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ABSTRACT: In order to study the influence of compactness on low-energy properties, we
compare the phase structures of the compact and non-compact two-dimensional multi-
frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and
non-compact models coincides, but their low-energy behaviors differ. The critical frequency
(3% = 8 at which the sine-Gordon model undergoes a topological phase transition is found
to be unaffected by the compactness of the field since it is determined by high-energy scaling
laws. However, the compact two-frequency sine-Gordon model has first and second order
phase transitions determined by the low-energy scaling: we show that these are absent in
the non-compact model.
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1 Introduction

The computation in a completely controlled way of renormalization group (RG) flows in
gauge theories is at date a challenging issue. A major reason for such difficulties is the
fact that, one must adopt a regularization scheme which incorporates a gauge invariant
cutoff even for approximated treatments of exact RG equations. A related problem is the
determination of critical properties and phases of compact field theories, since, compactness
can be considered as one of the simplest realization of the gauge symmetry [1] and a general
treatment for the controlled computation of renormalization flows in gauge theories would
apply to the RG study of compact field theories.

Sic stantibus rebus, in order to study the influence of compactness on low-energy prop-
erties, it would be then relevant to compare the phase structure of a field theory with
the fields being respectively compact and non-compact. In this paper we perform such
comparison for the multi-frequency sine-Gordon (SG) model in 1 + 1 dimensions. Several
reasons lead us to the choice and use of such a model for the purpose of studying the effects
of compactness: first, the single-frequency SG is a paradigmatical example of integrable
field theory [2], very well studied in the last four decades. Second, the rich phase structure
of the compact double-frequency SG has been the subject of intense study [3-9], and, last
but not least, the non-compact multi-frequency SG model (MFSG) can be studied using
non-perturbative RG methods [10-19].



The importance of the SG model stems from the fact that it is directly related to inter-
acting fermionic field theories through bosonization [20]. In low dimensions exact bosoniza-
tion rules enable one to reformulate fermionic and gauge models in terms of elementary
scalar fields. The equivalence between the massive Thirring model and the sine-Gordon
(SG) scalar theory [21-30] is a well-known example. Two-dimensional gauge models like
the multi-flavor quantum electrodynamics (QED2) [31-46] and the single-flavor quantum
chromodynamics (QCDg) [47, 48] can also be rewritten as a multi-component SG theory
where the SG fields are coupled by a mass-matrix. It has been also shown that various
aspects of the low-energy QCDs with multi-flavors (and with unequal quark masses) can
be described by the so-called generalized SG model [49-52] of which reduced sub-model is
the MFSG model with non-compact field variable.

Moreover, the SG model, the simplest non-trivial quantum field theory which can be
used to study confinement phenomena, has already received a considerable attention in
several areas of physics. For example, in string theory the SG model is assumed to be
related to the classical string on specific manifolds [53, 54] and the possible contribution
of new type of SG models to brane profile has also been studied [55, 56] in the framework
of Randall-Sudrum [57, 58] theory. SG type model has recently been investigated in 3+1
dimensions in the context of axion physics [59]. Furthermore, the SG model is used as
a textbook example for integrable systems and it has many applications in condensed
matter and statistical physics as well, e.g. coupled SG models were successfully used to
describe the vortex dynamics of layered high transition temperature superconductors [60—
62]. Another attractive property of low-dimensional SG models is that they provide us an
excellent playground to test and compare various types of non-perturbative methods [63].
For example, SG type models have already been investigated in the framework of Integrable
and Conformal Field Theory (CFT) [64] and the exact functional RG treatment for these
periodic models has also been developed [40-46, 60—62, 65-71].

Our goal in this paper is to consider the non-compact MFSG model by means of the
functional RG approach and to compare our findings to those obtained by other methods for
the non-compact and compact models, as well. In particular, we investigate the influence
of the compact or non-compact nature of the field variable on the low-energy behavior of
the MFSG model whose action reads as [3-9]

SniFsc = /d% [;au¢aﬂ¢ = picos(Big + &) (1.1)

which contains n cosine terms where ¢ is a real scalar field, 3; € R are the frequencies,
B; # B; if i # j, p; are the coupling constants (of dimension mass® at the classical level)
and J; € R are the phases in the terms of the potential. Let us note that the MFSG model
is usually defined on the two-dimensional Minkowski space, however, in this paper we use
the Euclidean action which is more convenient for an RG study and it is generally assumed
to be suitable for mapping out the phase structure of the model.

Two cases can be distinguished according to the periodicity properties of the model.
The first one is the rational case, when the potential is a trigonometric function: the
ratios of the frequencies [3; are rational and consequently, the potential is periodic. Let the



period of the potential be 273 in this case. Then the target space of the field ¢ can be
compactified: ¢ = ¢ + 2kFmw, where k € N can be chosen arbitrarily. The model obtained
in this way is called the k-folded multi-frequency SG model [5]. The other case is the
irrational one, when the potential is not periodic. We restrict our attention to the rational
case in the present paper.

At the quantum level the theory can be considered as a perturbation of its high-
energy /ultraviolet (UV) limiting conformal field theory [3-9]

SmFsG = ScrT + Spert, (1.2)

where

Scrr = [ dPa8,60"

CFT = T 5 000" 9,
1 - . .
Spert = —, / dzmzl(“iewivﬁi + e Vog,),
1=

with the vertex operator V,, =: ¢? : which corresponds to a primary field with confor-
mal dimensions AT = A, = ‘é’; in the UV limit and the upper index + corresponds to

the left/right conformal algebra and : : denotes the conformal normal ordering. Cor-
respondingly, the dimensions of the couplings in the UV limit at the quantum level are
[11;] = (mass)?~ 22 with A; = Ag,.

