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While singularities are inevitable in the classical theory of general relativity, it is commonly believed that
they will not be present when quantum gravity effects are taken into account in a consistent framework.
In particular, the structure of black holes should be modified in frameworks beyond general relativity that
aim at regularizing singularities. Being agnostic on the nature of such theory, in this paper we classify the
possible alternatives to classical black holes and provide a minimal set of phenomenological parameters
that describe their characteristic features. The introduction of these parameters allows us to study, in a
largely model-independent manner and taking into account all the relevant physics, the phenomenology
associated with these quantum-modified black holes. We perform an extensive analysis of different
observational channels and obtain the most accurate characterization of the viable constraints that can be
placed using current data. Aside from facilitating a critical revision of previous work, this analysis also
allows us to highlight how different channels are capable of probing certain features but are oblivious to
others, and pinpoint the theoretical aspects that should be addressed in order to strengthen these tests.
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I. INTRODUCTION

Black holes comprise a remarkably elegant collection of
solutions of the classical Einstein field equations. Aside
from their rich mathematical structure, they are nowadays
accepted as legitimate astrophysical objects and are rou-
tinely used in order to explain astrophysical observations
(e.g., [1,2]). Moreover, they provide essentially the best
laboratory (only rivaled by cosmology) in which strong
gravity, and perhaps even quantum gravity, can be put to the
test. This makes black hole physics a topic of interest for a
wide range of physicists, working on theoretical as well as
observational aspects.
While this provides a fertile soil for the growth of strong

interactions between theorists and experimentalists, these
interactions are sometimes not as coherent as they might be,
and many aspects of them can certainly be improved. On
the one hand, observational studies often disregard the
precise meaning of certain mathematical definitions, to the
extent of discussing the observability of notions that are by
definition not observable (the best example is the notion of
event horizon [3]). On the other hand, theoretical studies
tend to oversimplify the connection between theoretical

models and observations, sometimes lacking a careful
analysis of what is realistically observable or not.
The discussion in this paper is divided in two sections.

Section II consists of a brief review of the different
scenarios that have been proposed in the literature in order
to avoid theoretical problems that are inherent to classical
and semiclassical black holes (e.g., the singularity or
information loss problems), including a discussion about
the plausible connections between some of these scenarios.
Section III focuses on the observational tests that are
available to probe the structure of astrophysical black
holes, with the goal of emphasizing how close we are to
testing the existence of all the relevant mathematical
elements of these objects as described by general relativity,
and parametrizing the room that is still available for
alternatives in terms of a set of phenomenological param-
eters introduced here for the first time. The meaning of
these phenomenological parameters is illustrated by com-
parison with the scenarios described in Sec. II.
This work is not intended to be an exhaustive review that

encompasses all the previous developments in the subject.
Rather, our goal is providing a critical and thorough
assessment of the observational and theoretical uncertain-
ties in our current understanding of astrophysical black
holes. Hence, the selection of topics in this paper does not
follow from a completeness criterion. We have selected
instead a number of issues that remained obscure or that
demanded a more detailed analysis, and we provide the
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necessary background to understand their importance and
clarify them. Section II provides the background and
motivation for the phenomenological parametrization at
the core of this paper. This parametrization, introduced at
the beginning of Sec. III, simplifies extracting the phe-
nomenology of different theoretical proposals and also
permits us to pinpoint the crucial elements in the sub-
sequent phenomenological discussion. Particular attention
is devoted to certain phenomenological aspects that have
been overlooked in the literature to date, and that are
important enough to modify strongly the main conclusions
in previous works.

II. A TAXONOMY OF PROPOSALS

A. Regular black holes

A ubiquitous property of black hole solutions is the
appearance of singularities. It is clear that physics beyond
classical general relativity is needed in order to avoid this
singular behavior. Regular black holes represent an attempt
to yield geometries that are almost practically identical to
the black hole solutions of general relativity, but that
deviate from the latter significantly at the core of black
holes. These deviations from the classical behavior are
justified as an effective description of the necessary (yet
unknown) physics to produce a nonsingular behavior.
In the past, the main motivation behind the study of these

geometries has been the extraction of new predictions
regarding the end point of the evaporation process and the
possible resolution of the so-called information loss prob-
lem. It is perhaps worth stressing that, while regular black
hole scenarios can ameliorate this problem due to the
absence of singularities, they do not automatically provide
a full resolution of the latter. Indeed, this also depends on
features of the evaporation process that are not fixed
without additional assumptions. While not everyone is
uncomfortable with information loss [4], undeniably this
problem is still a strong motivation for theoretical research
in the field [5,6], albeit we do not delve into this issue
here.
Regular black holes constitute a static alternative to black

holes, meaning that this approach is agnostic to the dynami-
cal processes that lead the formation of such objects and it
only considers the regularized static geometry (dynamics is
added in a second stage only through Hawking evaporation).
In the absence of other guiding principles, one prescribes the
following two postulates [7–9] (see [10–16] for alternative
perspectives):

(i) It is possible to replace the singular core of classical
black holes by a smooth spacetime region in which
the metric does not necessarily satisfy the vacuum
Einstein equations.

(ii) This effective description contains no singularities.
In particular, physical observables such as curvature
invariants are bounded everywhere.

These two postulates lead to an effective geometric
description that, in the static and spherically symmetric
case (which we focus on for simplicity; note also that we
are working in four dimensions), takes the form [17–20]

ds2 ¼ −e−2ϕðrÞFðrÞdt2 þ dr2

FðrÞ þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2θdφ2 and

FðrÞ ¼ 1 −
2mðrÞ

r
: ð2Þ

This geometry reduces to Schwarzschild for

mðrÞ ¼ M ∈ R; ϕðrÞ ¼ Φ ∈ R: ð3Þ

As a specific example, let us consider a “minimal model”
introduced in [7], given by

FðrÞ ¼ 1 −
rs

rþ l3⋆=r2
; ϕðrÞ ¼ Φ ∈ R: ð4Þ

Here rs ¼ 2M, l⋆ ¼ ðrsl2
PÞ1=3, with lP being the Planck

length. If we set lP ¼ 0 (equivalently, l⋆ ¼ 0), the
Schwarzschild geometry is recovered. For lP ≠ 0, this
geometry interpolates from Schwarzschild wherever
l⋆=r ≪ 1, to de Sitter with cosmological constant Λ ¼
3l2 wherever l⋆=r ≫ 1.
In spite of its simplicity, the above model exhibits a

series of features shared by basically all the proposals for
regular black holes in the literature; namely, (i) there is an
additional parameter l⋆ ≪ rs, the value of which must be
specified, and that is used to measure the size of the interior
region in which deviations from the classical geometry
become important; (ii) the geometry in the core is typically
de Sitter, a feature that was previously and independently
associated with the behavior of matter at high densities
[21,22]; and (iii) regularity at r ¼ 0 plus asymptotic flat-
ness implies the presence of even numbers of 0’s for the
function FðrÞ and hence of at least two horizons (see, e.g.,
[23]). In all the cases considered in this article, this implies
that the outer trapping horizon is also associated to an inner
horizon.
The above discussion should suffice to explain why

regular black holes are often regarded as a minimal
extension of their classical counterparts. Indeed, the fea-
tures described above are arguably quite conservative, and
imply very weak (or possibly entirely absent) deviations
from classical black holes outside of the trapping horizon
(we further discuss this point in what follows). Let us then
investigate the possible observational effects that this class
of mimickers could yield.
These are rather limited if the model breaks down at a

late stage of the evaporation process, where significant
deviations from classical black hole dynamics are expected
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to arise. The only possibility is to consider the deviations
from the Schwarzschild geometry in the near-horizon
region or even outside the black hole, and check
how these modifications affect physical processes (e.g.,
[24–26]) that take place in these regions during periods of
time that are much smaller than the typical timescale for the
dynamical evolution of the regular black hole itself. From
Eq. (4), it follows that for r=l⋆ ≫ 1, the modifications
from the Schwarzschild geometry are suppressed as

Fðr ≫ l⋆Þ ¼ O

�
rs
r
×
l3⋆
r3

�
: ð5Þ

In terms of curvature invariants, these modifications are
extremely tiny for typical values of l⋆, which makes them
extremely difficult to measure observationally. Moreover, it
is worth stressing that there is no good reason to expect
these modifications to be physical. The particular regulari-
zation in Eq. (4) uses a function l3⋆=r3 with a decaying but
nonzero tail, which is not a feature that is necessarily
physical, but can be an artifact of this simple example. It is
possible (and arguably, more compatible with the basic
ideas about quantum gravity motivating regular black hole
scenarios) to use functions of compact support to regularize
the singular classical geometries.
Just to give a simple example, let us consider the bump

function ℬðxÞ,

ℬðxÞ ¼
�
ex

2=ðx2−1Þ; x ∈ ð−1;þ1Þ;
0; jxj ∈ ½1;∞Þ: ð6Þ

This function is both infinitely smooth (C∞) and has
compact support on x ∈ ½−1; 1�, although it is not analytic
(Cω) for x ¼ �1. It has also been normalized such that
ℬð0Þ ¼ 1. Using this function we can define

FðrÞ ¼ 1 −
rs

rþℬðr=l⋆Þl3⋆=r2
: ð7Þ

This prescription is physically just as well motivated as that
in Eq. (4), but the corresponding geometry is now exactly
Schwarzschild for r ≥ l⋆. As long as l⋆ < rs, there is no
possible way to detect the effects associated with the
regularization of the core using external observational
probes (which are the ones we have at our disposal).
This comment applies to regular black holes in general:

their static or stationary geometries can be prescribed to
exactly match the corresponding classical geometries out-
side the regular core and, moreover, there is no physical
reason why this equivalence cannot hold. This would make
these geometries observationally indistinguishable for
physical processes in which the approximation of consid-
ering static or stationary spacetimes is reasonable.
Indeed, given the above discussion it might appear that

regular black holes are perfect mimickers in the sense that

they can conjugate a conservative local regularization of the
interior singularity with an exterior geometry which is
virtually undistinguishable from that of a classical black
hole. However, it has been recently shown that these
scenarios are inherently inconsistent [23].
The basic problem is twofold: inner horizons are

unstable; whereas the end point of the Hawking evapora-
tion process leads to near-extremal horizons, with divergent
evaporation timescales. In other words, these models fail to
be self-consistent, and only new ingredients may lead to a
satisfactory and complete picture of black hole evaporation.
However, the nature of these necessary new assumptions is
not known at the moment. Indeed, the results of [23] may
be taken as a rather strong indication that postulating short-
range regularizations of black hole spacetimes could be
outright inconsistent. This may be taken as a hint of a no-go
theorem that is worth exploring.
We can then summarize the situation with regular black

holes as follows:
(i) There might be tiny corrections to the classical

geometries in regions that are observationally avail-
able, taking the form of polynomial tails in the
dimensionless variable l⋆=r. However, the existence
of these tails is questionable.

(ii) Known models of regular black holes, satisfying the
two postulates above, cannot be consistent through
all the stages of evaporation and are generically
unstable. The additional information that is needed
to supply in order to describe consistently the
evolution of the system adds large uncertainties
regarding the fate of these objects. First of all,
one has to decide the point in time at which the
new effects come into play. Furthermore, it is not
clear how the evolution would continue after this
happens.

To conclude this section, let us mention that the complete
dynamical evolution of regular black holes is much less
understood that their static and stationary limits. Certain
rough guidelines for the construction of the complete
dynamical geometry were given in [7], but there are still
certain important details to be filled. One of them is the
backreaction of classical perturbations and possibly
Hawking radiation on the inner trapping horizon. This
has been partially considered in [20,27], and is in fact one
of the main ingredients leading to the inconsistency of these
models [23].
The role that this instability plays in the evolution of

regular black holes (and also classical black holes, where it
is also present) is still to be studied. In particular, it may be
the case that the backreaction on the inner trapping horizon
is important enough to destabilize the overall structure of
the regular black hole on timescales which are shorter than
the naive evaporation time of the black hole. These effects
might imply that black holes “open up” faster than
expected. This possibility connects naturally with other
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scenarios proposed in the literature, which are described in
the following two sections.

B. Bouncing geometries

Instead of focusing on the description of the regular
geometries that may describe black holes once formed, let
us now analyze in more detail the fate of one of the main
actors in the formation process: matter. Black holes are
formed from collapsing lumps of matter. It is therefore of
utmost importance to understand the physical mechanisms
that may prevent these lumps of matter from collapsing
completely, resulting in a singularity, and the implications
that follow.
In practical terms, we can divide the spacetime of a

collapsing (spherically symmetric) distribution of matter in
two regions: the external one, which is idealized as being
vacuum, and the internal one, which describes the interior
of the collapsing matter. In the previous section we have
been dealing mainly with the external geometry. However,
the physics of the internal geometry is important as well,
and in fact it might be the most important one regarding the
regularization of the singularity [28].
The nonsingular core of the regular black holes discussed

above can be understood as the result of the tendency
of matter towards collapsing, together with the existence
of repulsive forces of quantum-mechanical nature that are
triggered when Planckian curvatures are reached. However,
from this perspective it seems unnatural that these two
tendencies cancel exactly in order to stabilize the collapsing
distribution of matter at a fixed radius no matter what the
initial conditions are. Dynamically, it seems more natural to
expect that the existence of a repulsive core would lead
generally to bouncing geometries (while asymptotically
stationary solutions with a small core may be reached for
very particular values of the initial conditions).
This kind of bouncing behavior was first studied in

[29–32], but has been independently proposedmore recently
in scenarios inspired by emergent gravity [33–35] and loop
quantum gravity [36,37]. Regardless of the special details of
each particular implementation of this idea, there are some
aspects that are shared by different proposals (see however
[38–46] for alternative bouncing scenarios).

(i) Timescale [33,37]: the existence of a bounce of
matter would be physically meaningful only if the
timescale for the bounce (suitably defined in terms
of the proper time of the relevant observers) is
shorter than the (naive) evaporation time of the black
hole,

τB < τð3Þ ∼ tPðM=mPÞ3 ð8Þ

(if this condition is not satisfied, the black hole
formed in the collapse would evaporate before the
bounce could take place).

(ii) Modifications of the near-horizon geometry [34,37]:
the external geometry of the spacetimes in which the
bounce of the distribution of matter can be observed
by external observers in the original asymptotic
region must include modifications of the near-
horizon geometry, even if the bounce of matter
takes place much deeper inside the gravitational
potential well (roughly, when the density of the
radius of the collapsing structure is Planckian). The
ultimate reason is that these geometries must inter-
polate between a black-hole geometry and a white-
hole geometry. The only continuous way to define
this interpolation involves modifications of the
geometry up to a certain radius r⋆ > rs, the value
of which is typically constrained by ðr⋆ − rsÞ≲ rs.
This point can be illustrated using Painlevé-
Gullstrand coordinates,

ds2 ¼ −dt2 þ ½dr − fvðrÞdt�2 þ r2dΩ2; ð9Þ

where f ¼ ∓1 correspond to a black hole or a
white hole in these coordinates, respectively, and
vðrÞ ¼ ffiffiffiffiffiffiffiffiffi

rs=r
p

. In order to modify the geometry
continuously from one case to the other, a function
fðt; rÞ that interpolates between these values, and
that is nonzero at r ¼ rs, is needed.

