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We introduce a method for accurate quantum chemical calculations based on a simple variational
wave function, defined by a single geminal that couples all the electrons into singlet pairs, combined
with a real space correlation factor. The method uses a constrained variational optimization, based
on an expansion of the geminal in terms of molecular orbitals. It is shown that the most relevant
nondynamical correlations are correctly reproduced once an appropriate number n of molecular
orbitals is considered. The value of n is determined by requiring that, in the atomization limit, the
atoms are described by Hartree–Fock Slater determinants with Jastrow correlations. The energetics,
as well as other physical and chemical properties, are then given by an efficient variational approach
based on standard quantum Monte Carlo techniques. We test this method on a set of homonuclear
�Be2, B2, C2, N2, O2, and F2� and heteronuclear �LiF and CN� dimers for which strong
nondynamical correlations and/or weak van der Waals interactions are present. © 2009 American
Institute of Physics. �doi:10.1063/1.3249966�

I. INTRODUCTION

Already in the early stages of quantum mechanics,
Pauling1 introduced the so-called resonating valence bond
�RVB� theory of the chemical bond, starting from the simple
consideration that a spin singlet can be formed between any
two valence electrons belonging to neighboring atoms. In
this scheme, the ground state wave function of a molecule,
such as benzene, can lower the energy by allowing the reso-
nance among all possible valence bond configurations that
can be drawn by linking the positions of two atoms �e.g., the
Kekulé and Dewar configurations in the benzene molecule�.
However, its application was limited, since the number of
bonds were growing exponentially with the number of at-
oms. As a consequence, the powerful language of molecular
orbitals �MOs� applied to Hartree–Fock �HF� and post-HF
methods became popular. Nonetheless, quite recently, the in-
terest in RVB wave functions has been strongly revived. In-
deed, soon after the discovery of the high-Tc superconduct-
ors, Fazekas and Anderson2 realized that a single determinant
wave function combined with a suitable real space correla-
tion term—henceforth referred to as “the Jastrow factor”—
could be used to represent a complex RVB state. In this new
ansatz a crucial ingredient is the form of the determinantal
part of the wave function, that is required to be a singlet state
with total spin S=0. This picture, aimed at explaining the
high-Tc superconductivity, represents also a very efficient
numerical implementation of the original RVB idea, soon
reconsidered in this form for lattice models,3–7 and then in

realistic simulations of atoms and small molecules.8–11 Al-
though the Anderson’s RVB wave function has been origi-
nally defined just for singlet states, the same concept can be
applied to electronic systems with arbitrary spin S�0, with
the inclusion of unpaired orbitals. This is a very important
generalization in order to describe polarized compounds, like
the transition element compounds which show high-spin
configurations in their low-lying energy states. In the actual
RVB description of realistic systems, it is necessary to resort
to standard quantum Monte Carlo �QMC� methods12 in order
to compute the variational expectation values of the energy
and correlation functions.8,9,13

In this article, we propose an extension of the RVB pic-
ture that is based on a MO expansion of the singlet valence
bond pairs defining the wave function. This ansatz yields a
correlation consistent RVB representation by means of a con-
strained energy minimization which keeps the number of
MOs fixed while stretching the bond. By setting this number
to a value such that a Jastrow correlated HF wave function is
recovered in the atomization limit, we obtain, with a single
determinant, a remarkably accurate description of the bond,
even when strong nondynamical correlations are present in
the system. In this paper we illustrate the method and test it
on a set of dimers composed by first-row atoms and on se-
lected small molecules belonging to the so-called G1 set �see
Ref. 14�, often used to test new theoretical methods. The
approach described in this work has also been applied to the
study of the controversial ground state of the iron dimer.15

In the following, we describe the RVB wave function
and our extension, and we show test results on various
homonuclear and heteronuclear dimers �Be2, B2, C2, N2, O2,
F2, LiF, and CN�. In Appendix A we describe the constrained
minimization of the MO expansion of the trial wave func-
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tion. In Appendix B, we present a systematic study of the
variational energies obtained with the RVB wave function, as
a function of the number of MOs �Appendix B 1� and the
size of the atomic basis set used �Appendix B 2�.

II. VARIATIONAL METHOD

A. General description of the wave function

The fundamental ingredient of our variational method is
an N-electron RVB wave function, called JAGP since it is
the product of a Jastrow factor J, and a determinantal part
which is an antisymmetrized geminal power �AGP�, previ-
ously introduced in Refs. 8 and 9 ��JAGP=J �N�. Below we
shall describe this wave function.

In the case of N electrons with N↑ up spins �N↓ down
spins�, where for simplicity we take N↑�N↓, we can describe
a pure spin state with total spin S= �N↑−N↓� /2 and maximum
spin projection Sz

tot=S by means of the antisymmetrized
product of N↓ singlet pairs and 2S unpaired orbitals corre-
sponding to the remaining spin-up electrons. Hence the de-
terminantal part reads

�N�R� � = A�
i=1

N↓

��r�i
↑,r�i

↓� �
j=N↓+1

N↑

� j�r� j
↑� , �1�

with A the antisymmetrization operator, R�

= �r�1
↑ , . . . ,r�N↑

↑ ,r1
↓ , . . . ,r�N↓

↓ � the 3N-dimensional vector of coor-
dinates, ��r� ,r���=��r�� ,r�� a symmetric orbital function de-
scribing the singlet pairs, and � j�r�� the unpaired orbitals. It
can be shown that the wave function in Eq. �1� can be re-
written in terms of a single determinant �see Ref. 8 and ref-
erences therein�.

�N�R� � has definite total spin. We also impose all pos-
sible symmetries to be satisfied by Eq. �1�, such as angular
momentum and spatial reflections.

Similar constructions with definite spin can be done, by
allowing also triplet pairing between the 2S unpaired elec-
trons. Since this involves a bit more complicated algebra like
the use of Pfaffians,10,11 we do not consider it here.

The Jastrow factor takes into account the electronic cor-
relation between two electrons and is conventionally split
into a homogeneous interaction J2 depending on the relative
distance between two electrons �i.e., a two-body term�, and a
non homogeneous contribution depending also on the
electron-ion distance, included in the one-body J1, three-
body J3, and four-body J4 terms. J1 is a single-particle func-
tion which is important to compensate the change in the one
particle density induced by J2, J3, and J4, as well as to satisfy
the electron-ion cusp conditions. The one- and two-body
terms J1 and J2 are defined by the following equations:

J1 = exp	

ia

− �2Za�3/4u�Za
1/4ria� + 


ial

gl
a�al

J �r�i�� �2�

and

J2 = exp	

i�j

u�rij�� , �3�

where i , j are indexes running over the electrons and l runs
over different single-particle orbitals �al

J centered on the

atomic center a. ria and rij denote electron-ion and electron-
electron distances, respectively. The corresponding cusp con-
ditions are fixed by the function u�r�=F�1−exp�−r /F�� /2
�see, e.g., Ref. 13�. gl

a and F are optimizable variational pa-
rameters.