It was shown by semiclassical (mean-field/Landau-Ginzburg) analysis [3] and by means
of form factor perturbation and truncated conformal space approaches [3, 6, 8, 9] that (first
and second order) phase transitions occur in the compact MFSG model as the coupling
constants are tuned appropriately (assuming that n > 1). For example, according to
the semi-classical results [3], the double-frequency SG model (for 6; = 0, d2 = 7/2 and

8y — B1/2)
Vorsa(®) = —p cos(B16) + s sin (i <z>> (1.3)

undergoes a second order (Ising-type) phase transition at pus = 4p; [3]. This second order
phase transition was found to appear for all frequencies 0 < 3% < 87 beyond the semi-
classical level, see e.g. the phase diagram in figure 7.5 of [6] which was determined by
form factor perturbation theory and truncated conformal space approach. The Ising-type
phase transition was also confirmed by renormalization group techniques based on operator
product expansion in real space [72]. Let us note, that in this case the field variable is
defined as a compact variable. It was also argued that the MFSG model reduces to the
classical (single-frequency) SG model in the limit of 6; — 0 for i = 1,2,...,00 and p; — 0
for 1 = 2,3,...,00. It was also shown that the SG model defined by the action which
contains a non-compact field variable [21, 22, 65-71] belongs to the universality class of
the two-dimensional Coulomb gas and the two-dimensional XY model, consequently, its
phase transition at 32 = 8 is a topological or Kosterlitz-Thouless-Berezinskii (KTB) type
one [73, 74] It is also known that the classical SG model with a compact field variable
also possesses a topological phase transition at 32 = 8. Therefore, on the one hand, the



MFSG model with compact field variable has Ising-type phase transitions (for n > 1), on
the other hand in case of a single cosine (for n = 1) with compact and non-compact fields
the model has a topological phase transition. Consequently, it represents an excellent toy
model to study the influence of the compactness on the phase structure and the low-energy
behavior of the model.

Our goal is to compare the UV/IR scaling behavior and the phase structure of the
MFSG models with compact and non-compact field variables: we study the MFSG the-
ory with non-compact fields by means of the functional RG method in the local poten-
tial approximation, discussing the comparison with the available results for the compact
model [3-9, 72]. The structure of our paper is the following: a brief introduction of RG
equations used for the renormalization of the non-compact MFSG model is given in sec-
tion 2. In section 3, the connection between RG equations and symmetries of the MFSG
model is discussed. The UV and IR scaling laws of the non-compact MFSG model are
determined and compared to those of the compact model in sections 4 and 5, respectively.
Finally, section 6 presents the summary and our concluding remarks.

2 Renormalization group approach

In this section we briefly discuss the functional RG equations used for the renormalization
of the MFSG model. The differential RG transformations are realized via a blocking
construction [75-78], the successive elimination of the degrees of freedom which lie above
the running UV momentum cutoff k. Consequently, the effective theory described by
the blocked action contains quantum fluctuations whose frequencies are smaller than the
momentum cutoff. This procedure generates the functional RG flow equation [79-84]

kdRDle] = ;Tr (r}f’ 6] + Rk) kO Ry

for the effective action I'y[¢] when various types of regulator functions Ry are used, where
Fl(f) [¢] denotes the second functional derivative of the effective action (see e.g. [10-19]).
Here Ry, is a properly chosen IR regulator function which fulfils a few basic constraints to
ensure that I'y approaches the bare action in the UV limit (k — A) and the full quantum
effective action in the IR limit (k — 0). Indeed, various renormalization schemes are
constructed in such a manner that the RG flow starts at the bare action and provides the
effective action in the IR limit, so that the physical predictions (e.g. fixed points and critical
exponents) are independent of the renormalization scheme particularly used [85-97].

Since RG equations are functional partial differential equations it is not possible to
solve them in general, hence, approximations are required. Omne of the commonly used
systematic approximation is the truncated derivative expansion where the effective action
is expanded in powers of the derivative of the field [85-97],

Fk[¢]:/ [Vk(¢)+zk(¢);(au¢)2+... .

In the local potential approximation (LPA) higher derivative terms are neglected and the
wave-function renormalization is set equal to constant, i.e. Z, = 1. In this paper we



use two types of RG equations (i.e. two different IR regulators Ry), namely the Wegner-
Houghton [98] and the Polchinski [99] RG approaches. However, let us note that in the
LPA, the two-dimensional Wegner-Houghton RG equation is mathematically equivalent
(see e.g. [85]) to the effective average action RG equation [79-82] with the power-law
regulator Ry (p?) = p?(p?/k®)~" [83, 84] with b = 1 and the functional Callan-Symanzik
RG equation [100, 101].

2.1 Wegner-Houghton, effective average action and functional Callan-Syman-
zik RG equations

In this section we consider three types of RG equations, namely the Wegner-Houghton,
the effective average action with power-law regulator (b = 1) and the functional Callan-
Symanzik RG equations which have the same form in LPA for d = 2 dimensions [85].