Plausible values for the timescale τB are

τB ¼ τðjÞ ∼ tPðM=mPÞj; j ¼ 1; 2: ð10Þ

These two values verify τðjÞ ≪ τð3Þ. For j ¼ 2 the bounce
cannot be time symmetric due to the unstable nature of white
holes [47,48]. Let us note that these timescales are generally
multiplied by logarithmic factors that have not been written
explicitly but become relevant for certain values of the
parameters involved. The shortest possible time for the
bounce to take place is τB ¼ τð1Þ, as proposed originally
in [33–35]. Another possibility, conjectured in [37,49], has
τB ¼ τð2Þ. The second timescale is small if compared with
τð3Þ, but is still quite large so that, for a black hole to be
exploding today, it must be a primordial black hole (though
with different mass than in the case τ ¼ τð3Þ [50]). So far it
does not seem possible to justify the timescale τB ¼ τð2Þ
through specific calculations such as the one in [49],
while the timescale τB ¼ τð1Þ arises in two independent
calculations [32,51].
Regarding possible observational channels, the second

feature above (the modifications of the near-horizon geom-
etry) might seem the most promising one at a first glance.
Note that, in contraposition to regular black holes, these
modifications are now a must. However, let us note that in
the most natural scenarios, the modifications in these
geometries are by construction Oð1Þ only after the time τB.

RAÚL CARBALLO-RUBIO et al. PHYS. REV. D 98, 124009 (2018)

124009-4



This implies that, if we are probing the geometry with
physical processes during an interval of time Δt (which
could be, for instance, the time that an observed photon
took to go through this region of the geometry), any
cumulative effects due to these deviations from the classical
geometries would be suppressed by the dimensionless
quotient Δt=τB. For τB ¼ τð2Þ this dimensionless number
is generally small. Hence, it is reasonable to think that,
unless we are considering physical processes with typical
timescales comparable to the timescale of the bounce τB, it
would be difficult to use these processes in order to learn
about the geometry. It might be possible however that there
exist nontrivial mechanisms that act to amplify the value of
the number Δt=τB when the latter is small, though at the
moment this is just a conjecture. On the other hand, if one
was able to perform experiments that monitor the evolution
of the black hole during a time interval Δt ∼ τB, the very
end of the bounce process would be observable, which
would certainly be more dramatic.
In consequence, in the absence of mechanisms that can

compensate the small quotient Δt=τB (looking for these
amplification mechanisms would be an interesting exer-
cise), the most promising observable feature of models with
τB ¼ τð2Þ is, again, the one associated with the end of the
dynamical process; for regular black holes this was the
evaporation process, but here is the very bounce of
matter. The associated physics resides simply in the time-
scale τB, which for instance controls the typical size of the
black holes for which these effects would be observ-
able today.
Let us anyway assume that bounces with a timescale τB

take place in nature. One is then forced to answer the
following question: what happens after the bounce? There
are essentially two possibilities. One possibility is that the
bounce releases all the available energy and matter such
that the black hole dissipates completely. This would imply
that black holes disappear in a timescale τB, which can be
compatible with observations only if τB is large enough.
This possibility is the one considered for instance in [52,53]
and, as we have discussed, from a phenomenological
perspective the most promising observational opportunity
is the detection of this cataclysmic event (see Sec. III B 4
for a more detailed discussion).
A second (and, arguably, more natural) possibility is that

part of the energy content is released after the bounce,
leaving a remnant that may again undergo renewed
gravitational collapse [33,35,51]. In this scenario, it may
be possible that a different kind of horizonless equilibrium
configuration is reached, so that the bounce itself
(which may occur several times) would be just a transient.
This second possibility is arguably more rich observatio-
nally, as both the transient phase with timescale roughly τB
and the horizonless stable phase would have distinctive
observational signatures, which we explore in the next
section.

C. Quasi black holes

In order to encompass different alternatives in the
literature, let us define a static and spherically symmetric
quasi black hole in a rough way as a spacetime satisfying
the following conditions: (i) the geometry is Schwarzschild
above a given radius R that is defined to be the radius of the
object, (ii) the geometry for r ≤ R is not Schwarzschild,
and (iii) there are no event or trapping horizons. In other
words, this kind of geometry is qualitatively similar to that
of a relativistic star, but with a typical radius of the structure
R that can be arbitrarily close to rs, hence violating the
isotropic-pressure Buchdahl-Bondi bound [54,55] (let us
note in passing that including pressure anisotropy permits
one to attain more compact configurations that are not
limited by the isotropic Buchdahl-Bondi bound [56]). In
fact, in this section we consider objects that can be
characterized as having a surface. Configurations that fall
within the definition above but do not have a surface
(wormholes) are described in the next section.
There are several proposals in the literature for this kind

of geometry (including gravastars [57–59], fuzzballs
[60,61], and black stars [62,63]), but all of them present
severe restrictions. In general terms, it is possible to
prescribe (or derive from first principles [64]) this kind
of geometry only when the outer geometry is that of
nonrotating or slowly rotating black holes. Most impor-
tantly, there is virtually no knowledge about the dynamics
of these objects; not only are there large gaps in the
understanding of their possible formation mechanisms, but
also of their behavior under other dynamical processes that
they may undergo after formation. For instance, it is
generally not clear how these objects interact with regular
matter. There have been studies proposing Hawking radi-
ation as the main ingredient to form these objects [65–70],
but these proposals share a number of problems (e.g.,
[71,72]) that raise substantial doubts about their validity. It
is also worth stressing that quasi black holes violate the
assumptions of no-hair theorems (e.g., [73]), so that it is in
principle possible that the external geometry is different
than the Schwarzschild geometry in static (but not spheri-
cally symmetric) situations.
If quasi black holes are formed, this would require the

existence of a transient before the system can settle down in
this kind of configuration. The details of this transient are
still largely unknown and would probably be rather com-
plex, but in a first approach we can parametrize our
ignorance in terms of another timescale, namely a relax-
ation timescale (in the bouncing scenario discussed above,
this scale would be controlled by τð1Þ, with logarithmic
corrections depending on the values of certain parameters
[47]). This timescale could also show up in other events
such as, for instance, the merger of two of these objects. As
emphasized above, it is not known whether or not it is
possible that the result of the merger of two quasi black
holes is still a quasi black hole. However, if this is the case,
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it is reasonable to assume that the final quasi black hole
state is reached after this relaxation timescale.
Aside from these transients, these objects are expected to

lead to distinctive phenomenological signatures arising
from interaction with light, matter, and gravitational
waves—due to the large modifications of the geometry
starting at r ¼ R. In particular, while black holes are
perfectly absorptive, quasi black holes do not necessarily
satisfy this property (although there are again many
uncertainties in this regard). Note, however, that any
physical observable (i.e., a quantity that can be measured
in an experiment) will go back continuously to its value for
a black hole in the limit in which μ → 0, where

μ ¼ 1 −
rs
R
: ð11Þ

This observation would seem to imply that, for extremely
small μ, all observables should differ by very small
amounts from the values they would take for a classical
black hole (we can think about performing a Taylor
expansion on the parameter μ). This depends, however,
on the functional dependence of observables on μ. We see
that different observables display different behaviors (e.g.,
polynomial or logarithmic) with respect to μ.
In order to develop some intuition on the typical values

of μ, let us make explicit the relation between μ and the
distance between the surface and the would-be horizon.
For μ ≪ 1, and if the surface is at a proper radial distance
l ≪ rs from rs, one has

μ ≃
1

4

�
l
rs

�
2

≃ 7 × 10−78
�
M⊙

M

�
2
�
l
lP

�
2

: ð12Þ

It is illustrative to consider for instance l ∼ lP and the
mass corresponding to Sgr A*, M ¼ 4 × 106 M⊙, which
yields μ ∼ 10−91.

D. Wormholes

Wormholes are tunnels connecting different regions of
spacetime and supported by large amounts of exotic matter
or energy [74–79]. The most interesting class of wormholes
is the so-called traversable wormholes, which can be
maintained open for enough time to allow geodesics to
travel through them. Let us focus for simplicity on Morris-
Thorne wormholes [80,81]: time-independent, nonrotating,
and spherically symmetric solutions of general relativity
(with a suitable matter content) describing a bridge/passage
between two asymptotically flat regions, not necessarily in
the same universe. These objects are described by the metric

ds2 ¼ −e−2ϕðxÞdt2 þ dx2 þ r2ðxÞdΩ2; ð13Þ

where x ∈ ð−∞;þ∞Þ and one requires the absence of
event horizons and metric components that are at leastC2 in
x. Asymptotic flatness for x → �∞ requires

lim
x→�∞

rðxÞ
jxj ¼ 1 ð14Þ

and

lim
x→�∞

ϕðxÞ ¼ Φ� ∈ R: ð15Þ

On the other hand, the radius at the wormhole throat is
r0 ¼ min frðxÞg, which can always be chosen to be at
x ¼ 0. The geometry (13) corresponds to flat spacetime, up
to small corrections, far away from the throat. It is
nevertheless possible to modify the external geometry so
that it describes the gravitational field of a massive source,
as in the Schwarzschild geometry [82–84], or also to
include rotation (e.g., [85]), which would be eventually
necessary in order to describe realistic astrophysical black
holes. Moreover, as in the case of quasi black holes, the no-
hair theorems do not directly apply to these objects, so that
even in static situations it may be possible that higher
multipoles take nonzero values.
This metric is a solution of the (nonvacuum) Einstein

equations that requires a stress-energy tensor that violates
the null energy condition, which states the positivity of
the product Tμνkμkν for any null-like vector kμ (this
implies that the weak, strong, and dominant energy
conditions are violated as well [74,86]). Hence, the
matter and energy content that keeps the throat open
cannot have standard properties. These exotic properties
may find a justification in the quantum properties of
matter, when the latter is described in terms of quantum
fields. Quantum effects in curved backgrounds and, in
particular, the polarization of the quantum vacuum, may
provide the necessary stress-energy tensor to support
wormholes [87–89].
It is generally accepted that standard particles of matter

and waves can cross traversable wormholes without
experiencing appreciable interactions with the exotic matter
opening the throat, although there is virtually no knowledge
about the possible interactions between standard matter and
the source of the wormhole geometry. Hence, here we
consider that the interior of wormholes is essentially
transparent, but keeping in mind that a deeper analysis
of this issue would be desirable. This assumption would be
certainly more reasonable if the exotic matter inside the
wormhole comes entirely from the polarization of the
quantum vacuum. This traversability property (or, in
other words, the lack of a physical surface) represents
the main difference between wormholes and quasi black
holes as defined in the previous section. Aside from this
difference, these two kinds of objects share several proper-
ties. In particular, most of (if not all) the uncertainties
regarding the understanding of the dynamics of quasi black
holes and their formation mechanisms equally apply to
wormholes.
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III. OBSERVATIONAL CHANNELS

A. Phenomenological description of deviations
from general relativity

From the perspective of astrophysical observations using
electromagnetic (EM) waves, black holes are regions in
spacetime that can be detected only indirectly through their
gravitational effects on matter surrounding them. This has
changed with gravitational-wave astronomy. However,
observationally it is not clear that these regions of space-
time correspond strictly to black holes in the sense of
general relativity. This is a fundamental question regardless
of the stance taken with respect to the different alternatives
in Sec. II. Only a detailed analysis of this question would
make possible separating what is really known from the
aspects that can be only inferred from (most of the time,
partial) theoretical arguments.
In order to illustrate this point and make quantitative

statements, let us introduce a set of phenomenological
parameters encapsulating deviations from the behavior
expected in general relativity. We compare the physics
associated with each of these parameters with the theo-
retical models reviewed in Sec. II, and then consider how
these parameters can be constrained observationally. These
parameters are functions of the physical quantities char-
acterizing the most general black hole geometry that is
expected to be relevant for astrophysical scenarios, namely
the Kerr geometry [90]: the mass M and the angular
momentum J (that we do not deal explicitly with for
simplicity). Let us start with two timescales.
(1) Lifetime, τþ: The timescale in which a black hole

with mass M, in vacuum, disappears completely
(due either to Hawking radiation, or some other
effect).

(2) Relaxation, τ−: The amount of time in which Oð1Þ
transient effects taking place after violent dynamical
processes dissipate (formation of the black hole,
merger, etc.). Typically this can be identified with
the imaginary part of the lowest quasinormal mode
of the final-state system (e.g., [91,92]).

These two timescales describe the interval of time t ∈
½τ−; τþ� in which the system is expected to be evolving
slowly enough that it can maintain stable structural proper-
ties. Within this time interval, it is meaningful to define the
following parameters:
(3) Size, R ¼ rsð1þ ΔÞ: Value of the radius below

which the modifications to the classical geometry
are Oð1Þ. We use the more convenient parameter
Δ ≥ 0. Note that this parameter is related to μ in
Eq. (11) as μ ¼ Δ=ð1þ ΔÞ. For Δ ≪ 1 it follows
that μ ≃ Δ, so that these two parameters can be used
interchangeably.

(4) Absorption coefficient, κ: Measures the fraction of
the energy that is semipermanently lost inside the
region r ≤ R. This can be due to the inelastic

interaction with the horizonless object, when excit-
ing internal degrees of freedom in the bulk, or simply
due to its propagation into some other spacetime
region (consider, for instance, a wormhole).

(5) Elastic reflection coefficient, Γ: If there is a certain
amount of energy falling onto the object and reach-
ing r ¼ R, this coefficient measures the portion that
is reflected at r ≥ R due to elastic interactions (i.e.,
energy that is not absorbed and bounces back).

(6) Inelastic reflection coefficient, Γ̃: Measures the
portion of energy that is temporarily absorbed by
the object and then reemitted. That is, it measures the
amount of energy that is inelastically reflected. It is
related to κ and Γ by Γ̃ ¼ 1 − κ − Γ.

(7) Tails, ϵðt; rÞ ≪ 1: Modifications of the geometry
that decay with radial distance, typically polynomial
but possibly modulated by functions of compact
support. Hence, there might be a maximum radius
such that ϵðt; r ≥ r⋆Þ ¼ 0. In principle, one would
need to introduce a series of functions ϵJðt; rÞ to
describe different decaying tails for different coef-
ficients of the metric [93]. For r⋆ ¼ ∞ these tails
would produce nonzero values of higher-order
multipole moments (e.g., [73]).

These phenomenological parameters (and functions) allow
us to characterize our ignorance about the actual properties
of astrophysical black holes: for a black hole in general
relativity,

τþ ¼ ∞; τ− ∼ 10M; μ ¼ 0;

κ ¼ 1; Γ ¼ 0; ϵðt; rÞ ¼ 0:
ð16Þ

Regarding the first parameter τþ, we expect it to be at most
τþ ¼ τð3Þ as defined in Eq. (8) due to Hawking radiation.
But this is still infinite for any practical purposes for
astrophysical black holes. The estimate for τ− is obtained
taking the inverse of the imaginary part of the lowest
quasinormal mode which governs the damping rate of
perturbations [94,95]. The rest of the parameters are
unchanged in the semiclassical approximation. Hence
testing the (semiclassical) black hole picture essentially
means constraining the value of these parameters. The
closer these parameters are to their values in Eq. (16), the
more confident we will be that astrophysical black holes are
classical black holes (especially if we are able to discard
some regions containing values associated with known
theoretical models). The corresponding values for the
various classes introduced in Sec. II are given in Table I.
In the rest of the paper, we discuss the most stringent
bounds that can be currently placed on these parameters.
It is always possible to introduce even more additional

parameters or functional relations, such as frequency-
dependent values of μðωÞ and ΓðωÞ. However, in practical
terms this just implies that we are including additional
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parameters that would provide more freedom to play with
the observational data. The set we introduced above is
minimal, but still interesting enough to give a detailed
picture of the observational status of black holes. In
practice, the only additional freedom that we consider is
the possibility that some of these coefficients are different
for electromagnetic and gravitational waves.

