

πd/2
1

Γ(d/2)

4

d
: (2.3)

in (2.3) dimensionless variables have been used and ∂t = k∂k, u
′ = ∂ρu, Γ(x) is the gamma

function and for the sake of simplicity here we applied the Litim regulator (as can be seen

from equation (A.3a) with b = 1).

3 The truncated O(N) model (N < ∞, NCUT < ∞)

Truncation around the zero field. Let us first show the existence of SSB in the

expanded O(N) model with finite NCUT and finite N .

Let consider to start with the simplest case: two couplings (NCUT = 2) for the Ising

case (N = 1) in d = 1. The RG flow equations for the couplings can be derived from (2.3)

and reads in this case

∂tg1 = −2g1 −
1

π

g2
(1 + g1)2

(3.1)

∂tg2 = −3g2 +
6

π

g22
(1 + g1)3

(3.2)

which is obtained by using the Litim regulator. Similar equations are obtained for general

N , d and NCUT (not reported here). In figure 1 the RG flow diagram obtained from (3.1)

for the O(N = 1) model with two couplings (NCUT = 2) for d = 1. The model does not

have any phase transition at finite temperature [11], however a Wilson-Fisher (WF) fixed

point is clearly visible in figure 1.
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2 Ê Gaussian
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Ê Infrared

Figure 1. Phase diagram of the O(N = 1) model for d = 1 dimensions obtained by the numerical

solution of the RG equations for two dimensionless couplings (NCUT = 2) using the Litim regulator.

Arrows indicate the direction of the flow. The red (dotted) line shows the separatrix and the purple

(dashed) line stands for the vanishing mass beta function curve. The Gaussian (black), the Wilson-

Fisher (green) and the IR convexity (red) fixed points are also shown.

The important point we want to stress is that flow diagrams similar to the one depicted

in figure 1 can be obtained for any finite N and any finite NCUT for dimensions 1 ≤ d < 4

(by using any regulator functions). In d = 4, the WF fixed point (green dot in figure 1)

merges to the Gaussian one (black). The IR fixed point (red) appears in any dimensions

and is related to the convexity of the potential [47–52].

Although one finds similar flows for d ≤ 2 and d > 2, there is of course an important

difference between the two cases. For d ≤ 2 the appearance of SSB is not allowed by the

Mermin-Wagner theorem, but figure 1 clearly signals the presence of SSB: the red curve

from the Gaussian to the WF fixed points separates the phases and the RG trajectories

run to the IR fixed point corresponds to the symmetry broken phase. (More comments on

the N = 1 will be given in the following.)

The WF fixed point is situated on the dashed purple line in figure 1 which is determined

by the vanishing mass beta function (to which we will refer as the VMB curve). Indeed,

from (3.1) one finds

g2 = −2πg1(1 + g1)
2 (3.3)

which depends on g1 and does not depend on higher order couplings even if NCUT is

increased. As a consequence, the VMB curve on the g1, g2 plane remains unchanged for

any finite value of NCUT. Another important observation is that any fixed point should be

situated on the VMB curve (by definition). The role of the VMB curve at LPA level was

recently discussed in [53] in connection to the FRG determination of the central charge

in d = 2.

The position of the WF fixed point on the VMB curve depends on NCUT. Similar

VMB curves can be drawn for any regulator function with the same properties, as shown

in figure 2 by projecting on the (g1, g2)-plane and applying the so called Litim-like regulator
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Figure 2. Position of the WF fixed point on the VMB curves for the O(N = 1) model in d = 1

for various values of NCUT. Different lines correspond to different regulators, i.e. 0.8 < h < 1.2 is

chosen in (3.4). The solid line corresponds to h = 1, i.e. to the Litim regulator. The IR fixed point

remains unchanged if h ≤ 1.

class. Using the notation of appendix A, this regulator class corresponds to various values

of the parameter h but with b = 1 (h = 1, b = 1 corresponds the Litim regulator):

r =

(
1

y
− h
)

Θ(1− hy) (3.4)

(the regulator (3.4) is obtained by taking the c→ 0 limit in (A.2)).

We observe that the position of the Gaussian fixed point is scheme-independent and

thus the VMB curves always start form zero and go through the scheme-dependent IR

fixed point.