The blocking in momentum space, i.e. the integration over the field fluctuations with
momenta of the magnitude between the UV scale A and zero is performed in successive
blocking steps over infinitesimal momentum intervals k — k — Ak each of which consists of
the splitting the field variable, ¢ = ¢ + ¢’ in such a manner that ¢ and ¢’ contain Fourier
modes with |p| < k — Ak and k — Ak < |p| < k, respectively and the integration over ¢’
leads to the Wegner-Houghton (WH) RG equation [98]

2+ k) Vil6) = — i (14 7(9)) (2.1)

T
with V/(¢) = B;Vk(@ for the dimensionless local potential V;, = k~2V}, for d = 2 dimen-
sions in the leading order of the derivative expansion, in the LPA when ¢ reduces to a
constant. (Below we suppress the notation of the field-dependence of the local potential
and use notations with tilde for dimensionless quantities where the dimension is taken away
by the appropriate power of the gliding cutoff k.) The differentiation with respect to the
field variable and the multiplication with 14 f/kf’ leads to the derivative form of the WH-RG
equation [85]

- - - 1 -~
(24 kOp)Vi = =V (2 + kOx) V), — " V. (2.2)

This equation is obtained by assuming the absence of instabilities for the modes around
the gliding cutoff k. The WH-RG scheme which uses the sharp gliding cutoff £ can also
account for the spinodal instability, which appears when the restoring force acting on the
field fluctuations to be eliminated vanishes, 1 + Vé’(qb) = 0 at some finite scale ks and
the resulting condensate generates tree-level contributions to the evolution equation. The
saddle point ¢f, for the single blocking step k¥ — k— Ak is obtained by minimizing the action,
Sk—nk[¢] = ming (Sk[¢ + ¢p]). The restriction of the space of saddle-point configurations
to that of the plane waves ¢, = pcos(kix) gives [102]

1
Vie—ak(¢) = min [,02 + ! / duVi,(¢ + 2p cos(mu)) (2.3)
P 2 1

in LPA, where the minimum is sought for the amplitude p only. It was shown that the
tree-level RG equation (2.3) leads to the local potential [85]

~ 1
Vi—o = — 2¢2 + ¢¢ + const, (2.4)



which can also be obtained as the solution of 1 + Vé;o(gb) =0 (in case of a ¢ — —¢
symmetry the linear term vanishes, ¢ = 0). Therefore, if SI occurs during the RG flow at
some scale kgy > 0, then egs. (2.1) or (2.2) should be applied only for scales k > kgj, and
the tree-level renormalization eq. (2.3) or eq. (2.4) should be performed at scales k < kg.

For d = 2 dimensions the effective average action (EAA) RG equation with power-law
regulator can be written in the LPA as

- 1A (—b)y~y
24+ kO)V = — / d - 2.5
( ) Vi 4, yy(l Lyt 4Ty (2.5)

with y = p?/k?. For arbitrary parameter value b, the propagator on the right hand side of
eq. (2.5) may develop a pole at some scale kgy and at some value of the field ¢ for which
V/'(¢) = —C(b) = —b/(b— 1)®~1/b holds, which signals the occurring of SI. The infrared
singularity of the functional RG equation is supposed to be related to the convexity of the
effective action for theories within a phase of spontaneous symmetry breaking [81, 82]. It
was shown that in such a case one has to seek the local potential for k < kg; by minimizing
Iy in the subspace of inhomogeneous (soliton like) field configurations and ends up with
the result [10-19, 81, 82]

~ 1
Viso = —2C(b)¢2 + c¢ + const. (2.6)

It is worthwhile noticing that eq. (2.5) with the power-law regulator leads to the WH-RG
equation (2.1), and eq. (2.6) leads to eq. (2.4) for b = 1 as well as for b — oo in the limit
A — oo. This feature holds only for d = 2.

In the functional Callan-Symanzik (CS) type internal space RG method [100, 101], the
successive elimination of the field fluctuations is performed in the space of the field variable
(internal space) as opposed to the usual RG methods where the blocking transformations
are realized in either the momentum or the real (external) space. The functional CS-RG
equation for the one-component scalar field theory for dimensions d = 2 in the LPA reads

(2420 Va=—,LIn (1 + f/;) (2.7)

with the control parameter A\. This equation is mathematically equivalent to the two-
dimensional WH-RG equation in the LPA assuming the equivalence of the scales A = k.
However, for dimensions d # 2 the functional CS-RG and the WH-RG differ from each
other. Assuming the above mentioned equivalence of the scales A\ and k, there occurs
the same singularity in the right hand side of (2.7) as the one in the WH-RG approach.
Therefore, the functional CS-RG signals the SI with the vanishing of the argument of the
logarithm in the right hand side of (2.7). The solution of (2.7) provides the scaling laws
down to the scale kg and one has to turn to the tree-level renormalization with the help
of the WH-RG approach in order to determine the IR scaling laws.

Since the WH-RG, EAA-RG with power-law regulator (b = 1) and the functional CS-
RG equations have the same form in LPA for d = 2 dimensions, in this paper we refer to
them as the WH-RG equation.