B. Electromagnetic waves

The presence of dark distributions of mass that do not
themselves emit electromagnetic radiation can be indirectly
detected by their gravitational effects on the surrounding
luminous matter. This has been traditionally the strategy
followed in order to hunt for black holes in astronomical
data. This electromagnetic radiation can also be used to
probe the gravitational field around these dark distributions
of mass and even constrain some of their surface properties.
In this section we review the most powerful observations
and reevaluate their strength on the basis of the para-
metrization introduced in Sec. III A above.

1. Orbiting stars

The first kind of situation we consider can be idealized as
a many-body system of compact distributions of matter that
are interacting gravitationally, with at least one element that
is not (appreciably) emitting electromagnetic radiation. The
simplest possible configuration would be a binary system
composed of a regular star and a dark companion, an
example of which is A0620-00 [96] (which is also the
closest system of this kind to the Solar System). The
electromagnetic radiation coming from the luminous star
can be used in order to deduce the mass of its companion
through the so-called mass function [97,98], which in the
case of A0620-00 yields 6.60� 0.25 M⊙ [99]. This value
is well above the maximum theoretically allowed mass for
neutron stars [100–102]. While the mass parameter can be
extracted, all the phenomenological parameters introduced
in Sec. III A remain virtually unconstrained (or weakly
constrained if compared with other observations detailed
below). Hence, observations of these binary systems of
stellar-mass objects justify the existence of dark and
compact distributions of matter that are not neutron stars,

but not much more information about the intrinsic proper-
ties of these structures can be extracted.
The situation may improve if the mass of the dark object

increases by several orders of magnitude, which would
typically imply moving from a binary system to a many-
body system. The larger number of luminous stars
improves the statistics and therefore allows placing stronger
constraints. On the one hand, there is only a single system
of this kind that is accessible to current technology: the
center of our own Galaxy. Sagittarius A* (Sgr A*) is an
astronomical radio source at the center of the Milky Way,
which has long been considered to be the location of an
astrophysical black hole [103]. On the other hand, this
region has been extensively studied over more than two
decades [104–109], with the result that the trajectories of a
large number of orbiting stars are known with excellent
precision [110,111]. A sizable portion of the claim that Sgr
A* is a black hole comes in fact from these observations.
The main parameters that are fixed by these observations

are the mass of Sgr A* and our distance from it. Precise
values and errors can be found in the above references,
but roughly these are given by M ¼ 4 × 106 M⊙ and
d ¼ 8 kpc, with errors of the order of 1%. The measure
of the distance obtained from tracking these stars, which is
based on the geometricmethod proposed in [112], is in good
agreement with the results of other methods (e.g., [113]).
More interesting for the present discussion is the remark

that these observations also constrain the size of Sgr A*, on
the basis that these stars have been observed to travel freely
without colliding with the central supermassive object
(CMO). The values of the periastron in these orbits provide
upper bounds to the value of R (equivalently, Δ). For the
purposes of estimating the order of magnitude of this
quantity, it is enough to consider the star S2 (also known
as S0-2) [105,106], which is one of the most precisely
tracked. The periastron of S2 is 17 light hours, while the
Schwarzschild radius of Sgr A* is 40 light seconds.
Therefore,

Δ ≤ Oð103Þ: ð17Þ

This first bound is a very crude bound that will be tightened
using other observational channels. Given that this kind of

TABLE I. Values of the phenomenological parameters for the different classes of black hole mimickers. MD
stands for model dependent and U for unknown, whereas MD/U emphasizes that the quantity is model dependent
but at the moment there is no particular model within the class that is able to predict specific values for the
corresponding parameters.

Model τ− τþ Δ κ Γ Γ̃ ϵðt; rÞ
Classical black hole ∼10M ∞ 0 1 0 0 0
Regular black hole ∼10M U 0 1 0 0 MD
Bouncing geometries MD MD 0 1 0 0 r⋆ ¼ OðrsÞ
Quasi black hole MD=U ∞ >0 MD=U MD=U 1 − κ − Γ U
Wormhole U ∞ >0 MD 1 − κ 0 U
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observation is essentially geometric in nature, the remain-
ing phenomenological parameters that describe the physi-
cal intrinsic properties of the dark object remain
unconstrained in practice. This continues to be true for
more refined observations of the Galactic center [114] that
allow one to improve the constraint (17) by about 3 orders
of magnitude. In the future it may however be possible to
constrain the tails ϵðt; rÞ, though this would require
gathering data for several stars with much shorter orbital
periods [115], and which remain close enough to Sgr A*
[116,117]. For instance, measurements of the redshift of
S2, and their incompatibility with Newtonian mechanics,
have been recently reported [118]. However, distinguishing
effects beyond general relativity would require much higher
precision.

2. Infalling matter close to the gravitational radius

Observations of stars orbiting CMOs at the center of
galaxies are currently restricted to Sgr A* due purely to
technological limitations, so that this constraint only
applies to this particular astronomical source. Moreover,
the distances involved in the orbits of the stars discussed in
the previous section are large in comparison with the
gravitational radius of the Sgr A*. However, another source
of information comes from matter infalling on the CMO. It
is reasonable to expect that processes involving matter in
the surroundings of the gravitational radius constitute a
better probe of the features of the CMO.
In order to describe these processes, we need to briefly

review some aspects of the behavior of geodesics around
the gravitational radius of the CMO that are caused by the
strong gravitational fields in the near-horizon region. Both
ingoing and outgoing geodesics are interesting phenom-
enologically, as the former describe the approach of
particles and waves to the CMO, while the latter describe
how and when the radiation produced in different processes
escapes from the gravitational field of the CMO. We can
just focus on null geodesics, given that these determine the
boundaries of the light cones in which timelike geodesics
have to be contained. As is usually done in spherical
symmetry, we can restrict attention to the θ ¼ π=2 plane
without any loss of generality, and reduce the geodesic
equation for trajectories xμðλÞ ¼ ðtðλÞ; rðλÞ; π=2;φðλÞÞ to

�
dr
dλ

�
2

þ
�
1 −

2M
r

�
L2

r2
¼ E2: ð18Þ

The conserved quantities E ¼ ð1 − 2M=rÞdt=dλ and L ¼
r2dφ=dλ correspond to the energy and angular momentum
of the null geodesic. The derivation of these equations is
described in most general relativity textbooks (see, for
instance, [119]). The second term in the left-hand side of
the equation above acts as an effective potential. Circular
trajectories (dr=dλ ¼ 0) can occur at maxima or minima of
this effective potential, being respectively unstable or

stable. It is straightforward to check from Eq. (18) that
there is only one bound circular orbit, at

rph ¼
3

2
rs ¼ 3M: ð19Þ

The surface defined by r ¼ rph, known as the photon
sphere, plays an important role in the discussions below.
Null geodesics that cross or reach the photon sphere have

a maximum angular momentum L⋆ that can be directly
evaluated from Eq. (18) by imposing the condition that
ðdr=dλÞ2jr¼rph ≥ 0,

L ≤ L⋆ ¼ 3
ffiffiffi
3

p
ME: ð20Þ

The main implication of the existence of this maximum
angular momentum is that outgoing geodesics inside the
photon sphere cannot cross the latter if L > L⋆. A similar
comment applies to ingoing geodesics outside the photon
sphere.
Let us now consider for instance an object with a surface

at r ¼ R ≤ rph such that every point on the surface emits
electromagnetic radiation isotropically in its local ortho-
normal frame feμt ; eμr ; eμθ; eμφg. A fraction of these initially
outgoing rays cannot reach the photon sphere, which means
(see Fig. 1) that these will be strongly curved and will
come back to the surface r ¼ R [120] (see also [121]). The
escape angle ϑ⋆ measured from the normal to the surface
can be determined imposing the critical value L ¼ L⋆ and
calculating

sinϑ⋆ ¼ gμνe
μ
φdxν=dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgμνeμφ dxν
dλ Þ2 þ ðgμνeμr dxν

dλ Þ2
q

������
r¼R;θ¼π=2;L¼L⋆

ð21Þ

¼ L⋆
ER

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
: ð22Þ

FIG. 1. Only a fraction ΔΩ=2π of geodesics emitted isotropi-
cally at a point on the surface r ¼ R can escape for ultracompact
configurations.
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Here we have used eμr ¼ ð0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
; 0; 0Þ, and

eμφ ¼ ð0; 0; 0; 1=rÞ, and we keep θ ¼ π=2 without loss of
generality. The solid angle spanned by the cone of geo-
desics that escape from the sphere r ¼ R can be then
calculated as

ΔΩ ¼
Z

2π

0

dφ
Z

ϑ⋆

0

dϑ sinϑ ¼ 2πð1 − cos ϑ⋆Þ ð23Þ

¼ 2π

�
1þ

�
1 −

3M
R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6M

R

r �
: ð24Þ

In the limit R → rs ¼ 2M (in which Δ ≃ μ ≪ 1), one has

ΔΩ
2π

¼ 27

8
μþOðμ2Þ: ð25Þ

Therefore, only a small fraction of the light emitted from
the surface of the object escapes to infinity for ultracompact
configurations. After this important remark, we can study
two different ways in which matter falls onto the CMO,
namely the case in which stars collide with the CMO
(triggering a “stellar disruption event” [122]) and the case
in which the CMO is surrounded by an accretion disk.

Stellar disruption events.—The physics associated with the
possible collision of an orbiting star with the CMO gets
quite complicated due to the existence of tidal forces. For a
given pair, of star and CMO, there is a critical value of the
radius rT known as the Roche limit (or tidal radius), in
which the internal forces holding the star together cannot
endure the gravitational tidal forces, and the star is torn
apart. A Newtonian estimate of the order of magnitude of
this radius is rT ∼ R⋆ðM=M⋆Þ1=3, where R⋆ andM⋆ are the
radius and the mass of the orbiting star, and M is the mass
of the CMO [123]. ForM ≳ 107 M⊙ the tidal radius is very
close to the Schwarzschild radius; therefore, tidal disrup-
tion events (TDE) happen in a region in which the
Newtonian treatment is not sufficient and relativistic tidal
forces must be taken into account [124], which is asso-
ciated with the relativistic nature of the near-horizon orbits.
Moreover, for M ≳ 108 M⊙ (this value for the order of
magnitude takes into account the relevant relativistic
features), tidal forces are not strong enough, so that
main-sequence stars are able to reach the Schwarzschild
radius while keeping their integrity [125,126].
That TDEs have been observed for CMOs ofM∼106M⊙

[127] leads to a first upper bound rsð1þ ΔÞ ≤ rT for
these CMOs [122]. Taking as a reference M⋆ ∼M⊙ and
R⋆ ∼ R⊙, one obtains

Δ ≤ Oð10Þ: ð26Þ

This improves by 2 order of magnitudes the bound (17) that
applies to the same value of the mass, M ∼ 106 M⊙. But it

is possible to do even better if we move to the range of
masses between M ∼ 108 M⊙ and M ∼ 1010 M⊙, for
which there are no TDEs and the descending star is allowed
to continue its trip downwards and reach the radius
R ¼ rsð1þ ΔÞ. The star would then crash into the surface,
producing an envelope of debris that radiates its energy
away at the Eddington luminosity. The corresponding
temperature at infinity is given by

T∞ ¼
�

LEdd

4πσSBR2

�
1=4

�
ΔΩ
2π

�
1=4

: ð27Þ

This is just the Stefan-Boltzmann law applied to the
Eddington luminosity LEdd integrated over the area of a
sphere with radius R, and suppressed by the geometrical
fraction ΔΩ=2π of radiation that actually escapes to
spatial infinity. The value of Eddington luminosity
depends on the properties of the accreting matter but, in
situations in which the two relevant parameters are the
molecular massm of the gas and the scattering cross section
σ between photons and gas particles, dimensional argu-
ments lead to LEdd ∝ GMmc=σ, where the proportionality
factor should be taken to be 4π in order to obtain the
usual result [128]. The Stefan-Boltzmann constant is
σSB ≃ 5.67 × 10−8 Wm−2 K−4. We refer to [122] for a
detailed discussion of these aspects, while focusing the
present discussion on the universal dependence of the
equation above on the geometrical factor ΔΩ=2π.
If we combine Eqs. (25) and (27), we see that the

temperature of the envelope of debris goes to 0 as μ1=4. It
makes it harder to probe this phenomenon the more
compact the CMO is. This feature is characteristic of
inelastic processes in which some energy interacts with
the surface of the CMO and is then radiated isotropically
in the corresponding local reference frame, hence suffering
the lensing effects described in Sec. III B 2.
This luminosity can be constrained using astronomical

surveys, in particular, the Pan-STARRS1 3π survey [129].
The larger the value of μ, the larger the luminosity, so that
this analysis should lead to an upper bound on the value of
μ. In order to do so, one needs additional information about
the number of CMOs with a given mass and for a given
value of redshift, and also an estimation of the number of
stellar disruption events that would occur. The details of the
distribution of the layer of debris around the CMO and, in
particular, the position of the photosphere of this envelope,
are also important. Taking into account all these details, the
authors of [122] obtain a constraint μ ≤ μCMO ¼ 10−4 (we
have just rounded off the value of the exponent). Note that
the electromagnetic radiation is emitted from the photo-
sphere, so that this observational channel is ultimately
placing constraints on the size of the latter. We can remove
the effect of the complex details regarding the thickness
of the layer of debris by considering instead a very
conservative bound derived from the fact that the radius
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of the CMOmust certainly be smaller than the radius of the
photosphere, namely μ ≤ μph where μph measures the size
of the photosphere. In order to do so, we just need to take
into account that μph=μCMO ≃ κTM⋆=4πr2s (see [122] for the
derivation), with κT ¼ 0.34 × 10−3 m2 kg−1 being the
Thomson opacity for solar metallicity, and M⋆¼OðM⊙Þ.
We can then write

μ ≤ 10−4
κTM⋆
4πr2s

¼ Oð1Þ ×
�
108 M⊙

M

�
2

: ð28Þ

It is worth stressing that this bound still relies on a series of
significant assumptions regarding the cosmological pop-
ulation of CMOs and the rate of stellar disruption events
(and also an assumption that Δ does not depend explicitly
on the mass of the CMO, an assumption that should be
relaxed in future analyses). It should be therefore taken as a
first estimate, and as a proof of principle that this kind of
observation can be used to constrain the phenomenological
parameters discussed here. More refined analysis and future
observations would help to strengthen the accuracy of this
bound.
Most importantly, Eq. (28) assumes that κ and Γ are both

vanishing. The introduction of nonzero values for these two
parameters has a significant impact on the discussion, with
the left-hand side of Eq. (28) picking up factors that depend
explicitly on these phenomenological parameters. The
change in this equation is functionally equivalent to the
change of the upper bound discussed in the next section,
with the general outcome that the upper bound on μ
becomes weaker for nonzero values of these parameters.
We show this explicitly in the discussion below, which
includes naturally all the steps that are needed in order to
take these parameters into account.
One last comment is that the factor that depends on

ΔΩ=2π in Eq. (27) is essential in order to avoid running
into significantly problematic and wrong conclusions.
Ignoring this factor and writing T∞¼ðLEdd=4πσSBR2Þ1=4
would instead have resulted in an overestimate of the
outgoing flux of radiation by several orders of magnitude. It
is clear that this would had led to stronger (but nevertheless
flawed) constraints than Eq. (28).

