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ABSTRACT
Massive black-hole binaries (MBHBs) are thought to be the main source of gravita-
tional waves (GWs) in the low-frequency domain surveyed by ongoing and forthcom-
ing Pulsar Timing Array campaigns and future space-borne missions, such as eLISA.
However, many low-redshift MBHBs in realistic astrophysical environments may not
reach separations small enough to allow significant GW emission, but rather stall on
(sub)pc-scale orbits. This “last-parsec problem” can be eased by the appearance of
a third massive black hole (MBH) – the “intruder” – whose action can force, under
certain conditions, the inner MBHB on a very eccentric orbit, hence allowing intense
GW emission eventually leading to coalescence. A detailed assessment of the process,
ultimately driven by the induced Kozai-Lidov oscillations of the MBHB orbit, requires
a general relativistic treatment and the inclusion of external factors, such as the New-
tonian precession of the intruder orbit in the galactic potential and its hardening
by scattering off background stars. In order to tackle this problem, we developed a
three-body Post-Newtonian (PN) code framed in a realistic galactic potential, includ-
ing both non-dissipative 1PN and 2PN terms, and dissipative terms such as 2.5PN
effects, orbital hardening of the outer binary, and the effect of the dynamical friction
on the early stages of the intruder dynamics. In this first paper of a series devoted at
studing the dynamics of MBH triplets from a cosmological perspective, we describe,
test and validate our code.

Key words: black hole physics – galaxies: kinematics and dynamics – gravitation –
gravitational waves – methods: numerical

1 INTRODUCTION

Massive black holes (MBHs), ubiquitous in the nuclei of
nearby galaxies (see Kormendy & Ho 2013, and references
therein), are recognised to be a fundamental ingredient in
the process of galaxy formation and evolution along the cos-
mic history of the Universe. In the bottom-up hierarchical
clustering of dark matter overdensities predicted by ΛCDM
cosmology, the notion that MBHs were common in galaxy
nuclei at all epochs leads to the inevitable conclusion that
a large number of massive black hole binaries (MBHBs) did
form during the build-up of the large scale structure (Begel-
man et al. 1980).

MBHBs are expected to be the loudest sources of
gravitational radiation in the nHz-mHz frequency range
(Haehnelt 1994; Jaffe & Backer 2003; Wyithe & Loeb 2003;
Enoki et al. 2004; Sesana et al. 2004, 2005; Jenet et al. 2005;
Rhook & Wyithe 2005; Barausse 2012; Klein et al. 2016), a

regime partially covered by the planned eLISA space-born
interferometer (Consortium et al. 2013), and by existing Pul-
sar Timing Array (PTA) experiments (Desvignes et al. 2016;
The NANOGrav Collaboration et al. 2015; Reardon et al.
2016; Verbiest et al. 2016).

One of the key open questions that determine the ob-
servability of MBHBs by eLISA and PTAs is whether these
systems merge at all within a Hubble time, an issue often re-
ferred to as “the last-parsec problem”. Whenever two galax-
ies merge, it is understood that the MBHs they host will
fall toward the center of the newly formed galaxy as a re-
sult of dynamical friction against stars and gas. When the
relative velocity of the two MBHs exceeds that of the back-
ground stars, dynamical friction becomes ineffective at fur-
ther shrinking their separation, and the two MBHs form a
bound binary.

At this stage, single three-body interactions of the
MBHB with background stars transfers energy from the
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2 Bonetti et al.

MBHB (which will shrink as a result) to the stars (which
may be ejected from the MBHB surroundings or even from
the galaxy; see, e.g., Sesana, Haardt & Madau 2008). After
a first phase of fast orbital shrinking, the binary hardens at
constant rate once it reaches a separation of the order of
the so-called hardening radius, ah ∼ Gm2/4σ

2 (here m2 is
the mass of the secondary, and σ is the stellar velocity dis-
persion, see Quinlan 1996). Typically ah ∼ 1 pc for MBHs
with masses ∼ 108M�, a value significantly larger than the
separation agr ∼ 10−2 pc at which gravitational wave (GW)
emission alone can drive the binary to coalescence within a
Hubble time.

Stellar hardening, however, is only efficient as long as
stars with orbits intersecting the MBHB (the “loss-cone” in
the energy-angular momentum parameter space of stars) do
actually exist. Since in the process stars are ejected by the
slingshot mechanism, new stars need to continuously replen-
ish the loss-cone (Yu 2002). Loss-cone replenishment may
simply happen due to diffusion of stars in energy-angular
momentum space, which occurs on the stellar relaxation
time. Since the latter is typically longer than the Hubble
time for galaxies hosting MBHs larger than ∼ 109M�, ad-
ditional mechanisms are needed to replenish the loss-cone if
MBHBs are to coalesce in the most massive systems. Pro-
posed ways to enhance stellar diffusion are for instance a
possible triaxiality in the galactic potential – following, e.g.,
from recent mergers (Yu 2002; Khan, Just & Merritt 2011;
Vasiliev 2014; Vasiliev, Antonini & Merritt 2014; Vasiliev,
Antonini & Merritt 2015) – or galactic rotation (Holley-
Bockelmann & Khan 2015). This may lead MBHBs to merge
within a timescale of a few Gyr or less, depending on the
binary eccentricity (Sesana & Khan 2015).

If a significant amount of gas is present in the galactic
nucleus, the evolution of the binary down to GW dominated
separations may be faster, because MBHBs are expected
to undergo planetary-like migration, which may drive the
MBHB to coalescence within ∼ 107–108 yr (Haiman, Kocsis
& Menou 2009; Colpi 2014). However, this is not expected
to be a major effect for most low-redshift galaxies hosting
MBHs with masses in the PTA range (∼ 109M�), since
those galaxies are typically gas-poor. Gas interactions, how-
ever, may be important for eLISA, i.e., for MBHBs in the
mass range 104–107M� (Dotti et al. 2007).

Finally, a third major process that could solve the last
parsec problem is provided by triple MBH interactions,
which might occur when a MBHB stalled at separations
. ah (because of the lack of sufficient gas and inefficient
loss-cone replenishment) interacts with a third MBH – the
“intruder” – carried by a new galaxy merger. More specifi-
cally, these hierarchical triplets – i.e., triple systems where
the hierarchy of orbital separations allows one to define an
inner and an outer binary, the latter consisting of the in-
truder and the center of mass of the former – may undergo
Kozai-Lidov (K-L) oscillations (Kozai 1962; Lidov 1962).
These particular resonances take place if the intruder is on
a highly inclined orbit with respect to the inner binary, and
tend to secularly increase the eccentricity of the inner bi-
nary, eventually driving it to coalescence.