2.2 Polchinski’s RG equation

In Polchinski’s RG (P-RG) method [99] the realization of the differential RG transforma-
tions is based on a non-linear generalization of the blocking procedure using a smooth
momentum cutoff. In the infinitesimal blocking step the field variable ¢ is split again into
the sum of a slowly oscillating IR and a fast oscillating UV components, but both fields
contain now low- and high-frequency modes, as well, due to the smoothness of the cutoff.
Above the moving momentum scale k the propagator for the IR component is suppressed
by a properly chosen smooth regulator function K (y) with y = p?/k?, K(y) — 0if y > 1,
and K(y) — 1 if y < 1. The P-RG equation in LPA for d = 2 dimensions reads as

(2+ kOp)Vi = —[ViP K + Vi I, (2.8)

where K’ = 9,K(y), Ki = 0,K(y)ly—0 and I = (1/4x) [[°dyK'(y) = —1/4w. The
parameter K| can be eliminated by the rescaling of the potential and the field variable,
consequently, it does not influence the physics. In order to make the comparison of the RG
flows obtained by various RG methods straightforward, we choose K{, = —1 for which the
linearized forms of eq. (2.1) and eq. (2.8) and the UV scaling laws obtained by WH-RG
and P-RG are identical. Then the differentiation of both sides of eq. (2.8) with respect to
the field variable ¢ yields [85]

- . 1 -~
(24 kOp)Vi =2V'V}| — " v (2.9)

being independent of the regulator function K(y) and differing of the WH-RG equa-
tion (2.2) by the term _‘719” k@kf/k' and by the opposite sign for the non-linear term. Let us
note, that the P-RG method treats all quantum fluctuations below and above the scale k
on the same footing due to the usage of the smooth cutoff. Therefore, even if there occurs
a scale kgr at which 1 + f/kf’ exhibits zeros, no singular behavior is expected in case of the
P-RG equation, consequently eq. (2.9) can be applied above (k > kgr) and below (k < kgi)
the scale kg1 with the price of the SI being unnoticed.

3 Symmetries and renormalization

As a rule, the solution of the RG equations is sought for in a restricted functional sub-
space [10-19]. Since the RG equations retain the symmetries of the bare action, the func-
tional subspace should be chosen keeping the symmetries of the bare action unbroken.
Furthermore, even this — generally infinite dimensional — subspace is reduced to a fi-
nite dimensional one by the truncation of the appropriate series expansion of the blocked
potential. For example, the potential can be expanded in powers of the field variable
Vi(p) = an:1 cn(k) @™ with a truncation at the power N and the scale-dependence is
encoded in the coupling constants ¢, (k). In this case one has to check whether the results
obtained are independent of N. It is known that O(M) scalar models can be considered in
Taylor expanded form only if M > 1 (for M = 1, strong oscillatory behavior of the critical
exponents in terms of N is observed) [10-19]. Similarly, the truncated Fourier expanded



form can be a straightforward approximation for scalar models with periodicity in internal
space [65-T1].

Let us now turn to the symmetries of MFSG models if the ratios of the frequencies are
rational. Then the bare potential is periodic in the internal space, let be its period 273,
and one has to look for the solution of the RG equations among the periodic functions
with such a period. The bare potential may have however further symmetries as well. For
example, the MFSG models can exhibit a reflection symmetry besides periodicity. Three
cases can be distinguished.

e Let us suppose that the bare potential of the MFSG model contains a single cosine
mode with 61 =0

VA(¢) = fin cos (B¢). (3.1)

In this case the model has a discrete reflection symmetry (¢ — —¢), which is pre-

served by the WH-RG and P-RG equations. Since the RG transformations gener-

ate higher harmonics, one is inclined to look for the solution in its Fourier decom-

posed form
N

(@) = 3 (k) cos(nf9), (3.2)

n=0
exhibiting periodicity in the internal space. The dimensionless couplings are repre-
sented by the Fourier amplitudes @, (k) (with @, (k = A) = fi1) and the ‘frequency’ 3
is a scale-independent, dimensionless parameter in the LPA.

e If the bare potential of the MFSG model contains a single sine mode (i.e. §; = 37/2)

Va(¢) = fi1 sin (3 ¢), (3.3)

the model has another discrete Zy symmetry (¢ — —n/ — ¢) which is preserved
by the RG equations. The potential is antisymmetric but the RG equations are not,
consequently, one has to look for the solution of the RG equations as

N

Vi(¢) = Y _ [fiza(k) cos (2n36) + Dan+1 (k) sin (20 + 1)69)] (3.4)

n=0

with the dimensionless Fourier amplitudes g, (k) and 09,41 (k) (and 01 (k = A) = fi1).
Let us note that the double-frequency SG model (1.3) belongs to this case, too.

e Finally, if the bare potential of the MFSG model contains both cosine and sine modes
(i.e. 51 =0 and (52 = 37‘(’/2)

Va(¢) = fin cos (B¢) + fiz sin (B¢) , (3.5)

the model has no Zs symmetry, consequently, all the Fourier modes are generated
during the RG flow and the solution has the general form

N

Vi(9) = > _ [iin(k) cos (n3¢) + i (k) sin (n39)] (3.6)

n=0



with the dimensionless Fourier amplitudes u, (k) and o,(k) (and u1(k = A) = [,
v1(k = A) = fiz).

