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Analogue spacetimes can be used to probe and study physically interesting spacetime geometries by
constructing, either theoretically or experimentally, some notion of an effective Lorentzian metric
½geffðg; V;ΞÞ�ab. These effective metrics generically depend on some physical background metric gab,
often flat Minkowski space ηab, some “medium” with 4-velocity Va, and possibly some additional
background fields and parameters Ξ. (These might include signal propagation speeds and the like.)
Analogue spacetimes based on electromagnetic media date back to Gordon’s work in the 1920s, analogue
spacetimes based on acoustics in fluids date back to Unruh’s work in the 1980s, and BEC-based analogue
spacetimes date back to various authors in the 1990s. The analogue spacetimes based on acoustic
propagation in bulk fluids have perhaps the most rigorous mathematical formulation, and these acoustics-
based analogue models really work best in the absence of vorticity, when the medium has an irrotational
flow. This physical restriction makes it difficult to mimic the particularly interesting case of rotating
astrophysical spacetimes, spacetimes with nonzero angular momentum, and in the current article we explore
the extent to which one might hope to be able to develop an analogue model for astrophysical spacetimes
with angular momentum (thereby implying vorticity in the 4-velocity of the medium). We shall focus on
two particular analogue models: (1) the use of a charged BEC as the background medium, where new
results concerning the interplay between healing length and London penetration depth are a key technical
improvement, and (2) new results regarding the Gordon metric associated with an isotropic fluid medium.
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I. INTRODUCTION

Analogue spacetimes have an almost century-long, com-
plex, turbulent, and quite checkered history; see [1–4]. With
hindsight, Gordon’s 1923 paper [5], wherein he explored
what would now be called analogue spacetimes based on
electro-magnetic media, was considerably more important
and insightful than it may initially have seemed at the time.
The idea of electromagnetic analogue spacetimes—precisely
what distribution of permittivity ϵ and permeability μ (and
possibly magnetoelectric ζ effects) can be used to mimic a
classical gravitational field—subsequently became one of the
exercises in the Landau-Lifshitz volume on classical field
theory [6]. Scientific interest in these electromagnetic-based
analogue spacetimes is both extensive and ongoing; see for
instance [7–19], and references therein.
In counterpoint, in 1981 Unruh developed acoustics-

based analogue spacetimes (subsequently called dumb
holes, “dumb” in the sense of “mute”) [20], with further

developments due to one of the present authors [21–23].
While the early acoustic models were based on ordinary
barotropic fluid mechanics, much subsequent work was
based on more general fluids, and in particular on the
“Madelung fluid” interpretation of a quantum condensate
wave-function—typically (though not always) in a non-
relativistic or relativistic BEC [24–32].
Many other models of analogue spacetimes have sub-

sequently been developed, see for instance the surveys [1–4].
Analogue spacetimemodels have been applied inmimicking
several interesting spacetimes and phenomena therein—up
to and including the emission of Hawking quanta from
analogue horizons.
However, angular momentum in the physical spacetime

to be mimicked corresponds to vorticity in the flow of the
medium used in setting up the analogue. This can be
established in a number of ways, ranging from explicit
computations in toy models (such as 2þ 1-dimensional
BTZ black holes), or considering equatorial slices of 3þ 1-
dimensional Kerr black holes, to working in the far-field
limit where the Lense-Thirring metric is a good approxi-
mation. See for instance the specific Refs. [33–41] and the
more general background Refs. [1–4].
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This raises the question of just how one might introduce
vorticity, and so angular momentum, into analogue space-
times. This question is considerably trickier than one might
naively think, especially if one demands a mathematically
and physically clean and well-controlled formalism.
Certainly there is no difficulty at the level of ray optics

or ray acoustics where the “propagation cones” are quite
flexible:

ðgeffÞab ∝ gab þ ½1 − c2propagation�VaVb: ð1Þ

Here Va is the 4-velocity of the medium, while cpropagation is
the propagation speed of whatever signal one is interested
in. Because “propagation cones,” at best, describe the
effective metric up to an unknown and unknowable (even
in principle) conformal factor, in the ray optics or ray
acoustics limit one can at best determine an effective metric
up to proportionality [1–4]. (In this eikonal limit, see also
[42].) However, significant subtleties arise when one
wishes to derive a wave equation suitable for investigating
wave optics or wave acoustics [1–4].
For instance, the simplest of the nonrelativistic [20–22],

