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ABSTRACT

We determine the exact beta function and a RG flow Lyapunov function for N = 2 SYM

with gauge group SU(n). It turns out that the classical discriminants of the Seiberg–Witten

curves determine the RG potential. The radial irreversibility of the RG flow in the SU(2) case

and the non–perturbative identity relating the u–modulus and the superconformal anomaly,

indicate the existence of a four dimensional analogue of the c–theorem for N = 2 SYM which

we formulate for the full SU(n) theory. Our investigation provides further evidence of the

essentially topological nature of the theory.

http://arxiv.org/abs/hep-th/9712025v4


Recently it has been shown that the exact results aboutN = 2 SUSY Yang–Mills obtained

by Seiberg and Witten [1] actually follow from first principles [2]. In particular, in [2] it has

been shown that the entire physical content of the SU(2) theory can be extracted from the

identity [3]

u = πi(F − a∂aF/2). (1)

In this context, we observe that uniformization theory is the natural framework for inves-

tigating N = 2 SYM [2][3]. A basic fact for the derivation in [2] is that the identity (1),

first checked up to two–instanton in [4], has been proved to any order in the instanton ex-

pansion in [5] and has been obtained as an anomalous superconformal Ward identity in [6]

(this also excludes other non–perturbative effects besides instantons). A first consequence

of these results is that u = 〈Trφ2〉 is actually a good modular invariant global coordinate

[3]. In particular, one can consider the complex coupling constant τ as a generally poly-

morphic function of the independent variable u ∈ C∪ {∞}. Furthermore, the T 2 symmetry

u(τ + 2) = u(τ), which rigorously follows from the asymptotic analysis together with the

relation (1), and the fact that u(τ) = u(−τ̄ ), u(τ +1) = −u(τ), uniquely fix the monodromy

group to be Γ(2) [2] and therefore the explicit Seiberg–Witten results.

One of the main consequences of the Seiberg–Witten results is that for the first time it

has been possible to determine the exact expression of the β–function of a non–trivial four

dimensional quantum field theory [7][8]. The exact expression for the β–function in the case

of SU(3) was obtained in [9] (see also [10] for related aspects). Very recently the SU(2)

β–function has been reconsidered in a series of interesting papers [11][12][13]. We will see

that the are non–trivial structures which arise in considering higher rank groups.

The exact solution for the β–function of the theory, provides the possibility of looking

for the analogue of the Zamolodchikov c–theorem [14] in the context of four dimensional

quantum field theories. The content of the c–theorem is the identification of an RG mono-

tonic quantity, i.e. a Lyapunov function, giving at its fixed points a way to recognize some

properties of the conformal limits of the class of 2–D theories. As well known, this quantity

is strictly related to the conformal anomaly. In the case of 2 < D < 4 theories something can

be guessed from the speculations in [15] (and reference therein). Our letter tries to give some

contributions to the 4–D problem (see for example [16] for related aspects). In the case of

the SU(2) Seiberg–Witten theory, the results in [12] can be understood from the c–theorem

point of view, since (1) means that u is proportional to the (super)conformal anomaly [6].

In this paper we show that this result fits in a more general framework in which a
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Lyapunov function is naturally determined and related to the classical discriminant of the

Seiberg–Witten curve.

Let us first consider some aspect for the SU(2) case. We refer to [2, 3, 17] for the aspects

related to uniformization theory. Since the u quantum moduli space MSU(2) is the thrice

punctured sphere, we have

u/Λ2 = J(τ),

where J is the uniformizing map J : H → C\{±1} and H is the upper half plane.

Since J(i∞) = ∞, J(±1) = −1, J(0) = 1, the explicit expression of the J map in terms

of θ–functions is

J(τ) = 2
θ43
θ42

− 1,

connected with the conventions of [8] by u → −u, θ2 → αθ3, θ3 → αθ2, θ4 → α−2θ4, α
4 = −1.

The exact β–function is [7, 8]

β(τ) = Λ
∂τ

∂Λ
|u = −2

J(τ)

J ′(τ)
, (2)

that in terms of θ–functions has the form

β(τ) = −
i

π

(

1

θ43
+

1

θ44

)

. (3)

This expression has been recently rederived in [11] and further investigated in [12][13] where

it has been observed that by (2)
dτ

β(τ)
= ∂Ψ2(τ), (4)

where

Ψ2(τ) = −
1

2
ln|J |2, (5)

with ∂ = dτ∂τ .

