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INTRINSIC RANDOM WALKS IN RIEMANNIAN AND SUB-RIEMANNIAN

GEOMETRY VIA VOLUME SAMPLING

Andrei Agrachev1, Ugo Boscain2,a, Robert Neel3 and Luca Rizzi4

Abstract. We relate some constructions of stochastic analysis to differential geometry, via random
walk approximations. We consider walks on both Riemannian and sub-Riemannian manifolds in which
the steps consist of travel along either geodesics or integral curves associated to orthonormal frames, and
we give particular attention to walks where the choice of step is influenced by a volume on the manifold.
A primary motivation is to explore how one can pass, in the parabolic scaling limit, from geodesics,
orthonormal frames, and/or volumes to diffusions, and hence their infinitesimal generators, on sub-
Riemannian manifolds, which is interesting in light of the fact that there is no completely canonical
notion of sub-Laplacian on a general sub-Riemannian manifold. However, even in the Riemannian case,
this random walk approach illuminates the geometric significance of Ito and Stratonovich stochastic
differential equations as well as the role played by the volume.
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1. Introduction

Consider a Riemannian or a sub-Riemannian manifold M and assume that {X1, . . . , Xk} is a global orthonor-
mal frame. It is well known that, under mild hypotheses, the solution qt to the stochastic differential equation
in Stratonovich sense

dqt =

k∑
i=1

Xi(qt) ◦
(√

2 dwit

)
(1.1)

produces a solution to the heat-like equation

∂tϕ =

k∑
i=1

X2
i ϕ (1.2)

by taking ϕt(q) = E [ϕ0(qt)|q0 = q], where ϕ0 gives the initial condition. (Here the driving processes wit are
independent real Brownian motions, and

√
2 factor is there so that the resulting sum-of-squares operator doesn’t
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need a 1/2, consistent with the convention favored by analysts). One can interpret (1.2) as the equation satisfied
by a random walk with parabolic scaling following the integral curves of the vector fields X1, . . . Xm, when the
step of the walk tends to zero. This construction is very general (works in Riemannian and in the sub-Riemannian
case) and does not use any notion of volume on the manifold5.

However the operator
∑k
i=1X

2
i is not completely satisfactory to describe a diffusion process for the following

reasons:

• the construction works only if a global orthonormal frame X1, . . . , Xk exists;
• it is not intrinsic in the sense that it depends on the choice of orthonormal frame;
• it is not essentially self-adjoint w.r.t. a natural volume and one cannot guarantee a priori a “good” evolution

in L2 (existence and uniqueness of a contraction semigroup, etc.).

In the Riemannian context a heat operator that is globally well defined, frame independent and essentially self-
adjoint w.r.t. the Riemannian volume (at least under the hypotheses of completeness) is the Laplace-Beltrami
operator ∆ = div ◦ grad. The heat equation

∂tϕ = ∆ϕ (1.3)

has an associated diffusion, namely Brownian motion (with a time change by a factor of 2), given by the solution
of the stochastic differential equation

dqt =

k∑
i=1

Xi(qt)
(√

2 dwit

)
(in this case k = n is equal to the dimension of M) (1.4)

in the Ito sense (for instance using the Bismut construction on the bundle of orthonormal frames [9] or Emery’s
approach [12]). Also, this equation can be interpreted as the equation satisfied by the limit of a random walk
that, instead of integral curves, follows geodesics. The geodesics starting from a point are weighted with a
uniform probability given by the Riemannian metric on the tangent space at the point.

The purpose of this paper is to extend this more invariant construction of random walks to the sub-
Riemannian context, to obtain a definition of an intrinsic Laplacian in sub-Riemannian geometry and to compare
it with the divergence of the horizontal gradient.

The task of determining the appropriate random walk is not obvious for several reasons. First, in sub-
Riemannian geometry geodesics starting from a given point are always parameterized by a non-compact subset
of the cotangent space at the point, on which there is no canonical “uniform” probability measure. Second, in
sub-Riemannian geometry for every ε there exist geodesics of length ε that have already lost their optimality,
and one has to choose between a construction involving all geodesics (including the non-optimal ones) or only
those that are optimal. Third, one should decide what to do with abnormal extremals. Finally, there is the
problem of defining an intrinsic volume in sub-Riemannian geometry, to compute the divergence.

It is not the first time that this problem has been attacked. In [10,15–17], the authors compare the divergence
of the gradient with the Laplacian corresponding to a random walk induced by a splitting of the cotangent bundle
(see [10], Sect. 1.4 for a detailed summary of this literature). In this paper we take another approach, trying
to induce a measure on the space of geodesics from the ambient space by “sampling” the volume at a point a
fraction c of the way along the geodesic, see Section 3. In a broader context, discrete approximations to diffusions
have a long history, with, for example, Wong-Zakai approximations being widespread. The present paper follows
in a related tradition, going back to [26], of developing geometrically meaningful approximations to diffusions
on Riemannian or sub-Riemannian manifolds, in part with the aim of elucidating the connection between the
diffusion and more fundamental geometric features of the manifold and/or the dynamics of which the diffusion
is an idealization. This direction has seen a fair amount of activity lately; besides the papers on random walks
arising from splittings in sub-Riemannian geometry listed above, we mention the kinetic Brownian motion of [6]

5In the Riemannian case avoiding the use of a volume is not crucial since an intrinsic volume (the Riemannian one) can always
be defined. But in the sub-Riemannian case, how to define an intrinsic volume is a subtle question, as discussed below.
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(which gives a family of C1 approximations to Riemannian Brownian motion with random velocity vector) and
the homogenization of perturbations of the geodesic flow discussed in [23] (which also gives an approximation
to Riemannian Brownian motion).

This idea works very well in the Riemannian case, permitting a random walk interpretation of the divergence
of the gradient also when the divergence is computed w.r.t. an arbitrary volume. More precisely, the limiting
diffusion is generated by the divergence of the gradient if and only if at least one of the two conditions are
satisfied: (i) one is using the Riemannian volume; (ii) the parameter c used to realize the “volume sampling”
is equal to 1/2, evoking reminiscences of the Stratonovich integral. From these results one also recognizes a
particular role played by the Riemannian volume (see Sect. 3 and Cor. 3.6). (In this Riemannian case, c = 0
corresponds to no sampling of the volume, and the limiting diffusion is just Brownian motion as above).

In the sub-Riemannian case the picture appears richer and more complicated. Even for contact Carnot
groups (see Sect. 4) the volume sampling procedure is non-trivial, as one requires an explicit knowledge of the
exponential map. For Heisenberg groups, one gets a result essential identical to the Riemannian case, i.e. that
the limiting diffusion is generated by the divergence of the horizontal gradient if and only if at least one of the
following is satisfied: (i) one is using the Popp volume; (ii) the parameter c = 1/2. For general contact Carnot
groups, the results are more surprising, since the generator of the limiting diffusion is not the expected divergence
of the horizontal gradient (even the second-order terms are not the expected ones); however, the generator will
be the divergence of the horizontal gradient with respect to a different metric on the same distribution, as shown
in Section 4.4.1. Moreover, the result just described applies to two somewhat different notions of a geodesic
random walk, one in which we walk along all geodesics, and one in which we walk only along minimizing ones.
An important difference between these two approaches is that only the walk along minimizing geodesics gives
a non-zero operator in the limit as the volume sampling parameter c goes to 0 (see Sect. 4.5). Moreover, this
non-zero limiting operator turns out to be independent of the volume, so that it becomes a possible, if slightly
unusual (the principle symbol is not the obvious one), candidate for a choice of intrinsic sub-Laplacian. This
may be an interesting direction to explore.

Motivated by these unexpected results and difficulties in manipulating the exponential map in more general
sub-Riemannian cases, in Section 5 we try another construction in the general contact case (that we call the
flow random walk with volume sampling), inspired by the classical Stratonovich integration and also including a
volume sampling procedure. This construction, a priori not intrinsic (it depends on a choice of vector fields), gives
rise in the limit to an intrinsic operator showing the particular role played by the Popp volume. This construction
also gives some interesting hints in the Riemannian case; unfortunately it cannot be easily generalized to
situations of higher step or corank.

On the stochastic side, in Section 2, we introduce a general scheme for the convergence of random walks
of a sufficiently general class to include all our constructions, based on the results of [10]. Further, in the
process of developing the random walks just described, we naturally obtain an intuitively appealing description
of the solution to a Stratonovich SDE on a manifold as a randomized flow along the vector fields V1, . . . , Vk
(which determine the integrand) while the solution to an Ito SDE is a randomized geodesic tangent to the
vector fields V1, . . . , Vk (as already outlined above for an orthonormal frame). This difference corresponds to
the infinitesimal generator being based on second Lie derivatives versus second covariant derivatives. Of course,
such an approximation procedure by random walks yields nothing about the diffusions solving these SDEs that
is not contained in standard stochastic calculus, but the explicit connection to important geometric objects
seems compelling and something that has not been succinctly described before, to the best of our knowledge.
Further, it is then natural to round out this perspective on the basic objects of stochastic calculus on manifolds
by highlighting the way in which the volume sampling procedure can be viewed as a random walk approximation
of the Girsanov change of measure, at least in the Riemannian case (see Appendix 6.4).

For the benefit of exposition, the proofs are collected in Section 6. For the reader’s convenience, we collect
the results for different structures in Table 1; see the appropriate sections for more details and explanation of
the notation.
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Table 1. In each cell, Lω,c is the generator of the limit diffusion associated with the corre-
sponding construction. Here c ∈ [0, 1] is the ratio of the volume sampling, n = dimM and
k = rankN. (i) In the Riemannian case ω = ehR, where R is the Riemannian volume. (ii) In
the sub-Riemannian case ω = ehP, where P is Popp volume. (iii) Recall that ∆ω = divω ◦ grad,
and is essentially self-adjoint in L2(M,ω) if M is complete. (iv) X1, . . . , Xk is a local orthonor-
mal frame (k = n in the Riemannian case). (v) For the definition of the constant σ(c), see the
appropriate theorem. (vi) grad′ is the gradient computed w.r.t. to a modified sub-Riemannian
structure on the same distribution (see Sect. 4.4.1). (vii) The case of H2d+1 is a particular case
of contact Carnot groups, where grad′ = σ(c) grad. (?) See Section 4.5 for an alternative con-
struction where one walks only along minimizing geodesics and which, in the limit for c → 0,
gives a non-zero operator.

Structure Geodesic RW with volume sampling Flow RW with volume sampling

Riemannian

Lω,c = ∆ω + (2c− 1) grad(h)

c = 1
2

or h = const: Lω,c = ∆ω

c = 0: Lω,0 = lim
c→0

Lω,c = ∆R

(see Thm. 3.4)

Lω,c = ∆ω + c grad(h) + (c− 1)
∑n

i=1 divω(Xi)Xi

c = 1 and h = const: Lω,1 = ∆ω

c = 0: Lω,0 = lim
c→0

Lω,c =
∑n

i=1X
2
i

(see Thm. 5.5)

Heisenberg

group H2d+1

Lω,c = σ(c) (∆ω + (2c− 1) grad(h))

c = 1
2

or h = const: Lω,c = σ(c)∆ω

c→ 0: lim
c→0

Lω,c = 0 (?)

(see Thm. 4.9)

(see below)

Contact Carnot

group

Lω,c = divω ◦ grad′ +(2c− 1) grad′(h)

c = 1
2

or h = const: Lω,c = divω ◦ grad′

c→ 0: lim
c→0

Lω,c = 0 (?)

