1	Supplementary Information								
2									
3	The non-octarepeat copper binding site of the prion protein is a key regulator of prion								
4	conversion								
5									
6	Gabriele Giachin ^{1,2} , Phuong Thao Mai ^{1,9} , Thanh Hoa Tran ¹ , Giulia Salzano ¹ , Federico Benetti ^{1,10} ,								
7	Valentina Migliorati ³ , Alessandro Arcovito ⁴ , Stefano Della Longa ⁵ , Giordano Mancini ^{6,7} , Paola								
8	D'Angelo ^{3,11} and Giuseppe Legname ^{1,8,11}								
9									
10	¹ Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA),								
11	Trieste, Italy.								
12	² Structural Biology Group, European Synchrotron Radiation Facility (ESRF), Grenoble, France.								
13	³ Department of Chemistry, Sapienza University of Rome, Rome, Italy.								
14	⁴ Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.								
15	⁵ Department of Medicine, Public Health, Life and Environmental Science, University of								
16	L'Aquila, Coppito Aquila, Italy.								
1/	^o Scuola Normale Superiore, Pisa, Italy.								
18	⁷ Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Pisa, Italy.								
19	⁸ ELETTRA - Sincrotrone Trieste S.C.p.A. Trieste, Italy.								
20	⁹ Present address: University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh								
21	City, Vietnam.								
22	¹⁰ Present address: European Center for the Sustainable Impact of Nanotechnology, Veneto								
23	Nanotech S.C.p.A., Rovigo, Italy.								
24	¹¹ Correspondence should be addressed to PD (<u>n dangelo@uniromal_it</u>) and GL								
25	(legname@sissa.it).								

Figure S1. Analysis of the Cu K-edge X-ray absorption spectra. (a) Cu K-edge EXAFS 28 29 experimental data (red) and best fit theoretical signal (black) of Cu(II) WT HuPrP(90-231) protein at pH 7.0. The EXAFS fit has been carried out in the k range 2.4-13.0 Å⁻¹. The Cu(II) ion 30 is coordinated with a single histidine residue with a Cu-N distance of 1.99 Å and with a sulphur 31 atom at 3.37 Å. (b) Cu K-edge EXAFS experimental data (red) and best fit theoretical signal 32 33 (black) of Cu(I) WT HuPrP(90-231) protein at pH 7.0. The EXAFS fit has been carried out in the k range 2.5-13.0 Å⁻¹. The Cu(I) ion first coordination shell is formed by an histidine residue with 34 a Cu-N distance of 1.99 Å and a methionine residue with a Cu-S distance of 2.27 Å. 35 36

Figure S2. (a) Quantitative analysis of actin-normalized total PrP expression levels in both N2a 38 39 and ScN2a cells transfected with 3F4-tagged MoPrP constructs (n = 4). (b) Ten μ M cuprizone (CPZ) treatments (n=3) on ScN2a cells transfected with 3F4-WT MoPrP promoted increased 40 PrP^{Sc} levels. (c) N2a cells were transiently transfected with 3F4-H96Y MoPrP and regularly 41 passaged every 7 days up to passage (P) 8. The PrPres levels were monitored upon PK digestion 42 43 and detected by anti-PrP 3F4 antibody. β-actin is used as internal control. (d) The OR and non-OR mutations share the same glycosylation patterns and proteolytic features when treated with 44 Endo-H and PNGase-F as the WT MoPrP^C. The positions of diglycosylated, monoglycosylated 45 and unglycosylated forms (denoted as di, mono and un) of PrP^C are on the right of each WB. 46 PrPs were detected by anti-PrP 3F4 antibody. 47

Figure S3. (a) Cartoon representation of RMSF. Ribbon width is proportional to fluctuations; the 50 coordinates correspond to those of the first centroid obtained for each trajectory by cluster 51 52 analysis of the C-terminal domain. The ratio between radius and RMSF is the same in the two models. The average relative orientation of residues 106-109 and 114-117 (colored in magenta) 53 54 in the 1His system is also clearly observable. (b) Radius of gyration (R_g) calculated for the 2His (black) and 1His (red) trajectories. The R_g of the 2His trajectory features transitions between 55 different conformation with R_g up to 2 nm with a lifetime of several nanoseconds each while the 56 R_g of the 1His simulated is stably oscillates around 1.74 nm. 57