The three- and four-body Jastrow J3J4 are given by

J3J4�R� � = exp�

i�j

f�r�i,r� j� , �4�

with f�r� ,r���, being a two-electron coordinate function that
can be expanded into the same single-particle basis used for
J1,

f�r�i,r� j� = 

ablm

glm
ab�al

J �r�i��bm
J �r� j� , �5�

with glm
ab optimizable parameters. Three-body �electron ion

electron� correlations are described by the diagonal matrix
elements gaa, whereas four-body correlations �electron ion
electron ion� are described by matrix elements with a�b.

The exhaustive and complete expression of the Jastrow
factor J�R� �=J1�R�J2�R�J3�R�J4�R� that we adopt in this work
allows to take into account not only weak electron-electron
interactions of the van der Waals �vdW� type, but it is also
extremely effective for suppressing higher energy configura-
tions with overlapping valence bonds, which otherwise lead
to a too large electron density around an atom.

As any functions of two coordinates, also the pairing
function � in Eq. �1� can be expanded in terms of single-
particle orbitals. We can thus write

��r�,r��� = 

j=1

n−2S

� j� j�r��� j�r��� , �6�

where n is large enough and �� j� is an orthogonal single-
particle basis set, which reaches its complete basis set �CBS�
limit for n→	. Notice that, in these notations, we assume
that the 2S unpaired orbitals � j of Eq. �1� correspond to the
indexes n−2S+1
 j
n in Eq. �6�.

The single-particle orbitals � j can be conveniently cho-
sen as the MOs obtained with a conventional restricted HF
�RHF� calculation. The MO basis allows us to write Eq. �6�
in a diagonal form equivalent to a more involved matrix
form when the MOs are developed in an atomic basis set9 of
orbitals �a,j where a indicates the atomic center and j the
type: �i�r��=
a,j�a,j

i �a,j�r��. The coefficients �a,j
i , as well as

the weights � j, can be used as variational parameters defin-
ing the geminal in Eq. �6�. By truncating the expansion in
Eq. �6� to a number of MOs n equal to the number of elec-
tron pairs plus the unpaired orbitals, namely, n=N↑, one re-
covers the usual RHF theory, because the antisymmetrization
operator A singles out only one Slater determinant. More-
over, the MO weights � j affect only an overall prefactor of
this Slater determinant, so that their actual values are irrel-
evant in this case. However, the pairing function is generally
not limited to have only N↓ nonvanishing eigenvalues � j.
Therefore, the RVB wave function represents a clear exten-
sion of the RHF theory, not only for the presence of the
Jastrow factor, which considerably improves the dynamical
correlations, but mainly because its determinantal part goes
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beyond RHF when n�N↑, by including also nondynamical
correlations. Quite generally, a gain in energy and a more
accurate calculation are expected whenever n�N↑.

B. Valence bond energy consistent number of MOs in
the AGP

The main property used in the following derivation relies
on the fact that the atoms are well described by a Jastrow
correlated RHF �JHF� wave function. Indeed, the application
of the Jastrow factor J on a simple HF Slater determinant
provides at least �90% of the correlation energy in all the
atoms �see Refs. 8 and 12 and Table I�. Here we show that it
is possible to extend and remarkably improve the correlated
HF approximation for the chemical bond, by means of a
RVB wave function with an appropriate number n of MOs
appearing in Eq. �6�. These MOs are chosen to minimize the
energy expectation value in the presence of the Jastrow fac-
tor, while an upper bound on the number n is univocally
determined by imposing that, when the atoms are at large
distance, we cannot obtain an energy below the sum of the
JHF atomic energies.

The above mentioned criteria are based on the assump-
tion that the large intra-atomic correlations do not affect the
chemical properties of the bond, which are instead extremely
sensitive to the usually much weaker interatomic correla-
tions. Moreover, electrons close to the atomic centers are
chemically inert because they are far away from the region
where the bond is formed. Hence, an improvement in the
description of the atoms with many determinants18 would
lead in this case only to a rigid shift of the total energy. The
above assumption is a quite generally accepted idea that has
been exploited in different ways by a large variety of ap-
proaches. For instance, it validates the use of pseudopoten-
tials, the configuration interaction �CI� with the frozen core
approximation,19 and is the basis for other quantum chemis-
try methods such as the symmetry-adapted perturbation
theory �Ref. 20� and the Morokuma analysis �see Ref. 21 and
references therein�.

In the following we shall denote the aforementioned ap-
propriate number n of MOs with n�. Let us denote with M a
molecule composed by atoms A1, A2, etc. The optimal value
of n� is most generally obtained by saturating a simple upper
bound value ñ,

n� 
 ñ = 

i

N↑�Ai� , �7�

where i is an index running over the atoms composing the
molecule M. Since in some cases convergence in the energy
for the JAGP can be obtained even for n�� ñ, we have used
the inequality to define n� and the corresponding wave func-
tion will be denoted by JAGPn�. If the sum of the number of
spin-up electrons in the atoms equals the number of the MOs
required by a RHF calculation nHF�M� for the molecule, then
n�=nHF�M� and the JAGPn� wave function reduces to a JHF
description of the molecule. This is the case, e.g., for Be2 and
B2. In all the other cases we have nHF�M�� ñ, and, in this
work, we have found that there is a substantial energy gain in
increasing the number of MOs with respect to the RHF
value. This happens, for instance, for N2, O2, F2, and CN,
whereas for LiF, though ñ�nHF, accurate results can be ob-
tained even with n�=nHF.

The upper bound in Eq. �7� can be slightly improved, as
it will be shown in the following. This is particularly impor-
tant when some degenerate multiplets of orbitals are not
completely occupied, as for the C2 molecule where, by using
ñ MOs in the AGP expansion, one of the two antibonding �

orbitals remains empty, and therefore it is not possible to
satisfy the orbital symmetry of the 1�g

+ C2 wave function. In
the general case the highest MO included in the AGP has

degeneration D and it may occur that only D̃�D orbitals of
the multiplet are included in the AGP expansion by the upper
bound in Eq. �7�. For this reason it is important to improve
the upper bound �7� for n�, in particular cases when the
chemical compound is spatially symmetric, namely, for re-
flections, rotations, translations, of the atomic positions. In
fact, let us suppose that the molecule is composed by several
atoms. Some spatial symmetry operations can make equiva-
lent nA�1 identical atoms of type A. Assuming that these
symmetries remain valid up to the atomization limit, we de-
note by m the minimum value of nA among all atomic spe-
cies. Then if m�1 it is possible to improve the upper bound
�7� by

n� 
 ñ + m − 1. �8�

For instance, for C2, according to Eq. �8� we have m=2 due
to the reflection symmetry of the molecule and n�
 ñ+1.