(see Thm. 4.10 and Corollary 4.12)

(see below)

General contact Open problem

Lω,c = ∆ω + c grad(h) + (c− 1)
∑k

i=1 divω(Xi)Xi

c = 1 and h = const: Lω,1 = ∆ω

c = 0: Lω,0 = lim
c→0

Lω,c =
∑k

i=1X
2
i

(see Thm. 5.10)

2. Convergence of random walks

We recall some preliminaries in sub-Riemannian geometry (see [4], but also [19,25,27]).

Definition 2.1. A (sub-)Riemannian manifold is a triple (M,N,g) where M is smooth, connected manifold,
N ⊂ TM is a vector distribution of constant rank k ≤ n and g is a smooth scalar product on N. We assume
that N satisfies the Hörmander’s condition

span{[Xi1 , [Xi2 , [. . . , [Xim−1
, Xim ]]] | m ≥ 0, Xi` ∈ Γ (N)}q = TqM, ∀q ∈M. (2.1)

By the Chow-Rashevskii theorem, any two points in M can be joined by a Lipschitz continuous curve whose
velocity is a.e. in N. We call such curves horizontal. Horizontal curves γ : I → M have a well-defined length,
given by

`(γ) =

∫
I

‖γ(t)‖dt, (2.2)
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where ‖ · ‖ is the norm induced by g. The sub-Riemannian distance between p, q ∈M is

d(p, q) = inf{`(γ) | γ horizontal curve connecting q with p}. (2.3)

This distance turns (M,N,g) into a metric space that has the same topology of M . A sub-Riemannian manifold
is complete if (M,d) is complete as a metric space. In the following, unless stated otherwise, we always assume
that (sub-)Riemannian structures under consideration are complete.

(Sub-)Riemannian structures include Riemannian ones, when k = n. We use the term “sub-Riemannian” to
denote structures that are not Riemannian, i.e. k < n.

Definition 2.2. If M is a (sub-)Riemannian manifold, (following the basic construction of Stroock and Varad-
han [33]) let Ω(M) be the space of continuous paths from [0,∞) to M . If γ ∈ Ω(M) (with γ(t) giving the
position of the path at time t), then the metric on M induces a metric dΩ(M) on Ω(M) by

dΩ(M)

(
γ1, γ2

)
=

∞∑
i=1

1

2i
sup0≤t≤i d

(
γ1(t), γ2(t)

)
1 + sup0≤t≤i d (γ1(t), γ2(t))

,

making Ω(M) into a Polish space. We give Ω(M) its Borel σ-algebra. We are primarily interested in the weak
convergence of probability measures on Ω(M).

A choice of probability measure P on Ω(M) determines a continuous, random process on M , and (in this
section) we will generally denote the random position of the path at time t by qt. Moreover, we will use the
measure P and the process qt interchangeably.

We are interested in what one might call bounded-step-size, parabolically-scaled families of random walks,
which for simplicity in what follows, we will just call a family of random walks. We will index our families by a
“spatial parameter” ε > 0 (this will be clearer below), and we let δ = ε2/(2k) be the corresponding time step
(k is the rank of N).

Definition 2.3. A family of random walks on a (sub-)Riemannian manifold M , indexed by ε > 0 and starting
from q ∈ M , is a family of probability measures P εq on Ω(M) with P εq (qε0 = q) = 1 and having the following
property. For every ε, and every q̃ ∈M , there exists a probability measure Πε

q̃ on continuous paths γ : [0, δ]→M
with γ(0) = q̃ such that for every m = 0, 1, 2, . . ., the distribution of qε[mδ,(m+1)δ] under P εq is given by Πε

qεmδ
,

independently of the position of the path qεt prior to time mδ. Further, there exists some constant κ, independent
of q̃ and ε, such that the length of γ[0,δ] is almost surely less than or equal to κε under Πε

q̃ . (So the position
of the path at times mδ for m = 0, 1, 2, . . . is a Markov chain, starting from q, with transition probabilities

P εq

(
qε(m+1)δ ∈ A | q

ε
mδ = q̃

)
= Πε

q̃ (γδ ∈ A) for any Borel A ⊂M .

Remark 2.4. In what follows Πε
q̃ will, in most cases, be supported on paths of length exactly ε (allowing us to

take κ = 1). For example, on a Riemannian manifold, one might choose a direction at qεmδ at random and then
follow a geodesic in this direction for length ε (and in time δ). Alternatively, on a Riemannian manifold with
a global orthonormal frame, one might choose a random linear combination of the vectors in the frame, still
having length 1, and then flow along this vector field for length ε. In both of these cases, Πε

q̃ is itself built on a
probability measure on the unit sphere in Tq̃M according to a kind of scaling by ε. These walks, and variations
and sub-Riemannian versions thereof, form the bulk of what we consider, and should be sufficient to illuminate
the definition.

While the introduction of the “next step” measure Πε
q̃ is suitable for the general definition and accompanying

convergence result, it is overkill for the geometrically natural steps that we consider. Instead, we will describe
the steps of our random walks in simpler geometric terms (as in the case of choosing a random geodesic segment
of length ε just mentioned), and leave the specification of Πε

q̃ implicit, though in a straightforward way.
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Remark 2.5. All of the random walks we consider will be horizontal, in the sense that Πε
q̃ is supported on

horizontal curves. (In the Riemannian case, this, of course, is vacuous). So while the diffusions we will get below
as limits of such random walks will not be horizontal insofar as they are supported on paths that are not smooth
enough to satisfy the definition of horizontal given above, they nonetheless are limits of horizontal processes.

We note that, for some constructions like that of solutions to a Stratonovich SDE, there need not be a metric
on M , but instead a smooth structure is sufficient. Unfortunately, the machinery of convergence of random
walks in Theorem 2.8 below is formulated in terms of metrics, and thus we will generally proceed by choosing
some (Riemannian or sub-Riemannian) metric on M when desired. However, note that if M is compact, any
two Riemannian metrics induce Lipschitz-equivalent distances on M , and thus the induced distances on Ω(M)
are comparable. This means that the resulting topologies on Ω(M) are the same, and thus statements about the
convergence of probability measures on Ω(M) (which is how we formalize the convergence of random walks) do
not depend on what metric on M is chosen. This suggests that a more general framework could be developed,
avoiding the need to introduce a metric on M when the smooth structure should suffice, but such an approach
will not be pursued here.

Definition 2.6. Let ε > 0. To the family of random walks qεt (in the sense of Def. 2.3, and with the above
notation), we associate the family of smooth operators on C∞(M)

(Lεφ)(q) :=
1

δ
E[φ(qεδ)− φ(q) | qε0 = q], ∀q ∈M. (2.4)

Definition 2.7. Let L be a differential operator on M . We say that a family Lε of differential operators converge
to L if for any φ ∈ C∞(M) we have Lεφ→ Lφ uniformly on compact sets. In this case, we write Lε → L.

Let L be a smooth second-order differential operator with no zeroth-order term. If the principal symbol of
L is also non-negative definite, then there is a unique diffusion associated to L starting from any point q ∈M ,
at least up until a possible explosion time. However, since our analysis in fundamentally local, we will assume
that the diffusion does not explode. In that case, this diffusion is given by the measure Pq on Ω(M) that solves
the martingale problem for L, so that

φ(qt)−
∫ t

0

Lφ(qs) ds

is a martingale under Pq for any smooth, compactly supported φ, and Pq (q0 = q) = 1.

Theorem 2.8. Let M be a (sub-)Riemannian manifold, let P εq be the probability measures on Ω(M) corre-
sponding to a sequence of random walks qεt (in the sense of Def. 2.3), with qε0 = q, and let Lε be the associated
family of operators. Suppose that Lε → L0 (in the sense of Def. 2.6), where L0 is a smooth second-order operator
with non-negative definite principal symbol and without zeroth-order term. Further, suppose that the diffusion
generated by L, which we call q0t , does not explode, and let P 0

q be the corresponding probability measure on
Ω(M) starting from q. Then P εq → P 0

q as ε→ 0, in the sense of weak convergence of probability measures (see
Def. 2.2).

Proof. The theorem is a special case of ([10], Thm. 70, Rem. 26). First note that a random walk qεt as described
here corresponds to a random walk Xh

t in the notation of [10], with h = ε2/2k, and with each step being given
either by a continuous curve (which may or may not be a geodesic), as addressed in Remark 26. Every random
walk in our class has the property that, during any step, the path never goes more than distance κε from the
starting point of the step for some fixed κ > 0, by construction, and this immediately shows that every random
walk in our class satisfies equation (19) of [10]. Then all the assumptions of ([10], Thm. 70) are satisfied and
the conclusion follows, namely P εq → P 0

q as ε→ 0. �



INTRINSIC RANDOM WALKS VIA VOLUME SAMPLING 1081

3. Geodesic random walks in the Riemannian setting

3.1. Ito SDEs via geodesic random walks

Let (M,g) be a Riemannian manifold. We consider a set of smooth vector fields, and since we are interested
in local phenomena, we assume that the Vi have bounded lengths and that (M,g) is complete. We now consider
the Ito SDE

dqt =

k∑
i=1

Vi (qt) d(
√

2wit), q0 = q, (3.1)

for some q ∈ M , where w1
t , . . . , w

k
t are independent, one-dimensional Brownian motions6. To construct a cor-

responding sequence of random walks, we choose a random vector V = β1V1 + β2V2 + · · · + βkVk by choosing
(β1, . . . , βk) uniformly from the unit sphere. Then, we follow the geodesic γ(s) determined by γ(0) = q and
γ′(0) = 2k

ε V for time δ = ε2/(2k). Equivalently, we travel a distance of ε|V | in the direction of V (along a
geodesic). This determines the first step, qεt with t ∈ [0, δ], of a random walk (and thus, implicitly, the measure
Πε
q ). Determining each additional step in the same way produces a family of piecewise geodesic random walks

qεt , t ∈ [0,∞), which we call the geodesic random walk at scale ε associated with the SDE (3.1) (in terms of
Def. 2.3, κ = supq,(β1,...,βk)

V ).
We now study the convergence of this family of walks as ε → 0. Let x1, . . . , xn be Riemannian normal

coordinates around qε0 = q, and write the random vector V as

V (x) =

k∑
m=1

βmVm(x) =

k∑
m=1

βm

n∑
i=1

V im∂i +O(r) =

n∑
i=1

Ai∂i +O(r), (3.2)

where r =
√
x21 + . . .+ x2n. In normal coordinates, Riemannian geodesics correspond to Euclidean geodesics,

and thus γV (t) has i-th coordinate Ait. In particular, for any smooth function φ we have

φ(γV (ε))− φ(q) =

n∑
i=1

Ai(∂iφ)(q)ε+
1

2

n∑
i,j=1

AiAj(∂i∂jφ)(q)ε2 +O(ε3). (3.3)

Averaging w.r.t. the uniform probability measure on the sphere
∑k
i=1 β

2
i = 1, we obtain

Lε :=
1

δ
E [φ (qεδ)− φ(q) |qε0 = q ]→

k∑
m=1

n∑
i,j=1

V imV
j
m(∂i∂jφ)(q)

=

k∑
m=1

∇2
Vm,Vm(q) as ε→ 0, (3.4)

where ∇2 denotes the Hessian, with respect to Levi-Civita connection, and where we recall that
∑n
j=1 V

j
m∂j =

Vm(q) and the xi are a system of normal coordinates at q. The right-hand side of (3.4) determines a second-order
operator which is independent of the choice of normal coordinates (and thus depends only on the Vi). Moreover,
this same construction works at any point, and thus we have a second-order operator L = limε→0 L

ε on all
of M . Because the Vi are smooth, so is L (and the convergence is uniform on compacts).