and relativistic [23] acoustic models, (which is where we
have the best mathematical control over the formalism),
were explicitly constructed to be vorticity free. In contrast
the nonrelativistic vorticity-supporting acoustic model
developed in [43] was somewhat more complex, requiring
the use of Clebsch potentials. A more recent 2015 model
[44,45] used charged BECs (both nonrelativistic and
relativistic, in the usual acoustic limit of the Gross-
Pitaveskii equation, where the quantum potential is
neglected). In these charged BEC models we shall show
below that there is a subtle and nontrivial interplay between
the healing length and the London penetration depth.
That one might strongly desire to add vorticity to a wide

class of analogue spacetimes is driven by both theoretical
and experimental issues: Certainly sound propagates on
physical vortex flows, and it would be highly desirable to
have a suitable well-controlled mathematically precise
wave-equation that goes beyond the Pierce approximation
[43,46]. As we shall see later on, the Pierce approximation
allows one to derive an approximate wave equation for
sound propagation in an inhomogeneous fluid by assuming
that the characteristic length and time scales for the ambient
medium are larger than the corresponding scales for
the acoustic disturbance. Under these conditions, which
impose a “separation of scales”, the system can be
described by an approximate wave equation that is correct
to first order in the derivatives of the ambient background
quantities.
Certainly the Kerr congruence in the physically impor-

tant rotating Kerr black hole has nonzero vorticity [33–41],
so any analogue model of the Kerr spacetime (or indeed
any spacetime with nonzero angular momentum) will need
to include some notion of vorticity. In view of these

comments, key novel points of the current article will be
to better understand the notion of vorticity both in the
charged BEC models [44,45] and in Gordon’s 1923 model
[5]. Indeed, below we shall explicitly verify that the Gordon
metric associated with an isotropic fluid medium can
support relativistic vorticity.

II. THE GORDON METRIC

Gordon’s 1923 effective metric is

ðgeffÞab ¼ ηab þ ½1 − n−2�VaVb: ð2Þ

In Gordon’s original article, (a condensed-matter model),
the refractive index n (and ϵ and μ) and the 4-velocity of the
medium Va were typically (but not always) taken to be
position-independent constants. The refractive index n (and
ϵ and μ) were always taken to be isotropic. Furthermore,
Gordon was often working in the ray optics (eikonal) limit,
and mostly assuming a flat Minkowski space as back-
ground. Somewhat oddly, Gordon did not seem to recog-
nize the need for the now well-known consistency
condition: ϵ ¼ μ ¼ n, (plus additionally setting the
magnetoelectric effect ζ to zero) [13,17–19]. Various
generalizations to Gordon’s model that one might consider
include: (i) Fully general position-dependent nðxÞ and
VaðxÞ; with considerable hindsight this is implicit
but not really explicit in Gordon’s 1923 article.
(ii) Introducing nonzero vorticity for the background flow.
(iii) Going beyond the eikonal (ray) approximation to
consider wave physics. (iv) Introducing a nontrivial back-
ground metric (going beyond Minkowski space).

III. THE UNRUH METRIC

The Unruh 1981 metric for acoustic perturbations in
an irrotational barotropic inviscid fluid can be given in
ADM-like form [20]:

ðgeffÞab ¼
ρ0
cs

�−½c2s − v2� −vj
−vi δij

�
: ð3Þ

Here vi is the 3-velocity of the fluid, ρ0 is its density, and cs
is the speed of sound. The irrotational condition ∇ × v ¼ 0
(and hence v ¼ ∇Φ) is built in as the very first equation of
[20]. (This vorticity-free assumption continues to hold in
Refs. [21,22].)

IV. EXTENSIONS BEYOND UNRUH 1981

Various partial extensions of the acoustic analogue
models include:

A. Relativistic barotropic irrotational acoustics

The metric here is best presented in Gordon-like
form [23]

LIBERATI, SCHUSTER, TRICELLA, and VISSER PHYS. REV. D 99, 044025 (2019)

044025-2



ðgeffÞab¼Ω2ðgabþ½1−c2s �VaVbÞ; Va ¼
∇aΦ
k∇Φk : ð4Þ

Here cs is the speed of sound, while gab is an arbitrary
background metric. The conformal factor Ω is a specific
known but somewhat messy function of the barotropic
equation of state ρðpÞ, the baryon number density nðρÞ, and
the speed of sound c2s ¼ dp=dρ. Specifically, in terms of
background quantities,

Ω2 ¼ n20
csðρ0 þ p0Þ

: ð5Þ

The only significant physics restriction on this metric is
that the background 4-velocity Va is irrotational, that is
vorticity-free, in the relativistic sense that the 4-velocity
satisfies V ½aVb;c� ¼ 0.