TABLE I. Atomic energies for Li, Be, B, C, N, O, and F: comparison between RHF benchmarks, estimated
exact values, VMC and LRDMC JHF data, and the percentage of recovered correlation energy �%� �evaluated
using the estimated exact value and the Hartree-Fock energy�. For Li and Be all-electron results are shown. For
all the other atoms, results were obtained with a pseudopotential �Ref. 16�.

Atom RHF Est. exact JHF VMC JHF LRDMC %

Li �7.432 727a �7.478 06a �7.477 07�6� �7.478 07�3� 100
Be �14.573 023a �14.667 36a �14.647 47�9� �14.657 5�1� 89.5
B �2.543 75616b �2.619 40948b �2.603 1�1� �2.611 0�1� 88.9
C �5.329 03005b �5.432 49352b �5.410 5�1� �5.421 6�1� 89.5
N �9.668 37630b �9.799 73109b �9.777 1�3� �9.789 8�1� 92.4
O �15.708 44748b �15.901 65954b �15.875 4�1� �15.892 33�8� 95.2
F �23.938 49161b �24.192 90003b �24.168 0�3� �24.186 0�2� 97.3

aFrom Ref. 17.
bFrom Ref. 16.
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Indeed n�= ñ+1 not only allows to fulfill the 1�g
+ symmetry

but also provides a substantial improvement of the binding
with respect to n�= ñ �see Fig. 3 in Appendix B 1�. The one
extra MO added cannot have any effect at large distance in a
fully symmetric calculation that connects the compound at
rest to m=2 equivalent carbon atoms at large distance. In-
deed, in this case, the presence of the extra orbital could
improve only the energy of one of the two JHF atoms, thus
violating their equivalence. Therefore the eigenvalue � j of
Eq. �6� corresponding to the extra MO must vanish in the
atomization limit.

Generally speaking a value for n larger than the upper
bound �8� certainly leads to a lower value of the total energy,
but may improve much more the atomic energies, rather than
the bonding. Actually, we have seen that, in all cases so far
considered, the accuracy in describing the chemical bond
improves systematically by increasing the number of MOs,
provided it remains smaller than the upper bound. Clearly,
whenever Eq. �7� or Eq. �8� is satisfied, the atomization en-
ergy has to be referred to the JHF calculation, even if lower
energies could be achieved with a JAGP wave function for
the atoms.8 Remarkably, in the limit of large number of
MOs, when the lowest JAGP total energies are obtained both
for the atom and the molecule, the binding energy becomes
always worse than the corresponding JAGPn�.

The JAGPn� wave function can be used also to describe
bulk systems by applying the upper bound of Eq. �7� and of
Eq. �8� to the supercell containing a finite number of atoms,
so that the values of ñ and m easily follow exactly as in the
case of a finite open system. The upper bound computed in
this way may exceed by a large amount the number nHF of
MOs necessary to define a single Slater determinant in the
supercell. Thus, convergence in the energy is expected in this
case for n�� ñ. For instance, in the case of graphene for a
typical supercell of 48 atoms, ñ=4�48=192, whereas nHF

=3�48=144�192.
The constrained optimization of the JAGP wave function

with a given number of MOs is a generalization of the stan-
dard QMC optimization18 which minimizes the total energy
and will be described in Appendix A.

III. RESULTS

In this section we shall describe the results that we have
obtained for a set of molecules composed of first-row atoms,
where strong nondynamical correlation and/or weak vdW in-
teractions are present. These molecules are used as a test
case for our method.

Our study has been carried out by means of QMC simu-
lations. We started from the constrained optimization of the
variational wave function described in Sec. II, which was
initialized by taking density functional theory orbitals in the
local density approximation, and then we performed varia-
tional Monte Carlo �VMC� or lattice regularized diffusion
Monte Carlo �LRDMC� simulations.22

For the determinantal part of the wave function we have
used a Slater �for Be2, and the Li atom in the LiF molecule�
or mixed Slater/Gaussian �for B2, C2, N2, O2, F2, CN, and
the F atom in the LiF molecule� basis, large enough for an

accuracy of 1 mH in the total energies. This quantity sets the
tolerance for our CBS limit extrapolation. In particular, for
Be2 the basis set is 6s4p2d, for B2 5s4p1d, for C2 5s5p, for
N2 5s3p2d, for O2 6s5p2d, for F2 5s5p2d, for the Li atom in
the LiF molecule 5s4p, whereas for the F atom, as well as for
the C and N atoms composing the CN molecule, we used the
same basis adopted for the corresponding dimers. In the
mixed Slater/Gaussian cases we have used one Slater orbital
for each angular momentum, except for d orbitals, which
have been chosen of a purely Gaussian form. Thus, by fully
optimizing all the coefficients and the exponents of the
primitive basis set, we have verified that the dimension of the
basis is sufficient to achieve the desired accuracy. In Appen-
dix B 2 we show, as an example, selected studies of conver-
gence in the basis set.

A much smaller basis was used for the Jastrow factor
because this allows for a more efficient energy optimization.
On the other hand, the essentially exact contribution of
Jastrow-type dynamical correlations, which do not change
the phases of the wave function, can be very accurately ob-
tained with the well established DMC technique,12 within the
recent LRDMC implementation.22 LRDMC is equivalent to
standard DMC for all-electron calculations and represents an
improvement of the older technique because it allows to ob-
tain a rigorous upper bound of the total energy even when
pseudopotentials are used in the calculation. The DMC/
LRDMC approach can be seen as a stochastic optimization
of the Jastrow factor which keeps fixed the phases of the
RVB wave function. In some test cases �see Appendix B 2�,
we have also verified that a larger basis in the Jastrow does
not provide significant changes in the physical and chemical
quantities here considered because total energy differences
are much less sensitive to the extension of the Jastrow basis
set.

