TWO REMARKS ON A. GLEASON'S FACTORIZATION THEOREM

BY GIOVANNI VIDOSSICH

Communicated by Leonard Gillman, August 8, 1969

The theorem of A. Gleason [2, vii.23] asserts that every continuous map f from an open subset U of a product X of separable topological spaces into a Hausdorff space Y whose points are G_{δ} -sets has the form $g \circ \pi|_{U}$, where π is a countable projection of X and $g: \pi(U) \rightarrow Y$ is continuous. A natural question is to find what other "pleasant" subsets U of X have the above factorization property. The most plausible ones are compact subsets: for, if $U \subseteq X$ is compact and $f = g \circ \pi|_{U}$ with f continuous, then g must be continuous since $\pi|_{U}$ is a closed map (being continuous on a compact space).

The first part of this note rejects this conjecture by giving an example of a compact subset of a product of copies of the unit interval, without the factorization property. In the second part, it is proved that the factorization $f = g \circ \pi |_{U}$ always holds whenever f is uniformly continuous and the range metric. This result implies an open mapping theorem for continuous linear mappings on products of Fréchet spaces.

1. The example. Let Z be a compact Hausdorff space which is first countable but not metrizable. Such a space exists by [1, §2, Exercise 13]. Since Z is completely regular, Z is homeomorphic to a compact subset U of a product X of copies of [0, 1]. Let $f: U \rightarrow U$ be the identity. Assume that $f = g \circ \pi |_{U}$, with π a countable projection and $g: \pi(U) \rightarrow U$ continuous, and argue for a contradiction. Since countable products of separable metric spaces are separable metric, $\pi(U)$ is separable metric. Hence U is a continuous image of a separable metric space. But a cosmic metric space is metrizable whenever it is compact by [3, p. 994, (C) for cosmic spaces]. This contradicts the assumptions on Z.

2. A factorization theorem. The above example shows that the following result does not hold longer when Y is not metrizable.

THEOREM. If Z is any subset of a product of arbitrary uniform spaces

AMS Subject Classifications. Primary 5425, 5460; Secondary 5440.

Key Words and Phrases. Products of uniform spaces, Banach spaces, countable projections, factorizations upon countable projections, open mapping theorem, products of Banach spaces.

 X_{α} ($\alpha \in A$) into a metric space Y, then every uniformly continuous $f: Z \rightarrow Y$ has the form $g \circ \pi |_Z$ with π a countable projection and g uniformly continuous.

PROOF. By the uniform continuity of f, for each integer $n \ge 1$ there are a finite subset $A_n \subseteq A$ and uniform covers \mathfrak{U}_{α} of X_{α} ($\alpha \in A_n$) such that

$$d(f(x), f(y)) \leq 1/n$$

whenever $x, y \in \mathbb{Z}$ have the coordinates corresponding to $\alpha \in A_n$ near of order \mathfrak{U}_{α} . Put $C = \bigcup_{n=1}^{\infty} A_n$ and π the countable projection $(x_{\alpha})_{\alpha \in A}$ $\rightarrow (x_{\alpha})_{\alpha \in C}$. For every $x \in \pi(\mathbb{Z})$, let z_x be a point of $\mathbb{Z} \cap \pi^{-1}(x)$. Define $g: \pi(\mathbb{Z}) \rightarrow Y$ by $x \rightarrow f(z_x)$. If $z', z'' \in \mathbb{Z}$ have the same image by π , then $d(f(z'), f(z'')) \leq 1/n$ for all $n \geq 1$ (since $\mathbb{C} \supseteq A_n$), which implies d(f(z'), f(z'')) = 0, i.e. f(z') = f(z''). This means that g is well defined. From the definition it follows $f = g \circ \pi | z$. The equality $f = g \circ \pi | z$ means that two points of \mathbb{Z} have the same image by f whenever they have the same coordinates for $\alpha \in C$. By this and $\mathbb{C} \supseteq A_n$ $(n \geq 1), g$ is uniformly continuous. Q.E.D.

COROLLARY. Let X_{α} ($\alpha \in A$), Y be arbitrary complete metrizable topological vector spaces. Then every continuous linear map f from $\prod_{\alpha \in A} X_{\alpha}$ onto Y is open.

PROOF. Since a continuous linear map is uniformly continuous in the standard uniformities of topological vector spaces, the above theorem implies that $f = g \circ \pi$, with π a countable projection and g uniformly continuous. Since π and f are linear, g is linear. Since a countable product of complete metric spaces is complete metric, g is open by Banach homomorphism theorem. Since π is open, f must be also. Q.E.D.

References

1. N. Bourbaki, Topologie générale. Livre III: Chapitre 9: Utilisation des nombres réels en topologie générale, Actualités Sci. Indust., no. 1045, Hermann, Paris, 1958. MR 30 #3439.

2. J. R. Isbell, Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964. MR 30 #561.

3. E. Michael, ℵ₀-spaces, J. Math. Mech. 15 (1966), 983-1002. MR 34 #6723.

UNIVERSITY OF PISA, ITALY