We see that the martingale problem associated to L has a unique solution (at least until explosion, but since
we are interested in local questions, we can assume that there is no explosion). Further, this solution is the law of
the process q0t that solves (3.1). If we again let P ε and P 0 be the probability measures on Ω(M) corresponding
to qεt and q0t , respectively, Theorem 2.8 implies that P ε → P 0 (weakly) as ε→ 0.

6One approach to interpreting and solving (3.1), as well as verifying that qt will be a martingale, is via lifting it to the bundle
of orthonormal frames; see the first two chapters of [18] for background on stochastic differential geometry, connection-martingales,
and the bundle of orthonormal frames. Alternatively, ([12], Chap. 7) gives a treatment of Ito integration on manifolds.



1082 A. AGRACHEV ET AL.

Of course, we see that our geodesic random walks, as well as the diffusion q0 and thus the interpretation of
the SDE (3.1), depend on the Riemannian structure. This is closely related to the fact that neither Ito SDEs,
normal coordinates, covariant derivatives, nor geodesics are preserved under diffeomorphisms, in general, and
to the non-standard calculus of Ito’s rule for Ito integrals, in contrast to Stratonovich integrals. Note also that
in this construction, it would also be possible to allow k > n.

The most important special case of a geodesic random walk is when k = n and the vector fields V1, . . . , Vn
are an orthonormal frame. In that case, qεt is an isotropic random walk, as described in [10] (see also [26] for a
related family of processes) and

Lε → ∆, (3.5)

where ∆ = div ◦ grad is the Laplace-Beltrami operator (here the divergence is computed with respect to the
Riemannian volume). In particular q0t is Brownian motion on M , up to time-change by a factor of 2.

If we further specialize to Euclidean space, we see that the convergence of the random walk to Eucldiean
Brownian motion is just a special case of Donsker’s invariance principle. The development of Brownian motion
on a Riemannian manifold via approximations is also not new; one approach can be found in [32].

3.2. Volume sampling through the exponential map

Let (M,g) be a n-dimensional Riemannian manifold equipped with a general volume form ω, that might
be different from the Riemannian one R. This freedom is motivated by the forthcoming applications to sub-
Riemannian geometry, where there are several choices of intrinsic volumes and in principle there is not a preferred
one [3,7]. Besides, even in the Riemannian case, one might desire to study operators which are symmetric w.r.t.
a general measure ω = ehR.

We recall that the gradient grad(φ) of a smooth function depends only on the Riemannian structure, while
the divergence divω(X) of a smooth vector field depends on the choice of the volume. In this setting we introduce
an intrinsic diffusion operator, symmetric in L2(M,ω), with domain C∞c (M) as the divergence of the gradient:

∆ω := divω ◦ grad =

n∑
i=1

X2
i + divω(Xi)Xi, (3.6)

where in the last equality, which holds locally, X1, . . . , Xn is a orthonormal frame. Recall that if ω and ω′ are
proportional, then ∆ω = ∆ω′ .

If one would like to define a random walk converging to the diffusion associated to ∆ω, one should make the
construction in such a way that the choice of the volume enters in the definition of the walk. One way to do
this is to “sample the volume along the walk”. For all s ≥ 0, consider the Riemannian exponential map

expq(s; ·) : SqM →M, q ∈M, (3.7)

where SqM ⊂ TqM is the Riemannian tangent sphere. In particular, for v ∈ SqM , γv(s) = expq(s; v) is the

unit-speed geodesic starting at q with initial velocity v. Then |ιγ̇v(s)ω| is a density7 on the Riemannian sphere
of radius s. By pulling this back through the exponential map, we obtain a probability measure on SqM that
“gives more weight to geodesics arriving where there is more volume”.

Definition 3.1. For any q ∈M , and ε > 0, we define the family of densities µεq on SqM

µεq(v) :=
1

N(q, ε)

∣∣(expq(ε; ·)∗ιγ̇v(ε)ω)(v)
∣∣ , ∀v ∈ SqM, (3.8)

where N(q, ε) is such that
∫
SqM

µεq = 1. For ε = 0, we set µ0
q to be the standard normalized Riemannian density

form on SqM .

7If η is an m-form on an m-dimensional manifold, the symbol |η| denotes the associated density, in the sense of tensors.
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Remark 3.2. For any fixed q ∈ M , and for sufficiently small ε > 0, the Jacobian determinant of expq(ε; ·)
does not change sign, hence the absolute value in Definition 3.1 is not strictly necessary to obtain a well defined
probability measure on SqM . By assuming that the sectional curvature Sec ≤ K is bounded from above, one
can globally get rid of the need for the absolute value, as conjugate lengths are uniformly separated from zero.

Now we define a random walk bεt as follows:

bε(i+1)δ := expbεiδ(ε; v), v ∈ SqM chosen with probability µεq. (3.9)

(see Def. 2.3 and Rem. 2.4). Let P εω (we drop the q from the notation as the starting point is fixed) be the
probability measure on the space of continuous paths on M starting at q associated with bεt , and consider the
associated family of operators

(Lεωφ)(q) :=
1

δ
E[φ(bεδ)− φ(q) | bε0 = q] (3.10)

:=
1

δ

∫
SqM

[φ(expq(ε; v))− φ(q)]µεq(v), ∀q ∈M, (3.11)

(see Def. 2.6), for any φ ∈ C∞(M). A special case of Theorem 3.4 gives

lim
ε→0

Lεω = ∆R + grad(h)︸ ︷︷ ︸
∆ω

+ grad(h), (3.12)

where grad(h) is understood as a derivation. By Theorem 2.8, P εω converges to a well-defined diffusion generated
by the r.h.s. of (3.12). This result is not satisfactory, as one would prefer Lεω → ∆ω. Indeed, in (3.12), we observe
that the correction 2 grad(h) provided by the volume sampling construction is twice the desired one (except
when ω is proportional to R).

To address this problem we introduce a parameter c ∈ [0, 1] and consider, instead, the family µcεq . This
corresponds to sampling the volume not at the final point of the geodesic segment, but at an intermediate
point. We define a random walk as follows:

bε(i+1)δ,c := expqεiδ,c(ε, v), v ∈ SqM with probability µcεq , (3.13)

that we call the geodesic random walk with volume sampling (with volume ω and sampling ratio c).

Remark 3.3. The case c = 0 does not depend on the choice of ω and reduces to the construction of Section 3.1.
The case c = 1 corresponds to the process of equation (3.9).

For ε > 0, let P εω,c be the probability measure on the space of continuous paths on M associated with the
process bεt,c, and consider the family of operators

(Lεω,cφ)(q) :=
1

δ
E[φ(bεδ)− φ(q) | bε0 = q]

:=
1

δ

∫
SqM

[φ(expq(ε; v))− φ(q)]µcεq (v), ∀q ∈M,
(3.14)

for any φ ∈ C∞(M). The family of Riemannian geodesic random walks with volume sampling converges to a
well-defined diffusion, as follows.

Theorem 3.4. Let (M,g) be a complete Riemannian manifold with volume ω = ehR, where R is the Rieman-
nian one, and h ∈ C∞(M). Let c ∈ [0, 1]. Then Lεω,c → Lω,c, where

Lω,c = ∆ω + (2c− 1) grad(h). (3.15)

Moreover P εω,c → Pω,c weakly, where Pω,c is the law of the diffusion associated with Lω,c (which we assume does
not explode).



1084 A. AGRACHEV ET AL.

Mq

c ∈ [0, 1]

c ε ε

Figure 1. Geodesic random walk with sampling of the volume ω and ratio c. For each ε, the
paths of the walk are piecewise-smooth geodesics.

Remark 3.5. We have these alternative forms of (3.15), obtained by unraveling the definitions:

Lω,c = ∆e(2c−1)hω = ∆e2chR = ∆R + 2c grad(h) (3.16)

=

n∑
i=1

X2
i + (2cdivω(Xi) + (1− 2c) divR(Xi))Xi, (3.17)

where, in the last line, X1, . . . , Xn is a local orthonormal frame.

As a simple consequence of (3.15) or its alternative formulations, we have the following statement, which
appears to be new even in the Riemannian case.

Corollary 3.6. Let (M,g) be a complete Riemannian manifold. The operator Lω,c with domain C∞c (M) is
essentially self-adjoint in L2(M,ω) if and only at least one of the following two conditions hold:

(i) c = 1/2;

(ii) ω is proportional to the Riemannian volume (i.e. h is constant).

The previous discussion stresses the particular role played by the Riemannian volume. Not only does it coincide
with the Hausdorff measure, but according to the above construction, it is the only volume (up to constant
rescaling) that gives the correct self-adjoint operator for any choice of the parameter c.

Remark 3.7. If we want the volume-sampling scheme to produce the Laplacian w.r.t. the volume ω being
sampled, we should take c = 1/2. With hindsight, this might not be surprising. By linearity, we see that
sampling with c = 1/2 is equivalent to sampling the volume along the entire step, uniformly w.r.t time (recall
that the geodesics are traversed with constant speed), rather than privileging any particular point along the
path.

Remark 3.8. One can prove that the limiting operator corresponding to the geodesic random walk with volume
sampling ratio c = 1 is equal, up to a constant (given by the ratio of the area of the Euclidean unit sphere
and the volume of the unit ball in dimension n), to the limiting operator corresponding to a more general class
of random walk where we step to points of the metric ball Bq(ε) of radius ε, uniformly w.r.t. its normalized
volume ω/ω(Bq(ε)). This kind of random walk for the Riemannian volume measure has also been considered
in [22], in relation with the study of its spectral properties.

4. Geodesic random walks in the sub-Riemannian setting

We want to define a sub-Riemannian version of the geodesic random walk with volume sampling, extending
the Riemannian construction of the previous section. Recall the definition of (sub-)Riemannian manifold in
Section 2.
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4.1. Geodesics and exponential map

As in Riemannian geometry, geodesics are horizontal curves that have constant speed and locally minimize
the length between their endpoints. Define the sub-Riemannian Hamiltonian H : T ∗M → R as

H(λ) :=
1

2

k∑
i=1

〈λ,Xi〉2, (4.1)

for any local orthonormal frame X1, . . . , Xk ∈ Γ (N). Let σ be the natural symplectic structure on T ∗M , and
π : T ∗M → M . The Hamiltonian vector field H is the unique vector field on T ∗M such that dH = σ(·,H).
Then the Hamilton equations are

λ̇(t) = H(λ(t)). (4.2)

Solutions of (4.2) are smooth curves on T ∗M , and their projections γ(t) := π(λ(t)) on M will be geodesics. In
the Riemannian setting, all geodesics can be recovered uniquely in this way. In the sub-Riemannian one, this is
no longer true, as abnormal geodesics can appear, which are geodesics that might not come from projections of
solutions to (4.2).

For any λ ∈ T ∗M we consider the geodesic γλ(t), obtained as the projection of the solution of (4.2) with
initial condition λ(0) = λ. Observe that the Hamiltonian function, which is constant on λ(t), measures the
speed of the associated geodesic:

2H(λ) = ‖γ̇λ(t)‖2, λ ∈ T ∗M. (4.3)

Since H is fiber-wise homogeneous of degree 2, we have the following rescaling property:

γαλ(t) = γλ(αt), α > 0. (4.4)

This justifies the restriction to the subset of initial covectors lying in the level set 2H = 1.

Definition 4.1. The unit cotangent bundle is the set of initial covectors such that the associated geodesic has
unit speed, namely

:= {λ ∈ T ∗M | 2H(λ) = 1} ⊂ T ∗M. (4.5)

For any λ ∈ , the geodesic γλ(t) is parametrized by arc-length, namely `(γ|[0,T ]) = T .

Remark 4.2. We stress that, in the genuinely sub-Riemannian case, H|T∗qM is a degenerate quadratic form.
It follows that the fibers q are non-compact cylinders, in sharp contrast with the Riemannian case (where the
fibers q are spheres).