We have used a helium-core pseudopotential16 for all but
Be and Li atoms. In some test cases without pseudopotentials
�e.g., Be2� we have explicitly verified that the DMC and the
LRDMC energies are consistent, but we have adopted the
latter method for the sake of generality. In the C2 case we
have also checked that the effects of the pseudopotential on
the total energy differences are negligible.23

In Table II, we compare with estimated exact results,
bond lengths, and well depths obtained by means of VMC
and LRDMC simulations performed with JHF or JAGPn�

wave functions for the various molecules considered in this
paper. We optimized each wave function for a bunch of dif-
ferent interatomic distances. The energy and interatomic dis-
tance at the minimum were found by interpolating the energy
close to its minimum value with a cubic polynomial. We also
report binding energies found in Ref. 18 with DMC calcula-
tions for a fully optimized all-electron Jastrow-correlated
single determinant wave function �in our table denoted with
J�SD DMC�. Finally, we compare the JAGPn� zero point
energy �ZPE� with available experimental data. This quantity
was computed by standard first order perturbation theory in
the anharmonic cubic term. For this property, the agreement
between both VMC and LRDMC results and experimental
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findings is satisfactory in most of the cases. The accuracy in
the ZPE can probably be improved by doing a more careful
fit around the minimum.

Below we comment all the different cases.

A. Beryllium and boron dimers

Although the beryllium dimer does not belong to the
so-called G1-set of molecules �see, e.g., Ref. 14�, this dimer
is a very important test case for the variational method pro-
posed in this paper. Indeed, several computational methods
�see, e.g., Ref. 30�, including previous QMC simulations,9

have failed in the attempt of reproducing the binding of this
molecule. Moreover, until the 1980s Be2 represented a tech-
nical challenge for the experimentalists, and even later the
value of its binding energy was not well established. A re-
view on the experimental and theoretical investigations of
Be2 has recently appeared,24 containing also new reference
experimental data for its binding energy.

In Fig. 1 we provide the energy dispersion curve for the
Be2 molecule. The main plot shows a comparison between
standard RHF calculations,30 VMC data obtained with the

JAGPn� wave function, VMC, and LRDMC results for a
JAGP with n�n�. We also show an expanded Morse oscil-
lator �EMO� fit of the recent experimental data of Ref. 24.

As mentioned before, in this case it turns out that n�


nHF�Be2�+1. In particular, by using the upper bound of Eq.
�7� our JAGPn� reduces to a simple JHF wave function with
n�=4 �the upper bound n�=5 of Eq. �8� does not provide
significant improvements in a fully symmetric calculation�.
Within the n=n� constraint, bond features such as binding
energy and bond length are reproduced fairly accurately,
whereas a trial wave function with n�nHF�Be2�+1 fails to
bind the molecule at the expected distance, even though
the total VMC �LRDMC� energy E=−29.322 95�8�H �E
=−29.333 85�7�H� is much below the constrained minimiza-
tion by about 24 mH �14 mH� at R=5 a.u.. This total energy
is very accurate from an absolute point of view and compares
well with state of the art QMC calculations.18 However, the
variational wave function with the lowest variational energy,
i.e., the JAGP with n=10, behaves similarly to an uncorre-
lated RHF, and both provide a very poor description of this
chemical bond.31 More in detail, the VMC JAGPn=10 en-
ergy dispersion curve presents one minimum at an inter-

TABLE II. Bond lengths �in a.u.�, well depths �in eV�, and ZPE �in mH� for a set of first-row diatomic
molecules. We report VMC and LRDMC values for both JHF and JAGPn� trial wave functions and experi-
mental results or estimated exact values. The well-depth exact estimates are given by the experimental binding
energies subtracted by the spin-orbit energies when accessible �i.e., for all atoms but B2 and Be2� and the ZPE.
We also report the J�SD DMC well depths of Ref. 18 when available. For Be2 �all electron calculations� and
B2 �calculations with the pseudopotential in Ref. 16�, n�=N↑=4, hence the JHF and JAGPn� results coincide.

Bond length
�a.u.�

Be2 �all el.� B2 C2 N2 O2 F2 LiF CN

JHF VMC 4.85�5� 3.041�6� 2.367�2� 2.048�1� 2.27�1� 2.66�1� 2.95�4� 2.185�6�
JAGPn� VMC 4.85�5� 3.041�6� 2.334�6� 2.075�2� 2.268�7� 2.661�5� 2.92�2� 2.200�6�
JHF LRDMC 4.65�7� 3.021�9� 2.369�3� 2.051�1� 2.270�4� 2.665�9� 2.949�8� 2.201�3�
JAGPn� LRDMC 4.65�7� 3.021�9� 2.337�6� 2.075�1� 2.277�4� 2.663�3� 2.950�7� 2.202�2�
Exact estim. 4.63a 3.005b 2.3481c 2.075b 2.283b 2.668b 2.955b 2.214b

Well depth
�eV�

Be2 �all. el.� B2 C2 N2 O2 F2 LiF CN

JHF VMC 0.120�5� 2.754�3� 5.538�9� 9.662�3� 4.976�8� 1.124�4� 5.93�2� 7.52�1�
JAGPn� VMC 0.120�5� 2.754�3� 6.327�9� 9.874�2� 5.060�7� 1.671�2� 5.96�2� 7.68�1�
J�SD DMC 0.125�1� 2.798�3� 5.656�3� 9.583�3� 4.992�7� 1.349�6� ¯ ¯

JHF LRDMC 0.143�6� 2.797�2� 5.763�9� 9.665�2� 5.070�5� 1.452�3� 6.049�6� 7.661�5�
JAGPn� LRDMC 0.143�6� 2.797�2� 6.297�8� 9.882�1� 5.126�5� 1.688�2� 6.056�6� 7.744�5�
Exact estim. 0.1153�3�a 2.91�6�d 6.43�2�e 9.902�3�e 5.233�3�e 1.693�5�e 6.03�9�f 7.86�9�f

ZPE
�mH�

Be2 �all el.� B2 C2 N2 O2 F2 LiF CN

JHF VMC 0.56�5� 2.49�5� 4.3�1� 6.38�6� 3.8�1� 2.20�3� 2.3�2� 4.9�1�
JAGPn� VMC 0.56�5� 2.49�5� 4.2�1� 5.48�3� 3.85�9� 2.20�3� 2.1�2� 4.87�8�
JHF LRDMC 0.61�9� 2.51�7� 4.38�3� 5.83�6� 3.77�5� 2.16�3� 2.18�8� 4.81�3�
JAGPn� LRDMC 0.61�9� 2.51�7� 4.3�1� 5.51�2� 3.70�9� 2.22�2� 2.10�6� 4.82�4�
Expt. 0.56a 2.4b 4.2e 5.4e 3.6e 2.1e 2.07b 4.71b

aFrom Ref. 24.
bFrom Ref. 25.
cFrom Ref. 26.

dFrom Ref. 27.
eFrom Ref. 28.
fFrom Ref. 29.
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atomic distance R�8 a.u., while LRDMC JAGPn=10 dis-
plays an additional swallower minimum close to the
expected bond length. On the other hand, the quite accurate
dispersion curve obtained by the full optimization of the JHF
wave function shows, for the first time to our knowledge,
that the key missing ingredients in the HF for Be2 are just the
dynamical correlations carried out by our Jastrow factor. Al-
though very simple, our Jastrow factor includes many-body
correlations �up to two-ion two-electron interactions�, that
allow to take into account effective attractions between at-
oms given by vdW forces13 and other polarization-
polarization contributions.32 Indeed, the dynamical interac-
tions are extremely important to bind the molecule and it is
crucial that the Jastrow factor includes this effect. For in-
stance, the different parametrization of the Jastrow factor
used in Ref. 18 does not allow to bind Be2 at a variational
level, at variance with this work. On the other hand, the
DMC binding energies of Ref. 18 are much closer to our
VMC and DMC results, further suggesting the importance of
the dynamical correlations in the bond.