B. Nonrelativistic barotropic rotational acoustics

The central idea here is to introduce vorticity through the
use of Clebsch potentials. (See [43] and references therein.)
Any 3-vector field can be put in the form

v ¼ ∇ϕþ β∇γ: ð6Þ

One then decomposes the fluid 3-velocity into background
plus (small) perturbation,

v ¼ v0 þ v1; v1 ¼ ∇ψ þ ξ; ð7Þ

with

ψ ¼ ϕ1 þ β0γ1; ξ ¼ β1∇γ0 − γ1∇β0: ð8Þ
The analysis then leads to a system of PDEs. The effective
metric is again of ADM-like form

ðgeffÞab ¼
ρ0
cs

�−½c2s − v2� −vj
−vi δij

�
; ð9Þ

with inverse

ðg−1effÞab ¼
1

ρ0cs

� −1 −vj

−vi c2sδij − vivj

�
: ð10Þ

(Spatial indices are raised and lowered using the flat
Euclidean metric δij.) Then the scalar perturbation ψ
satisfies a wavelike PDE

□gψ ¼ −
cs
ρ20

∇ · ðρ0ξÞ; ð11Þ

where□g is the d’Alembertian wave operator for the metric
ðgeffÞab, whereas in terms of the advective derivative, the
vector perturbation ξ satisfies the PDE

dξ
dt

¼ ∇ψ × ω0 − ðξ · ∇Þv0: ð12Þ

Thus the rotational part of the velocity perturbation, the
vector ξ, acts as a source for the wave equation for ψ.
Conversely the background vorticity, ω0, helps drive the
evolution of the rotational part of the velocity perturbation, ξ.
In this context, Pierce’s approximation [46] amounts to

asserting that the background velocity gradients ∇v0 be
much smaller than the frequency of the wave, which
automatically implies that the background vorticity ω0 is
much smaller than the frequency of the wave. Under those
conditions Pierce argues that both the rotational part of the
velocity perturbation and its gradient, (both ξ and ∇ξ), will
always remain small and can safely be neglected [43,46].
Under those circumstances one obtains an approximate
wave equation

□gψ ≈ 0: ð13Þ

Generally though, one simply has to keep track of the extra
complications coming from ξ, the rotational part of the
velocity perturbation.
In summary, this analogue model certainly exhibits an

effective metric, and the effective metric certainly can
support background vorticity, but the model is “contami-
nated” by the presence of the extra field ξ, which compli-
cates any attempt at setting up a clean “fully geometric”
interpretation.

C. Charged nonrelativistic BECs

The metric here is given in ADM-like form [44,45]:

ðgeffÞab ¼
ρ0
cs

�−½c2s − v2� vj
vi δij

�
; ð14Þ

with the 3-velocity of the effective Madelung fluid now
defined by

vi ¼ ∇iΦ −
eAi

mc
: ð15Þ

The BECwavefunction isΨ ¼ ffiffiffiffiffi
ρ0

p
eiΦ ¼ kΨkeiΦ, while cs

is the speed of sound in the condensate, and the purely spatial
3-vector v ∝ ∇Φ − eA is gauge invariant. The key point is
that ∇iΦ − eAi makes sense only if one has a condensate.
This would, in principle, seem to allow the background flow
to have some vorticity while keeping the perturbations
irrotational. Specifically the vorticity would be

ω ¼ eB
mc

: ð16Þ

Unfortunately one also has v ∝ jLondon, the so-called
London current that is central to the analysis of the
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Meissner effect. Indeed, there is widespread agreement
within the condensed matter community that any charged
BEC, (not just a BCS superconductor, where formation of
the Cooper pairs, and condensation of the Cooper pairs
are essentially simultaneous), will exhibit the Meissner
effect—magnetic flux expulsion. See, for instance,
[47–49]. This would naively seem to confine any vorticity
to a thin layer of thickness comparable to the London
penetration depth. However, there is a trade-off between the
healing length (which controls the extent to which one can
trust the effective metric picture) and the London penetra-
tion depth.
Let us be more quantitative about this: The London

penetration depth λ and healing length ξ are given by

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

μ0nq2

r
; ξ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

8πna
p : ð17Þ

Here m is the mass of the atoms making up the charged
BEC, μ0 is the magnetic permeability in vacuum, and now n
is the number density of atoms in the condensate; q ¼ Qe
is the charge of each atom, and a is the scattering length. In
particular, for the ratio of penetration depth to healing
length the number density n cancels and using ϵ0μ0 ¼ 1=c2

we have

λ

ξ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
8πam
μ0q2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πϵ0c2am

