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Abstract The Lévy-Gromov inequality states that round spheres have the least isoperimetric
profile (normalized by total volume) amongRiemannianmanifoldswith a fixed positive lower
bound on the Ricci tensor. In this note we study critical metrics corresponding to the Lévy-
Gromov inequality and prove that, in two-dimensions, this criticality condition is quite rigid,
as it characterizes round spheres and projective planes.

Keywords Isoperimetric problem · Lévy-Gromov inequality · Ricci curvature
The isoperimetric problem in a closed (i.e. compact without boundary) n-dimensional Rie-
mannian manifold (M, g) consists in minimizing the area Ag(∂�) of the boundary ∂� of a
region� ⊂ M with given n-dimensional volumeVg(�). Minimizers are called isoperimetric
regions, and the minimum value function is called the isoperimetric profile of (M, g):

I(M,g)(v) = inf

{
Ag(∂�) : � ⊂ M,

Vg(�)

Vg(M)
= v

}
, v ∈ (0, 1). (0.1)

A full solution to the isoperimetric problem requires the explicit characterization of its mini-
mizers, and it is thus possible only in highly symmetric ambient spaces. In the case of generic
ambient spaces, the best expectation is to obtain some indirect information, for example in
the form of explicit bounds on the isoperimetric profile.
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This is the spirit of the celebratedLévy–Gromov inequality [5, Appendix C]: if Ricg ≥ K g
for some constant K > 0, then

I(M,g)(v)

Vg(M)
≥ I(S,gS)(v)

Vg(S)
∀v ∈ (0, 1), (0.2)

where (S, gS) is the standard n-dimensional sphere with Ricci curvature equal to K (see
also [1,7] for the generalization to the case K ≤ 0 and diameter bounded above, and [2] for
the extension to non-smooth spaces). Having in mind the relation between the Euclidean
isoperimetric theorem (balls are the only volume-constrained minimizers of perimeter)
and Alexandrov’s rigidity theorem (balls are the only volume-constrained critical points
of perimeter), in this note we ask what can be said about critical points in the variational
problem corresponding to the Lévy-Gromov inequality, and, at least in dimension two, we
prove a full rigidity theorem.

Our terminology will be as follows. The Lévy-Gromov functional on a Riemannian man-
ifold (M, g) at volume fraction v ∈ (0, 1) is defined as

Lv(M, g) = I(M,g)(v)

Vg(M)
. (0.3)

We denote with MM the space of Riemannian metrics over M and, given K ∈ R, we
consider the family MM,K metrics on M with Ricci tensor bounded below by K , and the
family MM,K ,g of metrics in MM,K that are conformal to a given metric g, i.e. we set

MM,K = {
g ∈ MM : Ricg ≥ K g

}
, (0.4)

MM,K ,g = {
ĝi j := e2ugi j : u ∈ C2(M), Ricĝ ≥ K ĝ

}
. (0.5)

Endowing MM with the C2-topology, we notice that both MM,K and MM,K ,g have
non-empty boundary. A natural definition of critical point associated to the Levy-Gromov
inequality is then the following: we say that g is a critical isoperimetric metric (with constant
K ) if g ∈ MM,K and the following holds:

(i) if g is an interior point of MM,K , then

d

dt

∣∣∣
t=0

Lv(M, g(t)) = 0

for every v ∈ (0, 1) and g(t) ∈ C1((−1, 1);MM,K ) with g(0) = g;
(ii) if g is a boundary point of MM,K , then

d

dt

∣∣∣
t=0+Lv(M, g(t)) ≥ 0

for every v ∈ (0, 1) and g(t) ∈ C1([0, 1);MM,K ) with g(0) = g.

When, in the above definition, MM,K ,g is considered in place of MM,K , we say that g is a
conformally-critical isoperimetric metric. The question we pose is what degree of rigidity
can be expected for conformally critical isoperimetric metrics.