The standard method for the investigation of the K-
L mechanism leverages on a perturbative approach of the
secular restricted three-body problem, in which the Hamil-
tonian is expanded as power series in terms of the inner to

outer semi-major axis ratio. In the original works of Kozai
and Lidov only the first term in the expansion, i.e., the
quadrupole term proportional to (ain/aout)

2, was taken into
account. Higher order terms result in new phenomenology
(Ford, Kozinsky & Rasio 2000), which has been recently re-
viewed in Naoz (2016). Several other works have been focus-
ing on the study of the K-L mechanism in different astro-
physical contexts including: planetary dynamics (Holman,
Touma & Tremaine 1997; Katz, Dong & Malhotra 2011;
Naoz, Farr & Rasio 2012; Naoz et al. 2013), interactions of
stellar size objects in globular clusters (Antonini et al. 2016;
Antognini & Thompson 2016) and around MBHs, and triple
MBH systems (Blaes, Lee & Socrates 2002; Iwasawa, Funato
& Makino 2006, 2008; Hoffman & Loeb 2007; Amaro-Seoane
et al. 2010).

A first study devoted to MBH triplets was presented
in Blaes, Lee & Socrates (2002), where the secular (i.e.,
orbit-averaged) Hamiltonian of a hierarchical triplet was ex-
panded up to octupole order. The authors also included sec-
ular terms to account for relativistic precession and GW
losses, but neglected the second post Newtonian (2PN) term.
Through numerical integration of the orbit averaged equa-
tions of motion, Blaes, Lee & Socrates (2002) proved that
the merger time-scale of a MBHB can be reduced by up to
an order of magnitude. A Newtonian direct N-body simu-
lation including a MBH triplet and background stars was
later presented by Iwasawa, Funato & Makino (2006, 2008),
who included GW losses for the three MBHs. The authors
found that K-L oscillations and/or strong resonant interac-
tions can greatly increase the eccentricity of the innermost
binary, leading it to coalesce.

Hoffman & Loeb (2007) embarked in a systematic study
of MBH triplets embedded in a stellar background. Triplets
were initialised from astrophysically and cosmologically mo-
tivated initial conditions, and the dynamics was purely New-
tonian but with the introduction of a recipe to account for
gravitational radiation. The authors found that three-body
interactions can enhance the rate of MBHB coalescences,
suggesting the production of burst-like GW signals due to
the high eccentricities of the systems.

More recently, Amaro-Seoane et al. (2010) framed the
dynamics of triplets in the specific context of GW detection
with PTAs. Using a large library of systems from Hoffman
& Loeb (2007), they studied the phenomenology of bursts
observable by PTAs, by assuming an arbitrary fraction of
MBHBs driven by triple interactions.

In the present paper we focus on the dynamics of MBH
triplets, similarly in spirit to Hoffman & Loeb (2007). A ma-
jor improvement is the introduction of all relativistic correc-
tions up to 2.5PN order, which are crucial when dealing with
K-L oscillations, since pericenter precession can strongly in-
hibit the mechanism (Holman, Touma & Tremaine 1997).
We will also extend our investigation to systems spanning a
much larger parameter space in terms of MBH masses and
mass ratios. This is our first step of a planned series of four
papers devoted to a detailed analysis of the post-Newtonian
evolution of MBH triplets in galactic nuclei. Here we present
and test our numerical integrator. In the second paper of the
series we will discuss the astrophysical conditions for the for-
mation of MBH triplets, while in the third step we will frame
the whole picture in a cosmological context, adopting a semi-
analytical model of galaxy and black hole co-evolution. In a
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Post-Newtonian MBH Dynamics 3

final fourth paper we will compute waveforms and make pre-
dictions for current and future low frequency GW searches,
such as PTAs and eLISA.

2 THREE BODIES IN A STELLAR
BACKGROUND

Three-body Newtonian dynamics is largely textbook mat-
ter. Here we first briefly summarise the post-Newtonian
approach to the general relativistic problem, and then we
present in detail our original method to include the effects
of the stellar environment on a hierarchical MBH triplet.

2.1 PN equations of motion

The Hamiltonian for a triple system of non-spinning bodies
is given, in schematic form and through 2.5PN order1, by

H = H0 +
1

c2
H1 +

1

c4
H2 +

1

c5
H2.5 +O

(
1

c6

)
. (1)

Each PN order, through its corresponding Hamiltonian, in-
troduces different relativistic corrections to the standard
Newtonian laws of motion, and therefore a qualitatively
different dynamics. Even powers of c−1 represent conser-
vative terms, while odd powers are dissipative terms. In
particular, H0, H1 and H2 are functions of the positions
and conjugate momenta of the three bodies, i.e., ~xα and ~pα
(with α = 1, 2, 3), while the dissipative 2.5PN Hamiltonian
H2.5 must also depend explicitly on time to account for the
leading-order backreaction of GW emission onto the triplet’s
dynamics (this is because otherwise dH/dt = ∂H/∂t = 0,
which would imply energy conservation).

The equations of motion for the α-th body then take
the usual form

~̇xα =
∑
n

1

c2n
∂Hn
∂~pα

(2)

~̇pα = −
∑
n

1

c2n
∂Hn
∂~xα

. (3)

Explicit expressions for the Hamiltonian are given by Schäfer
(1987), Lousto & Nakano (2008) and Galaviz & Brügmann
(2011) (see also Königsdörffer, Faye & Schäfer 2003, for
higher-order terms), and are reported in the appendix at
Newtonian, 1PN and 2PN order. The dissipative 2.5PN
Hamiltonian is instead slightly trickier and we give it ex-
plicitly here:

H2.5 =
G

45
χij(~xα, ~pα) χ̇ij(~xα′ , ~pα′), (4)

where

χij(~xα, ~pa) =
∑
α

2

mα

(
|~pα|2δij − 3pα,ipα,j

)
+
∑
α

∑
β 6=α

Gmαmβ

rαβ
(3nαβ,inαβ,j − δij) (5)

1 The PN approximation expands the dynamics perturbatively in
the ratio v/c, v being the binary’s relative velocity (Will 1993). A
term suppressed by a factor (v/c)2n with respect to the leading

(Newtonian) order is said to be of nPN order.

and

χ̇ij(~xα′ ,~pα′) =∑
α′

2

mα′

[
2(~̇pα′ · ~pα′)δij − 3(ṗα′ipα′j + pα′iṗα′j)

]
+
∑
α′

∑
β′ 6=α′

Gmα′mβ′

r2α′β′

[
3(ṙα′β′inα′β′j + nα′β′iṙα′β′j)

+ (~nα′β′ · ~̇rα′β′)(δij − 9nα′β′inα′β′j)
]
. (6)

Here, Latin indices label 3-dimensional vector components
(e.g., xαi indicates the i-th position coordinate of the α-th
body), δij is the usual Kroneker delta, and we have defined

~rαβ = ~xα − ~xβ
rαβ = |~rαβ |

~nαβ =
~rαβ
rαβ

. (7)

Primed quantities denote retarded variables that are not
subject to the derivative operators in eqs. 2 and 3. Primed
and unprimed variables are then identified once the deriva-
tives in the equations of motion (eqs. 2 and 3) have been cal-
culated. This implicitly makes H2.5 time-dependent, as ex-
pected. In more detail, the 2.5PN contribution to the equa-
tions of motion reads

(~̇xα)2.5 =
1

c5
∂H2.5

∂~pα

=
G

45c5
χ̇ij(~xα, ~pα; ~̇xα, ~̇pα)

∂

∂~pα
χij(~xα, ~pα) (8)

(~̇pα)2.5 = − 1

c5
∂H2.5

∂~xα

= − G

45c5
χ̇ij(~xα, ~pα; ~̇xα, ~̇pα)

∂

∂~xα
χij(~xα, ~pα). (9)

Note that in order to have terms not higher than 2.5PN,
the time derivatives of the positions and conjugate mo-
menta that appear in the function χ̇ij should be replaced
by their Newtonian limits, i.e., ~̇xα → ∂H0/∂~pα and ~̇pα →
−∂H0/∂~xα.