For any λ ∈ , the cut time tc(λ) is defined as the time at which γλ(t) loses optimality

tc(λ) := sup{t > 0 | d(γλ(0), γλ(t)) = t}. (4.6)

In particular, for a fixed ε > 0 we define

ε
q := {λ ∈ q | tc(λ) ≥ ε} ⊂ q, (4.7)

as the set of unit covector such that the associated geodesic is optimal up to time ε.

Definition 4.3. Let Dq ⊆ [0,∞)× q the set of the pairs (t, λ) such that γλ is well defined up to time t. The
exponential map at q ∈M is the map expq : Dq →M that associates with (t, λ) the point γλ(t).

Under the assumption that (M,d) is complete, by the (sub-)Riemannian Hopf-Rinow Theorem (see, for
instance, [4, 27]), we have that any closed metric ball is compact and normal geodesics can be extended for all
times, that is Dq = [0,∞)× q, for all q ∈M .
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4.2. Sub-Laplacians

For any function φ ∈ C∞(M), the horizontal gradient grad(φ) ∈ Γ (N) is, at each point, the horizontal
direction of steepest slope of φ, that is

g(grad(φ), X) = 〈dφ,X〉, ∀X ∈ Γ (N). (4.8)

Since in the Riemannian case this coincides with the usual gradient, this notation will cause no confusion. If
X1, . . . , Xk is a local orthonormal frame, we have

grad(φ) =

k∑
i=1

Xi(φ)Xi. (4.9)

For any fixed volume form ω ∈ ΛnM (or density if M is not orientable), the divergence of a smooth vector
field X is defined by the relation LXω = divω(X), where L denotes the Lie derivative. Notice that the sub-
Riemannian structure does not play any role in the definition of divω. Following [5, 25], the sub-Laplacian on
(M,N,g) associated with ω is

∆ω := divω ◦ grad =

k∑
i=1

X2
i + divω(Xi)Xi, (4.10)

where in the last equality, which holds locally, X1, . . . , Xk is a orthonormal frame. Again, if ω and ω′ are
proportional, then ∆ω = ∆ω′ .

The sub-Laplacian is symmetric on the space C∞c (M) of smooth functions with compact support with respect
to the L2(M,ω) product. If (M,d) is complete and there are no non-trivial abnormal minimizers, then ∆ω is
essentially self-adjoint on C∞c (M) and has a smooth positive heat kernel [30,31].

The sub-Laplacian will be intrinsic if we choose an intrinsic volume. (See [10], Sect. 3) for a discussion of
intrinsic volumes in sub-Riemannian geometry. A natural choice, at least in the equiregular setting, is Popp
volume [7,25], which is smooth. Other choices are possible, for example the Hausdorff or the spherical Hausdorff
volume which, however, are not always smooth [3]. For the moment we let ω be a general smooth volume.

4.3. The sub-Riemannian geodesic random walk with volume sampling

In contrast with the Riemannian case, where SqM has a well defined probability measure induced by the
Riemannian structure, we have no such construction on q. Thus, it is not clear how to define a geodesic random
walk in the sub-Riemannian setting.

For ε > 0, consider the sub-Riemannian exponential map

expq(ε; ·) : q →M, q ∈M. (4.11)

If λ ∈ q, then γλ(ε) = expq(ε;λ) is the associated unit speed geodesic starting at q.
One wishes to repeat Definition 3.1, using the exponential map to induce a density on q, through the

formula µεq(λ) ∝ |(expq(ε; ·)∗ιγ̇λ(ε)ω)(λ)|. However, there are non-trivial difficulties arising in the genuine sub-
Riemannian setting.

• The exponential map is not a local diffeomorphism at ε = 0, and Riemannian normal coordinates are not
available. This tool is used for proving the convergence of walks in the Riemannian setting;

• Due to the presence of zeroes in the Jacobian determinant of expq(ε; ·) for arbitrarily small ε, the absolute
value in the definition of µεq is strictly necessary (in contrast with the Riemannian case, see Rem. 3.2).

• Since q is not compact, there is no guarantee that
∫

q
µεq < +∞;

Assuming that
∫

q
µεq < +∞, we generalize Definition 3.1 as follows.
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Definition 4.4. For any q ∈M , and ε > 0, we define the family of densities µεq on q

µεq(λ) :=
1

N(q, ε)

∣∣(expq(ε; ·)∗ιγ̇λ(ε)ω)(λ)
∣∣ , ∀λ ∈ q, (4.12)

where N(q, ε) is fixed by the condition
∫

q
µεq = 1.

As we did in Section 3.2, and for c ∈ (0, 1], we build a random walk

bε(i+1)δ,c := expbεiδ,c(ε;λ), λ ∈ q chosen with probability µcεq . (4.13)

Let P εω,c be the associated probability measure on the space of continuous paths on M starting from q, and
consider the corresponding family of operators, which in this case is

(Lεc,ωφ)(q) =
1

δ
E[φ(bεδ,c)− φ(q) | bε0,c = q]

=
1

δ

∫
q

[φ(expq(ε;λ))− φ(q)]µcεq (λ), ∀q ∈M,
(4.14)

for any φ ∈ C∞(M). Clearly when k = n, (4.14) is the same family of operators associated with a Riemannian
geodesic random walk with volume sampling discussed in Section 3.2, and this is why - without risk of confusion
- we used the same symbol.

Remark 4.5. As mentioned, in sub-Riemannian geometry abnormal geodesics may appear. More precisely, one
may have strictly abnormal geodesics that do not arise as projections of solutions of (4.2). The class of random
walks that we have defined never walk along these trajectories, but can walk along abnormal segments that are
not strictly abnormal.

The (minimizing) Sard conjecture states that the set of endpoints of strictly abnormal (minimizing) geodesics
starting from a given point has measure zero in M . However, this remains a hard open problem in sub-
Riemannian geometry [2]. See also [1, 21,28] for recent progress on the subject.

Checking the convergence of (4.14) is difficult in the general sub-Riemannian setting (k < n), in part due
to the difficulties outlined above. We treat in detail the case of contact Carnot groups, where we find some
surprising results. These structures are particularly important as they arise as Gromov−Hausdorff tangent
cones of contact sub-Riemannian structures [8, 24], and play the same role of Euclidean space in Riemannian
geometry.

4.4. Contact Carnot groups

Let M = R2d+1, with coordinates (x, z) ∈ R2d × R. Consider the following global vector fields

Xi = ∂xi −
1

2
(Ax)i∂z, i = 1, . . . , 2d, (4.15)

where

A =

α1J
. . .

αdJ

 , J =

(
0 −1
1 0

)
, (4.16)

is a skew-symmetric, non-degenerate matrix with singular values 0 < α1 ≤ . . . ≤ αd. A contact Carnot group
is the sub-Riemannian structure on M = R2d+1 such that Nq = span{X1, . . . , X2d}q for all q ∈ M , and
g(Xi, Xj) = δij . Notice that

[Xi, Xj ] = Aij∂z. (4.17)
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Set g1 := span{X1, . . . , X2d} and g2 := span{∂z}. The algebra g generated by the Xi’s and ∂z admits a nilpotent
stratification of step 2, that is

g = g1 ⊕ g2, g1, g2 6= {0}, (4.18)

with
[g1, g1] = g2, and [g1, g2] = [g2, g2] = {0}. (4.19)

There is a unique connected, simply connected Lie group G such that g is its Lie algebra of left-invariant vector
fields. The group exponential map,

expG : g→ G, (4.20)

associates with v ∈ g the element γ(1), where γ : [0, 1] → G is the unique integral curve of the vector field v
such that γ(0) = 0. Since G is simply connected and g is nilpotent, expG is a smooth diffeomorphism. Thus we
can identify G ' R2d+1 equipped with a polynomial product law ? given by

(x, z) ? (x′, z′) =
(
x+ x′, z + z′ + 1

2x
∗Ax′

)
. (4.21)

Denote by Lq the left-translation Lq(p) := q ? p. The fields Xi are left-invariant, and as a consequence the
sub-Riemannian distance is left-invariant as well, in the sense that d(Lq(p1), Lq(p2)) = d(p1, p2).

Remark 4.6. As consequence of left-invariance, contact Carnot groups are complete as metric spaces. Moreover
all abnormal minimizers are trivial. Hence, for each volume ω, the operator∆ω with domain C∞c (M) is essentially
self-adjoint in L2(M,ω).

Example 4.7. The 2d + 1 dimensional Heisenberg group H2d+1, for d ≥ 1, is the contact Carnot group with
α1 = . . . = αd = 1.

Example 4.8. The bi-Heisenberg group is the 5-dimensional contact Carnot group with 0 < α1 < α2. That is,
A has two distinct singular values.

A natural volume is the Popp volume P. By the results of [7], we have the formula

P =
1

2
∑d
i=1 α

2
i

dx1 ∧ . . . ∧ dx2d ∧ dz. (4.22)

In particular P is left-invariant and, up to constant scaling, coincides with the Lebesgue volume of R2d+1. One
can check that divP(Xi) = 0, hence the sub-Laplacian w.r.t. P is the sum of squares8:

∆P =
2d∑
i=1

X2
i , (4.23)

In this setting, we are able to prove the convergence of the sub-Riemannian random walk with volume sampling.

Theorem 4.9. Let H2d+1 be the Heisenberg group, equipped with a general volume ω = ehP. Then Lεω,c → Lω,c,
where

Lω,c = σ(c)

(
2d∑
i=1

X2
i + 2cXi(h)

)
= σ(c) (divω ◦ grad +(2c− 1) grad(h)) , (4.24)

and σ(c) is a constant (see Rem. 4.11).

In particular Lω,c is essentially self-adjoint in L2(M,ω) if and only if c = 1/2 or ω = P (i.e. h is constant).
The proof of the above theorem is omitted, as it is a consequence of the next, more general, result. In the general
case, the picture is different, and quite surprising, since not even the principal symbol is the expected one.

8This is the case for any sub-Riemannian left-invariant structure on a unimodular Lie group [5].
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Figure 2. Plots of σi(c) for d = 3 and α1 = 1, α2 = 2 and α3 = 3.

Theorem 4.10. Let (R2d+1,N,g) be a contact Carnot group, equipped with a general volume ω = ehP and let
c ∈ (0, 1]. Then Lεω,c → Lω,c, where

Lω,c =

d∑
i=1

σi(c)
(
X2

2i−1 +X2
2i

)
+ 2c

d∑
i=1

σi(c) (X2i−1(h)X2i−1 +X2i(h)X2i) , (4.25)

where σ1(c), . . . , σd(c) ∈ R are

σi(c) :=
cd

(d+ 1)
∑d
i=1

∫ +∞
−∞ |gi(y)|dy

d∑
`=1

(1 + δ`i)

∫ +∞

−∞
|g`(cpz)|

sin(αipz2 )2

(αipz/2)2
dpz, (4.26)

and, for i = 1, . . . , d

gi(y) =

∏
j 6=i

sin
(αjy

2

)2

sin
(
αiy
2

) (
αiy
2 cos

(
αiy
2

)
− sin

(
αiy
2

))
(y/2)2d+2

· (4.27)

Moreover, P εω,c → Pω,c weakly, where Pω,c is the law of the process associated with Lω,c.

Remark 4.11 (Heisenberg). If α1 = . . . = αd = 1, the functions gi = g are equal and

σ(c) := σi(c) =
c∫

R |g(y)|dy

∫
R
|g(cy)| sin(y/2)2

(y/2)2
, (4.28)

does not depend on i. In general, however, σi 6= σj (see Fig. 2).