We found and verified that plots qualitatively similar to figure 2 are obtained for

general N and 1 ≤ d ≤ 2 (with d real): in these cases the WF fixed points corresponding

to the different regulators for increasing NCUT tend to the (respective) IR fixed points.

This has to be contrasted with the situation in d = 3 (or more generally for real d ≥ 2),

as it is shown in figure 3: namely, for increasing values of NCUT the WF fixed points does

not tend to the IR ones as for d = 1, but tend to constant (non-trivial) WF fixed points

for d = 3, as indicated in figure 3. These non-trivial WF fixed points can be computed for

NCUT → ∞, i.e. treating exactly LPA, using the spike plot method [56, 57]. Clearly, the

position of these non-trivial WF fixed points depend on the choice of the regulator.

Again, the scenario presented in figure 3 is the same to what happens for general N

and 2 < d < 4. In order to illustrate this we plot the dependence of g1 (figure 4) and g2
(figure 5) on the truncation parameter NCUT for d = 1 and d = 3 for three different values

of N .
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Figure 3. Position of the WF fixed point on the VMB curves for the O(N = 1) model in d = 3

for various values of NCUT. Different lines correspond to different regulators, i.e. 0.8 < h < 1.2 is

chosen in (3.4) as in figure 2. The NCUT → ∞ WF fixed point (shown for the Litim regulator) is

computed using the spike plot method [56, 57].

-1.0

-0.8

-0.6
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-0.2

0.0
0 2 4 6 8 10

g
1

W
F

Ncut

Figure 4. The g1 coordinate of the WF fixed point of the O(N) model is shown as a function of

NCUT for N = 1 (black), N = 2 (red) and N = 10 (blue) from top to bottom for d = 1 (solid lines)

and for d = 3 (dashed lines).
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Figure 5. The g2 coordinate of the WF fixed point of the O(N) model as a function of NCUT: as

in figure 4 from top to bottom it is N = 1 (black), N = 2 (red) and N = 10 (blue) for d = 1 (solid

lines) and for d = 3 (dashed lines).

In summary, the results obtained for the O(N) model with finite N and finite NCUT

show the existence of SSB and a WF fixed point (distinct from the Gaussian one) for

1 ≤ d < 4 (with d real), but indicated that for NCUT → ∞ the symmetry broken phase

disappears (persists) for d ≤ 2 (d > 2). This result has to be verified without operating

the truncation of the couplings, i.e. treating exactly the LPA equation: we may refer to

this as to the “non-truncated” O(N) model to emphasize the fact that at LPA level no

approximation is done. For finite N this will be done in section 5, while the next section

is devoted to the spherical model limit N →∞.

Truncation around the minimum. Now we will consider a Taylor expansion of the

effective potential around the minimum,

uk(ρ) =

NCUT,m∑
i=2

λk,i
i!

(ρ− ρ0)i, (3.5)

where NCUT,m is the truncation number around the minimum. In this case the results

are drastically different. First of all we will consider this truncation at the minimum level

NCUT,m = 2. Obviously it is possible to relate the values of the coupling defined around

the zero g1 and g2 with the values of the coupling λ and the running minimum ρ0. However

this relations, which give the correct result for the WF fixed point, are not working for the

Gaussian fixed point, which is g1 = g2 = 0, but no solution of the fixed point equations for

ρ0 and λ has a vanishing ρ0.

The truncation around the minimum includes just one running coupling λk,2 ≡ λ and

the running minimum value ρ0. From equation (2.3) we can obtain flow equations for these
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two quantities [20, 21], we report them for general real dimension d and N ,

∂tρ0 = (d− 2)ρ0 +Ad

(
1−N − 3

(1 + 2ρ0λ)2

)
(3.6)

∂tλ = λ

(
4− d− 2Ad

(
N − 1 +

18λ

(1 + 2ρ0λ)3

))
. (3.7)

One can look for the fixed point solutions for ρ0 and λ. In the particular case of the Ising

model (N = 1) one gets, for example, the Wilson-Fisher fixed point given by

ρ0 =
4(2d− 5)2Ad

3(d− 2)3
, (3.8)

λ =
3(4− d)(d− 2)3

16(2d− 5)3Ad
. (3.9)

The corresponding expression for N > 1 are very lengthy and are not reported here.