Accretion disks around supermassive black holes.—The
most stringent constraints on some of the phenomenologi-
cal parameters come from the information about the
average amount of infalling matter per unit of time onto
CMOs. The value of this accretion rate _M is generally more
stable than the (much higher, but also more variable)
accretion rate associated to the (much rarer) direct capture
of an individual star. Estimations of the accretion rate for
these objects depend on the physics of accretion disks
[2,130,131], as the accretion rate is typically estimated
from the luminosity of the disk. As we have done in the
previous section, we do not discuss the model-dependent

features behind these estimations. We just assume that it is
possible to obtain a measure of the order of magnitude of
_M, focusing our discussion on the (already rich) physics
that can be described in terms of _M and our phenomeno-
logical parameters introduced previously. More accurate
estimations of _M would just permit us to refine the
observational bounds given below.
Let us start summarizing the main argument that has

been invoked several times in the literature [132–136]. We
can reduce this argument to its essentials by considering the
system composed by the CMO and the accretion disk as a
composite system in which energy is exchanged between
its two components. The accretion rate _M measures the
energy that the accretion disk is pumping into the CMO. On
the other hand, the quantity that is interesting in order to test
the nature of the CMO is the energy that the CMO emits by
itself, as this measures the reaction of the CMO to its
interaction with the accretion disk. Ideally, one would
like to disentangle the two fluxes of energy and measure
independently the radiation emitted by the CMO. However,
this is not yet observationally possible (and, as we discuss
below, might be even impossible in practice due to its
extreme faintness). Therefore, it is necessary to make
additional assumptions in order to determine the properties
of this outgoing energy flux:
(1) Thermality: It was pointed out in [132–134] that the

strong lensing of outgoing geodesics emitted at
different points in the surface r ¼ R (a phenomenon
that we have discussed in Sec. III B 2) implies that
the surface reaches thermal equilibrium on a short
timescale. This follows from the fact that different
points of the surface are strongly coupled. Therefore,
we can safely assume that the emitted radiation is
thermal. This is correct for Δ ≃ μ ≪ 1, which means
that the arguments in this section hold only in these
situations.

(2) Steady state: The only parameter to be fixed after
accepting the assumption above is the temperature
T∞ of the emitted radiation. The only possible
model-independent argument to fix the power of
the outgoing radiation is invoking conservation of
energy and assuming that a steady state between the
two components (CMO and accretion disk) has been
reached, so that the two fluxes of energy carry the
same amount of energy. This is a strong assumption
that must be appropriately justified and that, as we
see below, fails due to several competing effects.

If these two assumptions hold, then the emission of the
CMO can be calculated: It is given by a thermal distribution
with a temperature determined by the accretion rate _M. For
Sgr A*, this radiation should be bright in the infrared, but it
has been shown [132–135] that the emission of Sgr A* in
the infrared is about 10−2 times this theoretical estimate
(see [136] for the same argument applied to M87). The
conclusions by these authors are that it is not possible that
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Sgr A* has a surface, and therefore that it must have a
horizon. This is a very strong claim, as it would discard
every possible value of Δ, except for Δ ¼ 0, which
corresponds to a black hole. Even sub-Planckian values
of Δ would be discarded. Let us now analyze in careful
detail how this conclusion comes about—so to dispel any
possible doubt concerning its robustness.
An obvious starting point for this revision is the two

assumptions mentioned above. Indeed, as we show below,
the Achilles’ heel of this argument is the steady state
assumption. This assumption is not valid for sufficiently
compact CMOs, which leads to constraints on the maxi-
mum compactness of the object. This observation has been
made only recently [122,137]. It is worth mentioning that
even recent reviews on this topic such as [103] still quote
[132–136] as definitive evidence for the existence of event
horizons, thus ignoring this loophole.1 Our novel contri-
bution to this discussion is the introduction (in terms of the
phenomenological parameters defined in Sec. III A) of
additional physical features that are expected to be relevant
in realistic scenarios. As we discuss below, the introduction
of these additional physical aspects makes these constraints
significantly weaker.
Let us consider a simple calculation of the time at which

steady state is reached (see Fig. 2). The initial configuration
is given by an accretion disk that starts pumping energy into
the CMO, the energy emission of the latter being negligible
before accretion begins. We start considering the most
favorable case in which the CMO returns all the accreted
energy as thermal radiation, and evaluate the timescale at
which steady state can be achieved. Hence, the accretion
rate onto the CMO is 0 for t < 0 (this is just an irrelevant
choice of the origin of time) and _M ∈ R for t ∈ ½0; T�,
where the timescale T is short enough so that the approxi-
mation of constant _M is reasonable (more details are
below). For simplicity, we assume that all propagating
energy is carried along null geodesics, and also restrict the
discussion to spherically symmetric situations. The amount
of energy emitted per unit time by the CMO, _E, is measured
at the location of the accretion disk r ¼ Rdisk. Our goal is
describing its evolution for t ≥ 0. There are two effects to
take into account. First of all, the energy emitted _E remains
negligible until the first ingoing radial null geodesics
can bounce back at the surface r ¼ R and return to the
accretion disk. This time can be directly evaluated using the
Schwarzschild metric as

Tbounce ¼ 2

�
Rdisk − Rþ rs ln

�
Rdisk − rs
R − rs

��
: ð29Þ

This timescale is divergent in the limit R → rs, or
equivalently Δ → 0. However, the logarithmic behavior
implies that even for extremely small, but strictly non-
vanishing Δ, Eq. (29) would be at most Oð10Þ × rs. Hence,
this timescale is essentially the light-crossing time of
the CMO.
This effect alone would delay the moment in which the

steady state would be reached, but, given the logarithmic
dependence, even sub-Planckian values for R − rs would
be ruled out. However, there is a second effect to take into
account. Outgoing null geodesics are strongly lensed,
which implies that a fraction of them does not escape
and falls again onto the surface of the CMO. This effect is
unavoidable due to the inherently inelastic nature of the
process that is necessary for thermalization to take place:
the energy falling from the accretion disk is absorbed by the
CMO in the first place, and then emitted. Even assuming
spherical symmetry for the infalling energy, particles would
not hit the surface and bounce back radially. On the
contrary, this emission would be isotropic in a local frame
at rest in the surface, thus implying that only a very small
fraction of the initially absorbed energy contributes to _E.
The remaining energy follows highly curved trajectories
and is reabsorbed by the CMO in a timescale that can be
calculated numerically and is also controlled by its
Schwarzschild radius, being Oð10Þ × rs at most. Then, a
repetition of this process takes place, until eventually all the
energy is radiated away.
In order to make the calculation tractable, let us follow

the discussion in [121] and consider discrete intervals with
their size given by the characteristic timescale τs ¼
Oð10Þ × rs, starting at t ¼ Tbounce. During each of these
intervals, the mass that the accretion disk is ejecting into the
CMO is given by _Mτs. In the first interval after Tbounce, the
amount of outgoing energy that reaches the accretion disk
is given by the corresponding fraction of the first injection
of energy,

FIG. 2. On the left: Initial state in which matter starts falling at a
rate _M from the accretion disk onto the CMO. On the right:
steady state in which the energy emitted from the CMO and
reaching the accretion disk is _E ¼ _M.

1It is perhaps worth stressing again that no local observation in
space and time will be ever able to observe an event horizon,
which is intrinsically a teleological notion. At most, observations
will be able to confirm or exclude the existence of trapping
horizons or other local definitions of the boundary of black holes.
See, e.g., [3] for an extensive discussion of this point.
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E1 ¼
ΔΩ
2π

_Mτs: ð30Þ

During the second interval, one would get the same fraction
of the energy corresponding to the second injection, plus a
fraction of the remaining energy from the first injection,

E2 ¼
�
ΔΩ
2π

þ ΔΩ
2π

�
1 −

ΔΩ
2π

��
_Mτs

¼ E1 þ
�
1 −

ΔΩ
2π

�
E1: ð31Þ

In general, one can show that

En ¼
Xn
k¼1

ϵk; ð32Þ

where the partial energies can be determined from the
recurrence relation

ϵkþ1 ¼
�
1 −

ΔΩ
2π

�
ϵk; k ≥ 1; ð33Þ

with the seed ϵ1 ¼ E1 given in Eq. (30). Summing the
geometric series, it follows then that

En ¼
ΔΩ
2π

_Mτs
Xn−1
k¼0

�
1 −

ΔΩ
2π

�
k
¼ _Mτs

�
1 −

�
1 −

ΔΩ
2π

�
n
�
:

ð34Þ

The accretion rate _M is obtained dividing the mass accreted
in each of these intervals by τs. Therefore, let us analo-
gously define _En ¼ En=τs. When τs ≪ T, the timescale
during which the accretion rate _M is roughly constant, we
can formally take the limit in which the size of the time
intervals goes to 0 and therefore _En becomes a function of a
continuous variable, _EðtÞ, which can be written in terms of
the continuous variable t ∈ ½Tbounce; T� as

_EðtÞ
_M

¼ 1 −
�
1 −

ΔΩ
2π

�ðt−TbounceÞ=τs
: ð35Þ

There are certain limits that are illustrative of the physics
behind Eq. (35) (see also Fig. 3).

(i) In the limit R → rph ¼ 3rs=2, one has ΔΩ=2π → 1

[recall Eq. (24)]. This implies that _E ¼ _M identically
for R ≥ rph. In this limit, relativistic lensing effects
disappear: for a regular star (neutron star or less
dense), if the surface of the star emits instantly the
absorbed energy, then after a large enough timescale
(with respect to Tbounce) the system reaches a steady
state. It was this very same intuition originated in
these astrophysical systems that led to the authors of

the works [132–134] to assume that the steady state
is reached in this same timescale for CMOs of
arbitrary compactness.

(ii) In the limit R → rs (Δ → 0) one has _E= _M → 0. This
corresponds to the known astrophysical behavior of
a black hole, in which a steady state cannot be
achieved [132–134]. However, this limit is not
abrupt, but proceeds in a continuous way: for
Δ ≃ μ ≪ 1, one has

_E
_M
≃ μðt − TbounceÞ=τs: ð36Þ

In particular, there is a maximum value of _E that is
determined from the equation above when t ¼ T (if
the accretion rate changes, the system would have to
adapt to the new accretion rate and therefore the
process of stabilization would restart).

The second limit above illustrates that relativistic lensing
effects cannot be ignored for μ ≪ 1, and can indeed spoil
the stabilization of the composite system into a steady state.
In particular, for Sgr A* the typical timescale for the
variation of its accretion rate is set by the Eddington
timescale T ¼ Mc2=LEdd ≃ 3.8 × 108 yr. Hence, given that
the emission of Sgr A* is at most 10−2 times that predicted
under the steady state assumption [132], we can write

_E
_M

����
t¼T

≃ μðT − TbounceÞ=τs ≤ Oð10−2Þ: ð37Þ

Plugging the numbers into this equation, we obtain

μ ≃ Δ ≤ Oð10−17Þ: ð38Þ

In particular, we see that the steady state assumption is not
valid if μ satisfies this constraint. In other words, this
constraint would be the strongest statement that can be
made using this method.
It is interesting to translate this constraint into length

scales. It implies that it is possible to rule out the existence

FIG. 3. Representation of Eq. (35) for Δ ¼ 0.1 (light gray),
Δ ¼ 0.01 (gray), and Δ ¼ 0.001 (dark gray).
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of a surface that emits all the absorbed energy as thermal
radiation with a precision of 10−17 (in the coordinate
distance r) on the size of the CMO. In terms of proper
radial distances, this precision becomes smaller due to the
Schwarzschild factor μ ¼ 1 − rs=R, and is in fact roughly
of 102 meters over a size of 1010 m, which is certainly
impressive. On the other hand, this is still more than 70
orders of magnitude greater than Δ ∼ l2

P=rs (corresponding
to a proper radial distance of the order of the Planck length).
The same argument (although without taking into

account the lensing of the geodesics in the near-horizon
region) has been applied to the CMO in M87 [136], which
is 3 orders of magnitude more massive than Sgr A* [138].
Taking into account the adjustments discussed in this
section, we can find a constraint that is several orders of
magnitude weaker than the one that applies to Sgr A*.
Most importantly, it is natural to expect that the surface

of the CMO will not strictly have κ ¼ Γ ¼ 0. As we now
show, the introduction of these parameters describing
additional physics regarding the nature of the CMO has
a large impact in the discussion, with κ having the largest
impact.
Intuitively, the reason for this is clear. Before escaping

the gravitational field of the CMO, radiation undergoes
several cycles of absorption (after being lensed back to the
CMO) and emission. If κ ≠ 0, in each of these cycles only a
fraction (1 − κ) of the absorbed energy is emitted, which
suppresses the overall power of the radiation emitted by the
CMO. Let us write explicitly the main equations for κ ≠ 0.
Equation (32) still holds, but the recurrence relation (33) is
modified to

ϵkþ1 ¼ ð1 − κÞ
�
1 −

ΔΩ
2π

�
ϵk; k ≥ 1; ð39Þ

now with seed ϵ1 ¼ ð1 − κÞΔΩ=2π _Mrs. It follows that

_E
_M
¼ ð1− κÞΔΩ=2π
κþð1− κÞΔΩ=2π

×

�
1− ð1− κÞðt−TbounceÞ=τs

�
1−

ΔΩ
2π

�ðt−TbounceÞ=τs�
: ð40Þ

We see that the power _E is nonlinearly suppressed with κ.
In the limit in which t → ∞, that is t=τs ≫ κ−1, we get

lim
t→∞

_E
_M
¼ ð1 − κÞΔΩ=2π

κ þ ð1 − κÞΔΩ=2π : ð41Þ

For κ ¼ 0 identically, the equation above becomes _E ¼ _M,
which means that steady state is certainly reached if waiting
for infinite time. However, for values of κ that are still small
but satisfy ΔΩ=2π ≪ κ ≪ 1 (note that ΔΩ=2π ≪ 1 in
order to guarantee that the emitted radiation is thermal),
we see that

lim
t→∞

_E
_M
≃
ΔΩ=2π

κ
≪ 1: ð42Þ

In other words, the transfer of energy from surface degrees
of freedom to bulk degrees of freedom strongly dampens
the thermal emission from the surface of the CMO. Instead
of Eq. (38), we obtain then the much weaker constraint