Since eq. (3.6) represents the blocked potential for the most general MFSG model with
rational frequency ratios, let us further discuss that case. Inserting the ansatz (3.6) into
the derivative form of the WH-RG equation (2.2) one can read off RG flow equations for
the Fourier amplitudes, i.e. for the scale-dependent dimensionless couplings 4, (k), 0, (k)
which read as

N
P 3 1) - (4) -
(2 + kOg)nt, = 1" U + 5 SZ:; <5An7s(2 + kO )us + sA;, (2 + kak)vs> , (3.7
- o B N 2) - 3) -
(2 + kOk)no, = 4 ; <5An7s(2 + kO )us + sA; (2 + kak)vs> ,  (3.8)
where
Agzl,?s(k) =(n— 5)2ﬂ|n—s\ —(n+ 5)2an+s®(n +s < N),
Agz,?s(k) = Sgn(s - ’I’L) (’I’L - 8)26|n—s\ + (’I’L + 5)26n+s@(n +s5< N),
Agz,?s(k) =—(n— 8)26|n—s\ —(n+ 5)2{)n+s@(n +s5 < N),
AL (K) = sgn(s —n) (n =)0 — (n+5)°054s0(n+ 5 < N),

with sgn(z) = 1 if x > 0 and sgn(z) = -1 if 2 < 0, and O(n < N) =1if n < N and
©(n < N) =0if n > N. Let us note that eq. (2.2) and, consequently, eq. (3.7), eq. (3.8)
are valid unless SI arises.

Using the same machinery in the framework of the P-RG, one obtains from eq. (2.9)
the flow equations for @, (k) and v, (k)

2 N
(2 + kO )nt, = f n3i, — 52 Z <5An1?gﬂs + SA,;%@S) , (3.9)
7-(- b b
s=1
g2 =
(2 + kO, = | n¥on+ B2y <5An2?sas + sA,f);@s) : (3.10)
7-[- b b
s=1

where Aﬁf,’s, (i = 1,2,3,4) are the same as those obtained for the WH-RG equation. Let
us note, that the P-RG method does not take into account SI, consequently, eq. (3.9) and
eq. (3.10) are valid at all scales k.

Let us end this section with the remark that the strong reduction of the functional
subspace, in particular the truncation of the expansion of the blocked potential in a series of
base functions may become unreliable when the blocked action becomes almost degenerate,
ie 1+ Vk” approaches zero. This motivates a direct numerical solution of the RG equation
for the blocked potential which avoids any assumption on the functional subspace where the
solution is sought for and any truncated series expansion in some base functions [10-19, 103,
104]. Therefore, we solved the RG equations (2.2) and (2.9) directly by using a computer
algebraic program with periodic boundary conditions and the bare initial potential was
chosen as a harmonic function.



4 UV scaling

Before the study of the low-energy/IR behavior of the MFSG model, let us first discuss
the high-energy/UV scaling. This can be achieved by the linearization of the RG equa-
tions (3.7), (3.8) and (3.9), (3.10) around the UV Gaussian fixed point (V*(¢) = 0) which

results in the following uncoupled set of differential equations

2

B,

(2 + kOg)ty, = PR (4.1)
B

(2 + KOk )0y, = 4" o (4.2)

in (k) = in(A) <ﬁ> = (4.3)

B (k) = B (A) ( i) S (4.4)

gives the same UV scaling as that obtained for the compact MFSG model in [72]. These
UV scaling laws can be understood if one considers the MFSG model as a perturbation of
the corresponding CFT, c.f. the discussion below eq. (1.2). One should conclude that the
kinetic term of the action suppresses the large amplitude (¢? > 1/p?) quantum fluctuations
with large momentum (A? > p? > k?) close to the UV cutoff and, therefore the UV scaling
laws are not influenced by the compactness of the field variable.

5 IR scaling

In the IR domain neither the kinetic term nor the periodic potential terms are able to sup-
press the contributions of the large-amplitude quantum fluctuations with small momenta.
Therefore, the compact and non-compact MFSG models are expected to behave differently
in the IR domain. There are two ways to determine the IR scaling of the non-compact
MFSG model in the LPA, (i) either the partial differential equations (2.2) and (2.9) have
to be solved numerically by a computer algebraic program using the initial condition (1.1),
(ii) or one can find the solution of the ordinary differential equations (3.7), (3.8) and (3.9),
(3.10) which are obtained by inserting the ansatz (3.6) into egs. (2.2), (2.9). In the lat-
ter case, besides the LPA, we use a further approximation, namely the truncation of the
Fourier expansion of the potential.

According to our experiences concerning the renormalization of SG type models based
on previous publications [40-46, 6062, 65-70, 85|, it is expected that the RG equations
obtained by using the truncated Fourier decomposition of the periodic potential, is always
applicable, except the situation if one would like to decide unambiguously whether SI
appears or not in the RG flow. SI is related to the singularity of the RG flow, consequently,
in some cases it could be important to solve the partial differential (RG) equations without
using any further approximations in order to be able to decide whether SI can be avoided

,10,



Figure 1. The scaling of the first few Fourier amplitudes of the non-compact MFSG model is
obtained by the P-RG method solving egs. (3.9), (3.10) numerically for 52 = 127 with various
initial conditions for the higher harmonics.

or not. Since the P-RG method does not take account for SI it is more convenient to use
this method first to consider the IR behavior of the non-compact MFSG model.

5.1 Polchinski RG approach

Let us first discuss the IR effective theory of the MFSG model in the framework of the
P-RG method by solving egs. (3.9), (3.10) numerically with the most general ansatz (3.6).

Qualitatively different IR scaling behaviors of the MFSG model are observed below
and above 32 = 8. For 3? > 8m, every Fourier amplitudes are found to be irrelevant in
the limit k& — 0, i.e. they are decreasing coupling constants independently of the initial
conditions, see figure 1. Consequently, for 3° > 8, the non-compact MFSG model is a
free massless theory in the IR limit independently of whether the bare initial potential
possesses a Zy symmetry (egs. (3.1), (3.3)) or not (eq. (3.5)).