From the solution (3.8)–(3.9) one sees that the value of the minimum ρ0 is well defined

(positive) for every value of d as long as d > 2: a similar result is valid for every N .

For d > 4 the solution for λ is negative, and, again, this is true for every N . Also it

should be noted that the coupling λ, for N = 1, is diverging at d = 2.5 and turns out to

be negative for d < 2.5, thus giving an unphysical solution for d < 2.5: we know that this

is not true, since in d = 2 for N = 1 there is SSB. This is not valid in the general N case

where the coupling λ has only a maximum and is not diverging at d = 2.5 and no sign

change is present at any value of d > 2.

In figure 6 is reported the minimum value ρ0 as a function of the dimension at the WF

fixed point for various N values, the minimum diverges for d = 2 for every N in agreement

with the Mermin-Wagner theorem. In the inset the values for the coupling λ are shown.

The coupling stays finite and positive for d > 2 and N > 1, but for N = 1 it is diverging

at d = 2.5 and turning negative at d < 2.5, then this truncation is not giving a reliable

lower critical dimension for the Ising model.

We expect that larger values of NCUT,m do not to change the main qualitative results

just presented.

This truncation, while giving the correct behavior for the SSB, cannot catch the non-

interacting (Gaussian) fixed point and thus gives only a partial description of the theory

phase space. In the next sections we will show how it is possible to reproduce some of the

correct result retrieved here and to go beyond them with a simple analysis of the exact

flow equation for the effective potential (2.3).

4 The spherical model without truncations (N = ∞, NCUT = ∞)

In this section we consider the O(N) model in the large N limit: thus we can neglect the

terms in (2.3) which are in the order of 1/N . To see this we are going to rescale (2.3) by a

parameter (AdN), and considering the new variables ρ→ ρ/(AdN) and u→ u/(AdN). The

derivative of the potential remains invariant under this rescaling u′ → ∂u/(AdN)
∂ρ/(AdN) = u′. As a

– 9 –
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Figure 6. Running minimum (main plot) and coupling (inset) values for the WF fixed point in

the truncation around the minimum at NCUT,m = 2 as a function of the dimension d, for the Ising

model (N = 1 black dashed curves), the XY model (N = 2 , blue solid curves), the Heisenberg

model (N = 3, red solid curves) and the N = 5 model (green solid curves). The Ising coupling λ is

the only one which is diverging and then turning negative at d = 2.5 this is in contrast both with

the well known exact solution of the Ising model in d = 2 and with the following argument on exact

solutions of equation (2.3).

first step, we divide the RG equations (2.3) by AdN keeping the potential non-truncated

(NCUT =∞): one finds

∂t
u

AdN
= (d− 2)

ρ

AdN
u′ − d u

AdN
+

1

1 + u′
− 1

N

1

1 + u′
+

1

N

1

1 + u′ + 2ρu′′
. (4.1)

Next we perform the rescaling

∂tu = (d− 2)ρu′ − du+
1

1 + u′
− 1

N

1

1 + u′
+

1

N

1

1 + u′ + 2ρu′′
. (4.2)

By taking the limit N →∞ the following terms remain:

∂tu = (d− 2)ρu′ − du+
1

1 + u′
. (4.3)

This simplified expression represents the RG equation for the effective potential of the

large N O(N) model in arbitrary dimension. From the equation (4.3) we can extract some

useful information. First we should differentiate it by ρ in order to get an equation for the

derivative of the potential. It reads then

∂tu
′ = (d− 2)u′ + (d− 2)ρu′′ − du′ − u′′

(1 + u′)2
. (4.4)

Since in a physically reasonable theory the potential is bounded from below, we can assume

that this potential has a global minimum at some ρ = ρ0. For ρ0 we have the following value

for the derivatives of the potential at the fixed point: u′(ρ0) = 0, u′′(ρ0) ≡ λ. Assuming

that the quartic coupling λ is finite, we have then the following equation:

0 = (d− 2)ρ0λ− λ (4.5)

– 10 –
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with the solution

ρ0 =
1

d− 2
(4.6)

which determines the cases where the minimum of the potential can be found or not in

the large N case. There is SSB if the potential has the minimum at some finite ρ0 > 0: in

the case of (4.6) we can satisfy this condition for d > 2. For d < 2 we find ρ0 < 0, hence

there will be no SSB. The d = 2 case seems to be undefined, since ρ0 → ∞ in this limit.