а

b

WT WT H61Y H69Y H77Y H85Y H96Y Mut1 Mut2 H96Y* H96Y**

С

d

е

60 Figure S4. Full-length western-blots (WB) presented in Figure 4a and 4c in the main manuscript. Arrows (∇ , \triangleright and \triangleleft) indicate positions on the gels where the blots have been cropped. (a), 61 fifty µg of undigested lysates from ScN2a cells expressing 3F4-tagged WT and mutated MoPrPs was 62 applied to each lane. Mut1 and Mut2 are ScN2a cell lysates expressing 3F4-tagged constructs 63 64 pcDNA3.1::MoPrP(1-254, H61Y, H69Y, H77Y, H85Y) and pcDNA3.1::MoPrP(1-254, H61Y, H69Y, H77Y, H85Y, H96Y), respectively (not considered in this work). (b), five hundred µg of cell lysate was 65 digested with PK (20 µg/mL) at 37°C for 1 hour. H96Y* and H96Y** are ScN2a cell lysates expressing 66 3F4-H96Y mutant digested with 10 and 5 µg/mL PK, respectively. Mut1 and Mut2 constructs have not 67 been considered in this work. (c) and (e), full-length WB presented in Figure 4c. (d), β -actin signals 68 (arrows \blacktriangleright and \blacktriangleleft) on WB membrane previously probed with 3F4 antibody. 69

70

72

+ PK

d

100	EE		
황영영	122	22	
			12.84

WT H96Y H96Y H96Y H96Y H96Y WT WT WT H96Y H96Y H96Y P8 P4 P5 P6 P7 P8 P1 P2 P3 P1 P2 P3 Y

3F4-H96Y 3F4-WT

b

С

а

- PK

74 Figure S5. Full-length western-blots (WB) presented in Figure 5a and 5c in the main manuscript. Arrows ($\mathbf{\nabla}$) indicate positions on the gels where the blots have been cropped. The H96Y mutant 75 displays PK-resistance when expressed in N2a cells regularly passaged every 7 days up to passage (P) 8. 76 77 Cell lysates were treated with 2 or 5 µg/mL of PK. Two exposures of the same blot are shown: (a) faint, 30 sec exposure; (b) dark, 6 min exposure. PTA-extracted PrP^{Sc} from N2a cells transfected with 3F4-78 79 H96Y MoPrP were inoculated into N2a cells and regularly passaged every 7 days up to P8. (c), fifty ug of 80 undigested lysates from N2a cells expressing 3F4-tagged WT and H96Y MoPrPs at different passages. 81 (d), the PrPres detection was assessed by PK digestion (5 µg/mL) through passages (lines 1-7). ScN2a WT* and ScN2a WT** (lines 8-9) are ScN2a cell lysates expressing 3F4-WT MoPrP digested with 10 82 and 5 µg/mL PK, respectively. ScN2a H96Y* and ScN2a H96Y** (lines 10-11) are ScN2a cell lysates 83 expressing 3F4-H96Y MoPrP digested with 10 and 5 µg/mL PK, respectively. 84