4.4.1. An intrinsic formula

We rewrite the operator of Theorem 4.10 in an intrinsic form. Define a new contact Carnot structure
(R2d+1,N,g′) on the same distribution, by defining

X ′2i−1 :=
√
σi(c)X2i−1, X ′2i :=

√
σi(c)X2i, i = 1, . . . , d, (4.29)

to be a new orthonormal frame. Observe that this construction does not depend on the choice of ω. Let grad
and grad′ denote the horizontal gradients w.r.t. the sub-Riemannian metrics g and g′, respectively. Then the
following is a direct consequence of Theorem 4.10 and the definition of this “primed” structure.
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Corollary 4.12. The limit operator Lω,c of Theorem 4.10 is

Lω,c = divω ◦ grad′+(2c− 1) grad′(h), (4.30)

where grad′(h) =
∑2d
i=1X

′
i(h)X ′i is understood as a derivation.

Again Lω,c is essentially self-adjoint in L2(M,ω) if and only if c = 1/2 or ω = P (i.e. h is constant). In both
cases it is a “divergence of the gradient”, i.e. a well-defined, intrinsic and symmetric operator but, surprisingly,
not the expected one. In particular, the behavior of associated heat kernel (e.g. its asymptotics) depends not
on the original sub-Riemannian metric g, but on the new one g′.

4.4.2. On the symbol

We recall that the (principal) symbol of a smooth differential operator D on a smooth manifold M can be
seen as a function Σ(D) : T ∗M → R. The symbol associated with the sub-Riemannian geodesic random walk
with volume sampling is

Σ(Lω,c)(λ) =

d∑
i=1

σi(c)(〈λ,X2i−1〉2 + 〈λ,X2i〉2), λ ∈ T ∗M, (4.31)

and does not depend on ω. On the other hand, the principal symbol of ∆ω is

Σ(∆ω)(λ) =

2d∑
i=1

〈λ,Xi〉2 = 2H(λ), λ ∈ T ∗M. (4.32)

In general, the two symbols are different, for any value of the sampling ratio c > 0. The reason behind this
discrepancy is that the family of operators Lεω,c keeps track of the different eigenspace associated with the
generically different singular values αi 6= αj , through the Jacobian determinant of the exponential map.

4.5. Alternative construction for the sub-Riemannian random walk

An alternative construction of the sub-Riemannian random walk of Section 4 is the following. For any fixed
step length ε > 0, one follows only minimizing geodesics segments, that is λ ∈ ε

q, as defined in (4.7). In other
words, for ε > 0, and c ∈ (0, 1], we consider the restriction of µcεq to ε

q (which we normalize in such a way that∫
ε
q
µcεq = 1).

Remark 4.13. In the the original construction the endpoints of the first step of the walk lie on the front of
radius ε centered at q, that is the set Fq(ε) = expq(ε; q). With this alternative construction, the endpoints lie
on the metric sphere of radius ε centered at q, that is the set Sq(ε) = expq(ε;

ε
q).

Remark 4.14. In the Riemannian setting, locally, for ε > 0 sufficiently small, all geodesics starting from q are
optimal at least up to length ε, and the two constructions coincide.

This construction requires the explicit knowledge of ε
q, which is known for contact Carnot groups [3]. We

obtain the following convergence result, whose proof is similar to that of Theorem 4.10, and thus omitted.

Theorem 4.15. Consider the geodesic sub-Riemannian random walk with volume sampling, with volume ω and
ratio c, defined according to the alternative construction. Then the statement of Theorem 4.10 holds, replacing
the constants σi(c) ∈ R with

σalt
i (c) :=

cd

(d+ 1)
∑d
j=1

∫ 2π/αdc

−2π/αdc |gj(y)|dy

d∑
`=1

(1 + δ`i)

∫ 2π/αd

−2π/αd
|g`(cpz)|

sin(αipz2 )2

(αipz/2)2
dpz, (4.33)

for i = 1, . . . , d. We call Lalt
ω,c the corresponding operator.
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Remark 4.16 (The case c = 0). In the Riemannian setting the case c = 0 represents the geodesic random walk
with no volume sampling of Section 3.1. In fact, by Theorem 3.4,

Lω,0 = lim
c→0+

Lω,c = divR ◦ grad, (Riemannian geodesic RW), (4.34)

is the Laplace-Beltrami operator, for any choice of ω. In the sub-Riemannian setting the case c = 0 is not defined,
but we can still consider the limit for c → 0+ of the operator. In the original construction, limc→0+ σi(c) = 0
and by Theorem 4.10 we have:

lim
c→0+

Lω,c = 0, (sub-Riemannian geodesic RW). (4.35)

For the alternative sub-Riemannian geodesic random walk discussed above, we have:

lim
c→0+

σalt
i (c) =

d

4π(d+ 1)

(
1 +

α2
i∑d

`=1 α
2
`

)∫ 2π

−2π
sinc

(
αix

2αd

)2

dx, ∀i = 1, . . . , d. (4.36)

As in Section 4.4.1, we can define a new metric g′′, on the same distribution, such that

X ′′2i−1 :=
√
σalt
i (0)X2i−1, X ′′2i :=

√
σalt
i (0)X2i, i = 1, . . . , d (4.37)

are a global orthonormal frame, where σalt
i (0) := limc→0+ σ

alt
i (c) > 0. Then, by Theorem 4.15 we obtain a

formula similar to the one of Corollary 4.12:

Lalt
ω,0 := lim

c→0+
Lalt
ω,c = divP ◦ grad′′, (alternative sub-Riemannian geodesic RW). (4.38)

where grad′′ is the horizontal gradient computed w.r.t. g′′. Unless all the αi are equal, in general σalt
i (0) 6= σalt

j (0)

and grad′′ is not proportional to grad. Notice that Lalt
ω,0 is a non-zero operator,, symmetric w.r.t. Popp volume,

and it does not depend on the choice of the initial volume ω. This makes Lalt
ω,0 (and the corresponding diffusion)

an intriguing candidate for an intrinsic sub-Laplacian (and an intrinsic Brownian motion) for contact Carnot
groups.

For the Heisenberg group H2d+1, where αi = 1 for all i, by Theorem 4.9 we have:

Lalt
ω,0 = σalt(0) divP ◦ grad, where σalt(0) =

1

4π

∫ 2π

−2π
sinc(x)2dx. (4.39)

Remark 4.17 (Signed measures). A further alternative construction is one in which we remove the absolute
value in the definition 4.4 of µεq on q. In this case we lose the probabilistic interpretation, and we deal with a
signed measure; still, we have an analogue of Theorem 4.10 for the operators themselves, replacing the constants
σ1(c), . . . , σd(c) with

σ̃i(c) =
cd

(d+ 1)
∑d
j=1

∫ +∞
−∞ gj(y)dy

d∑
`=1

(1 + δ`i)

∫ +∞

−∞
g`(cpz)

sin(αipz2 )2

(αipz/2)2
dpz. (4.40)

We observe the same qualitative behavior as the initial construction highlighted in Sections 4.4.1 and 4.4.2.

4.6. The 3D Heisenberg group

We give more details for the sub-Riemannian geodesic random walk in the 3D Heisenberg group. This is
a contact Carnot group with d = 1 and α1 = 1. The identity of the group is (x, z) = 0. In coordinates
(px, pz) ∈ T ∗0M we have

0 = {(px, pz) ∈ R2 × R | ‖px‖2 = 1}, (4.41)

ε
0 = {(px, pz) ∈ R2 × R | ‖px‖2 = 1, |pz| ≤ 2π/ε}. (4.42)
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Figure 3. Measures on for c = 1 in the Heisenberg group H3 for the original construction.
Each zero corresponds to a conjugate point.

see [3]. For instance, we set ω equal to the Lebesgue volume. From the proof of Theorem 4.10, we obtain, in
cylindrical coordinates (θ, pz) ∈ S1 × R ' T ∗0M

µcε0 =


cε|g(cεpz)|

2π
∫∞
−∞ |g(y)|dy

dθ ∧ dpz original construction,

cε|g(cεpz)|
2π
∫ 2πc

−2πc |g(y)|dy
dθ ∧ dpz alternative construction,

(4.43)

where

g(y) =
sin
(
y
2

) (
y
2 cos

(
y
2

)
− sin

(
y
2

))
(y/2)4

· (4.44)

The normalization is determined by the conditions{∫
0
|µcε0 | = 1 original construction,∫

ε
0
|µcε0 | = 1 alternative construction.

(4.45)

The density corresponding to µcε0 , in coordinates (px, pz), depends only on pz. For any fixed c > 0, the density
(for either construction) spreads out as ε → 0, and thus the probability to follow a geodesic with large pz
increases (see Fig. 3).

5. Flow random walks

The main difficulties to deal with in the convergence of the sub-Riemannian geodesic random walk with
volume sampling scheme were related to the non-compactness of q, and the lack of a general asymptotics for
µεq. To overcome these difficulties, we discuss a different class of walks. This approach is inspired by the classical
integration of a Stratonovich SDE, and can be implemented on Riemannian and sub-Riemannian structures
alike (the only requirement being a set of vector fields V1, . . . , Vk on a smooth manifold M , and a volume ω for
volume sampling).
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5.1. Stratonovich SDEs via flow random walks

Let M be a smooth n-dimensional manifold, and let V1, . . . , Vk be smooth vector fields on M . Since SDEs
are fundamentally local objects (at least in the case of smooth vector fields, where the SDE has a unique, and
thus Markov, solution), we do not worry about the global behavior of the Vi, and thus we assume, without loss
of generality, that the flow along any vector field V = β1V1 +β2V2 + · · ·+βkVk for any constants βi exists for all
time. Further, we can assume that there exists a Riemannian metric g on M such that the Vi all have bounded
norm.

We consider the Stratonovich SDE

dqt =

k∑
i=1

Vi (qt) ◦ d(
√

2wit), q0 = q, (5.1)

for some q ∈M , where w1
t , . . . , w

k
t are independent, one-dimensional Brownian motions. We recall that solving

this SDE is essentially equivalent to solving the martingale problem for the operator
∑k
i=1 V

2
i . (See [20], Chap. 5

for the precise relationship between solutions to SDEs and solutions to martingale problems, although in this
case, because of strong uniqueness of the solution to the (5.1), the situation is relatively simple). We also assume
that the solution to (5.1), which we denote q0t , does not explode.

The sequence of random walks which we associate to (5.1) is as follows. We take ε > 0. Consider the k-
dimensional vector space of all linear combinations β1V1 + β2V2 + · · · + βkVk. Then we can naturally identify
Sk−1 with the set

∑k
i=1 β

2
i = 1, and thus choose a k-tuple (β1, . . . , βk) from the sphere according to the uniform

probability measure. This gives a random linear combination V = β1V1+β2V2+· · ·+βkVk. Now, starting from q,
we flow along the vector field 2k

ε V for time δ = ε2/(2k), traveling a curve of length ε‖V ‖g. This determines the
first step of a random walk (and the measure Πε

q ). Determining each additional step in the same way produces
a family of random walks qεt , that we call the flow random walk at scale ε associated with the SDE (5.1).

We associate to each process qεt and q0t the corresponding probability measures P ε and P 0 on Ω(M). The

operator induced by the walks converges to the sum-of-squares operator
∑k
i=1 V

2
i , uniformly on compact sets,

by smoothness. Then, by Theorem 2.8, the measures P ε → P 0 weakly as ε → 0. Note that since this holds
for any metric g as described above, this is really a statement about processes on M as a smooth manifold,
and the occurrence of g is just an artifact of the formalism of Theorem 2.8. Also, we again note that in this
construction, it would be possible to allow k > n.