However, if the minimum of the potential is sent to infinity one cannot define a proper

minimum. The absence of a finite minimum indicates the absence of the spontaneous

symmetry breaking for d = 2 dimensions. This can be also seen by solving eq. (4.4) using

the method of characteristics.1 The large N limit is a frequently used technique [54] where

the results obtained can be considered as exact ones since the LPA approximation becomes

exact when N →∞ [55].

5 The O(N) model without truncations (N < ∞, NCUT = ∞)

In this section we finally consider the problem of determining the lower critical dimension

for the O(N) model for a finite N but keeping the potential non-truncated in LPA.

Let us first consider the N = 1 case by trying the following strategy: numerically

calculate the WF fixed point position for finite NCUT and approximate the limit NCUT →
∞. Notice that, without knowing the exact WF fixed point positions, it is difficult for

dimensions around d = 2 to unambiguously extract from the limit of increasing NCUT the

value of the non-truncated model. For this reason we determine the WF fixed point for

NCUT =∞ by using the spike plot method [56, 57] in LPA.

The (finite NCUT) results are plotted in figure 7 where we show that the NCUT depen-

dence of the WF fixed points on the VMB curves (obtained for Litim regulator) depends

on the value of the dimension d: several d between d = 1 and d = 3 (including d = 2)

are plotted for N = 1. Similar plots are obtained for general value of N . The positions of

the exact WF fixed points, computed by the spike plot method, are also indicated for each

case (by the symbol X).

Figure 7 clearly shows that for NCUT → ∞ the g2 coordinate of the WF fixed point

tends to a finite value for d > 2 and runs to zero for d ≤ 2: since this property is found to

be valid in LPA for general values of N , when applied to N ≥ 2 this result implies that the

LPA is enough to reproduce the content of the Mermin-Wagner theorem. For d = 2 (sixth

line from top in figure 7) one finds from the spike plot analysis that (for all N) no WF fixed

point occurs: this result is correct for N ≥ 2, but not for the Ising model (N = 1). As we

will later discuss, for the Ising model in d = 2 one needs to apply LPA′ approximation.

Given the clear numerical evidence that Mermin-Wagner is well obtained in the limit

of increasing NCUT and the excellent agreement with the spike plot method findings for

the WF fixed points, we investigated and present in the following two analytical arguments

valid for the non-truncated (exactly treated) LPA confirming these results.

1We acknowledge J.M. Pawlowski for discussions on this point.
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Figure 7. The figure shows the positions of the WF fixed points and the corresponding VMB

curves of the O(N = 1) model for various values of NCUT for 11 different values of the dimension

1 ≤ d ≤ 3 having the values d = 3, 2.8, 2.6, 2.4, 2.2, 2, 1.8, 1.6, 1.4, 1.2, 1. The VMB curves obtained

for these dimensions are plotted from the top to the bottom in decreasing order. For each value of

d, from right one has NCUT = 2, · · · , 10. The exact WF points are indicated by the symbol X and

are obtained by the spike plot method [56, 57].

In order to consider the appearance of SSB for the O(N) model for finite N but keeping

the potential unexpanded (NCUT =∞), let us start with the fixed point equation of (2.3):

putting ∂tu = 0 one has

du− (d− 2)ρu′ =
Ad(N − 1)

1 + u′
+

Ad
1 + u′ + 2ρu′′

. (5.1)

The l.h.s. of the RG equation (5.1) is linear in the effective potential. The r.h.s. depends

on the effective potential and its derivatives non-linearly, thus we introduce the notation

LP ≡ du(ρ)− (d− 2)ρu′(ρ), (5.2)

NLP ≡ Ad(N − 1)

1 + u′(ρ)
+

Ad
1 + u′(ρ) + 2ρu′′(ρ)

, (5.3)

where LP (NLP ) stands for the linear (non-linear) part. Let us consider the large field limit