μ

κ
≤ Oð10−2Þ: ð43Þ

This equation can be understood as a lower bound on the
value of κ that makes hard surfaces that would otherwise be
excluded by Eq. (38) compatible with the available obser-
vational data.
Let us consider for instance the value μ ¼ Oð10−7Þ that

is 10 orders of magnitude greater than the constraint (38),
which is valid only for κ ¼ 0. From Eq. (43), we see that an
absorption coefficient as small as

κ ≥ Oð10−5Þ ð44Þ

makes the existence of such surfaces compatible with
observations.
It is also possible to obtain the equivalent of Eq. (40) for

Γ ≠ 0. The only difference is that the recurrence relation is
in this case

ϵkþ1 ¼
�
ð1 − κÞ

�
1 −

ΔΩ
2π

�
þ Γ

ΔΩ
2π

�
ϵk; k ≥ 2; ð45Þ

and the seed of this relation is modified to

ϵ1 ¼ ð1 − κ − ΓÞΔΩ
2π

_Mrs;

ϵ2 ¼ ð1 − κ − ΓÞ
�
1 −

ΔΩ
2π

�
ϵ1: ð46Þ

From these equations it is possible to check that a nonzero
value of Γ further weakens these constraints, although this
effect is not as pronounced as the one associated with the
absorption coefficient κ given that it will not produce an
exponential suppression like the one in Eq. (40). For
completeness, let us note that the analogue of Eq. (41)
can be shown to be

lim
t→∞

_E
_M
¼ ð1 − κ − ΓÞð1 − ΓÞΔΩ=2π

κ þ ð1 − κ − ΓÞΔΩ=2π : ð47Þ

We see that wormholes represent an extreme case from this
perspective, as κ þ Γ ¼ 1 and therefore _E ¼ 0 identically.
Hence, wormholes cannot be tested as black hole alter-
natives using this particular observation channel.
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Consistency constraints from accretion.—Even in the best-
case (but unphysical) scenario in which κ ¼ Γ ¼ 0,
Eq. (38) should be improved by about 70 orders of
magnitude in order to rule out well-motivated theoretical
values of μ such as the one that follows fromΔ ∼ l2

P=rs and
that can be obtained from Eq. (12). Such an improvement
of observational data seems hardly realistic, thus sug-
gesting that certain theoretical models are almost impos-
sible to probe. The situation can only get worse if nonzero
values of κ and Γ are allowed. However, it is possible that a
better understanding of these ultracompact alternatives to
black holes will uncover constraints that follow from their
internal consistency and, in particular, from the laws
governing their dynamical evolution (which are largely
unknown at the moment). As stressed in Sec. II, most
alternative geometries such as the ones of quasi black holes
and wormholes are prescribed in static situations. The lack
of a framework in which to deal with dynamical processes
is highly unsatisfactory, and is arguably the main criticism
that can be raised against these models on purely theoretical
grounds.
One may expect that it would be difficult to reach model-

independent conclusions, given that different models could
display very different dynamical behavior. However, it has
been shown recently [139] that certain model-independent
dynamical considerations are restrictive enough to lead to a
consistency relation that takes the form of a lower bound on
μ. These model-independent considerations reduce essen-
tially to the observation that the boundary (i.e., surface) of
standard celestial objects evolves following causal trajec-
tories in spacetime. Note that these trajectories need not
correspond to actual moving particles, as this growth will
be generally caused by the stacking or piling up of different
particles of matter. But this growth is nevertheless driven by
physical interactions, which must propagate in a causal
manner. On the other hand, trapping horizons are known to
be spacelike for standard accreting matter [140,141]. There
is a clear tension between these two different behaviors.
This tension results in two possibilities: (i) the CMO is less
compact than a given threshold, so that its surface can grow
in a timelike (or at most, null) manner without forming
trapping horizons, or (ii) the CMO is more compact than
this threshold, hence developing trapping horizons in a
given interval of time that can be calculated.
Option (i) translates into a consistency constraint that

depends on the parameter μ and the particular model of
accreting matter. In spherical symmetry and using the
Vaidya geometry, this consistency constraint can be
obtained analytically [139],

μ ≥
4G _M
c3

: ð48Þ

Equivalently, we can write this as _Mc2 ≤ μPP=4 where
PP ¼ c5=G is the Planck power, which may represent the

maximum luminosity attainable in physical processes
[142]. In more general situations this consistency constraint
would take a different form, displaying for instance addi-
tional quantities such as the angular momentum of the
CMO or the accreting matter. It would be necessary to
extend this simple estimate in order to take into account
these effects and obtain more precise constraints, although
Eq. (48) can be used in order to extract some conclusions
that are unlikely to be changed by these additional con-
siderations. For instance, we can evaluate the lower bound
above for Sgr A* using _M ≳ 10−11 M⊙ yr−1, which yields

μ ≥ Oð10−24Þ: ð49Þ

Recalling Eq. (12), this value corresponds to

l≳ 1 cm: ð50Þ

This lower bound is strong enough in order to show for
instance that quasi black holes with l ∼ lP, which have
values of μmore than 60 orders of magnitude smaller, must
develop trapping horizons during their lifetime. Let us
stress that models for the formation of quasi black holes
through short-lived bouncing geometries involve the for-
mation of trapping horizons for finite periods of time,
which can be as short as τ ∼ τð1Þ.
Contrary to the upper bounds analyzed above, Eq. (48) is

not affected by the phenomenological parameters κ and Γ.
Since it boils down to a statement about causality, the
argument behind Eq. (48) depends only on the location of
the region in which the interactions between the accreting
matter and the CMO take place, and not on the particular
details of this interaction.2 The mechanism leading to this
lower bound has also implications for gravitational waves,
which are discussed in Sec. III C 2.

3. Hunting shadows

The last observational channel employing electromag-
netic waves that wewant to discuss is based on the detection
of light that gets as close as possible to the CMO, without
being captured by the gravitational field of the latter. From
the analysis of null geodesics in Sec. III B 2,we can infer that
the point of no return is determined by the photon sphere. If
we imagine a congruence of light rays that are directed
towards the CMO from a source that is far away, whether or
not these rays are trapped by the gravitational field of the
CMO depends on the value of the angular momentum for

2Of course, this constraint relies on the assumption that the
interactions involved are local and causal in nature. This might
not be the case if large quantum effects are involved in the
stability of quasi black holes given that, e.g., all of the energy
conditions (including the dominant one) could be violated in
these scenarios, although not much more can be said without
detailed models.
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each geodesic. Null geodesics with L < L⋆ are captured,
while those with L > L⋆ are dispersed due to the angular
momentum barrier. Light rays with L ¼ L⋆ would follow a
circular orbit at r ¼ rph around the CMO, although this orbit
is unstable so that these light rayswill eventually be captured
or will escape to infinity. Hence, in this spherically sym-
metric situation, it is the photon sphere that marks the
division between these two different behaviors of light rays.
Consequently, the observation of light rays around a

black hole should reveal a shadow (or more appropriately a
“silhouette” given that there is no physical surface on which
the shadow is cast) that is associated with the photon sphere
[143–148] (although its size does not directly corresponds
to the size of the latter due to lensing effects, and is weakly
sensitive on its relative distance from the horizon). This
particular observable has received widespread attention in
the astrophysics community, and it is often described as
“imaging the event horizon of black holes” [149]. However,
as we have emphasized, the length scale that controls this
phenomenon is not the Schwarzschild radius rs, but rather
the much larger rph ¼ 3rs=2. The gap between these two
distances is macroscopic, rph − rs ¼ rs=2. In other words,
any object that is compact enough to have a photon sphere
(R < rph) should display the necessary physical character-
istics to lead to a similar (and in most cases, indistinguish-
able) shadow. This has been recently stressed by several
authors [73,150–153]. However, certain analyses of par-
ticular models of gravastars [154] and wormholes [155]
suggest the existence of peculiar characteristics that might
allow distinguishing these alternatives from black holes in
future experiments, although more systematic studies of
these claims would be desirable.
On general grounds, we can make use of our phenom-

enological parametrization in order to highlight the diffi-
culties of using the observation of black hole shadows as a
tool to probe the intrinsic properties of astrophysical black
holes. Let us consider for instance an ultracompact object
with R ¼ rsð1þ ΔÞ > rs that has a negligible reflection
coefficient, Γ ¼ 0, for electromagnetic waves. As discussed
in Sec. III B 2 b the light that is trapped inside the photon
sphere, which would disappear down the Schwarzschild
radius for black holes, can be emitted from the surface of
the object after being absorbed. This leads to a very faint
(for Δ ≪ 1) emission of electromagnetic radiation that is
superimposed to the shadow that can be calculated in
classical general relativity. Hence, the only way to rule out
this kind of situation using solely the observation of the
shadow would be being able to discard the existence of this
faint emission in the dark region of the shadow. It seems
however difficult to attain the precision needed to obtain
competitive constraints on the value ofΔ, in comparison for
instance with the ones obtained for Sgr A* in Sec. III B 2 b.
Moreover, it is important to keep in mind that these
constraints would always take the form of upper bounds
on this quantity. Overall, we can conclude that the existence

of horizons cannot be decided on the basis of the obser-
vations of the shadows of astrophysical black holes only.
However, new experimental efforts such as the Event
Horizon Telescope (EHT) or BlackHoleCam (e.g., [156])
will certainly improve our understanding of the environ-
ment of Sgr A* and will allow more accurate measurements
of its accretion rate [157,158], which would increase the
accuracy of the constraints that follow from other obser-
vational channels and which have been described above in
this section. The EHT may also be able to place constraints
on possible deviations from the Kerr geometry [159] and on
the strength of soft fluctuations of the geometry around
black holes [160–162] (and perhaps other scenarios that
include long-range modifications [163]). Within our para-
metrization, we can describe the latter models in terms of
tails ϵðt; rÞ with compact support.

4. Bursts

The search for EM bursts has been claimed in the past as
a possible strategy for detecting the outcome of bouncing
geometries. Of course, if the previously discussed insta-
bility of regular black holes implies their conversion into
bouncing solutions, the same observations will be relevant
for constraining them. It is less clear if the possible
conversion of regular black holes or short-lived bounces
into quasi black holes and wormholes would imply any
transient burst and what it might depend on. It is natural to
conjecture that, if these objects are the outcomes of a series
of rapid bounces with short timescale τð1Þ, high-energy
quasiperiodic bursts with typical frequency 1=τð1Þ should
be expected [35]. However, without detailed models that
describe, for instance, the damping of these oscillations, not
much more can be said at the moment.
While what we said above holds in the case of short-lived

bounces of typical timescale τð1Þ, more complex is the case
of long-lived bounces with τ ¼ τð2Þ, for which several
phenomenological studies have been performed in the
literature [52,53,164,165]. In this case no relevant signal
is expected up to this timescale while two distinct compo-
nents are predicted as being associated to the typical size of
the exploding object (infrared component) and to the
typical energy of the Universe at the moment of its
formation (ultraviolet component). If τ ¼ τð2Þ, it is reason-
ably arguable that only primordial black holes, which
formed in the early Universe, would have the size and
the lifetime for exploding soon enough so that we could
observe the corresponding signals.
For primordial black holes whose lifetime is of the order

of the Hubble time, it was shown that the infrared
component of the signal could get up to the GeV scale
and be peaked in the MeV, while the ultraviolet part of the
burst is expected to be in the TeV range [164,165]. If
confirmed by more accurate modeling, this would place the
search for the bursts associated to bouncing geometries
within the realm of current high-energy astrophysics
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experiments (provided that a sufficient number of primor-
dial black holes is created in the early Universe).
Furthermore, the fact that bursts further away in redshift
would correspond to less massive and more primordial
objects implies that their higher peak frequency would
partially compensate their higher cosmological redshift
[165]. This is a peculiar behavior that might be used as
a signature for these kinds of signals and might help
distinguish them from other, more standard, astrophysical
emissions.
With regards to our parametrization, it is clear that the

detection of one of these bursts could be used to cast
constraints on both τ� (depending on the particular
scenario), but would not tell us much about tails, ϵðt; rÞ.

C. Gravitational waves

The detection of gravitational waves in LIGO and
VIRGO [166–171] opens up additional possibilities for
testing the properties of astrophysical black holes. One
of the best sources of gravitational waves is the merger of
compact objects: astrophysical black holes [166–170] or
neutron stars [171]. The merger of compact objects releases
abundant information about their nature, although part of it
is difficult to extract due to the intrinsically nonlinear nature
of the process. It is also interesting that, as discussed below,
observations using electromagnetic and gravitational-wave
observations are complementary, in the sense that the
different nature of the physical processes involving these
forms of radiation makes the corresponding observational
channels more sensible to (and therefore more suitable to
measure) different phenomenological parameters. We illus-
trate this point using the parametrization introduced in
Sec. III A.

1. Coalescence of compact objects

The waveform produced in a merger can be roughly
divided into three main parts: (i) the inspiral phase in which
the two objects are far apart, (ii) the merging phase in which
the two objects enter in direct contact, and (iii) the ring-
down phase that describes the relaxation of the outcome of
the merging phase. These three phases are defined by the
different physical processes taking place; from a math-
ematical perspective, these phases are also characterized by
the different techniques that are most appropriate for
extracting the corresponding gravitational-wave signatures.

(i) Inspiral phase: In the inspiral phase the two objects
are far apart, so that Newtonian gravity can be used
in order to describe this phase to a good approxi-
mation. Hence, as in the discussion of orbiting stars
in Sec. III B 1, the details of the near-horizon
geometry will not appreciably affect the evolution
of the system in this phase. However, while in this
phase, binary systems could still possibly display
detectable differences with respect to a binary of

black holes if the two objects have surfaces instead
of horizons (i.e., if Δ > 0), due to the effects that the
gravitational field of each of the two objects can
have on the internal structure of its companion
through the induced tidal forces. All known results
regarding classical general relativity black holes are
consistent with these objects having identically zero
tidal deformability [172–174]. However, ultracom-
pact configurations without horizons can be tidally
deformed [175]. Moreover, if Γ ≠ 0 the object
would decrease its tidal heating (measured in terms
of the amount of gravitational radiation that the
object absorbs [176,177]). It has been argued [178]
(see also [179]) that both effects could be used in
order to place upper bounds on the values of these
two parameters Δ and Γ using data from the Laser
Interferometer Space Antenna, with constraints on
the value of Γ being the most promising ones. Soft
fluctuations of the near-horizon geometry, given by
tails ϵðt; rÞ with compact support, can be also
constrained using this part of the waveform [180].

(ii) Merger: The dynamics in the merger phase is highly
nonlinear, which renders most of the parameters in
our phenomenological parametrization in Sec. III A
useless. In fact, virtually nothing is known about this
nonlinear regime in theories beyond general rela-
tivity. It seems that this problem has to be addressed
numerically and on a case-by-case basis. However,
some of the models discussed in Sec. II could leave
an imprint during this phase. In particular, short-
lived bouncing geometries would disrupt the merger
on timescales of the order of τ−, perhaps leading to
the formation of quasi black holes as proposed in
[35,51]. This may create a distinctive periodic
pattern [28,35] that is similar to the (linear) phe-
nomenon of gravitational-wave echoes discussed in
the next section, sharing the typical values of the
timescale between subsequent echoes but being
inherently nonlinear. For completeness, we also
mention that horizonless configurations may also
lead to electromagnetic afterglows in this phase
[181,182]. However, the strength of this emission
is largely unknown, and also it is not clear how such
a phenomenon would avoid being suppressed by the
lensing discussed in Sec. III B 2.