A first remark is that no metric can be conformally-critical with constant K ≤ 0. Indeed,
let us recall that if ĝ = e2ug for some u ∈ C2(M), then

Ricĝ = Ricg − (�u) g − (n − 2)Hessg u + (n − 2)(du ⊗ du − |∇u|2g), (0.6)

where Hessg u denotes the Hessian of u (with respect to the Levi-Civita connection of g) and
�gu = gi j (Hessg u)i j is the Laplace-Beltrami operator with respect to g applied to u. In
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particular, if we pick u = log λ for some λ > 0 and Ricg ≥ K g, then Ricĝ = Ricg ≥ K g =
K λ−2 ĝ. Given that K ≤ 0, we have Ricĝ ≥ K ĝ for every λ2 ≥ 1. SinceV ĝ(�) = λn Vg(�)

and Aĝ(∂�) = λn−1 Ag(∂�) for every � ⊂ M , we also have

Lv(M, ĝ) = Lv(M, g)

λ

, and thus, setting g(t) = (1 + t)2 g for t > 0, we find (dLv(M, g(t))/dt)|t=0+ =
−Lv(M, g) < 0 for every v ∈ (0, 1).

From now on we shall thus take K > 0. In dimension n = 2 (where one simply has
Ricg = Kg g, Kg denoting the Gauss curvature of g) it turns out that the apparently very
weak notion of conformally-critical isoperimetric metric implies the maximal degree of
rigidity one could expect:

Theorem 1 (Rigidity of conformally-critical isoperimetric metrics in dimension 2) If (M, g)
is a two-dimensional closed Riemannian manifold and K > 0, then g is a conformally-
critical isoperimetric metric with constant K if and only if (M, g) is either a sphere or the
real projective plane with Kg = K.

We now present the proof of Theorem 1. For the sake of clarity we work in dimension
n until the last step of the argument. We also notice that we shall use conformal-criticality
only on a sequence of volumes vh → 0+, and thus that we end up proving a slightly stronger
statement than Theorem 1.

Proof of Theorem 1 Step one: We start recalling that since M is compact, by the direct
method, for every v ∈ (0, 1) there exists an isoperimetric region � with Vg(�) = v Vg(M).
By standard density estimates, � is an open set of finite perimeter whose topological bound-
ary ∂� is a closed (n − 1)-rectifiable set, characterized by the property that x ∈ ∂� if and
only if Vg(� ∩ Br (x)) ∈ (0,Vg(Br (x))) for every r > 0. (Here and in the following, Br (x)
stands of course for the geodesic ball of center x and radius r in M .) Let us denote by � the
isoperimetric sweep of (M, g), defined as

� =
⋃ {

∂� : � is an isoperimetric region in (M, g) for some v ∈ (0, 1)
}
.

In this step we prove that for every x ∈ � and every r > 0 small enough, there exists
u ∈ C2

c (B2r (x)) such that

lim sup
t→0+

Lv(M, ĝt,u) − Lv(M, g)

t
≤ − n − 1

Vg(M)
, (0.7)

where we have set
ĝt,ui j := e2tugi j , |t | < ε. (0.8)

We first notice that, by the area formula,

d

dt

∣∣∣
t=0

V ĝt,u (�) = n
∫

�

u dvolg ,
d

dt

∣∣∣
t=0

Aĝt,u (∂�) = (n − 1)
∫

∂�

u dvolg|∂�
, (0.9)

where dvolg|∂�
is the (n−1)-dimensional volume form induced by g on ∂�. Similarly, if we

let (�X
s )s∈(−ε,ε) denote the flow with initial velocity given by a smooth vector-field X on M ,

and set ϕX := g(ν∂�, X) (where the inner unit normal ν∂� to � is defined on the reduced
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boundary of �, thus volg|∂�
-a.e. on ∂�), then, by a classical first variation argument, see [6,

Theorem 17.20], there exists a constant λ ∈ R such that

d

ds

∣∣∣
s=0

Vg(�
X
s (�)) = −

∫
∂�

ϕX dvolg|∂�
,

d

dt

∣∣∣
t=0

Ag(�
X
s (∂�)) = −λ

∫
∂�

ϕX dvolg|∂�
. (0.10)

(The constant λ is the (distributional) mean curvature of ∂� computed in the metric g with
respect to inner normal ν∂�.) The combination of (0.9) and (0.10) thus gives

V ĝt,u (�
X
s (�)) = Vg(�) + nt

∫
�

u dvolg − s
∫

∂�

ϕX dvolg|∂�
+ O(t2) + O(s2),

(0.11)

Aĝt,u (�
X
s (∂�)) = Ag(∂�) + (n − 1)t

∫
∂�

u dvolg|∂�
− sλ

∫
∂�

ϕX dvolg|∂�

+O(t2) + O(s2). (0.12)

Let us now fix x ∈ ∂� for some isoperimetric region �. For every r > 0 we can find a
smooth vector field X supported in the geodesic ball Br (x) such that

∫
∂�

ϕX dvolg|∂�
= 1 ,

(see [6, Lemma 17.21]). Moreover, if r is small enough, then we can pick u ∈ C2
c (B2r (x))

such that ∫
∂�

u dvolg|∂�
= −1 ,

∫
�

u dvolg = 0 ,

∫
M
u dvolg = 0.