(ρ� 1) of equation (5.1). First of all we assume analyticity of the effective potential [58]

at any finite value of the field, then the potential at infinity can only either be a constant

or divergent. In the first case NLP is constant at infinity and the potential will be just a

constant at any ρ. In the second case NLP in principle may vanish or tend to a constant

(eventually zero) at infinity, thus the fixed point potential u(ρ) must satisfy for large field

the condition

LP = C, (5.4)
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where C is a finite (or zero) constant to be consistently determined. Then one finds the

solution for ρ� 1

u(ρ) =
C

d
+ aρ

d
d−2 , (5.5)

where a is a proportionality constant. Now let us differentiate the previous expression of

u(ρ): this yields u′(ρ) = a d
d−2 ρ

2
d−2 , which for large ρ gives a diverging quantity for d > 2

and a zero for d < 2. In the former case we are violating the assumption that u′ is bounded

for large ρ, while in the latter the constant C is zero. In both cases we find

u(ρ) = aρ
d

d−2 (5.6)

for ρ→∞,

The general solution of equation (5.1), which is not a constant, can be then divided

into two parts,

u(ρ) = f(ρ) + aρ
d

d−2 , (5.7)

where the function f(ρ) is subjected to the condition

lim
ρ→∞

f(ρ) = 0.

The physical Gibbs free energy F (m) can be computed from the effective potential u(ρ)

passing from dimensionless variables to the dimensional ones [41]: one finds

F (m) = kdu(k2−dm2) = kdf(k2−dm2) + am
2d
d−2 , (5.8)

where m is the dimensional field of our model, which in the case of a spin system is the

average magnetic moment. The free energy of the system is obtained then in the k → 0

limit of equation (5.8), where we should distinguish between three cases.

5.1 d > 2

When d > 2 the factor k2−d in the argument of the function f(ρ), in eq. (5.8) is diverging.

However we know from the analysis of the general solution that the function f(ρ) tends to

a constant in the infinite limit of its argument, hence the Gibbs free energy for an O(N)

model in LPA for d > 2 reads

am
2d
d−2 , (5.9)

where a is positive and can be fixed following the procedure described in [58].

5.2 d < 2

In the case d < 2 the situation drastically changes. Indeed, the factor k2−d in the argument

of f(ρ) in equation (5.8) is now vanishing. The behaviour of the f(ρ) function for vanishing

argument can be obtained from equation (5.7).

Since we know that such expression should be defined for any finite value of field

ρ [58], then f(ρ) is diverging in zero, in order to compensate the divergence of ρ
d

d−2 , which
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has a negative exponent in d < 2. Thus the behaviour of f(ρ) in the limit of vanishing

arguments is

lim
x→0

f(x) = w(x)− ax
d

d−2 , (5.10)

where w(x) is finite in zero. Substituting the last expression into eq. (5.8) one obtains

kdw(k2−dm2), (5.11)

which is zero in the k → 0 limit.

In summary, we obtained that for d > 2 the critical free energy of a O(N) model can

have the form (5.9) or can be zero, thus the phase transition is present [58]. For d < 2

the fixed point free energy can only be zero and no spontaneous symmetry breaking is

allowed. In appendix B we report an alternative derivation of this result, again based on

the analysis of LPA equation.

5.3 d = 2

The previous argument cannot be directly used for d = 2. The numerical study of the

equation (5.1), i.e. LP = NLP , reveals in this case that for N ≥ 2 the LPA gives the

Mermin-Wagner result: indeed the solution for large field of u(ρ) turns out to be oscilla-

tory, therefore correctly implying the absence of SSB and the Mermin-Wagner theorem.

However, such oscillatory solutions persist for N = 1, predicting the absence of SSB, which

is clearly wrong. A derivation of the fact that in LPA without truncations SSB does not

occur in d = 2 at LPA level is provided in appendix B.

To have a complete picture of the d = 2 case one should go beyond LPA: as discussed

in [10], in LPA’ the limit of the anomalous dimension η for d→ 2 is vanishing provided that

N ≥ 2, and non-vanishing for N = 1. This gives a clear explanation in the FRG framework

of the presence or the lack of SSB in O(N) models in d = 2. Of course, the fact that there

is no SSB for N = 2 does not imply the absence of the Berezinskii Kosterlitz-Thouless

transition [59, 60], as can be seen also in FRG treatments [10, 61–63].