A further important result of the RG analysis is that the Fourier amplitudes of the
non-compact MFSG model show up the IR scaling behavior

7 -2)

wi) =5 () " 6.1)
n(5,-2)

wi = (y) (5:2)

which differs from that obtained in the UV regime, eqs. (4.3) and (4.4). Here the well-
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justified approximations

N n—1 k n(fi —2)
ZSAn%)SﬂS %‘{'Zs(n_s)anfsfs <A> )
s=1 s=1

N n—1 n(BQ —2)

k 4m
Z sAn%?s,ﬂs ~—Y s(n—5)gn_sfs <A> ,
s=1 s=1

N n—1 i (22 —2)
Z sAn?:?j)s ~— Z s(n—8)2 fr_s9s <A> ,
s=1 s=1

N n—1 k (2 ~2)
ZsAn‘gf)s ~—Y s(n—5) g, sgs <A> ,
s=1 s=1

result in the following recursion relations for the constants f,, and g,

B 8 — 92 (famsfs = Gn-s85)
n[?—l—n(fi—?)—f;nQ] 7

_ B 5= 92 (g + fos0s)

n[2+n<§i—2>—§in2} .

Let us note that in case of the fundamental modes (i.e. for n = 1) the UV and IR scalings

fn= (5.3)

In (5.4)

coincide. The IR scaling of the model is determined by two independent parameters,
f1 =1u1(A) and g1 = 01(A) since for n > 1 the constants f, and g, are fixed by egs. (5.3),
(5.4). Therefore, the IR behavior of the model is independent of the initial conditions for
the higher harmonics, see figure 1, and depends on either @;(A) or ©;(A) if the model has
a Zo symmetry and in the absence of the reflection symmetry the IR physics is determined
by both 4;(A) and 01 (A).

For 3% < 8, one has to distinguish three scaling regimes in case of the non-compact
MFSG model (i) the UV (ii) the IR (iii) and the deep IR scaling behavior, see figure 2.
The UV (4.3), (4.4) and the IR (5.1), (5.2) scaling laws are given by the same expressions
as those obtained in the strong coupling phase (3? > 87). However, if 3? < 87, according
to the IR scaling law, every Fourier amplitude becomes relevant (increasing) coupling in
the IR domain. Even more important difference is that a qualitatively new behavior is
found in the deep IR limit (kK — 0), namely, at a certain momentum scale k. the Fourier
amplitudes of the non-compact MFSG model become constants, see figure 2. Therefore, if
(3% < 8r, the dimensionless IR effective potential of the non-compact model is non-trivial.

Let us analyze the sensitivity of the IR theory on the initial conditions in order to
map out the phase structure. If the bare action has no Zs symmetry (see eq. (3.5)) then
the deep IR effective potential depends on a single parameter, namely, the ratio of the
initial values of the fundamental modes, r = 11 (A)/01(A) which remains unchanged during
the RG flow, see figure 3. Let us remind that in the strong coupling regime (32 > 8m)
the IR behavior of the model (without a Z; symmetry) is determined by two independent
parameters (@1(A) and 91(A)). In the presence of Z; symmetry (see (3.1) for r = oo
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Figure 2. The scaling of the first few Fourier amplitudes of the non-compact MFSG model is
obtained by the P-RG method solving eqgs. (3.9), (3.10) numerically for 3% = 47 with various initial
conditions for the higher harmonics. At the momentum scale k. ~ 3 x 10~%, the Fourier amplitudes
become constants.

r (3.3) for r = 0), the deep IR potential is superuniversal, i.e. it is independent of any
initial conditions [65-70, 85].

Again, for 3% > 8, if the action has a reflection symmetry, the IR scaling is determined
by a single parameter, i.e. the initial value of the fundamental mode, (either 41 (A) or 01(A)).
Therefore, the non-compact MFSG model has two phases separated by the critical value
(%2 = 8m. As a consequence of the superuniversal, and universal behavior, no other phase
transition can be identified in the non-compact model.

Finally let us consider the IR behavior of the non-compact MFSG model by solving di-
rectly the P-RG equation (2.9). When the solution of the partial differential equation (2.9)
had been obtained it was expanded in Fourier series. For 2 = 47 the UV, IR and the
deep IR scaling of the first few Fourier amplitudes coincide to that of obtained by the
numerical solution of egs. (3.9), (3.10) which are plotted in figure 2. Therefore, there is an
excellent quantitative agreement between the results obtained by solving egs. (3.9), (3.10)
and by solving eq. (2.9) directly. This shows that in case of the P-RG method the RG flow
seems to avoid the SI and one can look for the solution of the RG equations in its Fourier
decomposed form.

If one tries to determine the IR behavior of the MFSG model by an RG method, like
the WH-RG approach, which has a singular structure, and consequently, SI could appear
in the RG flow it could be important to solve the partial differential RG equation obtained
in the LPA without using any further approximations in order to be able to decide whether
SI can be avoided or not.
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Figure 3. In this figure we show that the IR effective potential of the non-compact MFSG model
for 3% = 4m depends on only the ratio of the Fourier amplitudes of the fundamental cosine and sine
modes. If the P-RG equation has been solved with various initial conditions for u;(A) and 01 (A)
but keeping their ratio fixed, then one obtains the same deep IR behavior.