(iii) Ringdown: The ringdown part of the signal can
again be described making use of a linear analysis, in
terms of the so-called quasinormal modes [91,92].
The corresponding waveform is typically given by a
linear combination of damped sinusoids. Shortly
after the first detection of gravitational waves, a
theoretical analysis [83] demonstrated explicitly that
the form of this part of the signal is associated
with the photon sphere at rph ¼ 3rs=2, and not the
horizon. Hence, a similar comment as in Sec. III B 3
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applies: testing the damping of the waveform does
not allow drawing certain conclusions about the
near-horizon geometry, such as the existence of
horizons. It is also worth noting that there are
geometries with different ϵðt; rÞ that are still com-
patible with the detected signals [183]. However, as
discussed in the next section, modifications of the
near-horizon geometry may trigger new character-
istic effects in the late-time ringdown.

2. Echoes in the late-time ringdown

After the relaxation of the object produced in the merger
through the emission of gravitational waves, its properties
could still leave imprints in the late-time gravitational-wave
signal. These imprints would be the result of the interaction
of the gravitational radiation, emitted previously, with the
central object. As discussed in detail below, for sufficiently
compact situations a significant fraction of this gravita-
tional radiation is backscattered by the gravitational field of
the central object, traveling back to and interacting with the
latter. The phenomenological parameter that control this
late-time behavior is the reflection coefficient Γ. For a black
hole, Γ ¼ 0, which means that all backscattered radiation
disappears down its gravitational well. If Γ ≠ 0, some of
this radiation would bounce back from the object and could
be measured by distant detectors.
Let us start with the simplest possible description of the

main physics involved, adding additional details progres-
sively. The first element that must be discussed is the
mechanism that leads to the backscattering of the initially
outgoing radiation [184]. This can be introduced by
considering the propagation of test particles or waves in
the Schwarzschild geometry. For instance, the modes of a
scalar field Φðt; r; θ;φÞ, in the usual decomposition in
spherical harmonics

Φðt; r; θ;φÞ ¼
X∞
l¼0

Xl

m¼−l

ϕlmðt; rÞ
r

Ylmðθ;φÞ; ð51Þ

satisfy the wave equation

�
−

∂2

∂t2 þ
∂
∂r2� − Vl

�
ϕlmðt; rÞ ¼ 0; ð52Þ

where r� is the standard tortoise coordinate and

Vl ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
ð53Þ

is the Regge-Wheeler potential. This potential has a
maximum in the vicinity of rph ¼ 3M, with the deviation
from this value controlled by 1=l, and smaller the larger
the value of l. The radius rph ¼ 3M marks also the
location of the photon sphere (or light ring), namely the

innermost circular null geodesic that is stable (as discussed
in Sec. III B 2). Because of the existence of this maximum
in the potential, outgoing waves originated at r < rph are
backscattered. The fraction of backscattered radiation can
be calculated explicitly [185–188]. Only objects that are
compact enough to have a photon sphere display this
phenomenon, and therefore we focus in the following on
these objects.
In the case of a black hole, the backscattered waves are

lost into the horizon. However, for objects in which Γ ≠ 0
and Δ ≠ 0, part of the incoming radiation is reflected
outwards. When crossing the photon sphere at rph, part of
this radiation escapes and part is backscattered. This leads
to a periodic phenomenon that would produce a series of
echoes of the first event. Slightly modifying Eq. (29), the
characteristic timescale of this phenomenon is given by

Techo ¼ 2M − 4M lnð2ΔÞ þ T int; ð54Þ

where the first two terms on the right-hand side measure the
time that a pointlike particle following a radial null geodesic
takes to travel from rph ¼ 3M and R ¼ rsð1þ ΔÞ and then
fromR¼rsð1þΔÞ to rph ¼ 3M, andT int provides ameasure
of the time that the gravitational wave spends inside the
central object (that is, in the region r ≤ R).
The precise value of T int depends on the particular model

being used but, if one ignores the interaction between
gravitational waves and the central object (which, as
explained below, is most likely not consistent for compact
enough configurations), this quantity is expected to be of
the order of the light-crossing time or, equivalently, propor-
tional to M (an explicit calculation is provided for instance
in [189]). Then, for Δ ≪ 1 the leading order in Eq. (54)
would be

Techo ≃ −4M lnðΔÞ: ð55Þ

This logarithmic behavior has been already discussed in
Sec. III B 2 b. The amplitude of these echoes is proportional
to the reflection coefficient Γ and also depends on the
details of the barrier peaked around the photon sphere. Of
course, the amplitude of subsequent echoes decreases
monotonically, and a power law for this decay has been
found [186,190].
The reader may have noticed that there seems to be an

inconsistency between our treatment of electromagnetic
waves in Sec. III B 2, and the treatment of gravitational
waves in this section. More specifically, we are not bringing
up the lensing that had to be taken into account in order to
describe the behavior of electromagnetic waves. In other
words, we are implying that gravitational waves are
not affected by this lensing. There are several aspects
behind this assumption. The first one is that the processes
involving electromagnetic waves have been assumed
to be deeply inelastic, following our intuition about the
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interaction of light and matter in other systems. However, in
the linear approximation used to describe gravitational-
wave echoes, it is assumed that gravitational waves interact
elastically with the central object (we critically revise this
assumption at the end of this section). If we accept this
main difference it follows then, as long as we are analyzing
waves with angular momentum below the critical value L⋆
derived in Sec. III B 2, that electromagnetic waves
experience lensing effects while gravitational waves are
unaffected.
Moreover, it is worth stressing that these two kinds of

radiation have different wavelength, which determines
whether or not the geometric optics approximation is
reasonable. The gravitational waves produced in the merger
of two compact objects into a central object of massM have
wavelengths that are comparable to the Schwarzschild
radius of the central object [191] (of course, there is a
distribution in wavelengths, or frequencies, around this
typical scale). On the other hand, the electromagnetic waves
relevant for our discussion in Sec. III B 2 have much shorter
wavelengths.Hence, it is reasonable to describe the behavior
of electromagnetic waves in these spacetimes within the
geometric optics approximation, in which the strong lensing
of lightlike geodesics by the gravitational field of the central
object is unavoidable. As the gravitational waves of the
wavelengths involved in the merger cannot be described in
this approximation, they may circumvent the attraction of
the central object and escape outwards even if having an
angular momentum greater than L⋆, depending on the value
of l (something that would lead to a grey-body feature of the
gravitational-wave spectrum). We think that this aspect is
worth studying in detail.
Previous works (including [184,186,187,190,192]) have

not analyzed this issue explicitly, perhaps due to particular
choices of initial conditions for gravitational radiation. In
fact, it may be the case that phenomenologically reasonable
values of L are below L⋆, hence preventing lensing playing
any role in realistic scenarios. However, in order to deal
with realistic situations one would also need to include the
angular momentum of the central object, which would
certainly change the value of L⋆.
On the other hand, let us recall that Eqs. (54) and (55) are

strictly valid for null geodesics. Hence, it is assumed in the
literature that the geometric optics approximation is indeed
reasonable at least for the analysis of certain aspects of
the problem, namely the evaluation of the characteristic
timescale (55). The critical wavelength below which the
geometric optics approximation can be used in order to
describe the behavior of waves in the potential (53) is
substantially larger thanM forΔ ≪ 1 small enough; in fact,
this critical wavelength is roughly given by Eq. (55). This
restricts the wavelengths for which the discussion of the
echoes provided above is consistent,

λ ≪ j lnΔj ×OðMÞ: ð56Þ

It is important to analyze the physics associated with this
upper bound in more detail, in order to understand for
instance how sharp it is. This is moreover relevant for
modeling purposes, as Eq. (56) points out that the fre-
quency content of the originally outgoing gravitational
radiation will effectively experience a band-pass filter that
selects the frequencies that would appear in the subsequent
echoes. Moreover, waves with L > L⋆ may also experience
a lower bound given by M ≲ λ, although this is far
from clear.
It is illustrative to use our parametrization in Sec. III A in

order to understand the kind of information that can be
extracted from the search of echoes in gravitational-wave
events. The amplitude of gravitational-wave echoes would
be, following the discussion above, proportional to Γ.
Hence, both the observation and nonobservation of echoes
can put constraints on the value of this parameter (this is,
for instance, the main result in [193,194]). The nonobser-
vation of echoes can only constrain this parameter and
cannot say anything about the radius R or, alternatively, Δ.
Of course, a positive detection of echoes could be used in
order to determine the size of the central object, through the
use of Eq. (55). The other two parameters which are
relevant for the process are τþ, which has to be greater
than the characteristic timescale of echoes (this would place
a very uninteresting lower bound on this quantity), and τ−,
which has to be smaller (the consequences of this for
theoretical models were analyzed in [195]).
The interest in this phenomenon has grown after tenta-

tive evidence for their existence in LIGO data was claimed
[196,197]. These works assume crude templates that are
missing some of the details in the discussion above and in
later works such as [186,190], the importance of which for
data analysis is not yet clear. Moreover, these claims are
still controversial, although parts of the initial results have
been corroborated by other groups [198–201] (see also
[202]). For completeness, let us also mention that quali-
tatively similar claims have been made about the binary
neutron star merger GW170817 [203]. However, the latter
analysis does not make any specific assumptions about the
waveform of the echoes and just looks for periodicities.
This opens the possibility of alternative explanations for
these periodicities, as mentioned in the conclusions
of [203] but also explored for instance in [204], and in
Sec. III C 1 above in which it was stressed that short-lived
bouncing geometries are also expected to lead to periodic
patterns in the late-time part of gravitational-wave signals.
Before ending this section, we stress that the discussion

above neglects the (generally nonlinear) interaction
between gravitational waves and the central object. In
practical terms, the echo timescale is calculated in an
approximation in which gravitational waves propagate in a
fixed background, and the amplitude of the echoes is just
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proportional to the reflection coefficient Γ. This issue has
been ignored in the literature, but here we highlight that this
does not seem consistent and that this feature has funda-
mental implications for the modeling of echoes.
Let us start by considering a toy model in the purely

classical framework of general relativity, consisting of a
perfectly reflecting (Γ ¼ 1) and spherically symmetric
mirror with radius R ¼ rsð1þ ΔÞ enclosing a mass M, so
that the geometry outside the mirror is Schwarzschild. We
now consider an ingoing spherical shell of gravitational
radiation, of which we just need to monitor the energy
density, so that we describe it in terms of pressureless null
dust with uniform energy density. This ingoing radiation is
reflected by the mirror and therefore travels outwards after
interacting with the latter. However, the peeling of outgoing
null geodesics leads to an accumulation of energy around the
gravitational radius (see Fig. 4). For Δ ≪ 1 this accumu-
lation of energy leads to the formation of trapping (and, in
this classical setting, event) horizons even for an extremely
modest amount of energy being received and reflected at the
mirror [139]. Above a certain threshold in the power stored
in the gravitational radiation, a black hole forms around the
mirror and no radiation escapes to infinity.
The formation of a black hole in this toy model is

intimately associated with the breakdown of the linear
approximation for the gravitational waves propagating in
the background geometry produced by the mirror, given
that in the linear approximation these waves always escape
to infinity. Hence, this shows that one has to be careful
when using the linear approximation to extract the features
of echoes. The formation of a trapping horizon might be
avoided if the nonlinear interactions between the ingoing
gravitational waves and the central objects are considered.
A model-independent outcome of these interactions has to
be the expansion of the central object in order to avoid

the formation of trapping horizons. This expansion of the
object needs energy, which can only be taken from the
gravitational radiation. A straightforward application of
the argument in [139] shows that the more compact the
central object is, the larger is the fraction of the energy
stored in the gravitational waves that has to be transferred
through nonlinear interactions.3 If most of the ingoing
gravitational waves must interact and transfer their energy
to the central object, it is likely that the reflection
coefficient Γ will be extremely small, and therefore that
there would be no echoes. It might be possible that the
nonlinear interactions with the central object are elastic and
that the energy inside the central object is transferred back
to the outgoing gravitational waves after their travel
through its interior, although this possibility seems unlikely
from a physical perspective. In any case, these arguments
show that previous theoretical analysis of this phenomenon
is missing important details of the physics involved,
which must be incorporated in order to arrive to a consistent
picture (and, in particular, to determine whether the
existence of echoes really is a robust theoretical prediction,
as well as, in case of positive detection, to relate them to the
internal details of the central object).

IV. CONCLUSION

In this paper we have studied and parametrized the
possible theoretical alternatives to classical black holes and
we have discussed the current status of the relevant
observational constraints. We have classified the different
alternatives into four classes, regular black holes, bouncing
geometries, quasi black holes, and wormholes, and we have
provided a set of phenomenological parameters that iden-
tify the key properties of each class. Both electromagnetic
and gravitational-wave observations can be used in order to
constrain these parameters. In Table II we have summarized
the parameters that can be measured or constrained with
each of the different observational channels discussed in
this paper.
The most promising observational channel using

electromagnetic waves can only probe quasi black holes.
Equation (43) represents the most stringent bound that
electromagnetic observations can put on a combination of
the parameters κ and μ (a similar relation including Γ can be
derived). This provides an upper bound on the allowed
values of μ that is generally weaker than the upper bound
(38) that does not take into account the absorption
coefficient κ (as in previous works in the subject). These
constraints can become very weak for reasonable values of
the parameters involved. We have also reviewed in

FIG. 4. Exponential peeling of outgoing geodesics reflected at
r ¼ R. Even if the ingoing distribution of energy has low density
(light gray region), the accumulation of geodesics around the
gravitational radius produces high densities (dark gray region)
that result in large backreaction effects on the background
geometry.

3It is important to stress that it is clear that these interactions
must be sufficiently exotic (see, e.g., [205] for a particular
discussion) to avoid the formation of trapping horizons (in
particular, it seems that these interactions must involve some
kind of nonlocality), although we do not insist on this point.
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Sec. III B 2 c the existence of lower bounds on the
parameter μ that can also be inferred from the observation
of accretion disks around supermassive black holes. These
lower bounds provide the most restrictive constraints on
quasi black holes and are insensitive to the parameters κ and
Γ (albeit they do rely on the assumption of standard local
interactions). Let us stress that all the constraints described
in this paper must be taken as order-of-magnitude esti-
mates, as we have not included explicitly the effects of
rotation or realistic models of accretion disks, for instance.
These additional aspects must be analyzed for each of these
different observational channels in order to tighten the
accuracy of the corresponding constraints.
As with wormholes, testing regular black holes or

long-lived bouncing geometries with electromagnetic
observations seems hopeless during most of their extended
lifetimes. The final stages in the evolution of these objects
may be typically violent, which could lead to prompt
emissions of electromagnetic radiation. Hence, quasi black
holes are arguably the most interesting scenarios from the
perspective of electromagnetic observations, as they offer a
number of phenomenological opportunities during all
stages of their life cycle (that may involve transients
characterized by short-lived bounces).
Regarding gravitational waves, we can conclude that the

most promising theoretical scenarios from an observational
perspective are quasi black holes, wormholes, and short-
lived bouncing geometries. The remaining theoretical
scenarios, such as regular black holes, will be very difficult
(if not impossible) to probe observationally in the near
future, except perhaps for cataclysmic events that may lead
to bursts of gravitational radiation (that can be associated,
for instance, with long-lived bouncing geometries).