q2

s
: ð18Þ

Write q ¼ Qe and m ¼ Nmp, where N is the atomic mass
number. Then

λ

ξ
¼

ffiffiffiffi
N

p

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ampc

αℏ

r
: ð19Þ

Then in terms of the Bohr radius, a0 ¼ α−1ℏ=ðmecÞ, one
has

λ

ξ
¼

ffiffiffiffi
N

p

Q
1

α

ffiffiffiffiffiffiffiffiffi
2mp

me

s ffiffiffiffiffi
a
a0

r
: ð20Þ

We know that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp=me

p
≈ 60. For a heavy-atom charged

BEC
ffiffiffiffi
N

p
=Q ≈ 9 and typically a ≈ 100a0. Then

λ

ξ
≈ 750000: ð21Þ

We can, in principle, make this ratio even larger, simply by
tuning to a Feshbach resonance to increase the value of the
scattering length a:

λ

ξ
≈ 750000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
awith resonance
awithout resonance

r
: ð22Þ

So there is a significant separation of scales between
healing length and London penetration depth, which can
be made even larger by tuning to a Feshbach resonance.
Demonstrating this separation of scales is a key novelty in
the present article. The net outcome of this discussion is
that despite potential problems due to the Meissner effect
there is a parameter regime in which we can simultaneously
have vorticity penetrate deep into the bulk and still trust the
effective metric formalism.
Another interesting and novel feature of this nonrelativ-

istic construction (not commented on previously) is that
even if the background has vorticity, the perturbations
are vorticity-free. This is a side effect of the Madelung
representation, (and the approximation of neglecting the
quantum potential). One again takes

ψ total¼Ψð1þψperturbationÞ¼ ffiffiffiffiffi
ρ0

p
eiΦð1þψperturbationÞ; ð23Þ

and obtains a d’Alembertian PDE for ψperturbation. So in
contrast to the previous vorticity supporting acoustics
model, no extra fields need to be introduced.

D. Charged relativistic BECs

The metric here is best presented in Gordon-like form
[44,45],

ðgeffÞab ¼
ρ0
cs

ðηab þ ½1 − c2s �VaVbÞ; ð24Þ

with

Va ¼
∇aΦ − eAa

k∇Φ − eAk : ð25Þ

It is now the RBEC wavefunction that is written in terms
of the Madelung representation Ψ ¼ ffiffiffiffiffi

ρ0
p

eiΦ, while cs is
the speed of sound in the condensate, and the 4-velocity
V ∝ ∇Φ − eA is gauge invariant. This (formally) allows
the background flow to have some vorticity while
keeping the perturbations irrotational. Specifically for the
4-vorticity we have

ϵabcdω
d ¼ V ½aVb;c� ¼ e

V ½aFbc�
k∇Φ − eAk : ð26Þ

Working in the rest frame of the fluid, we see

kωk ¼ ekBk
k∇Φ − eAk : ð27Þ

The key point is that ∇aΦ − eAa is a gauge invariant 4-
vector field that makes sense only if one has a condensate.
The same potentially problematic issue regarding the

Meissner effect also arises in this relativistic setting.
The 4-velocity now satisfies V ∝ ∇Φ − eA ∝ JLondon,
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where this is now the London 4-current JLondon ¼
ðρLondon; jLondonÞ. Naively, the magnetic field (and hence
the vorticity) will be confined to a thin transition layer of
thickness comparable to the London penetration depth.
However the same parameter regime as was considered for
the nonrelativistic case will still apply in the full relativistic
setting: One can drive the London penetration depth large
while holding the healing length constant. This separation
of scales is a key novelty in the present article.

V. EXTENSIONS BEYOND GORDON 1923

For linear constitutive ϵ-μ-ζ electrodynamics, a recent
fundamental result for the effective metric is [13] that when
standard consistency constraints are imposed

ϵab ¼ μab; ζab ¼ 0; ð28Þ

the effective metric can be written as

ðgeffÞab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðg••Þ
pdetðϵ••Þ

s
VaVb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðϵ••Þ
− detðg••Þ

s
½ϵ••�#ab; ð29Þ

Here Va is the 4-velocity of the medium, and one has
generalized Gordon 1923 by allowing for nontrivial per-
mittivity and permeability tensors. These are both sym-
metric and transverse in the sense that ϵabVb ¼ 0 ¼ μabVb,
so that in the rest frame of the medium they reduce to 3 × 3
symmetric tensors. No constraint is put on the 4-velocity of
the medium, apart from the minimal fact that it be timelike
in the background metric [13].
Note specifically the pseudodeterminant [13] and

