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The theorem of A. Gleason [2, vii.23] asserts that every continuous 
map ƒ from an open subset U of a product X of separable topological 
spaces into a Hausdorff space Y whose points are Gs-sets has the form 
goir\uy where ir is a countable projection of X and g: ir(U)—> Y is 
continuous. A natural question is to find what other "pleasant" sub
sets U of X have the above factorization property. The most plausible 
ones are compact subsets: for, if UQX is compact and f = goTr\u 
with ƒ continuous, then g must be continuous since ir\ u is a closed 
map (being continuous on a compact space). 

The first part of this note rejects this conjecture by giving an 
example of a compact subset of a product of copies of the unit inter
val, without the factorization property. In the second part, it is 
proved that the factorization f = g o ir\u always holds whenever ƒ is 
uniformly continuous and the range metric. This result implies an 
open mapping theorem for continuous linear mappings on products 
of Fréchet spaces. 

1. The example. Let Z be a compact Hausdorff space which is first 
countable but not metrizable. Such a space exists by [l, §2, Exercise 
13]. Since Z is completely regular, Z is homeomorphic to a compact 
subset U of a product X of copies of [0 ,1] . L e t / : U-+Ube the iden
tity. Assume that f — g o w\ u, with ir a countable projection and 
g: TT(U)—>U continuous, and argue for a contradiction. Since count
able products of separable metric spaces are separable metric, ir(U) 
is separable metric. Hence U is a continuous image of a separable 
metric space. But a cosmic metric space is metrizable whenever it is 
compact by [3, p. 994, (C) for cosmic spaces]. This contradicts the 
assumptions on Z. 

2. A factorization theorem. The above example shows tha t the 
following result does not hold longer when Y is not metrizable. 

THEOREM. If Z is any subset of a product of arbitrary uniform spaces 
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Xa ( a £ i ) into a metric space F, then every uniformly continuous 
ƒ: Z—+Y has the form goir\z with ir a countable projection and g uni
formly continuous. 

PROOF. By the uniform continuity of/, for each integer n^l there 
are a finite subset AnQA and uniform covers "Ma of Xa (aE:An) such 
that 

d(f(x),f(y)) £ 1/n 

whenever x, yÇzZ have the coordinates corresponding to a(~An near 
of order 'll*. Put C = U"«i An and ir the countable projection (#a)«eA 
—>(xa)aeC' For every xÇzir{Z), let zx be a point of Zr\ir~l(pc).Define 
g: 7r(Z)—>Y by x-~*f(zx). If s', s " £ Z have the same image by 7r, then 
<*(ƒ(*')» f(z"))Sl/n for all w ^ l (since C3^4W), which implies 
d(fW)ff(z"))=0, i.e. ƒ(*') =ƒ(*"). This means that g is well defined. 
From the definition it follows f~g OT\Z- The equality ƒ = g o w \ z 
means tha t two points of Z have the same image by ƒ whenever they 
have the same coordinates for a £ C . By this and CQ.An (wè 1), g is 
uniformly continuous. Q.E.D. 

COROLLARY. Let Xa ( a £ 4 ) , Y be arbitrary complete metrizable 
topological vector spaces. Then every continuous linear map ƒ from 
I I «GA Xa onto Y is open. 

PROOF. Since a continuous linear map is uniformly continuous in 
the standard uniformities of topological vector spaces, the above 
theorem implies that f = gowy with TT a countable projection and g 
uniformly continuous. Since TT and ƒ are linear, g is linear. Since a 
countable product of complete metric spaces is complete metric, g is 
open by Banach homomorphism theorem. Since TT is open, ƒ must be 
also. Q.E.D. 
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