For these theoretical models, observational channels
based on gravitational waves are mostly sensitive to the
reflection coefficient Γ. This is due to the main difference
with respect to electromagnetic radiation that is typically
assumed: gravitational waves interact extremely weakly
with standard matter. However, the lack of detailed knowl-
edge of both the matter forming these objects and the
possible nonlinear interactions of their gravitational fields
with gravitational waves makes it impossible to assume at
the moment that these objects will display an appreciable
reflection coefficient. In any case, gravitational-wave
observations are starting to place constraints on this
coefficient. These constraints will improve in the near
future, thus providing valuable feedback for theoretical
research. It is worth stressing that observational channels
involving gravitational and electromagnetic waves are
therefore complementary, thus providing a strong motiva-
tion for a multimessenger approach to the problem.
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Regular stringy black holes?, arXiv:1806.08377.

[17] J. M. Bardeen, Nonsingular general-relativistic gravitational
collapse, in Proceedings of International Conference GR5,
Tbilisi, USSR (1968), p. 174.

[18] A. Borde, Regular black holes and topology change, Phys.
Rev. D 55, 7615 (1997).

[19] I. Dymnikova, Vacuum nonsingular black hole, Gen.
Relativ. Gravit. 24, 235 (1992).

[20] V. P. Frolov and A. Zelnikov, Quantum radiation from
an evaporating nonsingular black hole, Phys. Rev. D 95,
124028 (2017).

[21] A. D. Sakharov, Nachal’naia stadija rasshirenija Vselennoj
i vozniknovenije neodnorodnosti raspredelenija vesh-
chestva, Zh. Eksp. Teor. Fiz. 49, 345 (1966) [Sov. Phys.
JETP 22, 241 (1966)].

[22] E. B. Gliner, Algebraic properties of the energy-
momentum tensor and vacuumlike states of matter, Sov.
J. Exp. Theor. Phys. 22, 378 (1966).

[23] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio,
and M. Visser, On the viability of regular black holes,
J. High Energy Phys. 07 (2018) 023.

[24] M. Amir and S. G. Ghosh, Rotating Hayward’s regular
black hole as particle accelerator, J. High Energy Phys. 07
(2015) 015.

[25] M. Amir and S. G. Ghosh, Shapes of rotating nonsingular
black hole shadows, Phys. Rev. D 94, 024054 (2016).

[26] B. Gwak, Collision of two rotating Hayward black holes,
Eur. Phys. J. C 77, 482 (2017).

[27] V. P. Frolov, Notes on nonsingular models of black holes,
Phys. Rev. D 94, 104056 (2016).

[28] C. Barceló, R. Carballo-Rubio, and L. J. Garay, Where
does the physics of extreme gravitational collapse reside?,
Universe 2, 7 (2016).

[29] V. P. Frolov and G. A. Vilkovisky, Quantum gravity
removes classical singularities and shortens the life of
black holes, in The Second Marcel Grossmann Meeting on
the Recent Developments of General Relativity (In Honor
of Albert Einstein) Trieste, Italy (1979), p. 0455.

[30] V. P. Frolov and G. A. Vilkovisky, Spherically symmetric
collapse in quantum gravity, Phys. Lett. 106B, 307 (1981).

[31] P. Hajicek, Quantum theory of gravitational collapse:
(Lecture notes on quantum conchology), Lect. Notes Phys.
631, 255 (2003).

[32] M. Ambrus and P. Hajicek, Quantum superposition prin-
ciple and gravitational collapse: Scattering times for
spherical shells, Phys. Rev. D 72, 064025 (2005).

[33] C. Barceló, L. J. Garay, and G. Jannes, Quantum non-
gravity and stellar collapse, Found. Phys. 41, 1532
(2011).

[34] C. Barceló, R. Carballo-Rubio, and L. J. Garay, Mutiny at
the white-hole district, Int. J. Mod. Phys. D 23, 1442022
(2014).

[35] C. Barceló, R. Carballo-Rubio, L. J. Garay, and G. Jannes,
The lifetime problem of evaporating black holes: Mutiny
or resignation, Classical Quantum Gravity 32, 035012
(2015).

[36] C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D
23, 1442026 (2014).

[37] H. M. Haggard and C. Rovelli, Quantum-gravity effects
outside the horizon spark black to white hole tunneling,
Phys. Rev. D 92, 104020 (2015).

[38] A. Ashtekar and M. Bojowald, Quantum geometry and the
Schwarzschild singularity, Classical Quantum Gravity 23,
391 (2006).

[39] A. Ashtekar, V. Taveras, and M. Varadarajan, Information
is not Lost in the Evaporation of 2-Dimensional Black
Holes, Phys. Rev. Lett. 100, 211302 (2008).

[40] A. Corichi and P. Singh, Loop quantization of the
Schwarzschild interior revisited, Classical Quantum Grav-
ity 33, 055006 (2016).

[41] J. Olmedo, S. Saini, and P. Singh, From black holes to
white holes: A quantum gravitational, symmetric bounce,
Classical Quantum Gravity 34, 225011 (2017).

[42] A. Ashtekar, J. Olmedo, and P. Singh, Quantum
transfiguration of Kruskal black holes, arXiv:1806.00648.

[43] A. Ashtekar, J. Olmedo, and P. Singh, Quantum extension
of the Kruskal space-time, arXiv:1806.02406.

[44] C. Bambi, D. Malafarina, and L. Modesto, Nonsingular
quantum-inspired gravitational collapse, Phys. Rev. D 88,
044009 (2013).

[45] C. Bambi, D. Malafarina, and L. Modesto, Black super-
novae and black holes in nonlocal gravity, J. High Energy
Phys. 04 (2016) 147.

[46] E. Bianchi, M. Christodoulou, F. D’Ambrosio, C. Rovelli,
and H. M. Haggard, White holes as remnants: A surprising
scenario for the end of a black hole, Classical Quantum
Gravity 35, 225003 (2018).

RAÚL CARBALLO-RUBIO et al. PHYS. REV. D 98, 124009 (2018)

124009-22

https://doi.org/10.1088/1361-6633/aa77cc
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1007/JHEP05(2014)049
https://doi.org/10.1007/JHEP05(2014)049
https://doi.org/10.1140/epjc/s10052-016-3999-7
https://doi.org/10.1103/PhysRevD.92.044047
https://doi.org/10.1088/0264-9381/33/11/115007
https://doi.org/10.1088/0264-9381/33/11/115007
https://doi.org/10.1088/1361-6382/aaa849
https://doi.org/10.1103/PhysRevD.95.064043
https://doi.org/10.1103/PhysRevD.95.064043
https://doi.org/10.1103/PhysRevD.96.104028
http://arXiv.org/abs/1806.08377
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1007/BF00760226
https://doi.org/10.1007/BF00760226
https://doi.org/10.1103/PhysRevD.95.124028
https://doi.org/10.1103/PhysRevD.95.124028
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1007/JHEP07(2015)015
https://doi.org/10.1007/JHEP07(2015)015
https://doi.org/10.1103/PhysRevD.94.024054
https://doi.org/10.1140/epjc/s10052-017-5055-7
https://doi.org/10.1103/PhysRevD.94.104056
https://doi.org/10.3390/universe2020007
https://doi.org/10.1016/0370-2693(81)90542-6
https://doi.org/10.1007/978-3-540-45230-0_6
https://doi.org/10.1007/978-3-540-45230-0_6
https://doi.org/10.1103/PhysRevD.72.064025
https://doi.org/10.1007/s10701-011-9577-9
https://doi.org/10.1007/s10701-011-9577-9
https://doi.org/10.1142/S021827181442022X
https://doi.org/10.1142/S021827181442022X
https://doi.org/10.1088/0264-9381/32/3/035012
https://doi.org/10.1088/0264-9381/32/3/035012
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1103/PhysRevD.92.104020
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1103/PhysRevLett.100.211302
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1088/1361-6382/aa8da8
http://arXiv.org/abs/1806.00648
http://arXiv.org/abs/1806.02406
https://doi.org/10.1103/PhysRevD.88.044009
https://doi.org/10.1103/PhysRevD.88.044009
https://doi.org/10.1007/JHEP04(2016)147
https://doi.org/10.1007/JHEP04(2016)147
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1088/1361-6382/aae550


[47] C. Barceló, R. Carballo-Rubio, and L. J. Garay, Black
holes turn white fast, otherwise stay black: No half
measures, J. High Energy Phys. 01 (2016) 157.

[48] T. De Lorenzo and A. Perez, Improved black hole fire-
works: Asymmetric black-hole-to-white-hole tunneling
scenario, Phys. Rev. D 93, 124018 (2016).

[49] M. Christodoulou, C. Rovelli, S. Speziale, and I. Vilensky,
Planck star tunneling time: An astrophysically relevant
observable from background-free quantum gravity, Phys.
Rev. D 94, 084035 (2016).

[50] S. W. Hawking, Black hole explosions, Nature (London)
248, 30 (1974).

[51] C. Barceló, R. Carballo-Rubio, and L. J. Garay, Exponen-
tial fading to white of black holes in quantum gravity,
Classical Quantum Gravity 34, 105007 (2017).

[52] A. Barrau, C. Rovelli, and F. Vidotto, Fast radio bursts and
white hole signals, Phys. Rev. D 90, 127503 (2014).

[53] A. Barrau, B. Bolliet, F. Vidotto, and C. Weimer, Phe-
nomenology of bouncing black holes in quantum gravity:
A closer look, J. Cosmol. Astropart. Phys. 02 (2016) 022.

[54] H. A. Buchdahl, General relativistic fluid spheres, Phys.
Rev. 116, 1027 (1959).

[55] H. Bondi, Massive spheres in general relativity, Proc. R.
Soc. A 282, 303 (1964).

[56] C. Cattoen, T. Faber, and M. Visser, Gravastars must have
anisotropic pressures, Classical Quantum Gravity 22, 4189
(2005).

[57] P. O. Mazur and E. Mottola, Gravitational vacuum
condensate stars, Proc. Natl. Acad. Sci. U.S.A. 101,
9545 (2004).

[58] M. Visser and D. L. Wiltshire, Stable gravastars: An
alternative to black holes?, Classical Quantum Gravity
21, 1135 (2004).

[59] E. Mottola, New horizons in gravity: The trace anomaly,
dark energy and condensate stars, Acta Phys. Pol. B41,
2031 (2010).

[60] S. D. Mathur, The Fuzzball proposal for black holes: An
elementary review, The quantum structure of space-time
and the geometric nature of fundamental interactions.
Proceedings, 4th Meeting, RTN2004, Kolymbari, Crete,
Greece, 2004, Fortschr. Phys. 53, 793 (2005).

[61] B. Guo, S. Hampton, and S. D. Mathur, Can we observe
fuzzballs or firewalls?, J. High Energy Phys. 07 (2018)
162.

[62] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Fate of
gravitational collapse in semiclassical gravity, Phys. Rev.
D 77, 044032 (2008).

[63] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Black
stars, not holes, Sci. Am. 301, No. 4, 38 (2009).

[64] R. Carballo-Rubio, Stellar Equilibrium in Semiclassical
Gravity, Phys. Rev. Lett. 120, 061102 (2018).

[65] H. Kawai, Y. Matsuo, and Y. Yokokura, A self-consistent
model of the black hole evaporation, Int. J. Mod. Phys. A
28, 1350050 (2013).

[66] H. Kawai and Y. Yokokura, Phenomenological description
of the interior of the Schwarzschild black hole, Int. J. Mod.
Phys. A 30, 1550091 (2015).

[67] H. Kawai and Y. Yokokura, Interior of black holes and
information recovery, Phys. Rev. D 93, 044011 (2016).

[68] V. Baccetti, R. B. Mann, and D. R. Terno, Role of
evaporation in gravitational collapse, Classical Quantum
Gravity 35, 185005 (2018).

[69] V. Baccetti, R. B. Mann, and D. R. Terno, Horizon avoid-
ance in spherically-symmetric collapse, arXiv:1703.09369.

[70] V. Baccetti, R. B. Mann, and D. R. Terno, Do event
horizons exist?, Int. J. Mod. Phys. D 26, 1743008 (2017).

[71] P. Chen, W. G. Unruh, C.-H. Wu, and D.-H. Yeom,
PreHawking radiation cannot prevent the formation of
apparent horizon, Phys. Rev. D 97, 064045 (2018).

[72] B. A. Juárez-Aubry and J. Louko, Quantum fields during
black hole formation: How good an approximation is the
Unruh state?, J. High Energy Phys. 05 (2018) 140.

[73] V. Cardoso and L. Gualtieri, Testing the black hole
‘no-hair’ hypothesis, Classical Quantum Gravity 33,
174001 (2016).

[74] M. Visser, Lorentzian Wormholes: From Einstein to
Hawking, Aip Series in Computational and Applied
Mathematical Physics (AIP Press, American Institute of
Physics, College Park, MD, 1995).

[75] M. Visser, Traversable wormholes: Some simple examples,
Phys. Rev. D 39, 3182 (1989).

[76] M. Visser, Traversable wormholes from surgically modi-
fied Schwarzschild space-times, Nucl. Phys. B328, 203
(1989).

[77] N. Dadhich, S. Kar, S. Mukherji, and M. Visser, R ¼ 0

space-times and self-dual Lorentzian wormholes, Phys.
Rev. D 65, 064004 (2002).

[78] M. Visser, S. Kar, and N. Dadhich, Traversable Wormholes
with Arbitrarily Small Energy Condition Violations, Phys.
Rev. Lett. 90, 201102 (2003).

[79] S. Kar, N. Dadhich, and M. Visser, Quantifying energy
condition violations in traversable wormholes, Pramana
63, 859 (2004).

[80] M. S. Morris and K. S. Thorne, Wormholes in space-time
and their use for interstellar travel: A tool for teaching
general relativity, Am. J. Phys. 56, 395 (1988).

[81] M. S. Morris, K. S. Thorne, and U. Yurtsever, Wormholes,
Time Machines, and the Weak Energy Condition, Phys.
Rev. Lett. 61, 1446 (1988).

[82] M. Visser and D. Hochberg, Generic wormhole throats,
Ann. Isr. Phys. Soc. 13, 249 (1997).

[83] V. Cardoso, E. Franzin, and P. Pani, Is the Gravitational-
Wave Ringdown a Probe of the Event Horizon?, Phys. Rev.
Lett. 116, 171101 (2016); Erratum 117, 089902 (2016).

[84] S. H. Völkel and K. D. Kokkotas, Wormhole potentials and
throats from quasinormal modes, Classical Quantum
Gravity 35, 105018 (2018).

[85] E. Teo, Rotating traversable wormholes, Phys. Rev. D 58,
024014 (1998).

[86] E. Curiel, A primer on energy conditions, Einstein Stud.
13, 43 (2017).