The relationship of Stratonovich integration to ODEs, and thus flows of vector fields, is not new. Approx-
imating the solution to a Stratonovich SDE by an ODE driven by an approximation to Brownian motion is
considered in [11, 34]. Here, we have tried to give a simple, random walk approach emphasizing the geometry
of the situation. Nonetheless, because M is locally diffeomorphic to Rn (or a ball around the origin in Rn,
depending on one’s preferences) and the entire construction is preserved by diffeomorphism, there is nothing
particularly geometric about the above, except perhaps the observation that the construction is coordinate
independent.

5.2. Volume sampling through the flow

The random walk defined in the previous section, which depends only on the choice of k smooth vector fields
V1, . . . , Vk fits in the general class of walks of Section 2. Moreover, the construction can be generalized to include
a volume sampling technique, as we now describe.

Here V1, . . . , Vk are a fixed set of global orthonormal fields of a complete (sub-)Riemannian structure, and for
this reason we rename them X1, . . . , Xk. We will discuss in which cases the limit diffusion does not depend on
this choice. Notice that, as a consequence of our assumption on completeness of the (sub-)Riemannian structure,
any linear combination of the Xi’s with constant coefficients is complete.

Remark 5.1. If TM is not trivial, clearly such a global frame does not exist. To overcome this difficulty,
one can consider a locally finite cover {Ui}i∈I , each one equipped with a preferred local orthonormal frame.
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For each q ∈ M , there exists a finite set of indices Iq such that q ∩ Ui 6= ∅. Hence, one can easily generalize
the forthcoming construction by choosing with uniform probability one of the finite number of available local
orthonormal frames available at q. Another possibility is to consider an overdetermined set X1, . . . , XN of global
vector fields generating the same (sub-)Riemannian structure, as explained in ([4], Sect. 3.1.4). Either choice
leads to equivalent random walks hence, for simplicity, we restrict in the following to the case of trivial TM .

Definition 5.2. For any q ∈M , and ε > 0, the endpoint map Eq,ε : Rk →M gives the point Eq,ε(u) at time ε

of integral curve of the vector field Xu :=
∑k
i=1 uiXi starting from q ∈M . Moreover, let Sq,ε := Eq,ε(Sk−1).

Remark 5.3. For small ε ≥ 0, Eq,ε : Sk−1 → Sq,ε is a diffeomorphism, and for any unit u ∈ Sk−1, note that
γu(ε+ τ) := Eq,ε+τ (u) is a segment of the flow line transverse to Sq,ε.

The next step is to induce a probability measure µεq on Sk−1 via volume sampling through the endpoint map.
We start with the Riemannian case.

5.3. Flow random walks with volume sampling in the Riemannian setting

In this case k = n, and the specification of the volume sampling scheme is quite natural.

Definition 5.4. Let (M,g) be a Riemannian manifold. For any q ∈ M and ε > 0, we define the family of
densities on µεq on Sn−1

µεq(u) :=
1

N(q, ε)

∣∣E∗q,ε ◦ ιγ̇u(ε)ω)(u)
∣∣ , ∀u ∈ Sn−1. (5.2)

where N(q, ε) is fixed by the condition
∫
Sn−1 µ

ε
q = 1. For ε = 0, we set µ0

q the standard normalized density
on Sn−1.

Then, we define a random walk by choosing u ∈ Sk−1 according to µεq, and following the corresponding integral
curve. That is, for ε > 0

rε(i+1)δ,c := Erεiδ,c,ε(u), u ∈ Sn−1 chosen with probability µcεq , (5.3)

where we have also introduced the parameter c ∈ [0, 1] for the volume sampling. This class of walks includes
the one described in the previous section (by setting c = 0).

Let P εω,c be the probability measure on the space of continuous paths on M associated with rεt,c and consider
the associated family of operators that, in this case, is

(Lεω,cφ)(q) :=
1

δ

∫
Sn−1

[φ(Eq,ε(u))− φ(q)]µcεq (u), ∀q ∈M, (5.4)

for any φ ∈ C∞(M).

Theorem 5.5. Let (M,g) be a complete Riemannian manifold and X1, . . . , Xn be a global set of orthonormal
vector fields. Let c ∈ [0, 1] and ω = ehR be a fixed volume on M , for some h ∈ C∞(M). Then Lεc,ω → Lc,ω,
where

Lω,c = ∆ω + c grad(h) + (c− 1)

n∑
i=1

divω(Xi)Xi. (5.5)

Moreover P εω,c → Pω,c weakly, where Pω,c is the law of the process associated with Lω,c (which we assume does
not explode).

The limiting operator is not intrinsic in general, as it clearly depends on the choice of the orthonormal frame.
However, thanks to this explicit formula, we have the following.
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Corollary 5.6. The operator Lω,c does not depend on the choice of the orthonormal frame if and only if c = 1.
In this case

Lω,1 = ∆ω + grad(h) = ∆ehω = ∆e2hR. (5.6)

Even though Lω,1 is intrinsic and depends only on the Riemannian structure and the volume ω, it is not
symmetric in L2(M,ω) unless we choose h to be constant. This selects a preferred volume ω = R, up to a
proportionality constant.

Corollary 5.7. The operator Lω,c with domain C∞c (M) is essentially self-adjoint in L2(M,ω) if and only if
c = 1 and ω is proportional to the Riemannian volume.

On the other hand, by setting c = 0, we recover the “sum of squares” generator of the solution of the
Stratonovich SDE (5.1).

Corollary 5.8. The operator Lω,0 depends on the choice of the vector fields X1, . . . , Xn, but not on the choice
of the volume ω, in particular

Lω,0 =

n∑
i=1

X2
i . (5.7)

5.4. Flow random walks with volume sampling in the sub-Riemannian setting

To extend the flow random walk construction to the sub-Riemannian setting we need vector fields
Z1, . . . , Zn−k on M , transverse to N, in such a way that ιZ1,...,Zn−kω is a well-defined k-form that we can
use to induce a measure on Sk−1 as in Definition 5.4.

In general there is no natural choice of these Z1, . . . , Zn−k. We explain the construction in detail for contact
sub-Riemannian structures, where such a natural choice exists. Indeed, this class contains contact Carnot groups.

5.4.1. Contact sub-Riemannian structures

A sub-Riemannian structure (M,N,g) is contact if there exists a global one-form η such that N = ker η. This
forces dim(M) = 2d+ 1 and rankN = 2d, for some d ≥ 1. Consider the skew-symmetric contact endomorphism
J : Γ (N)→ Γ (N), defined by the relation

g(X, JY ) = dη(X,Y ), ∀X,Y ∈ Γ (N). (5.8)

We assume that J is non-degenerate. Multiplying η by a non-zero smooth function f gives the same contact
structure, with contact endomorphism fJ . We fix η up to sign by taking

Tr(JJ∗) = 1. (5.9)

The Reeb vector field is defined as the unique vector X0 such that

η(X0) = 1, ιX0
dη = 0. (5.10)

In this case the Popp density is the unique density such that P(X0, X1, . . . , X2d) = 1 for any orthonormal frame
X1, . . . , X2d of N (see [7]).

The flow random walk with volume sampling, with volume ω and sampling ratio c, can be implemented as
follows.

Definition 5.9. Let (M,N,g) be a contact sub-Riemannian structure with Reeb vector field X0. For any q ∈M
and ε > 0 we define the family of densities µεq on Sk−1

µεq(u) :=
1

N(q, ε)

∣∣(E∗q,ε ◦ ιX0,γ̇u(ε)ω)(u)
∣∣ , ∀u ∈ Sk−1, (5.11)

where N(q, ε) is fixed by the condition
∫
Sk−1 µ

ε
q = 1. For ε = 0, we set µ0

q to be the standard normalized density

on Sk−1.
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We define a random walk rεt,c as in (5.3), with sampling ratio c ∈ [0, 1], and we call the associated family of
operators Lεω,c as in (5.4), with no risk of confusion.

Theorem 5.10. Let (M,N,g) be a complete contact sub-Riemannian manifold and X1, . . . , X2d be a global set
of orthonormal vector fields. Let c ∈ [0, 1] and ω = ehP be a fixed volume on M , for some h ∈ C∞(M). Then
Lεc,ω → Lc,ω, where

Lω,c = ∆ω + c grad(h) + (c− 1)

k∑
i=1

divω(Xi)Xi. (5.12)

Moreover P εω,c → Pω,c weakly, where Pω,c is the law of the process associated with Lω,c (which we assume does
not explode).

This construction, in the contact sub-Riemannian case, has the some properties as the Riemannian one,
where the Riemannian volume is replaced by Popp one. In particular we have the following analogues of
Corollaries 5.6, 5.7, and 5.8.

Corollary 5.11. The operator Lω,c does not depend on the choice of the orthonormal frame if and only if c = 1.
In this case

Lω,1 = ∆ω + gradH(h) = ∆ehω = ∆e2hP . (5.13)

Corollary 5.12. The operator Lω,c with domain C∞c (M) is essentially self-adjoint in L2(M,ω) if and only if
c = 1 and ω is proportional to the Popp volume.

Corollary 5.13. The operator Lω,0 depends on the choice of the vector fields X1, . . . , Xk, but not on the choice
of the volume ω, in particular

Lω,0 =

k∑
i=1

X2
i . (5.14)

6. Proof of the results

6.1. Proof of Theorem 3.4

Let ε ≤ ε0 and q ∈ M . Fix normal coordinates (x1, . . . , xn) on a neighborhood of q. In these coordinates,
length parametrized geodesics are straight lines εv, with v ∈ SqM ' Sn−1. In particular

φ(expq(ε, v))− φ(q) = ε

n∑
i=1

vi∂iφ+
1

2
ε2

n∑
i,j=1

vivj∂
2
ijφ+ ε3Oq, (6.1)

where all derivatives are computed at q. The term Oq denotes a remainder term which is uniformly bounded
on any compact set K ⊂ M by a constant |Oq| ≤ MK . When ω = R is the Riemannian volume, well-known
asymptotics (see, for instance, [14]) gives

µcεq (v) = (1 + ε2Oq)dΩ, (6.2)

where dΩ is the normalized euclidean measure on Sn−1. When ω = ehR, the above formula is multiplied by a
factor eh(expq(cε,v)), and taking into account the normalization we obtain

µcεq (v) =

(
1 + εc

n∑
i=1

vi∂ih+ ε2Oq

)
dΩ. (6.3)
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Then, for the operator Lεω,cφ, evaluated at q, we obtain

(Lεω,cφ)|q =
2n

ε2

∫
SqM

[φ(expq(ε, v))− φ(q)]µcεq (v) (6.4)

=
2n

ε

n∑
i=1

∂iφ

∫
Sn−1

vidΩ + 2n

n∑
i,j=1

(
c∂ih∂jφ+

1

2
∂2ijφ

)∫
Sn−1

vjvidΩ + εOq. (6.5)

The first integral is zero, while
∫
Sn−1 vivjdΩ = δij/n. Thus we have

(Lεω,cφ)|q =

n∑
i=1

∂2iiφ+ 2c(∂ih)(∂iφ) + εOq. (6.6)

The first term is the Laplace-Beltrami operator applied to φ, written in normal coordinates, while the second
term coincides with the action of the derivation 2c grad(h) on φ, evaluated at q. Since the l.h.s. is invariant
under change of coordinates, we have Lεω,c → Lω,c, where

Lω,c = ∆R + 2c grad(h), (6.7)

and the convergence is uniform on compact sets. The alternative forms of the statement follow from the change
of volume formula ∆ehω = ∆ω + grad(h). The convergence P εω,c → Pω,c follows from Theorem 2.8.