2.2 Hardening in a fixed stellar background

One of the key ingredients in the dynamical evolution of a
hierarchical MBH triplet in a realistic post-merger situation
is the hardening of the outer binary. Ambient stars, unbound
to the outer binary, are expelled by the gravitational sling-
shot, carrying away the MBHB energy and angular momen-
tum. As a result, the MBHB orbit gets tighter and more
eccentric.

As described in Quinlan (1996), the binary evolution
in an isotropic fixed background of stars of density ρ and
one-dimensional velocity dispersion σ can be expressed in
terms of the dimensionless hardening rateH and eccentricity
growth rate K as

ȧ = −a2GρH
σ

, (10)

ė = a
GρHK

σ
. (11)

Sesana & Khan (2015) demonstrated that these equations
are appropriate to describe the hardening in a galaxy merger
remnant, provided that ρ and σ are defined at the binary
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4 Bonetti et al.

influence radius, i.e., the radius containing twice the binary
mass in stars. H and K can be derived from detailed three-
body scattering experiments as in Sesana, Haardt & Madau
(2006), who provided numerical fits to H and K for var-
ious combinations of MBH mass ratios, eccentricities and
separations.

Our aim here is to include the hardening of the outer
binary in the three-body dynamics described in the previous
subsection. The methodology we employ relies on a velocity-
dependent (hence dissipative) fictitious force, which is tuned
to provide an orbital averaged decay and an eccentricity
growth consistent with eqs. 10 and 11. It is worth stressing
that it is exactly the hierarchical nature of the triplets we
consider that allows us to treat the hardening of the outer bi-
nary following Quinlan (1996) and Sesana, Haardt & Madau
(2006). The hardening binary is, in our case, formed by the
intruder and by the center of mass of the inner binary.

Under the assumption of a small dissipative force, the
rates of change of the orbital elements can be derived by
standard perturbation theory in the framework of celestial
mechanics. We start off by considering the perturbed two-
body problem, i.e.,

d2~r

dt2
= −GM

r3
~r + ~δ, (12)

where M is the binary total mass, ~r the relative separation,
and in the most general case the extra-acceleration ~δ is a
generic function of position, velocity and time. Given the
planar geometry of the Keplerian problem, ~δ can be pro-
jected along three directions, i.e., on the orbital plane along
the radial direction (S) and normal to it (T ), and along the
direction orthogonal to the orbital plane (W ):

S =
~δ · ~r
r
, T =

~δ · (~h× ~r)
hr

, W =
~δ · ~h
h

, (13)

where ~h is the binary’s angular momentum per unit mass.
During the hardening phase, the orientation of the or-

bital plane of a MBHB undergoes a random walk (Merritt
2002). Though in an triaxial or axisymmetric potential (e.g.,
when the global rotation of the stellar bulge is important)
the effect is relevant (see Gualandris, Dotti & Sesana 2012),
in the case of a spherically symmetric stellar distribution as
the one we consider here (see next §2.3), the random orien-
tation of the orbital plane is ∼< 10◦. We therefore neglect the
re-orientation effect during the hardening phase, i.e., we set
W = 0.

While the energy per unit mass in the unperturbed Kep-
lerian problem is a constant of motion, the dissipative force
is responsible for its variation in time, i.e., Ė = ~δ · ~v =
Svr + Tvt, where vr and vt are the radial and tangential
velocity, respectively. In terms of eccentricity e and orbital
true anomaly ν, the velocity components are written as

vr =
GM

h
e sin ν,

vt =
GM

h
(1 + e cos ν), (14)

so that the energy variation becomes

Ė = [Se sin ν + T (1 + e cos ν)]
GM

h
. (15)

Finally, from h =
√
GMa(1− e2), eq. 15 gives the variation

0

20
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60

a
[p

c]
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Secular evolution

Simulation

0.0 0.2 0.4 0.6 0.8 1.0

Time [yr] ×108
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0.80

0.85

0.90

e

Eccentricity

Secular evolution

Simulation

Figure 1. Semi-major axis (upper panel) and eccentricity (lower

panel) evolution of a MBH binary scattering off background stars.

Our implementation of the hardening process (shown as filled
dots) is compared to the results of the scattering experiments of

Sesana, Haardt & Madau (2006), shown as solid lines.

rate of the semi-major axis a:

ȧ =
2a2

GM
Ė = 2

√
a3

GM(1− e2)
[Se sin ν + T (1 + e cos ν)] .

(16)
The perturbing force changes also the angular momen-

tum according to the torque exerted. In our specific case
(i.e., W = 0), the angular momentum varies only in magni-
tude according to

ḣ =
GM

2h

[
(1− e2)ȧ− 2aeė

]
= rT. (17)

By substituting ȧ from eq. 16 and expressing r in terms
of a, e and ν, i.e.,

r =
a(1− e2)

1 + e cos ν
, (18)

we finally obtain the variation rate of the eccentricity,

ė =

√
(1− e2)a

GM

[
S sin ν + T

2 cos ν + e(1 + cos2 ν)

1 + e cos ν

]
. (19)

Eqs. 16 and 19 represent instantaneous variation rates,
that need to be compared to the orbit averaged rates derived
from scattering-experiment results (eqs. 10 and 11). We then
need to perform an orbit average of eqs. 16 and 19, i.e.,

< ȧ > =
1

Porb

∫ Porb

0

dt ȧ, (20)

< ė > =
1

Porb

∫ Porb

0

dt ė. (21)

Note that, in order to numerically compute the above inte-
grals, the integration over time must be substituted with an
integration over the true anomaly. Starting from Kelper’s
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equation, straightforward but rather long calculations give

dt =

√
a3

GM

(1− e2)3/2

1 + e cos2 ν
dν, (22)

where we assumed negligible variations of both a and e along
a single orbit.