In the inset of Fig. 1, we compare the VMC and
LRDMC JAGPn� energy dispersion curves shifted by their
asymptotic limits. Despite some slight differences, the agree-
ment between the two QMC techniques within the n=n� con-
straint and the most recent experimental findings24 can be
considered fairly good in this case due to the very weak
binding of the molecule.

Also the JAGPn� description for B2 reduces to a JHF
wave function. Both bond length and binding energy agree
within two standard deviations with the estimated exact data.

B. Fluorine dimer

A remarkable example of the accuracy of our technique
is provided by the energy dispersion curve of the fluorine
dimer reported in Fig. 2, where we show the results obtained
with various QMC methods �and different wave functions�,
and other ab initio results. More in detail, we compare our
JHF and JAGPn� VMC data �see also Table III, where, for
comparison, we also report our LRDMC results� with two
energy dispersion curves obtained with auxiliary-field QMC
�AFQMC� simulations for an unrestricted HF reference wave
function spin projected to eliminate spin contamination33 and
an ab initio study based on full CI �FCI� calculations com-
bined with the correlation energy extrapolation by intrinsic
scaling �CEEIS� technique34 plus core-electron correlations
and scalar relativistic corrections.35

One can observe the dramatic improvements of the
JAGPn� wave function with respect to JHF simulations �see
also Tables II and III�. According to Eq. �7�, we have used
n�=nHF�F2�+1 because the upper bound of Eq. �8�, n�

=nHF�F2�+2, does not lead to significant differences within
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FIG. 1. Be2 binding energy �in millihartree� vs the nuclei distance R �in
atomic units�. Comparison of RHF �Ref. 30� outcomes, JAGPn� results �in
this case n�=4�, and VMC and LRDMC results obtained with a JAGP wave
function with n=10 �squares, dots, downward, and upward triangles, respec-
tively, while lines are a guide to the eye�. In the figure, the experimental
binding energy subtracted by the ZPE �Ref. 24� �solid line� and an EMO fit
of the experimental data �Ref. 24� �slash-dotted line� are also plotted. The
reference atomization limit for the JAGPn� results is given by atomic cal-
culations with a JHF wave function. For n=10, the atomization reference is
given by an atomic JAGP wave function with the same primitive basis set as
the JAGP wave function for the dimer. In the inset: comparison of fits to
VMC and LRDMC data �solid and dashed lines, respectively� for the
JAGPn� wave function and the EMO fit of experimental data from Ref. 24
�slash-dotted line�. Labels for the inset axes are the same as in the main
frame. All curves are shifted with respect to their own atomization limit.
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FIG. 2. Energy dispersion curve for the F2 molecule obtained with several
computational techniques. The zero reference energy �dashed line� is twice
the JHF atomic total energy for the JAGPn� and the JHF molecules, whereas
it is the large distance energy of the dimer for the remaining data. The
slash-dotted line indicates the experimental binding energy �Ref. 28� sub-
tracted by the zero point and spin-orbit energies. Lines are a guide to the
eye. The CEEIS-FCI data are taken from Ref. 35, whereas AFQMC data are
taken from Ref. 33.

TABLE III. F2 binding energies �in mH� as a function of the internuclear
distance R in a.u. �see also Fig. 2�: VMC and LRDMC results �energy of the
molecule at distance R minus two times the JHF atomic energy� for a JHF
and the JAGPn� wave functions.

R
�a.u.� VMC JHF VMC JAGPn� LRDMC JHF LRDMC JAGPn�

2.36 �23.9�4� �39.9�4� �32.4�4� �39.6�4�
2.46 �28.1�6� �52.3�5� �42.1�5� �53.2�4�
2.56 �35.5�5� �59.5�5� �48.2�5� �59.7�4�
2.668 �39.6�5� �61.0�4� �49.7�4� �60.9�4�
2.76 �35.6�5� �59.7�5� �49.1�4� �60.6�4�
2.86 �30.1�4� �56.2�4� �44.1�4� �57.1�4�
2.96 �22.0�5� �51.9�4� �38.1�5� �52.1�4�
3.3 3.9�5� �34.2�5� �34.6�4�
3.8 36.5�6� �14.4�5� �13.4�4�
4.5 41.2�6� �4.0�4� �2.5�4�
5.5 28.1�5� �1.0�4�
6.5 12.8�5� �0.1�5�
7.5 8.5�5� 0.5�5�
8.5 5.4�5� 0.2�5�
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our energy accuracy. We remark here instead the importance
of adding just one MO to the HF theory because this allows
to consider all bonding and antibonding MOs in the AGP,
thus leading to a fully size consistent result which bench-
marks the energy dispersion curve from the bond length to
the atomization limit. The agreement of the JAGPn� with the
ab initio CEEIS-FCI calculations is remarkably good already
at a VMC level. In fact, the VMC binding is 1.671�2� eV
against 1.6867 eV of FCI calculations �without spin-orbit
corrections�. The LRDMC binding is 1.688�2� eV. Instead
the AFQMC curves seem to be shifted of approximately
2–3 mH with respect to our JAGPn� data in the bond and
intermediate length regions. This is due to an underestima-
tion of the energy at large distance caused by the use of a
simple unrestricted HF wave function �see the discussion in
Sec. IV of Ref. 33 and Figs. 4 and 6 therein�. Indeed the
AFQMC well depths are 1.70�2� and 1.77�1� eV for the cc-
pVTZ and the cc-pVQZ wave functions, respectively, when
the reference at large distance is the molecular energy,
whereas it is 1.60�1� and 1.70�1� eV, respectively, when the
large distance reference is twice the energy of the separated
atoms.