6.2. Proof of Theorem 4.10

We start with the case h = 0 and q = 0. The Hamilton equations for a contact Carnot groups are readily
solved, and the geodesic with initial covector (px, pz) ∈ T ∗0M ' R2d × R is

x(t) =

∫ t

0

espzApxds, z(t) = −1

2

∫ t

0

ẋ∗(s)Ax(s)ds. (6.8)

It is convenient to split px as px = (p1x, . . . , p
d
x), with pix = (px2i−1

, px2i
) ∈ R2 the projection of px on the real

eigenspace of A corresponding to the singular value αi. We get

exp0(t; px, pz) =


B(t;α1pz)p

1
x

...
B(t;αdpz)p

d
x∑d

i=1 b(t;αipz)αi‖pix‖2

 , (6.9)

where

B(t; y) :=
sin(ty)

y
I +

cos(ty)− 1

y
J, b(t; y) :=

ty − sin(ty)

2y2
· (6.10)

If pz = 0, the equations above must be understood in the limit, thus exp0(t; px, 0) = (tpx, 0). The Jacobian
determinant is computed in [3] (see also [29] for the more general case of a corank 1 Carnot group with a
notation closer to that of this paper):

det(dpx,pz exp0(t; ·)) =
t2d+3

4α2

d∑
i=1

gi(tpz)‖pix‖2, (6.11)

where α =
∏d
i=1 αi and

gi(y) :=

∏
j 6=i

sin
(αjy

2

)2

sin
(
αiy
2

) (
αiy
2 cos

(
αiy
2

)
− sin

(
αiy
2

))
(y/2)2d+2

· (6.12)
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Lemma 6.1. For any λ ∈ T ∗qM and t > 0, we have (up to the normalization)

(expq(t; ·)∗ ◦ ιγ̇λ(t)ω)(λ) =
1

t
ιλ ◦ (expq(t; ·)∗ω)(λ). (6.13)

Proof. It follows from the homogeneity property expq(t;αλ) = expq(αt;λ), for all α ∈ R:

γ̇λ(t) =
d

dτ

∣∣∣∣
τ=0

expq(t+ τ ;λ) =
1

t

d

dτ

∣∣∣∣
τ=0

expq(t; (1 + τ)λ) =
1

t
dλ expq(t; ·)λ, (6.14)

where we used the standard identification Tλ(T ∗qM) = T ∗qM . �

The cylinder is 0 = {(px, pz) | ‖px‖2 = 1} ⊂ T ∗0M and λ ' pz∂pz+px∂px . The Lebesgue volume is L = dx∧dz.
By Lemma 6.1 and reintroduction of the normalization factor, we obtain that the restriction to 0 of µt0 is

µt0 =
1

N(t)

d∑
i=1

|gi(pzt)|‖pix‖2|dΩ ∧ dpz|, (6.15)

where dΩ is the normalized volume of S2d−1. Observe that each |gi| ∈ L1(R). Thus

N(t) =

d∑
i=1

∫
S2d−1

‖pix‖2dΩ

∫
R

dpz|gi(pzt)| =
1

dt

d∑
i=1

∫
R

dy|gi(y)|. (6.16)

To compute E[φ(expq(ε;λ))− φ(q)], we can assume φ(q) = 0. Hence

∫
0

φ(exp0(ε;λ))µcε0 (λ) =
1

N(cε)

d∑
i=1

∫
S2d−1

dΩ

∫
R

dpz|gi(pzcε)|‖pix‖2φ(exp0(ε; px, pz)) (6.17)

=
c

εN(ε)

d∑
i=1

∫
S2d−1

‖pix‖2dΩ

∫
R
dy|gi(cy)|φ(exp0(ε; px, y/ε)) (6.18)

=
cd∑d

i=1

∫
R |gi(y)|dy

d∑
i=1

∫
S2d−1

‖pix‖2dΩ

∫
R

dpz|gi(cpz)|φ(exp0(1; εpx, pz)), (6.19)

where we used the rescaling property of the exponential map. From (6.9) we get

exp0(1; εpx, pz) =


B(α1pz)

. . .
B(αdpz)

 εpx,

d∑
i=1

b(αipz)αi‖pix‖2ε2

 , (6.20)

where, with a slight abuse of notation

B(y) =
sin(y)

y
I +

cos(y)− 1

y
J, b(y) =

y − sin(y)

2y2
· (6.21)

We observe here that

B(y)B(y)∗ =
sin(y/2)2

(y/2)2
I. (6.22)

It is convenient to rewrite
exp0(1; εpx, pz) = (B(pz)εpx, ε

2p∗xb(pz)px), (6.23)
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where B(pz) is a block-diagonal 2d× 2d matrix, whose blocks are B(αipz), and b is a 2d× 2d diagonal matrix.
Notice that exp0(1; εpx, pz) is contained in the compact metric ball of radius ε. Hence, we have

φ(exp0(ε; tpx, pz)) = (∂xφ)(B(pz)εpx) + (∂zφ)p∗xb(pz)pxε
2

+
1

2
ε2(B(pz)px)∗(∂2xφ)(B(pz)px) + ε3R(px,pz)(ε).

(6.24)

All derivatives are computed at 0. Let ε ≤ ε0. A lengthy calculation using the explicit form of the remainder
(and Hamilton’s equations) shows that the remainder term is uniformly bounded (i.e. independently on ε) by an
order two polynomial in pz, that is R(px,pz)(ε) ≤ A+Bpz +Cp2z, where the constants depend on the derivatives
of φ (up to order three) on the compact ball of radius ε0 centered at the origin. Plugging (6.24) back in (6.19),
we observe that the term proportional to∫

S2d−1

‖pix‖2dΩ

∫
R

dpz|gi(cpz)|(∂xφ)B(pz)εpx (6.25)

vanishes, as the integral of any odd-degree monomial in px on the sphere is zero. Furthermore, the term pro-
portional to ∫

S2d−1

‖pix‖2dΩ

∫
R

dpz|gi(cpz)|(∂zφ)p∗xb(pz)pxt
2 (6.26)

vanishes, as the integrand is an odd function of pz. The last second-order (in ε) term is

cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
S2d−1

‖pix‖2dΩ

∫
R

dpz|gi(cpz)|
1

2
ε2(B(pz)px)∗(∂2xφ)(B(pz)px). (6.27)

If all the αi are equal, then all gi = g, and (6.27) the sum
∑d
i=1 ‖pix‖2 = ‖px‖2 = 1 simplifies. In this case we

have a simple average of a quadratic form on S2d−1. When the αi are distinct, we need the following results.

Lemma 6.2 (see [13]). Let P (x) = xa11 . . . xann a monomial in Rn, with ai, . . . , an ∈ {0, 1, 2, . . .}. Set bi :=
1
2 (ai + 1) Then ∫

Sn−1

P (x)dΩ =
Γ (n/2)

2πn/2


0 if some aj is odd,

2Γ (b1)Γ (b2) · · ·Γ (bn)

Γ (b1 + b2 + · · ·+ bn)
if all aj are even,

(6.28)

where dΩ is the normalized measure on the sphere Sn−1 ⊂ Rn.

Lemma 6.3. Let Q(x) = x∗Qx and R(x) = x∗Rx be two quadratic forms on Rn, such that QR = RQ. Then∫
Sn−1

Q(x)R(x)dΩ =
2 Tr(QR) + Tr(Q) Tr(R)

n(n+ 2)
· (6.29)

If R = I, we recover the usual formula
∫
Sn−1 QdΩ = 1

n Tr(Q).

Proof. Up to an orthogonal transformation, we can assume that Q and R are diagonal. Hence (for brevity we
omit the domain of integration and the measure),∫

Q(x)R(x) =

n∑
i,j=1

QiiRjj

∫
x2ix

2
j . (6.30)

By Lemma 6.2, we have ∫
x2ix

2
j =


3

n(n+ 2)
i = j,

1

n(n+ 2)
i 6= j.

(6.31)
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Thus ∫
Q(x)R(x) =

n∑
i,j=1

QiiRjj

∫
x2ix

2
j (δij + (1− δij)) (6.32)

=
1

n(n+ 2)

n∑
i,j

QiiRjj(3δij + (1− δij)) =
2 Tr(QR) + Tr(Q) Tr(R)

n(n+ 2)
· �

We can write (6.27), as the sum of integrals of products of quadratic forms over S2d−1

1

2
ε2

cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
R

dpz|gi(cpz)|
∫
S2d−1

Qi(px)R(px)dΩ, (6.33)

where the quadratic forms are (we omit the explicit dependence on pz)

Qi(px) := ‖pix‖2, R(px) := (B(pz)px)∗(∂2xφ)(B(pz)px). (6.34)

A direct check shows that Q and R are commuting, block diagonal matrices. Thus, applying Lemma 6.3 to (6.33),
we obtain

1

2
ε2

cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
R

dpz|gi(cpz)|
∫
S2d−1

Qi(px)R(px)dΩ

=
1

2
ε2

cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
R

dpz|gi(cpz)|
2 Tr(QiR) + Tr(Qi) Tr(R)

2d(2d+ 2)
· (6.35)

Observe that Tr(Qi) = 2, and
∑d
`=1Q` = I. Therefore we rewrite (6.35) as

ε2
c∑d

i=1

∫
R |gi(y)|dy

d∑
i,`=1

∫
R

dpz|gi(cpz)|
(1 + δi`) Tr(Q`R)

4(d+ 1)
· (6.36)

To compute Tr(Q`R) denote, for ` = 1, . . . , d

D2
`φ :=

(
∂2x2`−1

φ ∂x2`−1
∂x2`

φ

∂x2`
∂x2`−1

φ ∂2x2`
φ

)
, B` := B(α`pz). (6.37)

We thus obtain

Tr(Q`R) = Tr(B∗` (D2
`φ)B`) = Tr(B`B

∗
` (D2

`φ)) =
sin(α`pz2 )2

(α`pz/2)2
(∂2x2`−1

φ+ ∂2x2`
φ), (6.38)

where we used (6.22). Thus (6.36) becomes

ε2

4d

d∑
i=1

σi(c)(∂x2i−1φ+ ∂x2iφ), (6.39)

where the constants σi(c) are as in the statement of Theorem 2.8. Taking in account the remainder term as
well, we obtain

4d

ε2

∫
0

φ(exp0(ε; px, pz))µ
cε
0 (px, pz) =

d∑
i=1

σi(c)(∂
2
x2i−1

φ+ ∂2x2i
φ)|0 + 4dεO0, (6.40)
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where |O0| ≤ M0 is a remainder term that, when ε ≤ ε0, is bounded by a constant that depends only on the
derivatives of φ in a compact metric ball of radius ε0 centered in 0. A straightforward left-invariance argument
shows that, for any other q ∈M

4d

ε2

∫
q

[f(expq(ε;λ))− f(q)]µcεq (λ) =

d∑
i=1

σi(c)(X
2
2i−1φ+X2

2iφ)|q + 4dεOq(1), (6.41)

where Oq ≤ Mq is a remainder term bounded by a constant that depends only on the derivatives of φ in a
compact metric ball of radius ε0 centered in q. Thus

(Lc,L φ)|q = lim
ε→0

4d

ε2

∫
q

[φ(expq(ε;λ))− φ(q)]µcεq (λ) =

d∑
i=1

σi(c)(X2i−1φ+X2iφ)|q, (6.42)

and the convergence is uniform on compact sets. This completes the proof for ω = L .
Let, instead, ω = ehL for some h ∈ C∞(M). This leads to an extra factor eh(expq(cε;λ)) in front of µcεq (λ)

(up to re-normalization). After a moment of reflection one realizes that

(Lεω,cφ)|q = (LεL ,cφ̃)|q + εOq, with φ̃ = ec(h−h(q))(φ− φ(q)). (6.43)

This observation yields the general statement, after noticing that

X2
i (φ̃) = X2

i (φ) + 2cXi(h)Xi(φ), ∀i = 1, . . . , 2d, (6.44)

where everything is evaluated at the fixed point q.