6 Conclusions

In this paper we studied spontaneous symmetry breaking (SSB) for O(N) models using

functional renormalization group (FRG) techniques, showing that even the local potential

approximation (LPA) when treated without further approximations is sufficient to give

qualitatively correct results. For systems with continuous symmetry (N ≥ 2) LPA gives

no SSB for d ≤ 2 and SSB for d > 2 in agreement with the Mermin-Wagner theorem

and its extension to systems with fractional dimension; in particular, simple analytical

expressions are found in the large N limit, correctly retrieving the expected results for the

spherical model. We observe that the presented results rule out any type of SSB, not only

the standard (bicritical) Wilson-Fisher (WF) fixed point, but also all the other possible

multicritical fixed points.

As a tool to assess the validity of different truncation schemes, for general N we studied

the solutions of the LPA renormalization group equations using a finite number of terms

(and different regulators), showing that SSB always occurs even where it should not (i.e. for

d≤2 for N≥2). The SSB is signalled by WF fixed points which for any possible truncation
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are shown to stay on the line defined by vanishing mass beta functions. Increasing the

number of couplings these WF fixed points tend to the infrared convexity fixed point for

d≤ 2 and to the pertinent exact LPA WF point for d> 2. Moreover we studied the case

of Taylor expansion of the effective potential around the minimum ρ0. Even when this

expansion is truncated at lowest order NCUT,m = 2, it is possible to retrieve the correct

behavior for the Mermin-Wagner theorem, since ρ0 is diverging when d→ 2. However at

this order the truncation around the minimum cannot provide the expected behavior for

the N = 1 case, since the coupling λ diverges at d= 2.5 and becomes negative below this

threshold, even if it is well known that in the Ising model the SSB occurs even at d=2.

For the Ising model (N = 1) the SSB is shown to occur for d > 2 (as it should

be), but not for d = 2 (as it should not be). At variance, finding the correct results for

d = 2 and N = 1, as well as for the Ising model in 1 < d < 2, requires to go beyond

LPA since the anomalous dimension cannot be neglected: in d = 2 the LPA without

truncations is sufficient to explain the absence of SSB for N ≥ 2, but not to predict the

presence of SSB for the Ising model. To have qualitatively correct results in d = 2 valid

for all N anomalous dimension effects as introduced in LPA′ have to be considered. This

has been recently shown in [10], which shows how LPA′ is able to reproduce numerically

the behaviour predicted by the Mermin-Wagner theorem for d → 2 and N ≥ 2 (with the

anomalous dimension η → 0 and the correlation length exponent ν →∞ [53]), and correctly

predicting at the same time SSB and a finite anomalous dimension exponent for the Ising

model. We extended these results showing that when the anomalous dimension vanishes

then no SSB transition is possible in d ≤ 2 (as it happens for the O(N ≥ 2) models).

Motivated by these findings, a study based on FRG of the Ising model in dimensions

smaller than 2 is in our opinion worthwhile of future work.

A Regulator functions

Regulator functions have already been discussed in the literature by introducing their

dimensionless form

Rk(p) = p2r(y), y = p2/k2, (A.1)

where r(y) is dimensionless. Various types of regulator functions can be chosen, but a

more general choice is the so called CSS regulator [46] which recovers all major types of

regulators in its appropriate limits. By using a particular normalization [64, 65] it has the

following form

rnormcss (y) =
exp[ln(2)c]− 1

exp
[
ln(2)cyb

1−hyb

]
− 1

θ(1− hyb), (A.2)

with the Heaviside step function θ(y) where the limits are

lim
c→0,h→1

rnormcss =

(
1

yb
− 1

)
θ(1− yb), (A.3a)

lim
c→0,h→0

rnormcss =
1

yb
, (A.3b)

lim
c→1,h→0

rnormcss =
1

exp[ln(2)yb]− 1
. (A.3c)
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Thus, the CSS regulator has indeed the property to recover all major types of regulators:

the Litim [66–68], the power-law [45] and the exponential [43, 44] ones.