5.2 Wegner-Houghton RG approach

Let us consider the IR effective theory of the MFSG model in the framework of the WH-
RG method by solving egs. (3.7), (3.8) numerically. For 3? > 87, similarly to the results
obtained by the P-RG method, the Fourier amplitudes are irrelevant in the limit k£ — 0,
independently of the initial conditions, see figure 4. The numerical solution of the WH-RG
equation provides once again the IR scaling laws given by (5.1) and (5.2). Similarly to the
P-RG flow, this IR behavior can also be obtained by using the IR approximations

EN:SA D2+ koy)a z—l-nilS(n—S)Qf ~sf [2—1—3 (52 _QH (k;)"(fi—?)
po S p— neede Are A ;
iSA(Z)@%—k@k)& ~ —SS(n—S)QQ —sf [2%—5 <52 _2>] <k>"(fi_2)
pot n,8 s s n—sJs . A ,
iv:sA 3)(2+kak)5 ~ _nz:ls(n_s)Qf g [2+8 <52 _2>] <k>n(§i2)
— n,S s e n—sYs Ar A ,
isA@)(ngkak)@ ~ _nz:ls(n_s)Qg 0 [2+s <g2 —QH <k>n(§i2>

n,s s n—s0s i A :

@
Il
—_
@
I
—
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Figure 4. The scaling of the first few Fourier amplitudes of the non-compact MFSG model is
obtained by the WH-RG method solving egs. (3.7), (3.8) numerically for 3% = 127 with various
initial conditions for the higher harmonics. The peaks in the scaling of us(k) and ¥2(k) indicate
the change of their sign during the RG flow.

which result in the recursion relations for f,, and g,,

62 Zs 1 S(TL—S) (fn sfs 9n— sgs)[l ]

fn=+ [2 o < - 2) ) , (5.5)
o 6223 S(TL—S) (gn 8f8+fn sgs)[1_8+ ﬂ]
gn = ! [2 o < ; 2) #, sl (5.6)

This shows that the IR scalings of the non-compact MFSG model determined by the P-RG
and the WH-RG methods are qualitatively the same for 32 > 87. The UV/IR scalings of
the fundamental modes (i.e. for n = 1) coincide, independently of the RG method used,
fi = wi(A) and g1 = 91(A). The IR constants f,, and g, of the higher harmonics (i.e.
n > 1) are determined by the equations (5.5), (5.6) which predict the IR behavior similar
to that obtained by the P-RG method. However, in case of the WH-RG method the
fn, gn parameters have alternating signs for even and odd values of n. Therefore, if we
use the same initial conditions, (e.g. all the bare Fourier amplitudes are positive) then in
case of the WH-RG method, u9(k) and 03(k) change their signs during the RG flow, see
figure 4. It is important to note that the IR scaling of the model (similarly to the P-RG
method) is determined by two independent parameters (@1(A), v1(A)), if the bare action
has no Zs symmetry and depends on a single parameter (either @1(A) or 91(A)) in case of
a Z9 symmetric bare action, and it is independent of the initial conditions of the higher
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Figure 5. The scaling of the first few Fourier amplitudes of the non-compact MFSG model is
obtained in the framework of the WH-RG method for 52 = 47 by solving numerically either
egs. (3.7), (3.8) or eq. (2.2). In the latter case, the partial differential equation (2.2) is solved by
a computer algebraic code and then the solution is expanded in Fourier series. The vertical line
indicates the momentum scale of ST (kg1) where egs. (3.7), (3.8) lose their validity. Above this scale,
ks1 < k, the results obtained by egs. (3.7), (3.8) and by eq. (2.2) coincide. Below the scale of SI,
k < ks, the scaling of the Fourier amplitudes is determined by the direct integration of eq. (2.2).

harmonics, see figure 4. In conclusion, the WH-RG and the P-RG methods produce the
same IR behavior for the MFSG model if 32 > 8.

For 32 < 8m, the IR scaling behavior turns all the Fourier amplitudes into relevant
coupling constants, consequently, the logarithm of the WH-RG equation (2.1) could become
infinite, hence a SI could appear in the WH-RG flow. Indeed, in figure 5 the scaling of
the coupling constants of the non-compact MFSG model is presented for 3? = 47 and
the vertical line shows the appearance of SI. Beyond the momentum scale kgr, the WH-RG
equation loses its validity and one has to use the tree-level RG equation (2.3) which leads to
the IR effective potential (2.4) in the deep IR limit (kK — 0). In order to preserve periodicity,
the IR effective potential of the MFSG model has a parabola-shape for ¢ € [—7/3,7/0]
and such parabola sections are repeated along the ¢ axis. Let us analyze the sensitivity
of the IR effective theory on the UV initial conditions. In case of a reflection symmetry
¢ — —¢, the linear term vanishes in (2.4), i.e. ¢ = 0, and the potential is superuniversal,
i.e. independent of any initial conditions. If the bare action has another type of reflection
symmetry ¢ — —¢ — /3, then the constant in (2.4) is non-zero but fixed, i.e. ¢ = —7/20,
consequently, the IR potential is again superuniversal. If the bare action of the MFSG
model has no Zs symmetry then the deep IR behavior depends on a single parameter c.
Therefore, in the framework of the WH-RG method if SI appears in the RG flow, the
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sensitivity of the IR behavior on the UV parameters is found to be the same as that
obtained by the P-RG approach.