6.3. Proof of Theorem 5.5

We expand the function φ along the path γu(ε) = Eq,ε(u):

φ(Eq,ε(u))− φ(q) = εXu(φ) +
1

2
ε2Xu(Xu(φ)) +O(ε3), (6.45)

where everything on the r.h.s. is computed at q (as a convention, in the following when the evaluation point is
not explicitly displayed, we understand it as evaluation at q).

Lemma 6.4. For any one-form ν ∈ T ∗qM and any vector v ∈ TuSn−1

(E∗q,εν)|u(v) = εν(Xv) +
1

2
ε2ν([Xv, Xu]) +O(ε3). (6.46)

Proof of Lemma 6.4. Since u is constant, the differential of the endpoint map is

duEq,ε(v) = eεXu∗

∫ ε

0

e−τXu∗ Xvdτ, v ∈ Rn, (6.47)

where eεY is the flow of the field Y (see [4]). By definition of the Lie derivative L we get

d

dε
(E∗q,εν)|u(v) =

d

dε
(eεXu∗ν)|q

(∫ ε

0

e−τXu∗ Xvdτ

)
= (eεXu∗LXuν)|q

(∫ ε

0

e−τXu∗ Xvdτ

)
+ (eεXu∗ν)|q

(
e−εXu∗ Xv

)
.

(6.48)

Taking another derivative, and evaluating at t = 0, we get

d2

dε2

∣∣∣∣
ε=0

(E∗q,εν)|u(v) = 2(LXuν)|q(Xv) + ν|q(LXu(Xv)) = ν([Xv, Xu]), (6.49)

d

dε

∣∣∣∣
ε=0

(E∗q,εν)|u(v) = ν|q(Xv). �
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Lemma 6.5. We have the following Taylor expansion for the measure

µεq(u) =
(

1 +
ε

2
divR(Xu) + εXu(h) +O(ε2)

)
dΩ(u), (6.50)

where dΩ is the normalized Euclidean measure on Sn−1.

Proof of Lemma 6.5. Let ν1, . . . , νn be the dual frame to X1, . . . , Xn, that is νi(Xj) = δij . Since ω = ehR =
ehν1 ∧ . . . ∧ νn, we obtain (ignoring normalization factors)

µεq(u) ∝ Dq(ε)e
h(γu(ε))dΩ(u), u ∈ Sn−1, (6.51)

where Dq(ε) is the determinant of the matrix (E∗q,ενi)(ej), for i, j = 1, . . . , n. Using Lemma 6.4, since Xej = Xj ,
we obtain

(E∗q,ενi)(ej) = ενi(Xj) +
ε2

2
νi([Xj , Xu]) +O(ε3), (6.52)

where everything is computed at q. Since det(I + εM) = 1 + εTr(M) +O(ε2) for any matrix M , we get

Dq(ε) = εn

(
1 +

ε

2

n∑
i=1

νi([Xi, Xu]) +O(ε2)

)
= εn

(
1 +

ε

2
divR(Xu) +O(ε2)

)
. (6.53)

Plugging this in (6.51), and expanding the function eh(γu(ε)), we get

µεq ∝ εn
(

1 +
ε

2
divR(Xu) +O(ε2)

)
eh(q)

(
1 + εXu(h) +O(ε2)

)
dΩ(u) (6.54)

∝ εneh(q)
(

1 +
ε

2
divR(Xu) + tXu(h) +O(ε2)

)
dΩ(u). (6.55)

Taking in account the normalization (recall that
∫
Sn−1 Xu = 0), we obtain the result. �

We are ready to compute the expectation value∫
Sn−1

[φ(Eq,ε(u))− φ(q)]µcεq =

∫
Sn−1

[
εXu(φ) +

1

2
ε2Xu(Xu(φ)) +O(ε3)

]
×
[
1 +

cε

2
divR(Xu) + cεXu(h) +O(ε2)

]
dΩ(u). (6.56)

Since
∫
Sn−1 Xu = 0 and

∫
Sn−1 Qijuiuj = Tr(Q)/n, we get

(Lω,cφ)(q) = lim
ε→0+

2n

ε2

(
cε2

2n
divR(Xi)Xi(φ) +

cε2

n
Xi(φ)Xi(h) +

ε2

2n
X2
i (φ) +O(ε3)

)
=

n∑
i=1

X2
i (φ) + cdivR(Xi)Xi(φ) + 2cXi(φ)Xi(h).

We obtain the different forms of the statements using the change of volume formula divω(Xi) = divehR(Xi) =
divR(Xi)+Xi(h). The convergence is uniform on compact sets since the domain of integration Sn−1 is compact
and all objects are smooth.
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6.4. Proof of Theorem 5.10

The proof follows the same lines as that of Theorem 5.5. The expansion of the function φ along the path
γu(ε) = Eq,ε(u) remains unchanged:

φ(Eq,ε(u))− φ(q) = εXu(φ) +
1

2
ε2Xu(Xu(φ)) +O(ε3). (6.57)

where, this time Xu =
∑k
i=1 uiXi. Also Lemma 6.4 remains unchanged, replacing n with k. The following

contact version of Lemma 6.5 also holds.

Lemma 6.6. We have the following Taylor expansion for the measure

µεq(u) =
(

1 +
ε

2
divP(Xu) + εXu(h) +O(ε2)

)
dΩ(u), (6.58)

where dΩ is the normalized Euclidean measure on Sk−1.

Proof of the Lemma. Since ω = ehP = ehν0 ∧ ν1 ∧ . . . νk, we have iX0
ω = ehν1 ∧ . . . ∧ νk. Hence the proof is

similar to proof of Lemma 6.5, with n replaced by k. In fact, up to normalization

µεq(u) ∝ (E∗ε,q ◦ ιγ̇u(ε),X0
ω) = Dq(ε)e

h(γu(ε))dΩ(u), u ∈ Sk−1, (6.59)

where Dq(ε) is the determinant of the matrix (E∗q,ενi)(Xj), for i, j = 1, . . . , k. This is a k × k matrix. With a

computation analogous to the one in the proof of Lemma 6.5, we obtain Dq(ε) = εk(1 +εTr(M) +O(ε2)), with

Tr(M) =
1

2

k∑
i=1

νi([Xi, Xu]) =
1

2

k∑
i,j=1

ujc
i
ij =

1

2

k∑
j=1

uj

k∑
i=0

ciij =
1

2
divP(Xu), (6.60)

where we have been able to complete the sum, including the index 0 since, in the contact case, c00j = η([X0, Xj ]) =
−dη(X0, Xj) = 0 for all j = 1, . . . , k. From here, we conclude the proof as in that of Lemma 6.5. �

The computation of the limit operator is analogous to the one in the proof of Theorem 5.5, replacing the
Riemannian volume R with the Popp one P.

Appendix A. Volume sampling as Girsanov-type change-of-measure

In both the geodesic and flow random walks defined in Sections 3.1 and 5.1, the probability measure used
to select the vector V =

∑
βiVi was the uniform probability measure on the unit sphere with respect to the

covariance structure of the wit (which gives an inner product on the vector space of such V ). In the volume
sampling scheme we have introduced for the geodesic random walk with respect to an orthonormal frame on a
Riemannian manifold (that is, the volume sampling scheme for the isotropic random walk that approximates
Brownian motion), the probability measure on the sphere is replaced by a different probability measure, abso-
lutely continuous with respect to the uniform one. In terms of the random walk, the volume-sampled walk is
supported on the same set of paths as the original walk, but with a different probability measure, absolutely
continuous with respect to the original. In the scaling limit as ε→ 0, this change in measure produces a drift in
the limiting diffusion, and we recognize this as a Girsanov-type phenomenon. We now take a moment to explore
this interpretation in a bit more detail.

The standard finite-dimensional model for Girsanov’s theorem, as given at the beginning of ([20], Sect. 3.5), is
as follows. With slightly loose notation, we let N(0, In) denote the centered (multivariate) normal distribution on
Rn with covariance structure given by the identity matrix (that is, the n Euclidean coordinates are i.i.d. normals
with expectation 0 and variance 1). Let Z be a random variable (on some probability space with probability
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denoted P ) with distribution N(0, In), and let v ∈ Rn. We have a new probability measure P̃ , absolutely
continuous with respect to P , given by

P̃ (dλ) = e〈v,Z(λ)〉− 1
2 〈v,v〉P (dλ),

where 〈·, ·〉 is the standard inner product on Rn. Then the random variable Z − v has distribution N(0, In)
under P̃ . So adjusting the measure in this way compensates for the translation, which equivalently means that
one can create a translation by adjusting the measure. The infinite-dimensional version of this (for Brownian
motion on Euclidean space) is Girsanov’s theorem.

Next, we rephrase this. Another way of determining P̃ is to say that it comes from adjusting the “likelihood
ratios” for P by

P̃ (dλ2)

P̃ (dλ1)
= e〈v,Z(λ2)〉−〈v,Z(λ1)〉P (dλ2)

P (dλ1)
· (A.1)

This accounts for the e〈v,Z(λ)〉 in the Radon−Nikodym derivative above, which is the important part; the e−
1
2 〈v,v〉

is just the normalizing constant making P̃ a probability measure.
For the isotropic random walk, we have that P is µ0

q, the uniform probability measure on the sphere of radius√
n in TqM , with respect to the Riemannian inner product. (Here we choose to normalize the sphere to include

the
√
n factor in order to make the connection to Girsanov’s theorem clearer). Of course, µ0

q is not a multivariate
normal on TqM ' Rn. However, µ0

q has expectation 0 and covariance matrix In, so that µ0
q has the same first

two moments as N(0, In). In light of Donsker’s invariance principle, it is not surprising that “getting the first
two moments right” is enough. Now µcεq is absolutely continuous with respect to µ0

q, and, as we have seen in the
proof of Theorem 3.4, the relationship is given by

µcεq (dλ2)

µcεq (dλ1)
=

1
vol(Sn−1)

(
1 + cε 〈grad(h), λ2〉+O

(
ε2
))

1
vol(Sn−1) (1 + cε 〈grad(h), λ1〉+O (ε2))

·
µ0
q (dλ2)

µ0
q (dλ1)

= ecε(〈grad(h),λ2〉−〈grad(h),λ1〉)+O(ε2) ·
µ0
q (dλ2)

µ0
q (dλ1)

·

Note that, as we have developed things, the random variable that has distribution µ0
q, which is analogous to

Z above, is implicitly just the identity on the sphere. (Also, µcεq is a probability measure by construction, so
there’s no need for a normalizing factor, partially explaining our focus on the likelihood ratio).

Comparing this to (A.1), we see that the role of v is played by the quantity cε grad(h) +O(ε2). To take into
account the parabolic scaling limit (and, at this stage, also to take into account the analysts’ normalization),
note that this non-centered measure on the sphere of radius

√
n (namely µcεq ) is mapped onto geodesics of

length ε, and that this step takes place in time δ = 2n/ε2, so that the difference quotient (expected spatial
displacement over elapsed time) is 2c grad(h) + O(ε). Thus, in the limit as ε → 0, we expect an infinitesimal
translation given by the tangent vector 2c grad(h), which is exactly what we see in Theorem 3.4 (appearing as a
first-order differential operator). Namely, the random walk corresponding to µ0

q has infinitesimal generator ∆R
in the limit, while the random walk corresponding to µcεq has infinitesimal generator ∆R + 2c grad(h) in the
limit. So this volume sampling gives a natural random walk version of the Girsanov change of measure.
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