B Spontaneous symmetry breaking at finite N

In this appendix we provide an alternative derivation of the validity of the Mermin-Wagner

theorem in LPA.

The fixed point equation (5.1) for the potential, using the notation (5.2)–(5.3), reads

LP = NLP . In the large field limit (ρ→∞) the potential could be diverging or bounded,

hence tending to a constant value. Let us consider in detail the second case: NLP is then

converging to a constant, since u′ and u′′ vanish and the following differential equation is

found

du(ρ)− (d− 2)ρu′(ρ) = c. (B.1)

The solution for this equation is

u(ρ) =
c

d
+ aρ

d
d−2 . (B.2)

Here, c is the constant representing the large field limit of the NLP and a is another

constant, obtained from the integration. Considering our assumption on u in the ρ → ∞
limit, namely that it is a constant, the constant of the integration can take only one value:

a = 0. It follows that u = c/d = constant (the asymptotics).

Let us now consider the case when u(ρ) is diverging in the large field limit. In this

case we need to distinguish three sub-cases considering the behaviour of the derivative,

u′(ρ), since it can be diverging, tending to a finite value or to zero. In the last two cases

NLP tends towards a constant again. So the differential equation which should be solved

has the same form as (B.1). Hence the solution is again (B.2). In the case when u′ is also

diverging NLP tend to zero, hence the differential equation slightly modifies:

du(ρ)− (d− 2)ρu′(ρ) = 0 (B.3)

yielding the solution:

u(ρ) = aρ
d

d−2 . (B.4)

Now we can consider the constant of integration a for each case. Due to the stability

requirement of the potential, that is u has to be bounded from below, a is being forced to

be a positive real for all the three sub-cases. We can then write the form of the potential

in the following as

u(ρ) = g(ρ) + aρ
d

d−2 (B.5)

where, g(ρ) is a constant (or vanishes) in the large ρ limit.

We are looking for the minimum ρ0: let us differentiate equation (B.5) and take it at

ρ = ρ0, which is assumed to be the minimum. Performing this operation one gets

0 = g′(ρ0) + a
d

d− 2
ρ

d
d−2
−1

0 . (B.6)
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The minimum can be then expressed as

ρ0 =

(
−g
′(ρ0)

a

) d−2
2
(
d− 2

d

) d−2
2

. (B.7)

We can now distinguish three sub-cases:

• for d > 2 the second factor in the expression of the minimum has a positive real value.

We have established already that the in the first factor the denominator a is positive.

Therefore g′(ρ0) must be negative or zero in order to fulfill the equation (B.6). Hence

altogether the fraction in the bracket must be positive independently from the di-

mension. So we found that for d > 2 the ρ0 can be either vanishing or finite positive.

This indicates the presence of SSB.

• for d = 2 the second factor gives a 00, which is indeterminate, or alternatively one can

define it as 1 if we consider the d = 2 case as a limit (d→ 2). In this instance what

one can see already in the (B.6) is that if we assumed for ρ0 to be a positive real,

then g′(ρ0) would be −∞ to compensate the second term. Hence (B.7) is undefined

or alternatively if we say d→ 2, then ρ0 =∞, which means there is no finite positive

minimum to consider, therefore no SSB occours in d = 2 limit.1

• for d < 2 one can immediately see that the second factor in (B.7) is going to have

complex value(s). From equation (B.6) we can conclude that g′(ρ0) ≥ 0 for d < 2.

The only value for g′(ρ0) that makes B.7 physically sensible is when g′(ρ0) = 0,

therefore the potential cannot have a true extremum (minimum) anywhere else than

ρ0 = 0. This clearly shows that there exists only a symmetric phase for dimensions

d < 2 in LPA.

For the u→ constant case we can do essentially a similar argument.

The conclusion is that the Mermin-Wagner theorem can be shown using FRG tech-

niques in the LPA.
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We are also grateful to A. Rancon for very useful comments on the effects of the truncation

around the minimum. This research was supported by the European Union and the State of

Hungary, co-financed by the European Social Fund in the framework of TAMOP-4.2.4.A/

2-11/1-2012-0001 ‘National Excellence Program’, by the TÁMOP 4.2.1./B-09/1/KONV-
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