85

Cu(II) WT pH=5.5 (1)			Cu(II) WT pH=7.0 (2)			Cu(II) Q212P pH=5.5 (3)			Cu(II) Q212P pH=7.0 (4)		
Ν	R (Å)	$\sigma^2({\rm \AA}^2)$	N	R (Å)	$\sigma^2({\rm \AA}^2)$	N	R (Å)	$\sigma^2({\rm \AA}^2)$	N	R (Å)	$\sigma^2(\text{\AA}^2)$
$2 \ N_{His}$	1.98(2)	0.006(3)	1 N _{His}	1.99(2)	0.006(3)	1 N _{His}	2.00(2)	0.007(3)	1 N _{His}	1.99(2)	0.007(3)
2 O/N	1.98(2)	0.008(3)	3 O/N	1.99(4)	0.009(3)	3 O/N	1.99(2)	0.009(3)	3 O/N	1.99(3)	0.009(3)
1 O	2.31(3)	0.013(4)	10	2.38(4)	0.012(4)	10	2.40(4)	0.013(4)	10	2.39(3)	0.012(4)
1 S	3.25(4)	0.013(4)	1 S	3.37(4)	0.013(4)	1 S	3.47(4)	0.014(4)	1 S	3.45(4)	0.012(4)
Cu(II) P102L pH=5.5 (5)			Cu(II)	P102L pH	=7.0 (6)	Cu(II)	H96Y pH	=5.5 (7)	Cu(II)	H96Y pH	=7.0 (8)
Ν	R (Å)	$\sigma^2({\rm \AA}^2)$	N	R (Å)	$\sigma^2({\rm \AA}^2)$	N	R (Å)	$\sigma^2({\rm \AA}^2)$	Ν	R (Å)	$\sigma^2({\rm \AA}^2)$
1 N _{His}	2.00(3)	0.006(3)	1 N _{His}	1.99(2)	0.006(3)	1 N _{His}	2.00(2)	0.007(3)	1 N _{His}	2.00(2)	0.008(3)
O/N	1.99(3)	0.008(3)	3 O/N	1.99(3)	0.009(3)	3 O/N	1.99(2)	0.009(3)	3 O/N	1.99(2)	0.008(3)
10	2.34(4)	0.013(4)	10	2.38(3)	0.012(4)	10	2.40(3)	0.013(4)	10	2.39(3)	0.012(4)
1 S	3.32(4)	0.013(4)	1 S	3.38(4)	0.013(4)	1 S	3.47(4)	0.014(4)	1 S	3.45(4)	0.013(4)
Cu(I) WT pH=5.5 (9)			Cu(I) WT pH=7.0 (10)			Cu(I)	Q212P pH=	=5.5 (11)	Cu(I) Q212P pH=7.0 (12)		
Ν	R (Å)	$\sigma^2(\text{\AA}^2)$	N	R (Å)	$\sigma^2({\rm \AA}^2)$	N	R (Å)	$\sigma^2(\text{\AA}^2)$	N	R (Å)	$\sigma^2({\rm \AA}^2)$
$2 \ N_{His}$	1.98(2)	0.006(3)	1 N _{His}	1.98(2)	0.007(3)	1 N _{His}	1.99(2)	0.007(3)	1 N _{His}	1.99(2)	0.007(3)
2 O/N	1.99(3)	0.009(3)	1 O/N	2.00(2)	0.009(3)	1 O/N	1.99(2)	0.009(3)	3 O/N	1.99(3)	0.009(3)
1 O	2.32(4)	0.014(4)	1 S	2.27(4)	0.009(4)	1 S	2.28(4)	0.008(3)	1 S	2.27(3)	0.009(4)
1 S	3.26(5)	0.013(4)									
Cu(I) P	102L pH=	5.5 (13)	Cu(I) P102L pH=7.0 (14)								
Ν	R (Å)	$\sigma^2(\text{\AA}^2)$	N	R (Å)	σ^2 (Å ²)						
1 N _{His}	2.00(2)	0.009(3)	1 N _{His}	1.99(2)	0.008(3)						
1 O/N	1.99(2)	0.009(3)	3 O/N	1.99(3)	0.009(3)						
1 S	2.28(4)	0.009(3)	10	2.29(3)	0.010(4)						

Table S1. Structural parameters derived from the EXAFS analysis. Structural parameters detemined from the fit of the EXAFS data at the Cu K-edge of samples 1 to 14. N is the coordination number, R is the distance between the copper ion and the ligand, σ^2 is the Debye-Waller factor. Statistical errors are reported in parentheses. Codes 1 to 14 correspond to the

following samples: Cu(II) WT HuPrP(90-231) pH5.5 (1), Cu(II) WT HuPrP(90-231) pH 7.0 (2),
Cu(II) HuPrP(90-231, Q212P) pH 5.5 (3), Cu(II) HuPrP(90-231, Q212P) pH 7.0 (4), Cu(II)
HuPrP(90-231, P102L) pH 5.5 (5), Cu(II) HuPrP(90-231, P102L) pH 7.0 (6), Cu(II) HuPrP(90-231, H96Y) pH 5.5 (7), Cu(II) HuPrP(90-231, H96Y) pH 7.0 (8), Cu(I) WT HuPrP(90-231) pH
5.5 (9), Cu(I) WT HuPrP(90-231) pH 7.0 (10), Cu(I) HuPrP(90-231, Q212P) pH 5.5 (11), Cu(I)
HuPrP(90-231, Q212P) pH 7.0 (12), Cu(I) HuPrP(90-231, P102L) pH 5.5 (13), Cu(I) HuPrP(90-231, P102L) pH 7.0 (14)