The results we have presented so far, reported in Table
II, represent an astonishing example of the importance of
constraining the variational wave function to an appropriate
form during the optimization of the energy. Indeed, a brute
force optimization of a correlated wave function, which is a
rather demanding computation especially within QMC,
would lead to an upper bound of the total energy which is
almost meaningless, particularly in the Be2 case. The rational
behind this effect is that an unconstrained optimization may
not satisfy the requirement for the wave function to be a fair
representation of the ground state of a physical Hamiltonian.
While in lattice models it is possible to constrain the deter-
minantal part of the RVB wave function to be the ground
state of a short-range Bardeen–Cooper–Schrieffer �BCS�
Hamiltonian—a quite sensible and accepted choice in
strongly correlated models—this is much harder in
continuous-type calculations. The constraint that we propose,
very simple to implement in practice, just mimics the effect
of computing the ground state of a HF Hamiltonian with an
additional sufficiently weak BCS coupling between elec-
trons. In fact, in this limit one obtains the complete or partial
occupation—via the � j in Eq. �6�—of a number of MOs n�

not necessarily equal to the RHF prediction. In this context,
the BCS coupling represents the effective interaction be-
tween electrons, which pairs them into the chemical bond.
For instance, it is well known that the ground state of the H2

dimer at large distance is very well described by the singlet
entangled state obtained with the AGP,36 only when the
bonding and antibonding orbitals are taken into account. This
state can be considered the ground state of a BCS Hamil-
tonian that in the atomization limit simply splits into a sum
of two atomic HF Hamiltonians, with vanishingly small pair-
ing. This coupling is, however, important to lift the degen-
eracy between the singlet and the triplet states. The same
physics happens in the F2 molecule studied in this work.

C. Carbon, nitrogen, and oxygen dimers

The C2, N2, and O2 molecules represent challenging
cases for our correlation consistent AGP approach. Indeed,
when 0
S�Smax and Smax�1, the lack of size-consistency
in the AGP poses a fundamental limitation in order to reach
the JHF limit in the dissociation. Note that S=0 and Smax

=1 is a nontrivial case when the JAGP is size consistent and
the JHF is not �e.g., the simplest H2 molecule or the F2

described in the previous section�. Strictly speaking, the re-
striction of the number of MOs to n� does not guarantee a
size consistent JHF result, even for the JAGP wave function.
In the general case, the total JAGP energy in the atomization
limit is an upper bound of 
AEJHF�A� evaluated in the CBS
limit. A generalization of the JAGP, based on the Pfaffian
algebra, which includes also triplet pairing for electrons with
the same spin, allows to have JHF size consistent results also
in the cases with S=Smax−1 �Smax�1�, e.g., in O2. Despite
we have not implemented this generalization, triplet pairing
seems to provide a rather negligible effect at bond length, as
very good results can already be obtained with the present
JAGP ansatz.

The constrained minimization of the JAGPn� wave func-
tion leads to very significant improvements with respect to
JHF results in both the binding energy and the bond length
for C2 and N2, if compared with the exact estimates coming
from the experimental values. In O2 the situation is quite
different, since n�=nHF�O2�+1 and the MO missing in the
HF scheme is quite high in energy, compared to all the paired
MOs included in Eq. �6� according to our constraint. There-
fore, it is not surprising that, in this case, the improvement
upon JHF findings is smaller. The comparison with the exact
estimates is nevertheless quite satisfactory.

By comparing the results in Table II for N2, O2, and F2

with the single-determinant DMC well depths of Ref. 18, we
note improvements already at the JHF level, and even bigger
improvements are obtained upon Grossman’s benchmarks14

�to which one should add the ZPE�. We should mention that
in Ref. 14, the basis used for the determinantal part is not
optimized. Other differences could be due to either the dif-
ferent pseudopotentials used or the calculations not fully
converged in the CBS limit.

As a further evidence of the accuracy of our method, in
Table IV we compare the well depths found for C2, N2, and
O2 with results obtained by using a singlet-triplet-unpaired
�STU� Pfaffian wave function10,11 and taking as a reference
at large distance the JHF atomic limit, i.e., the binding en-
ergy is computed as Emolecule�STU�−2Eatom�JHF�. As shown

TABLE IV. Well depths for C2, N2, O2: comparison between pfaffian results
�Refs. 10 and 11� and JAGPn� results. The VMC and LRDMC findings are
compared with the exact estimates previously reported in Table II.

Method WF C2 N2 O2

VMC STU 5.94�2� 9.42�3� 4.94�3�
VMC JAGPn� 6.327�9� 9.874�2� 5.060�7�
DMC STU 6.26�2� 9.84�2� 4.93�2�
LRDMC JAGPn� 6.297�8� 9.882�1� 5.125�5�
Exact estim. 6.44�2� 9.908�3� 5.241�3�
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in Table IV, we find a rather good agreement for the well
depth even in the challenging C2 molecule, when S=Smax

−2 and an exact size consistent result is not possible even
within the more general pairing function containing triplet
correlations. In principle, the Pfaffian wave function, being a
generalization of the JAGP, should have a larger binding
energy by taking the corresponding JHF atomic energy as a
reference, provided the CBS limit is reached and the pseudo-
potentials are accurate enough. Instead, in all the cases
shown in Table IV, the STU and the JAGPn� binding energy
are very close, at least at the DMC level. The fact that our
binding energy is always larger and more accurate comes
probably from the use of a more complete basis, fully opti-
mized in both the coefficients and the exponents, whereas in
Refs. 10 and 11 the atomic basis is not optimized.

These comparisons show that our JAGPn� ansatz pro-
vides quite generally a very accurate description of the
chemical bond. This emphasizes the role of singlet electron
pairs in the chemical bond and is consistent with the RVB
theory. Thus, the present variational wave function can be
considered the cheap but nevertheless accurate realization of
the RVB idea, since only a single determinant and standard
VMC are needed.

D. Heteronuclear dimers

We further carried out calculations for a couple of het-
eronuclear diatomic molecules belonging to the G1 set
�namely, LiF and CN�, selected on the basis of the quite big
discrepancy between the binding energy found in Ref. 14 and
the reported experimental values. Bond lengths, dissociation
energies, and ZPEs for these two molecules are reported in
Table II. We compare our well depths with the exact esti-
mates obtained by correcting the experimental dissociation
energies with the experimental ZPE and spin-orbit energies
reported in Ref. 29.

As mentioned in Sec. II B, LiF is one of the cases in
which n�= ñ does not yield significant improvements with
respect to the JHF wave function, even though ñ�nHF. In-
stead, for CN the JAGPn� wave function improves the de-
scription of the bond with respect to the JHF one, giving a
bond length in fairly good agreement with the experimental
value, although the binding energy is underestimated by
�0.1 eV with respect to the exact estimate reported in Ref.
29. As for the homonuclear dimers shown in the previous
sections, also in the heteronuclear cases here considered, our
method provides binding energies in closer agreement with
the experimental values29 than those of Ref. 14. In particular,
for LiF the agreement is very good already at the JHF level,
as anticipated above.