Next, we need an appropriate form for ~δ (i.e., appropri-
ate S and T ), such that its orbit-averaged action produces

orbital variations matching eqs. 10 and 11. We assume that ~δ
is the sum of two terms, one orthogonal to ~v and one parallel
to ~v:

~δ = A
~v · ~r
r

[
~r − (~r · ~v)~v/v2√
r2 − (~r · ~v)2/v2

]
−Bvr~v, (23)

which can be decomposed into radial and tangential compo-
nents (c.f. eq. 13) as

S = Avr

(
v

vt
− v2r
vvt

)
−Bvrvr, (24)

T = −Av
2
r

v
−Bvrvt, (25)

where A and B are functions of (a, e). Finally, we sub-
stitute S and T in eqs. 16 and 19, and we tune the fit-
ting functions A and B so that the orbit averages (eqs. 20
and 21) match the results obtained by scattering experi-
ments (eqs. 10 and 11). If we choose the form

A(a, e) =
GρHK

σ

2a

e(1− e2)β1(1− e5)β2
, (26)

B(a, e) =
GρH

2σ

√
a

GM

[
(1− eβ3)β4

(1− eβ5)β6

]
, (27)

where β1 = 0.38, β2 = 0.055, β3 = 8.036, β4 = 0.148, β5 =
1.90, and β6 = 0.22, we obtain a fairly good agreement with
the results of three-body scattering experiments presented
in Sesana, Haardt & Madau (2006) (see fig. 1).

2.3 Stellar bulge

The hardening process described in the previous section de-
pends upon the density profile of the stellar bulge hosting
the MBHs. We describe the distribution of stars as a Hern-
quist profile (Hernquist 1990) with a central core:

ρ(r) =


M∗
2π

r0
r(r + r0)3

if r > rc,

ρ(rc) (r/rc)
−1/2 if r 6 rc,

(28)

where M∗ and r0 can be consistently determined by obser-
vational scaling relations (e.g., Kormendy & Ho 2013), as
described in Sesana & Khan (2015). The inner core is mod-
elled as a shallower power-law with index −1/2 (Khan et al.
2012), aimed at mimicking the erosion of the central region
of the bulge by the now-stalled inner MBHB (Ebisuzaki,
Makino & Okumura 1991; Volonteri, Madau & Haardt 2003;
Antonini, Barausse & Silk 2015a,b). Indeed, during its al-
leged hardening phase, the inner MBH ejects stars via the
slingshot mechanism, hence producing a mass deficit in the
stellar distribution that can be quantified as (Merritt 2013;
Antonini, Barausse & Silk 2015a,b)

∆M = M

[
0.7q0.2 + 0.5 ln

(
0.178

c

σ

q4/5

(1 + q)3/5

)]
, (29)

where here M is the mass of the inner binary, and q =
m2/m1 6 1 the binary’s mass ratio. The core radius rc can
be easily obtained by imposing that ∆M equals the mass dif-
ference, within rc, between the original Hernquist and r−1/2

profiles .
The bulge mass Mb is given by integration of eq. 28,

i.e.,

Mb(r) =



M∗r0

[
4r2c

5(rc + r0)3

+
(r − rc)(2rcr + r0(rc + r))

(rc + r0)2(r + r0)2

]
if r > rc

4M∗r
5/2r0

5r
1/2
c (rc + r0)3

if r 6 rc.

(30)

The core profile is then used to compute the hardening phase
of the outer MBHB as detailed in the previous subsection,
and to introduce a fixed analytical spherically symmetric
potential in the equations of motion of the triplet, whose net
effect is a Newtonian orbital precession with sign opposite
to that induced by PN terms.

Note that also during this phase stars will be ejected
from the bulge, eroding the density profile and hence slowing
the hardening of the outer binary. On the other hand, it is
conceivable that a similar amount of mass in stars is brought
in by the intruder, so the net effect is difficult to asses. We
therefore assume the outer binary to evolve in the full loss-
cone limit, with the stellar distribution given by eq. 28.

2.4 Stellar dynamical friction

As a last effect acting already on kpc scale, we include the
dynamical friction on the intruder of mass m in its way
to the bulge center. We adopt the simple Chandrasekhar’s
formula (Chandrasekhar 1943), i.e.,

~̇vdf = −4πGρm ln Λ

[
erf(X)− 2Xe−X

2

√
π

]
~v

v3
(31)

where here v is the velocity of the intruder, ln Λ is the
Coulomb logarithm and X = v/(

√
2σ). Following Hoffman

& Loeb (2007), we adopt

ln Λ = max

{
ln

(
r(σ2 + v2)

Gm

)
, 1

}
, (32)

and

ρ = min {ρ(r), ρ(rinf)} , (33)

where rinf is the binary influence radius. Dynamical friction
is typically turned off in the code as soon as the intruder
binds to the inner binary, when it becomes sub-dominant
compared to the gravitational slingshot of background stars.

3 CODE IMPLEMENTATION AND TESTS

We approached the computational problem from the most
straightforward side, i.e., we employed a direct three-body
integrator without any regularisation scheme to control
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Figure 2. Test of energy and angular momentum conservation for the Henon’s Criss Cross configuration. Purely Newtonian dynamics

is stable against numerical errors for at least 10, 000 orbits. Integrations in quadruple (left panel) or double precision (right panel) do

not show significant differences. The apparent orbital precession has to be ascribed to round-off errors in the initial conditions.

round-off errors, rather, we selected a customised numeri-
cal precision suited for our goals.2 Our numerical scheme
directly integrates the three-body equations allowing for
velocity-dependant forces (such as the PN dissipative terms
and the binary hardening induced by the stellar background
discussed in the previous section). The code leverages on
a C++ implementation of the Bulirsch-Stoer (BS) method
(Bulirsch & Stoer 1966; Press et al. 2002) based on the Mod-
ified Midpoint algorithm and on the Richardson extrapola-
tion (Richardson 1911). The BS scheme advances the solu-
tion of a system of ordinary differential equations by “macro-
scopic” steps, i.e., the single step actually consists of many
sub-steps of the Modified Midpoint method (i.e., the effec-
tive integrator scheme), which are then extrapolated to zero
stepsize by the Richardson technique based on the Neville’s
algorithm (Press et al. 2002). The extrapolation, together
with the dimension of the steps, provides a scheme to ob-
tain high accuracy with minimised computational efforts.

3.1 Test of Newtonian dynamics

In order to validate the code we performed some standard
tests. We first tested the energy and angular momentum
conservation at Newtonian order by means of a well known
configuration for a three-body system, the so-called Henon’s
Criss-Cross (Henon 1976; Moore & Nauenberg 2006). We
evolved the system for nearly 10, 000 orbits, and checked
that both energy and angular momentum are conserved at

2 We employed a direct three-body integrator since the secular

equations of motion in some cases lead to inaccurate results, in
particular when the eccentricities are very high (Antonini, Murray
& Mikkola 2014). Note that recently Luo, Katz & Dong (2016)

proposed a correction to the secular equations in order to recover
the results of direct integration.

a level of one part in 1013. In fig. 2 we plot the first and
last orbit of each of the three equal mass bodies of the test,
comparing the results of integration in quadruple (left panel)
and double (right panel) precision, and found no significant
differences in the two runs. We will return later on this point.
Note that the apparent orbital precession has to be ascribed
to round-off errors in setting the appropriate initial condi-
tions.

3.2 Tests of PN dynamics

We then proceeded to test our code against PN dynamics
by performing some of the trial runs performed by Mikkola
& Merritt (2008) using the ARCAHIN code. ARCHAIN,
which includes non-dissipative 1PN, 2PN and dissipative
2.5PN corrections, employs a regularised chain structure
and the time-transformed leapfrog scheme to accurately in-
tegrate the motions of arbitrarily close binaries with arbi-
trarily small mass-ratios. Recently, Antonini et al. (2016)
used ARCHAIN to compute the evolution of hierarchical
triplets formed in dense globular clusters.