The radial irreversibility of the RG flow is proved just by noticing that

Λ∂Λ|J |
2 = −4|J |2, (6)

which means that |u/Λ2|2 is a non–increasing function along the RG flow. In other words

L2 = |J |2 = e−2Ψ2 , (7)

is a Lyapunov function for the RG flow. Note that the only stable fixed point is u = 0

which is Z2 invariant. It corresponds to the zero locus τ0 = {τ ∈ H|J(τ) = 0}, that is

τ0 =
{

γ · ( i±1
2
)|γ ∈ Γ(2)

}

, where Γ(2) acts linearly fractionally on τ .
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It is clear that in view of the c–theorem, a basic step should be to prove the existence

of the potential for the β–function. While in the SU(2) case the derivation of this potential

reduces to a simple integration, this is a non–trivial task for higher rank groups. We will

see that the β–function potential exists for SU(n) for any n ≥ 2. Actually, it turns out that

the structure introduced in [9] is the natural one to explicitly solve this problem. As we will

see, somewhat surprisingly, the potential is determined by the classical discriminant of the

Seiberg–Witten curves.

In [9] it has been shown that the basic structures of the SU(2) case are naturally extended

to SU(3) if one introduces the modular invariant quantities

I γ
β = (∂kz)(∂βτ)

−1kl∂lu
γ, (8)

where β, γ = 2, 3, z is the modular invariant z = ak∂kF−2F , ∂k = ∂ak , ∂α = ∂uα and u2 ≡ u,

u3 ≡ v. These expressions, which have been given in [9] for SU(3), trivially extend to SU(n)

for any n ≥ 2. For the modular invariant z we have z = 3i
π
u, that is [9] u = 2πi

3

(

F − ak

2
∂kF

)

,

which is the generalization of (1) and has been derived by other means and also for higher

rank groups in [18].

The above framework is the natural one to properly investigating the extension to N = 2

SYM with higher rank gauge groups [19][20]. For example, the modular invariant quantities

I γ
β allow us to find the analogue of the identity (1) in the case of v.

Let us consider the beta function (matrix)

βij = Λ
∂τij
∂Λ

|u2,u3,.... (9)

Since under modular transformations

(aD, a) → (aD
′

, a′) = (AaD +Ba,CaD +Da),

(

AB

CD

)

∈ Sp(2n− 2,Z), we have

β → (τCt +Dt)−1β(τC +D)−1,

and

dτ → (τCt +Dt)−1dτ(τC +D)−1.

It follows that

b = βijdτij = βαδJαγδdu
γ, (10)
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is a modular invariant one–form. Here βij and βαγ denote the inverse of the matrices βij

and βαγ respectively, and

Jαβγ = ∂αa
i∂βτij∂γa

j , (11)

are the modular invariant quantities we introduced in [9]. For SU(3) these are related to

the I γ
β ’s by

I γ
β Jγβ2 =

π

3i
, I γ

β Jγβ3 = 0, (12)

whose solution is

J222 = −
1

3
AP, J223 = 12uvA, J233 = −

1

u
AP, J333 = 36vA, (13)

where A = 3i
π
[(12uv)2 − P 2/3u]−1 and P = 27(v2 − Λ6) + 4u3. Since the explicit expression

of βαγ is [9]

β22 =
2Au

3
[P − 54v2], β23 = β32 =

3Av

u
[P − 8u3], β33 = 2A[P − 54v2], (14)

it follows by (10) and (13) that (∂ = du∂u + dv∂v)

b = ∂Ψ3, (15)

where

Ψ3 = −
1

3
ln

∣

∣

∣

∣

∣

27v2 − 4u3

Λ6

∣

∣

∣

∣

∣

2

= −
1

3
ln
∣

∣

∣27v2(τ)− 4u3(τ)
∣

∣

∣

2
, (16)

with u(τ) = u/Λ2, v(τ) = v/Λ3. Eq.(15) shows that the RG flow is gradient. Furthermore,

as

Λ∂Λe
−3Ψ3 = −12e−3Ψ3 , (17)

it follows that

L3 = e−3Ψ3 , (18)

is a Lyapunov function for the RG flow.

In [9] it has been observed that also in the SU(3) case there is the uniformization mech-

anism which generalizes the structure underlying the SU(2) case [3]. In particular, the

structure of the covering of the quantum moduli space MSU(3) is encoded in the properties

of the Appell’s functions. The fact that τij is dimensionless implies that

(Λ∂Λ +∆u,v)τij = 0, (19)

where ∆u,v = 2u∂u + 3v∂v is the scaling invariant vector field. Eq.(19) implies that τ =

τ(u, v). Therefore, the τ–space is a subvariety S of the genus 2 Siegel upper–half space of
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complex codimension one covering MSU(3). In particular, the Picard–Fuchs equations (not

to be confused with the reduced ones) are the uniformizing equations forMSU(3)
∼= S/MSU(3)

where MSU(3) ⊂ Sp(4,Z) is the monodromy group of the polymorphic matrix function τ seen

as the inverse of the uniformizing map τjk = τjk(u, v).