Indeed, Br (x) ∩ ∂� has positive area, thus there exists v ∈ C0
c (Br (x) ∩ ∂�) with∫

∂�
v dvolg|∂�

< 0. We can thus construct w1 ∈ C2
c (Br (x)), w2 ∈ C2

c (� ∩ B2r (x)\Br (x))
and w3 ∈ C2

c (B2r (x)\� ∪ Br (x)) in such a way that
∫

∂�

w1 dvolg|∂�
= −1 ,

∫
M

w2dvolg = −
∫

�

w1dvolg∫
M

w3dvolg = −
∫
M\�

w1dvolg ,

and then set u = w1 + w2 + w3. We now apply (0.11) and (0.12) with these choices of u
and X , to find

V ĝt,u (M) = Vg(M) + O(t2) + O(s2) ,

V ĝt,u (�
X
s (�)) = Vg(�) − s + O(t2) + O(s2) ,

Aĝt,u (�
X
s (∂�)) = Ag(∂�) − (n − 1)t − sλ + O(t2) + O(s2) .

Let us consider the function F ∈ C2((−ε, ε) × (−ε, ε)) defined by

F(s, t) = V ĝt,u (�
X
s (�))

V ĝt,u (M)
|t |, |s| < ε .
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Since F(0, 0) = v and ∂F/∂s(0, 0) = −1/Vg(M), up to decrease the value of ε, there
exists a C2-function s = s(t) such that F(s(t), t) = v for every |t | < ε, i.e.

V ĝt,u (�
X
s(t)(�))

V ĝt,u (M)
= v ∀|t | < ε .

Moreover, ∂F/∂t (0, 0) = 0 implies s′(0) = 0, and thus s(t) = O(t2). Hence,

Aĝt,u (�
X
s(t)(∂�))

V ĝt,u (M)
= Ag(∂�)

Vg(M)
− (n − 1)

Vg(M)
t + O(t2) , as t → 0 ,

so that

I(M,ĝt,u)(v) ≤ I(M,g)(v) − (n − 1)

Vg(M)
t + O(t2) as t → 0 ,

and (0.7) is proved.

Step two Now assuming that g is a conformally critical isoperimetric metric with constant
K > 0, we show that for every x ∈ � (the isoperimetric sweep of M), there exists ξ ∈ TxM
such that

Ricg,x (ξ, ξ) = K gx (ξ, ξ).

Indeed, if this is not the case, then we can find an isoperimetric region � and x ∈ ∂� such
that

Ricg,y(ξ, ξ) > K gy(ξ, ξ) , ∀ξ ∈ TyM, y ∈ B2r (x). (0.13)

Depending on x and �, we pick r , X and u as in step one. Recall that, in step one, we
constructed u so that it was supported in B2r (x). Therefore, by (0.13), we can entail that for
every |t | < ε

Ricĝt,u ≥ K ĝt,u on M.

By definition of conformally-critical isoperimetric metric we find a contradiction with (0.7).

Step threeWe now let n = 2. By step two, Kg ≡ K on the closure of the isoperimetric sweep
of M . However, it is well-known (see for example [3,8–10]) that if {�h}h∈N is a sequence of
isoperimetric regions corresponding to volume fractions vh → 0+ as h → ∞, then {�h}h∈N
converges in Hausdorff distance to a point x such that

Kg(x) = max
M

Kg .

By continuity of Kg we thus conclude that K = maxM Kg , and thus Kg is constantly equal
to K on M . We have thus proved that if g is conformally-critical with constant K , then
Kg ≡ K , and thus, since K > 0, that either (M, g) is the sphere or the real projective plane.

Step four: We are now left to show that both the sphere and the real projective plane are
conformally-critical. In the case of the sphere this is immediate from the Levy-Gromov
inequality, so that we are left to check the case of the real projective plane.