We report on two tests analogous to those presented in
Mikkola & Merritt (2008). The first one consisted in a two-
body dynamics check, where a star of mass m? = 10 M�
orbits a MBH of mass mBH = 3.5×106M�, with semi-major
axis a = 1 mpc. We considered 3 different eccentricities (e =
0.9, 0.98, 0.99), and checked the progression of the periastron
∆ω determined by the relativistic precession. As shown in
fig. 3, we obtain in all tested cases a good agreement with
the 2PN theoretical prediction, i.e.,

∆ω =
6πGM

a(1− e2)c2
+

3(18 + e2)πG2M2

2a2(1− e2)2c4
, (34)

where M = m? +mBH.
As a second test we analysed a three-body case, in which

a star of mass m3 = 10M� interacts with a MBHB, formed
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Figure 3. The periastron ω is shown against time for a two-body

system consisting of a MBH of mass mBH = 3.5× 106 M� and a

star with m? = 10 M� and semi-major axis a = 1 mpc. Red dots
show every 1,000 orbits the advancement of the pericenter com-

puted with our code, while the blue lines are the 2PN theoretical

prediction. Three eccentricity are considered, e = 0.9, 0.98, 0.99,
from bottom to top.

by a MBH of mass m1 = 3.5 × 106M�, and an interme-
diate mass BH with m2 = 3.5 × 103M�. The MBHB has
semi-major axis ain = 0.1 mpc and eccentricity ein = 0.9,
while the star is placed on an orbit with aout = 8 mpc and
eout = 0.974. In fig. 4, upper panel, we show aout as a func-
tion of time. Initially the star experiences close encounters
with the MBHB, as apparent from the “noisy” pattern of
aout. After ' 1, 500 yrs the separation of the MBHs has
greatly reduced because of GW emission, the star effectively
“sees” an almost central potential at this stage, and its or-
bital separation stabilises. In fig. 4, lower panel, the argu-
ment of the star pericenter ω is compared to 2PN theoretical
predictions accounting for the time variations of aout and
eout. Overall our results are in close agreement with those
reported in Mikkola & Merritt (2008), although some minor
numerical differences do exist, most probably due to slightly
different initial conditions (e.g., the MBHB initial phase was
not reported in Mikkola & Merritt 2008, while we initially
placed both the MBHB and the star at the respective apoc-
enter).

We then tested the implementation of the dissipative
2.5PN term, comparing our results to the numerical inte-
gration of the orbit-averaged equation of Peters & Mathews
(1963) for the time derivative of the semi-major axis and
eccentricity, i.e.,

ȧ = −64G3

5c5
m1m2

a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

(35)

ė = −304G3

15c5
m1m2

a4(1− e2)5/2

(
e+

121

304
e3
)
. (36)

We selected a stellar-size binary (see Galaviz & Brügmann
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Figure 4. A three-body system with m1 = 3.5× 106 M�, m2 =

3.5×103 M�, and m3 = 10 M� is considered. The time evolution

of the semi-major axis aout (upper panel) and the argument of the
pericenter ω of m3 (lower panel) are shown as red dots. The blue

line in the lower panel represents the 2PN theoretical predictions

accounting for the time variations of aout and eout.

2011) with m1 = 1 M�, m2 = m1/2, initial semi-major
axis a = 160G(m1 +m2)/c2, and two different values of the
initial eccentricity, e = 0.1 and e = 0.5. We switched off the
1PN and 2PN terms, as eqs. 35 and 36 take into account
only 2.5PN order corrections to the Newtonian dynamics.
Fig. 5 shows the excellent agreement between simulations
and analytical results.

3.3 Effects of numerical precision

We return here on the impact that the adopted numerical
precision has on our results. We have already seen that in
the Henon’s Criss-Cross test the double and quadruple pre-
cisions give essentially the same output. We performed a fur-
ther detailed analysis of the issue comparing simulations of
the full dynamics of MBH triplets (i.e., all terms up to 2.5PN
were considered). We found that the intrinsic chaotic nature
of the three-body problem makes results quantitatively de-
pendent upon the chosen numerical precision.3 However, the
qualitative behaviour of the simulated triplets appear to be
fairly robust against round-off errors. This is shown in fig. 6,
where we plot the relative separation (upper panels), circu-
larity (middle panels) and inclination (lower panels) of the

3 This is known as the “shadowing” property of numerical solu-

tions to deterministic chaotic systems. Indeed, for these systems,
the details of a numerical solution are highly dependent on the
round-off errors, but the calculated solution is very close to some

trajectory of the system, i.e., it may not correspond exactly to the
desired trajectory, but to another possible trajectory of the sys-

tem (namely, one with slightly different initial conditions). See,

e.g., Hilborn (1994).
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is set to e = 0.1. Right: the initial eccentricity is set to e = 0.5.
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Figure 6. The relative separation (upper panels), circularity (middle panels) and inclination (lower panels) are shown for the inner
binary of a hierarchical triplet with m1 = 109M�, m2 = 3 × 108M�, m3 = 5 × 108M�, aout = 4.43pc, eout = 0.5, ain = 0.44pc,

ein = 0.8, and i = 80◦. The solid red line is ain. Left: quadruple precision calculation. Right: double precision calculation.

inner binary. Note that single orbits are not recognisable on
this time scale. The red line represents the semi-major axis
of the inner binary. Results in quadruple (double) precision
for a triple system with: m1 = 109M�, m2 = 3 × 108M�,
m3 = 5 × 108M�, aout = 4.43pc, eout = 0.5, ain = 0.44pc,
ein = 0.8, and i = 80◦ are shown in the left (right) pan-
els. In both cases the inner binary is bound to coalesce in
few times 107 yrs, the precise timescale depending upon the

adopted numerical precision. In fig. 7 we report the very
same quantities for a similar triplet with initial ein = 0. In
order to highlight the Kozai-Lidov oscillations experienced
by the inner binary, we show a time zoom of the orbital evo-
lution. Note that on this scale the only clear difference be-
tween quadruple and double precision integration is a slight
temporal shift of the whole evolution.

We conclude our analysis of the effects of numerical
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Figure 7. Same as fig. 6 but assuming an initial ein = 0. Note the different temporal scale compared to fig. 6.

precision by pointing out that quadruple precision typically
takes, in terms of computer time, at least a factor ∼> 10
longer than double precision for the same set of parameters.
Given this fact, the similar behaviour we witnessed in the
test cases, and the fact that our final goal is a detailed sur-
vey of the parameter space of MBH triplets in a cosmological
context, we decided to restrict our analysis to simulations
in double numerical precision.