Moore-Penrose pseudoinverse appearing above. The pseu-
dodeterminant pdetðXÞ is simply the product over nonzero
eigenvalues; sometimes one sees notation such as det0ðXÞ.
For symmetric matrices X, the Moore-Penrose pseudoin-
verse X# simplifies to diagonalizing the matrix, taking the
reciprocal of the nonzero eigenvalues, and then undoing the
diagonalization. See, for instance, [13–16] and references
therein. Specifically, the notation ½ϵ••�#ab means that one
should take the 4 × 4 contravariant matrix ϵab, which is a
singular matrix due to the transversality conditions, and
construct its Moore-Penrose pseudoinverse, which is also a
singular 4 × 4 matrix but now with covariant indices.
The formalism was carefully set up so that there is no

constraint on the background 4-velocity; it can, in principle,
be arbitrary [13–16]. The formalism was also carefully
set up so that there is no constraint on the background
4-geometry; it can, in principle, be arbitrary [13–16]. We
now use this generality to specialize to a particularly
interesting subcase.
If we now assume an isotropic medium, then

ϵab ¼ ϵðgab þ VaVbÞ; ð30Þ

μab ¼ μðgab þ VaVbÞ; ð31Þ

ζab ¼ ζðgab þ VaVbÞ: ð32Þ

The compatibility condition then reduces to

ϵ ¼ μ ¼ n; ζ ¼ 0; ð33Þ

so that

ðgeffÞab ¼ n3=2VaVb þ n1=2ðgab þ VaVbÞ: ð34Þ

That is:

ðgeffÞab ¼
ffiffiffi
n

p fgab þ ½1 − n−2�VaVbg ð35Þ

The
ffiffiffi
n

p
pre-factor is completely conventional; its presence

is simply due to the conformal invariance of electromag-
netism in (3þ 1) dimensions and the convenient demand
that det½ðgeffÞab� ¼ det½gab�; see [13].
We could just as well write

ðgeffÞab ¼ Ω2fgab þ ½1 − n−2�VaVbg: ð36Þ

The conformal factorΩ2 is arbitrary, the background metric
gab is arbitrary, the refractive index n is also arbitrary
(subject only to the consistency condition ϵ ¼ μ ¼ n), and
finally the 4-velocity Va is arbitrary. Certainly, in principle,
any arbitrary nonzero background vorticity is allowed. This
settles the main physics issue—we have demonstrated that
there is no deep physics obstruction to putting vorticity into
the Gordon metric at the level of wave optics.

VI. DISCUSSION

While, as we have seen, introducing vorticity into
analogue models at the level of ray optics or ray acoustics
(the eikonal limit) is straightforward, even trivial, the
situation at the level of wave optics or wave acoustics is
considerably more subtle. Fortunately, we have now
demonstrated that for wave optics the Gordon metric
(now suitably generalized and placed in a more up-to-date
context) provides a suitable model. We have also demon-
strated that for realistic charged BECs (both nonrelativistic
and relativistic) there is a significant separation of scales
between the London penetration depth and the healing
length, allowing the introduction of vorticity into these
charged-BEC-based analogue spacetimes.
There are of course many additional relevant articles on

related topics from within the astrophysics, condensed
matter, and optics communities. See, for instance, [42]
and the extensive list of references in [1]. We have
unavoidably had to be somewhat selective in our selection
of references. Relatively recent developments include the
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notions of “quantum vorticity” [50–52] and “holographic
vorticity” [53–56].
Taken as a whole, these novel observations collectively

give us confidence that it is likely to be possible to mimic
the Kerr solution at the wave optics or wave acoustics
level—presumably through some “Kerr-Gordon” form of
the metric. It is already known that the Schwarzschild
metric can be put into Gordon form [45,57]:

gab ¼
ffiffiffi
n

p ðηab þ ½1 − n−2�VaVbÞ; ð37Þ

Va ¼ ð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m=r

p
;

ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
r̂iÞ: ð38Þ

Here n is an arbitrary position-independent constant, Va is
a 4-velocity, and the parameter m is proportional to the
physical mass. The overall conformal factor

ffiffiffi
n

p
in the

metric enforces detðgÞ ¼ −1. It is easy to check that this
metric this is Ricci flat. A similar “Kerr-Gordon” con-
struction for the Kerr spacetime would be very interesting.
(So far there has only been limited perturbative progress in
the slow-rotation and near-null limits [41].) Indeed looking
for such a construction is largely the reason we became
interested in the ideas presented in the current article.
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