[87] A. Fabbri, S. Farese, J. Navarro-Salas, G. J. Olmo, and H.
Sanchis-Alepuz, Semiclassical zero-temperature correc-
tions to Schwarzschild spacetime and holography, Phys.
Rev. D 73, 104023 (2006).

[88] P.-M. Ho and Y. Matsuo, Static black holes with back
reaction from vacuum energy, Classical Quantum Gravity
35, 065012 (2018).

PHENOMENOLOGICAL ASPECTS OF BLACK HOLES … PHYS. REV. D 98, 124009 (2018)

124009-23

https://doi.org/10.1007/JHEP01(2016)157
https://doi.org/10.1103/PhysRevD.93.124018
https://doi.org/10.1103/PhysRevD.94.084035
https://doi.org/10.1103/PhysRevD.94.084035
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1088/1361-6382/aa6962
https://doi.org/10.1103/PhysRevD.90.127503
https://doi.org/10.1088/1475-7516/2016/02/022
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1098/rspa.1964.0234
https://doi.org/10.1098/rspa.1964.0234
https://doi.org/10.1088/0264-9381/22/20/002
https://doi.org/10.1088/0264-9381/22/20/002
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1007/JHEP07(2018)162
https://doi.org/10.1007/JHEP07(2018)162
https://doi.org/10.1103/PhysRevD.77.044032
https://doi.org/10.1103/PhysRevD.77.044032
https://doi.org/10.1038/scientificamerican1009-38
https://doi.org/10.1103/PhysRevLett.120.061102
https://doi.org/10.1142/S0217751X13500504
https://doi.org/10.1142/S0217751X13500504
https://doi.org/10.1142/S0217751X15500918
https://doi.org/10.1142/S0217751X15500918
https://doi.org/10.1103/PhysRevD.93.044011
https://doi.org/10.1088/1361-6382/aad70e
https://doi.org/10.1088/1361-6382/aad70e
http://arXiv.org/abs/1703.09369
https://doi.org/10.1142/S0218271817430088
https://doi.org/10.1103/PhysRevD.97.064045
https://doi.org/10.1007/JHEP05(2018)140
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1103/PhysRevD.65.064004
https://doi.org/10.1103/PhysRevD.65.064004
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1007/BF02705207
https://doi.org/10.1007/BF02705207
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1088/1361-6382/aabce6
https://doi.org/10.1088/1361-6382/aabce6
https://doi.org/10.1103/PhysRevD.58.024014
https://doi.org/10.1103/PhysRevD.58.024014
https://doi.org/10.1007/978-1-4939-3210-8_3
https://doi.org/10.1007/978-1-4939-3210-8_3
https://doi.org/10.1103/PhysRevD.73.104023
https://doi.org/10.1103/PhysRevD.73.104023
https://doi.org/10.1088/1361-6382/aaac8f
https://doi.org/10.1088/1361-6382/aaac8f


[89] C. Berthiere, D. Sarkar, and S. N. Solodukhin, The
quantum fate of black hole horizons, Phys. Lett. B 786,
21 (2018).

[90] R. P. Kerr, Gravitational Field of a Spinning Mass as an
Example of Algebraically Special Metrics, Phys. Rev. Lett.
11, 237 (1963).

[91] V. Cardoso, Quasinormal modes and gravitational radia-
tion in black hole spacetimes, Ph.D. thesis, Technical
University of Lisbon, 2003.

[92] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[93] T. Johannsen and D. Psaltis, Metric for rapidly spinning
black holes suitable for strong-field tests of the no-hair
theorem, Phys. Rev. D 83, 124015 (2011).

[94] S. Chandrasekhar and S. L. Detweiler, The quasinormal
modes of the Schwarzschild black hole, Proc. R. Soc. A
344, 441 (1975).

[95] K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of
stars and black holes, Living Rev. Relativity 2, 2 (1999).

[96] M. Elvis, C. G. Page, K. A. Pounds, M. J. Ricketts, and M.
J. L. Turner, Discovery of powerful transient X-ray source
A0620-00 with Ariel V Sky Survey Experiment, Nature
(London) 257, 656 (1975).

[97] J. E. McClintock and R. A. Remillard, The black hole
binary A0620-00, Astrophys. J. 308, 110 (1986).

[98] J. Casares and P. G. Jonker, Mass measurements of stellar
and intermediate mass black-holes, Space Sci. Rev. 183,
223 (2014).

[99] A. G. Cantrell, C. D. Bailyn, J. A. Orosz, J. E. McClintock,
R. A. Remillard, C. S. Froning, J. Neilsen, D. M. Gelino,
and L. Gou, The inclination of the soft X-ray transient
A0620-00 and the mass of its black hole, Astrophys. J.
710, 1127 (2010).

[100] J. R. Oppenheimer and G. M. Volkoff, On massive neutron
cores, Phys. Rev. 55, 374 (1939).

[101] C. E. Rhoades, Jr. and R. Ruffini, Maximum Mass of a
Neutron Star, Phys. Rev. Lett. 32, 324–327 (1974).

[102] D. M. Chitre and J. B. Hartle, Stationary configurations
and the upper bound on the mass of nonrotating, causal
neutron stars, Astrophys. J. 207, 592 (1976).

[103] A. Eckart, A. Hüttemann, C. Kiefer, S. Britzen, M.
Zajaček, C. Lämmerzahl, M. Stöckler, M. Valencia-S, V.
Karas, and M. García-Marín, The Milky Way’s super-
massive black hole: How good a case is it?, Found. Phys.
47, 553 (2017).

[104] A. Eckart and R. Genzel, Observations of stellar proper
motions near the Galactic Centre, Nature (London) 383,
415 (1996).

[105] A. Ghez, M. Morris, E. E. Becklin, T. Kremenek, and A.
Tanner, The accelerations of stars orbiting the Milky Way’s
central black hole, Nature (London) 407, 349 (2000).

[106] R. Schodel et al., A Star in a 15.2 year orbit around the
supermassive black hole at the center of the Milky Way,
Nature (London) 419, 694 (2002).

[107] A. M. Ghez et al., The first measurement of spectral lines
in a short-period star bound to the galaxy’s central black
hole: A paradox of youth, Astrophys. J. 586, L127 (2003).

[108] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R.
Genzel, F. Martins, and T. Ott, Monitoring stellar orbits

around the Massive Black Hole in the Galactic center,
Astrophys. J. 692, 1075 (2009).

[109] L. Meyer, A. M. Ghez, R. Schodel, S. Yelda, A. Boehle,
J. R. Lu, M. R. Morris, E. E. Becklin, and K. Matthews,
The shortest known period star orbiting our Galaxy’s
supermassive black hole, Science 338, 84 (2012).

[110] A. Boehle, A. M. Ghez, R. Schödel, L. Meyer, S. Yelda, S.
Albers, G. D. Martinez, E. E. Becklin, T. Do, J. R. Lu, K.
Matthews, M. R. Morris, B. Sitarski, and G. Witzel,
An improved distance and mass estimate for Sgr A*
from amultistar orbit analysis,Astrophys. J. 830, 17 (2016).

[111] M. Parsa, A. Eckart, B. Shahzamanian, V. Karas, M.
Zajaček, J. A. Zensus, and C. Straubmeier, Investigating
the relativistic motion of the stars near the supermassive
black hole in the Galactic center, Astrophys. J. 845, 22
(2017).

[112] S. Salim and A. Gould, Sgr A* visual binaries: A direct
measurement of the galactocentric distance, Astrophys. J.
523, 633 (1999).

[113] C. Francis and E. Anderson, Two estimates of the distance
to the Galactic Centre, Mon. Not. R. Astron. Soc. 441,
1105 (2014).

[114] S. Doeleman et al., Event-horizon-scale structure in the
supermassive black hole candidate at the Galactic Centre,
Nature (London) 455, 78 (2008).

[115] C. M. Will, Testing the general relativistic no-hair
theorems using the Galactic center black hole SgrA*,
Astrophys. J. 674, L25 (2008).

[116] D. Merritt, T. Alexander, S. Mikkola, and C. M. Will,
Testing properties of the Galactic center black hole using
stellar orbits, Phys. Rev. D 81, 062002 (2010).

[117] M. Grould, Z. Meliani, F. H. Vincent, P. Grandclément,
and E. Gourgoulhon, Comparing timelike geodesics
around a Kerr black hole and a boson star, Classical
Quantum Gravity 34, 215007 (2017).

[118] R. Abuter et al. (GRAVITY Collaboration), Detection of
the gravitational redshift in the orbit of the star S2 near the
Galactic Centre massive black hole, Astron. Astrophys.
615, L15 (2018).

[119] S. M. Carroll, Spacetime and Geometry: An Introduction
to General Relativity (Pearson Higher Education & Pro-
fessional Group, London, 2013).

[120] M. A. Abramowicz, W. Kluzniak, and J.-P. Lasota, No
observational proof of the black hole event-horizon,
Astron. Astrophys. 396, L31 (2002).

[121] V. Cardoso and P. Pani, The observational evidence for
horizons: From echoes to precision gravitational-wave
physics, arXiv:1707.03021.

[122] W. Lu, P. Kumar, and R. Narayan, Stellar disruption events
support the existence of the black hole event horizon, Mon.
Not. R. Astron. Soc. 468, 910 (2017).

[123] M. J. Rees, Tidal disruption of stars by black holes of
106–108 solar masses in nearby galaxies, Nature (London)
333, 523 (1988).

[124] M. Kesden, Tidal disruption rate of stars by spinning
supermassive black holes, Phys. Rev. D 85, 024037
(2012).

[125] J. Servin and M. Kesden, Unified treatment of tidal
disruption by Schwarzschild black holes, Phys. Rev. D
95, 083001 (2017).

RAÚL CARBALLO-RUBIO et al. PHYS. REV. D 98, 124009 (2018)

124009-24

https://doi.org/10.1016/j.physletb.2018.09.027
https://doi.org/10.1016/j.physletb.2018.09.027
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/PhysRevD.83.124015
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1038/257656a0
https://doi.org/10.1038/257656a0
https://doi.org/10.1086/164482
https://doi.org/10.1007/s11214-013-0030-6
https://doi.org/10.1007/s11214-013-0030-6
https://doi.org/10.1088/0004-637X/710/2/1127
https://doi.org/10.1088/0004-637X/710/2/1127
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRevLett.32.324
https://doi.org/10.1086/154526
https://doi.org/10.1007/s10701-017-0079-2
https://doi.org/10.1007/s10701-017-0079-2
https://doi.org/10.1038/383415a0
https://doi.org/10.1038/383415a0
https://doi.org/10.1038/35030032
https://doi.org/10.1038/nature01121
https://doi.org/10.1086/374804
https://doi.org/10.1088/0004-637X/692/2/1075
https://doi.org/10.1126/science.1225506
https://doi.org/10.3847/0004-637X/830/1/17
https://doi.org/10.3847/1538-4357/aa7bf0
https://doi.org/10.3847/1538-4357/aa7bf0
https://doi.org/10.1086/307756
https://doi.org/10.1086/307756
https://doi.org/10.1093/mnras/stu631
https://doi.org/10.1093/mnras/stu631
https://doi.org/10.1038/nature07245
https://doi.org/10.1086/528847
https://doi.org/10.1103/PhysRevD.81.062002
https://doi.org/10.1088/1361-6382/aa8d39
https://doi.org/10.1088/1361-6382/aa8d39
https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.1051/0004-6361:20021645
http://arXiv.org/abs/1707.03021
https://doi.org/10.1093/mnras/stx542
https://doi.org/10.1093/mnras/stx542
https://doi.org/10.1038/333523a0
https://doi.org/10.1038/333523a0
https://doi.org/10.1103/PhysRevD.85.024037
https://doi.org/10.1103/PhysRevD.85.024037
https://doi.org/10.1103/PhysRevD.95.083001
https://doi.org/10.1103/PhysRevD.95.083001


[126] M. MacLeod, J. Guillochon, and E. Ramirez-Ruiz, The
tidal disruption of giant stars and their contribution to the
flaring supermassive black hole population, Astrophys. J.
757, 134 (2012).

[127] S. Komossa, Tidal disruption of stars by supermassive
black holes: Status of observations, J. High Energy As-
trophys. 07, 148 (2015).

[128] T. Padmanabhan, Theoretical Astrophysics: Volume 2,
Stars and Stellar Systems (Cambridge University Press,
Cambridge, England, 2001).

[129] E. A. Magnier, E. Schlafly, D. Finkbeiner, M. Juric, J. L.
Tonry, W. S. Burgett, K. C. Chambers, H. A. Flewelling,
N. Kaiser, R.-P. Kudritzki, J. S. Morgan, P. A. Price, W. E.
Sweeney, and C.W. Stubbs, The Pan-STARRS 1 photo-
metric reference ladder, Release 12.01, Astrophys. J.
Suppl. Ser. 205, 20 (2013).

[130] E. Quataert, R. Narayan, and M. Reid, What is the
accretion rate in sgr A*?, Astrophys. J. 517, L101 (1999).

[131] J. F. Hawley and S. A. Balbus, The dynamical structure of
nonradiative black hole accretion flows, Astrophys. J. 573,
738 (2002).

[132] A. E. Broderick and R. Narayan, On the nature of the
compact dark mass at the Galactic center, Astrophys. J.
638, L21–L24 (2006).

[133] A. E. Broderick and R. Narayan, Where are all the
gravastars? Limits upon the gravastar model from accreting
black holes, Classical Quantum Gravity 24, 659 (2007).

[134] A. E. Broderick, A. Loeb, and R. Narayan, The event
horizon of Sagittarius A*, Astrophys. J. 701, 1357 (2009).

[135] R. Narayan and J. E. McClintock, Advection-dominated
accretion and the black hole event horizon, New Astron.
Rev. 51, 733 (2008).

[136] A. E. Broderick, R. Narayan, J. Kormendy, E. S. Perlman,
M. J. Rieke, and S. S. Doeleman, The event horizon of
M87, Astrophys. J. 805, 179 (2015).

[137] V. Cardoso and P. Pani, Tests for the existence of horizons
through gravitational wave echoes, Nat. Astron. 1, 586
(2017).

[138] L. J. Oldham and M.W. Auger, Galaxy structure from
multiple tracers: II. M87 from parsec to megaparsec scales,
Mon. Not. R. Astron. Soc. 457, 421 (2016).

[139] R. Carballo-Rubio, P. Kumar, and W. Lu, Seeking obser-
vational evidence for the formation of trapping horizons in
astrophysical black holes, Phys. Rev. D 97, 123012 (2018).

[140] S. A. Hayward, General laws of black hole dynamics,
Phys. Rev. D 49, 6467 (1994).

[141] A. Ashtekar and B. Krishnan, Isolated and dynamical
horizons and their applications, Living Rev. Relativity 7,
10 (2004).

[142] V. Cardoso, T. Ikeda, C. J. Moore, and C.-M. Yoo,
Remarks on the maximum luminosity, Phys. Rev. D 97,
084013 (2018).

[143] J. Eisenstaedt, Trajectoires et impasses de la solution
de Schwarzschild, Arch. Hist. Exact Sci. 37, 275 (1987).

[144] J. M. Bardeen, Timelike and Null Geodesics in the Kerr
Metric, in Proceedings of Ecole d’Eté de Physique
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