4 DYNAMICS OF MBH TRIPLETS

4.1 Standard three-body dynamics

We start by considering the standard three-body problem,
i.e., the interaction of three MBHs (including relativistic cor-
rections up to order 2.5PN) without the inclusion of any ex-
ternal force due to, e.g., the stellar environment. We study
the particular case of (initially) hierarchical triplets, i.e.,
three-body systems that can be modelled as two separate
binaries: an inner, close one (m1 and m2) and a much wider
one formed by the intruder m3 and the center of mass of the
former.

A hierarchical triplet is prone to a peculiar dynami-
cal phenomenon of purely Newtonian origin, known as the
Kozai-Lidov (K-L) mechanism (Kozai 1962; Lidov 1962). If
the relative inclination between the inner and outer binary
is larger than a critical angle (' 39.23◦), then a periodic
exchange between the inclination and the eccentricity of the
inner binary occurs on a time-scale

tKL ∼ a3out(1− e2out)3/2
√
m1 +m2

G1/2a
3/2
in m3

' 2× 106 yrs, (37)

where the numerical value reported above is for a MBHB
with m1 = m2 = m3 = 108 M�, ain = 1 pc, aout = 10 pc,
and eout = 0.

The most important feature of the K-L mechanism is
the excitement of periodic oscillations of ein at the expenses

of the relative inclination of the two binaries: ein has a
maximum when the relative inclination of the two binaries
reaches its minimum value and viceversa. In this situation
the emission of GWs is highly efficient, hence the K-L mech-
anism ultimately promotes the coalescence of the inner bi-
nary, possibly easing the last-parsec problem. Indeed, the
oscillations of ein can in principle reduce the coalescence
time-scale by orders of magnitude.

However, as already pointed out, the K-L mechanism is
a purely Newtonian phenomenon, and the inclusion of rel-
ativistic corrections to Newtonian dynamics can have dra-
matic consequences on the K-L mechanism itself (see Blaes,
Lee & Socrates 2002). The very process relies on the libra-
tion of the pericenter argument of the inner binary. Since
relativistic effects cause the precession of this orbital ele-
ment, if the K-L timescale is longer than the relativistic
precession timescale, the oscillations of ein can be strongly
inhibited compared to the purely Newtonian case.

As an example, we consider a triplet with the following
parameters: m1 = 109M�, m2 = 3 × 108M�, m3 = 5 ×
108M�, eout = 0.5, ain = 0.4pc, ein = 0.3, and i = 80◦, and
two different values of aout. In fig. 8 we compare the 2.5PN
(red lines) and purely Newtonian (green lines) dynamical
evolution of the system, assuming aout = 4 pc. We plot
the relative separation (upper panels), circularity (middle
panels) and inclination (lower panels) of the inner binary.
The left panels display the evolution for a time spanning
almost 1 Gyr. The oscillations present in the Newtonian case
are the modulation (ascribable to the octupole term) of the
K-L oscillations (due instead to the quadrupole term). Note
how the effect of GW emission manifests itself in the PN
quantities, i.e., in a decrease of the semi-major axis (blue
line) compared to the Newtonian case (black line), and in
orbital circularisation. The K-L oscillations are resolved in
the right panels, where a time zoom of 10 Myr highlights
the significant damping of K-L oscillations when relativistic
effects are included.
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Figure 8. A triplet with m1 = 109M�, m2 = 3×108M�, m3 = 5×108M�, aout = 4 pc, eout = 0.5, ain = 0.4 pc, ein = 0.3, and i = 80◦

is considered. Relative separation (upper panels), the circularity (middle panels) and the inclination (lower panels) of the inner binary
are plotted against time. Red colour refers to results from 2.5PN calculations, while the corresponding Newtonian values are shown in

green. The blue (black) line represents the 2.5PN (Newtonian) value of the semi-major axis ain. Left: entire run. The vertical dashed
lines frame the time interval zoomed in the right panels. Right: the 10 Myr time zoom.
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Fig. 9 shows the very same triplet, but assuming aout =
10 pc. Since the K-L timescale has a strong dependence upon
aout (see eq. 37), in this case relativistic precession is com-
paratively shorter, hence completely destroying the K-L os-
cillations.

4.2 Three-body dynamics in stellar environments

We finally analyse few examples of triplet dynamics in-
cluding the effect of the stellar background, as discussed
in §2. Our initial conditions consist of an inner MBHB
(m1 = 108M�, m2 = 3 × 107M�) stalled on an elliptical
orbit (ein = 0.2) at the center of a spherical stellar dis-
tribution (c.f. eqs. 28–30), and a third, initially far MBH
(m3 = 5 × 107M�) sinking in the global potential well be-
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binaries. Upper red curve is for the case of an initial value i = 89◦,
lower blue curve is for i = 10◦.

cause of dynamical friction. We initialise m3 on an elliptical
orbit (eout = 0.3) at a distance from the center of the or-
der of the bulge scale radius. The properties of the stellar
distribution (see §2.3) are determined by the mass of the
inner MBHB following the scaling relations of Kormendy &
Ho (2013) (for full details see Sesana & Khan 2015). Our

choice of the inner binary mass then gives a stellar mass
M? = 3.2 × 1010M� (the corresponding velocity dispersion
is σ = 164 km/s), a scale radius r0 = 1.2 kpc, and a core
radius rc = 270 pc.

In the simulations, dynamical friction (§2.4) operates
on m3 from the very beginning, while the hardening process
(§2.2) is activated when the intruder reaches the influence
radius of the outer binary (i.e., for a hierarchical triplet, the
radius containing a mass in stars twice the total mass of the
three MBHs). As the triplet evolution proceeds, the hard-
ening process on the outer binary becomes more important
than dynamical friction on m3. Then, we turn off effect of
dynamical friction as soon as the intruder effectively binds
to the inner binary, hence forming a genuine, hierarchical
bound triplet. 4

The numerical implementation of the hardening process
is switched off whenever the triplet, according to the sta-
bility criterion of Mardling & Aarseth (2001), is no longer
hierarchical. When this occurs, in fact, the system dynam-
ics is dominated by chaotic three-body interactions, and the
hardening recipe described by eqs. 10 and 11, derived for
isolated binary systems, is no longer valid.

We assume that the center of the stellar potential al-
ways coincides with the triplet center of mass. Physically,
one expects the innermost stellar distribution to adjust, fol-
lowing the dominating MBH gravitational influence. Practi-
cally, the code moves the triplet center of mass to the origin
of the reference system, where the stellar distribution is cen-
tred. The process is replicated every 1000 time-steps (about
every one hundred orbits of the inner binary). In the fol-
lowing we discuss the triplet+stellar bulge system, assuming
four different values of the initial relative inclination between
the inner and the outer binary.