For the higher rank case it is immediate to read out the general structure we are looking

for. In fact our RG potentials Ψ2 and Ψ3 are simply related to the classical discriminants of

the Seiberg–Witten curves [19]. These are defined as

∆
SU(n)
cl. (uγ) =

n
∏

i<j

(ei − ej)
2,

where {ei} are the zeros in x of the polynomial WAn−1
(x; u2, .., un) = xn −

∑n
γ=2 u

γxn−γ .

Explicitly, for n = 2, 3

∆
SU(2)
cl. (u) = u, ∆

SU(3)
cl. (u, v) = 4u3 − 27v2.

Therefore, there is strong evidence that for the SU(n) case (∂ =
∑n

γ=2 du
γ∂γ)

b = ∂Ψn, (20)

where

Ψn = −
1

n
ln

∣

∣

∣

∣

∣

∣

∆
SU(n)
cl. (uγ)

Λn(n−1)

∣

∣

∣

∣

∣

∣

2

= −
1

n
ln
∣

∣

∣∆̂
SU(n)
cl. (τ)

∣

∣

∣

2
, (21)

with b defined as in (10) and

∆̂
SU(n)
cl. (τ) = ∆

SU(n)
cl. (uγ),

where

u
γ = uγ/Λγ,

γ = 2, . . . , n. Furthermore, we have the equation

Λ∂ΛLn = −2n(n− 1)Ln, (22)

where

Ln = e−nΨn = |∆̂
SU(n)
cl. (τ)|2. (23)

Observe that by (10) it follows that Eq.(20) is equivalent to

∂γ∆
SU(n)
cl. (uσ) = βαδJαγδ∆

SU(n)
cl. (uσ), (24)
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so that the integrability condition

∂γ∂σ∆
SU(n)
cl. (uσ) = ∂σ∂γ∆

SU(n)
cl. (uσ), (25)

yields

∂σ(β
αδJαγδ) = ∂γ(β

αδJασδ), (26)

γ, σ = 1, . . . , n− 1.

It is interesting to note that the previous analysis implies the following scaling law for

the classical discriminant

∆̂
SU(n)
cl. (τ) = ∆̂

SU(n)
cl. (τ0)e

−n
∫

τ

τ0

b
, (27)

which is the higher rank version of the scaling law for the u–modulus derived in [8]. In this

context we observe that due to the presence of other moduli besides u, while in the SU(2)

case the scaling law (27) implied, in view of (1), the RG equation for F , this is no the case

for SU(n), n ≥ 3.

As Ln reaches its minimum, we have ∆̂
SU(n)
cl. (τ) = 0, meaning that the system naturally

tends to flow through the classical locus of gauge symmetry restoring: this restoring in fact

does not really happen since the quantum moduli space is dramatically different from the

semiclassical one. In any case, all this means that the classical symmetry restoring locus

continues playing a non trivial attracting röle in the full theory.

Notice that the above result may cause some doubts: it is stated that the exact quantum

RG flow of a given theory follows some classically determined character. However observe

that the classical character concerns the dependence of the potential on the quantum moduli

rather than the moduli themselves. It seems that a full explanation of the above phenomenon

should be found in a deeper understanding of non–renormalization theorems intertwined with

the essentially topological nature of the theory [21][9][22][23][24].

The fact that the theory has an essentially topological structure has been suggested [9]

where the WDVV equations [25] for the SU(3) case have been derived in the framework of

the Picard–Fuchs equations. Using a different method, the WDVV equations for higher rank

groups have been obtained in [26].1

To show a possible connection with the WDVV equations, we note that by (10) it follows

that

b = βijdτij = βijFijkda
k, (28)

1The problem of deriving the WDVV equations for higher rank groups from the Picard–Fuchs equations

has been recently solved in the interesting paper by Ito and Yang [27].
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where

Fijk = ∂i∂j∂kF .

Using
∑

α du
α∂α =

∑

k da
k∂k, one has that the integrability condition (25) implies

(Fijk∂l −Fijl∂k)β
ij = 0, (29)

k, l = 1, . . . , n − 1. The point is that in [28] the WDVV equations have been obtained as

consistency condition for a system of differential equations whose structure is reminiscent of

Eq.(29). The appearance of the β–function suggests that Eq.(29) corresponds to the version

of WDVV equations derived in [24] (see also [28, 29] for related aspects). The fact that the

WDVV equations can be extended by considering the RG scale Λ as modulus [30], provides

further evidence for the topological nature of N = 2 SYM (see also [27] for related results).

A crucial point about our Lyapunov functions is whether they encode in some way any

physical information about the structure of the massless sector of the theory at the critical

points. We refer the reader to [13] and references therein for a more general discussion about

this aspect which is general enough to extend also to the higher rank case.

Finally, we observe that the approach in [17][31][10] should be useful to extend our results

to the case with matter. Another interesting aspect is that, as observed in [13], the above

structures are related to the quantum Hall system [32] and non–linear sigma models [33].
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