IV. CONCLUSIONS

In conventional QMC variational techniques, based on
the use of the Jastrow factor, it is not possible to consider a
finite basis set and to exploit the huge cancellation between
atomic energies and molecular energies within the same ba-
sis set. Indeed, after the introduction of the Jastrow factor,
the wave function is unavoidably defined on an infinite

dimensional Hilbert space. As a consequence, it is more dif-
ficult to achieve the chemical accuracy on the energy differ-
ences and obtain a good description of the chemical bond, as
we have shown, for instance, in the Be2 case. Here, a very
accurate variational energy obtained by applying the DMC
technique to our lowest energy JAGP wave function com-
pletely misses the correct features of the bond. In this case,
with an unconstrained variational approach, qualitatively
correct results can be obtained probably only by reaching the
chemical accuracy on the total energy, that is clearly a very
difficult task for any approximate variational technique. In
fact, this target was so far achieved within QMC only by
using several determinants in small molecules.18

In this paper we propose a simple constraint which al-
lows to exploit the above mentioned cancellation between
atomic and molecular energies even in QMC calculations
based on a single determinant wave function. In fact, instead
of imposing a constraint on the dimension of the atomic
Hilbert space, we change a bit this point of view by con-
straining the number of MOs to an appropriate value that
allows to take JHF results for the isolated fragments as a
reference for the dissociation energy of the molecule. With
this constraint we have shown that it is possible to obtain
much more accurate results in both variational and LRDMC
calculations.

Although we have not carried out a systematic study of
all the G1 set considered in Ref. 14, in several cases where
the discrepancy was sizable we obtain an almost exact de-
scription of the bond �e.g., in F2�. Surprisingly the LRDMC
calculation provides only small improvements upon the
simple and much cheaper VMC calculation, which turns out
to be remarkably accurate in our approach. Also in cases
where we do not improve upon the JHF results �e.g., LiF�,
we nonetheless obtain accurate binding energies, within a
precision of about 0.1 eV. The latter achievement could be
due to the accurate basis set we have considered in our work,
together with the state-of-the-art optimization technique,37

which is able to handle the large number of parameters in an
extended basis set.

In conclusion, we have introduced a new and general
approach to perform electronic structure calculations of
quantum chemistry compounds based on a variational RVB
wave function. In this formulation, we have shown that a
substantial improvement in the description of the chemical
bond is possible by extending the standard correlated single
determinant theory with the JAGP wave function. In the
original formulation of the RVB theory, the gain in energy
obtained by the resonance of several valence bond configu-
rations was just named the “resonance valence bond energy.”
Within this new formulation we propose that this energy gain
can be achieved by increasing the number of MOs of the
JAGP from its HF value and without exceeding a value n� of
MOs. This value can be determined by requiring a correla-
tion consistent property from the bond length to the atomi-
zation limit, realized via a constrained energy minimization.
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APPENDIX A: CONSTRAINED OPTIMIZATION OF THE
AGP WAVE FUNCTION

1. MO expansion of the AGP

In this appendix we expand the pairing function � in
atomic orbitals � j�r�� located at atomic positions R� j,

��r�,r��� = 

j,j�

� j,j�� j�r��� j��r��� , �A1�

where � is the pairing matrix and j , j� label the considered
atomic orbitals on the corresponding atomic positions R� j ,R� j�.
Obviously, in order to define a singlet state the pairing matrix
should be symmetric � j,j�=� j�,j. Hereafter, both for simplic-
ity and for the sake of generality we do not assume this
symmetry because it can be easily satisfied during the opti-
mization scheme, when necessary. Therefore, in the general
case we are left with NL=L�L−1 independent variational
constants, where L is the linear size of the matrix �, namely,
the dimension of the atomic basis. There is only one linear
dependence between the L�L entries of the matrix � be-
cause the multiplication of � by an overall constant does not
change the AGP apart for its normalization. This constraint is
usually satisfied by keeping fixed an arbitrary matrix element
to the unit value.

Usually, the number NL is very large, and in the follow-
ing we determine a systematic way to work with much less
variational parameters, being nevertheless efficient in deter-
mining the lowest energy MOs of the chosen variational an-
satz.

For simplicity we do not consider unpaired orbitals, be-
cause for them no constraint is applied, therefore we set N↑
=N↓. Moreover, in the following we can assume that the
original orbitals � j have been orthogonalized by a suitable
transformation depending on the overlap matrix,

Si,j = ��i�� j� , �A2�

Namely, we implicitly assume the following change in the
definition of the orbitals and the corresponding matrix � in
Eq. �A1�,

� j�r�� → 

k

�S−1/2� j,k�k�r�� ,

�A3�
�i,j → 


k,l
�S1/2�i,k�k,l�S1/2�l,j .

This greatly simplifies the forthcoming analysis without loss
of generality.

Then, for the resulting square matrix we can use the well
known singular value decomposition,

�i,j = 

k=1

r

�k�i
k�̄ j

k, �A4�

where �k�0 and �k ��̄k� are a set of r
L MOs for the
spin-up �spin-down� electrons that are orthonormal, i.e.,

l�l

i�l
j =�i,j. Formally the spin-up MOs and the spin-down

ones are the eigenvectors of the 2L�2L symmetric matrix,

H = � 0 �

�† 0
� , �A5�

which has pair of eigenvectors with eigenvalues ���k given
by

� �k

��̄k� . �A6�

A simple way to reduce the number of parameters is to
require that the matrix has rank r�L so that all the eigen-
values �k for k�r are assumed to be zero or negligible. For
instance, if r=N /2 we obtain the standard Slater determinant
with N↑=N↓=N /2 MOs for each spin component.

This projection scheme can be made general, and this
leads to a remarkable extension of the Slater determinant,
within the AGP wave function expanded in MOs, as dis-
cussed in Appendix A 2.

2. Projection on a rank-r geminal

If the rank r of a geminal matrix �i,j is equal to half the
number of electrons N /2, then the AGP represents a Slater
determinant. Even if N /2 is usually much smaller than the
dimension of the atomic basis L, Fermi statistics at zero tem-
perature favors the occupation of the lowest possible energy
levels, so that r�N /2 turns out to be a reasonably accurate
guess for the AGP wave function. In principle this wave
function may have much larger rank up to r=L, but one may
expect that most of the singular values will have negligible
weight. Therefore, from a general point of view, and not only
for reducing the number of variational parameters, it is im-
portant to optimize in an efficient way a full L�L matrix of
rank-N /2
r�L given by Eq. �A4�.

To this purpose we propose the following scheme of
constrained optimization, where r is chosen and fixed to a
reasonable value n��N /2 during the optimization.