In fig. 10 we plot, as a function of time from the start
of the simulation, the relative separation between the three
MBH pairs (r12 in blue, r13 in red, and r23 in green) assum-
ing for the inclination a value of i = 89◦. The evolution can
be described by an initial phase lasting ≈ 230 Myr when the
intruder sinks because of dynamical friction, while the inner
binary is basically unperturbed. Then a bound triplet forms,
and the outer binary keeps shrinking because of stellar hard-
ening. At ≈ 300 Myr the outer binary has shrunk enough to
excite K-L oscillations in the inner binary, as clearly shown
by the huge periodic variations of r12. The K-L mechanism is
so effective in periodically increasing ein, that after t = 439
Myr from the start of the simulation the inner binary co-
alesces because of GW emission. It is worth noticing that,
from the point of view of m3, the inner binary is essentially a
point mass, so that r13 ' r23 (i.e., the green and red lines are
coincident). Note also that single orbits of the inner binary
are not recognisable in the figure. The relative inclination of
the two binaries is plotted in fig. 11, upper red curve, as a
function of time, clearly showing the oscillations that occur
on the (reducing) K-L timescale.

4 Note that a bound binary is not necessarily hard (i.e., dynam-
ical friction operates on a light intruder well within the influence

radius of the inner binary, see e.g., Antonini & Merritt 2012).

We therefore run test simulations allowing the dynamical friction
to continuously operate after the formation of a bound triplet,

and we checked that the overall evolution of the system is not

qualitatively different compared to our standard cases.
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Figure 12. Same as fig. 10 but assuming an initial inclination i = 80◦. Left panel: relative separations. Right panel: distance of the
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event between m2 and m3 occurring at t ' 440 Myr.

A further interesting case is shown in fig. 12, where we
set i = 80◦. Though the inclination is large enough to excite
the K-L oscillations (as clearly shown by the blue line in the
left panel), the increase of ein is sensitively lower compared
to the i = 89◦ case (note the different y-axis scale in fig. 10).
This allows the outer binary to shrink more since the hard-
ening process can operate for a longer time, undermining
the secular stability of the triplet. Indeed, at t ' 440 Myr,
an exchange event between m2 and m3 occurs, as seen by
the sudden appearance of the red line, i.e., the inner binary
is now m1 +m3. The exchange complexity is clearly shown
in the time zoom-in of the event (see fig. 13). As a conse-
quence of the exchange, m2 is kicked on a very eccentric and
much wider orbit, while at the same time the inner binary
is relatively stable for the next ' 500 Myr. At this point
a further close encounter with m2 forces the inner binary’s
eccentricity to greatly increase, then leading to coalescence
after ' 1 Gyr from the start of the simulation. We must
point out that in this particular case all the MBHs experi-
ence almost radial oscillations of large amplitude. This can
be seen in the right panel of fig. 12, where we plot the time
evolution of the distance of each of the three MBHs from
the center of the stellar distribution.

A case with i = 20◦ is shown in fig. 14. K-L oscillations
are not excited since the inclination is below the nominal
threshold of ' 39◦. The “original” inner binary is not going
to coalesce, then. However, after ' 420 Myr, m3 and the
inner binary experience an energetic close encounter whose
final outcome is an exchange between m2 and m3. While
m2 is kicked on a very eccentric and much wider orbit, the
inner binary (now m1 + m3, shown again by the red line)
is relatively stable for the next ' 500 Myr. At this point a
fly-by of m2 (which is on a very eccentric, shrinking orbit)
forces the inner binary’s eccentricity to greatly increase, then
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Figure 13. Same as left panel of fig. 12, zooming in the exchange
event occuring at t ' 440 Myr.

leading to coalescence within the next ' 10 Myr (see fig. 15).
Also in this case, the three MBHs are slingshot on almost
radial orbits in the stellar potential. Indeed, the coalescence
of the inner binary occurs when it lies at ' 1 kpc from the
center of the stellar distribution.

We must note that, whenever the MBHs are forced on
almost radial kpc-scale orbits as in in the last two cases
discussed, the possible triaxiality of a more realistic stellar
distribution could alter the dynamics of the triplet, possibly
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Figure 14. Same as fig. 12 but assuming an initial inclination i = 20◦.

delaying any close encounter between m2 and the inner bi-
nary. We plan to include and analyse the effects of triaxiality
in the next implementation of our code.

We finally analyse a system with relative binary incli-
nation set to i = 10◦. Despite of the low initial inclination,
the inner binary is bound to coalesce after t = 458 Myr, as
shown in fig. 16. After ' 440 Myr, the triplet evolution is
characterised by many close encounters (we also witness four
exchanges) that increase the relative inclination above the
K-L critical angle. The final outcome is most probably de-
termined by K-L oscillations with contribution from higher
orders (see Li et al. 2014). Note that during the last Myr
before the binary merger, the pericenter is as small as ' 1
mpc, thus making the system a suitable candidate for a PTA
burst-like signal.

The time evolution of the relative inclination of the two
binaries is shown in fig. 11, lower blue curve. As the intruder
gets close enough to the inner binary, small periodic varia-
tions of i on long timescales (most probably led by high order
K-L resonances) are excited. It is only when the three bodies
experience the final close encounters at t ' 440 Myrs (even-
tually leading to the coalescence of the inner binary) that
the rapid changes in inclination become large and erratic.

5 DISCUSSION AND CONCLUSIONS

5.1 Relevance of the dynamical ingredients
included in the code

The test runs shown in the previous section reveal an ex-
tremely complex and diverse phenomenology, in which all
the ingredients included in the modelling play a relevant
role. Stellar hardening is crucial in bringing the intruder
first down to a separation where K-L resonances can be ef-
fectively excited (∼ 10 pc for the specific masses examined),
and then further down to experience strong interactions with
individual components of the inner binary. K-L resonances
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e i
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Figure 15. The final phase of the i = 20◦ case. A fly-by of m2

at t ' 937 Myr causes ein to grow form ' 0.95 to ' 0.99, leading
the inner binary to coalesce within the next ' 10 Myr.

require that the properties of the inner binary do not change
over a time tKL (eq. 37). Although this is a safe condition
for a Newtonian system, it easily breaks down when general
relativistic effects are included. In fact, as firstly demon-
strated by Blaes, Lee & Socrates (2002), relativistic induced
precession at 1PN and 2PN order can suppress K-L reso-
nances. Considering only the leading 1PN order for simplic-
ity, a comparison between the K-L and relativistic precession
rates yields (Chen et al. 2011)
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Figure 16. Same as fig. 10 but assuming i = 10◦. Left: entire run. The vertical dashed lines frame the time interval zoomed in the right
panel. Right: the 20 Myr time zoom.

ω̇KL

ω̇GR
∼ m3

m1 +m2

(
ain
aout

)3
ain
RS,in

(1− e2in)1/2

(1− e2out)3/2
, (38)

where RS,in = G(m1 +m2)/c2 is the “equivalent” grav-
itational radius of a MBH with mass equal to the mass of
the inner binary. The K-L mechanism is effective only when
ω̇KL > ω̇GR. For example, given a specific inner binary, the
intruder has to shrink to a small enough aout to trigger it.
This is what we have shown in figures 8 and 9, where the
system with smaller aout (figure 8) undergoes more effective
K-L cycles. Note how the GW driven hardening of the inner
binary progressively suppresses the effect. This is because
ain decreases, bringing down the ω̇KL/ω̇GR ratio in eq. 38.
The exact point at which K-L becomes effective also de-
pends on the mass ratio of the intruder with respect to the
inner binary, and on the eccentricities of the inner vs. the
outer binary. Note that as ein increases, the ratio ω̇KL/ω̇GR

decreases. Therefore, the K-L mechanism might eventually
self-regulate itself: as it grows the inner binary more eccen-
tric, it also makes relativistic precession more effective. The
condition ω̇KL > ω̇GR might therefore not be satisfied any
longer, thus suppressing the K-L effect and eventually alter-
ing the overall dynamics of the system.