Finally, let us consider the IR scaling of the non-compact MFSG model by solving the
WH-RG equation (2.2) by a computer algebraic code. The solution found is expanded in
Fourier series in order to compare the results to those obtained by egs. (3.7), (3.8). For
(3% = 4r the scalings of the first few Fourier amplitudes are plotted in figure 5. There is
a quantitative agreement between the results obtained by eq. (2.2) and egs. (3.7), (3.8)
in the UV and IR scaling regimes. However, the important difference is that no SI is
found in the RG flow when eq. (2.2) is solved directly. This indicates that SI occurs in
the WH-RG approach as an artifact due to the truncated Fourier-expansion applied to the
almost degenerate blocked action of the MFSG model, at least for 3% = 47. On the other
hand, it seems to support the Quantum Censorship conjecture to be at work in the MFSG
model as well [104]. Let us emphasize that independently of whether the blocked action
becomes degenerate or not, the sensitivity of the deep IR behavior of the MFSG model on
the UV initial parameters is found to be the same. Consequently, the phase structure of
the non-compact MFSG model is determined unambiguously and independently of the RG
method used.

Let us note that if Quantum Censorship is really on work, then the WH-RG (2.2)
and P-RG (2.9) partial differential equations and also their Fourier expanded forms,
egs. (3.7), (3.8) and egs. (3.9), (3.10) retain their validity in the deep IR regime. When there
the Fourier amplitudes take constant values at some momentum scale k., i.e. 8k17(k<kc) =0
or Optn(k < ke) =0, Ox0n(k < ke) = 0 hold, then egs. (3.7), (3.8) and egs. (3.9), (3.10) re-
duce to the same recursion equations except the sign of the non-linear term. Consequently,
in the IR limit & — 0 the WH-RG and the P-RG methods result in the same absolute
values of the couplings |, (0)| and |0,(0)| of the MFSG model.

6 Summary

In this paper we considered how the compactness of the field influences the renormaliza-
tion and, consequently, the low-energy behavior of the theory. In particular, we compared
the high-energy/UV and low-energy/IR behaviors of the two-dimensional multi-frequency
sine-Gordon (MFSG) scalar field model defined by compact and non-compact field vari-
ables. We studied the renormalization of the MFSG model with a non-compact field in the
framework of the functional renormalization group (RG) method using the local potential
approximation (LPA), discussing the comparison with the results for the compact double-
and multi- frequency sine Gordon.

We showed that the UV scaling of the compact and the non-compact MFSG models
coincides but their IR behaviors are different. In the UV limit, the quantum fluctuations
(with high frequency and small amplitude) do not feel the difference between the models
defined by compact and non-compact fields but the different behaviours are expected to
appear in the IR limit due to the large-amplitude quantum fluctuations of the IR domain.
On the one hand the critical frequency 3? = 87 at which the sine-Gordon model undergoes
a topological phase transition is found to be unaffected by the compactness of the field
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since it is determined by the UV scaling laws. On the other hand, while it is known that
the compact model has first and second order (Ising) type phase transitions which are
determined by the IR scaling, we showed that these are absent in the non-compact model.

Indeed, the IR effective potential of the non-compact MFSG model was found to be
different above and below 32 = 87. For 32 > 8, the deep IR behavior of the non-compact
MFSG model with Z5 symmetry (i.e. ¢ — —¢ or ¢ — —7/3—¢) depends on the UV initial
condition for either the fundamental cosine or the fundamental sine mode, respectively,
and for 4% < 87 it is superuniversal, i.e. independent of any initial conditions. If the non-
compact MFSG model has no Zy symmetry, for 3% > 87 the IR effective potential depends
on the UV initial conditions both for the fundamental cosine and sine modes (i.e. it depends
on two independent parameters) and for 3% < 8 it is universal, i.e. depends on only a
single parameter, namely the ratio %1(A)/91(A). Consequently, due to the superuniversal
and universal IR behavior of the non-compact MFSG model, there is no room for first or
second order phase transitions for 32 < 8.

These results were obtained by the functional renormalization group analysis of the
non-compact MFSG model in the framework of the Polchinski and the Wegner-Houghton
RG methods where the latter is mathematically equivalent to the effective average action
RG with the power-law regulator (b = 1) and the functional Callan-Symanzik RG equa-
tion. The RG flow of the non-compact MFSG model was determined in two different ways
(i) either the RG equations obtained in the LPA were solved numerically by a computer
algebraic code and then the solution expanded in Fourier series, (ii) or first the RG equa-
tions were derived for the Fourier amplitudes and then those solved numerically. In the
latter case, it was unavoidable to implement a further approximation besides the LPA,
namely the truncation of the Fourier expansion of the potential. The sensitivity of the
IR effective potential on the UV initial conditions, and consequently, the phase structure
was found to be the same in both cases. Moreover, except the situation where the RG
flow has a singularity, i.e. a spinodal instability (SI) appears in the IR limit, the scaling of
the Fourier amplitudes obtained in the above mentioned two different ways, coincide. For
(3% < 8, in case of the non-compact MFSG model a momentum scale was generated by the
RG transformation in the deep IR regime (either the scale where the Fourier amplitudes
become constants or the scale of SI). Below this momentum scale, the theory becomes
superuniversal (if it has a Zy symmetry) or universal (if it has no Zy symmetry).

Finally, the classification of the IR scaling operators into relevant, marginal or irrele-
vant ones was also found to be different in case of the compact and the non-compact MFSG
models. For the compact model, one can rely on the UV results even in the IR limit but
for the non-compact case new types of scaling laws were observed in the IR domain which
modify the classification of the scaling operators.
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