Given �0 a rank-r matrix, in order to simplify the nota-
tions, we write the corresponding singular value decomposi-
tion �A4� in a matrix form,

�0 = �0�0�̄T
0 , �A7�

where �0 and �̄0 are L�r matrices, the subscript T indicates
the transpose of a matrix, and the nonzero singular values �k

0,
k=1¯r are denoted by a diagonal matrix �0.

Then we change this matrix �0 by adding to it a general
first order contribution,

�� = �0 + �1��� ,

where henceforth the superscript indicates the order of the
expansion in �. This new matrix will be constrained to have
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rank r. Therefore all the terms in Eq. �A4� can be expanded
within first order in perturbation,

�1 = ���0�0�̄T
1 + �1�0�̄T

0� + ��0�1�̄T
0 . �A8�

In order to satisfy the constraint on the rank in the matrix
�1, it is much simpler to work with an unconstrained matrix

�̄, and left and right projection matrices,

PR = �̄T
0�̄0, �A9�

PL = �T
0�0. �A10�

The two matrices above are projection matrices �P= PT and
P2= P� as they project vectors in the r dimensional subspaces
corresponding to the nonzero values of the singular value
decomposition �A4�.

Indeed it is very simple to show that if the matrix �0

+�1 satisfies the constraint of a singular value decomposition
with rank r, �1 has to satisfy the simple relation,

�I − PL��1�I − PR� = 0, �A11�

because in the expression �A8� �I− PL��0=0 and �̄T
0�I− PR�

=0.

Thus an unconstrained variation in the matrix �̄ can be
projected onto the constrained one by using the above pro-
jection matrices,

�1 = �̄ − �I − PL��̄�I − PR� , �A12�

in the sense that, after the above projection, the matrix �0

+�1 is suitable and can be considered to satisfy the constraint
of a rank-r matrix at first order in the perturbation �the matrix
�1 being sufficiently small�.

Indeed, by simple inspection, the right hand side of Eq.
�A12� immediately satisfies the condition �A11�, that is, so
far considered a necessary condition. It is also possible to
show with a lengthy but straightforward calculation using
first order perturbation theory of the symmetric matrix H
given in Eq. �A5�, that relation �A11� is also a sufficient
condition for a perturbation that does not change the rank of
a singular value decomposition.

3. Application to QMC

In the actual application of the recent QMC scheme for
minimization of the energy, it is important to evaluate deriva-
tives of a function with respect to the unconstrained param-

eters �̄. This function E�x� can be either the logarithm of the
wave function or the local energy on a particular electronic
configuration x sampled by the MC technique.8,9,18

Given the matrix Di,j =�E /��i,j of the unconstrained de-
rivatives with respect to �i,j, by using Eq. �A12� and the
chain rule for derivatives, then the corresponding matrix of

constrained derivatives D̄i,j =�E /��̄i,j can be computed by
simple matrix manipulation in the following way:

D̄ = D − �I − PT
L�D�I − PT

R� . �A13�

In order to work with the original matrices we have to
replace in Eqs. �A12� and �A13� the ones obtained by apply-
ing the inverse of the transformation �A3�,

PR → S1/2PRS−1/2, �A14�

PL → S−1/2PLS1/2. �A15�

Notice also that after this transformation PT
R and PT

L are no
longer equal to PR and PL in Eq. �A13�.

The scheme therefore can be summarized in the follow-
ing steps.

�1� Compute the unconstrained derivatives D that, with
some algebra, can be casted into a product of much
smaller rectangular matrices U ,V such that D=UTV of
dimension L�N /2. Notice that also the projection ma-
trices can be written in this convenient form, as in Eq.
�A9�.

�2� Apply the projection �A13� by using the current MOs.
By exploiting the fact that all the matrices involved are
written in terms of much smaller rectangular matrices,
a very convenient computation can be achieved scaling
like N2L instead of L3 as in the straightforward imple-
mentation of the projection.

�3� Apply the recent optimization schemes8,9,18 and change

the unconstrained parameters �̄. Then apply the projec-

tion, by diagonalizing the matrix �̄, and taking only the
right and left eigenvectors corresponding to the largest
singular values. New MOs are then defined after this
diagonalization.

�4� Repeat the above-described steps until convergence in
the energy is achieved.

APPENDIX B: AGP AND BASIS SET EXPANSION
EFFECTS

1. Effect of the improved upper bound for n�: The C2
case

As explained in Sec. II B, C2 is one of the exceptions to
the rule of Eq. �7�. In this case, we have ñ=6, but the more
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FIG. 3. Energy dispersion curve for C2 dimer with n=6 �circles�, n=7
�squares�, n=8 �triangles� MOs. VMC and LRDMC results are represented
by filled and empty symbols, respectively.
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accurate upper bound in Eq. �8� allows to work with n�=7.
Indeed, by following strictly Eq. �7� one would include a
single antibonding orbital � in the AGP, while that orbital is
double degenerate, due to the rotational symmetry of the
molecule. Therefore, in order to fulfill the symmetry of the
dimer, it is particularly important to fill the degenerate levels
in the AGP by setting n�=7. In Fig. 3 we show the VMC and
LRDMC energies at various internuclear distances found
with a JAGP wave function expanded in ñ and n� MOs. In
this case, the improved upper bound for n� yields a gain of
�2.7 mH in the VMC energies and of �1.5 mH in the
LRDMC ones. Incidentally, the n=n�=7 energies agree
within the error bars with the data resulting from a JAGP
with n=8 MOs.

An analogous check was done with all electron simula-
tions at a fixed interatomic distance R=2.35 a.u.. Results are
reported in Table V. We note a saturation of LRDMC total
energies for n�n�.

2. Convergence in the basis set of the AGP and the
Jastrow parts

Below we report the convergence in the basis set for
selected molecules.

a. N2 convergence in the basis set

For N2 we checked the convergence in the basis set by
means of VMC and LRDMC simulations at the experimental
internuclear distance. Total energies are reported in Table VI.

b. C2 convergence in the Jastrow basis set

We further checked the effects of a larger three and four-
body Jastrow factor �34BJ� in the case of C2. We performed
simulations at the experimental bond length with the JHF
wave function and the JAGP with n=8 MOs �whose results
agrees with the JAGPn� as shown in Appendix B 1� with the
2s2p Jastrow used for all the other cases and for two larger
basis sets �namely, 3s2p, and 3s3p�. Results are shown in
Table VII. As expected, effects on the molecular total energy
of a larger three- and four-body Jastrow are negligible in the
LRDMC at least for the RVB wave function. For all the other
cases, the largest Jastrow basis provides an energy gain of at
most 1 mH with respect to the smaller basis.
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