Although our investigation is similar in spirit to that
of Hoffman & Loeb (2007), the above discussion highlights
the importance of the differences in the two implementa-
tions. In particular, Hoffman & Loeb (2007) did not include
1PN and 2PN relativistic precession in their equations. This
might significantly alter the overall statistical properties of
merging binaries (e.g., eccentricities, coalescence timescales)
because, as we just discussed, the conditions for triggering
K-L resonances, and thus the general dynamics of the sys-
tem, are different. Moreover, our treatment of the hardening
in the stellar background is more accurate, since it also re-
produces the eccentricity evolution in the hardening phase.
This is important because i), it affects the triggering point

of K-L cycles (eq. 38), and ii), it has a strong impact on the
stability of the hierarchical triplet and on the probability of
close encounters leading to chaotic behaviour.

5.2 Astrophysical implications

The main aim of this paper is to present and validate the
code, and a thorough analysis of the dynamics of MBH
triplets is deferred to forthcoming papers of the series we
planned. Still, the few cases examined here already provide
some interesting astrophysical insights that we briefly out-
line in the following.

In all our simulations, two of the MBHs (not necessar-
ily those originally forming the inner binary) coalesce in less
than 1Gyr from the start of the dynamical friction phase
of the intruder. Therefore, triple interactions might provide
a viable channel to merge MBH binaries in massive, low
density galaxies, where hardening against the stellar and
gaseous background might act on a timescale of several Gyr
(Khan, Just & Merritt 2011; Vasiliev, Antonini & Merritt
2015; Sesana & Khan 2015). At least a fraction of massive
elliptical galaxies, which host the most massive binaries tar-
geted by PTAs, might realistically undergo multiple mergers
at z ∼< 1 (see Gerosa & Sesana 2015, and references therein).
If the typical coalescence timescale of the formed MBHBs is
several Gyr, then the occurrence of a second merger will
bring in an intruder, typically leading to coalescence on a
much shorter timescale. Triple interactions might therefore
be an important channel for merging very massive, gas-poor
low redshift binaries. Whether it is also important for lower
mass system at higher redshifts is less clear. The larger avail-
ability of cold gas, together with extremely high density en-
vironments (Khan et al. 2016) might in fact result in more
efficient coalescences on a timescale ∼< 108yr. Note, however,
that mergers are way more common at high z, and that the
relevant dynamical timescales are also much shorter. If seed
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black holes are abundant in high redshift protogalaxies, it is
then possible that many triple systems will form following
subsequent galaxy mergers.

The dynamics of individual triplets presents in itself ex-
tremely interesting features. For example, the system shown
in fig. 12 undergoes a close encounter at T ≈ 440Myr, with
a closest passage at ∼< 10−3 pc. On the other hand, all the
other cases show a late phase when ein ∼> 0.99, eventually
promoting the final coalescence of the inner binary. In par-
ticular, in fig. 16 we see that the inner system spends its
last million years of life with ein ≈ 0.999 before coalescence.
If this behaviour is general, then it carries important con-
sequences for the GW signals expected from these sources.
Indeed, Amaro-Seoane et al. (2010) showed that a very ec-
centric binary emits relatively broad-band bursts centred at
frequency f ∝ [a(1 − e)]−3/2 (which is the frequency of a
circular binary with semimajor axis equal to the periastron
of the eccentric system), which we can parametrise as (see
Wen 2003; Antonini et al. 2016)

f ≈ 4× 10−7Hz

(
M

108M�

)−1 ( α

100

)−3/2

. (39)

Here α = rp/RS,in, where rp is the binary periastron.
Note that, for M = 108M�, α = 100 corresponds to rp ≈ 1
mpc, which is the typical value found in our test cases.
Therefore, right before coalescence or during extremely close
encounters (such as the one shown in fig. 12), these systems
will emit intense bursts of gravitational radiation of the du-
ration of ≈ 1 month (for the masses considered here), which
might be detectable by PTAs. Moreover, if binaries typi-
cally coalesce with resonance-induced high eccentricities (as
in most of the cases shown here), there might be other pro-
found consequences for the overall GW signal that PTAs
are hunting. In the most extreme scenario, very high eccen-
tricities will dramatically suppress the low frequency signal,
shifting most of the emitted power at higher frequencies.
Moreover, the statistical properties of the signal might look
quite different, featuring a collection of burst-like events of
duration of months-to-years, rather than the superposition
of continuous periodic sources. Although eq. 39 gives the
central frequency of the signal, the burst is expected to be
broad-band, possibly extending to frequencies more than an
order of magnitude higher (for e ∼> 0.99). Although Amaro-
Seoane et al. (2010) found that massive (M ∼> 108M�) sys-
tems are extremely unlikely to burst in the eLISA band, if
triplets are also common among low mass systems in the
high redshift Universe, burst-like signals may also be a rel-
atively frequent occurrence in the eLISA band.

5.3 Outlook

In oder to quantify the importance of the astrophysical con-
sequences sketched in the previous subsection, an exten-
sive parameter space study is in progress, covering the rele-
vant mass, mass ratio and eccentricity range of astrophysical
triplets in a cosmological frame of structure formation and
evolution.

With this goal in mind, we devoted this first paper
to the description and validation of the main code. We in-
cluded all PN terms in the three-body equations of motion
up to 2.5PN order. We also included a simple prescription for
dynamical friction, and an ad-hoc designed fictitious force

that reproduces both the semi-major axis and the eccentric-
ity evolution of MBHB hardening in a stellar background.
The effect of the stellar background itself is included in the
equations of motion, providing additional Newtonian pre-
cession. We tested the stability of the code with a number
of standard tests and by comparing the dynamical outcome
of rather complex situations to results obtained by other
groups with the ARCHAIN code, finding good agreement.
We also tested the importance of non-dissipative 1PN and
2PN terms in the dynamical evolution of the system, show-
ing how they alter the excitation of K-L resonances.

Our code includes most of the physics relevant to the
dynamics of massive triplets in stellar systems, can be easily
expanded to include further dynamical features, such as the
effects of a non-spherical potential, and is versatile enough
to allow an efficient exploration of the parameter space rele-
vant to astrophysical triplets. This will provide the necessary
statistics of close encounter to assess the occurrence of indi-
vidual GW bursts, and will allow us to properly construct
the eccentricity distribution of the systems approaching co-
alescence, to assess the implications for GW detection with
eLISA and PTAs.
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APPENDIX A: HAMILTONIANS

We report here the three-body Newtonian, 1PN and 2PN Hamiltonians of Galaviz & Brügmann (2011), where we corrected
a typo in the third to last line of the H2 term reported below (r2αβ → rαβ).
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