Without loss of generality we consider the standard projective plane RP2 endowed with
themetric g0 of constant curvature K = 1 defined as the quotient of the round sphere (S2, g̃0)
of unit radius in R

3 under the antipodal equivalence relation. We denote by � : S2 → RP
2

the projection map.
Let us first recall that on a general compact Riemannian surface (M2, g)without boundary,

just by considering the complement of each competitor, the isoperimetric profile I(M2,g) is
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symmetric with respect to v = 1/2. In particular, we shall restrict v to the range v ∈
(0, 1/2]. Moreover, by direct methods and first variation arguments, for every v there exist
isoperimetric regions which are necessarily bounded by finitely many curves with constant
geodesic curvature.

By direct computation, in the case when (M2, g) = (RP2, g0) and v ∈ [0, 1/2], isoperi-
metric regions are metric balls which lift into S

2 as pairs of antipodal spherical cups, each
spherical cup having volume 2vπ in S

2.
Now assume by contradiction that there exists v0 ∈ (0, 1/2] and a curve g(·) : [0, 1] →

M
RP

2,1 starting from the round metric g0 on RP
2, such that

lim sup
t→0+

Lv0(RP
2, gt ) − Lv0(RP

2, g0)

t
< 0.

Thus we can find tn → 0+ as n → ∞ and isoperimetric regions �tn in (RP2, gtn ) such that

lim sup
n→∞

1

tn

[
Agtn (∂�tn )

Vgtn (RP
2)

− Ag0(∂�0)

2π

]
< 0,

Vgtn (�tn )

Vgt (RP
2)

= v0 ∀n ∈ N , (0.14)

where �0 ⊂ RP
2 is a metric ball in metric g0 with Vg0(�0) = 2v0π . Up to extracting a

subsequence and up to translations, by standard density estimates, one can assume that �tn
converges to�0 in Hausdorff distance with respect to the metric g0. (In fact, the convergence
is smooth, but this is not needed here.)

Consider now the lifted metrics on S
2 defined by g̃t := �∗(gt ) and observe that g̃t ∈

MS2,1, as g̃t is locally isometric to gt . Moreover, by construction, g̃t is invariant under the
antipodal map and V g̃t (S

2) = 2Vgt (RP
2). Since v0 ∈ (0, 1/2] and �tn is Hausdorff close

to �0, the lifted set �̃tn := �−1(�tn ) ⊂ S
2 can be written as �̃tn = �̃1

tn ∪ �̃2
tn where

�̃1
tn , �̃

2
tn ⊂ S

2 are g̃t -isometric sets at positive Hausdorff distance. In particular

V g̃tn (�̃
1
tn )

V g̃tn (S
2)

= V g̃tn (�̃
2
tn )

V g̃tn (S
2)

= 1

2

Vgtn (�tn )

Vgtn (RP
2)

= v0

2
, Ag̃tn (∂�̃1

tn ) = Ag̃tn (∂�̃2
tn ) = Agtn (∂�tn ).

(0.15)
Notice that for t = 0 one has that �̃0 := �−1(�0) can be written as �̃0 = �̃1

0 ∪ �̃2
0, where

�̃1
0 and �̃2

0 are antipodal spherical caps with V g̃0(�̃
1
0) = V g̃0(�̃

2
0) = 2πv0. Note that such

spherical caps are disjoint and isoperimetric for their own volume in (S2, g̃0).
The combination of (0.14) and (0.15) then yields

lim inf
t→0+

Lv0/2(S
2, g̃t ) − Lv0/2(S

2, g̃0)

t
≤ lim sup

n→∞
1

tn

[
Ag̃tn (∂�̃1

tn )

V g̃tn (S
2)

− Ag̃0(∂�̃1
0)

4π

]

= 1

2
lim sup
n→∞

1

tn

[
Agtn (∂�tn )

Vgtn (RP
2)

− Ag0(∂�0)

2π

]
< 0,

contradicting the classical Levy-Gromov inequality for v = v0/2 and K = 1. The proof of
step four and then of Theorem 1 is thus complete. ��
Remark 2 The above argument actually shows more than what is claimed in Theorem 1,
and namely that, if n = 2 and g is conformally-critical for Lv just for a sequence of values
v = vh → 0+ as h → ∞, then Kg is constant. Similarly, in step four, we have proved that
(RP2, g0) is a critical, and not just conformally critical.
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